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Our knowledge of the physical world is mediated by relatively simple, effective

descriptions of complex processes. By their very nature, these effective theories ob-

scure any phenomena outside their finite range of validity, discarding information

crucial to understanding the full, quantum gravitational theory. However, we may

gain enormous insight into the full theory by understanding how effective theories

with extreme characteristics—for example, those which realize large-field inflation

or have disparate hierarchies of scales—can be naturally realized in consistent theo-

ries of quantum gravity. The work in this dissertation focuses on understanding the

quantum gravitational constraints on these “extreme” theories in well-controlled

corners of string theory.

Axion monodromy provides one mechanism for realizing large-field inflation in

quantum gravity. These models spontaneously break an axion’s discrete shift sym-

metry and, assuming that the corrections induced by this breaking remain small

throughout the excursion, create a long, quasi-flat direction in field space. This

weakly-broken shift symmetry has been used to construct a dynamical solution

to the Higgs hierarchy problem, dubbed the “relaxion.” We study this relaxion

mechanism and show that—without major modifications—it can not be naturally

embedded within string theory. In particular, we find corrections to the relaxion

potential—due to the ten-dimensional backreaction of monodromy charge—that



conflict with naive notions of technical naturalness and render the mechanism in-

effective.

The super-Planckian field displacements necessary for large-field inflation may

also be realized via the collective motion of many aligned axions. However, it is

not clear that string theory provides the structures necessary for this to occur.

We search for these structures by explicitly constructing the leading order po-

tential for C4 axions and computing the maximum possible field displacement in

all compactifications of type IIB string theory on toric Calabi-Yau hypersurfaces

with h1,1 ≤ 4 in the Kreuzer-Skarke database. While none of these examples can

sustain a super-Planckian displacement—the largest possible is 0.3Mpl—we find

an alignment mechanism responsible for large displacements in random matrix

models at large h1,1 � 1, indicating that large-field inflation may be feasible in

compactifications with tens or hundreds of axions.

These results represent a modest step toward a complete understanding of large

hierarchies and naturalness in quantum gravity.
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CHAPTER 1

INTRODUCTION

Each of the chapters contained within this thesis are focused on a common

theme: understanding large and small numbers in quantum gravity. The goal of

this introduction is to provide some background—and perspective—on why such

numbers are interesting and what we stand to gain by understanding them.

1.1 The Unreasonable Effectiveness of Dimensional Analysis

We begin by introducing what is, perhaps, the most powerful tool in physics.

Dimensional analysis is a technique for arriving at the correct approximate answer

to a physical question without much computational effort (or understanding) on

the physicist’s part. It is best illustrated with a simple, well-used example.

Consider the rigid pendulum in a gravitational field, pictured in Figure 1.1,

consisting of a massless rod of length ` fixed to a pivot about one end, with a bead

of mass m at the other. A particularly simple parameterization of this system’s

dynamical degree of freedom is to keep track of the angle the rod makes with the

vertical, θ(t). The equation of motion for this system is then

m θ̈(t) +mg` sin θ(t) = 0, (1.1)

and our childhood experiences tell us that the mass should oscillate about θ = 0

on a time scale dictated by the physical parameters in the system: m, g, and `.

The enterprising undergraduate would quickly expand the equation of motion in

small fluctuations to show that the period of oscillation is

T0 ≈ 2π

√
`

g
, (1.2)

1



`

m

θ

Figure 1.1: The simple pendulum in a gravitational field.

while the overeager first year graduate student might solve (1.1) in terms of Jacobi’s

amplitude. However, the practiced physicist is much lazier (read: efficient) and

may easily guess the correct answer with minimal work.

The essence of the idea is rewrite the equation of motion (1.1) in a dimensionless

form. Since θ is already dimensionless, this consists of parameterizing the angle θ

in terms of a natural time scale, which we will call ξ, such that (1.1) reads

θ′′(ξ) + sin θ(ξ) = 0, (1.3)

with ξ =
√
g/` t. We are then left with an equation featuring only dimensionless

constants, with no very large or very small numbers. Importantly, (1.3) locks two

quantities, θ′′ and sin θ, to be of the same magnitude—indeed, in this example

they must be exact opposites—so nothing in the equation can become overly large

or small, lest it violate (1.3). This is a general expectation in physics: most well-

behaved equations of motion have a very difficult time generating extremely large or

small numbers. Why? One answer—though certainly not the only one—is that the

systems we typically study are those that actually permit study, i.e. those systems

which are stable enough for physicists to prod repeatedly! By definition, stable

systems cannot generate absurdly large numbers when fed reasonable initial data—

divergent physical quantities are a sign that the system under study is unstable. So,

by restricting to stable systems, we should expect that the answer to any reasonable

2



k

m
.....

x1 x2 x3 x4 xN−1xN−2xN−3 xN

Figure 1.2: N coupled harmonic oscillators of mass m, connected by springs with
equal spring constant k.

question we may ask will have a reasonable O(1) answer, when expressed in the

natural scales of the system.

We may apply this logic to our pendulum. We expect that the time scale of

oscillation is O(1) in ξ units, and thus T0 ≈
√
`/g. Without actually solving

anything, we may arrive at an accurate idea of how a system will behave simply be

performing estimates based on dimensional analysis. It is important to note that

dimensional analysis only provides an expectation of an answer, and has no way in

general of predicting the same 2π factor in (1.2) that the precocious undergraduate

would derive. However, when this expectation is not met—say, if the period of

oscillation were measured to be ∼10−12
√
`/g—then we should interpret this as a

signal flare, a warning that we do not yet fully understand the relevant physics

of the system. Indeed, any large deviation from the natural expectation provided

by dimensional analysis demands to be explained, and this explanation typically

provides deeper insight into the nature of the system.

To illustrate this point, consider the system of N coupled harmonic oscillators

pictured in Figure 1.2. Each bead has mass m and is coupled to its neighbor with a

spring with spring constant k. The system is described by N equations of motion,

mxi = kxi−1 − 2kxi + kxi+1, i = 1, . . . , N (1.4)

with x0 = xN+1 = 0 representing the coordinates of the two fixed walls at either

end of the system. This system admits N normal modes of oscillation, each which

3



oscillate at a frequency ω`. By dimensional analysis, we expect each of these normal

modes to oscillate at a frequency roughly

ω` = O(1)×
√
k

m
. (1.5)

However, a standard textbook analysis [2] shows that the normal modes oscillate

with frequency

ω` = 2

√
k

m
sin

(
`π

2N + 2

)
, (1.6)

and so the slowest mode (` = 1) approximately has frequency

ω1 ≈
π

N + 1

√
k

m
. (1.7)

For arbitrarily large N , this is arbitrarily smaller than our expectation from di-

mensional analysis, so we should understand what exactly is going on.

Two things have happened here. First, following arguments similar to those

we applied to (1.3), we could conclude that the equations of motion (1.4) cannot

generate an extremely large or small quantity either. However, this argument

relied on large dimensionless quantities being absent in (1.3) and there is a large

dimensionless parameter in (1.4): the number of beads N . So, we should modify

our dimensional analysis expectation to include this dimensionless parameter, that

is

ω` ≈ f(N)×
√
k

m
, (1.8)

which is validated by the exact answer (1.6). This simple point is crucial to the

story described in Chapter 2, where a similar dimensionless parameter provides

large corrections to the expectations one derives from a more naive dimensional

analysis.

Second, taking the limit N →∞ restores a symmetry! Adding more and more

beads to the system pushes the walls further and further apart, and the system

4



becomes translationally invariant as N → ∞. Symmetries are very powerful, in

that they provide an explanation for why a particular physical quantity vanishes.

Slightly broken symmetries, i.e. when N is very large but still finite, retain much

of this power and provide an explanation for why a quantity is small. As we will

see in the next section, symmetries are particularly useful in quantum mechanical

theories, where everything allowed to happen must.

1.2 The Reasonable Effectiveness of Effective Field Theory

A quantum field theory can be defined through the generating functional of its

correlation functions, which is typically represented as a path integral over field

configurations, weighted by the Feynman measure. For example, for a scalar field

ϕΛ in d dimensions, this generating functional takes the form

Z[J ] =

∫
DϕΛ exp

(
i

~
SΛ[ϕΛ] +

i

~

∫
ddx J(x)ϕΛ(x)

)
. (1.9)

We include the subscript Λ to remind ourselves that the path integral can be ill-

defined and typically must be regulated in some way, and we will assume that this

regulator is a hard momentum cutoff, such that the measure DϕΛ only includes

field configurations with momenta k < |Λ|. The actual physics of this field is

dictated by the classical action SΛ[ϕ]. By taking functional derivatives of Z[J ]

one can generate arbitrary ϕΛ correlation functions which are guaranteed to be

consistent with the axioms of quantum mechanics and respect the symmetries of

SΛ[ϕ]. Thus, the theorist may use the path integral (1.9) as an extremely useful

prescription of specifying the quantum mechanical theory of a scalar field ϕΛ with

particular, imposed properties.

Crucially, the action SΛ[ϕ] is defined with explicit reference to the cutoff Λ.

5



We may write this action as the integral over a general local Lagrangian density,

for example,1

SΛ[ϕΛ] =

∫
d4x

(
− 1

2
(∂ϕΛ)2 − 1

2
Λ2c2,1(Λ)ϕ2

Λ −
1

3!
Λc3,1(Λ)ϕ3

Λ −
1

4!
c4,1(Λ)ϕ4

Λ

−
∑

k≥6,i

Λ4−kck,i(Λ)Ok,i(ϕΛ, ∂µϕΛ, . . . )

)
, (1.10)

where Ok,i is the i’th operator composed of mass dimension k formed from ϕΛ and

its derivatives, and the ck,i(Λ) are dimensionless parameters which specify which

theory we intend to study.

Wilson [5, 6] realized that as long as one only asks questions below an energy

scale Λ′, one could integrate out the field configurations with momenta Λ′ ≤ |k| ≤ Λ

to generate an effective field theory at the scale Λ′. By writing ϕΛ = ϕΛ′ + ϕ̂, we

have

Z[JΛ′ ] =

∫
DϕΛ′

[∫
Dϕ̂ exp (iSΛ[ϕΛ′ + ϕ̂])

]
exp

(
i

∫
d4x JΛ′(x)ϕΛ′(x)

)

=

∫
DϕΛ′ exp

(
iSΛ′ [ϕΛ′ ] + i

∫
d4x JΛ′(x)ϕΛ′(x)

)
, (1.11)

so that

exp
(
iSΛ′ [ϕΛ′ ]

)
=

∫
Dϕ̂ exp

(
iSΛ[ϕΛ + ϕ̂]

)
. (1.12)

Because (1.10) was the most general action we could write down for this field, we

may also write the effective action as

SΛ′ [ϕΛ′ ] =

∫
d4x

(
− 1

2
(∂ϕΛ′)

2 − 1

2
Λ′2c2,1(Λ′)ϕ2

Λ′ −
1

3!
Λ′c3,1(Λ′)ϕ3

Λ′ −
1

4!
c4,1(Λ′)ϕ4

Λ′

−
∑

k≥6,i

Λ′4−kck,i(Λ
′)Ok,i(ϕΛ′ , ∂µϕΛ′ , . . . )

)
. (1.13)

1In general, we should also include wavefunction renormalization factors Z(Λ). The interested

reader may find a full technical discussion in any modern text on Quantum Field Theory [3, 4].

We will take ~ = c = 1 in the rest of the discussion.
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The effect of integrating out the degrees of freedom between the momenta Λ′ ≤

|k| ≤ Λ can then be incorporated by changing the dimensionless coupling constants,

ck,i(Λ
′), which are called the Wilson parameters. Since the Wilson parameters de-

termine2 how the theory behaves at the scale Λ, then we may similarly understand

how the theory behaves at the scale Λ′ by simply keeping track of how the Wilson

parameters change and forgetting about the physics between Λ′ ≤ |k| ≤ Λ. Said

differently, the high-energy degrees of freedom have decoupled, but have modified

the coupling constants ck,i(Λ) in the process.

Now, by integrating out an infinitesimal shell of momentum, Λ− ε ≤ |k| ≤ Λ,

we may describe the flow ck,i(Λ) → ck,i(Λ − ε) using the renormalization group

equations,

dck,i(Λ)

d log Λ
= βk,i

(
{cl,j(Λ)}

)
. (1.14)

Like (1.3) for the rigid pendulum, (1.14) may be interpreted as the dimensionless

equations of motion for a dynamical system, and following the arguments of the

previous section we would expect that under any reasonable flow and for generic

initial data the Wilson coefficients cannot become extremely large or small, i.e.

ck,i(Λ) ∼ O(1).3 (1.15)

Since the Wilson coefficients ck,i only appear in the action (1.10) dressed with

appropriate powers of the cutoff Λ4−k, we expect that its contribution to a physical

observable appears in powers of (Λ/E)4−k. Thus, relevant (k < 4) and marginal

(k = 4) operators have a much greater impact on low energy observables than

2Much of the wording here intrinsically assumes that the theory is weakly-coupled at both Λ

and Λ′.
3This logic implicitly assumes that the theory remains weakly-coupled and that the degrees

of freedom being integrated out have a characteristic mass scale roughly ∼ Λ, so no large or small

ratios (E/Λ)` can drastically alter this expectation.

7



irrelevant (k ≥ 4) operators.

This is the wonderful power of effective field theory: at low energies, one only

needs to get a small number of (aptly-titled) relevant parameters right. The irrel-

evant operators in the action (1.10) have a negligible effect on low energy physics!

This universality provides physics with enormous predictive power: many systems

with drastically different microphysics can have the same low energy behavior.

Unfortunately, the high-energy theorist is interested in the inverse problem:

can one determine the original microscopic theory from the effective theory at low

energies? Here, universality works against us. Inherent experimental error prevents

the low-energy physicist from determining the irrelevant Wilson coefficients to

any accuracy, forcing the high-energy theorist to solve the inverse problem with

incomplete information. Said differently, because universality predicts that a large

class of microphysical systems have the same low-energy effective description, the

high-energy theorist cannot solve the inverse problem without additional tools or

constraints.

1.3 Naturalness and Effective Field Theory

As demonstrated in §1.1, we can use general expectations about the nature and

behavior of a physical system to arrive at, or at least point towards, a solution to

this inverse problem. We rely on the assumption that the system under study is

“typical,” and we argued in the previous section that typical effective field theories

have O(1) Wilson coefficients. That is, effective theories which satisfy (1.15) are

natural or generic. We may use this presumption of naturalness as an additional

constraint in our attempts to divine the true microphysical theory from its low-
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energy effective description.

A classic example of utility of naturalness is the prediction of the positron. Let

us model [7, 8] the electron as a smooth charge distribution with characteristic size

re. We would expect that the mass of the electron is at least of the order of the

energy that it carries in the electromagnetic field it produces. Using re as a cutoff,

we expect that

me ∼
1

8π

∫
d3x |E|2 ∼ α

re

, (1.16)

where α = e2/4π ∼ 1/137 is the fine-structure constant. However, modern day

experiment has shown that re < 10−17 cm, implying that the electron mass should

naturally be of the order me ∼ 100 GeV, not me ≈ 0.511 MeV.

Absent an explanation, we would argue that the measured electron mass is

unnatural and that there must be a delicate fine tuning between the bare mass of

the electron and the correction due to quantum effects,

me
∼1 MeV

= m(0)
e

∼105 MeV

+ α/re,
∼105 MeV

(1.17)

for the electron mass to be ≈ 0.511 MeV rather than ∼ 100 GeV, roughly a can-

cellation to one part in 105. While such a fine tuning is allowed, it should be

interpreted as a signal that there may be additional physics—i.e. new degrees of

freedom which we do not yet thoroughly understand—that render the small pa-

rameter me natural. We expect that these new degrees of freedom show up at the

scale dictated by naturalness, in this case at an energy scale Λ ∼ 1 MeV.

Indeed, the introduction of the positron (with mass mp = me) alters the form

of the quantum corrections,

me = m(0)
e

(
1− 6α

4π
log (mere)

)
, (1.18)
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and renders me ≈ 0.511 MeV natural. Much like the N → ∞ limit restored

translational invariance in our coupled oscillators example, the introduction of the

positron restores a chiral symmetry to the theory of quantum electrodynamics.

While this symmetry is broken by the presence of the electron and positron mass,

it still provides an explanation for why this mass is much smaller than the naive

expectation me ∼ αr−1
e . A small parameter is said to be technically natural if a

symmetry is restored when that parameter is tuned to vanish.

Naturalness has proved to be a very effective tool for physicists and has been

used to “predict” a variety of new particles and phenomena. Indeed, this expec-

tation that our physical theories are not fine-tuned has become so strong that

apparent violations of naturalness represent major problems—deemed hierarchy

problems—in theoretical physics. Solutions to the Higgs hierarchy problem, the

strong CP problem, and the cosmological constant problem attempt to explain why

the Higgs mass, QCD θ-angle, and cosmological constant are 1017, 1013, and 10120

times smaller than our expectations, respectively. Such solutions provide micro-

physical mechanisms which explain why these quantities are so different from their

natural values, and would provide deep insights into the structure of our world at

high energies.

1.4 Naturalness and Quantum Gravity

In the previous sections, we saw two examples—the system of N coupled oscillators

and the electron mass in quantum electrodynamics—where the unnatural smallness

of a physical quantity could be explained by a global or spacetime symmetry. This

is a common theme in solutions to hierarchy problems: one typically declares
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victory4 if a small parameter can be tied to an approximate symmetry of the

theory. However, it is widely believed folklore [9, 10, 11] that continuous global

symmetries cannot exist in a consistent quantum gravitational theory. Instead,

the only exact continuous symmetries that can exist in quantum gravity are those

which are gauged: quantum gravity permits only constraints, not symmetries.

As with most deep facts about quantum gravity, we can argue against the

existence of global symmetries by considering the properties of evaporating black

holes. Following [12], let us consider a quantum gravitational theory with heavy

matter charged under an exact U(1) global symmetry. We may form a black hole

of mass M with a large global charge Q and, because black holes have no hair,

an observer sitting outside the black hole cannot discern that it is charged. Thus,

the black hole will evaporate thermally, losing most of its mass to light, uncharged

quanta until the black hole becomes hot enough to emit the heavier charged matter.

Because the U(1) symmetry is exact, the charge cannot simply vanish. So, unless

the theory contains matter with arbitrarily high charge-to-mass ratios, the black

hole will not be able to get rid of all of its charge and will not be able to evaporate

entirely. The end state of this evaporation process thus leads to a highly-charged

stable object called a remnant. These remnants contain huge amounts of entropy,

and necessarily [13] drive the gravitational coupling to 0, leaving us with a non-

gravitational quantum theory. So, the existence of continuous global symmetries

in quantum gravitational theories lead to unacceptable pathologies, and we expect

that any such symmetries are necessarily broken by gravitational effects. This is

most clearly demonstrated in [9], which shows that, in a simple system with a

global symmetry, wormholes can eat global charge by carrying it away from our

universe.

4“Victory” is alternatively written as “technically natural.”
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ϕ

V (ϕ)
Mpl

Figure 1.3: A typical potential (1.19) with ck ∼ O(1) Wilson coefficients.

That global symmetries are absent in theories of quantum gravity strips us of

a particularly powerful tool for explaining unnaturally large or small quantities in

these theories, especially if the large hierarchy we are interested in is intrinsically

tied to gravitational physics as, for example, it is in the cosmological constant

problem and in large field inflation.

Much of this thesis is devoted, in one way or another, to realizing large field

inflation in quantum gravity and, in particular, string theory. Simple models of

inflation involve a single scalar field ϕ—the inflaton—undergoing slow, controlled

evolution in a relatively flat potential. In large field inflation, the inflaton executes

a path in field space with super-Planckian arc-length. From our discussion above

and in §1.2, we expect that the inflaton potential is naturally of the form

V (ϕ) = M4
pl

∞∑

k=1

ck

(
ϕ

Mpl

)k
(1.19)

with the Wilson coefficients ck ∼ O(1), and schematically looks like Figure 1.3.

Requiring that this potential be flat over super-Planckian ∆ϕ � Mpl—that is,

requiring that it look like Figure 1.4—amounts to ensuring that all Wilson coef-

ficients are unnaturally small, ck � 1! Large field inflation apparently requires a

function’s worth of fine-tuning.

Excitingly, large field inflation is tied to a detectably bright CMB B-mode signal

which will be definitively discovered or ruled out within the next decade [14]. Thus,
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Figure 1.4: A potential (1.19) which admits large field inflation and requires a
delicate fine-tuning of the Wilson coefficients ci.

while understanding the role of naturalness in quantum gravity—and whether or

not there exist robust mechanisms for generation of large hierarchies—promises to

yield deep insights into the structure of the theory, it may also provide the pathway

to the first experimental tests of quantum gravity.

1.5 Outline of Thesis

As discussed in the previous section, theories of quantum gravity do not allow

continuous global symmetries. This is very unfortunate from a computational per-

spective, as symmetries can drastically reduce the complexity of a given problem.

Computational control is a luxury when studying quantum gravity, so one must be

certain to work under a “lamp post,” i.e. in a particularly well-controlled regime

or sector of the theory. Most of this thesis is thus concerned with the physics of

axions in string theory—specifically axions in Type IIB string theory compactified

on a Calabi Yau orientifold.

Discussed in detail in §2.A, axions arise from p-form gauge fields dimension-

ally reduced along non-trivial p-cycles in an internal manifold. The p-form gauge

symmetry protects the axion from receiving potentially dangerous quantum cor-
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rections. Indeed, the axion a enjoys a continuous shift symmetry a 7→ a + const.

at the perturbative level. This continuous symmetry is broken to a discrete shift

symmetry a 7→ a+ f by nonperturbative effects, with f the axion decay constant.

The discrete shift symmetry is an example of a 0-form gauge symmetry. Axionic

theories are thus highly constrained and may serve as a well-controlled arena to

understand these large hierarchies in quantum gravity.

The work in Chapter 2 focuses on the relaxion mechanism in string theory.

The relaxion is a beautiful attempt to provide a dynamical resolution to the Higgs

hierarchy problem, in which the Higgs mass dynamically relaxes to its measured,

unnaturally small value. The mechanism relies on axion monodromy, the sponta-

neous breaking an axion’s discrete shift symmetry, and ties the final value of the

Higgs mass to this (seemingly) technically natural small quantity. However, we

argue that this scenario is inconsistent with many general properties of quantum

gravity, and illustrate these inconsistencies in a well-controlled string compactifi-

cation, allowing us to make fairly general statements about the role of technical

naturalness in axion monodromy.

Theories with multiple axions also present promising candidates for realizing

large field ranges in string theory. While general reasoning prevents each axion

from having a super-Planckian decay constant (and thus super-Planckian field

range), multiple axions may undergo a collective motion which realizes an effective

super-Planckian displacement. It is thus important to understand if there are

general structures in string theory (and, more generally, in quantum gravity) that

prevent such a collective motion. In Chapter 3, we initiate a systematic study of

these theories in a well-controlled corner of string theory. Specifically, we compute

the largest possible field range for every Calabi Yau threefold with h1,1 ≤ 4 in the

14



Kreuzer-Skarke database, with the aim of understanding the extent to which the

field range can be enhanced by this collective motion.

As we saw in §1.2, tension with naturalness can be resolved by the introduction

of new degrees of freedom. One potential resolution to the Higgs hierarchy prob-

lem is to realize the Standard Model fields as composite—instead of fundamental—

degrees of freedom. At low energies, the Standard Model degrees of freedom behave

like particles, while at higher energies they act like a bound state of more funda-

mental, necessarily strongly coupled, degrees of freedom. AdS/CFT provides a

powerful tool to investigate strongly-coupled dynamics, and Chapter 4 utilizes this

tool to study a toy version of these composite models realized in string theory.

Specifically, we determine the spectrum of chiral and non-chiral bifundamental

mesons on stacks of intersecting D7-branes in AdS5 × S5.
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CHAPTER 2

RUNAWAY RELAXION MONODROMY

Abstract1

We examine the relaxion mechanism in string theory. An essential feature is that

an axion winds over N � 1 fundamental periods. In string theory realizations via

axion monodromy, this winding number corresponds to a physical charge carried

by branes or fluxes. We show that this monodromy charge backreacts on the

compact space, ruining the structure of the relaxion action. In particular, the

barriers generated by strong gauge dynamics have height ∝ e−N , so the relaxion

does not stop when the Higgs acquires a vev. Backreaction of monodromy charge

can therefore spoil the relaxion mechanism. We comment on the limitations of

technical naturalness arguments in this context.

1This chapter is based on L. McAllister, P. Schwaller, G. Servant, J. Stout and A. Westphal,

“Runaway Relaxion Monodromy,” 1610.05320.

We thank Nima Afkhami-Jeddi, Tom Hartman, Nemanja Kaloper, David E. Kaplan, Eric Ku-

flik, Cody Long, Miguel Montero, Surjeet Rajendran, Michael Stillman, Amir Tajdini, Irene

Valenzuela, and Timo Weigand for valuable discussions.
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2.1 Introduction

Why is the Higgs mass so small? Graham, Kaplan, and Rajendran (GKR) have

proposed a novel solution to the electroweak hierarchy problem, the relaxion mech-

anism, in which the evolution of an axion field φ drives the Higgs mass mh to relax

dynamically to a value much smaller than the cutoff, |m2
h| � M2 [16]. Achieving

a large hierarchy in this way requires very small dimensionless couplings, as well

as field excursions ∆φ � M , but GKR argued that the requisite couplings are

technically natural.

In this work, we study the impact of ultraviolet completion on the relaxion

mechanism. The large field excursions required by the mechanism, while techni-

cally natural in effective field theory, turn out to be source terms in string theory!

Winding an axion φ over N � 1 fundamental periods leads to the accumulation

of N units of monodromy charge, providing a large source term in ten dimensions.

This changes the shape of the compactification and alters the couplings of the ef-

fective theory, eliminating the barrier that is needed to stop the relaxion once the

Higgs acquires a vev.

The root of the problem is that new states linked to the monodromy charge,

which are too massive in the initial configuration to be visible, are eventually drawn

below the cutoff M . These new light states induce changes in the couplings of the

effective theory. In particular, the gauge coupling gYM of the gauge theory that

generates the stopping potential receives a correction δg−2
YM ∼ N . This leads to an

exponential suppression of the stopping potential, with barrier heights ∼ e−N , and

therefore to a runaway relaxion. This problem persists even in the limit in which

the relaxion shift symmetry appears to be restored.
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Although we work in string theory, and quantum gravity completion is the

central question, our results do not hinge on super-Planckian displacements

∆φ � Mpl, which are famously challenging in quantum gravity. The problems

that we expose occur even for ∆φ � Mpl. The core issue is indeed one of large

displacements, but here large means compared to the natural scale (or periodicity)

of the effective theory. When φ is an axion with decay constant f , the backreaction

of monodromy charge is significant for ∆φ� f .

Our analysis does not amount to a complaint that the effective theories given

in [16] contain small dimensionless parameters. Constructing a solution of string

theory that yields an effective field theory containing small numbers plausibly

requires fine-tuning, e.g. of the discrete data of a compactification. Quantifying

this obvious issue is not our aim. The backreaction phenomenon that we identify

is a much more severe problem: even granting fine-tuned data that gives rise to

an apparently-suitable relaxion Lagrangian in the probe approximation that omits

the monodromy charge as a source in ten dimensions, the full Lagrangian beyond

the probe approximation is not of the form given in [16], and does not allow for

relaxation of a hierarchy.

Our goal is to identify the challenges that confront the relaxion mechanism in

string theory. Though we analyze a specific realization in type IIB string theory,

we find a set of surprising, plausibly general, qualitative lessons about the na-

ture of hierarchies and technical naturalness in low energy effective field theories

descending from string theory.

The remainder of §2.1 is a microcosm of the paper. We begin with a review

of the relaxion mechanism and then provide an overview of our results, leaving

detailed analysis for the main text. The casual reader need only read §2.1.
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Overview of the Relaxion

The simplest model of electroweak scale relaxation involves adding to the Standard

Model a single axion φ, the relaxion, with the potential2

V (φ, h) =
(
M2 − gM (φinit − φ)

)
|h|2

A

+ gM3φ

B

+ Vstop(φ, v)

C

. (2.1)

Here h is the Higgs field and v is its vacuum expectation value, v2 ≡ 〈|h|2〉, M is the

cutoff of the effective field theory, and g is a dimensionless parameter that controls

the explicit (albeit weak) complete breaking of the relaxion’s perturbatively exact

continuous shift symmetry φ 7→ φ + const. The coupling A promotes the Higgs

mass m2
h to a dynamical variable, so that evolution of φ scans over a range of Higgs

masses, while B is a potential that forces φ to smaller values, φfinal � φinit. Finally,

C is a non-perturbatively generated, oscillatory “stopping potential” Vstop(φ, v) =

Vstop(φ + f, v), whose height grows with the Higgs vev v. For now, we take this

potential to be

Vstop(φ, v) = Λ3
c v cos

(
2πφ

f

)
(2.2)

with Λc the confinement scale of a gauge theory G to which φ has an axionic

coupling, though we will consider more general potentials in §2.2. This potential is

generated by strong gauge dynamics and disappears when the theory is in a phase

with unbroken chiral symmetry, i.e. in a phase with massless quarks. Thus, the

stopping potential vanishes unless the Higgs has developed a vev.

The mechanism is illustrated in Figure 2.1. The relaxion starts at a large value

φinit, where m2
h ∼M2, and begins to slowly roll down the linear potential B . For

2We follow the same notation as [16], except that we take the coupling g to be dimensionless,

gGKR = g ×M , and shift the origin of the relaxion φ field space.
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Figure 2.1: Schematic plot of the relaxion potential (2.1).

generic initial conditions, the relaxion will roll a distance

∆φ ∼M/g (2.3)

in field space before the Higgs becomes massless, A = m2
h = 0. The Higgs then

develops a vev and the stopping potential is generated. The relaxion continues to

roll, halting once the stopping potential grows strong enough to counterbalance

the linear potential—roughly when

v

M
∼ g

(
M

Λc

)3
f

M
. (2.4)

The hierarchy between the Higgs vev and the cutoff of the theory is thus controlled

by the shift-symmetry breaking parameter g. In effective field theory, it is tech-

nically natural for g to be arbitrarily small. However, we will see that there are

obstacles to such a structure in string theory.

Requirements for Relaxation

We now summarize the necessary ingredients for a successful relaxation of the

electroweak scale.

1. The Higgs mass must be made dynamical by introducing an axion3 field φ

3As is clear from the name, it is important the relaxion φ be an axion: the axionic shift
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with a coupling to the Higgs of the form

Lh ⊃ G(φ)|h|2 (2.5)

where G(φ) is some polynomial in φ. Evolution in φ scans over Higgs masses.

2. The dynamics of φ must be attractive, with the late-time (when m2
h ∼ 0)

behavior of φ being independent of the initial conditions.

3. φ must stop when the Higgs mass is approximately its observed, unnatural

value.

For the evolution of the relaxion to be both attractive and dominated by clas-

sical dynamics, some friction is necessary. Therefore, the relaxion scenario has

been assumed to take place during inflation (for an alternative source of friction

from particle production see [17]). In this paper we will not discuss the underlying

model of inflation (e.g. see [18, 19, 20] ), nor its possible realization in string the-

ory; these issues are the subject of an extensive literature (see for example [8]). We

assume inflation to be operative, and concentrate instead on the relaxion potential

and examine how it may arise in string theory constructions.

Typically, the stopping potential is generated by non-perturbative effects and

is f -periodic. This ensures that only A and B explicitly break the discrete shift

symmetry φ 7→ φ + f , and protects against possibly disastrous corrections. The

height of the stopping potential must depend on the Higgs vev. Furthermore, we

require the minima of (2.1) to scan through Higgs masses finely enough so that

a small overshoot does not dramatically increase the final electroweak scale; since

symmetry protects the potential against undesirable corrections. One could envision a more

general relaxation scenario involving a field φ that is not an axion, but it would then be necessary

to explain how the structures in (2.1) could be technically natural.
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the stopping potential minima are spaced roughly ∆φ ∼ f apart, this translates

into the requirement that G ′(φ)f � v2.

While this appears to be a beautiful solution to the Higgs hierarchy problem,

there is some cause for concern: g must be an exceptionally small number in order

to generate a sizable hierarchy. The simplest model of [16] requires g ∼ 10−28; see

§2.2 for the requirements in variants of the model. It is reasonable to ask whether

the associated large number 1/g infects any other terms in the effective action.

Note that although we used the same g in A and B , these two terms could in

principle be different. Let us temporarily distinguish them and denote the coupling

in A as gh. If g � gh at tree level, Higgs loops will drive the coupling in B to be

of order gh so that the two couplings in A and B are not very different. If, on the

other hand, we take g � gh at tree level, this hierarchy is stable but the required

field excursion in (2.3) increases to M/gh �M/g. So, models with gh ∼ g undergo

the smallest field excursion, and for this reason we only consider one g coupling in

Eq. (2.1).

Although all the phenomena that we will uncover in this work can be encoded

in an effective field theory, appropriately extended to include the effects of states

that enter the spectrum as the relaxion makes its long excursion, these effects are

not easily seen without the perspective of an ultraviolet theory. This is to say

that the technical naturalness reasoning of [16] amounts to a set of premises about

the field content and interactions of an effective theory, together with conclusions

that indeed follow from those premises. In this work we question these premises,

asking whether string theory imposes restrictions or refinements on the possible

effective theories. We first critically examine technical naturalness arguments in

this context and then turn to a string theory embedding of the relaxion.
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Technical Naturalness and Large Displacements

Technical naturalness is often used as a panacea in model building: one begins with

a symmetry that protects against potentially disastrous quantum corrections and

then weakly breaks it, confident that all corrections induced by this breaking are

necessarily small. If g is a dimensionless parameter measuring the weak symmetry

breaking, and the symmetry is restored for g → 0, corrections in the effective

theory are proportional to positive powers of g, and so are well-controlled for

g � 1. This logic must be used with care in the presence of field excursions ∆φ

that are large compared to the effective theory’s cutoff M . The essential problem

is that ∆φ/M provides a new large parameter and corrections can depend both on

g and on ∆φ/M .

As a toy example, consider a four-dimensional effective theory for a scalar field

φ with Lagrangian

L = −1

2
(∂φ)2 −M4

∞∑

i=1

ci

(
φ

M

)di
gei , (2.6)

where M is a physical ultraviolet cutoff (the scale of some new physics), g � 1 is

a dimensionless parameter, the ci are dimensionless Wilson coefficients, and the di

and ei are non-negative numbers. As long as

ei 6= 0 ∀i, (2.7)

all quantum corrections are proportional to powers of g, and the continuous shift

symmetry φ 7→ φ + const. is restored in the limit g → 0. However, we stress that

(2.7) must be checked for every term in (2.6), as any ei = 0 term, no matter how

irrelevant, could potentially provide disastrous corrections.

At large displacements φ � M , the condition (2.7) is far from sufficient to

ensure that quantum corrections are under control at small but finite g. The theory
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contains a new large parameter, φ/M , and corrections proportional to gei(φ/M)di

are not necessarily small for g � 1 and φ/M � 1. Ensuring that the corrections

to the classical equations of motion are small requires knowledge about the entire

sequence {ci, di, ei}, and so the full Lagrangian (2.6).

In systems allowing axion monodromy, there is an additional subtlety: the limit

g → 0 is not smooth,4 because the field space discontinuously changes from a helix

(for g 6= 0) to a circle (for g = 0). Standard technical naturalness arguments that

rely on the g → 0 limit can therefore become problematic.

Now suppose one obtains an effective theory from the top down, beginning

in a vacuum of quantum gravity and integrating out Planck-scale degrees of free-

dom, for example by performing dimensional reduction in a string compactification

with stabilized moduli. Then the low-energy theory in four dimensions could still

take the form (2.6), but with two important caveats. First, the exponents di, ei

are dictated by the vacuum configuration of the underlying theory, and the con-

dition (2.7) must be established rather than assumed. Second, in configurations

with ≤ 4 supercharges in four dimensions, in practice one never obtains complete

information about the infinite sum in (2.6): some terms can be computed in dif-

ferent approximations, but other terms remain incalculable, although they are in

principle determined by the underlying vacuum.

Because we do not have the ability to compute every term in (2.6) in any

halfway-realistic solution of string theory, it is difficult to prove that (2.7) is pos-

sible in quantum gravity. As a result, there is a disjunction between bottom-up

reasoning based on technical naturalness, and top-down reasoning based on ob-

4This observation led the authors of [21] to argue that the g → 0 limit is not technically

natural.
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taining effective theories from quantum gravity: the former strictly requires the

condition (2.7), which appears not to be provable in quantum gravity.

In our view, the difficulty in establishing (2.7) in any particular solution of

string theory is not just that the computation is challenging; it is that plausible

general reasoning about black hole thermodynamics in quantum gravity suggests

that (2.7) is in fact false. Exact continuous global internal symmetries are thought

by many to be impossible in quantum gravity and have not appeared in string

theory to date. We therefore expect quantum gravity to dramatically affect the

g → 0 limit. Although our results will turn out to be compatible with this general

expectation, we do not rely on bottom-up reasoning about quantum gravity at

any point in our analysis. In particular, we do not assume any form of the Weak

Gravity Conjecture (WGC).5

We will argue that axion monodromy in string theory is very generally char-

acterized by the existence of one or more terms in the effective action (2.6) with

ei = 0, and the theory is poorly-controlled in the limit g → 0, φ/M → ∞. The

physical origin of these problematic terms is backreaction by monodromy charge,

as we now explain.

New States from Monodromy

In a viable relaxion theory, we must find that every shift symmetry breaking term

in the relaxion Lagrangian is proportional to a power of g, the parameter that

controls the weak breaking in (2.1). However, as we will explain qualitatively now

5For work applying the WGC to the relaxion, see e.g. [22, 23].
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and quantitatively in §2.4, the monodromy charge

N ≡ ∆φ

f
, (2.8)

leads to corrections that are not dressed by powers of g, so that (2.7) does not

hold. We will begin with an example and then draw more general lessons.

Suppose (cf. the detailed discussion in §2.3.3) that the relaxion is associated

to a two-cycle wrapped by an NS5-brane. Further, suppose that the stopping

potential arises from the dynamics of a strongly-coupled non-Abelian gauge theory,

with group G, living on a stack of D7-branes wrapping a four-cycle Σ4. The height

of the stopping potential depends on the coupling gYM of this D7-brane gauge

theory:

|Vstop| ∝ Λ3
c ∝ exp

(
− 8π2

g2
YM cG

)
. (2.9)

Here the constant cG is determined by the type of non-perturbative effects that

generate Vstop, and may be set to unity for our purposes. The gauge coupling

function of G is proportional to the warped volume of Σ4, cf. (2.71):

1

g2
YM

=
volW(Σ4)

2π`4
s

. (2.10)

When the system is wound up over N cycles, N units of monodromy charge—

which in this scenario is D3-brane charge—accumulate on the NS5-brane. This

charge is a source in the ten-dimensional Einstein equations, and so leads to changes

in the metric of the internal space and the warp factor. The backreaction thus

alters the warped volume volW(Σ4). Then, through (2.10), the gauge coupling

function—and hence the height of the barriers—depend on N . In §2.4.2, we will

show that

δ

(
8π2

g2
YM

)
∼ N, (2.11)

without dependence on g.
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The correction (2.11) can be understood in a dual description as resulting

from new light states associated to the source of monodromy. The one-loop MS β-

function in a Yang-Mills theory with nF fermions, nS complex scalars, and coupling

constant gYM can be written

d

d log µ

(
8π2

g2
YM

)
=

11

3
T (Ad)− 2

3

nF∑

i=1

T (Ri)−
1

3

nS∑

a=1

T (Ra), (2.12)

where T (Ri) is the index of representation Ri and Ad denotes the adjoint repre-

sentation. The introduction of N light states will typically lead to a change

δ

(
8π2

g2
YM

)
= γbrN , (2.13)

with γbr a constant independent of N .

Where do these new light states come from? The N units of D3-brane charge

in the NS5-brane can be viewed as resulting from N actual D3-branes (up to a

binding energy that does not affect our argument). So there are N new states in

the theory, corresponding to strings stretching from the D7-brane stack, where the

gauge theory lives, to the D3-branes. These states transform in the fundamental

of G, and so may be described as N species of quarks from the viewpoint of G.

Including these species in loops leads to (2.13).

The lesson is that O(N) new states associated with the source of monodromy—

in our examples, fundamental strings stretching from the source of monodromy to

the gauge theory D-branes—can give large loop corrections. These states could

easily be missed in field theory, but in a string theory configuration with two

D-brane gauge theories G1, G2, the presence of bifundamentals is hard to avoid.

The only question is whether the bifundamentals are so massive that they are

physically unimportant. In our setting, we will find (cf. Appendix 2.B) that

arbitrarily short—and hence, light—bifundamental strings are present.
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The fact that for each unit of monodromy charge there is a new state coming

down in mass that contributes to the gauge coupling of the effective theory—even

though this state was far above the cutoff in the vacuum at zero winding—is a con-

sequence of the structure of the ultraviolet completion. The new states described

above arise from stretched strings, and so obviously have their origin in string

theory per se, but there are also new states that arise simply from the presence of

extra dimensions: these are Kaluza-Klein (KK) states made light by monodromy.

Thus, our considerations can be extended to extra-dimensional “partial” ultravio-

let completions of four-dimensional field theories, without invoking string theory.

Perhaps the simplest illustration of this phenomenon is the model of [24] (see

also [25]), which describes axion monodromy arising from a Stueckelberg massive

U(1) gauge field coupled to a massless charged scalar field in a five-dimensional

spacetime with the extra dimension compactified on a circle,

S5D =

∫
d4x

∫

S1

dy
√−g

(
−1

4
FMNF

MN − 1

2
m2AMAM − (DMΦ)†

(
DMΦ

))
,

(2.14)

where Dm = ∂M − iqAM , FMN = ∂[MAN ] = ∂[MAN ], and AM = AM − ieiθ∂Me−iθ

denotes the Stueckelberg covariant U(1) gauge field. Now we perform a KK re-

duction on the circle, whose circumference we denote by 2πR. We decompose the

five-dimensional fields into an infinite series of discrete Fourier (KK) modes on the

circle, and focus on the KK modes of the scalar Φ,

Φ(xµ, y) =
1√
2πR

∑

n∈Z

Φn(xµ) exp

(
iny

R

)
(2.15)

This yields the effective four-dimensional action

S5D ⊃
∫

d4x

(
1

2
m2φ2 +

∑

n∈Z

( n
R
− qφ

)2

|Φn|2
)
. (2.16)

Here, φ ∼ A
(0)
5 denotes the four-dimensional axion field corresponding to the five-
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dimensional gauge field Wilson line around the S1. The axion φ evidently experi-

ences monodromy, acquiring a quadratic potential.

The key observation is that the masses of the KK modes Φn,

m2
n =

( n
R
− qφ

)2

(2.17)

depend on the vev of the axion φ. As φ scans across its field space, one KK mode

after another falls below the cutoff R−1 in mass and thus enters the spectrum

of the low-energy effective theory. In particular, as φ moves over N units of its

fundamental domain, N KK modes fall below the cutoff R−1, in analogy with the

string theory effect discussed above.

We should clarify that in our examples, monodromy affects mass spectra in

two very different ways. One effect is shifting, in which φ 7→ φ + f leaves the set

of masses m in a sector invariant, but permutes the states associated with these

masses. For example, in (2.17), changing φ 7→ φ + (qR)−1 increases by one unit

the Kaluza-Klein charge of the state at each mass level.

The other effect is compression, in which a monodromy φ 7→ φ + f changes

the mass spectrum. Typically, as the axion winds up and stores more energy, the

masses in affected sectors are reduced. A shifting spectrum is compatible with an

exact discrete shift symmetry of the theory; the number of states below a fixed

cutoff does not change, but the labels of the states change. Compression violates

even a discrete shift symmetry, as the number of states below a fixed cutoff depends

on φ.

With this terminology, we remark that the five-dimensional example above dis-

plays only shifting, not compression. This is a consequence of the oversimplified

nature of the model. We will show below that axion monodromy also causes com-
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pression of the mass spectrum of Kaluza-Klein excitations of an NS5-brane. Thus,

stretched string states are not the only states that experience compression, and

we expect that compressed spectra can arise in purely extra-dimensional scenarios

without string theory.

Why do we not provide a purely four-dimensional field theory toy model show-

ing the effects of shifting and compression, for instance in the case of axion mon-

odromy from a four-form field strength [25, 26, 27, 28]? The issue is that although

the core mechanism of axion monodromy arising via the Stueckelberg mechanism

can be described in four-dimensional field theory, the results of [25] make it clear

that backreaction effects, including those of massive states entering the spectrum,

are described by higher-derivative corrections arising from higher powers of the

four-form field strength. These corrections must be determined in the ultraviolet

completion of gravity, as explicitly noted in [25] as well. That is, the two-derivative,

four-dimensional field theory Kaloper-Sorbo model of axion monodromy [26] is not

a magic wand that suppresses or controls backreaction effects.

Exponential Suppression of the Stopping Potential

We have argued that backreaction by N units of monodromy charge leads to a

large correction to the gauge coupling (2.13). Thus,

|Vstop| ∝ exp (−γbrN) , (2.18)

where γbr is a number that has no parametric dependence on N or on the shift

symmetry breaking parameter g. When γbr is positive, the immediate and fatal

consequence is the exponential suppression of the stopping potential.6 The stop-

6Can one fine-tune γbr to avoid the suppression in (2.18)? In §2.4.2 we explain what such a

tuning would correspond to in terms of compactification parameters, but it is already clear that
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ping potential, including the backreaction effect encoded in (2.18), is far too small

to halt the evolution when the Higgs is almost massless, |mh|2 � M2. The result

is a runaway relaxion. If instead γbr is negative, the story is more involved. But,

as we will see in §2.4.2, the result is still exponential suppression of the stopping

potential.

Now to make things worse, there are two independent requirements that ne-

cessitate placing the source of monodromy in a region with a large background

D3-brane charge ND3 that obeys ND3 � N . This background charge introduces

an additional, larger exponential suppression of the stopping potential.

First, achieving a large hierarchy between the Higgs vev v and the cutoff M

necessitates an extremely small g. This parameter controls how strongly the re-

laxion shift symmetry is broken and is determined by the amount of energy in-

troduced into the configuration per unit of monodromy charge. Since the source

of monodromy corresponds to a physical quantized object, the amount of energy

introduced by an additional winding is, in a sense, irreducible. However, warping

the source of monodromy reduces this quantum of energy compared to other scales

in the problem. So, an extremely small g—and thus a large hierarchy—may be

realized by placing the source of monodromy in a strongly warped region, as in

Figure 2.5 on page 54. As we will show in §2.3.2, we may characterize this warp-

ing by the amount of effective D3-brane charge ND3 needed to create the warped

throat, and

g ∝ N−1
D3 . (2.19)

this cannot be a satisfactory solution. Independent of where and how the stopping potential is

generated, one would need to ensure that γbr . O(N−1), which by (2.3) reintroduces a tuning

on the order of the hierarchy the mechanism was supposed to naturally explain.
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Moreover, we must require a large background D3-brane charge to retain com-

putational control and to ensure stability of the ten-dimensional configuration.

The D3-brane charge induced as the relaxion is wound must be a small correc-

tion to the charge of the ambient space for the backreaction not to overwhelm the

background configuration, and we therefore must require ND3 � N .

Now as in the preceding section, the D3-brane charge ND3 of the ambient space

has an effect akin to that of ND3 actual D3-branes, which would give rise to ND3

species of quarks in the fundamental of G. Loops of these quarks yield

δ

(
8π2

g2
YM

)
= γbgND3 , (2.20)

where γbg is a positive constant.

We conclude that the stopping potential is exponentially suppressed by the

warping required to achieve a weak shift symmetry breaking g � 1 and to maintain

control over the model. Schematically, we have

|Vstop| ∝ exp (−γbgND3) , (2.21)

with ND3 � N . Here we remind the reader that N � 1 is the large number

of windings required to substantially ameliorate the hierarchy problem. The sup-

pression (2.21) renders the barriers utterly negligible.7 Using (2.19), (2.21) can be

written as

|Vstop| ∝ exp
(
−O (1/g)

)
, (2.22)

so we see that the generated hierarchy is no longer proportional to g. Instead, sup-

pressing the shift symmetry breaking scale simultaneously suppresses the stopping

potential barriers, leading to a relaxion runaway.

7This effect holds regardless of the sign of γbr in (2.18). But, for γbr < 0, (2.21) is the only

relevant exponential suppression, while for γbr > 0 (2.18) amounts to an independent suppression

∼e−N which even on its own is sufficient to cause a runaway.
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Overview of the paper

The organization of this paper is as follows. In §2.2 we briefly survey relaxion

models constructed in effective field theory, and identify the parameter ranges that

allow relaxation of a hierarchy. In §2.3 we introduce axion monodromy in string

theory, emphasizing the fact that monodromy results from a physical, quantized

source. We review the scenario of axion monodromy on NS5-branes, and then

explain how the relaxion mechanism could be realized in this setting. In §2.4

we determine the microphysical constraints that arise in such a realization. An

executive summary appears in §2.4.1. We discuss generalizations in §2.5, and

conclude in §2.6. The appendices contain more technical material. Appendix

2.A provides background on axions in string theory. In Appendix 2.B we prove

that the D7-branes responsible for the stopping potential must intersect the NS5-

brane. In Appendix 2.C we give the actions for D5-branes and NS5-branes in

warped compactifications of type IIB string theory. In Appendix 2.D we analyze

the backreaction of D3-brane and anti-D3-brane charge and tension on the metric

of the internal space.

2.2 Relaxion Zoology

We now briefly overview a selection of existing relaxion models in field theory.

To present a unified synopsis of the genus Relaxion in its various speciations, we

discuss these models in a consistent notation and, since the number of windings

N is severely constrained in string theory, we pay special attention to the field

excursions required to generate a large hierarchy.
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For generic initial displacements, the relaxion must scan a field range ∆φ ∼

M/g to reach m2
h = 0. If we generalize (2.2) and (2.4) by including a more generic

dependence on the Higgs vev v as in [1], schematically

Vstop(v, φ) = Λ4(v) cos

(
2πφ

f

)
= εΛ4

c

(
v

Λc

)r
cos

(
2πφ

f

)
(2.23)

and (
v

M

)r
∼ g

ε

f

M

(
M

Λc

)4−r

(2.24)

with ε a constant coefficient, this excursion implies a winding charge of

N =
∆φ

f
∼ 1

ε

(
M

Λc

)4(
Λc

v

)r
. (2.25)

For Λc ∼ v, N scales with the fourth power of the ratio of the cutoff scale M to

the weak scale, further increasing if Λc � v.

2.2.1 Original models

Two explicit constructions were originally proposed in [16], and the dynamics of

these models were explained in §2.1. The relaxion in the first model (GKR1) is

the QCD axion and the potential barriers are generated by strong chromodynamic

forces. The potential barriers in (2.23) then scale as Λ4(v) ∼ Λ3
QCDmu, i.e. r = 1,

Λc ∼ ΛQCD, and ε is the up-quark Yukawa coupling yu. The main drawback of

this model is that it destroys the solution to the strong CP problem. The PQ

solution may be restored, as discussed in [16], by introducing additional dynamics

at the end of inflation, which removes the slope of the relaxion potential at the

end of inflation. However, in this case the cutoff scale cannot be pushed higher

than M ≈ 30 TeV. The hierarchy (2.25) is then multiplied by a factor of the QCD

angle θQCD. In either case, the number of windings obeys N ≥ (M/ΛQCD)4.

34



Because the generated hierarchy (2.25) grows with the confinement scale Λc,

the second model (GKR2) introduces a new strongly-interacting gauge sector G,

whose axion is the relaxion. The PQ solution to the strong CP problem is then

untouched and Λc can be much larger than ΛQCD. However, this does not allow

one to make the barrier arbitrarily high. New electroweak scale fermions couple

the Higgs sector to this new sector and the barrier height depends quadratically

(r = 2) on the Higgs vev. But, a constant term (r = 0) will also be generated by

quantum corrections so the barriers can schematically be written as [1]

Λ4(v) ∼ εΛ4
c

(
1 +

(
v

Λc

)2
)
. (2.26)

So, the barrier will not depend strongly enough on the Higgs vev v for the relaxion

mechanism to work unless Λc . v. Still, GKR2 can generate a much larger hierar-

chy M . 108 GeV than GKR1, with a similar parametric scaling of the number of

windings N ≥ (M/v)4. Unfortunately, GKR2 requires that new electroweak scale

fermions be put in by hand, and this coincidence of scales must be explained.

2.2.2 CHAIN

A solution to this coincidence problem was suggested in [1], and involves taking

the barrier height to depend on an extra scalar field. The relaxion mechanism

is then able to explain the near-criticality of the Higgs without a coincidence of

scales. Instead, there is only one scale in the problem, the cutoff M , which also

sets the barrier height Λc ∼ M . The extra scalar σ, which need not be an axion,

controls the height of the stopping potential,

Λ4(h, φ, σ) = εM4

(
β + cφ

gφ

M
− cσ

gσσ

M
+

h2

M2

)
. (2.27)
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GKR 1 GKR 2 CHAIN with f ∼M
f fPQ ∼ 1010 − 1012 GeV &MGUT ∼ 1016 GeV &M

g
(ΛQCD

M

)4 M
fPQ

θQCD . 10−36
(

ΛEW
M

)4 M
MGUT

∼ 10−30–10−20 . v4/M4 ∼ 10−26–10−6

Mmax 3× 103 GeV 108 GeV 109 GeV

mφ
Λ2

QCD

fPQ
. 10−11 GeV

Λ2
EW

MGUT
. 10−12 GeV

√
gM4/v2 . v

∆φ/f θ−1
QCD

(
M

ΛQCD

)4 & 1030 (M/ΛEW)4 ∼ 108 − 1024 g−1 ∼ 106 − 1026

Table 2.1: Summary of parameter values in the three non-supersymmetric relaxion
models discussed in §2.2.

The initial conditions are very different from both GKR1 and GKR2. At first, the

barriers are large and the relaxion is stuck in one of its minima. As the second

field σ evolves, its vev will eventually cancel this barrier and allow the relaxion

to roll. In contrast with GKR2, there are no constraints on the decay constant f

from reheating.

Given that now the barriers are allowed to be high, Λc � v, one might hope that

the required number of windings for a given cutoff scale is substantially reduced. A

more careful analysis, however, reveals that this is not the case. Instead, because

classical evolution must dominate over quantum fluctuations, we require that ε .

v2/M2, while imposing that the Higgs barrier in (2.27) is solely responsible for

stopping φ requires that v2 ∼ gMf/ε. Together, these imply that

N ∼ M

gf
&
(
M

v

)4

, (2.28)

and so the CHAIN model also requires a large number of windings to resolve the

hierarchy problem.

A comparison of the three models is shown in Figure 2.2 and Table 2.1, while

further phenomenological constraints are discussed in [29].
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2.2.3 Supersymmetric models

Inflation limits the achievable cutoff scale to M ∼ 109 GeV. The energy stored in

the relaxion must not dominate over the energy driving inflation,

M4 < H2M2
pl , (2.29)

where H is the Hubble rate during inflation, and barriers cannot form unless

H < Λc. This immediately implies a bound on the cutoff M .
√
vMpl ∼ 109 GeV

for GKR2. While this argument does not directly apply to the CHAIN model,

there one finds the same bound M . 109 GeV. Since we must also explain the

remaining hierarchy between the cutoff M and the Planck scale Mpl, a natural

candidate solution is that supersymmetry is restored above M and the relaxion is

embedded within a supersymmetric model.

A supersymmetric version of GKR1 was presented in [30], on which the follow-

ing discussion is based. The relaxion becomes part of a chiral superfield S:

S =
s+ ia√

2
+
√

2θã+ θ2F + . . . , (2.30)

which contains the (dimensionless) relaxion a = φ/f , a srelaxion field s, and the

relaxino ã. The Peccei-Quinn symmetry acts as S 7→ S + iα. The linear term B

in the relaxion potential (2.1) descends from the superpotential term

W ⊃ 1

2
mf 2S2 . (2.31)

Small m � f is technically natural since m breaks the PQ symmetry, which is

non-linearly realized via the term

W ⊃ µ0 e
−qSHuHd. (2.32)
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Apart from S, the model contains only SM particles and their superpartners (in-

cluding the usual second Higgs doublet). The effective potential for s and a is

then

V =
1

2
m2f 2

(
s2 + a2

)
κ(s) , (2.33)

with κ(s) a function of s. As in all relaxion models, a starts out at a field value far

away from its minimum at a = 0, and so breaks supersymmetry, with F ∝ ma. As

a evolves towards its minimum, it scans the SUSY breaking scale, and therefore

the soft masses of the gauginos and the scalar superpartners. In particular, the

determinant of the Higgs mass matrix was shown to scale as a4 for a � µ0/m,

far away from any electroweak symmetry breaking minima. As a approaches the

critical value a∗ = µ0/m, electroweak symmetry is broken, the Higgs(es) obtain a

vacuum expectation value, and barriers appear that halt the evolution of a.

For a suitable choice of parameters, the model explains the hierarchy between

the electroweak symmetry breaking scale v and the mass scale of the superpartners

µ0 � v, thus solving the supersymmetric little hierarchy problem. According

to [30], the number of windings scales as

N ∼ ∆a ∼ f 2µ2
0

Λ4
QCD

, (2.34)

where f ∼ 109–1012 GeV is the QCD axion decay constant and µ0 plays the role of

the UV cutoff. For µ0 = 105 GeV, a field excursion of ∆a ∼ 1030 is required. With-

out further modifications, this model is phenomenologically unacceptable since it

predicts θQCD ∼ O(1). A variation with a non-QCD axion similar to GKR2 is

briefly discussed in [30]. In this case, a larger range of decay constants is allowed—

for f = µ0 and Λ ∼ v one obtains the same scaling as in GKR2, namely N ∼ µ4
0/v

4.

A supersymmetrization of the CHAIN model was proposed in [31]. The phi-

losophy is similar to the above discussion—now both the relaxion and the addi-

38



tional scalar σ are promoted to chiral superfields. The barriers for the relaxion

are generated by a new SU(Ng) gauge theory, with confinement scale Λg, which

communicates with the Higgs sector via a set of vector-like leptons. The required

field excursion in this model is

N ≡ ∆φ

f
& mSUSY

|mS|
, (2.35)

where mSUSY ∼ µ0 is the supersymmetry-breaking scale, and mS is the relaxion

mass coming from a term similar to (2.31). For Λg ∼ f ∼ mSUSY, a supersymmetry-

breaking scale ∼ 109 GeV may be generated through a field excursion of N ∼ 1027.

So while the field excursion seems to grow more moderate as a function of the cutoff,

it is still as large as in the earlier models for the largest possible cutoff (e.g. M4/v4

is of order 1026). Instead, even the best case scenarios with mSUSY ∼ 104 GeV

require a large number of windings N & 108.

2.2.4 Summary

The models presented above do not represent a complete classification of genus

Relaxion. In particular, we are not considering models that rely on the alignment

of multiple axions or use friction from particle production to halt the evolution

of φ. We discuss both of these further in §2.5. However, the models that we

examine represent a large cross-section of Relaxion and share a common trait:

the required field excursion scales parametrically with the hierarchy generated,

and so the associated number of windings around the relaxion field space N ≡

∆φ/f is enormous. In what follows, we will argue that N is a physical charge in

string theory, which backreacts on the ten-dimensional configuration and tragically

destroys the structures in (2.1), allowing for a runaway relaxion.
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Figure 2.2: Schematic parameter space in the three main non-supersymmetric re-
laxion models. See [1] for the derivation of the constraints on the
parameter space.

2.3 Relaxion Monodromy

2.3.1 Axion monodromy in string theory

Axions are commonplace in string compactifications,8 and arise when a p-form

gauge potential—either the NS–NS two-form B2 or an R–R p-form Cp—is dimen-

sionally reduced along a non-trivial cycle Σp in the compactification manifold X6.

The ten-dimensional supergravity action is invariant under the gauge symmetry

B2 7→ B2 + dΛ1 and Cp 7→ Cp + dΛp−1 which, upon reduction to four dimensions,

ensures that the axion enjoys a perturbatively exact shift symmetry. For an axion

a associated with a non-trivial cycle Σp, the shift symmetry a 7→ a + const. may

be broken to a discrete shift symmetry by non-perturbative effects, or completely

broken by a brane wrapping Σp. In the latter case, the explicit breaking is pro-

portional to the brane’s tension. For example, if one wraps an NS5-brane along a

8A detailed treatment of the material that follows can be found in [8], §5.4.2. An overview

is given in Appendix 2.A, and Table 2.2 gives a simple dictionary.
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Relaxion Quantity String Theory Origin

Axion φ NS-NS or R-R p-form gauge field,
dimensionally

reduced along non-trivial p-cycle, §2.3.2

Discrete shift symmetry
φ 7→ φ+ f

Ten-dimensional NS-NS or R-R gauge
symmetry, exact in absence of brane or flux,

§2.3.2

Physical source of monodromy
explicitly breaks φ 7→ φ+ f

Wrapped brane or flux along axion p-cycle,
§2.3.2

Shift symmetry-breaking scale
gM3f

Warped brane tension, §2.3.2

Winding number N ≡ ∆φ/f Quantized monodromy charge, §2.3.2

Axion decay constant f Set by internal six-dimensional geometry, §2.A

Stopping potential barrier
height Λ(v)

Set by warped volume of a four-cycle, §2.3.3

Table 2.2: A quick string theory-relaxion dictionary. This is a summary table, with
more extended explanations given throughout this chapter and in its appendices.

two-cycle Σ2 in the compactification manifold, the axion field c, defined by

c ≡ 1

`2
s

∫

Σ2

C2 , (2.36)

experiences monodromy. The four-dimensional action for the dimensionless field c

takes the form [32]

L = −1

2
f 2(∂c)2 − εµ3

0fc , (2.37)

where f is the axion decay constant,9 µ0 is a parameter with dimensions of mass,

determined by the geometry of X6, and ε parameterizes the warp factor at the

location of the NS5-brane. (In terms of the warped line element (2.48), we have

ε = e4A∪ .) We will explain the potential (2.37) in more detail in §2.3.2.

9The axion decay constant depends on the topology and geometry of the six-dimensional

compact manifold X6: see Appendix 2.A.
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Defining the canonically normalized axion φ ≡ fc, we have

L = −1

2
(∂φ)2 − εµ3

0φ . (2.38)

Comparing to the relaxion potential (2.1), we have the correspondence

gM3 = εµ3
0 . (2.39)

So ε � 1 corresponds to g � 1 in the relaxion model. Since the breaking of the

shift symmetry φ 7→ φ + const. is proportional to the warp factor at the location

of the fivebrane, strong warping could lead to weak breaking of the symmetry, and

hence to the small values of g required for a relaxion model.

The potential (2.38) has the desirable property that the entire potential is

proportional to the warp factor, so it appears completely natural to make this

potential small. However, a central observation of this paper is that achieving small

g through warping, without unintended consequences elsewhere in the action, is

challenging.

Requirements for Axion Monodromy

Let us first summarize the core ingredients mentioned above. For a model of axion

monodromy in string theory, one requires:

1. An axion field descending from a p-form, and a source of monodromy: a

brane, flux, or other physical ingredient that causes the configuration space

to be a multi-cover of the axion circle, rather than just a single circle.

2. To have a plausible mechanism for making the breaking of the shift symmetry

weak, the source of monodromy should be in a warped region.
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eA∩ r∩

eA∪ � 1 r∪

Σ2 wrapped
by 5-brane

Σ̄2 wrapped
by anti-5-brane

small 3-cycle
with flux

creates warping

homologous family
of two-cycles [Σ2]

large two-cycle
ensures metastability;

dominates kinetic term:
f ∝ r2∩

Bulk Calabi-Yau Geometry
M2

pl ∝ `−2s VE

r

L ∼ `sN1/4
D3

Wrapped sevenbranes induce
negative D3-brane charge;

balances charge forming throat

Shift symmetry breaking scale ∝ ε ≡ e4A∪

Figure 2.3: Minimal bifurcated warped throat setup for relaxion monodromy with
5-branes.
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3. Most of the issues that arise as possible obstacles become visible only in vacua

with stabilized moduli: if one ignores the moduli sector, many problems

disappear. But, of course, moduli stabilization is needed for a cosmological

model. So the axion and the source of monodromy must be situated in a

vacuum with stabilized moduli.

4. Since the compactification must have finite volume in order to lead to a finite

four-dimensional Newton constant, Gauss’s law imposes strict constraints on

the charges in the compact space X6, and so we must satisfy all tadpole

conditions.

There are many mechanisms in the literature that achieve (1), for instance [33].

But there is only one model currently available that achieves (1)-(3) [32, 34]: this is

a model with an NS5-brane/anti-NS5-brane pair in a warped throat region of a type

IIB flux compactification whose complex structure moduli are stabilized by fluxes,

and whose Kähler moduli are stabilized by nonperturbative effects and possibly

also by perturbative effects. We will call this model, whose detailed properties we

will review in §2.3.2, the NS5-brane model.

The central physics of the NS5-brane model is that transporting the dimension-

less axion over a period induces one unit of D3-brane charge on the NS5-brane,

and one unit of anti-D3-brane charge on the anti-NS5-brane. That is, “winding

up” the axion by one cycle develops a D3-brane dipole in the compact space; the

axis of the dipole is the line from the NS5-brane to the anti-NS5-brane. The entire

dipole is in the infrared region of the warped throat where the fivebrane pair lives.

See Figure 2.3.

The key point is that the Lagrangian (2.38) arising from the NS5-brane DBI

action, which is intended to be the relaxion Lagrangian, holds in the so-called probe
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approximation. That is, the potential in (2.38) follows from including the tension

of the D3-branes and anti-D3-branes as a contribution to the four-dimensional

vacuum energy, i.e. as a source in the four-dimensional Einstein equations, but

not including this tension as a source in the ten-dimensional Einstein equations.

The effects of a particular source on the ten-dimensional field configuration are

termed the backreaction of that source, and so the probe approximation consists

of neglecting the backreaction of D3-branes and anti-D3-branes.10

An immediate question is whether applying the probe approximation is con-

sistent; in other words, can the backreaction of D3-branes be neglected? In the

context of axion monodromy inflation in string theory, this question has been ad-

dressed, with the outcome that backreaction can be suppressed to some degree,

by a variety of mechanisms, but nevertheless remains as a leading constraint on

model-building [34]. However, the sources of backreaction are the D3-brane charge

and tension, both proportional to the number of windings N of the axion. In the

present context of relaxion monodromy, N needs to be extremely large, and so the

problem of backreaction is much more severe than in the corresponding inflation-

ary models. The constraints examined in [34] must therefore be revisited under

this more severe test.

In this work, we will carefully examine the consequences of D3-brane backre-

action for the NS5-brane model of relaxion monodromy in string theory. The first

step is to explain how to compute the backreaction in this scenario.

10For brevity we will often speak of “D3-branes,” “D3-brane backreaction,” etc., with the

understanding that both D3-branes and anti-D3-branes are included.
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2.3.2 Fivebrane axion monodromy

Our analysis will rely on detailed properties of the action for NS5-branes wrapping

curves in a warped region of a type IIB flux compactification, so we now give

some essential background. We will begin by discussing D5-branes, to facilitate

comparison with the string theory literature, even though our eventual interest

will be NS5-branes.

The action of a D5-brane is the sum of a Dirac-Born-Infeld term related to the

worldvolume W of the brane,

SDBI = −gsT5

∫

W
d6σ e−Φ

√
−det(Gab + Fab) , (2.40)

and a Chern-Simons term encoding the coupling of the D5-brane to the Ramond-

Ramond p-form potentials C0, C2, C4, and C6,

SCS = µ5

∫

W

∑

p

Cp ∧ eF , (2.41)

with F = B + 2πα′F . Here gs is the string coupling, T5 is the D5-brane tension,

Gab is the metric induced on the D5-brane, µ5 is the D5-brane charge, and F is the

gauge-invariant two-form field strength on the D5-brane. The integral in (2.41)

picks out the six-forms C6, C4 ∧ F , C2 ∧ F ∧ F , and C0 ∧ F ∧ F ∧ F .

Now suppose that W = M3,1 × Σ2, with Σ2 a two-cycle in the internal six-

manifold X6. If the field strength F obeys11

1

`2
s

∫

Σ2

F = N ∈ Z , (2.42)

then the Chern-Simons coupling becomes

µ5

∫

W
C4 ∧ F → Nµ3

∫

M3,1

C4. (2.43)

11We define the string length to be `s ≡ 2π
√
α′.
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The interaction (2.43) is precisely N times the Chern-Simons coupling of a single

D3-brane to the Ramond-Ramond four-form potential C4, under which the D3-

brane is electrically (and also magnetically) charged. The coupling (2.43) should

be understood as a generalization of the worldline coupling

Lint = −e
c

∫
Aµ dxµ (2.44)

in electromagnetism. In particular, (2.43) shows that a D5-brane wrapping Σ2,

with N units of F flux on Σ2, carries N units of D3-brane charge. Equivalently,

the D5-brane can be said to contain N D3-branes dissolved in the D5-brane. This

fact, while well-known, will be crucial for our considerations.

The Σ2-wrapping D5-brane can fluctuate in the space orthogonal toM3,1×Σ2.

We denote these corresponding canonically-normalized fluctuations asX i. Defining

the dimensionless field

b ≡ 1

`2
s

∫

Σ2

B2 , (2.45)

we may expand the DBI action (2.40) to second order in these fluctuations,12

SDBI = −T5

2

∫
dvol4 d2z× (2.46)

(
√

4g̃2 + `4
sb

2

1

+ ∂µX
i∂µX i

2

+
4g̃2

4g̃2 + `4
sb

2
∂aX

i∂aX i

3

+ . . .

)
,

where g̃2 is the determinant of the metric on Σ2. Upon integrating over Σ2 and

denoting its volume as `2, 1 yields a four-dimensional potential for b

V (b) =
ε

(2π)3α′2

√(
`

`s

)4

+
b2

4
, (2.47)

12As in Appendix 2.C, we denote M3,1 indices with µ, ν, etc.; Σ2 indices with a, b, etc.;

directions orthogonal to M3,1 × Σ2 with indices i, j, etc.; and we parameterize Σ2 using the

coordinates y and z, with dy ∧ dz = d2z; see Table 2.3.
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In the absence of a wrapped D5-brane, b would enjoy an approximate continu-

ous shift symmetry, b 7→ b+ const., that is broken to a residual exact discrete shift

symmetry, b 7→ b+ 1, by instanton effects.13 However, the potential (2.47) induced

by the D5-brane completely breaks this symmetry. In fact, the D5-brane intro-

duces a monodromy, in that upon traversing the axion circle, from b 7→ b+ 1, the

potential energy is increased, rather than being periodic. For large b, the potential

(2.47) becomes linear, as claimed in (2.38) for the related case of an NS5-brane.

The strength of this symmetry breaking is proportional to ε, the warp factor

ε = e4A∪ at the location of the fivebrane. In a warped compactification, the ten-

dimensional metric takes the form

ds2
10 = e2A(y)gµνdx

µ dxν + e−2A(y)g̃mn dym dyn. (2.48)

By placing the fivebranes in a warped throat, the energy of this shift symmetry

breaking can be gravitationally redshifted to an energy much smaller than the

natural scale of breaking due to unwarped fivebranes.

The monodromy is closely related to the induced D3-brane charge (2.43). Start-

ing from an initial configuration with b = b0 and moving to b = b0 +N (for N > 0)

corresponds to shifting

F 7→ F +Nω2 , (2.49)

with ω2 a two-form obeying `−2
s

∫
Σ2
ω2 = 1. This is an increase, of N units, of the

gauge-invariant field strength F . This change is manifest in the potential (2.47),

which increases linearly. The change is also visible in the D3-brane charge carried

by the D5-brane, which increases by N units. We refer to this process as “winding

up the axion N times.”

13Moduli-stabilizing effects further break this symmetry, as explained in [32].
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A justifiable complaint at this stage is that in a compact space, the total D3-

brane charge should be fixed: in fact it must vanish by Gauss’s law. So winding

up the axion would appear to be forbidden. However, to cancel the D5-brane

tadpole, we may suppose that in addition to the D5-brane wrapping Σ2, there is

an anti-D5-brane also wrapping Σ2. The anti-D5-brane Chern-Simons coupling

differs from the D5-brane Chern-Simons coupling (2.41) by an overall minus sign.

Thus, winding up the axion N times induces N units of D3-brane charge on the

D5-brane, as well as −N units of D3-brane charge on the anti-D5-brane, so that

no net D3-brane charge is produced, and if Gauss’s law is obeyed in the initial

configuration, it is also obeyed after winding.

A coincident D5-brane and anti-D5 brane will quickly annihilate. However,

if a D5-brane wraps Σ2, and an anti-D5-brane wraps a two-cycle Σ2 that is ho-

mologous to Σ2, but is not coincident with Σ2, then the D5-brane/anti-D5-brane

configuration can be metastable and cosmologically long-lived [35]. Because the

induced D3-brane charges are determined by the homology classes of Σ2 and Σ2,

if [Σ2]− [Σ2] is trivial in homology then no net D3-brane charge is induced, just as

in the case of a strictly coincident D5-brane/anti-D5-brane pair, and Gauss’s law

does not preclude winding up the axion.

Let us summarize the physics of B2 monodromy from a wrapped D5-brane. The

D5-brane is a source of monodromy and gives rise to the non-periodic potential

(2.47). The order parameter measuring the distance from the origin in the b field

space is the number of windings, N ∈ Z, which also counts the D3-brane charge

induced on the D5-brane. This is the monodromy charge in the fivebrane model.

Winding up corresponds to moving away from the origin in field space and storing

energy in the form of the D3-branes dissolved in the D5-brane, and anti-D3-branes
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dissolved in the anti-D5-brane: that is, the energy is stored in the monodromy

charge.

The potential (2.47) is that of a probe D5-brane, in the same sense that (2.44)

includes the potential energy of an electron in a background electromagnetic field.

However, just as (2.44) also encodes the fact that electrons source electromagnetic

fields, the couplings (2.40) and (2.41) encode the effects that a D5-brane has on

the background fields. To determine this backreaction of the D5-brane on the bulk

field, including the metric and the p-form fields, we simply include the couplings

(2.40) and (2.41) when varying the ten-dimensional action with respect to these

fields ϕ. Schematically,

0 =
δ

δϕ
S10d,bulk +

δ

δϕ
SDBI +

δ

δϕ
SCS . (2.50)

Any D5-brane serves as a source for the ten-dimensional metric (it has tension),

and as a source for C6. But a D5-brane with

1

`2
s

∫

Σ2

F = N 6= 0 (2.51)

also serves as a source for C4; this is just to say that such a D5-brane carries

D3-brane charge. The DBI action (2.40) may be interpreted as the product of the

brane tension and its “effective volume,” which grows with N . This growth has

two principal effects. The mass of the five-brane is also, schematically, the product

of its tension and this effective volume, and thus as N grows the charged D5-

brane will more strongly source the ten-dimensional metric. Furthermore, there

are Kaluza-Klein excitations arising from the dimensional reduction of (2.40) whose

masses decrease as this effective volume grows; indeed, the dimensional reduction

of 2 and 3 in (2.46)—which correspond to the transverse fluctuations of the

five-brane—yield Kaluza-Klein modes with masses mbKK that are smaller than the
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naive estimate mKK ∝ `−1 by a factor of (see Appendix 2.C.2)

mbKK

mKK

∼ `2

√
`4 + `4

sb
2
. (2.52)

Axions descending from B2 generically suffer an η problem [32], meaning that

in expansion around a vacuum with stabilized moduli, the actual potential for

the axion, taking into account all couplings to moduli, is very different from the

potential (2.47) that arises from the probe D5-brane action alone. This problem

can be ameliorated by considering an axion descending from the Ramond-Ramond

two-form C2 and exchanging the D5-branes in the above discussion for NS5-branes.

The analogous potential is then given by

V (c) =
ε

(2π)3gsα′2

√(
`

`s

)4

+
g2
sc

2

4
. (2.53)

As we will argue in §2.3.3, for a construction of a relaxion model via fivebrane

axion monodromy in string theory one needs an extremely large winding N � 1.

There is a correspondingly large induced D3-brane charge, the effect of which must

be included in the ten-dimensional field equations. Backreaction of this charge and

its effect on the five-brane cannot be neglected: the potential for the axion is no

longer simply given by (2.47), and new light modes appear.

2.3.3 Fivebrane relaxion monodromy

To understand string theoretic constraints on the relaxion mechanism, we require

an embedding of the four-dimensional potential

V (φ, h) =
(
M2 − ghM (φinit − φ)

)
|h|2

A

+ gM3φ

B

+ Vstop(φ, h)

C

, (2.54)
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Figure 2.4: Ten-dimensional realization of B and C of (2.54). C is generated by
strong gauge dynamics on seven-branes wrapping a divisor Σ4, which
must necessarily intersect the minimum volume representative [Σ2]
wrapped by the NS5-/anti-NS5-brane.

or of something functionally equivalent, in a well-controlled compactification of

string theory. As noted in the introduction, the ratio gh/g need not be O(1), and

so in (2.54) we distinguish between the two.

In §2.3.2, we focused on realizing B as the potential energy of an NS5-/anti-

NS5-brane pair wrapping the minimum volume representatives of the homology

class [Σ2] associated with the axion c = `−2
s

∫
Σ2
C2, where φ ≡ fc. B provides

a potential that is self-similar (ignoring backreaction effects) over a very large

distance ∆φ � f in field space. Hubble friction eventually dominates and the

late-time dynamics are independent of the initial conditions for φ.

Crucially, the small parameter g is controlled by the warp factor at the position

r∪ of the five-branes. Specifically,

gM3f ≡ 2π

`4
s

e4A∪ , (2.55)

where e4A∪ is the warp factor at r∪, the location of the fivebranes and the bottom of
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the “tooth” in Figure 2.4. We may think of the “roots” of the tooth as Klebanov-

Strassler or similar warped throat geometries. Away from the tip, the warp factor

is roughly e4A ∼ r4/L4, with L the characteristic size of the warped throat. A

simple way to describe this warping is by the number of D3-branes it would take

to form a similarly sized warped throat,

L4 ∼ gsND3`
4
s. (2.56)

As explained in §2.A, the axion decay constant f is determined by the radial

position of the arch of the “tooth,”

f 2 ∼ gs
r2
∩
`4
s

, (2.57)

so the shift symmetry breaking scale is given by

gM3 ∼ 2π

g
3/2
s `3

sND3

(
r∪
r∩

)(
r∪
`s

)3

. (2.58)

The cutoff scale M depends on how the Higgs is realized and does not necessarily

depend on the total D3-brane charge ND3. However, regardless of where the Higgs

is located in the internal space, the smallness of g is necessarily tied to a large ND3.

For example, if the Higgs sector is realized somewhere in the bulk geometry, then

M ∝ N0
D3 and g ∝ N−1

D3 , as in (2.58). If instead the Higgs sector is realized at the

top of the warped throat at r ∼ L in Figure 2.4, then we may take M3 ∼ L−3 and

so

g ∼ 1

(gsND3)1/4

(
r∪
r∩

)(
r∪
`s

)3

. (2.59)

We will not consider a Higgs realized deep within the warped throat, as this would

lead to an exponential suppression of M , corresponding to a supersymmetric res-

olution of the hierarchy.

We will be agnostic about the detailed origin of the Higgs coupling A . While

its specific form would be relevant in a complete model, it is not needed to expose
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Figure 2.5: Schematic structure of the extra dimensions, showing a string the-
ory setup that realizes the main relaxion features and couplings. The
central region is the “bulk” of the extra dimensions, which does not
experience position-dependent warping. The coupling gh depends on
where in the bulk Calabi-Yau the Higgs sector is realized.

and quantify the issues that concern us here, which mainly deal with the inter-

play between the linear potential and the stopping potential. In the spirit of this

agnosticism, we instead focus on the hierarchy generated between the string scale

Ms and the electroweak scale v.

Even so, a concrete picture of one possibility may be helpful. The Higgs could

arise from open strings stretching between stacks of D3-branes or D7-branes. The

Higgs mass is then proportional to the distance between the U(1)Y brane and the

SU(2)W stack. The coupling A is generated by backreaction of the monodromy

54



charge on the internal geometry, which changes distance between these branes

and thus the Higgs mass, as in Figure 2.5. Because this backreaction decays as

it propagates throughout the six-dimensional space, there may be an appreciable

hierarchy between gh and g which depends on where the Higgs sector is realized

in the internal geometry. We may mitigate this hierarchy somewhat by placing

the Higgs in another warped throat—the backreaction will then be blue-shifted,

leading to an increased coupling gh—though, as explained above, placing the Higgs

in a warped region will naturally suppress M .

Finally, for generic initial conditions, the relaxion traverses a distance ∆φ ∼

M/gh in field space. This is associated with the dissipation of

N ∼ ∆φ

f
∼ M4

ghM3f
∼ gsND3

(
g

gh

)(
M

Ms

)4(
`s
r∪

)4

(2.60)

units of monodromy charge.

Barriers from D7-branes

We will be more specific about how C is realized. Perturbatively in gs, the ax-

ion has a continuous shift symmetry φ 7→ φ + const. which is broken by non-

perturbative effects (in gs) to the discrete shift symmetry φ 7→ φ + f . If A

and B are to be the only terms that break this discrete shift symmetry, as is

implicitly assumed in the relaxion construction, then Vstop must be generated non-

perturbatively in gs. As noted above, we take the Higgs and relaxion sectors to be

separated in the internal geometry, and so in order for the stopping potential to

depend on both of these sectors, it must be generated by physics on one or more

extended objects—by either Euclidean Dp-branes or strong gauge dynamics on a

stack of Dp-branes.
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For simplicity, we will assume that Vstop is generated by the strong dynamics

of a gauge theory, with group G, realized on a stack of D7-branes wrapping a

holomorphic four-cycle Σ4, as illustrated in Figure 2.4. The D7-branes couple to

the C2 axion through the Chern-Simons action

SCS ⊃ µ7

∫

W
F ∧ C2 ∧ F ∧ F . (2.61)

A key observation is that the D7-branes must enter the warped throat region

(see Appendix 2.B for a proof). The coupling (2.61) leads to a potential of the

schematic form

V (φ, v) = Λ3
c v cos

(
2πφ

f

)
, (2.62)

but can, in general, involve a more complicated polynomial of the Higgs vev v and

a general f -periodic function in φ. The confinement scale Λc is naturally related

to the string scale and the D7-brane gauge coupling gYM,

Λ3
c ∝ `−3

s exp

(
− 8π2

g2
YM cG

)
, (2.63)

where cG is a constant determined by the particular effects that generate (2.62).

For example, cG is simply the dual Coxeter number of G if the stopping potential is

realized through gaugino condensation. In known examples, cG is at most O(102),

and we will take cG = 1 henceforth. The generated hierarchy between the string

and electroweak scales is then

Ms

v
∝ gsND3 exp

(
− 8π2

g2
YM

)(
`s
r∪

)4

. (2.64)

Since r∪ & `s, the hierarchy is controlled by the warp factor and at first sight

appears to be proportional to ND3. Thus, an arbitrarily large hierarchy could ap-

parently be realized via substantially warping the source of monodromy. However,

as we will discuss in §2.4, this is too naive.

56



2.4 Microphysical Constraints

Relaxation of a hierarchy by the relaxion mechanism occurs only in theories that

meet several stringent requirements. Arguably the most challenging requirements

from the viewpoint of ultraviolet completion in string theory are both the large

displacement ∆φ ∼ M/g, and the comparatively short stopping length. That

is, the relaxion must evolve slowly over a large distance, gradually reducing the

Higgs mass, but then rapidly come to rest after the Higgs acquires a vev. These

disparate distance scales in field space correspond to very different energy scales in

the potential: the final Higgs vev v is determined by the ratio of the shift symmetry

breaking scale gM3f to the stopping potential scale Λ3
c , cf. (2.4). In field theory,

one can obtain a controllably large hierarchy by taking g to be extremely small

while holding Λc fixed.

This limit is problematic in string theory. As we will show in §2.4.2, the scale

Λc depends on g, and is exponentially suppressed as g → 0. This dramatically

limits the hierarchy that can be generated.

At the same time, the large field excursion on its own implies that the initial

configuration carries a very large monodromy charge. This gradually dissipat-

ing monodromy charge will serve as a changing source for the ten-dimensional

equations of motion. For N � 1, this backreaction has profound effects on the

compactification geometry and so on the four-dimensional relaxion potential (2.54).

It is tempting to argue that all of the corrections that result from backreaction

must ultimately originate in the breaking of the axionic shift symmetry, and so

must involve powers of the shift-symmetry breaking parameter g. This is not

correct. In the NS5-brane model, the breaking parameter g is small because the
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DBI action of an NS5-brane is proportional to the warp factor at the NS5-brane

location, cf. (2.55). Backreaction effects sourced directly through the DBI action

are indeed proportional to powers of g. However, the NS5-brane Chern-Simons

action is not warped, and could not be: it is topological, and counts the (integer)

D3-brane charge induced on the NS5-brane, i.e. the monodromy charge N .

Thus, backreaction effects sourced by the Chern-Simons action are proportional

to N , without factors of g. For example, the integral of the R-R field strength F5

over a Gaussian surface—say, an S5—surrounding the NS5-brane is simply given

by N , even as g → 0. One consequence, as we shall see, is that the monodromy

charge provides a large correction to the stopping potential.14

In this section we provide an array of calculations that reveal the concrete

obstacles to achieving a large displacement and a short stopping length in the

NS5-brane model.

2.4.1 Overview of microphysical constraints

We first preview a number of constraints on relaxion monodromy constructions,

which originate from microphysical limitations on string compactifications that

provide the desiderata listed in §2.3.1. Each of these constraints will be detailed

in turn in §§2.4.2-2.4.2.

§2.4.2 Universal effect on the geometry. The shape of the warped throat re-

gion is dramatically altered by backreaction, leading to large changes in the

14The backreaction sourced by this topological term does not need to propagate far to be

“detected,” i.e. to influence a significant term in the four-dimensional Lagrangian: see Appendix

2.B.

58



effective action.

§2.4.2 Tadpole constraints. To accommodate N � 1 units of monodromy charge

without the loss of perturbative control, we must construct a background

throat with ND3 � N � 1. Gauss’s law—i.e., the D3-brane charge tadpole—

then implies that there must be a source that is equivalent to −ND3 D3-

branes. To avoid the instabilities created by a large number of actual anti-

D3-branes, this source must be supersymmetric, and arise from the topology

of an elliptically-fibered fourfold: the D3-brane charge is then −χ/24, where

χ is the Euler number of the fourfold. The largest known Euler number of

an elliptically-fibered fourfold is 1,820,448. So in this setting, N will have to

be much smaller than 75,852.

§2.4.2 Barrier suppression from warping. The D7-branes that generate the

stopping potential must wrap a four-cycle Σ4 that intersects the minimum

volume two-cycle Σ2. The D7-brane gauge coupling function, which depends

on the warped four-volume of Σ4, is then directly suppressed by the same

warping responsible for the miniscule monodromy energy scale (2.55). A

weakly broken shift symmetry therefore leads to extremely small barriers.

§2.4.2 Barrier suppression from backreaction. The induced D3-brane charge

and tension backreact on the warped four-volume of Σ4 and therefore per-

turb the D7-brane gauge coupling function. This perturbation introduces an

exponential dependence of the gauge coupling on the monodromy charge N ,

with no powers of g ∼ N−1
D3 . This contradicts naive applications of techni-

cal naturalness: the dangerous term that arises is not negligible in the limit

g → 0 where the shift symmetry breaking is weak.

§2.4.2 Effects on the moduli potential. The sources responsible for Kähler

moduli stabilization are exponentially sensitive to perturbations of the warp
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factor. So the moduli potential depends on the relaxion field, i.e. there

are new terms in the relaxion potential not captured by (2.54). This was

extensively studied in [34].

§2.4.2 Effects on the axion decay constant. Large backreaction will also affect

the axion decay constant, which depends on the volume of the cycle the axion

threads as well as on the overall volume of the internal manifold.

§2.4.2 Classical annihilation of the dipole. The compactification detailed in

§2.3.2 is metastable. The NS5-brane and anti-NS5-brane attract one another

because of the induced D3-brane charge that each carries, but the fivebranes

must stretch over a large-volume representative of [Σ2] in order to meet one

another. This costs energy, because the fivebranes have tension. For mod-

est windings N , the tension energy can be much larger than the Coulomb

energy from the D3-branes and anti-D3-branes, and the system is control-

lably metastable. However, for N � 1, the Coulomb energy can overpower

the tension energy, and the fivebrane/anti-fivebrane dipole can classically

annihilate.

§2.4.2 Constraints from anti-D3-brane annihilation. An anti-D3-brane at the

tip of a large Klebanov-Strassler throat is a metastable and cosmologically

long-lived configuration. However, the barrier that ensures metastability

depends on the number of anti-D3-branes in the throat. For some number

NKPV of anti-D3-branes—and thus for windings N ≥ NKPV—the barrier

disappears and the anti-D3-branes can classically annihilate against the flux

of the throat. Thus, the accumulation of anti-D3-branes on the anti-NS5-

brane creates a risk of instability.

§2.4.2 Tunneling via light brane KK modes. The accumulation of D3-branes

in the NS5-brane pair leads to a reduction in the tension of the NS5-branes,
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and correspondingly a reduction in the mass of Kaluza-Klein excitations of

the NS5-branes. This Kaluza-Klein spectrum has spacing proportional to

m0/N when the axion is wound up by N cycles, with m0 associated to the

IR scale of the warped throat. These light brane KK modes provide another

pathway for classical annihilation of the dipole. If the throat is put at some

temperature, say from a source of supersymmetry breaking elsewhere in the

internal space, thermal fluctuations of the light brane KK modes could enable

the NS5-branes to reach up towards one another, allowing for a quantum

mechanical tunneling event.

2.4.2 Consequences of D3-brane backreaction

D3-branes and anti-D3-branes source warping, and so the D3-brane dipole that

develops when the axion is wound up leads to a change in the local warp factor.

The warped throat region is itself produced by some number ND3 of D3-branes that

have dissolved into flux, and when the number of windings N becomes comparable

to ND3, the D3-brane dipole is a large correction to the background in which it

is sitting. The probe approximation is not valid for such a configuration, and the

backreaction of the D3-brane dipole affects many couplings in the four-dimensional

theory.

Universal effect on geometry

The backreaction of the tension and charge of N induced D3-branes will be a small

perturbation to the overall configuration as long as the ratio gs`
4
sN/L

4 is small,

where L is the radius of the warped throat: see Appendix 2.D. Using ND3 to denote
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the effective D3-brane charge of the warped throat (2.56) we must require that

N � ND3. (2.65)

To intuitively motivate (2.65), we may replace the N D3-branes with an AdS5

warped throat with radius

R4
N ∼ gs`

4
sN (2.66)

via a geometric transition. The perturbed geometry will be drastically different

unless size of this extra throat is much smaller than the original warped throat,

R4
N � L4. So, we require that N � ND3 in order to maintain perturbative control.

The volume of the warped throat is necessarily bounded by the total volume

of the internal space, L6 . `6
sVE.15 which determines the four-dimensional Planck

mass via M2
pl`

2
s = 4πVE. From (2.65) we find the constraint

N � 1

gs

Mpl

MKK

, (2.67)

where MKK = 1/(`sV1/6
E ). This imposes a constraint on the number of windings

for reasonable hierarchies between the compactification and Planck scales, and for

reasonable values of gs.

Tadpole constraint

The higher-dimensional equations of motion must be satisfied in a consistent string

compactification. In particular, the higher-dimensional analog of Gauss’s law for

the five-form flux F5 becomes a powerful constraint on the ten-dimensional config-

uration. In a non-compact manifold, flux lines are allowed to extend to infinity and

Gauss’s law places no constraint on the amount of charge allowed in a given con-

figuration. However, in a compact manifold a flux line must end on a charge and

15We denote the total volume of the internal space X6, measured in Einstein frame, as `6sVE,
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Gauss’s law provides a tadpole constraint : the total amount of D3-brane charge in

the compactification must vanish. As discussed above, the warped throats pictured

in Figure 2.3 are supported by a total of ND3 units of D3-brane charge. The tad-

pole constraint requires that this charge be canceled elsewhere in the Calabi-Yau

geometry.

This cancellation could occur by including anti-D3-branes elsewhere in the

internal space, or by forming another, oppositely charged, warped throat elsewhere

with a large amount of negative D3-brane charge. In both cases, the D3-branes

supporting the relaxion’s warped throat and these additional anti-D3-branes will

attract and the entire model will generically be unstable.

Fortunately, there exist well-known sources of supersymmetric negative D3-

brane charge, and thus one may satisfy the tadpole constraint while maintaining

stability. Seven-branes wrapping non-trivial cycles in the internal space provide

curvature-induced negative D3-brane charge. F-theory compactified on elliptically-

fibered Calabi-Yau fourfolds provides a framework for analyzing type IIB compact-

ifications at arbitrary coupling, and the negative charge is related to the fourfold’s

Euler number χ(CY4) via

NCY4
D3 = −χ(CY4)

24
. (2.68)

The largest known Euler number of an elliptic-fibered Calabi-Yau fourfold is

χ(CY4) = 1,820,448 [36], which imposes the constraint

ND3 ≤ 75,852. (2.69)

Requiring N � ND3 to maintain control over the configuration, we then have the

constraint

N � 75,852. (2.70)
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The bound (2.69) on the Euler number of known fourfolds thus translates to a

strong upper limit on the number of windings, and so constrains the maximum

possible field excursion undergone by the relaxion.

The bound (2.70) applies only in the present case in which the monodromy

charge is D3-brane charge. However, in alternative axion monodromy scenarios,

it would still be necessary to arrange that the background solution at zero wind-

ing carries a large background monodromy charge analogous to ND3. In such a

setting we expect topological upper bounds analogous to (2.69) on the amount of

monodromy charge that can be included without creating rapid instabilities.

Suppression from warping

Relaxation of a large hierarchy requires that the shift symmetry is very weakly

broken, with g � 1. In the ten-dimensional model of §2.3.3, the breaking is made

small by placing the source of monodromy—NS5-branes wrapping the minimum-

volume two-cycles Σ2 and Σ2—in a heavily warped region. However, we prove in

Appendix 2.B that supersymmetric D7-branes can generate a relaxion stopping

potential only if the four-cycle Σ4 they wrap intersects Σ2 or Σ2. So the D7-brane

stack responsible for the stopping potential necessarily descends into the warped

region. As we will now see, elementary locality arguments show that the small

parameter associated with this warping, g, in A and B of (2.54) then generically

infects the stopping potential C realized on the D7-brane stack, leading to an

exponential suppression of the stopping potential barriers.

The gauge coupling gYM on a spacetime-filling D7-brane wrapping a four-cycle
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Σ4 is proportional to the warped four-volume of Σ4 in string units,

1

g2
YM

=
1

2π`4
s

∫

Σ4

d4ξ
√
g̃4 e

−4A, (2.71)

with g̃4 the induced, unwarped metric on Σ4. Defining a reference warp factor

profile exp(4Ā) = r4/L4, cf. (2.56), we may express (2.71) as

g−2
YM = α−1gsND3, (2.72)

where

α−1 ∝
∫

Σ4

d4ξ
√
g̃4 r

−4e−4(A−Ā) (2.73)

is a dimensionless coefficient capturing the geometry of the embedding of Σ4 in the

warped throat.

We may estimate α as follows. We have shown that Σ4 must reach down the

warped throat to intersect Σ2 at r∪. Assuming that Σ4 roughly factorizes into a

radial part and an angular part with volume v̆, that it extends up into the bulk

geometry as in Figure 2.5, and that the integral is dominated in the region where

A ∼ Ā, we find

α−1 & v̆ log

(
L

r∪

)
∼ v̆ log

(
gsND3`

4
s

r∪

)
. (2.74)

Importantly, α−1 is not naturally O(N−1
D3 ), and in fact grows with the size of the

throat, L4 ∝ ND3. So, g−2
YM ∼ O(ND3) unless the angular volume v̆ is finely tuned

to be exceptionally small, to one part in g−1, which is of order the desired hierarchy.

In other words, fine-tuning the angular volume v̆ to eliminate the effects of this

warping amounts to constructing the entire hierarchy by this fine-tuning. This

suppression therefore renders the relaxation mechanism ineffectual.

From (2.63) and (2.72), the stopping potential is exponentially suppressed in

ND3,

Λ3
c ∝ `−3

s exp (−γbgND3) , (2.75)
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with γbg ∼ 8π2/(gsαcG). The hierarchy generated including this suppression is

then

Ms

v
∼ gsγ

−1
bg

(
γbgND3e

−γbgND3
)( `s

r∪

)4

, (2.76)

and since xe−x ≤ e−1, the maximum resolvable hierarchy is simply

Ms

v
∼ gsγ

−1
bg ∼ α cG (2.77)

which is, crucially, not O(g−1) unless α is severely fine tuned.

Generically, the warping responsible for the suppression of the shift symmetry

breaking energy scale also suppresses the scale of the stopping potential. This

suppression drives a runaway relaxion, and precludes the dynamical generation of

a large hierarchy in the absence of an acute fine tuning.

We expect this suppression to be very general. We argued in §2.3.3 that the

stopping potential must be generated by non-perturbative effects on a (p + 1)-

dimensional extended object, and Lorentz invariance requires this extended object

to either fill spacetime and wrap an internal cycle (p > 3) or else be instantonic.

For a Dp-brane wrapping a p-cycle Σp, the gauge coupling is given by

1

g2
YM,p

=
1

2π`p+1
s

∫

Σp

dp−3ξ
√
g̃p−3 e

(7−p)Φ/4−(p−3)A. (2.78)

Similarly, for a Euclidean Dp-brane wrapping the same cycle, the action is

SEDp =
2π

`p+1
s

∫

Σp

dp+1ξ
√
g̃p+1 e

−(p−3)Φ/4−(p+1)A. (2.79)

Both depend on powers of e−A and thus positive powers of ND3. So, any potential

barrier generated by these effects will suffer from the same exponential suppression,

albeit with different powers of ND3.
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Suppression from backreaction

The backreaction of D3-brane charge is out of control unless the induced D3-

brane charge N is a small fraction of the total D3-brane charge forming the

throat, N/ND3 � 1, so that we may perform a perturbative expansion of the ten-

dimensional field configuration in this ratio. We should thus expect corrections

to (2.54) to involve powers of N/ND3, which is consistent with the expectation

that, because the monodromy charge is related to the shift symmetry breaking,

any corrections due to backreaction will come dressed with powers of g. Cru-

cially, however, it is fractional corrections to the field configurations—i.e. δϕ/ϕ for

some field ϕ—that involve powers of N/ND3. If some quantity—say, a D7-brane

gauge coupling function—also scaled with ND3 ∝ g−1, the the absolute (additive)

correction correction to this quantity is not necessarily small when N/ND3 � 1.

Indeed, the monodromy charge induces a perturbation to (2.71),

δ

(
8π2

g2
YM

)
∼ gsND3

∫

Σ4

d4ξ
√
g̃4 e

−4(A−A0) r−4

(
1

2

δg̃4

g̃4

− δe4A

e4A

)

︸ ︷︷ ︸
O(N/ND3)

∝ gsN ≡
γbrφ

f
.

(2.80)

As discussed in detail in Appendix 2.D, the fractional perturbations are O(N/ND3)

and thus the entire perturbation to the gauge coupling is O(gsN). We have again

grouped specific geometric details into a coefficient γbr.

In the introduction, we gave an interpretation of this backreaction in terms of

new light states entering the spectrum of the theory upon a monodromy φ 7→ φ+f .

Open/closed-string duality dictates that the supergravity (closed-string channel)

correction (2.80) must match the one-loop correction to the gauge coupling gYM

calculated in the open-string channel. In the open-string picture of the configu-

ration pictured in Figure 2.4, we are interested in the one-loop correction to the
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SU(Nc) gauge theory living on the D7-brane stack wrapping Σ4, in the presence

of N D3-branes dissolved in the NS5-brane on Σ2 and N anti-D3-branes dissolved

in the anti-NS5-brane on Σ̄2. Crucially, the N D3-branes introduce N light 3-7

strings transforming in the fundamental of SU(Nc), which provide a contribution

to the one-loop β-function (2.12).

Accounting for this backreaction changes the structure of the potential (2.54).

In particular, from (2.80) the monodromy charge induces further relaxion-

dependence of the height of the stopping potential barriers,

Λ4(v)→ Λ4(φ)e−γbrφ/f . (2.81)

A priori, it is not obvious that γbr is either always positive or always negative, so

we will consider γbr > 0 and γbr < 0 separately. Assuming that the Higgs quartic

coupling takes the form

Lh ⊃ −
λ

2
|h|4, (2.82)

v is given by

v(φ) =

√
gM

λ
(φh − φ), (2.83)

where φh = φinit−M/g is generically O(M/g), and thus the corresponding induced

monodromy charge when the Higgs develops a vev is very large, Nh ≡ φh/f �

1. Ignoring the backreaction effect (2.80) and assuming that f � λv2/gM , the

relaxion will stop rolling when

Λ3
c

f

√
gM

λ
(φh − φ) ∼ gM3 (2.84)

and it will be stabilized at

φh − φ ∼
λ

gM

(
gM3f

Λ3
c

)2

. (2.85)

If we now include the backreaction (2.80), (2.84) becomes

2γbr

f
(φh − φ) e2γbr(φh−φ)/f ∼ 2λ

gMf

γbr

(1 + γbr)2

(
gM3f

Λ3
c

)2

e2γbrφh/f . (2.86)
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Because φh/f � 1, the asymptotic behavior of solutions to (2.86) is determined

solely by the sign of γbr. For γbr > 0, the stopping potential barriers are exponen-

tially suppressed by the backreaction and (2.86) predicts that the relaxion stops

at

φ ∼ − f

2γbr

log

(
2λγbr

(1 + γbr)2

gM3f

Λ4
c

M2

Λ2
c

)
< 0. (2.87)

However, the linear potential gM3φ in (2.54) is only an approximation for a po-

tential of the form (2.53) and cannot be used for arbitrarily small values of φ/f .

From (2.87) we see that this approximation breaks down. We should therefore

understand (2.87) as an indication that the relaxion stops roughly when it has

dissipated all of its charge, near φ = 0. The electroweak scale is then fixed at

v ∼ gM

λ
φh ∼

M2

λ
, (2.88)

leaving the hierarchy unresolved.

For β < 0, the barriers are exponentially enhanced, and the relaxion stops at

φ ∼ φh −
λ

gM

(
gM3f

Λ3
c

)2
1

(1 + γbr)2
e2γbrφh/f , (2.89)

and the electroweak scale

v ∼ gM3f

Λ3
c

1

|1 + γbr|
e−|γbr|φh/f (2.90)

is suppressed by the backreaction.

Can one use this barrier enhancement to save the relaxion from the exponential

suppression discussed in §2.4.2? Unfortunately, this backreaction enhancement is

not enough to overcome the suppression from warping. We may combine (2.90)

with (2.75) to find

Ms

v
∼ gs|1 + β|

(γbg − |γbr|Nh/ND3)

(
`s
r∪

)4 [
(γbgND3 − |γbr|Nh) e−γbgND3+|γbr|Nh

]
. (2.91)
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Since we require that Nh/ND3 � 1 for control and we expect the geometric factors

to be on the same order γbg ∼ |γbr|, (2.91) implies that the necessary fine-tuning

is still of the same order as the hierarchy one wishes to generate.

Effects on the moduli potential

In §2.4.2 we considered the backreaction of D3-brane charge on the gauge coupling

of the D7-branes that generate the stopping potential. As shown in Appendix 2.B,

this particular D7-brane stack must enter the strongly warped region, and so the

backreaction does not need to propagate far to impact them. The result is a very

large change in the gauge coupling of the D7-brane worldvolume theory, leading

to exponential suppression of the stopping potential.

Let us now ask about the impact of backreaction on the moduli potential. In

the NS5-brane scenario, the Kähler moduli of the compactification are stabilized by

nonperturbative effects on a collection of four-cycles, either Euclidean D3-branes

or gaugino condensation on D7-branes. The moduli potential also involves expo-

nentials of the warped volumes of these cycles. Backreaction of D3-brane charge

will change the warped volumes of these cycles, and so the moduli potential will

typically be a rapidly varying function of the relaxion φ.

The argument of Appendix 2.B does not imply that the four-cycles supporting

the Kähler moduli potential enter the warped region, so in contrast to §2.4.2,

the backreaction has to propagate across the internal geometry to influence the

moduli potential. It is tempting to argue that backreaction has a negligible effect

on a sufficiently distant four-cycle. This is not correct. We will give a heuristic

explanation here, and refer the reader to [8] for a complete quantitative treatment.
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To understand whether backreaction of D3-brane charge can decouple from

D7-branes on a particular four-cycle Σ4, we work in the open string picture, where

the effect of backreaction is translated into the open string one-loop threshold

correction to the D7-brane gauge coupling. On very general grounds, this effect

gives non-negligible contributions to the relaxion potential unless the masses M3−7

of the stretched open strings obey

M3−7 &Mpl , (2.92)

for then the non-renormalizable operators coupling the relaxion to the moduli are

suppressed by more than the Planck mass. In a compact space, the diameter of

the space determines an upper bound on the mass M3−7, and one finds that at

weak coupling and large volume, M3−7 � Mpl [8] (cf. also [37]). This is easily

checked in simple geometries, but holds more generally.16

The upshot is that the four-cycles supporting the moduli potential cannot be

taken far enough away from the source of monodromy to avoid significant backre-

action: the moduli potential depends strongly on φ. One consequence is that the

relaxion potential is not simply given by the probe DBI action (2.53), but instead

has important contributions from couplings to moduli. This is an incarnation of

the eta problem, which hinders the construction of natural models of inflation.

If all the other obstacles enumerated here could be overcome in some manner,

leaving only the problem of relaxion couplings to moduli induced by backreaction,

then one could attempt to fine-tune the orientation of the source of monodromy

with respect to the configuration of four-cycles in the bulk of the compactification.

The idea is that if the leading multipoles of the backreaction can be made to vanish

16This fact is responsible for the well-known problem that brane-antibrane potentials are

generically too steep to support inflation [38].
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on the four-cycle “receiver” by fine-tuning the relative orientation, then the residual

effect of the subleading multipoles might be negligible. This approach was proposed

and analyzed in [34], where it was shown that the backreaction coefficient γbr goes

as (r∩/rbulk)m, with m an O(1) integer determined by the lowest unsuppressed

multipole, and that one could realize γbg ∼ 10−2 even for relatively small hierarchies

between rbulk and r∩ with moderate fine-tuning. So, for a modest winding number

N ∼ 100, this backreaction on the moduli potential can be ameliorated and the

most dangerous couplings can be removed. It is not clear, however, that this

method is applicable for the extremely large windingsN & 106 that arise in relaxion

constructions. Indeed, even if the intersection argument of Appendix 2.B were

somehow avoidable and the object generating the relaxion stopping potential could

be localized in the bulk of the compactification, γbg ∼ 10−6 could not be realized

without taking r∩ � rbulk, which suppresses (c.f. Eq. (2.57)) the relaxion decay

constant f and potentially renders the compactification unstable.

Effects on axion decay constants

As discussed in Appendix 2.A, the relaxion decay constant f only depends on

the six-dimensional metric g̃mn, both through the explicit factors of g̃mn in its

definition (2.127) and implicitly via the defining equation of the harmonic form

∆Ω = 0. Additional D3-brane charge will not perturb f : g̃mn is Ricci-flat in

supersymmetric compactifications and additional D3-brane charge will preserve

the same supercharges as the three-branes forming the warped throat. However,

anti-D3-branes break the remaining supersymmetry. The anti-D3-brane charge
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backreacts on the six-dimensional metric and perturbs the axion decay constant,

δf 2

M2
pl

=
gs

2VE`6
s

∫
d6y
√
g̃ g̃mp g̃nq×

(
2ΩmnδΩpq +

1

2
g̃rsδg̃rs ΩmnΩpq − 2ΩmnΩpsδg̃qrg̃

rs

)
. (2.93)

The anti-D3-brane charge does not substantially perturb the four-dimensional

Planck mass M2
pl, as VE is dominated by the volume of the bulk Calabi-Yau. In

what follows, we estimate the size of each of these terms.

The first term in (2.93) vanishes at first order, as the perturbation δΩ is or-

thogonal to the unperturbed Ω. To analyze the contribution from the second and

third terms in (2.93), we must backreact the anti-D3-brane charge on the metric

g̃mn. As detailed in Appendix 2.D, the dominant metric perturbations are

g̃mndym dyn ∼
(

1 +
αN

ND3

(
r′

r

)8
)

dr2

+ r2

(
1 +

βN

ND3

(
r′

r

)19/2

Y 1
2
, 1
2
,1(Ψ)

)
ğθφ dξθ dξφ (2.94)

where the coefficients α and β and the angular function Y 1
2
, 1
2
,1(Ψ) depend on the

details of the compactification. The perturbation to the decay constant (2.93) is

then

δf 2

M2
pl

∝ gs
2VE`6

s

N

ND3

∫ r∩

r∪

dr r
(r∪
r

)19/2

∝ f 2

M2
pl

N

ND3

(
r∪
r∩

)19/2

. (2.95)

Because of the large exponent this is a comparatively weak constraint.

Classical annihilation of the dipole

The fivebrane configuration detailed in §2.3.2 is metastable. If the fivebranes

were tensionless, the induced D3-brane charge on the NS5-brane would attract the
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induced anti-D3-brane charge on the anti-NS5-brane, and these branes would clas-

sically annihilate. However, this Coulomb attraction is balanced by the fivebrane

tension—in order for the fivebranes to meet, they must stretch over the large two-

cycle Σ∩ at the junction of the two warped throats, r∩ in Figure 2.3, which costs

an energy

Vt ∼
2π

`4
s

e4A∩

√
gs

√
4

(
vol Σ∩
`2
s

)2

+N2. (2.96)

This potential energy barrier ensures the configuration is metastable, and can

be exponentially long-lived. However, for large enough winding, we expect the

Coulomb force—which scales as N2—to overpower this “tension force,” allowing

the fivebranes to classically annihilate.

The potential energy density of a probe D3-brane is proportional to Φ−,

V =
2π

`4
s

(
e4A − α

)
=

2π

`4
s

Φ−. (2.97)

For N D3-branes and N anti-D3-branes, the Coulomb potential energy density is

then

Vc ∼
2πN

`4
s

δΦ−, (2.98)

where δΦ− (cf. Appendix 2.D) is the perturbation to Φ− due to N anti-D3-branes,

measured at the location of the N D3-branes. Because the D3-branes live in a

separate warped throat, δΦ− must first propagate up the antibrane throat from

the anti-NS5-brane location r = r∪ to the surface r = r∩,

δΦIs
−,D3
∼ − N

ND3

e4A∪

(
r∩
r∪

)2+∆s

, (2.99)

which then propagates down the D3-brane warped throat via the homogeneous

modes

δΦIs
−,D3 = c1

(r∩
r

)∆s+2

+ c2

(
r

r∩

)∆s−2

. (2.100)
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We may think of the perturbation (2.99) as specifying a boundary value for the

perturbation (2.100). Generically, we have

c1, c2 ∼
N

ND3

e4A∪

(
r∩
r∪

)2+∆s

(2.101)

so that, at the position of the D3-brane charge,

δΦIs
−,D3 ∼ −

N

ND3

e4A∩ +
N

ND3

e4A∩

(
r∩
r∪

)2∆s

. (2.102)

We then find that the Coulomb energy is roughly

Vc ∼ −
2π

`4
s

N2

ND3

e4A∩ . (2.103)

Requiring that this be much less than the potential energy barrier (2.96) yields

the constraint

N � ND3√
gs

+
2 vol Σ∩
`2
s

+O
(

1

N2
D3

(
vol Σ∩
`2
s

)4
)

(2.104)

We should also account for the interaction energy between the pair of fivebranes.

By performing an open string computation in an unwarped toroidal orbifold, [39]

found a potential contribution that grows logarithmically with the fivebrane sepa-

ration, and argued that this would apply to warped geometries, with energy scale

set by r∩. While it is not entirely clear that this logarithmic behavior arises in

the actual NS5-brane configuration described in §2.3, the corresponding potential

energy contribution would take the schematic form

V55̄ ∼
2π

`4
s

e4A∩N2
NS5 log

(
L

r∩

)
∼ 2π

`4
s

e4A∩ . (2.105)

We can ensure that this energy is much smaller than the uncharged tension energy

(2.96) by imposing

vol Σ∩ �
√
gs`

2
s , (2.106)
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which is necessary in any case to ensure the validity of the supergravity approxi-

mation.

Throughout this work we have taken the homology class [Σ2] wrapped by the

NS5-brane to be localized in the warped throat, as in Figures 2.3 and 2.4. That is,

we assumed that the harmonic two-form dual to [Σ2] is principally supported in

the warped region, and every holomorphic representative of [Σ2] is in the warped

region. This localization is automatic in the particular construction given in [34],

but should also be required in alternative constructions. A key reason is the

fivebrane potential energy (2.105): if the lines of three-form flux stretching from

the NS5-brane to the anti-NS5-brane passed through an unwarped region, the

overall scale of supersymmetry breaking would exceed the string scale, by (2.105),

and immediately destabilize the moduli.

Antibrane tunneling and annihilation

Consider a Klebanov-Strassler throat that arises from ND3 D3-branes probing a

conifold with MKS D5-branes wrapping the shrinking two-cycle. We take ND3 =

MKSKKS; then KKS is the number of units of H3 flux on the B-cycle.

If N anti-D3-branes are placed at the tip of this throat, they create a

metastable, exponentially long-lived state provided that N . 0.08MKS [40].

With more anti-D3-branes, N & 0.08MKS, the anti-D3-branes rapidly annihilate

[40] against the flux supporting the warped throat, decaying to the state with

K ′KS = KKS − 1. The D3-brane charge carried by flux is then N ′D3 = ND3 −MKS,

and MKS −N D3-branes appear, but no anti-D3-branes remain.

While ND3 sets the overall scale of warping in the throat, MKS sets the warp
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factor at the tip,

eA
∣∣
∪ ∼ exp

(
− 2πND3

3gsM2
KS

)
(2.107)

and

gsM
2
KS . ND3 (2.108)

if the warping is non-negligible. To avoid the KPV instability [40], the number of

windings cannot exceed

N � 0.08 g−1/2
s N

1/2
D3 . (2.109)

Light NS5-brane modes

As discussed in §2.3.2, dimensional reduction of the transverse fluctuations in the

NS5-brane’s position yields Kaluza-Klein excitations whose mass decreases as the

relaxion is wound up. Intuitively, we may interpret the presence of two-form flux

as increasing the effective volume of the NS5-brane. Since Kaluza-Klein masses

will inversely scale with this effective volume, we should expect some modes to

become light at large windings. As shown in Appendix 2.C.2, to second order the

canonically normalized fluctuations are described by the action

S(2)

NS5 =

∫
d4x
√−g4

(
− V (c)− 1

2
gµν∂µY

ı̂
I ∂

µY I
ı̂ −

1

2
m2
I(c)Y

ı̂
I Y

I
ı̂

+ g(c) (c∂µc)
(
Y ı̂
I ∂

µY I
ı̂

)
− 1

2
g(c)2 (∂c)2 Y ı̂

I Y
I
ı̂

)
(2.110)

with

m2
I ∼

4

gs`2
E

e2A∪

N2

(
`E

`s

)4

and g(N) ∼ 1

2N2
(2.111)

at large winding N2 � 4(`E/`s)
4/gs, where `2

E is the Einstein-frame volume of the

two-cycle Σ2 and the λI are eigenvalues of Σ2’s Laplacian, labeled by the multi-

index I. As discussed in the introduction, the appearance of light states is generic

77



in realizations of monodromy in string theory, and one must ensure that these do

not drastically affect the phenomenology.

The presence of O(N) light states in the spectrum, including 3-7 strings and

KK excitations of the NS5-branes, can have a range of consequences. For example,

modes with mass m < 3H/2 can fluctuate during inflation, storing energy and

potentially impacting the late-time perturbations. Here we will examine just one

effect of the KK modes, which is an enhanced probability of NS5-brane annihila-

tion.

The masses of the canonically normalized fluctuations of the NS5-brane em-

bedding (2.110) decrease with N , and one might worry that these light modes

facilitate an additional instability. For example, if these modes are thermally ex-

cited by some source of supersymmetry breaking elsewhere in the compact space,

then the NS5-branes can more readily reach each other and either classically or

quantum-mechanically annihilate.

A complete analysis of this process is beyond the scope of this work. We will

instead use an approximate criterion for the onset of instability. The dominant

instanton in the four-dimensional field theory responsible for the transition between

the metastable and stable states (i.e., the states with and without the NS5/anti-

NS5-brane dipole, respectively) will be SO(4)-symmetric, with radius determined

by

R∗ ∼
TD

∆V
, (2.112)

where, in the thin-wall approximation, TD is the tension of the domain-wall in-

terpolating between the two vacua and ∆V is their difference in energy. We then

assume a loss of control when the typical thermal fluctuations of a spatial region

of size R∗ are comparable to the distance between the two fivebranes, rRMS ∼ r∩.
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The difference in energies, in the probe approximation, is the potential energy

contribution from the NS5-branes,

∆V =
2π

`4
s

N e4A∪ (2.113)

while the tension of the domain wall is determined by an NS5-brane winding N

times around the minimum-volume three-cycle whose endpoints are Σ2 and Σ̄2.

As described in Appendix 2.C.2, the tension of the domain wall follows from the

NS5-brane action and is roughly

TD ∼
1

`3
s

N
3/4
D3

(
e4A∩ − e4A∪

)
(2.114)

and so

R∗ ∼ `s
N

3/4
D3

N

(
r∩
r∪

)4

(2.115)

If the NS5-brane is in thermal equilibrium at temperature T , then a smooth ex-

citation of size R∗ in the canonically normalized fluctuations Y ı̂
I gains a thermal

expectation value

〈Y ı̂
I Y

̂
J 〉 ∼

T

m2
I

1

R3
∗
δIJδ

ı̂̂. (2.116)

The thermal fluctuation in the radial direction, averaged over Σ2, is roughly

〈δr2〉 ∼ gs`
2
s (`sT )

N4

N
3/4
D3

(
`s
`

)2(
r∪
r∩

)12

(2.117)

where `2 is the unwarped volume of the two-cycle Σ2. The requirement that this is

much smaller than the size of the dipole 〈δr2〉 � r2
∩ imposes the weak constraint

N4 � e4A∩
N

5/4
D3

g
1/2
s (`sT )

(
`E

`s

)2(
r∩
r∪

)10

. (2.118)

2.5 Discussion and Outlook

We have identified many obstacles to realizing the relaxion mechanism in string

theory. Some of these obstacles are extremely general, while others apply only
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to NS5-brane monodromy, the particular example we studied in detail. We will

now step back and give some perspective on our results, explaining their scope of

validity.

Our first observation was that axion monodromy in string theory proceeds

by the accumulation of monodromy charge, and the backreaction of this charge

substantially changes the couplings of the axion. This applies to any realization

of axion monodromy in string theory. Thus, any ultraviolet completion in string

theory of a relaxation mechanism that involves axion displacements ∆φ > f will

be vulnerable to the backreaction of monodromy charge.

The effects of this backreaction will vary from one model to another. We focused

on NS5-brane monodromy because this is, to our knowledge, the only scenario

where the smallness of the shift symmetry breaking parameter g is natural—in

this case, because of warping—while in alternative constructions in string theory,

one must fine-tune discrete data to achieve small g. In the NS5-brane model, we

found that the barriers in the stopping potential are exponentially small in the

winding number N ≡ φ/f , leading to a runaway relaxion. We expect this barrier

suppression phenomenon to be rather general, but not universal. However, the

particular effects of backreaction on the axion decay constants detailed in §2.4.2,

and the constraints from annihilation in §2.4.2 and §2.4.2, could be very different

in other models.

Some of the challenges that we have identified might be milder in non-

supersymmetric compactifications of string theory. In particular, in compactifi-

cations that break all supersymmetry at the Kaluza-Klein scale as in e.g. [41, 42],

tadpole constraints on the total charge need not be a serious limitation. On the

other hand, ensuring metastability of such a configuration can be very challenging.
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Moreover, for an embedding of the relaxion in a non-supersymmetric compactifi-

cation, the absence of spacetime supersymmetry below the KK scale might require

either the KK scale or even the string scale to arise as the regulator of the relaxion

setup at the relaxion cutoff scale M .

We assumed that the periodic stopping potential arises from non-perturbative

effects that couple locally to the axion. This local coupling then exposes the

stopping potential to an exponential suppression from warping. However, the

stopping mechanism could instead arise from other effects, for example from heavy

states [43] coupled to the relaxion, or from the exponential production of massive

particles [17], which are not necessarily susceptible to the same failure modes.17

2.5.1 Exact discrete shift symmetries for relaxions

Throughout this work we have considered axion monodromy, in which a source

of monodromy completely breaks the shift symmetry of an axion. An important

alternative is alignment of multiple periodic contributions to the axion potential,

leaving an unbroken discrete shift symmetry. We now briefly outline this possibility

and mention some of the obstacles to embedding this scenario in string theory.

The essential feature of the relaxion potential (2.1) is the combination of a

slowly-varying term B , the linear gM3φ, and a quickly-varying term C , the

oscillatory Λ3
cv cos(2πφ/f). As written, B explicitly and completely breaks the

discrete shift symmetry φ 7→ φ + f . Alternatively, B could represent the leading

term in the expansion of a function that is invariant under a much larger discrete

17We thank E. Silverstein for illuminating discussions of these points.
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shift φ 7→ φ+ kf . For example, we could have

V B = gfM3 sin

(
2πφ

kf

)
, (2.119)

where φ’s field space diameter is actually k times larger than would be naively

inferred by only considering small displacements. We refer to these two cases as

having an explicitly broken symmetry or an exact discrete symmetry, respectively.

Thus far, we have only concentrated on the former. The explicit breaking is in-

duced by a source of monodromy, an NS5-brane, and we have shown that the

accumulation of monodromy charge leads to backreaction effects that spoil the

relaxation mechanism. Given this difficulty, one might ask whether the relaxion

mechanism could be more readily realized in a solution of string theory with an

exact discrete shift symmetry.

As in the models with explicit breaking, the main difficulty in realizing a dis-

crete shift-symmetric relaxion lies in ensuring that the potential has structure over

two—and only two—disparate scales. That is, the potential must roughly be the

sum of two terms—a slowly varying term with periodicity f that apes the linear

term B in (2.1), and a quickly varying stopping potential with periodicity fs � f .

One might take, as a toy model, a potential that is generated only by the instantons

with winding number 1 and k, so that the potential takes the schematic form

V = M2e−S1 cos

(
2πφ

f

)
|h|2 +M4e−S1 cos

(
2πφ

f

)
+M3e−Skv cos

(
2πkφ

f

)

(2.120)

For φ � f , the potential is approximately a “monomial with modulations” with

fs = f/k, and has the A B C structure of (2.1), with g ∝ e−S1 and Λ3
c ∼M3e−Sk .

The analogue of (2.4) in this two period model is then

v

M
& 1

k

(
M

Λc

)3

∼ 1

k
eSk−S1 . (2.121)
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Naively, the generated hierarchy grows with k.

However, there are many problems with this toy model. First and foremost,

the action for a k-instanton is typically Sk ≥ kS1, and we require that S1 � 1 in

order to trust the instanton expansion. The stopping potential barriers will then

shrink with k,

|Vstop| ∝ e−kS1 ∝ gk (2.122)

and, reminiscent of the suppression due to warping discussed in §2.4.2, the maxi-

mum achievable hierarchy actually shrinks with k. The stopping potential is too

small to stop the evolution near the point where the Higgs is massless. If some

mechanism were able to enhance the k-instanton contribution, one must still ex-

plain the absence of j-instanton effects, with 1 < j < k, and we find it implausible

that all such effects could be negligible for k � 1.18 Furthermore, one would have

to explain why the Higgs couples to instantons of winding 1 and k differently, and

why the 1-instanton and k-instanton contributions do not both vanish when v = 0.

Many of these problems may be mitigated in models with multiple axions,

as in the Kim-Nilles-Peloso mechanism [44] and kinetic alignment setups [45, 46]

in the inflationary context. Scenarios for aligned relaxions have been presented

in [47, 48, 49].19 A general multi-axion Lagrangian can be written (cf. e.g. [46]) as

L = −Kij∂φi∂φj −
∑

a

Λ4
a exp

(
−Q i

a Si
) [

1− cos
(
2πQ i

a φi
)]
, (2.123)

where Kij is a positive definite kinetic matrix of real numbers, while Q i
a is a

charge matrix containing integers. We imagine that there are “slow” and “fast”

linear combinations of canonically normalized axions with effective decay constants

18Such a situation appears to conflict with the lattice form of the Weak Gravity Conjecture,

but is already implausible regardless.
19See also [50] for a recent discussion of naturalness constraints on such scenarios.
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f and fs � f , respectively. The addition of another direction in field space solves

several of the problems mentioned previously, at the cost of introducing much more

complicated dynamics.

Foremost among the advantages is that the stopping potential is no longer

necessarily suppressed. In the single axion model, the hierarchy between fs and

f—and so between v and M—was generated by a hierarchy in the charge matrix

Q i
a , and a high charge contribution is exponentially suppressed relative to a low

charge contribution. In a multi-axion model, fs � f may instead be realized in

the kinetic matrix Kij, and this does not impose an exponential hierarchy in the

associated barrier heights. Of course, the hierarchy in the kinetic matrix must

then be explained, but it is much easier to realize a hierarchy in the eigenvalues of

a matrix of real numbers than in a matrix of bounded integers, and one does not

need to explain why instantons with winding j, 1 < j < k, do not contribute.

A very mild degree of alignment has been demonstrated in explicit examples

[51], but whether alignment can yield large effective axion decay constants in string

theory is an important open question, even for theO(100) enhancements that could

suffice for inflation. It is not obvious to us that the vastly larger enhancements

needed for a relaxion scenario are possible in known compactifications. For exam-

ple, the “clockwork” mechanism [52, 48] requires a specific matrix of axion charges

of instantons, and it remains to be seen whether this particular pattern of charges

can arise in string theory. However, it is very plausible that linearly independent

combinations of axions couple differently to the Higgs.

In summary, relaxion scenarios with exact discrete symmetries, built on the

alignment of multiple instanton effects for one or more axions, are qualitatively

different from the axion monodromy scenarios, with explicitly broken symmetry,
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considered in this work. However, both classes of models are vulnerable to ultra-

violet physics. Axion monodromy scenarios suffer from the backreaction of mon-

odromy charge, as we have explained. Aligned scenarios could avoid this problem,

but require extremely special axion charges. These charges are ultimately topolog-

ical data dictated by the ultraviolet theory, and it is not clear that string theory

allows strong enough alignment to permit relaxation of a large hierarchy. Fur-

thermore, these multi-axion models have much more complicated dynamics, and

it is not clear that the dynamical generation of a large hierarchy can proceed in a

robust way.

2.5.2 Constraints from the Weak Gravity Conjecture

The Weak Gravity Conjecture (WGC), a class of conjectures asserting that gravity

must be the weakest force [53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63], leads to (still

conjectural) constraints on axion theories. One could therefore ask whether the

WGC constrains relaxion monodromy scenarios. It does [22, 23], as we will briefly

explain, but the known WGC constraints are far weaker than the limitations we

have exposed in this work, which are independent of WGC considerations.

The WGC constrains monodromy scenarios by placing upper limits on the ten-

sion of domain walls. In the four-dimensional description of axion monodromy

due to Kaloper, Lawrence, and Sorbo [26, 27, 25], Brown-Teitelboim domain walls

connect different branches of the scalar potential. At the same time, when instan-

ton effects lead to modulations of the axion potential, distinct critical points are

connected across four-dimensional field theory domain walls, via Coleman-de Luc-

cia tunneling. It turns out that the electric form of the WGC places constraints

[22] on the domain walls of the Kaloper-Lawrence-Sorbo model, while the mag-
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netic WGC places constraints on the field theory domain walls associated with

instanton modulations [23]. In both cases one finds a bound on the domain wall

tension [22, 23]

T < mfMpl, (2.124)

where m is the mass of the axion. For a relaxion model this implies a bound on

the relaxion cutoff scale M of roughly the same order as the constraints already

given in [16].

We conclude that the constraints arising from very general four-dimensional

quantum gravity considerations, such as the WGC, do not automatically capture

all of the effects of actual embeddings in quantum gravity. Examining such em-

beddings is therefore crucial for assessing the viability of the relaxion mechanism

in string theory.20

2.6 Conclusions

Could a portion of the observed hierarchy between the weak scale and the Planck

scale be a consequence of dynamical relaxation of the Higgs mass during cosmo-

logical evolution? This striking idea is the core of the relaxion mechanism [16].

In this scenario, the relaxation of the Higgs mass is driven by the slow evolution

of an axion field, the relaxion, whose shift symmetry is very weakly broken by a

potential term that introduces monodromy. After relaxation over many cycles of

monodromy, the Higgs mass passes through zero, causing barriers to appear in

20We note that this view concurs with the results of [25], where some leading effects of back-

reaction on the axion Lagrangian are captured by a series of higher powers of gauge-invariant

field strengths, whose coefficients must necessarily be determined in the UV theory, and in which

strong backreaction effects can drive one far from the “natural” bottom-up estimates.
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the axion potential, and so halt the evolution. In effective field theory, the hier-

archy that is generated is determined by the weak breaking parameter, and so is

technically natural.

In this work we asked whether the relaxion mechanism survives ultraviolet

completion in string theory. Do the essential components for the scenario exist

in a well-controlled compactification, and do these components work in concert in

string theory as they do in effective field theory?

We found that the key components of the scenario can indeed be realized in

string theory. The mechanism of axion monodromy, first developed in the context

of large-field inflation in string theory, can produce—in the probe approximation—

the secular relaxion potential needed for slow relaxation over many fundamental

axion periods. Moreover, the extremely low scale of the secular potential required

for the relaxion mechanism can be explained by situating the source of monodromy

in a strongly warped region. This is possible in one known scenario for axion

monodromy in string theory, the NS5-brane model of [32], in which two-form axions

acquire their potential from NS5-branes wrapping curves in a warped region.

However, our main result is that the structures required for monodromy in

string theory present formidable and very general obstacles to a successful relaxion

scenario in string theory. Monodromy proceeds by the accumulation of monodromy

charge on a source of monodromy. As the relaxion rolls over N fundamental

axion periods, it necessarily accumulates or discharges N units of monodromy

charge. This large quantity of monodromy charge sources backreaction in the

internal space, completely invalidating the probe approximation, and changing the

couplings in the effective theory. The impact of monodromy charge is visible in a

dual description as the appearance of N new light states.
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We argued that the backreaction of monodromy charge can lead to disastrously

large changes to the secular potential in any realization of the relaxion scenario via

axion monodromy in string theory. In the specific case of the NS5-brane model,

we computed the detailed form of these changes. The accumulation of monodromy

charge suppresses the gauge coupling of the D7-brane gauge theory that generates

the stopping potential. In the dual description, the N light states are charged

under the D7-brane gauge group, and give a large threshold correction to the

gauge coupling. The result is that the stopping potential is suppressed by a factor

exp(−γbrN), where γbr is a constant determined by the geometry. The stopping

potential is therefore completely negligible, and cannot halt the evolution when

the Higgs mass passes through zero. The Higgs mass indeed relaxes to smaller

values, but this process continues far into the tachyonic regime.

While this detailed analysis was performed in the context of a specific model,

we repeat that our findings are generic and are expected to apply to any model that

relies upon a monodromy over many fundamental axion periods, regardless of the

stopping mechanism. However, these constraints do not apply when the discrete

shift symmetry remains unbroken, e.g. when the large field range is realized by

the alignment of multiple axions.

In summary, we have shown that the physics of ultraviolet completion in string

theory does not decouple from the dynamics of the relaxion mechanism. Our

results do not exclude the dynamical relaxation of hierarchies in string theory,

but in our view they do exclude technically natural dynamical relaxation driven

by axion monodromy. It would be valuable to understand whether some of the

difficulties we have uncovered result from limitations in existing constructions, or

if instead they are consequences of general structures in quantum gravity.
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2.A Axions in String Theory

There is an extensive literature on axions in string theory, but for the reader’s

convenience we now gather a few salient facts. We begin with the example of the

Neveu-Schwarz two-form gauge potential B2.

Integrating a ten-dimensional p-form gauge potential Cp over a non-trivial p-

cycle in the compactification manifold will give rise to an axion in four dimensions.

The number of independent, non-trivial p-cycles then determines the maximal

number of axions arising from Cp. The two-form B2 has an associated field strength

H3 ≡ dB2, and appears in the ten-dimensional type II and heterotic supergravity

actions as21

SSUGRA ⊃ −
1

4κ2
10

∫
d10X

√
−GS e−2Φ |H3|2 (2.125)

Reducing this action along a six-dimensional compact space X6, each non-trivial

two-cycle ΣI
2 with its associated harmonic form ωI2 , `−2

s

∫
ΣI2
ωJ2 = δJI , gives rise to

a four-dimensional axion bI(x),

bI(x) ≡ 1

`2
s

∫

ΣI2

B2, (2.126)

with B2 =
∑

I bI(x)ωI2 . Upon dimensional reduction, the first term of (2.125)

yields kinetic terms for the bI axions,

Skin = −1

2

∫
d4x
√−g γIJ∂µbI∂µbJ

γIJ

M2
pl

=
gs

2VE`6
s

∫

X6

∗6 ω
I
2∧ ωJ2 . (2.127)

If a basis of harmonic forms ωI2 is chosen such that γIJ is diagonal, then φI = fIbI

(no sum) are the canonically normalized axion fields, whose decay constants are

the eigenvalues of γ, fI = eigI γ
JK . For example, if the compact space is a product

21Normalization conventions appear in Appendix 2.C.
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of two-spheres, X6 = S2 × S2 × S2, each with volume L2`2
s, then we simply have

f 2
I = M2

plL
−4/2.

If X6 is Calabi-Yau, then the axion decay constants for two-form axions bI

and cI—arising from the two-form potentials B2 and C2, respectively, in type IIB

string theory—may be simply computed from the intersection numbers κIJK , the

volumes `2
sv
I of the two-cycles ΣI

2, and the overall total volume VE of X6. For

example, for an axion c− = `−2
s

∫
Σ−2
C2 associated to an orientifold-odd cycle Σ−2

the axion decay constant is

f 2

M2
pl

∼ gs
κI−−v

I

VE

. (2.128)

When fivebranes are introduced to create monodromy, the axion that experi-

ences this monodromy will in general be a linear combination of the ωI2 , which

we call Ω. For example, in a variant of the axion monodromy construction de-

tailed in §2.3, the (rel)axion c(x) arises from a two-form Ω dual to the blowup

cycle of an orbifold whose fixed point locus is Σo, with dimC Σo = 1. As shown in

[34], the support of ∗Ω ∧ Ω is localized about Σo. The six-dimensional metric is

approximately a cone,

g̃mndym dyn ≈ dr2 + r2ğθφ dΨθ dΨφ (2.129)

and Ωmn ∼ Ωθφ to good approximation has its legs along the angular directions,

so

f 2

M2
pl

∼ gs
VE

1

`6
s

∫ r∩

r∪

dr r

∫
d5Ψ

√
ğ ğθφğψχΩθψΩφχ ≈

gs
VE

r2
∩
`2
s

. (2.130)

Locally, we may think of the blow-up cycle as an Eguchi-Hanson space fibered

over Σo. Since the integrand is highly localized about Σo, we have
∫
∗Ω ∧ Ω ≈

vol(Σo), and because of the conical nature of the six-dimensional metric, vol(Σo)

is dominated by the contribution at r∩, so
∫
∗6 Ω ∧ Ω ∝ r2

∩.
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The axion enjoys a continuous shift symmetry to all orders in perturbation

theory in both gs and α′. However, this continuous shift symmetry does not

survive at the nonperturbative level, and is broken to a discrete shift symmetry by

instantons carrying axion charge. In particular, fundamental strings are charged

under B2, via the coupling

S(W) = . . .+
i

2πα′

∫

W
d2σ
√
−h εmnBmn + . . . , (2.131)

where h is the metric on the string worldsheet W , and m,n are two-dimensional

indices tangent to W . The string path integral receives a contribution from a

Euclidean string whose worldsheet wraps ΣI
2, termed a worldsheet instanton. This

contribution will be proportional to e−SI , where SI = S(ΣI
2). Because of the

coupling (2.131),

SI ⊃ 2πibI , (2.132)

and so the potential generated by these nonperturbative effects is still invariant

under discrete shifts bI 7→ bI + N , N ∈ Z, as e−SI 7→ e−SI+2πiN = e−SI . Thus,

worldsheet instantons break the perturbative, continuous shift symmetry of bI to

the discrete shift bI 7→ bI + 1.

The real part of the action (2.131) is proportional to the volume of ΣI
2 in

string units, and worldsheet instanton contributions become more important as

the volume shrinks. These contributions are difficult to compute, so requiring

computational control of the effective action constrains the sizes of cycles, ΣI
2, and

thus the sizes of the axion decay constants. A standard requirement for control is

that the sizes of all cycles are much larger than the string length, vα � 1.

However, the two-cycle ΣI
2 may sit in a warped region, with warp factor eA.

For two-form axions, (2.127) is unchanged—there is no explicit dependence on the

warp factor. However, a ten-dimensional string will see a warped volume, and in

91



particular the real part of the worldsheet instanton action is enhanced by factor

e−2A. This allows the two-cycle volumes vα to be smaller by a factor of e−2A

without loss of control, and so the axion decay constant can be very small in a

highly warped throat.

If we take vI to measure the warped volume of ΣI
2 in string units, i.e. the volume

a ten-dimensional string would measure, then we may write

f 2

M2
pl

∼ gs
κI−−v

I

VE

e2A
∣∣
ΣI2
� gs

κI−−v
I

VE

, (2.133)

keeping the constraint that vI � 1.

2.B Necessity of the Intersection

In NS5-brane axion monodromy, D3-brane charge accumulates on an NS5-brane

that wraps a two-cycle ΣNS5 (denoted Σ2 elsewhere in the text). Taking c(x) ≡
∫

ΣNS5
C2 to be the relaxion field, a stopping potential can be generated by strong

gauge dynamics in a gauge theory G to which the relaxion has a nonvanishing

axionic coupling λ c(x)F ∧ F , with λ a constant. We will take G to be realized on

a stack of D7-branes wrapping a holomorphic four-cycle D (denoted Σ4 elsewhere

in the text). The backreaction of the D3-brane charge changes the supergravity

background, with the strongest effects occurring near ΣNS5. In this appendix we

show that any D for which λ 6= 0 necessarily intersects ΣNS5. Thus, one cannot

mitigate the backreaction by arranging that D is outside of the warped region.

For our purposes, it suffices to show that D and ΣNS5 have at least one point

in common, even though the intersection number [D]∩ [ΣNS5] of the corresponding

homology classes may vanish. We will use ∩s to denote intersection as point sets,
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as distinct from the topological intersection [Σ1] ∩ [Σ2],22 and we will show that

λ 6= 0 implies that D ∩s ΣNS5.

Consider a D7-brane that fills spacetime and wraps a smooth four-cycle D ⊂ X

in the internal space X. The D7-brane couples to C2 axions via the Chern-Simons

action

SCS = µ7

∫

W

∑

p

ι∗Cp ∧ eF ⊃
µ7

3!

∫

W
ι∗C2 ∧ F ∧ F ∧ F , (2.134)

where W = M3,1 × D is the D7-brane worldvolume, ι : D → X is the inclusion

map of D into X, ι∗ denotes the pullback onto D, F2 is the field strength of the

worldvolume gauge theory, and F = ι∗B2 + 2πα′F2. The axionic coupling to the

gauge theory G on a stack of D7-branes wrapping D is therefore

SCS ⊃
µ7

2!

(∫

D

ι∗C2 ∧ F
)(∫

M3,1

trF ∧ F
)
. (2.135)

Poincaré duality in D relates the flux F to a two-cycle SF ⊂ D which may further

be viewed as a two-cycle ι∗SF in X, so that

ϑ ≡
∫

D

ι∗C2 ∧ F =

∫

SF

ι∗C2 =

∫

ι∗SF

C2. (2.136)

The holomorphic representative ι∗SF of the class [ι∗SF ] is contained, as a point

set, in D. So establishing the condition

ι∗SF ∩s ΣNS5 6= ∅ (2.137)

will imply our desired result D ∩s ΣNS5.

Now we choose a basis of nontrivial two-cycle classes, {[Σi]}, I = 1, . . . , p ≡ h1,1,

to span H2(X,Z). Without loss of generality, we may take the NS5-brane class

22Two submanifolds M , N , of X have M ∩s N 6= ∅ if and only if M and N have at least one

point in common, without regard to the orientation of M and N .
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[ΣNS5] to be an element of this basis, say [Σ1] ≡ [ΣNS5]. There exists a dual

basis of harmonic two-forms ωJ such that
∫

ΣI
ωJ = δJI . Expanding `−2

s C2(x) =
∑p

i=1 cI(x)ωI , the relaxion field is c1(x) ≡ c(x). We may also expand

ι∗SF = a1[Σ1] + · · ·+ ap[Σp] + (boundary) , (2.138)

for some integers aI . Comparing to (2.136), we see that λ 6= 0 if and only if a1 6= 0.

The relation (2.138) with a1 6= 0 does not, on its own, imply (2.137). For

example, consider a basis of homology {[Σ1], [Σ2]}, with minimum volume rep-

resentatives {Σ1,Σ2} that obey ΣI ∩s ΣJ = δIJ . If [S] = a1[Σ1] + a2[Σ2], then

S ∩s Σ1 6= ∅ ⇐⇒ a1 6= 0, regardless of the value of a2. But working in the basis

{[Σ1], [Σ′2] = [Σ2]− [Σ1]}, for a1 6= 0 and a2 = 0 we again have S ∩s Σ1 6= ∅, while

if a1 = a2 we have instead S ∩s Σ1 = ∅. Thus, the condition (2.137) depends on

the relation between [Σ1] and [Σ2], . . . [Σp], which we have not yet specified.

We may view this issue in a dual picture. The coupling (2.136) can be written

as the triple intersection of three divisors in X,

ϑ = [D] ∩ [DF ] ∩ [DNS5] , (2.139)

where DF = PDX(ι∗F) and DNS5 = PDX(ω1), with PDX denoting the Poincaré

dual in X. The divisor DNS5 is dual to the curve ΣNS5, in that DNS5 is Poincaré

dual to the two-form ω1 that is the dual vector to ΣNS5 with respect to the pairing
∫

ΣI
ωJ = δJI . It follows that [ΣNS5] ∩ [DNS5] = 1. Moreover, the requirement of

a nonvanishing axionic coupling, ϑ 6= 0, implies that [DNS5] ∩ [D] 6= 0. Now

although [ΣNS5] ∩ [DNS5] 6= 0 and [DNS5] ∩ [D] 6= 0, it appears that DNS5 could

stretch between D and ΣNS5, intersecting each, even though D and ΣNS5 remain

widely separated.

To exclude this possibility, we use further facts about ΣNS5 and ι∗SF . Preserv-
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ing supersymmetry in the D7-brane worldvolume requires that F ∈ H2(D,Z) be

of type (1, 1), and so its Poincaré dual ι∗SF is a holomorphic curve. Heuristically,

ι∗SF can be viewed as the curve wrapped by a D5-brane dissolved in D: if the

D7-brane were annihilated by introducing an anti-D7-brane, a D5-brane on ι∗SF

would remain. Moreover, ΣNS5 is itself an irreducible holomorphic curve. (In a

construction in which ΣNS5 is a sum of irreducible holomorphic curves, this argu-

ment can be applied to each component.) We can therefore express ι∗SF uniquely

as a finite sum of distinct irreducible holomorphic curves {σA}, A = 1, . . . K (with

ΣNS5 ≡ σ1):

ι∗SF = a1ΣNS5 + a2σ2 + · · ·+ aKσK , aA ∈ Z ≥ 0 , (2.140)

and we have shown above that a relaxionic coupling, λ 6= 0, requires a1 6= 0.

Because the σA are distinct irreducible holomorphic curves, they intersect each

other at most at points. So ι∗SF contains all but finitely many of the points of

ΣNS5. The condition (2.137) then follows, and so D must intersect ΣNS5, which is

what we set out to prove.

Note that if the σA were simply a set of distinct, irreducible simplicial com-

plexes, the relation (2.137) would not be automatic. If σ1 intersected some of

σ2, . . . σK along suitable two-simplices, then
∑

i aAσA might have no points in

common with σ1, because adding a2σ2 + . . . aKσK could subtract all the points of

σ1. For curves intersecting at most at points, this is not possible.
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2.C Type IIB Supergravity with Fivebranes

2.C.1 Conventions for type IIB supergravity

The bosonic part of the type IIB supergravity action in Einstein frame is

SIIB =
1

2κ2
10

∫
d10X

√
−GE

(
RE −

|∂τ |2
2(Im τ)2

− |G3|2
2 Im τ

− 1

4
|F̃5|2

)

− i

8κ2
10

∫
C4 ∧G3 ∧ Ḡ3

Im τ
(2.141)

with 2κ2
10 = `8

s/2π, G3 ≡ F3 − τH3, τ ≡ C0 + ie−Φ, Fp+1 = dCp, H3 = dB2,

F̃5 = F5 − 1
2
C2 ∧ H3 + 1

2
B2 ∧ F3, and F̃5 = ∗10F̃5 is imposed at the level of the

equations of motion.

We define the string length

`2
s = (2π)2α′. (2.142)

The actions for extremal Dp-branes and NS5-branes are given by

SDp = −µp
∫

dp+1ξ e−Φ
√
− det (Gab +Bab + 2πα′Fab) + SCS (2.143)

and

SNS5 = −µ5

∫
d6ξ e−2Φ

√
− det (Gab − eΦ (Cab + 2πα′Fab)) + SCS, (2.144)

respectively, where µp = 2π/`p+1
s , and Fab is the gauge field strength on the brane

worldvolume. The Chern-Simons term for a Dp-brane reads

SCS = µp

∫ ∑

n

Cn ∧ eF , (2.145)

where we have introduced the notation F = B2 + 2πα′F . The Chern-Simons piece

sets the flux quantization condition

1

`p+1
s

∫

Σp
Fp+1 ∈ Z. (2.146)
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We expand in a basis of H2(X6), denoted ωI(y), with normalization

∫

ΣJ
ωI = `2

sδ
I
J . (2.147)

We list our index conventions in Table 2.3.

Directions Indices

(3+1)-dim spacetime µ, ν, ρ, . . .
6-dim internal space m,n, . . .
5-dim angular space θ, φ, . . .
brane worldvolume a, b, . . .

transverse to worldvolume i, j, k, . . .

transverse vielbein ı̂, ̂, k̂, . . .
along cycle Σ2 α, β, . . .

Table 2.3: A guide to this chapter’s index conventions.

2.C.2 Einstein-frame potentials for fivebranes

The DBI action for a D5-brane is

SDBI = −2π

`6
s

∫
d6ξ e−Φ

√
− det (GS

ab + Fab) (2.148)

where GS
ab and Bab are the pull-backs onto the brane worldvolume of the ten-

dimensional string-frame metric and NS-NS two-form B2, respectively.

The ten-dimensional string-frame metric is related to the Einstein-frame metric

via

GS
MN = eΦ/2GE

MN , (2.149)

which we assume takes a warped product form

GE
MN dXM dXN = e2A(y)gµν dxµ dxν + e−2A(y)g̃mn dym dyn, (2.150)

97



where gµν and g̃mn are metrics on the four-dimensional spacetime and the six-

dimensional internal space, respectively.

Defining

b(x) =
1

`2
s

∫

Σ2

B2 =
1

`2
s

∫

Σ2

`2
s b(x) dy ∧ dz, (2.151)

choosing coordinates on Σ2 such that dy∧ dz is harmonic, and setting Fab = 0, we

may write

eΦ/2GE
ab +Bab =

(
eΦ/2e2A(y)gµν 0

0 m

)
(2.152)

with

m =

(
eΦ/2e−2Ag̃yy eΦ/2e−2Ag̃yz + `2

sb/2

eΦ/2e−2Ag̃yz − `2
sb/2 eΦ/2e−2Ag̃zz

)
. (2.153)

With g̃2 ≡ g̃yyg̃zz − g̃2
yz, we have

√
− det (Gab +Bab) = eΦ+4A

√
− det g

√
eΦe−4Ag̃2 + `4

sb
2/4. (2.154)

Upon integration over Σ2, we may take e−4Ag̃2 → `4
E, where `2

E is the charac-

teristic size of Σ2 in the ten-dimensional Einstein frame. The DBI action, upon

dimensional reduction, then yields a four-dimensional potential for the b axion,

SDBI =

∫
d4x
√−g


−πe

4A

`4
s

√
gs
4

(
`E

`s

)4

+ b2


 . (2.155)

The dimensional reduction of the NS5-brane action follows similarly.

We will also be interested in the spectrum of Kaluza-Klein excitations, which

we now compute. Setting Fab = 0, the NS5-brane action is

SNS5 = −2π

`6
s

∫
d6ξ e−2Φ

√
− det M (2.156)

with Mab = Gab − eΦCab. Expanding in fluctuations δMab, we have

√
− det

(
M + δM

)
=
√
− det M

(
1 +

1

2
tr M

−1
δM

)
, (2.157)
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with

M =

(
eΦ/2e2Agµν 0

0 m

)
(2.158)

and

m =

(
eΦ/2e−2Ag̃yy eΦ/2e−2Ag̃yz − eΦ`2

sc/2

eΦ/2e−2Ag̃yz + eΦ`2
sc/2 eΦ/2e−2Ag̃zz

)
. (2.159)

As above,
√
− det M = eΦ+4A

√−g
√
eΦe−4Ag̃2 + e2Φ`4

sc
2/4. (2.160)

The fluctuation δM arises from allowing the embedding of the NS5-brane to fluc-

tuate. We may explicitly write the pull-back as

Gab − eΦCab = ΠMN
ab

(
GMN − eΦCMN

)
. (2.161)

If we take the embedding of the fivebrane to be specified by XM(ξa) and allow the

brane to fluctuate in the transverse directions XM(ξa) = δMa ξ
a + δMj X

j(ξb), the

projection operator is then

ΠMN
ab ≡

∂XM

∂ξa
∂XN

∂ξb
= δMa δ

N
b + δMa δ

N
j

∂Xj

∂ξb
+ δNb δ

M
i

∂X i

∂ξb
+ δMi δ

N
j

∂X i

∂ξa
∂Xj

∂ξb
. (2.162)

Assuming a product metric GE
ai = 0, we have

δMab = eΦ/2e−2Ag̃ij
∂X i

∂ξa
∂Xj

∂ξb
. (2.163)

and the NS5-brane action may be written

SNS5 = −2π

`6
s

∫
d6ξ e−Φe4A

√−g
√
eΦe−4Ag̃2 + e2Φ`4

sc
2/4× (2.164)

(
1 +

1

2
e−4Agµν g̃ij∂µX

i∂νX
j +

1

2

eΦe−4Ag̃2

eΦe−4Ag̃2 + e2Φ`4
sc

2/4
g̃ij g̃

αβ∇̃αX
i∇̃βX

j

)
.

We define the canonically normalized fields as

Y ı̂ = FE ı̂
jX

j (2.165)
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with

F 2(xµ, y, z) =
2π

`6
s

e−Φ

√
g̃2

√
eΦe−4Ag̃2 + e2Φ`4

sc
2/4 and g̃ij = δı̂̂E

ı̂
iE

̂
j .

(2.166)

We have assumed that g̃iα = 0, and thus ∇̃αE
̂
j = 0. Decomposing in real g̃2

harmonics gives

∇̃2YI = −e
−2A

`2
E

λIYI Y ı̂ =
∑

I

Y ı̂
IYI

∫
d2σ
√
g̃2 YI YJ = δIJ . (2.167)

The action is

SNS5 =

∫
d4x
√−g

(
− V (c)− 1

2
gµν∂µY

ı̂
I ∂

µY I
ı̂ −

1

2
m2
I(c)Y

ı̂
I Y

I
ı̂

+ g(c) (c∂µc)
(
Y ı̂
I ∂

µY I
ı̂

)
− 1

2
g(c)2 (∂c)2 Y ı̂

I Y
I
ı̂

)
(2.168)

with

V (c) ≡ π

`4
s

e4A

√
gs

√
4

(
`E

`s

)4

+ gsc2 (2.169a)

g(c) ≡ gs
2

(
4

(
`E

`s

)4

+ gsc
2

)−1

(2.169b)

m2
I(c) ≡

µ2
5e
−Φ

F 4

e−2A

`2
E

λI = 4λI
e2A

`2
E

(
`E

`s

)4
(

4

(
`E

`s

)4

+ gsc
2

)−1

. (2.169c)

Finally, we will be interested in the tension of the domain wall interpolat-

ing between the metastable and stable states of the NS5-brane axion monodromy

scenario. In the thin-wall approximation, the domain wall corresponds to an NS5-

brane winding n times around the minimum volume three-cycle Σ3 whose endpoints

are Σ2 and Σ̄2, the two-cycles wrapped by the NS5-brane and anti-NS5-brane, re-

spectively. The tension can then be read off by reducing the action

SNS5 = −2π

`6
s

∫

D
d6ξ e−2Φ

√
− det (GS

ab − eΦCab)

→ −TD
∫

D2,1

d3x
√
− detP(g4). (2.170)
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where P(g4) denotes the pullback of the spacetime metric gµν onto the world-

volume of the domain wall D2,1.

We can gain intuition for this tension by modeling the three-cycle Σ3 as

ds2
Σ3

= dr2 + r2
(
dy2 + dz2

)
, (2.171)

where the two-torus volume form is dy ∧ dz, and r ∈ [r∪, r∩]. Then

GS
ab − eΦCab =




eΦ/2e2AP(g4)µν 0 0

0 e−2AeΦ/2 0

0 0 m




(2.172)

where

m =

(
e−2AeΦ/2r2 −eΦ`2

sc/2

−eΦ`2
sc/2 e−2AeΦ/2r2

)
, (2.173)

and so

SNS5 = −
(

2π

`6
s

∫ r∩

r∪

dr e−3Φ/4e3A
√
e−4Ar4 + eΦ`4

sc
2/4

)∫

D2,1

d3x
√
− detP(g4).

(2.174)

The tension then takes the form

TD =
2π

`3
s

L3

g
3/4
s `3

s

1

4

(
e4A∩ − e4A∪

)
√

1 +
gs`4

sc
2

4L4
∼ 1

`3
s

N
3/4
D3

(
e4A∩ − e4A∪

)
, (2.175)

since we must have gs`
4
sc

2/4L4 ∼ N2/ND3 � 1 to avoid the KPV instability.

2.D Backreaction on the Internal Space

When one introduces a source of monodromy in a compactification, and explicitly

breaks supersymmetry, the corresponding stress-energy will backreact on the met-

ric, affecting the parameters in the low-energy effective theory. In the NS5-brane

model detailed in §2.3.2, a key source of stress-energy is anti-D3-brane charge
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induced on the anti-NS5-brane. Because D3-brane charge preserves the same su-

persymmetry as the background, it will not backreact on the internal metric at

leading order.23 However, the anti-D3-brane charge will break the remaining su-

persymmetry of the background and perturb the internal metric. Furthermore,

both D3-brane and anti-D3-brane charge will perturb the warp factor e4A. In this

appendix we calculate the perturbations to the internal metric and the warp factor.

At the level of the supergravity equations of motion, we may approximate the

N units of induced anti-D3-brane charge as N anti-D3-branes smeared about the

anti-NS5-brane. These anti-D3-branes do not source the metric directly, but do

so through a combination of the warp factor e4A and the F̃5 field which we denote

Φ−, where Φ± ≡ e4A ± α, and

F5 = (1 + ∗10) dα(y) ∧ dvolR1,3 . (2.176)

The equations of motion for Φ± and the internal Einstein equation read

∇̃2Φ+ =
2

Φ+ + Φ−
(∇̃Φ+)2 +

1

2
gs`

4
s (Φ+ + Φ−)2

∑

i

δ(D3i) (2.177a)

∇̃2Φ− =
2

Φ+ + Φ−
(∇̃Φ−)2 +

1

2
gs`

4
s (Φ+ + Φ−)2

∑

i

δ(D3i) (2.177b)

R̃mn =
2

(Φ+ + Φ−)2
∇̃(mΦ+∇̃n)Φ− (2.177c)

where we use ∇̃, etc., to denote quantities related to the unwarped, internal

metric g̃mn. We treat the anti-D3-branes as a perturbation to an imaginary self-

23In the presence of anti-brane charge, the D3-brane charge will backreact on the internal

metric at second order. Similarly, if the D3-brane charge is large enough a better description

becomes available in which the D3-branes are dissolved into flux and a new warped throat is

formed, corresponding to the analysis of §2.4.2. In what follows, we will take N � ND3 and

assume that the induced anti-D3-brane charge may be thought of as a small perturbation to the

geometry.
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dual background, in which

Φ+ ≈
2r4

L4
and Φ− = 0, (2.178)

L4 ∝ gsND3`
4
s, and the internal metric is taken to be the conifold, a cone over T1,1,

g̃mndym dyn = dr2 + r2ds2
T1,1 = dr2 + r2ğijdΨi dΨj. (2.179)

We linearize the system of equations (2.177) using the expansions24

g̃mn = g̃(0)

mn + δg̃mn (2.180a)

δg̃rr =
∑

Is

τ Is(r)YIs(Ψ) (2.180b)

δg̃rθ =
∑

Iv

bIv(r)YIvθ (Ψ) (2.180c)

δg̃θφ =
∑

Is

1

5
πIs(r)ğθφYIs(Ψ) +

∑

It

φIt(r)YItθφ(Ψ) (2.180d)

Φ− = Φ(0)

− + δΦ(1)

− (r,Ψ) =
∑

Is

δΦIs
− (r)YIs(Ψ) (2.180e)

where YIs(Ψ), YIvθ (Ψ) and YItθφ(Ψ) are the scalar, transverse vector, and transverse

traceless tensor harmonics on T1,1, with appropriate Laplacian eigenvalues λ(Is),

λ(Iv), and λ(It), respectively.

The Einstein metric on T1,1 is

ds2
T1,1 =

1

6

(
dθ2

1 + sin2 θ1 dϕ2
1

)
+

1

6

(
dθ2

2 + sin2 θ2 dϕ2
2

)

+
1

9
(cos θ1 dϕ1 + cos θ2 dϕ2 + dψ)2 , (2.181)

and in these coordinates a basis of scalar harmonics is given by

YIs(ϕ1, θ1, ϕ2, θ2, ψ) = ei
R
2
ψeim1ϕ1eim2ϕ2d

(j1)

m1
R
2

(θ1)d
(j2)

m2
R
2

(θ2) (2.182)

24We use the conventions of [64], except that angular indices are denoted θ, φ, . . . , g̃heremn =

gtheremn , and ğhereij = g̃thereθφ .

103



where Is ≡ {j1,m1, j2,m2, R} is a multi-index, d
(j)
m1m2(θ) is the Wigner (small) d-

matrix, and θi ∈ [0, π), φi ∈ [0, 2π), and ψ ∈ [0, 4π). We will only need the scalar

harmonics in the following, with eigenvalues λs(j1, j2, R) = 6(j1(j1 + 1) + j2(j2 +

1)−R2/8).

We will only focus on the radial scaling of the dominant metric perturbation.

The presence of the anti-D3-brane charge on the NS5-brane may be interpreted

as N anti-D3-branes smeared over the two-cycle wrapped by the NS5-brane. The

backreaction is heavily dependent on the geometric details of this smearing, so the

reported radial scalings may be reduced by suitable geometric tuning. However,

we expect a generic smearing to source all possible angular modes and any order-

of-magnitude estimates to be set by the dominant mode.

When placed in the background (2.178), the anti-D3-branes will feel a force

towards small r. In the actual configuration, interactions with the anti-NS5-brane

provide a stabilizing force that keeps the three-brane charge localized around the

two-cycle, but the system (2.177) does not account for this force. The effects of

the stabilizing force could be included by sourcing appropriate perturbations in

the warped throat, but doing so would leave the radial scaling of the dominant

perturbation unchanged, and so our analysis applies in any case.

For an anti-D3-brane at (r′,Ψ′), we find that

δΦIs
− (r; r′,Ψ′) = − 1

∆s

gs`
4
s

L4

r′4

L4

((
r′

r

)2+∆s

θ(r − r′) +

(
r

r′

)∆s−2

θ(r′ − r)
)
YIs(Ψ′),

(2.183)

so in the area of interest,

δΦIs
− (r; r′,Ψ′) ∝ − 1

∆s

N

ND3

r′4

L4

(
r′

r

)2+∆s

, (2.184)
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where ∆s ≡
√

4 + λ(Is). This Φ− profile induces a metric perturbation

π0(r) = 0 πIs(r) ∝ r2 N

ND3

(
r′

r

)6+∆s

, (2.185a)

τ 0(r) ∝ N

ND3

(
r′

r

)8

τ Is(r) ∝ − N

ND3

(
r′

r

)6+∆s

. (2.185b)

From the spectroscopy of T1,1, the lowest scalar mode has quantum numbers

(1
2
, 1

2
,±1) and ∆s = 7/2, so the dominant metric perturbation is

δg̃mndym dyn ∝ N

ND3

(
r′

r

)19/2

Y 1
2
, 1
2
,1(Ψ) r2ğθφ dΨθ dΨφ (2.186)

where Y 1
2
, 1
2
,1(Ψ) is some real superposition of angular harmonics with (j1, j2, R) =

(1
2
, 1

2
,±1).

The perturbations in both the warp factor and internal metric will alter the

gauge coupling function,

8π2

g2
YM

=
4π

`4
s

∫

Σ4

d4ξ
√
g̃4 e

−4A, (2.187)

on a stack of D7-branes wrapping a divisor Σ4, such that

δ

(
8π2

g2
YM

)
=

4π

`4
s

∫

Σ4

d4ξ
√
g̃4

(
−2Φ−2

+

(
δΦ(1)

+ + δΦ(1)

−
)

+ Φ−1
+ g̃abδg̃ab

)
. (2.188)

We proved in Appendix 2.B that, in order for these D7-branes to couple to c =

`−2
s

∫
Σ2
C2 supersymmetrically, Σ4 must not only descend into the warped throat

but actually intersect Σ2. We expect the supergravity description to break down

near the intersection and a local model to be more apt and, from the open-string

picture discussed in §2.1, we expect this contribution to be O(N). Furthermore,

away from the intersection, the supergravity approximation becomes accurate and

we have shown above N D3-branes induce an O(N/ND3) fractional perturbation.

This contribution is then

δ

(
8π2

g2
YM

)
∝ ND3

∫

Σ4

d4ξ
√
g̃4 r

−4
(
− 2Φ−1

+

(
δΦ(1)

+ + δΦ(1)

−
)

+ g̃abδg̃ab
︸ ︷︷ ︸

O(N/ND3)

)
∝ N.

(2.189)
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CHAPTER 3

SYSTEMATICS OF AXION INFLATION IN CALABI-YAU

HYPERSURFACES

Abstract1

We initiate a comprehensive survey of axion inflation in compactifications of type IIB

string theory on Calabi-Yau hypersurfaces in toric varieties. For every threefold with

h1,1 ≤ 4 in the Kreuzer-Skarke database, we compute the metric on Kähler moduli

space, as well as the matrix of four-form axion charges of Euclidean D3-branes on rigid

divisors. These charges encode the possibility of enlarging the field range via alignment.

We then determine an upper bound on the inflationary field range ∆φ that results

from the leading instanton potential, in the absence of monodromy. The bound on the

field range in this ensemble is ∆φ . 0.3Mpl, in a compactification where the smallest

curve volume is (2π)2α′, and we argue that the sigma model expansion is adequately

controlled. The largest increase resulting from alignment is a factor ≈ 2.6. We also

examine a set of threefolds with h1,1 up to 100 and characterize their axion charge

matrices. While we find modest alignment in this ensemble, the maximum field range is

ultimately suppressed by the volume of the internal space, which typically grows quickly

with h1,1. Furthermore, we find that many toric divisors are rigid—and the corresponding

charge matrices are relatively trivial—at large h1,1. It is therefore challenging to realize

alignment via superpotentials generated only by Euclidean D3-branes, without taking

into account the effects of flux, D7-branes, and orientifolding.

1This chapter is based on C. Long, L. McAllister and J. Stout, “Systematics of Axion Inflation

in Calabi-Yau Hypersurfaces,” JHEP 02 (2017) 014, [1603.01259].

We thank A. Braun and J. Halverson for discussions, and thank V. Khrulkov, M. Stillman, and

B. Sung. We are particularly indebted to M. Stillman for many helpful explanations.
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3.1 Introduction

The prospect of detecting or strongly bounding primordial gravitational waves

through measurements of CMB B-modes in the next few years makes the ques-

tion of large-field inflation in quantum gravity an urgent one. Exhibiting a totally

explicit model of large-field inflation in string theory, or proving no-go theorems

that exclude classes of constructions, remains challenging. A persistent difficulty is

establishing control of the theory in the parameter range where large-field inflation

would occur: making the inflaton potential flat over a super-Planckian distance of-

ten requires adjusting compactification parameters, such as cycle sizes, flux quanta,

and numbers of D-branes, away from the weakly coupled limit. While it is easy to

speculate that something that appears difficult might in fact be impossible, and

some authors have promoted this expectation to a principle, there has been little

success in actually establishing that large-field inflation is (im)possible in some

corner of string theory, except in very simple settings.2

Axion inflation is a promising framework for examining large-field inflation in

string theory. As in the original model of natural inflation [65], all-orders shift

symmetries give structure to the inflaton potential and sharpen the problem of

exhibiting a flat potential over a large range to that of achieving a large axion

periodicity. Axions are numerous in Calabi-Yau compactifications of string theory,

descending from p-form fields in ten dimensions, reduced on suitable p-cycles. The

resulting axion fields inherit perturbatively exact continuous shift symmetries from

the higher-dimensional gauge symmetry, provided that the latter is not broken

by classical sources such as wrapped D-branes or background fluxes, which would

2See [8] for an overview.
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introduce monodromy in the axion potential [33, 32].3 In this work we will consider

axion inflation without explicit monodromy: we will investigate inflation driven by

the strictly periodic potential generated by Euclidean D-branes.

Although it is difficult to arrange for a single axion in string theory to have

periodicity 2πf > Mpl in a regime of perturbative control [67, 68], an appealing

alternative is to arrange for a particular linear combination of N > 1 axions to

have a large effective periodicity. The resulting inflationary model, aligned natural

inflation, is a version of assisted inflation [69]. The first such proposal, for the

case N = 2, is due to Kim, Nilles, and Peloso (KNP) [44], and is known as ‘KNP

alignment’ or ‘lattice alignment.’

More recently, generalizations of lattice alignment to N � 1 have been studied

[52, 70, 48], and a distinct alignment phenomenon involving the kinetic term,

known as ‘kinetic alignment,’ has been identified [45]. Related works include [71,

72, 73, 74, 75, 76, 72, 77, 78, 79, 80, 81, 82, 83]. In §2 we will review these

alignment effects in more detail. One key point is that the field range enhancement

due to lattice alignment is determined by a matrix Q of quantized axion charges

carried by instantons, which without loss of generality we can take to be integers.

In an effective field theory construction of aligned natural inflation, the axion

periodicity can be made arbitrarily large if these integer charges are unbounded.

However, quantum gravity theories with conventional black hole thermodynamics

are generally thought not to allow exact continuous global internal symmetries.

More concretely, any finite class of string compactifications will be characterized

by a finite set of integer data—such as intersection numbers, flux quanta, and

D-brane charges—which only allows for a finite degree of alignment. While this

plausibly excludes arbitrarily super-Planckian field ranges in axion theories without

3See e.g. the discussions in [66, 42].
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monodromy, the question of physical interest is whether the field range ∆φthy

allowed by quantum gravity can exceed the upper bound4 ∆φexp determined by

measurements of CMB B-modes.

To determine what quantitative upper bound quantum gravity, and in particu-

lar string theory, imposes on the field range in axion inflation, one can ask whether

the integer data in an actual string compactification can permit a high degree of

alignment, and whether this is sufficient to achieve ∆φthy > ∆φexp in a paramet-

rically controlled construction. In this paper, we answer these questions, in the

negative, for a large class of explicit Calabi-Yau compactifications.

We consider inflation driven by the Ramond-Ramond four-form C4, in com-

pactifications of type IIB string theory on Calabi-Yau threefold hypersurfaces in

toric fourfolds. We examine all 5922 threefolds with h1,1 ≤ 4 in the Kreuzer-Skarke

database [85], and identify divisors that are rigid and so support Euclidean D3-

brane contributions to the superpotential.5 In 4390 of these compactifications,

Euclidean D3-branes wrapping linear combinations of up to three toric divisors

suffice to break all continuous axion shift symmetries, and correspondingly lift all

flat directions in the Kähler moduli space.6 The axion fundamental domain is

therefore compact in these examples, and we compute its diameter as a function

of the Kähler moduli. The geometric field range R ≈ ∆φthy, defined in §3.2.1, is a

function of the curve volume parameters ti, and is homogeneous of degree −2 with

respect to the overall scaling ti → λti, so the upper bound on ∆φ is dictated, in

4For single-field natural inflation, the Planck measurements of the tilt also imply a lower

bound on ∆φ [84].
5Our method is applicable for larger h1,1, as we show in §3.5, but computing the divisors’

topology becomes more expensive.
6The flat directions in the remaining examples may well be lifted by more complicated in-

stanton configurations, but we do not analyze those geometries any further.
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part, by the smallest curve volumes compatible with control of the α′ expansion.

We argue that in a region of reasonable perturbative control, where the minimum

curve volume is `2
s ≡ (2π)2α′, the upper bound on the geometric field range is

R . 0.3Mpl, with Mpl the four-dimensional reduced Planck mass.

The largest contribution of lattice alignment to R in our ensemble is a factor

of 2.6, in a compactification where h1,1 = 4 with axion charge matrix

Q = 2π




1 0 0 0

−1 −1 1 1

0 0 1 0

0 0 0 1



. (3.1)

In this example R = 0.08Mpl, while with Q = 2π1 one would have R = 0.03Mpl.

We make one simplifying assumption that deserves special mention. In deter-

mining which divisors D yield Euclidean D3-brane contributions to the superpo-

tential, we examine only the topology of D itself, and require the rigidity condition

h•(D,OD) = (1, 0, 0). We do not systematically include corrections to this zero-

mode counting due to orientifolding, worldvolume flux, bulk flux, or intersections

with seven-branes (see e.g. [86, 87, 88, 89, 90, 91]). While incorporating these

effects is beyond the scope of this work, it will be an important next step.

The organization of this paper is as follows. In §3.2 we review how the topo-

logical and geometric data of an O3/O7 orientifold compactification determines an

effective theory for axions, and we explain how to compute the field range, includ-

ing the effects of alignment, in such a theory. In §3.3 we recall how to obtain the

topological data of a Calabi-Yau threefold hypersurface in a toric variety. In §3.4

we present the results of a complete scan through the Kreuzer-Skarke database

at h1,1 ≤ 4, and in §3.5 we describe a few examples at much larger h1,1. Our

conclusions appear in §3.6.
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3.2 Four-Form Axions in O3/O7 Orientifolds

A comparatively well-understood class of four-dimensional N = 1 solutions of

string theory are compactifications of type IIB string theory on O3/O7 orientifolds

of Calabi-Yau threefolds. Because the full space of N = 1 orientifolds is not

known,7 in this work we will focus on their Calabi-Yau double covers, which can

be enumerated systematically in the case of hypersurfaces in toric varieties.

3.2.1 The effective Lagrangian

In type IIB string theory compactified on an O3/O7 orientifold of a Calabi-Yau

threefold X, the closed string moduli are the complex structure moduli, axiodila-

ton, and Kähler moduli. The complex structure moduli and axiodilaton can be

completely fixed by a suitable choice of quantized G3 flux, while the Kähler mod-

uli are unfixed to all orders in perturbation theory due to the gauge symmetry

of the Ramond-Ramond four-form. When h1,1
− = 0, which we will assume in this

work, the coordinates on Kähler moduli space are the complexified volumes T i of

four-cycles, defined as

T i =
1

2

∫

Di
J ∧ J + i

∫

Di
C4 ≡ τ i + iθi, (3.2)

where J is the Kähler form, Di is a basis element of H4(X,Z), and C4 is the

Ramond-Ramond four-form field. The Kähler potential is given by

K = −2 logV , (3.3)

7However, see [92] for progress in classifying involutions that exchange two coordinates.
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where V is the volume8 of the internal space,

V =
1

6

∫

X

J ∧ J ∧ J. (3.4)

We can write the volume as V = 1
6
κijktitjtk by expanding the Kähler form as

J = tiω
i, where ωi form a basis for H1,1(X,Z) and the κijk are triple intersection

numbers among divisors Di.

The space of Kähler parameters ti is restricted by the requirement that the

metric on field space be positive definite. To identify the resulting conditions on

the ti, we consider the Mori cone of X, Mori(X), which is the cone of holomorphic

curves: any holomorphic curve C in X can be written as

C =
∑

a

naCa (3.5)

where the Ca are the generators of Mori(X), and na are nonnegative integers. The

Kähler cone is the space dual to the Mori cone, i.e. it is the region of Kähler

parameters ti for which
∫
C
J > 0 for every holomorphic curve C.

Everywhere inside the Kähler cone, the axion field space metric Kij obtained

from the tree-level Kähler potential (3.3) is positive definite. However, as one ap-

proaches the walls of the Kähler cone, (3.3) does not necessarily provide a good

approximation to the true Kähler potential that incorporates all α′ and gs correc-

tions. Our computation based on (3.3) is therefore meaningful only when the ti are

restricted to a proper subset of the Kähler cone. To understand the conditions that

must be imposed on the ti, we recall the form of the perturbative and nonpertur-

bative corrections to the effective Lagrangian. The superpotential for the Kähler

moduli is purely nonperturbative because of the axion shift symmetry, and we will

8All volumes in this work are determined in ten-dimensional Einstein frame in units of `s =

2π
√
α′.
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compute it directly in this work, modulo some important technical assumptions

detailed below. The Kähler potential receives perturbative corrections in the α′

and gs expansions, as well as nonperturbative corrections, and none of these has

been fully characterized.

Control of the string loop expansion can be achieved by arranging for gs � 1

by a suitable choice of quantized three-form flux. We remark that string loop

corrections to the Kähler potential are suppressed not only by powers of gs, but

also by powers of V , so at large threefold volume very small gs is not necessary for

ensuring that string loop corrections are small.9 Next, as a proxy for control of the

α′ expansion, we will consider worldsheet instantons wrapping nontrivial curves

C ⊂ X: in the region where the gs and α′ expansions are well-controlled, these

are generically the leading nonperturbative corrections to K, and are proportional

to10

∆K ∼ V−1 e−2π
√
gs t, (3.6)

where t is the Einstein frame volume of C, i.e. the volume measured with the ten-

dimensional Einstein frame metric, in units of `2
s. (The string frame volume of C

is then
√
gst.) To ensure that the worldsheet instanton corrections are small, we

will require that the volumes of all curves are larger than some threshold value.

In this work we take the threshold volume to be `2
s, so that worldsheet instanton

contributions are suppressed by factors of e−2π
√
gs , which is small for gs & 0.1.

Because the Kähler metric is homogeneous of degree −2 with respect to overall

scaling ti → λti, it is trivial to translate our results to any other desired thresh-

old, as might be motivated by examining the form of perturbative corrections in

particular examples.

9Investigations of axion field ranges at moderately strong coupling include [93, 94].
10We adopt the normalizations of [95], as laid out in Appendix A of [95].
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In view of the above requirement, we now define the stretched Kähler cone as

the set of Kähler parameters ti for which
∫
C
J > 1, for all holomorphic curves C.

The condition on curve volumes explained in the previous paragraph corresponds

to the requirement that the ti lie in the stretched Kähler cone. This condition

leads to a lower bound on the volumes of divisors, τ i ≡ ∂V/∂ti, and on the volume

V of X itself.

3.2.2 The axion fundamental domain

At a point in Kähler moduli space that falls inside the stretched Kähler cone, the

effective Lagrangian for the N = h1,1 axions takes the form, in four-dimensional

Einstein frame,

L =
M2

pl

2
R4 −

M2
pl

2
Kij∂

µθi∂µθ
j −

P∑

a=1

Λ4
a

(
1− cos(Qa

iθ
i)
)
. (3.7)

Here Kij is the Kähler metric on field space, and (2π)−1Q is a matrix of rational

numbers determined by instanton charges. We will search for examples in which Q

is a full-rank (that is, rank N) matrix, so that there are no exactly flat directions

in the axion field space, and correspondingly no unstabilized11 Kähler moduli. In

order for Q to have rank N , there must be at least N linearly independent divisors

contributing to the superpotential, i.e. we must have P ≥ N .

The fundamental domain F (cf. [46]) of the axions is the region contained in

the intersection of the 2P half-plane constraints −π ≤ Qa
iθ
i ≤ π, as visualized in

Figure 3.1. When Q has rank N , F is compact.

11Strictly speaking, we will not be stabilizing the real part Kähler moduli τi, in the sense that

we will not minimize the scalar potential with respect to the τi. We do, however, ensure that all

the τi appear in the superpotential, in N linearly independent combinations.
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R

Q1
i θ

i ≤ π

Q1
i θ

i ≥ −π

Q2
i θ

i ≤ π

Q2
i θ

i ≥ −π

Q3
i θ

i ≤ π

Q3
i θ

i ≥ −π

Figure 3.1: The geometric field range R is the semi-diameter of the fundamental
domain F , which is the region contained in the intersection of the 2P
hyperplane constraints −π ≤ Qa

iθ
i ≤ π. Surfaces of constant distance

are ellipsoids with weight matrix Kij.

The fundamental domain is a polytope in field space, and may also be expressed

as the convex hull of a set of vertices {di}. We define the geometric field range R

as the distance, measured with respect to the Kähler metric Kij, from the origin

to the most distant point on the boundary of F . Equivalently, R is the distance

from the origin to the most distant of the di, i.e. R is the semi-diameter of F .

The length ∆φ of an inflationary trajectory driven by a general potential on F

may be larger or smaller than R, but when the initial conditions are arranged so

that the trajectory is well-approximated by a straight line, we expect that ∆φ . R.

We have verified this expectation by solving for the inflationary evolution that

results from the full potential.

The identifications defining F , and hence also the size R of F , depend on the

set of instantons included in the sum in (3.7). Because the Λa depend exponentially

on four-cycle volumes, there will generally be large hierarchies among the Λa, and
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so some terms in the axion potential may provide only small ripples that are

unimportant in determining the maximum field range. Our approach is to choose

the dominant instantons, defined as follows. Given a set of P > N instanton

contributions, i.e. P row vectors Q1
i, . . . , Q

P
i, one can search for one or more

sets of N linearly-independent vectors, corresponding to full-rank square matrices

contained in Q. When there are multiple such full-rank sets, we choose the one for

which the Λa are as large as possible; that is, we identify the 2N most important

hyperplanes defining the fundamental domain.12

Once the dominant rows of Q are identified, the corresponding inequalities

define a polytope in field space. The point in this convex polytope furthest from

the origin must be one of the vertices di. Thus, given a constant Kähler metric

K and a full-rank square matrix Qij ⊂ Qa
i, corresponding to the identifications

imposed by the leading instantons, we obtain the axion field range by enumerating

the vertices of the associated polytope and computing

R2 = max
i

dᵀ
i ·K·di. (3.8)

Each choice of Q will determine a different polytope in field space and thus yield

a different value of R. In particular, the semi-diameter of the polytope formed by

the 2N most important hyperplanes serves as an upper bound on the length of

straight-line trajectories that stay within the fundamental domain.

12Specifically, we sort the P > N vectors so that the corresponding Λa are ordered from

largest to smallest. We then select vectors in order from this list, omitting any vector that is not

linearly independent of those that have already been selected, and so arrive at a set of N vectors

that can be assembled to form a full-rank square matrix Q.
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3.2.3 The superpotential

In the type IIB orientifolds considered in this work, the superpotential interactions

of the Kähler moduli T i are generated by nonperturbative effects, either from

Euclidean D3-branes on a divisor D in the Calabi-Yau X, or from strong gauge

dynamics, such as gaugino condensation, on a stack of seven-branes on a divisor D

in X. As explained above, we will restrict our attention to Euclidean D3-branes.

Necessary and sufficient conditions for a Euclidean D3-brane contribution to the

superpotential were given in [96]. These conditions were derived in the case of M-

theory compactified on an elliptically fibered Calabi-Yau fourfold Y4, with base B3.

Consider a Euclidean M5-brane wrapping a smooth divisor D̂ ⊂ Y4. Two necessary

conditions for a superpotential contribution are that D̂ is vertical, meaning that

π(D̂) is a divisor of B3, and that D̂ is effective (see e.g. [97] for the definition).

Granting these requirements, a final condition sufficing for a contribution is the

rigidity condition

h•(D̂,OD̂) = (1, 0, 0, 0). (3.9)

We will refer to divisors that obey these conditions as rigid divisors , with the

vertical and effective conditions being implicit.

To translate (3.9) to a condition on smooth divisors D = π(D̂) ⊂ B3, we use

the relation [98]

hi(D̂,OD̂) = hi(D,OD) + hi−1(D,−∆|D), 0 ≤ i ≤ 3, (3.10)

where ha ≡ 0 when a < 0. Here 12∆ =
∑
niΣ

i, where the Σi are the loci

where the fiber degenerates, and the ni denote the type of singularity. Since the

hi−1(D,−∆|D) are nonnegative, a necessary condition on D in order for D̂ to fulfill

the sufficient condition (3.9) is that hi(D,OD) = 0, i = 1, 2. In the special case that
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the degeneration locus of the elliptic fiber does not intersect D—in weak coupling

terms, this means that D does not intersect divisors wrapped by D7-branes—we

have hi−1(D,−∆|D) = 0, so that

h•(D,OD) = (1, 0, 0) (3.11)

actually suffices to ensure a superpotential contribution. In summary, a divisor

D ⊂ B3 that is effective, does not intersect the discriminant locus 12∆, and obeys

the rigidity condition (3.11) supports a Euclidean D3-brane contribution to the

superpotential: its preimage D̂ = π∗(D) is effective, vertical, and obeys (3.9).

We have emphasized the ‘threefold rigidity condition’ (3.11) because it depends

only on the base B3, and so can be assessed directly from the combinatorial data in

the Kreuzer-Skarke database. A more comprehensive analysis, also applicable to

divisors D that intersect ∆, would require information about the elliptic fibration,

which in our framework requires specifying an orientifold of the Calabi-Yau three-

fold X whose image is the non-negatively curved base B3. A systematic treatment

of all Z2 involutions is beyond the scope of this work. We will work with the Kähler

potential K = −2 log
(

1
2
V
)
, where V is the volume of the double-cover Calabi-Yau

manifold. This provides a reasonable proxy for the metric on the Kähler moduli

space of the orientifold, at least in the case of orientifolds that flip a single toric

coordinate xi → −xi. In such a case, we have h1,1
+ = h1,1(X), and we do not ex-

pect the orientifold action to significantly change the intersection ring. Beyond the

effects of orientifolds themselves, it is worth noting that incorporating D7-branes

provides additional freedom to increase the field range R, by factors of the dual

Coxeter numbers of the condensing gauge groups.13

13A string theory embedding of this proposal was considered in [99], where the enhancement

was realized by multiply-wound D7-branes.
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Let us be very clear on this point: an effective divisor D obeying (3.11) that

does not intersect seven-branes (including O7-planes) will yield a Euclidean D3-

brane superpotential term; but because we are working directly with threefolds,

without either orientifolding or taking a weak-coupling limit from a fourfold, the

non-intersection condition is a simplifying assumption that is not verifiable in our

framework. We view this approach as an intermediate step between working only

with the N = 2 data of a threefold, and performing a full N = 1 analysis complete

with explicit orientifolding.

The superpotential that results takes the form

W = W0 +

p∑

α=1

Aα e
−2πqαiT

i

, (3.12)

where W0 is a flux-dependent constant, and Aα are Pfaffians that depend on the

vacuum expectation values of the complex structure moduli. The constant matrix

qαi specifies which Kähler moduli appear in each non-perturbative contribution to

the superpotential; at the level of our analysis each of the p linear combinations

D̄α ≡ qαiD
i corresponds to a rigid divisor. The full supergravity potential is given

by

V = eK
(
DiWDiW − 3|W |2

)
, (3.13)

where Di = ∂i+Ki is the Kähler covariant derivative. In this work, we will assume

that the moduli can be stabilized in a vacuum where the cosmological constant

is small in string units, and that the dynamics of the real-part saxions may be

ignored.14 The effective Lagrangian density for the axions θi is then given by Eq.

3.7, where

Qa
i = 2π

(
qαi

qβi − qγi

)
, (3.14)

14Ignoring the saxions would be untenable in a construction of an inflationary solution, but is

reasonable here because we are simply deriving upper bounds on the geometric diameter.

119



is a P × N matrix, with P = p(p + 1)/2. The last p(p − 1)/2 rows consist of

differences qβi − qγi with β > γ, which result from cross terms in (3.13).

In summary, the axion charge matrix Q, whose rows specify the hyperplanes

that define the fundamental domain, is given by (3.14), where D̄α = qαiD
i, α =

1, . . . , p are p effective divisors of the threefold X that fulfill the rigidity condition

(3.11), and so support Euclidean D3-brane contributions to the superpotential.

We now turn to understanding the impact of the axion charge matrix Q on the

size R of the fundamental domain.

3.2.4 Computing the field range

In §3.2.3 we explained how to obtain the data of the periodic identifications defining

the axion fundamental domain F , which are determined by the particular divisors

D̄α that are rigid and so support Euclidean D3-brane superpotential terms. These

identifications correspond to the hyperplanes in Figure 3.1. We also recalled, in

§3.2.1, how to compute the Kähler metric Kij and to determine the region of the

two-cycle size parameters ti for which the α′ and gs expansions are well-controlled

(the ‘stretched Kähler cone’). This metric corresponds to the ellipse in Figure 3.1.

These data completely specify the geometry of F , or more precisely the possible

geometries of F : the size R of F depends on the Kähler moduli. To determine the

maximal field range in a given theory, we must maximize R subject to the linear

constraints on the ti that define the stretched Kähler cone.

The tree-level metric is a homogeneous function of the ti, and scales with the

overall volume as V−4/3. By using the scaling ti → λti, one finds that the maximal

field range is achieved on the boundary of the stretched Kähler cone. If Mori(X) is
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simplicial, the h1,1 constraints
∫
Ci
J = 1 can be simultaneously fulfilled at the apex

of the stretched Kähler cone, where all of the two-cycle volumes are set to unity

(in units of `s), and the maximal field range is achieved at the apex. However,

in more general cases the point in the stretched Kähler cone giving the largest R

can occur on a wall, but away from the apex. We therefore searched the stretched

Kähler cone numerically to determine the optimal field range. For the purpose of

the search, we retained only h1,1 terms in the potential, taking

V =
h1,1∑

i=1

(
1− cos

(
Qijθj

))
, (3.15)

where Qij is the leading-order15 full rank piece of the full Q. In general there

will be further terms that reduce the size the of the fundamental domain, both

from additional instantons and from cross terms in the supergravity potential, but

because we are quoting an upper bound these can be omitted at this stage.

To search for the maximalR, we computed the four-cycle volumes at a reference

point t0, and then extracted the full rank piece of Q that is leading order at t0.

We then scanned over the stretched Kähler cone for the point tL with the largest

R. For the reference point, we used the apex of the stretched Kähler cone, defined

as the point where the Euclidean norm of the vector (v1, . . . , vNC ) is minimized,

where the va ≡
∫
Ca
J and Ca are the NC generators of the Mori cone. We then

checked that Q at tL is the same as at t0, meaning that the same instantons remain

dominant, and the analysis is self-consistent. In a small fraction of cases we found

that the set of dominant instantons changed during the exploration from t0 to tL,

which we then accounted for in computing the field range.

15After the h1,1 most important terms have been determined, by comparing their prefactors

Λa according to the algorithm given in §3.2.2, the problem becomes purely geometric, and we

can then set all Λa = 1, as we have done in (3.15).

121



3.2.5 Alignment

Many authors have argued that quantum gravity will censor super-Planckian field

displacements, or at least will do so in sufficiently restrictive circumstances. The

large degree of structure imposed on axion theories by all-orders shift symmetries

makes these theories a promising setting for directly quantifying the restrictions,

if any, that descend from quantum gravity. The objective of the present work is to

compute the size16 R of the axion fundamental domain F in an ensemble of string

compactifications.

Once the rigid divisors D̄α ≡ qαiD
i, the Kähler metric Kij, and the stretched

Kähler cone have been determined in a particular theory, the size R of F is com-

pletely specified, and one could mechanically apply the process described in §3.2.4

to compute R in a large number of examples, as we shall do in §3.4. However, it

will be valuable to first explain that a suitable structure in the axion charge matrix

could lead to R � Mpl, even while the eigenvalues of Kij remain � M2
pl: this is

the celebrated phenomenon of alignment, and more precisely of KNP alignment

[44], also known as lattice alignment. Here we will attempt to be very precise

about the notion of lattice alignment in a Calabi-Yau compactification.

Roughly speaking, an axion theory may be said to manifest lattice alignment

when the size of F is larger than it ‘would have been if Q had been trivial,’ i.e. the

notion of alignment is that of an increase in field range resulting from the structure

of the axion charge matrix Q. Heuristically, one might try to define the alignment

16We stress that including a source of monodromy, which we will not do here, may ultimately

allow displacements O(nR), where n ∈ Z is the number of cycles (also known as windings) of

monodromy.
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enhancement17 factor η as

ηnaive
?
=
Ractual

RQ=2π1

. (3.16)

The numerator is well-defined in general, but the axion charge matrix alone is not

invariant under a change of the variables θi, so stating that Q = 2π1 presupposes

a choice of basis. The (physically meaningful) field range R is of course invariant

under the change of variables θi → M i
j θ

j, with M ∈ GL(N,R), but Kij and Q

separately transform.

Why talk about alignment at all, if a precise definition is subtle (though achiev-

able, see below)? One motivation is that it is generally far easier to compute the

classical geometric data determining the metric Kij than it is to determine the

nonperturbative, quantum data of Q, which after all is a matrix of axionic charges

carried by (D-brane) instantons. As such, one may sometimes know Kij without

knowing Q, and it would then be valuable to understand how large an error might

be made by approximating Q ≈ 2π1. In systems of N � 1 axions, including the

ensemble studied here with 2 ≤ N ≤ 100, this error can easily be a factor of order

N , and in theories with special structure [52, 48] (not established to date in string

theory) the error can be exponential in N .

If we were equipped with a canonical choice of basis B, we could define the

denominator in (3.16) by taking the ‘reference’ charge matrix to read Q = 2π1

in the basis B. In other words, the degree of alignment would be dictated by the

extent to which the actual charge matrix Q, expressed in the basis B, differs from

2π1, as quantified by (3.16).

We are not aware of a natural and fully-specified canonical basis. However,

17When η > 1, we say that the theory manifests alignment, and when η < 1 the result may

be termed anti-alignment.
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a natural but (in general) overcomplete set consists of the minimal generators of

Eff(X), the cone of effective divisors in X. The number NEff of minimal generators

EA, A = 1, . . . , NEff of Eff(X) often exceeds h1,1, and there is then no unique choice

of a basis for H1,1(X): there are finitely many choices.

Assume for the moment that NEff = h1,1, so that the generators EA of Eff(X)

define a unique basis B. If each of the EA were rigid and supported a Euclidean D3-

brane contribution to the superpotential, we would have Q = 2π1 in the basis B

defined by the EA. Moreover, because every effective divisor is a linear combination

of the EA with nonnegative integer coefficients, the Euclidean D3-branes supported

on the EA correspond to the most important instanton contributions in the theory:

any additional rigid divisors will have equal or larger action. This simple theory,

in which the minimal generators EA of Eff(X) are rigid, serves as a reference case

that we define to have trivial alignment (η = 1).

We now propose that a natural definition of a trivial charge matrix Q is the

matrix whose rows are the minimal generators EA of Eff(X), even when NEff >

h1,1. In other words, a well-defined null hypothesis for examining alignment is

the assumption that each of the EA gives an independent contribution to the non-

perturbative superpotential. We may then define the enhancement factor η as

η =
Ractual

REff(X)

, (3.17)

where Ractual is computed using the Q generated by the rigid divisors D̄α, and

REff(X) is computed using the (by definition) trivial Q generated by assuming

that the minimal effective divisors EA are rigid. For both the numerator and the

denominator only the h1,1 most important rows of Q are included, as explained in

§3.2.2.

Although we have now given a precise definition of the enhancement η resulting
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from lattice alignment, it remains to determine whether η can be large in actual

string compactifications. We therefore turn to determining the numbers qαi in an

ensemble of Calabi-Yau geometries.

3.3 The Topology of Calabi-Yau Hypersurfaces

Calabi-Yau hypersurfaces in toric fourfolds provide a large ensemble of Calabi-

Yau threefolds, and allow an efficient combinatorial approach to determining the

geometry [100, 85]. We refer the reader to [101], among many others, for an

introduction to the subject.

The combinatorial data needed to construct a Calabi-Yau consists of a dual

pair of reflexive polytopes ∆ and ∆◦, and a triangulation of ∆◦ that defines a fan

F . F then defines a toric variety V , and the anticanonical hypersurface −K in V

is a Calabi-Yau threefold X. The triangulation of ∆◦ must be star with respect to

the origin, meaning that every simplex must contain the origin, in order to define

a fan. In addition, the triangulation must be fine and regular, in order to ensure

that the hypersurface is generic and projective.18 Because a generic hypersurface

misses any given point of V , we can allow V to have pointlike singularities without

making a generic threefold singular. As a result, points interior to facets can be

ignored when triangulating ∆◦.

We have made use of several publicly-available software packages to obtain

and analyze triangulations. The algebraic software Sage [103] provides a useful

interface for working with toric varieties. The triangulations can be performed

in TOPCOM [104], which has been integrated into Sage. In addition, we used the

18See [102] for a discussion of these points.
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program PALP [105] for calculations involving reflexive polytopes, and its Mori

extension [106] is very powerful in computing relevant topological data at small h1,1.

Most triangulation algorithms are not specialized to compute star triangulations;

instead, all triangulations are computed, and then the star ones are selected. When

one is mostly concerned with hypersurfaces with small h1,1, whose polytopes are

readily triangulated in TOPCOM, the cost of computing all triangulations is generally

not prohibitive. However, since we will describe some preliminary results at large

h1,1, we will outline how one can begin to probe these geometries. For h1,1 . 30,

one can use the algorithms given in [107, 102] to get all the triangulations of the

polytope by gluing together the triangulations of individual facets, but this quickly

becomes expensive as h1,1 grows. However, even when computing all triangulations

in this way is impractical, it is possible to obtain a single triangulation very quickly.

The method was implicit in [100], and was made very clear in [108]: one simply

computes a regular and fine (not star) triangulation of the polytope, and then

deletes the lines in the strict interior of the polytope. This induces a regular

triangulation of the facets, and then a star triangulation is constructed by drawing

a line from the origin to each point in the polytope. Using this method it is easy to

compute a single triangulation of any polytope in the Kreuzer-Skarke database; for

instance, a triangulation of a polytope whose hypersurface X has h1,1(X) = 400

takes about ten seconds on a typical laptop.

The tree-level Kähler potential depends only on the classical volume, and can

be computed easily via toric methods, as one only needs the intersection ring and

the Mori cone Mori(X). We will consider only favorable hypersurfaces X, i.e. those

in which all of the divisors of the Calabi-Yau are inherited from divisors of V ; in

such cases we have Mori(X) ⊂ Mori(V ). Computing Mori(X) from toric data

is challenging, so we take the conservative approach of imposing the Mori cone
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conditions inherited from V .19

Determining the nonperturbative superpotential is more involved, as we need to

know the Hodge numbers of divisors in the hypersurface. In favorable Calabi-Yau

threefolds, the vanishing loci of the individual homogeneous coordinates, corre-

sponding to rays in the fan, furnish a generating set of h1,1 + 4 divisors Ďa in

the Calabi-Yau. To search for a set of h1,1 independent rigid divisors we consider

the cohomology of these generators and their linear combinations. Recall that

the number of independent homology classes of divisors is counted by h1,1(X,Z).

Given a choice of a basis {Di} of divisors, the task at hand is to determine whether

a divisor D =
∑

i aiD
i is rigid. To do so, we need to specify what values the ai

can take. In some cases one can choose a basis such that all holomorphic hyper-

surfaces can be written as sums of the Di with non-negative integer coefficients,

and the problem reduces to scanning over an (N)h
1,1

lattice. This happens only

when Eff(X) is simplicial.20 The effective cone is not simplicial in general, so the

ranges of the coefficients ai are not always obvious. However, one can consider non-

negative linear combinations of the generators of Eff(X), which will by definition

generate all effective divisors.

The Hodge numbers of the toric divisors Ďa, which correspond to rays in the fan

F and therefore to points in ∆◦, can be computed via polytope data alone [109],

in the same fashion that the Hodge numbers of the Calabi-Yau are computed

19Note that Mori(X) can be a proper subset of Mori(V ). In particular, if a curve C is in V

but not in X, the sigma model expansion on X is unaffected by taking the volume of C to zero.
20The divisors whose rigidity properties we need to examine are all the divisors D that are

effective in X. Because we have selected only favorable hypersurfaces X, all divisors of X are

inherited from divisors of V . In this work we will consider only effective divisors in X that are

inherited from effective divisors in V , but more general effective divisors of X are possible. We

thank M. Stillman for explaining this point to us.
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in [100, 110]. We provide a brief summary of the results. As mentioned above, the

polytopes ∆ and ∆◦ are dual, so there is a one-to-one relation between faces of

dimension k, Θ◦[k], of ∆◦, and faces of dimension 3− k, Θ[3−k], of ∆. The divisors

Da can be organized according to their corresponding points in ∆◦. Let l∗(Θ)

denote the number of interior points of a face Θ; then:

• For divisors Da that correspond to vertices Θ◦[0] of ∆◦, we have h•(D,OD) =

(1, 0, n), where n = l∗
(
Θ[3]
)

and Θ[3] is the three-dimensional face dual to

Θ◦[0].

• For divisors Da that correspond to points va interior to one-dimensional faces

Θ◦[1] of ∆◦, we have h•(D,OD) = (1, n, 0), where n = l∗
(
Θ[2]
)

and Θ[2] is the

two-dimensional face dual to Θ◦[1].

• For divisors Da that correspond to points va that are interior to two-

dimensional faces Θ◦[2] of ∆◦, we have h•(D,OD) = (n, 0, 0), where n =

l∗
(
Θ[1]
)

+ 1 and Θ[1] is the one-dimensional face dual to Θ◦[2]. If n > 1 then

these divisors are reducible.

These facts make computing the Hodge numbers of toric divisors Ďa a simple

combinatorial process. However, it is often the case that there are fewer than

h1,1 linearly-independent rigid toric divisors, and therefore to search for instantons

leading to a full rank Q one must consider linear combinations of toric divisors

that are not linearly equivalent to a toric divisor. Because such combinations do

not simply correspond to rays in the fan, obtaining their Hodge diamonds requires

more effort. The Koszul sequence allows one to calculate this data, and has been

implemented in the program cohomcalg [111, 112], which we used extensively. We

refer the interested reader to [111, 112] for details.
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h1,1(X) 2 3 4
Number of polytopes 36 244 1197
Number of favorable polytopes 36 243 1185
Number of favorable triangulations 48 525 5330
Number of full-rank triangulations 24 262 4104
Full-rank with only smooth divisors 9 199 3214

Table 3.1: Results of the scan over reflexive polytopes with h1,1(X) ≤ 4.

It is worth remarking that a linear combination of toric divisors that is rigid

and irreducible is also necessarily singular.21 Consider a divisor D that is linearly

equivalent to Dx+Dy, where Dx and Dy are toric divisors defined by the vanishing

of toric coordinates x and y, respectively. In order for D to be rigid we need

h2(D) = 0, which implies that h2(Dx) = h2(Dy) = 0, as taking a linear combination

will not affect the presence of these deformations. Then the only polynomial one

can write to define the divisor is xy = 0. This is singular along the intersection

of the divisors x = y = 0. If the divisor is irreducible then Dx and Dy must

have non-zero intersection, and therefore the point x = y = 0 is contained in the

space, and D is necessarily singular. We find that of the 4390 triangulations in our

ensemble that have a full-rank Q, 3422 remain full rank when only smooth toric

divisors are included.

3.4 A Complete Scan at Small h1,1

Equipped with the results of §3.2 and §3.3, we computed the relevant topological

data of all Calabi-Yau hypersurfaces in the Kreuzer-Skarke database with 2 ≤

h1,1 ≤ 4. We searched for divisors D that are rigid linear combinations of up to

21We thank M. Stillman and B. Sung for helpful explanations of this point.
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three toric divisors Ď,

D = naĎ
a , (3.18)

where na are nonnegative integers obeying max
a

na = 3 and
∑

a na ≤ 3. We

computed the topology of individual toric divisors via polytope data, and that of

linear combinations with cohomcalg. At h1,1 = 2, 3, 4 we found that 24, 262, and

4104 triangulations, respectively, have full-rank q matrices resulting from Euclidean

D3-branes. The results are summarized in Table 3.1.22

The combined field space radii for h1,1 = 2, 3, 4 are plotted in Figure 3.2. We

find the maximum to be R ≈ 0.5Mpl, in a case with h1,1 = 3, but in this example

the overall volume of the Calabi-Yau is close to unity, and so the compactification

is arguably not within the regime of perturbative control. The next largest is an

example with h1,1 = 4 in which R ≈ 0.3Mpl, and where the overall volume is ≈ 20.

This example is much better controlled, and therefore gives the upper bound that

we report.

In Figure 3.3, we show a histogram of enhancements from lattice alignment,

η, for the 4390 geometries with h1,1 = 2, 3, and 4. As seen in the inset, there

is a spike at η = 1 corresponding to a large fraction of geometries—2180 out of

4390—that experience no enhancement from Q. This occurs when the minimal

generators of Eff(X) are rigid and thus the leading order Q is trivial. In addition,

many of the non-trivial Q-matrices actually decrease the geometric field range R.

We find a positive enhancement in 494 examples.

22It sometimes happens that two isomorphic hypersurfaces are realized as hypersurfaces in dif-

ferent toric varieties corresponding to different polytopes. Since we are simply performing a scan

over the geometries, we will not attempt to distinguish whether two Calabi-Yau hypersurfaces

are different but will instead only refer to individual triangulations.
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Figure 3.2: Histogram of geometric field ranges R, in units of the reduced Planck
mass Mpl, for h1,1 ≤ 4. The inset shows the tail of the distribution.

In this ensemble, the maximum enhancement from a nontrivial charge matrix

is a factor of η = 2.6 in a threefold with h1,1 = 4. The vertices of the polytope ∆◦

are given by

di =
{

(1,−1, 0, 0), (−1, 4,−1,−1), (−1,−1, 0, 0), (−1,−1, 1, 0), (3.19)

(−1,−1, 0, 1), (−1, 2, 0, 0), (−1,−1, 1, 1)
}
.

Here we have

Q = 2π




1 0 0 0

−1 −1 1 1

0 0 1 0

0 0 0 1



. (3.20)

This occurs in an example where the eigenvalues of Kij are quite small, and the

geometric field range increases from 0.03Mpl to only about 0.079Mpl. In this ex-

ample not all of the rigid divisors are smooth. The next largest enhancement is

η = 2.55, which increases the geometric field range from R = .05 to R = 0.12.
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Figure 3.3: Histogram of enhancements η for h1,1 = 2, 3, 4. Inset demonstrates the
large peak at η = 1, i.e. many geometries see no enhancement in size,
or a reduction, from a non-trivial Q.

The vertices of the polytope ∆◦ are given by

di =
{

(−1, 2,−1,−1), (−1,−1, 2, 1), (−1,−1, 1, 1), (1, 0,−1,−1), (3.21)

(−1,−1, 1, 2), (0,−1, 1, 1), (2, 1,−2,−2)
}
,

and Q is given by

Q = 2π




1 0 0 0

0 1 0 0

0 0 1 0

2 2 1 −1



. (3.22)

In this example all of the rigid divisors are smooth.

Although the scan at small h1,1 did not yield a geometry that allows a para-

metrically large fundamental domain, some of the examples exhibit features that

could be interesting for inflationary model building. Consider, for instance, the

Calabi-Yau hypersurface in the toric variety (P1)4. The volume is

V = 2 (t1t2t3 + t1t2t4 + t2t3t4 + t1t3t4) , (3.23)
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and the Mori cone conditions are simply ti > 0, i = 1, . . . , 4. In this geometry, one

can make the overall volume arbitrarily large while holding the largest eigenvalue

of K fixed, by taking t2 = t3 = t4 ≡ t0 for constant t0, and letting t1 ≡ t � 1.

The largest eigenvalue of K is then 1/(144t40)M2
pl. This is an appealing feature, as

suitably scaling up the volume can provide protection against some perturbative

and nonperturbative corrections, while keeping the largest eigenvalue fixed at a

sizable value. For instance, by taking t → ∞ and setting t0 = 0.2, the largest

eigenvalue of K becomes 4.3M2
pl. However, there is a23 divisor Ds with volume

τs = 6t20 ≈ 0.24. If there are higher-order instanton contributions24 ∼ e−kτs for

k > 1, these are not necessarily negligible, e.g. for k = 2 their importance relative

to the leading term is e−2π(0.48)/e−2π(0.24) ∼ 0.22.

3.5 Probing Large h1,1

Our analysis thus far has been restricted to small Hodge numbers, h1,1 ≤ 4, but

arguments in effective field theory and in random matrix theory suggest that new

phenomena will appear in compactifications with h1,1 � 1 [46, 113]. A com-

parative analysis of these proposals for alignment, and of the requisite degree of

fine-tuning at the level of effective field theory, will appear in [113]; here we will

briefly summarize the main ideas in order to provide orientation for our search at

23The remaining three divisors have large volumes for t→∞, and their contributions to the

superpotential can be neglected.
24It is not clear that higher-order contributions from Euclidean D3-branes without flux will be

nonvanishing, because h0(kD) = h2(kD) = k. In fact, in this example are no rigid divisors at all:

all of the toric divisors pulled back to the Calabi-Yau hypersurface have the Hodge numbers of

K3 surfaces. A superpotential might still be generated if worldvolume fluxes lift the zero modes

corresponding to h2(D) deformations.
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large h1,1.

An influential early suggestion for alignment of N � 1 axions was the N-flation

proposal [114], where it was observed that the field range of a simple25 system

of N axions is the Pythagorean sum of the ranges of the individual axions, and

schematically R ∝ N1/2. More recent works have identified stronger enhancements

at large N . Multi-axion alignment, the N -dimensional generalization of KNP

alignment, yields exponentially large ranges, while plausibly requiring severe fine-

tuning [52]. Finally, in [46] it was observed that generic charge matrices could give

‘spontaneous’ field range enhancements as large as N3/2 from a combination of

lattice and kinetic alignment. More precisely, the finding of [46] is that for charge

matrices Q whose entries are well-approximated as independent and identically

distributed (i.i.d.) variables, and are not too sparse, the distribution of field ranges

takes the form

R = Npζ , (3.24)

where 1 . p . 3/2 depends on the sparsity of Q. Here ζ is a positive stochastic

variable, varying from one realization of Q to another, that has unit median and

a heavy tail toward large values: in particular, the mean obeys 〈ζ〉 � 1. The

distribution of ζ is computable in special cases. When the entries of Q are such

that QQ> is a Wishart matrix W , one finds ζ ≈ λ1(W)−1/2, with λ1(W) the

smallest eigenvalue of W . Because the probability density function of λ1(W) has

support near λ1 = 0, ζ has a tail toward large positive values. In turn, the range

R has a heavy tail, and one expects to find, after a modest number of independent

trials, a range R that exceeds the median value Rmed by orders of magnitude.

Both the engineered N -dimensional alignment of [52], and the spontaneous

25The simplifying assumption is that Q = 2π1 in a basis in which Kij is diagonal. This does

not hold in generic examples, and in particular is violated in every geometry in our ensemble.
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alignment of [46], provide field-theoretic mechanisms for parametrically large field

ranges. However, it is clearly necessary to test these ideas in actual string com-

pactifications, in order to understand whether quantum gravity indeed allows these

effective theories, and so permits field ranges that are very large in Planck units.

To begin exploring this point, we will examine a number of Calabi-Yau hypersur-

faces, with h1,1 ∈ {50, 60, 70, 80, 90, 100}. More systematic results will appear in

[115].

3.5.1 Field ranges and volumes

For ten geometries each at h1,1 ∈ {50, 60, 70, 80, 90, 100}, we computed the relevant

topological and metric data and bounded the geometric field range R. Computing

the topology of nontrivial linear combinations of toric divisors is computationally

expensive at large h1,1, so we only searched for rigid divisors among the toric

divisors themselves. In many cases the toric divisors suffice to lift all flat directions,

and in such cases we bounded the field range. At large h1,1, the vertex enumeration

problem is computationally taxing and we used alternative methods to obtain the

field range.

We may always trivialize 2N of the hyperplane constraints via the field trans-

formation

θi =
(
Q−1

)i
j
Φj. (3.25)

If P = N , this maps the fundamental domain F into the hypercube of side length

2π. For P > N , the 2P hyperplane constraints

−π ≤ Qa
i

(
Q−1

)i
j
Φj ≤ π (3.26)

restrict F to a hypercube subject to 2(P −N) hyperplane ‘cuts.’ In the Φi basis,
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distance in field space in Planck units is measured with respect to the metric

Ξ =
(
Q−1

)>·K·Q−1, (3.27)

whose maximum eigenvalue we denote ξ2
N . If we temporarily ignore the additional

constraints (3.26), computing R via (3.8) involves evaluating the Ξ-norm of 2N−1

vertices and is thus prohibitively expensive at large N . However, we can always

bound the geometric field range by

R ≤ Rmax = π
√
NξNMpl . (3.28)

At large N , eigenvector delocalization generally ensures that the ellipsoid’s prin-

cipal axes are nearly aligned with the diagonals of the hypercube, so that (3.28)

is often nearly saturated. Upon including the additional 2(P − N) constraints

(3.26), the field range will be reduced by the maximally constraining cut, as de-

tailed in [46]. Because we always work with the full-rank square matrix Qij ⊂ Qa
i,

we approximate the field range using Eq. 3.28.

In all cases we find R � Mpl. The mean volume of the Calabi-Yau at the

apex of the stretched Kähler cone, as a function of h1,1, is plotted in Figure 3.4,

and the mean value of ξN as a function of h1,1 is plotted in Figure 3.5. We also

show qN , the square root of the largest eigenvalue of
(
QQ>

)−1
in this basis, in

Figure 3.6. We find the largest enhancement from lattice alignment occurs at

h1,1 = 100, with ηmax = 7.86. We note that while the effect of alignment can

be significant for h1,1 � 1, in our examples this is dwarfed by the growth of the

volume with h1,1. As h1,1 grows, the number of holomorphic curves grows as well,

giving more inequalities on the Kähler parameters to stay within the Kähler cone.

By demanding that we remain in a regime of control, where all curve volumes are

greater than one, the volume is forced to grow quite large (cf. [116, 117]).
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Figure 3.4: log10 of the mean volumes V as a function of h1,1.
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Figure 3.5: Average log10 ξN vs. h1,1.

These characteristics are in stark contrast with those of the compactification

studied by Denef et al. in [95], where h1,1 = 51, but the volume was stabilized at

V ∼ 50. In [95] the Kähler moduli were stabilized at a point where the smallest

curve volumes were 0.2, but even after scaling up the curve volumes to be ≥ 1, one

finds V ∼ 250, which is vastly smaller than the volumes we find in hypersurfaces

with comparable h1,1. A main reason that the volume can be kept small in [95] is

that the moduli space is very symmetric. The Calabi-Yau is constructed by taking

identical toric patches and gluing them together, so the divisor and curve structure

is simply repeated. The result is that the overall volume of the Calabi-Yau does

not increase dangerously with the curve volumes. In the two-parameter model
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Figure 3.6: Average log10 qN vs. h1,1.

of [95], denoting the volumes of the two classes of curves as s and u, the overall

volume takes the form V = s3 + 24s2u+ 96su2 + 128u3, which is simple due to the

symmetric intersection structure.

3.5.2 The structure of Q

We have seen that, although the largest eigenvalue
(
QQ>

)−1
was often quite large,

the field range was still small. Writing Q as

Q = 2π1+ ∆Q , (3.29)

we expect (cf. the analysis in [46, 113]) that if the entries of ∆Q are well-

approximated as i.i.d. stochastic variables, and if these entries are not too sparse,26

then R should manifest a large degree of enhancement from alignment. In the ge-

ometries we examined, Q is highly structured, and contains an identity matrix of

size at least h1,1− 1; the remainder ∆Q is then extremely sparse.27 We found that

26Concretely, if e.g. 5% of the entries of a 100 × 100 matrix ∆Q are nonzero, the random

matrix analysis yields a heavy tail toward large R.
27Between 1% to 7% of the entries in the large h1,1 ensemble are populated, but the nonzero

off-diagonal entries are restricted to a few rows and columns.
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(
QQ>

)−1
can in fact have a very large eigenvalue, but this is only necessary, not

sufficient, for a large enhancement of the field range. Indeed, we should interpret

qN as the maximum possible enhancement from lattice alignment. The largest

enhancement occurs when the largest-eigenvalue eigenvectors of the Kähler metric

Kij and of
(
QQ>

)−1
are parallel, such that ξN = fNqN , where f 2

N is the largest

eigenvalue of Kij. If these eigenvectors are misaligned, the enhancement occurs

in a different direction in field space—one that is irrelevant to the semi-diameter

R—and can compress the polytope, ultimately diminishing the field range.

Let us briefly discuss why Q so consistently contains a large identity matrix.

First consider a Calabi-Yau with large h1,1 and small h2,1. Here the large number

of rigid divisors can be understood as a consequence of mirror symmetry. If h2,1 is

small, then the number of points in the dual polytope ∆ is small. Recall that the

Hodge numbers of the toric divisors are computed by counting lattice points interior

to faces of ∆, so as ∆ gets smaller the number of points interior to faces decreases,

so more of the toric divisors have a better chance of becoming rigid.28 For instance,

consider the hypersurfaces in the Kreuzer-Skarke database with h1,1 = 404 and

h2,1 = 14. There are six lattice polytopes corresponding to these Hodge numbers,

and in all six at least 402 of the toric divisors are rigid.

On the other hand, this argument does not apply when both h1,1 and h2,1 are

large. For example, we can consider a hypersurface with h1,1 = h2,1 = 100, whose

corresponding ∆◦ polytope has vertices

di =
{

(1,−1,−1,−1), (−1,−1,−1,−1), (−1,−1, 6,−1), (−1, 2,−1,−1), (3.30)

(−1,−1, 6, 2), (−1,−1, 4, 5), (−1, 2,−1, 0), (−1,−1,−1, 11), (−1,−1, 1, 9)
}
.

Here 98 of the 104 toric divisors have h•(D,OD) = (1, 0, 0), even though the dual

28We thank Andreas Braun for inspiration on this point.
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polytope has 134 points, only 8 of which are vertices. Therefore most of the dual

cones have no interior points, and the non-vertex points are interior to only a few

cones. This seems to be a consequence of the shape of ∆, and is likely related to

the requirement that the origin is the only interior point of ∆: as the number of

points included in the polytope grows, the shape must be more and more skewed.

In summary, we find it reasonable to conjecture that in many geometries with large

h1,1, Q will have a large-dimensional identity block, which does not contribute to

lattice alignment.

3.6 Conclusions

In this work we have initiated a systematic analysis of axion field ranges in type

IIB compactifications on Calabi-Yau hypersurfaces in toric varieties. For axions

descending from the Ramond-Ramond four-form C4 in the 4390 geometries that

we considered, we found a maximum field range of Rmax = 0.3Mpl. The largest

enhancement of R due to lattice (KNP) alignment in our ensemble was a factor

2.6, in an example with R � Mpl. The numerical value of Rmax should not be

overinterpreted, because it can be made smaller or larger by imposing a more or

less stringent requirement for control of the α′ expansion; the quoted value results

from the requirement that the smallest curve has volume (2π)2α′. What is clear

is that in our examples, with our assumptions, the geometric field range does not

parametrically exceed the Planck mass.

To assess the implications of these results, let us reexamine our assumptions

and ask which of them might be relaxed. First of all, it is plausible that in some

geometries, one or more curves could be taken to have volume ti < 1, while keeping
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other volumes large, without invalidating the sigma model expansion. In this work

we have followed a conservative, model-independent approach, but a more com-

plete understanding of perturbative and nonperturbative corrections could allow

for much larger field ranges.

Second, we considered axion potentials generated by Euclidean D3-branes

wrapping divisors D fulfilling the rigidity condition h•(D,OD) = (1, 0, 0). That is,

we required that D be a rigid divisor of a smooth threefold, and did not incorporate

the effects of orientifolding, worldvolume fluxes, bulk fluxes, and spacetime-filling

seven-branes, which could alter the set of instanton contributions to the super-

potential. In particular, strong gauge dynamics on seven-branes, such as gaugino

condensation on a stack of D7-branes coinciding with an O7-plane, provides a

plausible mechanism for allowing larger field ranges, and more significant align-

ment, than we found in this work. The axion periodicity induced by such branes

is increased by a factor of the dual Coxeter number c2(G) of the condensing gauge

group G, and many proposals for lattice alignment in string theory invoke stacks

of D7-branes with c2 > 1. Systematically investigating such constructions would

be valuable.

Third, we only examined C4 axions in compactifications of type IIB string

theory on Calabi-Yau hypersurfaces X in toric varieties V , and we insisted that

X be favorable, meaning that all divisors of X are inherited from V . Each of

these restrictions merits further investigation. Two-form axions have a distinct

parametric dependence on Kähler moduli, possibly allowing larger field ranges

while maintaining control of the α′ expansion [118, 117]. We have no evidence

to guide speculation about axion field ranges in threefolds that are not favorable

hypersurfaces.
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Finally, our systematic investigation occurred at small Hodge numbers, h1,1 ≤

4, and we studied only a handful of examples with h1,1 up to 100. An analysis based

on random matrix models, with parameters calibrated by the examples found here,

suggests that the maximum field range at moderate h1,1 could be large. Whether

this can occur in actual compactifications depends on a competition between a

tendency for the overall volume V to grow with h1,1, which suppresses the entries

of the Kähler metric, and the fact that larger axion charge matrices Q can manifest

a greater degree of lattice alignment. We observed a tendency for Q to be close

to the identity in cases with h1,1 � 1, which precludes large enhancements from

alignment, due to the prevalence of rigid toric divisors in these examples.

In summary, in compactifications of type IIB string theory on Calabi-Yau hy-

persurfaces with h1,1 ≤ 4, Euclidean D3-branes wrapping divisors D that do not

intersect seven-branes give rise to a potential for C4 axions that allows for a small

degree of lattice alignment, which is insufficient to allow a super-Planckian geo-

metric field range, in the absence of monodromy, in a parameter regime where all

curves have volume ≥ (2π)2α′. Understanding the geometry of axion field space

in far more general compactifications is an important problem for the future.
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CHAPTER 4

ON CHIRAL MESONS IN ADS/CFT

Abstract1

We analyze the spectra of non-chiral and chiral bifundamental mesons arising on

intersecting D7-branes in AdS5× S5. In the absence of magnetic flux on the curve

of intersection, the spectrum is non-chiral, and the dual gauge theory is conformal

in the quenched/probe approximation. For this case we calculate the dimensions

of the bifundamental mesonic operators. We then consider magnetization of the

D7-branes, which deforms the dual theory by an irrelevant operator and renders

the mesons chiral. The magnetic flux spoils the conformality of the dual the-

ory, and induces a D3-brane charge that becomes large in the ultraviolet, where

the non-normalizable bifundamental modes are rapidly divergent. An ultraviolet

completion is therefore necessary to calculate the correlation functions in the chi-

ral case. On the other hand, the normalizable modes are very well localized in

the infrared, leading to new possibilities for local model-building on intersecting

D7-branes in warped geometries.

1This chapter is based on L. McAllister, P. McGuirk and J. Stout, “On Chiral Mesons in

AdS/CFT,” JHEP 02 (2014) 018, [1311.2577].

It is a pleasure to thank F. Marchesano and G. Shiu for useful discussions of related topics. This

work was supported by the NSF under grant PHY-0757868.

143

http://dx.doi.org/10.1007/JHEP02(2014)018
http://arxiv.org/abs/1311.2577


The AdS/CFT correspondence [120, 121, 122, 123] is a powerful duality relating

conformal field theories (CFTs) in d dimensions to gravitational theories on (d+ 1)-

dimensional anti-de Sitter (AdS) spaces. The extension of the duality to include

global flavor groups has been well-studied (see [124, 125] for some foundational

work) and is well-motivated: it brings the theory closer to phenomenologically

viable models, with mesonic bound states serving as prototypes for visible-sector

fields. However, to find more realistic models, the flavor group must be extended

to a product group, and the resulting mesonic spectrum must be made chiral. Such

extensions have been relatively unexplored, and in the present work we report on

progress in this direction.

When the gravity side of the duality is a type II string theory, flavor groups

are added through the introduction of higher-dimensional Dp-branes that fill AdS

and wrap compact cycles [125].2 The simplest such example is the addition of F

D7-branes to type IIB string theory on AdS5 × S5, where we take the D7-branes

to fill AdS5 and wrap an S3 of the S5. The geometry is supported by N units

of D3-brane charge and, without the D7-branes, is dual to N = 4 SU(N) super

Yang-Mills. Adding the D7-branes deforms the dual theory to an N = 2 gauge

theory with a U(F ) flavor group, containing a massless adjoint hypermultiplet

as well as a massless quark hypermultiplet that transforms in the bifundamental

of SU(N) × U(F ). The brane construction makes this clear, as the open string

excitations of the D7-branes give rise to a U(F ) gauge theory, and the infinite D7-

brane worldvolume transverse to the D3-branes results in a vanishing 4d coupling

for this theory. Open strings stretching between the D7-branes and the D3-branes

have the same charges as the quarks in the dual theory. We will work in the

2The higher-dimensional D-brane need not fill all of AdS; if the brane is characterized by a

minimum distance away from the origin of AdS then the dual quarks are massive [126].
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standard decoupling limit [120] in which one first takes

gs → 0, N →∞, λt ≡ 4πgsN fixed, (4.1)

and then sends the ’t Hooft coupling λt to infinity. In this limit, the D3-branes are

replaced by their near-horizon backreaction, so that the only open strings are those

stretching among the D7-branes. These transform in the adjoint representation of

U(F ) and are dual to mesonic operators in the gauge theory.

D7-branes are codimension-two objects, and so their backreaction cannot gen-

erally be neglected. Correspondingly, the presence of quarks in the dual gauge

theory alters the renormalization group flow, which was trivial before the intro-

duction of flavor. Fortunately, the decoupling limit (4.1) simplifies the situation:

if we hold fixed the number of flavors, F , while taking the number of colors to be

large, then one can consistently neglect the running of quarks in loops. In the dual

geometry, many aspects of the D7-brane backreaction scale as F/N and so also

vanish in this limit (see [127] and references therein). The flavored gauge theory

does have a Landau pole, and so the influence of the quarks on the renormalization

group flow cannot be neglected forever, but the scale at which the Landau pole

appears grows exponentially with N/F . This so-called quenched approximation,

in which the running of quarks in loops is neglected, is equivalent to the limit in

which the D7-branes are taken as probes of the dual geometry. In what follows,

we will take this approximation without further apology.

The introduction of flavor branes opens up significant possibilities for model-

building. Dimensional reduction along the angular directions provides a frame-

work for Randall-Sundrum constructions [128, 129, 130, 131] wherein the Stan-

dard Model fields propagating in the bulk [132, 133, 134, 135, 136] descend from

the D7-brane fluctuations as in [137]. Upon compactification, the flavor group
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on the D7-branes becomes a prototype for the Standard Model gauge group. Of

course, the Standard Model gauge group is a product; a corresponding product

flavor group results from introducing two separate stacks of D7-branes. The bifun-

damental fields are then open strings stretching between the stacks, and in order

for some of the bifundamentals to be massless, the stacks must intersect.

A further challenge is that the Standard Model spectrum is chiral. In the

class of constructions considered here, chirality in the 4d theory can be induced

by introducing magnetic flux on the (noncompact) curve where the D7-branes

intersect. Upon compactification to 4d, the zero modes of the Dirac operator

acquire a net chirality set by the amount of quantized magnetic flux.

Yet another difficulty in embedding fully realistic theories into warped back-

grounds of string theory is the fact that the Standard Model is not a supersymmet-

ric theory. In geometries that are characterized by a finite infrared scale, such as

the well-studied Klebanov-Strassler solution [138], supersymmetry can be broken in

a controllable way by the addition of a small number of anti-D3-branes [139]. The

resulting geometry [140, 141, 142, 143, 144, 145, 146, 147, 148] corresponds to the

spontaneous breaking of supersymmetry in the dual field theory [40].3 An alterna-

tive is to consider “gluing” the warped geometry to a compact space that does not

preserve supersymmetry. The dual field theory is then a non-supersymmetric the-

ory with emergent supersymmetry, as in [149, 150]. Although non-supersymmetric

constructions are difficult to control, the filtering provided by the renormalization

group means that the influence of the non-supersymmetric bulk, including the ef-

fects of moduli stabilization, can be systematically parameterized and incorporated

along the lines of [151, 64]. No matter which supersymmetry-breaking mechanism

3Some authors have interpreted the singularities of the anti-D3-brane geometry described

in [140] as implying that the supersymmetry-breaking state does not exist.
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is used,4 the resulting geometry is considerably more complex after supersymme-

try is broken. We will therefore, in this initial work, focus on supersymmetric

D7-brane probes of supersymmetric backgrounds.5

In this note, we will consider the non-chiral and chiral bifundamental modes

existing at the intersections of probe D7-branes in AdS5× S5. We build up to the

chiral, warped case through the simpler example of intersecting D7-branes in flat

space (§4.1). Although the flat-space analysis of §4.1 has appeared elsewhere in

the literature (see e.g. [163, 164, 165, 166]), a detailed treatment is useful here,

because the equations of motion are readily generalized from the simple flat-space

case to the AdS5 × S5 configuration of primary interest.

The organization of this note is as follows. In §4.1 we begin with the simple

case of intersecting D7-branes in a flat space background. In §4.1.2 we compute

the mass spectrum of the bifundamental modes for the case of vanishing magnetic

flux, where the spectrum is non-chiral. Then, in §4.1.3 we calculate the chiral mass

spectrum in a configuration with magnetic flux. Next, in §4.2 we consider unmag-

netized intersecting D7-branes in AdS5 × S5, computing the scaling dimensions of

vector-like bifundamental mesonic operators. Finally, in §4.3 we add the simplest

possible magnetization to the intersecting D7-branes in AdS5×S5, and show that

this magnetization makes the calculation of correlation functions untrustworthy

without an ultraviolet completion. Concluding remarks are given in §4.4, while

our conventions and a few technical details appear in the appendices.

4See [152, 153] for other interesting proposals.
5See, for example, [154, 155, 156, 157, 158, 159, 160, 161, 162] for analyses of probe D7-branes

in non-supersymmetric backgrounds from the worldvolume and/or worldsheet points of view.
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4.1 D7-branes in Flat Space

As a warm-up to the case of strong warping, we will first review the case of inter-

secting D7-branes probing unwarped flat space, R9,1 = R3,1 × C3.

4.1.1 The D7-brane action

As discussed in the introduction, we focus on supersymmetric configurations, and

so we take a flat D7-brane probe, which preserves half of the supercharges of flat

space. By a choice of orientation and complex structure, the D7-brane worldvolume

W can be taken to be R3,1×C2. The light bosonic degrees of freedom resulting from

the open-string excitations of the D7-brane consist of the transverse deformations

Φi and a U(1) vector potential A1. We use this potential to construct a Lorentz-

invariant6 and supersymmetric magnetic flux F2 = dA1; such a flux satisfies the

self-duality condition [167, 168, 169]

F2 = ∗̃4F2, (4.2)

where ∗̃4 is the Hodge star built from the metric on C2. The condition (4.2) is

equivalent to F2 being (1, 1) and primitive with respect to the Kähler form induced

on C2.

To leading order in the α′ expansion, the action of the D7-brane in this back-

ground is [170, 171, 172]

SD7 =− 1

g2
8

∫

W
d8ξα

√
−ĝ
{

1

2
ĝij ĝ

αβ∂αΦi∂βΦj

+
1

4
ĝαβ ĝγδFαγFβδ + iΘ̄PD7

− ĝαβΓ̂α∂βΘ

}
, (4.3)

6Here and throughout we will use “Lorentz invariance” to refer to SO(3, 1) invariance.
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in which we have omitted a constant term that does not play a role in our analysis.

Writing the string tension as τ−1
F1 = 2πα′ = `2

s , the 8d Yang-Mills coupling is

g−2
8 = 8π3`4

sgs. Here ξα are coordinates on the D7-brane, ĝαβ is the induced

worldvolume metric and ĝij is the transverse metric. Θ is a 10d double Majorana-

Weyl spinor (reviewed in Appendix 4.A) that, as in the Green-Schwarz superstring,

redundantly encapsulates the fermionic degrees of freedom of the D7-brane. In

particular, Θ is subject to the κ-symmetry identification

Θ ∼ Θ + PDp
− κ, (4.4)

in which κ is an arbitrary Majorana-Weyl double spinor. PD7
− is given by

PD7
− =

1

2

(
1 −Γ−1

D7

−ΓD7 1

)
, (4.5)

in which

ΓD7 = d /volW :=
1

8!
ε̂α1···α8Γ̂α1···α8 = −iΓ(8), (4.6)

where εα1···α8 is the antisymmetric tensor and Γ(8) is the SO(7, 1) chirality operator.

We use κ-symmetry to set

Θ =

(
θ

0

)
. (4.7)

With this choice,

SD7 = − 1

g2
8

∫

W
d8ξα

{
1

2
ĝij ĝ

αβ∂αΦi∂βΦj +
1

4
ĝαβ ĝγδFαγFβδ +

i

2
θ̄ĝαβΓ̂β∂αθ

}
, (4.8)

which is the familiar action for maximally supersymmetric 8d U(1) gauge theory.

On a stack of F such D7-branes, the gauge group is enhanced to U(F ), and

Aα, Φi, and θ are promoted to adjoint-valued fields. The leading-order action is

determined by gauge-invariance and supersymmetry to be

SD7 = − 1

g2
8

∫

W
d8ξα tr

{
1

2
ĝij ĝ

αβDαΦiDβΦj +
1

4
ĝαβ ĝγδFαγFβδ (4.9)

− 1

4
ĝij ĝkl

[
Φi,Φk

][
Φj,Φl

]
+

i

2
θ̄ĝαβΓ̂αDβθ −

1

2
θ̄ Γ̂i
[
Φi, θ

]}
,
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in which tr denotes a trace over gauge indices, Dα is a gauge covariant derivative

Dα = ∂α − i
[
Aα, ·

]
, (4.10)

and F2 = dA− iA ∧ A is the non-Abelian field strength.

Bifundamental modes arise from strings that stretch between stacks of Dp-

branes. If the stacks are parallel, then the mass of these modes is proportional

to the separation between the branes. Such a configuration still preserves sixteen

supercharges and so the action for the bifundamental modes (which provide a full

massive vector multiplet) can be fixed by symmetries. Alternatively, the action

can be found by Higgsing the theory (4.9). Beginning with a stack of F1 + F2

D7-branes, the transverse deformations can be treated as (F1 + F2) × (F1 + F2)

matrices with the ith diagonal element corresponding to a transverse deformation

of the ith brane. A vacuum expectation value (vev) with the gauge structure

〈
Φi
〉

= `−2
s

(
X i

1 1F1

X i
2 1F2

)
(4.11)

breaks U(F1 + F2) → U(F1) × U(F2) and describes a separation of the branes

∆xi = |X i
1 −X i

2|. The factor of `2
s is introduced so that Φi has length dimension

−1. However, this also has the effect of canceling the factors of `s that appear

in operators correcting the Yang-Mills action. Therefore, in order to trust this

effective field theory, we consider cases where ∆xi � `s. Equivalently, if we are

to trust the effective field theory description of the modes stretching between the

branes, their mass must be less than that of the massive string states that have

been integrated out implicitly.

Writing the fluctuations as

δΦi =

(
φi1 φi+

φi− φi2

)
, (4.12)
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φi1 and φi2 transform as adjoints under U(F1) and U(F2), respectively, while φi+

and φi− are bifundamentals that acquire masses proportional to the separation.

For notational simplicity, in what follows we will consider the case F1 = F2 = 1,

but all of our results generalize easily to higher ranks.

If, instead of being parallel, the branes intersect, some of the bifundamental

modes will become massless. The intersection of two D7-branes is generically six-

dimensional, and the long-wavelength description of the bifundamental modes can

be given in terms of a 6d effective field theory description on this intersection. The

6d masses of the bifundamentals depend on the angles formed by the intersection of

the branes. However, the vector bifundamentals never become massless, indicating

that the 6d theory is a U(1) × U(1) (rather than the un-Higgsed U(2)) gauge

theory, and that fewer than sixteen supercharges are preserved, since the vector

multiplet is split. When the intersection is such that both D7-branes fill R3,1

and are holomorphically embedded into C3, at least minimal supersymmetry is

preserved [173] and the 6d theory includes massless scalars and fermions.

4.1.2 Non-chiral modes

In the warped case, the calculation of mass spectra is equivalent to the calculation

of scaling dimensions in the dual theory. In this section, we continue our warm-

up to the warped case by finding the mass spectrum of non-chiral bifundamental

modes in flat space. To this end, we take zI=1,2,3 as coordinates on C3 and consider

a pair of D7-branes whose embeddings are specified by

D71 : z3 = tz2, D72 : z3 = −tz2, t > 0. (4.13)
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Following the discussion in the previous subsection, we can describe this intersec-

tion by considering 8d U(2) SYM along R3,1×C2 (with C2 spanned by z1 and z2),

where the vev for the complexified transverse deformation takes the form7

Φ = q

(
z2

−z2

)
, (4.14)

in which q = `−2
s t. The bifundamental modes are localized on R3,1 × C, with z1

the coordinate on the curve of intersection (which in this case is simply C). For

the reasons discussed above, we must take t � 1 in order to trust the effective

field theory. Of course, no matter what the value of t, at sufficiently large values

of z2 the branes will be far apart and so one might worry about stringy corrections

to the Yang-Mills action. That is, in addition to (4.9), the worldvolume action

contains, for example, operators with the schematic form

`k−4
s (Φ)k ∼

(
tz2

`s

)k−4

ϕ4
± + · · · , (4.15)

which might seem to become important at z2 ∼ t−1`s. However, as we will show

below, the bifundamental modes are highly peaked at z2 = 0, and so we anticipate

that their physics will be largely insensitive to the corrections at large z2.

The configuration just described is supersymmetric, so we can find solutions to

the bosonic equations of motion by solving the fermionic equations of motion. Al-

though the intersection is SO (5, 1) symmetric, in anticipation of the magnetization

— which preserves only SO(3, 1) and which we discuss below — we will make use

of the decomposition SO (9, 1)→ SO(3, 1)×SO (6), as discussed in Appendix 4.A.

It is useful to decompose the 10d fermionic mode θ into modes of different internal

chirality (i.e. SO (6) weights)

θ =
3∑

m=0

{
ψm

(
ξ

0

)
⊗ ηm − ψ†m

(
0

σ2ξ∗

)
⊗ β̃6η

∗
m

}
, (4.16)

7Similar vevs were utilized in [163, 164] to describe brane recombination from non-

supersymmetric intersections.
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in which ξ is a fixed two-component spinor, ηm are the constant SO (6) positive chi-

rality spinors in (4.112), and β̃6 is the SO (6) Majorana matrix. Writing the U(1)

potential as A1 = Aµdxµ+
∑2

a=1

(
aadz

a+aādz̄
a
)
, ψ0 is the fermionic partner of Aµ,

ψ1,2 are the partners of a1, and a2, and ψ3 is the partner of the complexified trans-

verse deformation Φ. Each of the ψm transforms under the adjoint representation

of U(2) and we write (cf. (4.12))

ψm =

(
ψ+
m

ψ−m

)
, (4.17)

in which we have set the neutral fields ψ1,2
m to zero since they are not the modes

of interest.

The linearized equation of motion for the fermions in this background is

0 = Γ̂α∂αθ − i Γ̂i
[
Φi, θ

]
, (4.18)

where the transverse fluctuations Φi are evaluated on their vev (4.14). From

SO(3, 1) invariance, we expect that the equation of motion for Aµ should decouple

from those of the other bosonic fields, at least for some gauge choice,8 and thus

we can consistently take ψ±0 , the superpartner of A±µ , to vanish. When the 4d

momentum is zero we have

0 =∂̄1̄ψ
±
1 − ∂̄2̄ψ

±
2 ∓ iqz2ψ±3 , (4.19a)

0 =∂2ψ
±
3 ∓ iqz̄2̄ψ±2 , (4.19b)

0 =∂1ψ
±
3 ± iqz̄2̄ψ±1 , (4.19c)

0 =∂1ψ
±
2 + ∂2ψ

±
1 . (4.19d)

The equations (4.19) also follow from the conditions for supersymmetry [165,

166, 174]. These coupled first-order equations can be turned into largely decou-

8One such gauge choice is (4.19a) after simply replacing the fermionic fields with their bosonic

partners. See, for example, [166].
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pled second-order equations by taking derivatives. For example, application of ∂1

to (4.19a) and substitution of (4.19c) and (4.19d) yields

0 = ∂1∂̄1̄ψ
±
1 + ∂2∂̄2̄ψ

±
1 − q2

∣∣z2
∣∣ψ±1 . (4.20a)

Similarly,

0 =∂1∂̄1̄ψ
±
2 + ∂2∂̄2̄ψ

±
2 ± iqψ±3 − q2

∣∣z2
∣∣ψ±2 , (4.20b)

0 =∂1∂̄1̄ψ
±
3 + ∂2∂̄2̄ψ

±
3 ∓ iqψ±2 − q2

∣∣z2
∣∣ψ±3 . (4.20c)

Using (4.19b), (4.20c) gives an equation for ψ±3 alone. Writing ψ±3 = z̄2̄ψ±, we

have

0 = ∂1∂̄1̄ψ± + ∂2∂̄2̄ψ± − q2
∣∣z2
∣∣ψ±. (4.21)

Once ψ± is determined, ψ±1,2,3 are easily found.

Equation (4.21) is separable. Performing polar decompositions za = rae
iφa and

taking the ansatz

ψ± = ei(m1φ1+m2φ2)ζ±
(
r1

)
σ±
(
r2

)
, (4.22)

where mi are integers, we have

0 =ζ ′′± +
1

r1

ζ ′± −
m2

1

r2
1

ζ± − 4λζ±, (4.23a)

0 =σ′′± +
1

r2

σ′± −
m2

2

r2
2

σ± − 4q2r2
2σ± + 4λσ±, (4.23b)

in which λ is a constant to be determined by boundary conditions. Imposing that

σ± → 0 as r2 → 0 we find

ζ±
(
r1

)
=c1I|m1|

(√
2λ r1

)
+ c2K|m1|

(√
2λ r1

)
, (4.24a)

σ±
(
r2

)
=e−qr

2
2
(
2qr2

2

)|m2|/2L|m2|
n

(
2qr2

2

)
. (4.24b)

in which Lµν are the associated Laguerre polynomials, Iµ and Kµ are the modified

Bessel functions of the first and second kinds, and

λ = q
(
2n+ |m2|+ 1

)
. (4.25)
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Figure 4.1: Transverse profiles for the flat space vector-like bifundamental modes
σ± given by (4.24) for m2 = 0 and n = 0 (the curve with smallest value
at r2 = 0) through n = 4 (the curve with the largest value at r2 = 0).
The solutions have been normalized to the same value using the inner
product

∫
dr2f (r2) g (r2).

Regularity of σ± requires that n is a non-negative integer. Some of these modes

are plotted in Figures 4.1 and 4.2.

One may notice that the system (4.19) also admits a zero mode that depends

only on r2,

ψ±3 = e−qr
2
2 . (4.26)

It is easy to confirm that this gives a solution to (4.21), but this solution is not

normalizable with respect to the norm defined by treating (4.21) as a Sturm-

Liouville problem. This is a consequence of the fact that the bifundamental modes

are more properly encoded by linear combinations of the ψ±m rather than by the

ψ±m themselves [163, 164]. Correspondingly, the measure used in integrating over

the z2 and z̄2̄ directions is not that defined by (4.21) (see [166]). However, aside

from this zero mode, the above equations successfully reproduce the spectrum of
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Figure 4.2: Similar plot as Figure 4.1 except with m2 = 1.

6d masses (4.25).

4.1.3 Chiral modes

We now consider magnetized intersections since, upon compactification, such a

construction gives a chiral 4d theory. We will again focus on supersymmetric

configurations, which implies that F2 must be (1, 1) and primitive. Consider first

a single D7-brane on R3,1×C2. The most general (1, 1) flux that can be supported

by the D7-brane is

F2 = − i

2
f1 dz1 ∧ dz̄1̄ − i

2
f2 dz2 ∧ dz̄2̄ − i

2
g1 dz1 ∧ dz̄2̄ − i

2
g2 dz̄1̄ ∧ dz2. (4.27)

The 11̄ component will describe the magnetization of the intersection, and so we

will look for the simplest configurations with f1 6= 0. The Kähler form on C2 is
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simply

J = − i

2

2∑

I=1

dzI ∧ dz̄Ī , (4.28)

and so primitivity imposes f1 = −f2. The Bianchi identity implies that f1 is

harmonic,

0 = ∂1∂̄1f1 + ∂2∂̄2f1. (4.29)

In the absence of sources, (4.29) requires that f1 is constant. We can then consis-

tently set g1 = g2 = 0 and obtain the supersymmetric magnetization

F2 = −iM
{

dz1 ∧ dz̄1̄ − dz2 ∧ dz̄2̄
}
. (4.30)

Compactification would impose a quantization condition on M , but in the non-

compact case we can freely take M to be any constant. The above magnetization

follows from the gauge choice

A1 = − i

2
M
{
z1dz̄1̄ − z̄1̄dz1 − z2dz̄2̄ + z̄2̄dz2

}
. (4.31)

To obtain chiral matter, we again consider the intersection of two D7-branes

described by the Higgsing (4.14), and choose a magnetization

F2 = −M
(

1

−1

)
{

dz1 ∧ dz̄1̄ − dz2 ∧ dz̄2̄
}
. (4.32)

The corresponding connection is

A1 = − i

2
M

(
1

−1

)
{
z1dz̄1̄ − z̄1̄dz1 − z2dz̄2̄ + z̄2̄dz2

}
. (4.33)

For simplicity of presentation we will take M > 0.

With a non-trivial connection, the equation of motion for the fermions becomes

0 = Γ̂αDαθ − i Γ̂i
[
Φi, θ

]
, (4.34)
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where Dα is the gauge-covariant derivative. Following the same decomposition and

procedure as for the vector-like case, we again find (4.19) up to the replacements

∂1ψ
±
m →

(
∂1 ±Mz̄1̄

)
ψ±m, ∂̄1̄ψ

±
m →

(
∂̄1̄ ∓Mz1

)
ψ±m,

∂2ψ
±
m →

(
∂2 ∓Mz̄2̄

)
ψ±m, ∂̄2̄ψ

±
m →

(
∂̄2̄ ±Mz2

)
ψ±m. (4.35)

Again writing ψ±3 = z̄2̄ψ±, we find

0 =

{
∂1∂̄1̄ + ∂2∂̄2̄ ±M

(
z̄1̄∂̄1̄ − z1∂1 − z̄2∂̄2̄ + z2∂2

)

−M2
∣∣z1
∣∣2 −

(
M2 + q2

)∣∣z2
∣∣2
}
ψ±. (4.36)

Due to the self-duality of the magnetic flux, (4.36) is separable. Again using

the polar decomposition za = rae
iφa and taking the ansatz (4.22), we find the

equations

0 =ζ ′′± +
1

r1

ζ ′± −
m2

1

r2
1

ζ± − 4M2r2
1ζ± +

(
−4λ± 4Mm1

)
ζ±, (4.37)

0 =σ′′± +
1

r2

σ′± −
m2

2

r2
2

σ± − 4κ2r2
2σ± +

(
4λ∓ 4Mm2

)
σ±, (4.38)

in which

κ =
√
M2 + q2, (4.39)

and λ is again a constant to be determined by boundary conditions. The solutions

are

ζ±
(
r1

)
=e−Mr2

1
(
2Mr2

1

)|m1|/2
{
M
(
α;m1 + 1; 2Mr2

1

)
+ U

(
α;m1 + 1; 2Mr2

1

)}

σ±
(
r2

)
=e−κr

2
2
(
2κr2

2

)|m2|/2L|m2|
n2

(
2κr2

2

)
, (4.40)

with

λ = κ
(
2n2 + |m2|+ 1

)
±Mm2 ≡M

(
2α−

∣∣m1

∣∣±m1 − 1
)
, (4.41)
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where the final relation defines α. In (4.40),M and U are the confluent hypergeo-

metric functions of the first and second kinds,9 and regularity requires that n2 be

a non-negative integer.

The chirality of the spectrum is a consequence of the different behavior of

the different charges. It is most easily seen by considering the “missing” zero

mode [175, 166]

ψ±3 ∼ e−κr
2
2e∓Mr2

1h
(
z1
)
, (4.42)

where h is a holomorphic function of z1. Since we have taken M > 0, only the

+ sector gives rise to normalizable modes, and hence the spectrum is chiral. The

fact that h is an arbitrary holomorphic function indicates that there are an in-

finite number of such chiral modes, as is consistent with the fact that the chiral

index, which is proportional to
∫
F2, is divergent. Upon compactification, further

conditions are imposed on h
(
z1
)

(see e.g. [175]) and the spectrum becomes finite.

4.2 Non-chiral Mesons from D7-branes in AdS

We now consider vector-like mesons arising on intersecting D7-branes in AdS5 ×

S5, building on the groundwork laid in §4.1. As discussed in the introduction,

the configuration of interest is the gravity dual of N = 4 SU(N) SYM with a

U(1)×U(1) flavor group. The strings stretching between the D7-branes are dual to

mesonic operators with charges (±1,∓1) under this U(1)×U(1). Our analysis has

much in common with the treatment of intersecting D7-branes in weakly warped

geometries [166]; however, AdS5×S5 is strongly warped in the sense that no limit

9Since the confluent hypergeometric function 1F1 (a; b; z) is not defined when b =

0,−1,−2, . . ., we use the regularized version M (a; b; z) = 1F1 (a; b; z) /Γ (b).
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of the geometry reproduces a factorized geometry R3,1 ×X6, and so we will need

to use different techniques to solve the resulting equations of motion.

4.2.1 Setup and equations of motion

The metric for AdS5 × S5 can be written as a warped product of R3,1 and C3,

ds2
10 = e2Aηµνdx

µdxν + e−2AdzIdz̄Ī , A =
1

2
log

zI z̄Ī

L2
. (4.43)

Using hyperspherical coordinates on C3 = R6, this becomes the familiar metric for

AdS5 × S5,

ds2
10 =

R2

L2
ηµνdx

µdxν +
L2

R2
dR2 + L2ds2

S5 , (4.44)

where ds2
S5 is the standard metric on a unit S5. The geometry is supported by the

5-form flux

F5 =
(
1 + ∗̂

)
g−1

s de4A ∧ dvolR3,1 , (4.45)

where ∗̂ is the 10d Hodge star. In the presence of such flux, the action for a single

D7-brane becomes [170, 171, 172]

SD7 = − 1

g2
8

∫

W
d8ξα

√
−ĝ
{

1

2
ĝij ĝ

αβ∂αΦi∂βΦj +
1

4
ĝαβ ĝγδFαγFβδ (4.46)

+ iΘ̄PD7
− ĝαβΓ̂α∇̂βΘ +

gs

8 · 4!
ε̂α1···α8Cα1···α4Fα5α6Fα7α8

+
igs

16
Θ̄PD7
− ĝαβΓ̂α /̂F 5Γ̂β

(
iσ2

)
Θ

}
,

in which

/̂F 5 =
1

5!
FM1···M5Γ̂M1···M5 , (4.47)

is constructed by contracting all indices of F5 with Γ̂-matrices, and not just those

along the worldvolume. If the D7-brane fills R3,1 and a cycle S4 in the other

160



directions, then after κ-fixing to (4.7) and taking into account the nontrivial spin

connection, the fermionic contribution to the action is [176]

SF
D7 = − i

2g2
8

∫
d8ξα

√
−ĝ θ̄

{
ĝαβΓ̂α∂β +

1

2
ĝαβΓ̂α∂βA

(
1 + 2Γ̂S4

)}
θ, (4.48)

in which

Γ̂S4 = d /̂volS4 , (4.49)

is the chirality operator on S4.

In the non-Abelian case, closed-string fields like the warp factor are interpreted

as Taylor series in the adjoint-valued transverse deformations, and thus the closed-

string fields are themselves adjoint-valued [177]. However, as in the unwarped case,

this fact is only important for higher-dimension operators, and can be neglected

to leading order in `s. Similar terms are expected in the non-Abelian fermionic

action, but have not been computed explicitly. However, to leading order in `s,

supersymmetry and gauge-invariance require that the action take the form [178,

166]

SF
D7 = − i

2g2
8

∫
d8ξα

√
−ĝ×

tr

{
θ̄ Γ̂αDαθ −

1

2
θ̄ Γ̂i
[
Φi, θ

]
+

1

2
θ̄ Γ̂α∂αA

(
1 + 2Γ̂S4

)
θ

}
. (4.50)

The intersection of two D7-branes satisfying

D71 : z3 = µ+ tz2, D72 : z3 = µ− tz2, (4.51)

is described by

Φ =

(
`−2

s µ+ qz2

`−2
s µ− qz2.

)
. (4.52)

When µ = 0, the D7-branes reach the origin of warping and the dual quarks

are massless: in the D-brane picture, the D3-branes and D7-branes intersect and
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the strings stretching between them have zero length. However, when there is a

finite separation between the branes, the quarks have a mass proportional to µ.

Consequently, the mesonic spectrum becomes gapped [126]. The warp factor is to

be evaluated at this vev, but so long as t is sufficiently small, on the D7-brane we

can take

A =
1

2
log
|z1|2 + |z1|2 + µ2

L2
. (4.53)

Decomposing θ as (4.16) and matching terms of internal chirality, we find

0 =
(
∂̄1̄ −

1

2
∂̄1̄A

)
ψ±1 −

(
∂̄2̄ −

1

2
∂̄2̄A

)
ψ±2 ∓ iqe−2Az2ψ±3 , (4.54a)

0 =
(
∂2 +

3

2
∂2A

)
ψ±3 ∓ iqe−2Az̄2̄ψ±2 , (4.54b)

0 =
(
∂1 +

3

2
∂1A

)
ψ±3 ± iqe−2Az̄2̄ψ±1 , (4.54c)

0 =
(
∂1 −

1

2
∂1A

)
ψ±2 +

(
∂2 −

1

2
∂2A

)
ψ±1 , (4.54d)

where, as in the flat space analysis of §4.1, we have evaluated the equations at zero

4d momentum and have set ψ±0 = 0. Taking, as in [176]

ψ±1,2 = eA/2ϕ±1,2, ψ±3 = e−3A/2ϕ±3 , (4.55)

and finally writing ϕ±3 = z̄2̄ϕ±, we find the warped analogue of (4.21)

0 =
{
∂1∂̄1̄ + ∂2∂̄2̄ − q2

∣∣z2
∣∣2 e−4A}ϕ±. (4.56)

Since the warp factor depends on both z1 and z2, (4.56) is not separable in

those variables. However, writing

z1 = r cos β eiφ1 , z2 = r sin β eiφ2 , (4.57)

equation (4.56) becomes

0 =

{
∂2
r +

3

r
∂r +

1

r2
∇̆2 − 4q2r2L4 sin2 β

(r2 + µ2)2

}
ϕ±, (4.58)
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in which

∇̆2 = ∂2
β +

(
cot β − tan β

)
∂β +

1

cos2 β
∂2
φ1

+
1

sin2 β
∂2
φ2

(4.59)

is the Laplacian on a unit S3 (see Appendix 4.B).

When µ = 0, (4.58) is completely separable. Indeed, taking

ϕ± = ei(m1φ1+m2φ2)f±
(
r
)
Q±
(
cos 2β

)
, (4.60)

we find that the radial equation satisfies

0 = f ′′± +
3

r
f ′± −

λ

r2
f±, (4.61)

while the β equation is

0 = 4
(
1− x2

)
Q′′± − 8xQ′± −

2m2
1

1 + x
Q± −

2m2
2

1− xQ± − 2ξ2
(
1− x

)
Q± + λQ±, (4.62)

in which x = cos 2β,

ξ2 ≡ q2L4 =
1

π
t2gsN, (4.63)

and λ is a constant to be determined by boundary conditions.10

4.2.2 The meson spectrum

When ξ = 0, the solutions to (4.62) are the scalar hyperspherical harmonics (see

Appendix 4.B)

Q±
(
x
)

= c
(
1 + x

)m1/2(
1− x

)m2/2
P

(m2,m1)
1
2

(`−m1−m2)

(
x
)
, (4.64)

where P
(a,b)
n are the Jacobi Polynomials, c is the normalization constant (4.132),

λ = ` (`+ 2), and the quantum numbers must satisfy the inequalities 0 ≤ |m1| +

|m2| ≤ ` and the constraint 1
2

(`−m1 −m2) ∈ Z.

10Note that in this section and the next, λ carries no dimensions, in contrast to the previous

section.
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We have been unable to find analytic solutions to (4.62) when ξ 6= 0. However,

since (4.62) is an ordinary differential equation, numerical methods readily apply.

We implement a spectral method by expanding the unknown solution in terms

of the spherical harmonics. The potential term proportional to ξ does not mix

modes of different m1 and m2, so we can accomplish the spectral decomposition

by writing

Q
(
x
)

=
∑

`

b`y`
(
x
)
, (4.65)

where y` are the solutions (4.64) and we have suppressed other indices. Equa-

tion (4.62) then becomes

0 =
∑

`

{
λ− ` (`+ 2)− 2ξ2

(
1− x

)}
b`y`. (4.66)

Using that at fixed m1 and m2,
∫ 1

−1

dx y`y`′ =
1

π2
δ``′ , (4.67)

and using the recursion relationship (4.133), we can re-express (4.66) as the matrix

equation

0 =

[
λ− ` (`+ 2)− 2ξ2d0

]
b` + 2ξ2d−b`−2 + 2ξ2d+b`+2, (4.68)

with

d0 =

(
1 +

m2
2 −m2

1

` (`+ 2)

)
,

d− =

√(
`2 − (m1 +m2)2) (`2 − (m1 −m2)2)

4 (`+ 1) `2 (`− 1)
, (4.69)

d+ =

√(
(`+ 2)2 − (m1 +m2)2) ((`+ 2)2 − (m1 −m2)2)

4 (`+ 1) (`+ 2)2 (`+ 3)
.

Note that even and odd `s do not mix, so that this effectively gives two independent

matrix equations where the matrices are each tridiagonal.

Solving (4.62) amounts to diagonalization of the matrix defined by (4.68). Un-

fortunately, because this is an infinite-dimensional matrix, we cannot perform this

164



diagonalization exactly. However, to obtain an estimate of the spectrum, we can

truncate the matrix to a finite submatrix. A good rule of thumb in such prob-

lems is that including the first 2n modes determines the first n eigenvalues to an

accuracy of a few percent [179]. Accurate eigenvalues will be robust against vari-

ations in n, and our strategy will be to increase the number of modes included

until the eigenvalues calculated in this way stabilize. The first few eigenvalues at

m1 = m2 = 0 resulting from this process are shown in figures 4.3 and 4.4. As ξ

increases, the wavefunctions become increasingly localized on the intersection at

β = 0, as shown in figure 4.5.

Note that when ξ � 1, (4.68) immediately yields the perturbative result

λ ≈ ` (`+ 2) + 2ξ2

[
1 +

m2
2 −m2

1

` (`+ 2)

]
. (4.70)

However, since ξ2 = t2gsN/π, working at ξ � 1 requires taking t2 to be small with

respect to the inverse ’t Hooft coupling 1/λ. This limit is of little utility in the

present investigation, because we are interested in taking λ → ∞ to suppress α′

corrections to the leading-order supergravity, cf. (4.1).

If instead ξ � 1, we find that the spectrum is well-approximated by

λ ≈ 4ξ
(
`+ |m1| − 1

)
. (4.71)

At large ξ, ` is no longer a good quantum number, as the intersection badly

breaks the rotational symmetry of the S3. Correspondingly, the solutions to (4.62)

are linear combinations of many different spherical harmonics. However, m1 and

m2 remain good quantum numbers, and so we find it more natural to write the

spectrum as

λ ≈ 4ξ
(
n+ |m2|+ 1

)
, (4.72)

where n = `− |m1| − |m2|.
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Figure 4.3: The first few eigenvalues of (4.62) found via spectral methods, for
m1 = m2 = 0. The growth continues to be linear as ξ increases.

0 10 20 30 40 50 60 70 80 90 100

0

1

2

3

·104

n

λ
i

Figure 4.4: The spectrum for m1 = m2 = 0 (which requires that ` be even) for
ξ = 0 (bottom), 25, 50, 75, and 100 (top).
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Figure 4.5: The lowest-lying solutions of (4.62) for ξ = 0, 2.5, 10, 50, 100. When
ξ = 0, the solution is a constant zero mode, but as ξ increases, the
profile becomes increasingly peaked at β = 0, the location of the in-
tersection.

With the eigenvalues of (4.62) in hand, the solution to (4.61) is

f± = c1r
−1−

√
1+λ + c2r

−1+
√

1+λ. (4.73)

We can compare the solution (4.73) to the well-known result for a canonically

normalized scalar at zero momentum,

ϕ = ϕ0r
∆−4 + ϕ1r

−∆. (4.74)

The solution (4.73) does not match the form (4.74), since the transverse deforma-

tions are not canonically normalized (see (4.77)). Nevertheless, ∆ can be deter-

mined by taking the ratio of the two terms in (4.73), and we find the result

∆ = 2 +
√

1 + λ. (4.75)
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This then gives the approximate expressions

∆ ≈





`+ 3 + ξ2

1+`

[
1 +

m2
2−m2

1

`(`+2)

]
ξ � 1,

2
√
ξ (n+ |m2|+ 1) ξ � 1

. (4.76)

The fact that the radial modes are simply power laws is an indication that

the dual theory is conformal. Indeed, one can confirm that the µ = 0 configu-

ration (4.51) respects the supersymmetry generated by eight supercharges, four

of which correspond to the generators of superconformal transformations in the

dual theory. Alternatively, when µ = 0, the vev (4.52) corresponds to a strictly

marginal deformation of the theory. To see this, it suffices to consider the Abelian

action (4.46) and examine only the action of the transverse scalars Φi. Using

the complexified field Φ and expanding in scalar spherical harmonics gives the 5d

action

S ∼ −
∫

d5x
√−g

∞∑

`=0

{
L2

r2
gmn∂mΦ†`∂nΦ` +

` (`+ 2)

r2
Φ†`Φ`

}
. (4.77)

Defining the canonically normalized scalars χ` = L
r
Φ` gives

S ∼ −
∫

d5x
√−g

∞∑

`=0

{
gmn∂mχ

†
`∂nχ` +

` (`+ 2)− 3

L2
χ†`χ`

}
. (4.78)

Using the familiar result

∆ = 2 +
√

4 +m2L2 (4.79)

yields

∆ = `+ 3. (4.80)

With the coordinates of (4.57), the configuration Φ = qz2 can be expressed as

Φ = qr sin β eiφ2 =
qr√

2

√
1− cos 2β eiφ2 . (4.81)

Comparing to (4.64), the mode (4.81) corresponds to ` = 1, m1 = 0, m2 = 1, and

hence this configuration is the non-normalizable solution of the ∆ = 4 mode, and

so describes a marginal deformation of the dual theory.
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4.3 Chiral Mesons from D7-branes in AdS

Just as in the flat space case, we can induce chirality into the dual theory through

the introduction of a supersymmetric magnetic flux (4.30). However, this mag-

netic flux will respect only four of the gravity supercharges, and the other four,

corresponding to the superconformal charges of the dual theory, will not be pre-

served. As we shall see, this change has important physical consequences: the

calculation of correlation functions will turn out to require counterterms that are

super-exponentially sensitive to the ultraviolet completion of the geometry. At the

same time, the magnetic flux induces a large amount of D3-brane charge, so that

the geometry must be sharply modified in the ultraviolet. In practical terms, this

dependence on the ultraviolet behavior presents an obstacle to the calculation of

correlation functions. More importantly, it signifies that the magnetization (4.30),

and the corresponding appearance of chiral mesons, entails a substantial change

in the background.

4.3.1 Setup and equations of motion

We first sketch out the argument regarding the supercharges. A probe D7-brane

will preserve the supersymmetry parameterized by a Killing double spinor ε if

(cf. (4.5))

PD7
− ε = 0, (4.82)

where, with the presence of a magnetic flux F2, ΓD7 = −iΓ(8)L (F ) with

L
(
F
)

=

√
det (ĝ)

det (ĝ + `2
sF )

{
1 +

`2
s

2
Fα1α2Γ̂α1α2 +

`4
s

8
Fα1α2Fα3α4Γ̂α1α2α3α4

}
. (4.83)
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The bulk geometry respects the supersymmetry generated by a GKP-like Killing

spinor [131], which is independent of the Minkowski coordinates and annihilated by

holomorphic γ-matrices. Moreover, such a Killing spinor obeys (4.82) if F2 is (1, 1)

and self-dual: the /F 2 term annihilates the Killing spinor, and the 1 and /F
2
2 terms

together are canceled by
√

det (g + F ) (which takes a simple form because F is

self-dual). However, the bulk geometry also supports Killing spinors that depend

on the Minkowski coordinates in a particular way (see, e.g., [180]). The existence

of such spinors is a special feature of anti-de Sitter space, and the supersymmetry

transformations they induce are dual to superconformal transformations. Since

the special AdS Killing spinors are not preserved by the magnetized D7-brane

configuration, we anticipate that conformality will be lost in the dual theory, even

in the probe approximation.

We can also understand the loss of conformality from another point of view.

The magnetization that gives rise to chirality follows from the connection (4.31)

which, using (4.57), can be written as

A1 = Mr2
{
− cos2 β dφ1 + sin2 β dφ2

}
, (4.84)

in which we are still taking M > 0 for simplicity of presentation. Writing A1 =

Mr2ω, ω satisfies the defining equation of a transverse vector spherical harmonic

%, which takes the general form

∇̆2%θ = −
[
`
(
`+ 2

)
− 1
]
%θ, ∇̆θ%θ = 0, ε̆θϕψ∇̆ϕ%ψ = ±

(
`+ 1

)
ğθψ%ψ, (4.85)

in which ğ is the metric (4.122) on the unit S3, ∇̆ is the associated Levi-Civita con-

nection, and ε̆ is the associated volume form. The mode ω corresponds to the spe-

cific case ` = 1, with the positive sign taken in the third equation in (4.85).11 Thus,

11This sign is independent of the sign in the equation of motion for the bifundamental

modes, (4.19).
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ω is a transverse vector spherical harmonic [181], and upon dimensional reduction

leads to a canonically normalized field with mass m2L2 = 12 (see [126]). This

corresponds to an operator of dimension 6, and A1 involves the non-normalizable

solution. Hence, the introduction of the magnetic flux deforms the dual theory by

an irrelevant operator. This implies that not only is conformality lost in the dual

theory, but the theory does not even flow from an ultraviolet fixed point.

The addition of this flux modifies the zero-momentum equations to

0 =
(
∂̄1̄ ∓Mz1 − 1

2
∂̄1̄A

)
ψ±1 −

(
∂̄2̄ ±Mz2 − 1

2
∂̄2̄A

)
ψ±2 ∓ iqe−2Az2ψ±3 , (4.86a)

0 =
(
∂2 ∓Mz̄2̄ +

3

2
∂2A

)
ψ±3 ∓ iqe−2Az̄2̄ψ±2 , (4.86b)

0 =
(
∂1 ±Mz̄1̄ +

3

2
∂1A

)
ψ±3 ± iqe−2Az̄2̄ψ±1 , (4.86c)

0 =
(
∂1 ±Mz̄1̄ − 1

2
∂1A

)
ψ±2 +

(
∂2 ∓Mz̄2̄ − 1

2
∂2A

)
ψ±1 . (4.86d)

Using (4.55), we find

0 =

{
∂1∂̄1̄ + ∂2∂̄2̄ ±M

(
z̄1̄∂̄1̄ − z1∂1 − z̄2∂̄2̄ + z2∂2

)

−M2
∣∣z1
∣∣2 −

(
M2 + e−4Aq2

)∣∣z2
∣∣2
}
ϕ±, (4.87)

where ϕ± = 1
z̄2̄ϕ

3
±. With the coordinates (4.57), this becomes

0 =

{
∂2
r +

3

r
∂r ± 4iM

(
∂φ1 − ∂φ2

)
− 4M2r2 (4.88)

+
1

r2

[
∂2
β +

(
cot β − tan β

)
∂β +

1

cos2 β
∂2
φ1

+
1

sin2 β
∂2
φ2

]
− 4q2r2L4 sin2 β

(r2 + µ2)2

}
ϕ±.

Again, the relative simplicity of this equation is a consequence of the self-duality

constraint imposed by supersymmetry. When µ = 0, the equation is again sepa-

rable and it is useful to take the ansatz (4.60). Q± satisfies the same eigenvalue

problem (4.62) while the radial equation is now

0 = f ′′± +
3

r
f ′± ∓ 4M

(
m1 −m2

)
f± − 4M2r2f± −

λ

r2
f±. (4.89)
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The solutions can be expressed in terms ofM and U , the confluent hypergeometric

functions of the first and second kind,

f± = e−Mr2

r−ν
{
c1M

(
µ; ν; 2Mr2

)
+ c2 U

(
µ; ν; 2Mr2

)}
, (4.90)

in which

ν = 1 +
√

1 + λ and µ =
1

2

(
ν ±

(
m1 −m2

))
. (4.91)

As anticipated, the solutions are not power laws, and so the dual field theory

is no longer conformal even in the probe approximation. Furthermore, noting that

the dominant asymptotic behavior at r →∞ is

M
(
µ; ν; 2Mr2

)
∝ e2Mr2

, (4.92)

where we have omitted power law factors, we find that the divergent part of (4.90)

grows super-exponentially at r →∞:

f± ∝ eMr2

. (4.93)

4.3.2 Ultraviolet sensitivity of the correlation functions

To interpret the divergences identified above, it will be helpful to recall the well-

established procedure for computing correlation functions in AdS/CFT, focusing

on the process of removing divergences of the classical action through the intro-

duction of counterterms, i.e. holographic renormalization (see [182] for a review).

The basic statement of the duality, in the limit (4.1), is the identification of

the generating functional of the CFT with the classical supergravity action,

ZCFT = e−Sgrav . (4.94)
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An operator O on the field theory side has a corresponding classical field ϕ on the

gravity side. If O is a scalar field, then ϕ also transforms as an SO(3, 1) scalar. The

solution for ϕ at large r can be separated into a dominant term and a subdominant

term,

ϕ = adomϕdom + asubϕsub. (4.95)

If the geometry is asymptotically anti-de Sitter space, both the dominant and

subdominant terms are power laws at large r. Moreover, adom is dual to a source

term for O, and correlation functions of O are calculated by taking functional

derivatives of Sgrav with respect to adom and then later taking adom → 0.

For finite adom, the classical action Sgrav is divergent. This can be addressed

by adding counterterms to the action: one first regulates the action by cutting

off the space at a large but finite radius rΛ. The terms that diverge as rΛ → ∞

are canceled by adding terms to the supergravity action that are localized on

the boundary at rΛ. Taking rΛ → ∞ then yields a finite action. The power law

behavior of solutions in the AdS case means that such counterterms have power-law

(and potentially logarithmic) dependence on rΛ. However, the super-exponential

growth (4.93) of the chiral modes requires the introduction of counterterms that

have a similar super-exponential dependence on the cutoff. Since the magnetization

required to induce chirality deforms the theory by an irrelevant operator, such

strong sensitivity is perhaps not surprising.

If the background remained unaltered by magnetization, the structure of coun-

terterms would represent a technically demanding but potentially surmountable

challenge to calculating correlation functions.12 However, the chirality-inducing

12For example, as developed in [183, 184], it is possible to calculate correlation functions in

the KT/KS theory [185, 138], even though the theory does not flow from an ultraviolet fixed

point.
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magnetic flux sources a large amount of D3-brane charge via the Chern-Simons

coupling
∫
C4 ∧ F2 ∧ F2: the dissolved D3-brane flux diverges as

∫

R<ρ

F2 ∧ F2 ∼M2ρ4. (4.96)

This is comparable to the D3-brane charge of the background when

ρ ∼ N1/4

M1/2
, (4.97)

at which point the influence of this charge on the geometry must be taken into

account. A calculation of correlation functions that fails to incorporate this back-

reaction is not physically meaningful.

One might ask whether a different choice of magnetization (still without a

localized source) results in a different conclusion. Supersymmetric fluxes supported

on the D7-branes are characterized by scalar hyperspherical harmonics — cf. (4.29)

— and so the fluxes grow as F2 ∼ rj+2Ω(j) + rj+1dr ∧ ω(j), where j = 0, 1, 2, . . .,

and Ω(j) and ω(j) are a 2-form and a 1-form on S3, respectively. Our analysis of

the magnetic flux (4.32) corresponds to the case j = 0. Other values of j would

lead to steeper potentials in (4.87), and so to a greater degree of localization of the

bifundamental wavefunctions. However, the charge carried by such flux diverges

more quickly than (4.96), growing as r2j+4, and hence the problem of ultraviolet

sensitivity is exacerbated.

4.4 Conclusions

In this note we analyzed the spectrum of mesonic operators arising from strings

stretching between intersecting D7-branes in AdS5 × S5. The dual field theory

is an N = 1 deformation of maximally supersymmetric SU(N) SYM, with the
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addition of a U(F1) × U(F2) flavor group, under which the 7-7′ strings transform

as bifundamentals.13 We considered D7-branes with and without magnetic flux on

the curve of intersection, finding sharply different results in these two cases.

The intersection of the D7-branes corresponds to a particular adjoint Higgsing

of the U(2) theory arising on coincident D7-branes. In the field theory, the fact

that the branes intersect is described by a marginal deformation. If the D7-branes

reach the origin of warping, and one furthermore makes the quenched/probe ap-

proximation that neglects backreaction of the D7-branes, then the dual theory is

conformal. In this case — where magnetization has not yet been incorporated —

we computed the spectrum of dual operators. The 7-7′ strings are mixtures of the

transverse deformations and the internal components of the gauge field, and as a

consequence the equations of motion are difficult to solve analytically. However,

conformal symmetry leads to a remarkable simplification of the equations of mo-

tion, through which we were able to find numerical solutions. The behavior of

the dimensions depends on the value of ξ ∼ tan θ
√
gsN , cf. (4.63), where θ is an

angle characterizing the intersection. Approximate spectra are given in (4.76). As

expected, the modes are well localized along the intersection of the D7-branes and

have power-law behavior along the holographic direction.

We then considered introducing magnetic flux on the curve of intersection,

leading to a chiral spectrum in the dual theory. The simplest magnetization cor-

responds to an irrelevant deformation of the theory, by an operator of dimension

∆ = 6. As a consequence, the non-normalizable solutions to the bifundamental

equations of motion have super-exponential divergence in the ultraviolet, cf. (4.93).

Although the limit (4.1) allows us to neglect the backreaction of the D7-branes

13For notational simplicity only, we limited our discussion to the case F1 = F2 = 1, corre-

sponding to a single pair of D7-branes.
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themselves, the backreaction of the D3-brane charge induced by the magnetic flux

cannot be neglected. Since the calculation of correlation functions, for exam-

ple through holographic renormalization, requires the use of the non-normalizable

modes, the procedure for calculating the correlation functions is unclear. This is

a physical limitation rather than a technical one: the divergence of the D3-brane

charge induced by magnetization of noncompact D7-branes signals the need for an

ultraviolet completion via compactification. In the dual language, the field theory

describing magnetized D7-branes does not flow from an ultraviolet fixed point.

On the other hand, we found that the normalizable modes of the chiral bifun-

damental mesons are very well localized in the infrared. Indeed, at large r,

U
(
µ; ν; 2Mr2

)
∼ r−µ, (4.98)

so that, when c1 = 0 in (4.90), the bifundamental modes exhibit a Gaussian

localization,

f± ∝ e−Mr2

, (4.99)

where we have again omitted power law factors and have chosen M > 0. Although

similar Gaussian peaks appear in flat space (see e.g. [175]), this feature in warped

space has the potential to provide a rich playground for model-building. In gen-

eral, the lack of knowledge of the metric and of related fields often stymies detailed

model-building in string compactifications. However, the metrics for infinite fam-

ilies of non-compact (and singular) Calabi-Yau cones are known explicitly. These

cones can be used to construct strongly warped geometries that can be attached to

compact spaces — see for example the discussion in [131]. Attachment to a com-

pactification modifies the solution in the cone region, by introducing sources for

irrelevant perturbations, but these effects can be incorporated systematically, as

in [151, 64]. One can therefore build a local model on D3-branes at the apex of the
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cone, but also take into account bulk effects, including supersymmetry breaking

and moduli stabilization. Constructions in this corner of the landscape are limited

to some degree by the possible singularities at the apex. An alternative, toward

which the present work is a modest advance, is to consider model-building on in-

tersecting magnetized D7-branes. Although the D7-branes will stretch beyond the

warped region into the bulk,14 we have demonstrated that at least some bifunda-

mental modes are well localized in the infrared. This allows for a combination of

the richness of model-building with intersecting D7-branes and the power of local

model-building in warped geometries. Although we limited our particular analysis

to AdS5×S5, the qualitative result should extend to more general cones and their

deformations (though the details, of course, become much more complex).

This localization also implies that although correlation functions are difficult

to describe, the mass spectrum of mesons can in principle be calculated with

reliable numerical techniques. When the D7-branes move away from the center

of AdS5, the spectrum of mesons becomes gapped even though, in the quenched

approximation, the glueball spectrum is continuous [126]. A standard method of

finding the meson mass spectrum in the gapped case is to calculate the correlation

functions and check for the appearance of poles. However, a practical alternative

is to find those solutions that satisfy appropriate infrared boundary conditions

and are normalizable in the ultraviolet (see, for example, [126, 186]). Because

the equation of motion constitutes a Sturm-Liouville problem, this alternative

approach leads to a discrete spectrum, and since the solutions are expected to

be exponentially convergent, the resulting spectrum would be reliable. On the

other hand, once the spectrum becomes gapped the radial and angular parts of

14Indeed, the consistency of embeddings in global models will provide constraints on which

models can be built.
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the equation of motion no longer separate, even in the unmagnetized case (4.58).

This is a significant complication, and so we leave this analysis to future work.

Yet another possibility is to consider alternative magnetizations. The mag-

netization that we analyzed in this note is the simplest unsourced magnetic flux

that is possible in our construction, and other unsourced magnetic fluxes would

enhance the bifundamental wavefunction localization that we found, while intensi-

fying the problem of ultraviolet sensitivity. Magnetic flux that is itself localized in

the infrared, and produces only normalizable perturbations to the geometry, would

require a local source. In particular, it was pointed out in [161] and explicitly shown

in [162] that the addition of anti-D3-branes to warped flux backgrounds provides

an infrared-localized magnetization. Although the resulting magnetization has a

gauge structure that differs from (4.32) — specifically, the induced magnetization

is proportional to the identity — this remains an intriguing possibility for future

work.

It is a pleasure to thank F. Marchesano and G. Shiu for useful discussions of

related topics. This work was supported by the NSF under grant PHY-0757868.

4.A Conventions for Fermions

In this appendix we summarize our conventions for fermions, many of which follow

from [187]. We work with a Weyl basis for the SO (9, 1) Γ-matrices and make use

of the decomposition SO (9, 1)→ SO(3, 1)× SO (6). For SO(3, 1) we take

γ0 =

(
12

−12

)
, γi=1,2,3 =

(
σi

σi

)
, (4.100)
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in which σi are the Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
. (4.101)

For SO(2k + 1, 1), we take the chirality matrix to be

γ(2k+2) = i−kd /volR2k+1,1 , (4.102)

where dvolM is the volume element on M

dvolM =
1

d!
εM1···Md

dxM1 ∧ · · · ∧ dxMd , (4.103)

in which ε01···(d−1) =
√− det g. For R3,1,

γ(4) = −iγ0γ1γ2γ3 =

(
12

−12

)
. (4.104)

The 4d Majorana matrix is

β4 = γ(4)γ
2 =

(
−σ2

σ2

)
. (4.105)

For SO (6), we define

γ̃4 =σ1 ⊗ 12 ⊗ 12, γ̃7 =σ2 ⊗ 12 ⊗ 12,

γ̃5 =σ3 ⊗ σ1 ⊗ 12, γ̃8 =σ3 ⊗ σ2 ⊗ 12,

γ̃6 =σ3 ⊗ σ3 ⊗ σ1, γ̃9 =σ3 ⊗ σ3 ⊗ σ2.

For SO (2k + 4), the chirality operator is

γ(2k+4) = i−kd /volR2k+4 , (4.106)

and so

γ̃(6) = −i γ̃1 · · · γ̃6 = σ3 ⊗ σ3 ⊗ σ3. (4.107)

The Majorana matrix is

β̃6 = γ̃7γ̃8γ̃9 = σ2 ⊗ iσ1 ⊗ σ2. (4.108)
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We will make use of a complex structure

zI = x3+I + ix4+I . (4.109)

Defining

σ± =
1

2

(
σ1 ± iσ2

)
, (4.110)

we have

γ̃1 =2σ+ ⊗ 12 ⊗ 12, γ̃ 1̄ =2σ− ⊗ 12 ⊗ 12,

γ̃2 =2σ3 ⊗ σ+ ⊗ 12, γ̃ 2̄ =2σ3 ⊗ σ− ⊗ 12,

γ̃3 =2σ3 ⊗ σ3 ⊗ σ+, γ̃ 3̄ =2σ3 ⊗ σ3 ⊗ σ−.

We can construct a basis of positive chirality spinors by first defining

η+ =

(
1

0

)
, η− =

(
0

1

)
. (4.111)

The positive chirality spinors are then

η0 = η+++, η1 = η+−−, η2 = η−+−, η3 = η−−+, (4.112)

in which

ηε1ε2ε3 = ηε1 ⊗ ηε2 ⊗ ηε3 . (4.113)

Note that σ±η± = 0, so that η+++ is annihilated by all contravariant holomorphic

γ̃-matrices.

Finally, we construct the SO(9, 1) Γ-matrices by

Γ̂µ = γµ ⊗ 18, Γ̂m = γ(6) ⊗ γ̃m. (4.114)

The chirality and Majorana matrices are

Γ̂(10) =Γ̂0Γ̂1 · · · Γ̂9 = −γ(4) ⊗ γ̃(6),

B̂10 =Γ̂2Γ̂7Γ̂8Γ̂9 = −β4 ⊗ β̃6. (4.115)
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We will make use of 32-component Majorana-Weyl spinors satisfying

Γ̂(10)θ = −θ, B̂10θ = θ∗. (4.116)

An example of such a spinor is

θ =

(
ξ

0

)
⊗ η −

(
0

σ2ξ∗

)
⊗ β̃6η

∗, (4.117)

where γ̃(6)η = +η.

We will also make use of double spinors built from pairs of 10d Majorana-Weyl

spinors

Θ =

(
θ1

θ2

)
, (4.118)

where both θ1 and θ2 satisfy (4.116). Γ̂-matrices act on double spinors as

Γ̂MΘ =

(
Γ̂Mθ1

Γ̂Mθ2

)
, (4.119)

while explicit Pauli matrices act to mix the elements of the double spinor. For

example,

σ1

(
θ1

θ2

)
=

(
θ2

θ1

)
. (4.120)

4.B Hyperspherical Harmonics

In this appendix we review a few properties of the hyperspherical harmonics on S3.

A useful parametrization of S3 is via the usual embedding of S3 into R4, ζ iζ i = 1,

where ζ1 . . . ζ4 are coordinates on R4. We take (as in, for example, [188])

ζ1 =r cos β cosφ1, ζ2 =r sin β cosφ2,

ζ3 =r cos β sinφ1, ζ4 =r sin β sinφ2, (4.121)
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with β ∈
[
0, π

2

]
and φa ∈ [0, 2π). The induced metric on S3 is

ds2
S3 = ğθϕdyθdyϕ = dβ2 + cos2 β dφ2

1 + sin2 β dφ2
2. (4.122)

The volume of S3 is

VS3 =

∫ 2π

0

dφ1

∫ 2π

0

dφ2

∫ π/2

0

dβ sin β cos β = 2π2. (4.123)

The scalar spherical harmonics satisfy the eigenvalue problem

∇̆2Y =
∂2Y
∂β2

+
(
cot β − tan β

)∂Y
∂β

+
1

cos2 β

∂2Y
∂φ2

1

+
1

sin2 β

∂2Y
∂φ2

2

= −λY . (4.124)

Taking the ansatz

Y = ei(m1φ1+m2φ2)y
(
cos 2β

)
(4.125)

gives

0 = 4
(
1− x2

)
y′′ − 8xy′ − 2m2

1

1 + x
y − 2m2

2

1− xy + λy, (4.126)

in which x = cos 2β. Imposing Neumann conditions so that a zero mode is admit-

ted, the solutions are given in terms of Jacobi polynomials P
(a,b)
r ,

Y`,m1,m2

(
β, φ1, φ2

)

= c`,m1,m2ei(m1φ1+m2φ2)
(
1 + cos 2β

)m1/2(1− cos 2β
)m2/2P (m2,m1)

r

(
cos 2β

)
, (4.127)

in which r = 1
2

(`−m1 −m2). For these to be non-vanishing regular solutions, r

must be an integer and

0 ≤
∣∣m1

∣∣+
∣∣m2

∣∣ ≤ `. (4.128)

These solutions satisfy

∇̆2Y = −` (`+ 2)Y , (4.129)

and the condition (4.128) gives the expected degeneracy of (`+ 1)2 (see, for exam-

ple, [181]).
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The Jacobi polynomials are orthogonal in the sense that

∫ 1

−1

dx
(
1− x

)a(
1 + x

)b
P (a,b)
r P (a,b)

s =
2a+b+1

2r + a+ b+ 1

(a+ r)! (b+ r)!

r! (a+ b+ r)!
δrs. (4.130)

Therefore the normalization condition

∫
dvolS3 Y∗`,m1,m2

Y`′,m′1,m′2 = δ`′`δm′1m1
δm′2m2

(4.131)

is satisfied by taking

c`,m1,m2 =
1

π

√
`+ 1

2m1+m2+1

[
1
2

(`+m1 +m2)
]
!
[

1
2

(`−m1 −m2)
]
![

1
2

(`+m1 −m2)
]
!
[

1
2

(`−m1 +m2)
]
!
. (4.132)

The Jacobi polynomials satisfy the useful recursion relationship

xP (a,b)
r (x) =

2 (a+ r) (b+ r)

(a+ b+ 2r) (a+ b+ 2r + 1)
P

(a,b)
r−1 (x) (4.133)

+
2 (r + 1) (a+ b+ r + 1)

(a+ b+ 2r + 1) (a+ b+ 2r + 2)
P

(a,b)
r+1 (x)

+
b2 − a2

(a+ b+ 2r) (a+ b+ 2r + 2)
P (a,b)
r (x) .
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