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Properties of superfluid 3He are greatly affected by proximity of surfaces and

disorder. In this work, we describe three different experiments for which we

use torsion pendulums to study the properties of the 3He fluid confined within

the torsion pendulum heads.

In the first two experiments, the fluid was embedded within anisotropic

aerogel samples. In one case, we compressed an otherwise isotropic 98% open

silica aerogel. In the other, we used a highly oriented, “nematically ordered”

aerogel sample, which represented the limit of extremely stretched aerogel. In

the third experiment, 3He was confined within a nanofabricated high aspect ra-

tion 1080 nm deep cavity formed between patterned silicon disc bonded to a

matching glass piece.

We obtained data for the superfluid fraction versus temperature for a num-

ber of pressures. We observe great modifications of the superfluid phase di-

agram for the confined fluid in all three experiments. The order parameters

for the A and B phases are distorted and the regions of stability for these

phases is drastically different compared to the bulk or previous experiments

with isotropic aerogels.

In particular, the highly anisotropic disorder provided by the “nematically

ordered” aerogel sample gives rise to a phase transition not seen in the bulk.

We argue that at low pressures in the temperature region near the superfluid



transition we observe a superfluid state that is closely related to Polar phase.

In the experiment in which we confined the fluid within the 1080 nm deep

cavity, we see an A to B phase transition at all experimental pressures. We,

however, do not observe any signature of a new superfluid state (Stripe phase),

which has been predicted to occur at the onset of the A to B transition.
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CHAPTER 1

INTRODUCTION AND OUTLINE

Around Thanksgiving of 1971, in a lab in the basement of Clark Hall, su-

perfluidity of 3He was first discovered by David Lee, Robert Richardson and

Douglas Osheroff [1]. Superfluid 3He exhibits some remarkable properties that

have made it such an interesting system to study. The rich physics of this ex-

traordinary state of matter led it to being recognized by the Nobel committee

which to date has awarded two Nobel prizes, in 1996 and in 2003 recognizing

researchers who have devoted their career on studying superfluid 3He.

Superfluid 3He has a p-wave fermionic pairing, and has proved to be a

model system for other p-wave fermionic systems such as SrRu2O4. Super-

fluid 3He also comes in multiple superfluid phases; it has proved to be valu-

able for studying materials that have multiple superconducting phases, such

as the heavy-fermion superconductor UPt3. Properties of superfluid 3He are

also highly tunable one can use pressure to change the stability of the different

superfluid phases and tune the superfluid transition temperature by approxi-

mately a factor of 2.5, from 0.9 mK at 0 bar to 2.44 mK at 34 bar.

Disorder and confinement are two other ways we can tune the properties of

the superfluid. The goal for this work is to elucidate how the properties of the

superfluid change when these two parameters are varied. Here I will describe

two types of experiments. In the first, 3He is confined within a highly porous

aerogel. The aerogel provides a way for us to engineer disorder into the system.

By either squeezing the aerogel, or by using an extremely anisotropic (nemati-

cally ordered) aerogel, we can introduce anisotropic disorder, which greatly mod-

ifies the superfluid phase diagram and the stability of the different superfluid
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phases. The superfluid order parameter is modified compared to the order pa-

rameter in the bulk, and when the fluid is confined within the nematically ordered

aerogel, at low pressures and at temperatures near the superfluid transition, a

new superfluid state, which is not realized in the bulk fluid, is observed.

In the second set of experiments, 3He is confined to a thin slab within a

nanofabricated cavity. The particular experimental results described here are for

a cavity with a depth of 1080 nm. The extreme confinement allows us to study

the surface properties of the superfluid, and the superfluidity of thin films. A

new superfluid state, which breaks translational symmetry, referred to as the

Stripe phase is predicted in such a geometry [48]. We aim to map the phase dia-

gram for the fluid within the 1080 nm slab and search for the Stripe phase.

The layout of this thesis is as follows:

In chapter 2, I will give a brief overview of the properties of bulk superfluid

3He and its various superfluid phases.

In chapter 3, I will review the theoretical predictions and previous experi-

mental results for the properties of the superfluid 3He confined within a porous

aerogel.

In chapter 4, I will review the theoretical predictions and previous experi-

mental results for the properties of the superfluid 3He confined within a thin

slab.

In chapter 5, I will discuss the details of the experimental setup used for the

experiments I have carried out, as well as the fabrication process for the type of

cells used to study the fluid under confinement.
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In chapter 6, I will present the experimental results and analysis for an ex-

periment looking at superfluid 3He embedded in a 10% uniaxially compressed

silica aerogel sample.

In chapter 7, I will present the experimental results and analysis for an

experiment studying the properties of superfluid 3He embedded in a highly

anisotropic nematically ordered alumina aerogel sample.

In chapter 8, I will present the results and the analysis for the most recent

experiment I carried out, in which the properties for the superfluid confined

within a 1080 nm nanofabricated cavity were investigated and will conclude

with a fairly brief discussion of future projects that this work has laid the ground

for.
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CHAPTER 2

SUPERFLUID 3HE

2.1 Fermionic Superfluidity. BCS theory

Helium comes in two distinct isotopes: 4He and 3He. Although the con-

densates of the two isotopes have similar properties at high temperatures, they

behave radically different at temperatures close to the absolute zero. 4He atoms

have integer spin, i.e. they obey Bose-Einstein statistics, thus at low tempera-

tures, we would expect to have large occupancy in the quantum ground state.

The model of an interacting Bose liquid qualitatively describes the lambda tran-

sition for 4He, which occurs at Tλ ∼ 2 K. Below the lambda transition, a fraction

of the fluid is in a superfluid state – a state which manifests itself by allowing

the fluid to flow with no dissipation, i.e. the viscosity of the fluid drops sharply.

In the superfluid state, we can describe the 4He atoms by a single wavefunction,

which defines the complex order parameter of the system.

Unlike 4He, the 3He particles have spin, which is equal to 1⁄2, are fermions,

and due to the Pauli-exclusion principle no two particles can be in the same

quantum state. At first glance, that would lead us to the conclusion that we

cannot have a superfluid transition in 3He. We know that this is not the case,

thus the mechanism for 3He superfluidity must be distinctively different from

that in 4He.

In normal 3He, at low temperatures, the quantum states with energy less

than the Fermi energy, εF , are occupied. The Fermi surface is simple. For 3He

it is a sphere. Since energy states deep into the Fermi sphere are surrounded by
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filled energy states, they lack available states in which they can scatter. Thus, the

properties of the fluid are determined largely by the particles with energy close

to the Fermi surface. Properties of normal 3He are described by the Fermi-liquid

theory [3], which models the strongly interacting system as a weakly interacting

system by replacing the 3He particles by quasiparticles with somewhat larger

mass.

To describe the superfluid state, we would make the analogy with another

well-known Fermi fluid the electrons in metals. Bardeen, Cooper and Schrieffer

proposed the BCS theory of superconductivity [4], by considering a small attrac-

tive interaction between the electrons in superconducting metals mediated by

their interactions with the crystal lattice. Below a critical temperature Tc, these

interactions become strong enough to precipitate the formation of Cooper pairs

– pairs of fermions that have an integer spin and are hence bosons. The fermions

that make up the Cooper pairs come from a narrow band near the Fermi level,

and due to the attractive potential form a pair with a total energy less than

2εF . It can be shown that Cooper pairs condense into a coherent quantum state,

which defines the superconducting condensate. Having particles near the Fermi

surface form Cooper pairs produces an energy gap for the density of states 2∆

centered at the Fermi level separating the filled from the unoccupied states. The

energy gap ∆ represents the minimum energy needed to break the pair. Excita-

tions with energy less than ∆ are not possible, so small enough currents will be

conducted without any resistance.

The mechanism for superfluidity in 3He is similar to the BCS mechanism

for electrons in superconducting metals. One major difference, however, is that

3He, being a fluid, does not possess a crystal lattice which would mediate the
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attractive interactions between the fermions. Attractive potential for the 3He

Cooper pairs is mediated through spin wave excitations [5]. Unlike ordinary

superconductors, where the Cooper pairs are in the spin singlet state (S = 0),

the nature of interactions for 3He force Cooper pairs to be in the spin triplet state

(S = 1). A theorem from quantum mechanics tells us that two fermion particle

states with an even spin quantum number, must also have an even orbital an-

gular momentum quantum number, while states for which S is odd, have l also

being odd [6]. This means that the Cooper pairs for 3He are in the ℓ = 1 state

(p-wave), rather than the ℓ = 0 (s-wave) state as for the ordinary BCS supercon-

ductors.

2.2 Superfluid Order Parameter

The spin triplet state consists of three possible spin states: |↑↑⟩, |↓↓⟩, or

1√
2
(|↑↓⟩ + |↓↑⟩). Therefore the wavefunction for the most general state of the

Cooper pairs is given by:

Ψ = ψ↑↑(k̂) |↑↑⟩+ ψ↓↓(k̂) |↓↓⟩+ ψ↑↓(k̂)(|↑↓⟩+ |↓↑⟩) (2.1)

where the unit vector k̂ defines a particular position on the Fermi surface. This

wavefunction can be represented in matrix form as:

Ψ̂ =

ψ↑↑ ψ↑↓

ψ↑↓ ψ↓↓

 (2.2)

Alternatively, Balian and Werthamer in [7] introduced a vector notation that

describes the wavefunction in even more convenient way. As described in Ref.

[5], we define a vector d, such that:

d(k̂) =
1

2
i
∑
αβ

(σ̂2σ)αβψαβ(k̂) (2.3)
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where σ is the Pauli vector and σ̂2 =
(
0 −i
i 0

)
is one of the Pauli matrices. Ref. [5]

shows that d(k̂) is related to the total amplitude of condensation of the Cooper

pairs at direction k̂ along the Fermi sphere. We refer to d(k̂) as the vector order

parameter of the superfluid condensate. The superfluid gap at each point on

the spherical Fermi surface has a magnitude proportional to
∣∣∣d(k̂)∣∣∣.

Let us evaluate eq. 2.3 explicitly for the three components of d(k̂). We obtain:

dx =
1

2

(
ψ↓↓ − ψ↑↑

)
(2.4)

dy =
1

2i

(
ψ↓↓ + ψ↑↑

)
(2.5)

dz = ψ↑↓ (2.6)

So, for Ψ̂ in terms of the components of d(k̂), we have:

Ψ̂ =

−dx + idy dz

dz dx + idy

 (2.7)

Finally, it is also useful to define a 3×3 matrix Â with components Aij such

that:

di(k̂) =
∑
ij

Aijk̂j (2.8)

The matrix Â is another way to represent the order parameter.

2.3 Ginzburg-Landau theory

The reason why we defined 3×3 matrix Â to describe the order parameter be-

comes apparent in the context of Ginzburg-Landau (GL) theory. Near Tc one can

describe the equilibrium superfluid state by finding the matrix Â, which mini-

mizes the appropriate expression for the Ginzburg-Landau free energy, which
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at zero magnetic field is given as [8]:

F = α

(
T − Tc
Tc

)
Tr(ÂÂ†) + β1

∣∣∣Tr(ÂÂT )
∣∣∣2 + β2

[
Tr(ÂÂ†)

]2
+β3Tr

[
ÂÂT (ÂÂT )†

]
+ β4Tr

[
(ÂÂ†)2

]
+ β5Tr

[
ÂÂ†(ÂÂ†)∗

] (2.9)

where α is related to the density of states at the Fermi surface, and ÂT refers to

the transpose matrix, ÂT – to the conjugate matrix, Â† – to the conjugate trans-

pose matrix. The exact values of the beta coefficients determine the structure of

the order parameter. In the limit of weak coupling between the quasiparticles

the beta coefficients can be calculated exactly and are given as [9]:

{β1, β2, β3, β4, β5} = {−1, 2, 2, 2,−2} × 7ζ(3)

120π2

N(εF )

(kBTc)2
(2.10)

Weak coupling limit is a good approximation when the fluid is not pressurized

(at saturated vapor pressure), but as we pressurize the fluid the strong coupling

corrections become important. The full dependence on pressure of the beta pa-

rameters has been inferred by combining the data from a number of experimen-

tal sources in Ref. [10].

The general form of the matrix order parameter is:

Â =


Axx Axy Axz

Ayx Ayy Ayz

Azx Azy Azz

 (2.11)

Depending on which among the values of Aij are nonzero we can have sev-

eral possible superfluid phases. In the following section we will describe four

possible states, only two of which are realized in the bulk.
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2.4 Superfluid states

2.4.1 A phase

Proposed first by Anderson and Morel in Ref. [11] and then refined by An-

derson and Brinkman in Ref. [12], the A superfluid state (also referred to in the

literature as ABM state after the last name initials of Anderson, Brinkman, and

Morel) has the following matrix order parameter:

ÂA−phase =

√
3

2
∆


1 i 0

0 0 0

0 0 0

 (2.12)

Since only the x-row of the matrix Â has nonzero entries, it follows from eq. 2.8

that only the x-component of d(k̂) is nonzero, with its value given as:

dx =

√
3

2
∆
(
kx + iky

)
(2.13)

Then from equations 2.2 and 2.7, it follows that ψ↑↑ = −dx, ψ↓↓ = dx, and ψ↑↓ = 0.

Then the wavefunction for this state is given as:

ΨA−phase = −
√

3

2
∆
(
kx + iky

)
|↑↑⟩+

√
3

2
∆
(
kx + iky

)
|↓↓⟩ (2.14)

We can see that the spins of the constituents of the Cooper pair are either both

up or both down. Thus superfluid A phase is an example of an Equal Spin

Pairing (ESP) state.

In terms of the magnitude for the gap at each point of the Fermi sphere, from

eq. 2.13 we infer that:∣∣∣d(k̂)∣∣∣ =√3

2
∆
√
k2x + k2y =

√
3

2
∆
√

1− k2z

=

√
3

2
∆
√
1− cos2 θ =

√
3

2
∆ sin θ

(2.15)
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Figure 2.1: Visual representation of the Fermi surface (solid purple) and
the superfluid gap (meshed surface) for the A phase.

We see that the value for the superfluid gap is anisotropic, and has nodes

at the two poles of the Fermi sphere. Visual representation for the superfluid

gap around the Fermi sphere is shown in Fig. 2.1. The anisotropy of the order

parameter would lead to anisotropy in the measured superfluid fraction – we

would measure larger superfluid fraction if we probe the properties of the su-

perfluid in the equatorial plane, compared to measuring the properties of the

superfluid along the polar axis. Furthermore, from 2.14 we see that the wave-

function is an eigenstate of the L̂+ = L̂x + iL̂y operator, so the pairs in the A

phase will posses an orbital angular momentum of ℓ = ~ pointing in the nodal

direction. For a superfluid sample, one can define its “texture” as the vector

field of ℓ along the sample.

2.4.2 B phase

The B phase (also referred to in the literature as the BW phase) was originally

proposed by Balian and Werthamer in Ref. [7]. In the bulk fluid B phase, the

matrix order parameter can be diagonalized and for the appropriate choice of
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Figure 2.2: Visual representation of the Fermi surface (solid purple) and
the superfluid gap (meshed surface) for the B phase.

the orthogonal x, y, and z axes has a form of:

ÂB−phase = ∆


1 0 0

0 1 0

0 0 1

 (2.16)

Then for the vector order parameter:

d(k̂) = ∆k̂ (2.17)

and for the P̂ si matrix, we have:

Ψ̂B−phase = ∆

−kx + iky kz

kz kx + iky

 (2.18)

Thus the wavefunction for the Cooper pairs in the B phase is given as:

ΨB−phase = ∆
(
−kx + iky

)
|↑↑⟩+∆

(
kx + iky

)
|↓↓⟩+∆kz

(
|↑↓⟩+ |↓↑⟩

)
(2.19)

As we can see all the possible spin state combinations are possible, unlike the

A phase. In terms of the size of the gap at any point of the Fermi surface, it will

be equal to
∣∣∣d(k̂)∣∣∣ = ∆ for all points. Visual representation of the superfluid gap
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around the Fermi sphere is shown in Fig. 2.2. The properties of the superfluid

are uniform in all directions in the bulk B phase. Also, unlike the A phase, there

is no angular momentum of the Cooper pairs in this state.

2.4.3 Polar phase

Let us go back to the form of the matrix order parameter of the A phase (Eq.

2.12). Now, let us allow the off-diagonal term Axy diminish to zero (from i in the

A phase). We have a smooth transition from A phase to what we refer to as the

Polar phase. We define the matrix order parameter for the Polar state as:

ÂPolar = ∆Polar


1 0 0

0 0 0

0 0 0

 (2.20)

This means that the vector dk̂ only has a component in the x̂ direction, dx =

∆Polarkx. Then the matrix P̂ si becomes:

Ψ̂Polar = ∆Polar

−kx 0

0 kx

 (2.21)

And the wavefunction for the Cooper pairs:

ΨPolar = −∆Polarkx |↑↑⟩+∆Polarkx |↓↓⟩ (2.22)

Thus the Polar phase, similarly to the A phase, is also an Equal Spin Pairing

(ESP) state. However, unlike the A phase, there is no angular momentum asso-

ciated with the Polar phase Cooper pair.

The magnitude of the superfluid gap along the Fermi surface is given as:∣∣∣dk̂
∣∣∣ = ∆Polar|kx| = ∆Polar cosα (2.23)
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Figure 2.3: Visual representation of the order parameter of the Polar phase

where α is the angle between the vector k̂ and the x-axis. Visual representation

for the superfluid gap for the Polar phase is shown in Fig. 2.3. We can see that

the two nodal points of the A-phase transformed into a nodal line connecting

them. If we call the two points of where the Fermi sphere intersects the x-axis

poles, then the nodal line is along the equator. Superfluid fraction measured in

the y-z plane will be strongly suppressed (but not entirely zero).

2.4.4 Planar phase

Finally, we consider a state that has two of the diagonal terms being nonzero,

and all the other terms of the matrix order parameter being zero:

ÂPlanar = ∆Planar


1 0 0

0 1 0

0 0 0

 (2.24)

Then for the vector d(k̂) we have:

d(k̂) = ∆Planarkxx̂ +∆Planarkyŷ (2.25)
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Then the magnitude for the gap at each point of the Fermi sphere can be inferred

as: ∣∣∣d(k̂)∣∣∣ = ∆Planar

√
k2x + k2y = ∆Planar sin θ (2.26)

The expression in 2.26 is exactly the same as 2.15 for the A phase. So just like in

the A phase, the superfluid gap distribution around the Fermi sphere is repre-

sented in Fig. 2.1.

For the Planar state the matrix P̂ si becomes:

Ψ̂Planar = ∆Planar

−kx + iky 0

0 kx + iky

 (2.27)

which gives for the Cooper pair wavefunction:

ΨPlanar = −∆Planar(−kx + iky) |↑↑⟩+∆Polar(kx + iky) |↓↓⟩ (2.28)

The Planar phase is also an Equal Spin Pairing (ESP) state like the A and Polar

phases, and like the Polar state it differs from the A phase in the fact that it has

no angular momentum associated with the Cooper pair state.

2.5 Calculating the superfluid fraction

Knowing the order parameter for the superfluid, and hence the superfluid

gap distribution above the Fermi sphere, we can calculate the superfluid frac-

tion in the plane of the torsion pendulum head starting from [8]:

ρ0n ij = 3ρ
⟨

k̂ik̂jY0(k̂, T )
⟩

k̂
(2.29)

ρn =
m∗

m

(
1+

1

3
F s
1

ρ0
n

ρ

)−1

ρ0n (2.30)
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where ρn and ρ0
n are 3 by 3 matrices with components ρn ij and ρ0n ij respectively,

m∗ is the renormalized mass of 3He quasiparticles, and F s
1 is the Landau pa-

rameter. Y0(k̂, T ) is the Yosida function, which is related to the energy density

distribution along the Fermi sphere, f :

Y0(k̂, T ) = −
∫ ∞

−∞
dϵk̂

(
∂f

∂Ek̂

)
(2.31)

with the information for the gap structure contained in ∂f/∂Ek̂. Torsion pendu-

lum experiments probe the superfluid fraction in the x̂ - ŷ plane. Thus, the

measured superfluid fraction is given by:

ρs in plane = ρ− ρnxx + ρn yy

2
(2.32)

2.6 Bulk superfluid phase diagram

Figure 2.4: Superfluid phase diagram of bulk 3He

Experimentally determined phase diagram for the bulk fluid is shown in

Fig 2.4. Values for the transition temperatures are taken from Ref. [13]. Most of
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it is occupied by the B superfluid phase, which is the equilibrium state at low

pressures. The A phase is stable at high pressures and at temperatures near the

superfluid transition temperature. Superfluid transition is a second order phase

transition, while the transition between the A and B phase is a first order [14]

and tends to supercool. There exists a polycritical point at which the superfluid

transition and A-B transition lines intersect at Ppcp = 21.22 bar. Polar phase and

Planar phase are not stable and have not been observed in the bulk.

The free energies of the bulk A and B phases are very close and the equilib-

rium state can be changed by applying moderate magnetic fields [15]. The field

creates an axis of anisotropy and hence promotes the stability of the anisotropic

A phase over the isotropic B phase. The field destroys the polycritical point and

the A phase is observed in a sliver near Tc all the way to 0 bar pressure. Very

close to Tc at high fields another state, referred to as A1 is realized, however,

discussion of this state is beyond the scope of this work.

2.6.1 Coherence length

Everything we have discussed so far is relevant for the bulk fluid far from

any surfaces. However, surfaces and confinement will modify the properties of

the superfluid as it will be shown in the following chapters.

The length scale at which the surface effects become important is related to

the superfluid coherence length, ξ(P, T ). The coherence length is related up to

a numerical factor to the average distance between two fermions in the Cooper

pairs. The coherence length parametrizes the length scale over which the order

parameter can exhibit significant changes.

16



Figure 2.5: Plot of the zero temperature coherence length versus pressure.

At T = 0 the zero-temperature coherence length is defined as:

ξ0(P ) =
~ vF (P )

2πkB Tc(P )
(2.33)

with vF being the Fermi velocity and Tc the superfluid transition temperature.

A plot for ξ0 versus pressure is shown in Fig. 2.5. Ginzburg-Landau theory

predicts that the coherence length should diverge near Tc as (1 − T/Tc)
−1/2, so

in accordance with Ref. [16], we can define:

ξtr(T ) =

[
7ζ(3)

20

]−1/2

ξ0

(
1− T

Tc

)−1/2

(2.34)

where the Riemann zeta function ζ(3) ≈ 1.2. We can also define the temperature

dependence of the coherence length by relating it to the size of the superfluid

gap of the B phase, as was done in Ref. [17]. Using the definition used by Lev

Levitin in Ref. [18], we can define:

ξ∆(T ) =
~vF√

10∆B(T )
(2.35)

The relationship between ξtr and ξ∆ is shown in Fig. 2.6
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Figure 2.6: Plot of the zero temperature coherence length versus pressure.
Courtesy of the supplementary information from Ref. [18].
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CHAPTER 3

3HE IN AEROGEL

3.1 Motivation: “Dirty” Superfluid

Bulk 3He is exceptionally pure and free of disorder. Unlike solid crystalline

samples, there is no crystal lattice, and hence there are no crystal lattice defects

can scatter the quasiparticles. By the time we reach the temperatures the exper-

iments with 3He are performed (< 100 mK), any other impurity that we could

have tried to mix in with the fluid would have long condensed at the walls of

the experimental cell. Due to different quantum statistics between 4He and 3He,

the solubility of 4He in 3He is vanishingly small at milli-Kelvin range tempera-

tures – about one mole in a volume as large as the observable universe [8], and

any appreciable amount of 4He would phase separate, leaving an exceptional

pure 3He phase.

Normally, disorder is a nuisance. It leads to troubles when comparing and

interpreting results from different experiments done on samples with varying

amounts of purity or defects, since material properties can be very sensitive

to disorder. For example, the onset of the superconducting transition and the

nature of the superconducting state in unconventional superconductors, such

as Sr2RuO4 and UPt3, are greatly affected by the presence of disorder [19, 20]. In

fact, the suppression of the superfluid transition temperature in these materials

by nonmagnetic impurities is a tell-tale sign for “exotic” non s-wave pairing

[21].

There are, however, compelling reasons to attempt introducing disorder in
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the otherwise pristine 3He. If we want to use 3He as a model system for uncon-

ventional superconductors then we might want to attempt to make the parallel

between the “dirty” superconducting samples and the superfluid 3He closer by

“dirtying” the superfluid. Moreover, the exceptional purity of the bulk fluid

provides an unique baseline system that can be compared to a subsequently

dirtied one to investigate exactly how the added disorder influences the super-

fluid properties.

At present, the only way to introduce disorder in 3He is by embedding the

fluid within a highly porous aerogel. First experiments investigating the prop-

erties of the aerogel embedded fluid – by Porto and Parpia at Cornell [22] and

by the Halperin group at Northwestern [23] revealed remarkable differences

compared to the properties of the bulk superfluid. Many more similar experi-

ments followed that explored the properties of the “dirty” superfluid. Ref. [24]

provides a comprehensive review of all recent experimental results.

3.2 Aerogel Structure

Aerogel samples tend to have a fractal-like micro structure composed of

highly interconnected strands [25]. For the majority of these experiments, the

aerogel samples are made out of silica and have densities ≈ 2% of the density of

solid silica. In other words, ≈ 98% of the space within the sample is occupied by

voids. An image of a silica aerogel sample is shown in Fig. 3.1 Typical size of the

aerogel strands is estimated to be a few nanometers (∼ 5 nm). Distance between

strands is of the order of ∼ 100 nm. The micro structure of the aerogels can
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Figure 3.1: Image of a silica aerogel sample. Courtesy of Ref. [25]

be accurately modeled using diffusion-cluster-aggregation (DLCA) models [26]

and experimentally verified through small angle X-ray scattering experiments

[26, 41]. Fig. 3.2, panel (a) shows results from the DLCA simulations from [26]

that accurately represent the correlated structure of the aerogel at small length

scales. Solid matter accumulates into interconnected filament like structures,

leaving large voids in between. This is contrasted in panel (b) with a randomly

assembled solid matter with the same final density that would not form such

correlated structure. An environmental ESEM image of a silica aerogel sample

taken from Ref. [27] is shown in Fig. 3.3 in which we can see the real micro

structure of the sample. Beyond the size of the aerogel strands and the typical

size of the voids, we can also define the aerogel correlation length ξa. The pa-

rameter ξa defines the length scale at which the structure of the aerogel becomes

inhomogeneous. For a typical silica aerogel sample ξa ∼ 50− 100 nm. .

Finally, the most important parameter that determines the behavior of the

embedded fluid is the mean-free path for the quasiparticles they travel before
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Figure 3.2: Panel (a) shows a 350 nm × 350 nm × 30 nm slice of a DLCA
simulation for the aerogel structure. At such length scales, the
inhomogeneity of the aerogel is revealed. Panel (b) shows a
slice of the same size for a simulation that assumes random
distribution of the solid matter. Courtesy of Ref. [26]

Figure 3.3: Environmental SEM image of a silica aerogel sample. Courtesy
of Ref. [27]
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they collide with an aerogel strand. A number of experimental properties, such

as spin diffusion, thermal conductivity and viscosity of normal 3He are directly

related to the mean-free path of the quasiparticles in the fluid. Transport mea-

surements in the normal Fermi liquid, such as spin diffusion [28, 29], thermal

conductivity [30, 31], and viscosity [32] reveal a crossover from a regime in

which the mean-free-path of the quasiparticles is determined by the elastic scat-

tering rate off other quasiparticles to a regime where the mean-free-path is de-

termined by the inelastic scattering rate off the aerogel strands. A relationship

for the mean-free-path exists of the form:

1

λeff
=

1

λqp−qp

+
1

λaerogel
(3.1)

Typical values for λaerogel for silica aerogels are of the order of 100− 200 nm.

3.3 Properties of the superfluid within the aerogel

In the 3He-aerogel composite system, the 3He quasiparticles are always

within a distance of the order of the coherence length away from an aerogel

strand. As will be shown in the next chapter, superfluid order parameter is sup-

pressed near a surface. If the aerogel strands acted like conventional surfaces the

superfluidity will be entirely suppressed. The reason why superfluidity persists

is due to the strands being much smaller than the coherence length. While we

can still observe superfluid order, the scattering from the aerogel strands will

lead to suppression of the superfluid gap. Ref. [33] theoretically calculated the

density of states versus energy for the embedded superfluid. Results from their

calculations are shown in Fig. 3.4. Two limits were investigated: Unitary – in

which the quasiparticles are strongly scattered off the aerogel strands, and Born
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Figure 3.4: Theoretical calculations of the density of states for ABM- and
BW order parameters with aerogel scattering. The mean-free
path is ℓ = 180 nm and the scattering is in both the unitary and
Born limits. Courtesy of Ref. [33]

– in which the scattering is weak. The real system will have properties between

these two limits. In all cases, the theoretical predictions reveal that a spectrum of

low energy excitations inside the gap appear. The presence of these “mid-gap”

states could lead to “gapless superfluidity,” a situation in which the density of

states does not go to zero in the superfluid gap above the Fermi surface, instead

the density of states at those energy levels is merely suppressed compared to

the density of states in the normal phase. Evidence for “gapless superfluidity”

and the modification of the superfluid gap by disorder has been demonstrated
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in thermal conductivity [34] and heat capacity measurements [35].

3.3.1 Superfluid phase diagram for 3He in anisotropic aerogel

Despite the difference between the aerogel samples in the different experi-

ments which mapped the “dirty” superfluid phase diagram, it is clear that the

phase digram is radically different from that in the bulk.

Superfluid transition is suppressed for the fluid embedded in the aerogel.

Theoretical models which have proved to well describe Tc-suppression ob-

served in various experiments is proposed in Ref. [36]. Superfluid transition

suppression is most sensitive to the ratio of the mean-free path of the quasipar-

ticles within the aerogel (λaerogel in eq. 3.1) and the zero temperature coherence

length (ξ0, see eq. 2.33 for definition). In fact, at low pressures where the zero

temperature coherence length grows larger, and hence λaerogel/ξ0 is smaller, su-

perfluidity may be entirely extinguished. For dense enough aerogels, evidence

for a quantum phase transition has been observed at T = 0 [37]. For pressures

below the quantum critical point 3He never becomes superfluid.

The regions of stability between the superfluid A and B phases are also

severely modified by the disorder. Fig. 3.5 shows the phase diagram that was

determined for a 98.2% open aerogel sample upon warming as reported by Ref.

[38]. We see that unlike in bulk upon warming the entire phase diagram is oc-

cupied by the B phase.

On the other hand, upon cooling the A phase appears in wide sliver at high

pressures which extends to pressures well below the pressure of the polycritical
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Figure 3.5: Phase diagram upon warming for a 98.2% open aerogel
isotropic silica aerogel sample. Aerogel was grown in North-
western University. Figure courtesy of Ref. [38]

Figure 3.6: phase diagram upon cooling for a 98% open silica aerogel
sample. Aerogel was grown in University of Delaware by the
group of N. Mulders. Figure courtesy of Ref. [39]
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point. The polycritical point is destroyed, there is a thin region of stability of A

phase all the way down to the lowest pressures for which superfluidity can be

observed. Fig. 3.6 summarizes the experimental phase diagram for a different

98% open silica aerogel sample upon cooling.

While metastability and supercooling of the A phase is observed in bulk,

the degree of hysteresis between cooling and warming is strongly enhanced by

the presence of disorder. In bulk, it is the B to A transition of warming that

occurs at the thermodynamically predicted temperature. Since A phase is not

observed on warming for isotropic aerogel samples, we can conclude that the

thermodynamically stable phase for all pressures and temperatures is only the

B phase. A phase is likely thermodynamically stable only in an extremely thin

sliver right below the superfluid transition, and its metastability is due to large

degree of supercooling.

3.4 Anisotropic disorder through aerogel compression

In the bulk, providing an axis of anisotropy via exposing the 3He sample

to magnetic field enhances the stability of the anisotropic A phase. We would

like to investigate whether providing an axis of anisotropy via the aerogel could

produce similar effect. Interest in such a system was spurred by Ref. [40]. It was

predicted that anisotropic disorder will stabilize the anisotropic A phase, and

this state will appear on both cooling and warming unlike the case of isotropic

aerogels. What sparked even more interest was the prediction that very close to

Tc, the Polar phase, a state not seen in the bulk, might be observed.

One way to produce anisotropy in the aerogel is to deforming it after its
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growth. Stretching the fragile sample is experimentally non-trivial, but large

degree of compression of the aerogel can be achieved post growth. Carefully

squeezing the aerogel by 10 - 20 % has been demonstrated to reduce the spac-

ing between the aerogel strands in the compression axis direction [41]. One can

achieve an equivalent stretching by radial compression; radial compression is

equivalent to an uniaxial stretching of a slightly denser sample. A number of

experiments by our collaborators at Northwestern University were done with

stretched samples. At Cornell, we concentrated our attention to studying a 10

% uniaxially compressed aerogel, for which we aimed to explore the phase dia-

gram.

The texture (vector field of the angular momentum vectors ℓ of the Cooper

pairs) of the supercooled superfluid A phase is predicted to be different for the

fluid embedded within the aerogel compared to the bulk fluid. In particular, G.

Volovik in Ref. [42] predicts that while the texture is oriented on short length

scales, no long range order exists for the direction of ℓ within the aerogel. This

is what is referred to as the Larkin - Imry - Ma (LIM) state, and represents a

glassy state for the spin/angular momentum orientation of the superfluid. This

prediction was experimentally verified in Ref. [43].

Volovik predicts that when axis of anisotropy is present by squeezing the

aerogel, the LIM state would be destroyed and the long range order restored.

Modeling the aerogel as a collection of rigid cylinders, he predicts that the the

axis of compression will provide an “easy axis” parallel to which the ℓ vector

will be oriented along. On the other hand, J. Sauls using symmetry arguments,

argues that the ℓ vector will orient itself perpendicularly to the axis of compres-

sion in the “easy plane” [44]. We would like to investigate which of these two
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Figure 3.7: a) SEM image in a plane parallel to the aerogel strands.
b) SEM image of the edge of the aerogel sample at the intersec-
tion of planes parallel and perpendicular to the strands.

models is correct.

3.5 Nematically ordered aerogel

A new type of aerogel recently became available. Unlike the aerogels we

have discussed so far, which were made from silica, this new type of aerogel is

composed of alumina strands. What is remarkable about it is that the strands

are all strongly oriented in a particular direction. Fig. 3.7 shows an SEM image

of the oriented alumina aerogel. The image shows the extremely anisotropic

structure of the aerogel. Because the aerogel is composed of long thin strands

all mostly parallel to each other, we refer to this type of aerogel as nematically

ordered aerogel.

The nematically ordered aerogel was grown by a group in Leypunsky Institute

for Physics and Power Engineering in Obninsk, Russia. This type of aerogel is
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also referred to by other references as the Obninsk aerogel. The aerogel is grown

by dissolving aluminum in molten gallium. Then by flowing water vapor over

the melt, the aluminum is oxidized and aluminum oxide strands are precip-

itated on the surface producing the nematically ordered aerogel structure. The

density of the aerogel sample that experiments in the latter part of this work

were carried on is ∼ 30 mg/cm3. The size of the alumina strands is ≈ 10 nm

and average distance between the strands is ∼ 100 nm. More information on

the method of growth and the physical properties of the Obninsk aerogel can be

found in Ref. [45].

We can consider this type of aerogel as the extreme case of the deformed

(stretched or compressed) aerogels considered in the previous section. In par-

ticular, the nematically ordered aerogel would correspond to the limit of nearly

infinite stretching.
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CHAPTER 4

CONFINED SUPERFLUID 3HE

We are interested in studying the effects of surfaces on the superfluid.

To do that we confine the superfluid 3He within nanofabricated geometries. In

this chapter, I plan to do a brief review of the expected modifications of the

order parameter imposed by being in the vicinity of a surface, the expected

modification of the phase diagram by the confinement and conclude with a brief

review of previous experimental results.

4.1 Superfluid order parameter near a surface

Shortly after the discovery of the superfluidity of 3He, Ambegaokar, de-

Gennes and Rainer considered the case of what happens to the superfluid order

near a surface [16]. They argued that the component of the vector order pa-

rameter d(k̂) perpendicular to the surface should be suppressed at the surface.

What happens to the components of d(k̂) parallel to the surface plane depends

on the surface specularity. A perfectly specular surface acts like a mirror – a

quasiparticle reflected off has its parallel component unchanged, and the com-

ponent perpendicular to the surface has its sign reversed. In the other limit, we

have diffuse reflection – the momentum of the reflected quasiparticle is random

after the reflection.

Since the B phase order parameter has nonzero values in all directions, in-

cluding perpendicular to the surface, the stability of the B phase will be dis-

rupted. The anisotropic A phase should occupy a much larger portion of the

phase diagram compared to the bulk. The angular momentum vector ℓ should

31



be oriented normal to the surface so that the node of the order parameter points

in that direction. In that sense, the texture of the superfluid will be locked.

To explore the quantitative surface effects on the order parameter, we would

like to rewrite the momentum unit vector k̂ in cylindrical coordinates. We

choose our axes, such that the z-axis is perpendicular to the surface, and the

angle ϕ is the azimuthal angle with respect to the y-axis. Then we have:
kx

ky

kz

 =


∆∥ sinϕ

∆∥ cosϕ

∆⊥

 (4.1)

The expressions for the Cooper pair wavefunction for the A and B phases re-

spectively (Eq. 2.14 and 2.19 ) become:

ΨA = i∆A
∥ e

−iϕ
(
|↑↑⟩+ |↓↓⟩

)
ΨB = i∆B

∥ e
iϕ |↑↑⟩+ i∆B

∥ e
−iϕ |↓↓⟩+∆B

⊥
(
|↑↓⟩+ |↓↑⟩

)
(4.2)

In the bulk ∆A =
√
3/2∆B and the values for the the parallel and perpendicular

components of ∆B are the same. Near a surface, however, the B-phase becomes

distorted and we expect that ∆B
⊥ < ∆B

∥ .

Calculations for the suppression of the components of the order parameter

near a surface for both A and B phases were done by Nagato, Yamamoto, Na-

gai in Ref. [46]. Their results are shown in Fig. 4.1. In their calculation they

use a diffusivity parameter W : W = 0 corresponds to specular surface, and

W = 1 corresponds to diffuse. We can see that the B phase should transform

into Planar phase at the surface and into a planar-distorted B phase away from

the surface. The effect of the surface is felt for about a distance of about five

coherence lengths.

More recently, Vorontsov and Sauls calculated the suppression of the order
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Figure 4.1: Order parameter near a surface. Parameter W refers to the di-
iffusivity of the surface; for specular reflection, we have W = 0;
for diiffuse W = 1.
Plot on the top: A-phase order parameter perpendicular to the
surface is zero. Parallel component is same as in bulk for spec-
ular, and suppressed near surface for diiffuse reflections.
Plot on the bottom: B-phase order parameter is suppressed
near the surface. The perpendicular component is enhanced
for specular, or suppressed for diffuse reflection. Near the sur-
face, it is always true that ∆⊥ < ∆∥ . Plot courtesy of Ref. [46].
ξ is a the temperature dependent coherence length.
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Figure 4.2: Order parameter values across a slab with one surface of the
slab being specular and the other being diffuse (red solid line)
or two specular surfaces (blue dashed line).
Calculation for a 10ξ0 thick slab and B phase fluid shown on
the left (panel (a)).
Calculation for a 8ξ0 thick slab and A phase fluid shown on the
right (panel (b)).
In all cases temperature is assumed to be 0.5Tc. Source: Ref. [2]

parameter components in two different geometries: a film bounded by a diffuse

and a specular surface (this would model a film adsorbed on a solid surface),

and a film bounded by two specular surfaces [2]. Their results calculated in the

weak coupling limit (zero bar) are shown in Fig. 4.2. Their results qualitatively

agree with the calculations in Ref. [46]
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4.2 Phase diagram for a thin slab

The experimental geometry we plan to study is that of 3He confined to a

high aspect ratio cavity with height D ≪ the width and length. The confined

fluid will have the shape of a thin slab. A simple schematic outlining the exper-

imental geometry is shown in Fig. 4.3.

As was shown in Eq. 2.33, the zero-temperature coherence length, ξ0 is pres-

sure dependent. Therefore, while the thickness of the slab D is fixed, we can

still vary the effective confinement D/ξ0 by varying the pressure. A phase di-

agram can be constructed by plotting the confinement parameter D/ξ0 on the

x-axis and the normalized temperature T/Tc on the y-axis. Such a phase dia-

gram, proposed by Vorontsov and Sauls [2], is shown in Fig. 4.4. In the figure

the superfluid transition temperature is marked as TAN . If the fluid is bounded

by a diffusive surface, one expects that the superfluid transition temperature

will be suppressed. A model for the superfluid transition temperature suppres-

sion was developed by Kjäldman, Kurkijärvi and Rainer (KKR model) [47]. For

films thicker than ∼ 6ξ0, bounded by two diffuse surfaces, they predict:

T slab
c = Tc exp

(
−π

2ξ20
D2

)
(4.3)

Figure 4.3: Schematic of the sample geometry. The fluid is confined to a
thin slab within a cavity with a thicknessD ≪ Width or Length.
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Figure 4.4: Phase diagram for the expected phase diagram for a slab with
thickness D at 0 bar pressure. The bottom axis represents the
degree of confinement parametrized by D/ξ0. Black solid line
separates the regions of stability for the A and B phases when
one of the surfaces is diffuse and the other specular. Solid ma-
genta line is for the case of two specular surfaces. Dashed pur-
ple line shows the superfluid transition suppression expected
for the case of one diffuse and one specular surfaces.
Inset shows an enlarged portion of the A-B phase boundary, at
the region where a reentrant A phase is predicted to appear.
Source: Ref. [2]

where T slab
c is the transition temperature for the confined fluid (same as TAN ),

and Tc is the bulk superfluid transition temperature. KKR model also predicts

that superfluid transition temperature would not be suppressed by specular

surfaces. The calculated values by Vorontsov and Sauls for a film with one dif-

fusive and one specular surface agree with the KKR model provided that the

thickness of the film is doubled. In other words, an adsorbed film on a solid

surface with one free surface is equivalent when it comes to Tc suppression to a

film twice the size confined between two diffusive surfaces.
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In the weak coupling limit, Vorontsov and Sauls predict that the A phase and

Planar phase will be degenerate, but the degeneracy is lifted in favor for the A

phase when strong coupling corrections are factored in. At any rate, the A phase

will be the only stable phase for thin slabs for all temperatures. As the thickness

of the slab is increased, the A - B transition is recovered, with the A phase being

the stable phase right below Tc and B phase appearing a lower temperatures.

The A to B transition temperatures are shown in Fig. 4.4. The stability of the

A phase is enhanced by having fully specular surfaces, that is because specular

surfaces should not affect the A phase order parameter, but still suppress the

B phase order parameter. A curious feature in the calculated values for TAB is

highlighted in the inset. At D/ξ0 ∼ 10 the A-B interface curves inwards, and if

we lower the temperature down from Tc we transition from the A to B phase,

only to transition from B to A phase again at lower temperatures. This is a really

unusual behavior and it points to an instability at the A-B interface.

4.2.1 Stripe phase

The instability at the A-B boundary prompted Vorontsov and Sauls to revisit

the problem a few years later. They predict that near the A-B transition line, the

translational symmetry of the superfluid state will be broken [48]. The calcu-

lations were done in the weak coupling limit (P = 0 bar) and for a slab with

one diffusive and one specular surfaces. Fixing ξ0 = 77 nm (the value for the

zero-temperature coherence length at zero bar), we can change the film thick-

ness D to explore the phase diagram. As before, for thick films the B phase is

stable at low temperatures. However, as the film thickness is decreased to a

value Dc1 , which is larger than the value Dc calculated in Ref. [2] for the A-B
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Figure 4.5: Components of the matrix order parameter (in units of 2πTc) in
the Stripe phase.
(a) Thickness of the slab D is such that Dc > D > Dc1 . Values
are shown for a slice 2.5ξ0 over the surface.
(b) Thickness of the slab D is such that Dc2 > D > Dc. Values
are shown for a slice 2.4ξ0 over the surface.
Calculation done in the weak coupling limit (0 bar). Tempera-
ture is 0.5 T/Tc. Source: Ref. [48].

phase boundary, the B phase transforms into a state that consists of multiple de-

generate domains of B phase. We refer to this state as Stripe phase. This state, in

analogy with the FFLO state seen in exotic superconductors [49] breaks transla-

tional symmetry. Domain walls are expected to intercede the sample separating

regions that differ through the sign of ∆B
⊥ in Eq. 4.2. A visual representation

of the components of the matrix order parameter Aij in the region between Dc1

and Dc is shown in Fig. 4.5a. The typical size of the domains is ∼ 1 − 10 µm,

and they are separated by a domain wall to which a non-B-like state is bound

to. Domain walls have energy cost associated with them; this is the reason you

don’t have multi-domain samples in bulk. In thin slabs, having a non-zero order

parameter component directed at the surface also costs energy; the presence of

domain walls reduces that cost for a spatial distance of a few coherence lengths
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around the wall. A simple explanation for why the Stripe phase could be stable

in the thin slab geometry is that for thin enough samples, this reduction of the

energy cost is greater than the energy cost due to the existence of the domain

wall.

Moving on to thinner slabs, the domain sizes get smaller as we approach the

thickness Dc and for samples with thicknesses D, such that Dc < D < Dc2 , we

don’t have well defined domains anymore, but rather a sinusoidal variation of

the order parameter with a period of ∼ 30ξ0 (see Fig. 4.5b).

A refinement on the previously calculated phase diagram for the slab is

shown in Fig. 4.6. In the plot the region of stability for the Stripe phase at the

onset of the A-B transition is indicated. The calculation was done in the weak

coupling limit and assumed that at least one of the surfaces of the slab is specu-

lar. Recently, Josh Wiman together with James Sauls has redone the calculations

by accounting for strong coupling corrections and allowing both bounding sur-

faces to be diffuse scatterers. [50]. Above 5 bar pressure, strong coupling correc-

tions destroy the Stripe phase. Maximum pairbreaking, highly diffusive surfaces

would destroy the Stripe phase, but the Stripe phase survives some moderate de-

gree of diffusivity of the surfaces, though the width of the region of stability of

the Stripe phase will be somewhat reduced [51]. In order to test if this model

is correct we need to look at a slab that has an A-B transition at low pressures

and has sufficiently smooth surfaces. Surfaces can be made more specular by

preplating with 4He [52].
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Figure 4.6: Refined prediction for the phase diagram for thin slabs of su-
perfluid 3He. Calculation is done in the weak coupling limit
(0 bar), and assumes at least one of the surfaces is specular.
Source: Ref. [48]

4.3 Surface states. Majorana fermions.

A superfluid gap is suppressed near a surface through the emergence of

energy states within the superfluid gap. These states occur due to the chang-

ing of the sign of the order parameter normal to the surface upon reflection of

quasiparticles. In the literature, these states are often referred to as Andreev

bound-states. The emergence of mid-gap energy states is similar to the case of

3He in aerogel we discussed in section 3.3. The difference between the two cases

comes in when we consider the exact profile for the density of states. Exact cal-

culation for the density of states at the superfluid gap when the fluid is near

both a specular and a diffuse surface was done first by Nagato, et. al. in Ref.

[46] and then by Vorontsov and Sauls in Ref. [2].
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The case for 3He near a specular wall is particularly interesting: the energy

of the Andreev bound-states can be shown to be of the form[53, 54]:

EABS = ±∆

kF
k∥ (4.4)

Here the positive sign is for spin up quasiparticles and the minus sign is for spin

down quasiparticles. In three dimensions the energy spectrum for the states

bridging the superfluid gap will look like a cone with its vertex at the Fermi

surface. It can be shown that in the context of the second quantization formal-

ism, the creation operator for a quasiparticle with momentum component equal

to k∥ is equavilent to annihilation operator for a quasiparticle with a momentum

component of −k∥ and opposite spin [53]. At the vertex of the cone, there is only

one state – it has the Fermi energy, and value for the parallel component of the

momentum being zero. In that case the creation and annihilation operators for

that state become equal to each other. This will be an example of a fermionic

state that is its own anti-particle – a state referred to as Majorana Fermion.

The existence of Majorana states that bridge the superfluid gap was shown to

be a direct consequence of the topology of the system by Salomaa and Volovik in

Ref. [55]. 3He near a surface is an example of a topological state of matter, and is

part of a larger class of systems that exhibit similar physics, such as topological

insulators and topological superconductors [56].

The thin slab geometry described in this work could potentially open the

door to study the surface effects of the superfluid near a controlled surface and

within a controlled geometry. In particular, the surface states will have a defi-

nite signature in the thermal conductivity across the slab, and in the measured

superfluid fraction [57]. In bulk B phase, the majority of the fluid is in the super-

fluid state below 0.5Tc, and for 0 < T < 0.5Tc, the normal fraction decreases ex-
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ponentially [8], whereas in the slab due to the contribution of the surface states,

the normal fraction is predicted to decrease as T 3. Measuring the superfluid

fraction at very low temperatures in such confined geometries can provide a

direct test for the existence of the Majorana states near the surface.
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CHAPTER 5

EXPERIMENTAL SETUP AND FABRICATION OF THE CELLS

In the three experiments described in this work, the fluid is confined

within the head of a torsion pendulum. The pendulum is mounted on top of a

PrNi5 / Copper hybrid nuclear demagnetization stage, which is situated within

a 7 Tesla superconducting magnet. The stage can be precooled to a base tem-

perature of ∼ 7mK by a custom modified SHE dilution cryostat. To cool to

sub-mK temperatures, one needs to disconnect the demagnetization stage from

the cryostat via a superconducting heat switch and then ramp down the field.

5.1 Torsion pendulum setup

Torsion pendulum experiments have been instrumental in studying the su-

perfluid fraction of helium. The normal state of 3He fluid has large viscosity

near the superfluid transition (∼ 1 Poise). Viscous penetration depth, δ, which

is the lengthscale over which the velocity of the fluid can change is given as:

δ =

√
2η

ωρ
(5.1)

with η and ρ being the viscosity and the density of the fluid, and ω the angular

frequency the fluid oscillates. For acoustic frequencies (∼ 500−2000 Hz), typical

for torsion pendulum experiments, δ is of the order ∼ 100 − 500 µm, a distance

much larger than the distance between the strands of the aerogel or the size of

the cavity defining the thin slabs. In all of these cases, the normal fluid should

be well-clamped. On the other hand, the superfluid fraction will be decoupled

from the pendulum due to its zero viscosity. As we go below the superfluid

transition temperature, the total moment of inertia of the pendulum will de-
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crease, and thus the pendulum’s period will decrease. If the fluid is confined

within a rotationally symmetric container, then the superfluid fraction can be

determined by measuring the period of the torsion pendulum period shift ∆P

through the following expression:

ρs
ρ

=
∆p(T )

∆pmax

(5.2)

In this expression, ∆p(T ) = p0(T )−p(T ), where p0 is the period of the pendulum

when all of the fluid is fully coupled, and p is the measured period. ∆pmax is de-

fined as the difference between p0 and the period of the empty cell pempty. Since

the viscosity of the fluid is largest at Tc, typically ∆pmax = p(Tc) − pempty(Tc).

One, however, needs to account for the empty cell period dependence on tem-

perature, when ∆p(T ) is calculated.

Schematics and photographs of the torsion pendulums used for the three

experiments described in this thesis are shown in Fig. 5.1, Fig. 5.2, and Fig. 5.3.

The pendulums are made of three main components: the torsion rod which also

serves as a fill line, the experimental cell in which the fluid is contained, and two

magnesium alloy wings mounted on the body of the torsion rod. The mirror-like

polished magnesium wings are used to capacitively drive the pendulum into

resonant motion, and to capacitively detect the motion. The wings are attached

to the body using Stycast 1266 epoxy impregnated cigarette paper. That way

they are electrically isolated from the body of the pendulum. Bias wires are

attached to the wings using silver paint. A set of two matching electrodes is

positioned very close to the wings of the pendulum. Bias voltage of 50 − 100 V

was established between the electrodes and the pendulum wings, provided by

a battery pack on the top of the cryostat.

Technical drawings showing the exact dimensions for the torsion rods are
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Figure 5.1: (a) 3D-rendering of the squeezed aerogel pendulum setup.
(b) Photograph of the squeezed aerogel pendulum.

Figure 5.2: Photographs of the torsion pendulum used to study superfluid
3He embedded in nematic aerogel. Photographs were taken
with the pendulum at the lab bench, and show it from the side
(a) and looking down its head (b). The blue cube visible in (b)
is where the nematic aerogel sample is located.
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Figure 5.3: (a) 3D-rendering of the pendulum used to study confined su-
perfluid 3He within a 1.08 µm slab.
(b) Photograph of the pendulum setup as it is mounted on the
cryostat. (c) Photograph of the pendulum, resting on its head
on the lab bench.

shown in Fig. 5.4, Fig. 5.5, and Fig. 5.6. The torsion rod for the squeezed

aerogel experiment was made from beryllium-copper alloy, but due to its strong

temperature dependence of the elastic properties of beryllium-copper at low

temperatures, the subsequent torsion rods for the nematcally ordered aerogel

and the thin slab cell were made from coin silver (90% silver, 10% copper). All

the torsion rods were thermally annealed after machining to relieve any built-in

stresses and reduce the number of defects. A torsion pendulum made with a

well-annealed torsion rod will have significantly higher quality factor, Q, and

thus will give us higher frequency resolution.

5.1.1 Annealing recipe for coin silver

The annealing recipe for the coin silver torsion rods was the following:
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Figure 5.4: Drawing showing the dimensions of the torsion rod used in
the experiment in which we study superfluid 3He embed-
ded in squeezed silica aerogel. The torsion rod is made from
beryllium-copper alloy

Load the torsion rods in a vacuum tube furnace, and pump to ∼ 10−6 Torr.

Then ramp up the temperature from room temperature to 600 ◦ C at a rate of

20 ◦C/min. Once that set point is reached, ramp the temperature up to 700 ◦C at

5 ◦C/min. Finally, set the temperature to 727 ◦ C, with a ramp rate of 1 ◦C/min.

Hold the torsion rod at 727 ◦ C for two hours, before turning off the furnace and

let it come back to room temperature overnight.

At these temperatures coin silver gets really soft and if it is not supported

correctly it will sag due to its own weight. One needs to carefully position the
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Figure 5.5: Drawing showing the dimensions of the torsion rod used in
the experiment in which we study superfluid 3He embedded
in nematically ordered aerogel. The torsion rod is made from
coin silver.

torsion rod withing a specially machined macor support so that its weight does

not exert any torque on the structure.

Properly annealed torsion rod should allow the torsion pendulum to have

a quality factor of ∼ 106 at milli-Kelvin temperatures, which translates to a fre-

quency resolution in our experiments in the range of 1 : 108 − 109.

48



Figure 5.6: Drawing showing the dimensions of the torsion rod used in the
experiment in which we study superfluid 3He confined within
a 1.08 µm cavity. The torsion rod is made from coin silver.
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Figure 5.7: A schematic for the setup through which the pendulum is ex-
cited and through which its resonant motion detected.

5.2 Data acquisition setup

The output of a function generator was divided further by a resistive volt-

age divider to achieve amplitude of < 1 mV. The drive signal was fed into the

drive electrode, which is biased with respected to the wings of the pendulum.

The motion of the torsion pendulum would cause change in the capacitance be-

tween the detect electrode and the other wing of the pendulum. This generates

a small ac-voltage which is fed into a pre-amplifier outside of the cryostat. To

reduce noise in the signal we feed the output from the pre-amplifier to a narrow

band-pass filter. The signal is then fed into the input of a dual-phase lock-in am-

plifier. The lock-in splits the signal into a component in-phase and out-of-phase

with the drive. These two values are averaged over a period of a minute. The

experimental setup is controlled by LabView virtual instruments, which also

record and process the data. A simple schematic of the experimental setup is

shown in Fig. 5.7.
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We aim to measure the resonant frequency of the pendulum and its quality

factorQ versus temperature. To do that we use the following scheme. We sweep

the driving frequency across the resonance for a fixed temperature, T0, to obtain

a resonance curve. By fitting to that curve, we can find the quality factor at

this temperature, Q(T0). We can also plot the values of the out-of-phase compo-

nent of the signal (Y ) versus the values of the in-phase component (X). Such a

plot (Nyquist plots) forms a circle with a diameter equal to the signal amplitude

at resonance, A, centered at (A/2, 0). The high quality factor of the pendulum

means that the time constant with which transients die out is long, and it takes

hours to obtain a good frequency sweep. It is clear that doing frequency sweeps

and finding the resonant frequency, fres, and quality factor,Q, for each of them is

impractical. Instead, we obtain the values for fres and Q by inferring them from

the values of Y and X while driving the pendulum at a frequency near the res-

onant frequency. Using geometrical arguments, and knowing the relationship

between the phase of the response versus the drive frequency near resonance,

we can derive the following relationships:

fres = fdrive

[
1 +

Y (T )

2QX

]
(5.3)

Q =
Vdrive(T0)

Vdrive

Q(T0)

A(T0)

X2 + Y 2

2X
(5.4)

where Q(T0), A(T0) were determined from the sweep at the fixed temperature

T0. Since it is possible that the resonant properties of the pendulum are depen-

dent on its amplitude (due to nonlinear terms in restoring force), we adjust the

drive amplitude to keep the signal amplitude within a predetermined range.

We also adjust the drive frequency periodically so that it is close to the resonant

frequency at all times.
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5.3 Resonant modes of the pendulums

The pendulums have two torsion rods with a wide body holding the wings be-

tween them. The extra torsion rod acts as a further mechanical isolator that

filters the vibrations coming from the base of the pendulum towards the head.

Because of the torsion rods, there are two torsion resonant modes for the pen-

dulums.

The first resonant mode is the symmetric mode in which the wings and the

head move in phase and the node in the angular velocity is at the bottom tor-

sion rod. The frequency of that mode is determined by the restoring force com-

ing from the lower torsion rod and the net moment of inertia of both the body

plus the wings and the head, i. e. roughly the moment of inertia of the whole

pendulum.

The second resonant mode is the antisymmetric mode in which the wings

and the head move out of phase. The node in the angular velocity is at the

upper torsion rod. The frequency of the antisymmetric mode is determined

by the restored force from the upper torsion rod and the moment of inertia of

the head. As long as the moment of inertia of the body plus wings is much

larger than the moment of inertia of the head, it contributes little to the resonant

frequency of the antisymmetric mode.

To determine the effect of any changes of the moment of inertia of the fluid

within the head one needs to divide that change by the moment of inertia of

the head in the antisymmetric mode and by the moment of inertia of the whole

pendulum in the symmetric mode. Change of the resonant frequency of the an-

tisymmetric mode is significantly more sensitive to the shifts in the inertia of the
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fluid compared to the symmetric mode, because the inertia of the head is lower

and also the noise of the antisymmetric mode is lower than the corresponding

values for the symmetric mode.

In addition to the torsion modes of the pendulum, it can also have a number

of “floppy” modes, in which there is a sideways bending motion within the tor-

sion modes. These modes are not useful for the study of the superfluid, because

even when the viscosity of the superfluid decreases to zero, the superfluid is

still clamped to the torsion pendulum head by the walls of the cell.

During the design of the pendulum, we aim to characterize the resonant

modes. We can do that by modeling a 3d-sketch of the pendulum in SolidWorks,

and run a dynamic simulation that finds the first few resonant modes. We take

note which two modes are the torsion modes and make sure they are far in

frequency from the other “floppy” modes.

5.4 Thermometry

Primary thermometer was provided through a 3He melting curve thermome-

ter (MCT) cell. The cell has a solid 3He plug coexisting with molten liquid. The

melting pressure of 3He depends strongly on temperature in the range from 1 K

to 0.905 mK. Measuring the pressure in the MCT cell using a capacitive pressure

gauge we can find the temperature with accuracy up to less than 0.001 mK. At

0.905 mK, the crystal lattice ordering in the solid changes, and the melting pres-

sure dependence on temperature becomes a lot smaller, hence the temperature

noise increases. The melting curve thermometer is useful down to ∼ 0.3 − 0.4

mK.
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The main problem with the melting curve thermometer is that it is not in

direct contact with the helium in the experimental cell, but rather measures the

temperature of the nuclear demagnetization stage. The stage is thermally cou-

pled to the fluid via silver sinter heat exchangers, which have thermal boundary

resistance to the helium varying as T−3. At low temperatures the thermal time

constant between the MCT and the fluid can be significant.

To remedy that, a quartz tuning fork immersed in the 3He fluid, which al-

lows for a more immediate reading of the temperature of the 3He within the pen-

dulum. The fork is either continuously swept through resonance or run through

a digital phase-locked-loop the same as the torsion pendulum. Due to the rapid

change of density and viscosity of the fluid below the superfluid transition, the

fork’s resonant frequency and quality factor can be related to the temperature of

the fluid. Thus, the quartz tuning fork can be used as a secondary thermometer,

especially useful in the superfluid state.

5.5 Making the aerogel cells

5.5.1 Compressed aerogel

A 98% open silica aerogel was grown directly into a pillbox shaped stainless

steel cavity consisting of a tightly fitted lid, a base and a shim inserted between

them. The aerogel was then compressed by 10% along its main axis by removing

the shim and pressing the lid onto the base, bringing the height of the cell to 400

µm. The height was chosen to be small enough to couple the aerogel well to the

walls (though aerogel displacement relative to the walls of the cell still needs
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to be considered), but large enough to ensure fine resolution in determining the

fraction of superfluid. The moment of inertia of the torsion head and aerogel

filled cell is calculated to be 0.064 g-cm2 and that of the helium at saturated

vapor pressure – 5.85×10−5 g-cm2, or about 1 part in 103 of the inertia of the

head.

The steel cavity was dry fitted into an already hardened epoxy cast in or-

der to reduce possible contamination of the aerogel by any epoxy penetrating

through holes in the stainless pillbox. Despite careful machining of the epoxy

cast, there appeared to be empty regions around the periphery of the cell occu-

pied by 3He not embedded in the aerogel (bulk fluid). In addition, we need to

consider the bulk fluid within the fill line inside the upper torsion rod in our

subsequent analysis.

A schematic of the torsion pendulum head is shown at Fig. 5.8. The locations

of the inferred bulk fluid regions are also indicated.

5.5.2 Nematic aerogel

The aerogel sample was carefully cut using thin razor blades into the shape

of a cube with sides of about 5 mm and coated with epoxy. Two L-shaped pieces

of hardened Stycast 1266 epoxy were coated with Tra-bond 2151 epoxy (blue in

color) and brought into contact with the aerogel cube. Tra-bond 2151 epoxy

has very high viscosity and forms high contact angle with the aerogel surface,

which prevented the epoxy from being drawn into the aerogel voids by capillary

action. After hardening of the epoxy, the remaining aerogel surface was coated

with another layer of Tra-bond 2151. The rest of the torsion pendulum head was
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Figure 5.8: A schematic for the head of the torsion pendulum which con-
tains the uniaxially compressed silica aerogel sample (shown in
blue). The rest of the pendulum head is made from hardened
Stycast 1266 epoxy, and the torsion rod made from beryllium-
copper alloy.

made from Stycast 1266 hardened epoxy shell. The coated aerogel was inserted

into the shell, and newly mixed Stycast was poured in to fill all the voids and

complete the pendulum head.

5.6 Making the nanofabricated cavity cell

To make the cell in which we confine the fluid, we bond a pre-cut piece of

glass to a patterned piece of silicon in which the cavity is defined and etched.

An image of the completed cell is shown in Fig. 5.9.
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Figure 5.9: (a) The torsion pendulum head in which the fluid is confined
within is made by bonding a patterned disk-shaped piece of
silicon and an octagonal piece of smooth glass
(b) The completed cell. The cavity in which the fluid is con-
tained can be seen easily due to light interference.

5.6.1 Outline of the process flow

We used the tools at the Cornell Nanoscale Science and Technology Facility

(CNF) to make the experimental cell.

An important consideration in the beginning of the process is choosing the

right wafers from which to make the cells. For the silicon part of the cell we

used a double sided polished silicon wafer ([100] crystal orientation). We want

the cell to be able to withstand significant pressure without excessively bowing

and deforming its shape, so we needed to use the thickest wafers feasible. In a

previous round of fabrication, 3 mm thick wafers were used, but these proved

to be really hard to work with. Instead, 1 mm thick wafers were used for the

assembly (to the point of anodic bonding) of the cell described in this work. This

allowed us to use the tools at CNF without limitations and complete the entire

cell inside the CNF clean room.
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The fabrication process can be broken into five major steps. First, create the

step in the silicon surface for the cavity. Second, etch through the fill line hole

and the backside concentric circles to ease the epoxy keying in. Third, polish

and cut the glass. Fourth clean and prepare the surfaces, and then bond the

silicon and the glass to complete the cell. Final step is to deposit a thick film of

silver which is expected to help with thermalizing the silicon and glass at ultra-

low temperatures. A detailed sketch of the process flow is shown if Fig. 5.10.

Each step is described in more details in the following subsections.

5.6.2 Cavity design

In each four inch wafer we fitted sixteen cells in a four by four pattern. Each

cavity has a diameter of 11 mm. At the middle of the cavity sits the fill line which

is a 335 µm through hole. To reduce bowing and prevent collapse of the cavity

during bonding, we have designed a C-shaped region around the middle of the

cell at which the silicon is bonded to the glass just like it is outside of the cavity.

The outer diameter of the C-shaped region is 4 mm and the inner diameter is

1.5 mm. Thus, the cavity from which the superfluid signal comes from (main

experimental cavity) has an annulus shape of inner diameter of 4 mm and outer

diameter of 11 mm. The central region where the fill line is located is connected

to the main experimental cavity through a channel of 1.25 mm length and 0.6

mm width.

To ensure structural integrity and leak-tightness of the cell, the diameter of

the silicon disk that makes the cell needs to be somewhat larger than the outer

diameter of the annulus comprising the cavity, so that there is enough area of
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Figure 5.10: Detailed step by step description of the steps required to fab-
ricated the 1.08 µm cavity cell.
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silicon and glass bonded around the cavity. We chose the diameter of the silicon

disk to be 14 mm.

In order to separate the silicon disks from the four inch wafer, we etched

through two arcs around each cell. This way the silicon disks were connected to

the main wafer only through two small bridges. In order to separate the disks

from the main wafer we made a scribe mark using a diamond scriber at those

bridges and push on the disk to break the bridges.

Figure 5.11 shows the pattern of the four by four cells on each wafer. The

green color shows the places where the 1.08 µm recess for the cavity is. Purple

shows the two etched through arcs around each silicon disk, which define the

circular shape of each silicon piece. Not shown in this zoomed out figure are the

fill line holes at the center of each cavity.

Figure 5.12 shows the area near the fill line at each cell in more detail. The fill

line hole is shown in blue. A series of concentric circles that are on the backside

of the silicon wafer surface are shown in dark yellow. These concentric circles

are each 20 µm thick and are spaced 20 µm apart. This pattern is on the outside

surface of the cell and is etched ∼ 20 µm deep. It is intended to provide a larger

surface area in which the epoxy connecting the coin silver torsion rod and the

cell can key in.

5.6.3 Step creation for the cavities

We made the step in the silicon surface which produces the experimental

cavity upon bonding by using a modified local oxidation process. The goal is to
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Figure 5.11: An overview of the pattern on each silicon wafer. Green layer
is the layer of the cavities, purple is etched through the wafer.
Not shown at this scale the through hole for the fill line and
the backside concentric circles.

oxidize the silicon surface in the cavity area deeper than the region outside the

cavity. That way by removing all oxide, we are left with a recess in the silicon

surface. We could have etched the silicon surface using Reactive Ion Etching,

however, this would have produced a much rougher surface at the bottom of

the cavity and also would have resulted in significant variations of the cavity

depth across the wafer and also across a single cell. Cavity depth uniformity

and surface smoothness are extremely important for the proposed experiment.

The first step of the process involved covering the surface of the wafer with
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Figure 5.12: A closer view of the center of each cavity. Shown are the fill
line (blue) and the backside concentric circles pattern (dark
yellow).

a thick oxide. The thicker the oxide, the easier would be to create a deeper

cavity in the second oxidation step. About 2.5 - 3 µm of oxide was grown on

the wafer surfaces by oxidizing them for 12 hours at 1200 ◦ C in an atmospheric

furnace. Hydrogen and oxygen (no HCl) were flowed into the furnace tube,

providing the necessary conditions for wet oxidation. As the film thickness

increases, the rate of the thermal oxide growth slows down significantly. Thus

to get even thicker films, we want to deposit extra oxide rather than try to grow

more. Plasma Enhanced Chemical Vapor Deposition (PECVD) process was used

to grow additional 2 µm of oxide on the front wafer surface. PECVD deposition

is fairly fast, but the film quality is significantly lower compared to thermally

grown film. However, since we use this film as a mask layer, this is not as

important and using PECVD oxide is acceptable.

After having this really thick oxide layer on the wafer surface, next step was

62



to spin, bake and develop positive photoresist (SPR 220-3.5). The cavity pattern

was exposed using UV light, and the regions of the resist exposed to it were

dissolved away in the developer solution. Since we were using a very thick

photoresist, proximity plate bake was used (1200 ◦ C for 120 s). The wafer was

not quenched on a cold surface but rather left to cool by itself in the wafer box.

Exposure time was 25 s.

After the lithography step, the wafers were placed in a Reactive Ion Etch

plasma chamber, where a CHF3 + O2 recipe was used to dry etch the majority

of the exposed oxide in the cavity regions. Since we wanted to keep the cavity

surfaces as smooth as possible, the oxide was not etched fully. Instead, the last

150-200 nm of oxide was etched using Buffered Oxide Etch (BOE 1:6). BOE

does not attack the silicon, so it removes all the oxide in the cavity region while

leaving the silicon surface pristine and smooth.

After removing all the resist and carefully cleaning the wafers, we place the

wafers back into the oxidation furnace for a second oxidation step. The rate

of oxide growth is given by the Deal-Grove model [58]. For very thin oxide

films the film thickness grows linearly with time, while for thick films, the film

thickness grows with the square root of the time. The silicon surface outside

the cavity region is covered by a very thick layer of oxide. The rate of growth

of oxide in this region will be much slower than at the cavity region where the

silicon surface is exposed.

An important point of consideration is that the silicon swells upon oxidation.

it takes 2 nm of silicon consumed to produce 4.5 nm of SiO2. Thus, to create a

step of x nm, we need to create a difference in the oxide growth inside and

outside the cavity of of 2.25x.
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5.6.4 Etching the fill line and patterning the backside

We want to have a fill line hole that has straight walls and has a well defined

small diameter. Previous attempts to drill the hole using diamond drills or grind

it away using diamond slurry [59] proved possible but extremely difficult. Fear

of contamination and scratching the surfaces was another reason why we pre-

ferred to make the hole using the tools inside the CNF clean room. We used a

Deep Reactive Ion Etch (DRIE) tool to etch through the silicon. It is important

to note, that we would not have been able to use this tool if the wafers were

thicker, e.g. 3 mm thick as they were in the first attempts of making these cells.

To make the whole pattern, we spin thick resist (SPR 220-7) and expose and

develop. To harden the resist further so it can survive the subsequent plasma

etching, we leave the wafers in a 90 ◦ C convection oven overnight. There is

oxide on both sides of the silicon wafer, we need to etch away the oxide in the

hole area from the cavity side, and keep the oxide on the other side to serve as

a stop for the plasma once the hole is completed. The oxide in the areas of the

holes is etched using reactive ion etching. The remaining resist and the oxide

outside of the hole area provides a mask through which the wafer can be etched

through (the DRIE process has a high selectivity for silicon versus resist, and

even higher versus oxide).

The concentric circles pattern on the backside of the wafer is also etched us-

ing DRIE but only to 20µm depth. An optical microscope image of the backside

of the completed fill line hole is shown in 5.13.
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Figure 5.13: Optical microscope image of the fill line hole. Shown is the
backside silicon surface where the epoxy seal is to be made.

5.6.5 Polishing and cutting the glass

As mentioned in section 4.2.1, in order to observe the stripe phase we need

smooth cell surfaces. Rough and diffusive surfaces tend to suppress the sta-

bility of the stripe phase. In fact, original calculations were done for two per-

fectly specular surfaces (e.g. free surfaces), and how adding real rough surfaces

changes the result is not investigated systematically. Also, defects on the sur-

faces could pin the phase boundaries and broaden the transitions. This is why

we want to fabricate a cell with walls as smooth as possible.

We use Atomic Force Microscopy (AFM) to quantify the smoothness of the

surfaces. The silicon surface of the cavity maintains its atomic smoothness since

its never directly etched, instead it is consumed in a diffusion driven oxidation

process. A typical AFM image that shows the smoothness of the silicon surface
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is shown in Fig. 5.14a.

The glass we use to bond to the patterned silicon (Hoya SD-2) had a much

rougher surface as shipped to us. We further polished the front surface of the

glass wafers using Chemical Mechanical Planarization (CMP) process. A stan-

dard polishing cloth was used. The polishing slurry contained colloidal silica

particles suspended in KOH solution. AFM image of the glass surface after pol-

ishing is shown in Fig. 5.14b.

After polishing, the next step was to dice the glass in the octagonal shape

needed for our cell. We spun a thick layer of resist which is subsequently hard

baked overnight in a convection oven to harden the resist further for it to be

effective as a protective layer during the dicing process. The wafer was put on

a sticky dicing tape and was diced in the diamond coated dicing saw tool in

the CNF clean room. The wafer was first diced into squares, then the squares

were put in the tool one by one and had their four corners cut off to produce an

octagon.

5.6.6 Cleaning and anodic bonding

At this stage we were ready to bond the silicon and glass to finish the cell. We

soaked the silicon in hydrofluoric acid (HF) to remove the oxide on the wafer

chip surface. This step should have underetched any contamination on the sil-

icon surface. However, we could not do the same with the glass pieces, since

HF is extremely corrosive to glass. Instead a long basic RCA clean recipe was

used to clean the glass surface. While this step was not necessary for the silicon,

we put the silicon pieces in the solution as well in order to clean any possible

66



Figure 5.14: AFM images of the cell surfaces. (a) shows the silicon sur-
face imaged right before bonding. (b) shows the glass surface
imaged right before bonding.
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contamination they might have picked up after the HF bath. The RCA clean

recipe was the following: 1 part NH4OH, 1 part H2O2, and 5 parts of deionized

water heated to 75 − 80 ◦C. The solution was stirred very vigorously using a

magnetic stirrer while the pieces were immersed, hoping that the flow would

dislodge further any particles on the surface. The pieces were immersed in the

solution for about half an hour. We note that similar cleaning steps were taken

multiple times throughout the process, before each lithography step and before

the oxidation steps.

Once the pieces are cleaned and their surfaces imaged using AFM, we were

ready to put their surfaces in contact. The bonding process was completed using

a custom made bonding jig shown in Fig. 5.15. A macor spacer with a carefully

machined hole which matches the dimensions of the cell was placed on top of

the bottom electrode. The silicon piece was first dropped in the hole, and then

the glass piece was dropped on top of it. The macor spacer ensured that the sili-

con and glass did not move laterally during the bonding process. After the glass

was inserted and placed in contact with the silicon the top electrode was placed

on top of the glass. A steel ring separated by another macor spacer was placed

on top of the electrode. The steel ring was connected to the bottom electrode

through twelve screws which are carefully tightened (extremely gently, other-

wise the glass or the silicon can break) to apply pressure on the glass silicon

stack.

The bonding jig was placed in an air furnace and heated to 425 ◦C. The two

electrodes were connected to a high voltage power supply while the jig was still

in the furnace. Applying voltage of 200 V for about 5 minutes was sufficient

to create a reliable bond between the silicon and the glass. The glass we use
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Figure 5.15: Schematic of the custom made bonding jig. Grey represents
stainless steel and white – macor. The jig is placed in an air
furnace during the bonding process.

is sodium doped; when voltage is applied at high temperatures the sodium is

expelled from the glass-silicon interface. This results in dangling bonds for the

glass which are then connected to the silicon atoms on the silicon surface. The

bond achieved this way is so strong that pressurizing the cell to failure (> 30

bar pressure) results in the glass breaking, rather than the glass-silicon bond

separating.

The temperature of the bonding process was chosen so that the total ther-

mal expansion between room temperature and the bonding temperature is the

same for both the glass and the silicon. This was so that no bowing or distor-

tion occurs to the cell as it cools down. A small degree of bowing might occur,

however, when cell is cooled from room temperature to cryogenic temperatures.
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5.6.7 Metal deposition

The final step in the fabrication was to deposit a thick layer of silver on the

outside surfaces of the cell. The fill line hole was plugged with a piece of kapton

tape. A small piece of kapton tape was put on the glass side of the cell opposite

of the fill line hole to shield a window in which we can see through the cavity

end of the fill line. This is to check that epoxy has not run into the cell when

attaching the cell to the torsion rod.

A teflon holder that clamps the cell by its edge was machined. The holder

was screwed onto a rotation plate inside a sputter deposition chamber. This way

the cell can be silvered on all sides. In order for the deposited silver film to stick

well to the silicon and the glass, a thin titanium adhesion layer was deposited

first. Since titanium becomes superconducting at low temperatures and hence

its thermal conductivity decreases significantly, we want to deposit as thin of

adhesion layer as possible – ∼ 5 − 10 nm thickness. The silver film deposited

had a thickness of approximately 1 µm.

5.6.8 Fill line epoxy seal

Connecting the silicon surface of the cell to the silver torsion rod proved to

be non-trivial. There were three unsuccessful attempts to do this experiment, all

thwarted by the epoxy joint leaking when the experiment was cooled to cryo-

genic temperatures. A leak from the pendulum would break the vacuum inside

the vacuum can of the cryostat and provide a thermal link between the pendu-

lum and the 4.2 Kelvin walls of the can.
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The stress on the epoxy comes from the large difference in the thermal ex-

pansion coefficients of the silver, epoxy and silicon. Conventional epoxies have

thermal expansion coefficient that is about twice as large as that of silver. We

would like to find a strong and impact resisting epoxy that has a much lower

thermal expansion coefficient. Out of the multiple different epoxies tried, it was

determined that Tra-bond 2151 was the best candidate for the job. This filled

epoxy had the lowest thermal expansion coefficient from all tested (lower than

that of silver), and it proved to be extremely strong. It also had large enough

viscosity so it would not run into the fill line hole and contaminate the cavity.

The other key component in making a successful leak tight joint is turning

shear stress into compressive stress. Most materials have a significantly higher

yield strength under compression than under shear. Below we describe the pro-

cedure to make the epoxy joint.

First, we take a hollow glass tube (inner diameter 100 µm, outer diameter

310 µm). We cleave the tube so that its length is approximately 4 mm. Then

we coat the outer surface of one of its ends with a thin layer of epoxy. We have

made an elaborate setup for aligning and inserting the glass tube in the cell. The

cell is position on top of x, y, z translation stage platform, which is positioned

at the base of a small drill press. The glass tube is held by a teflon sleeve which

is inserted into the drill chuck. The teflon is squeezed just enough so that the

glass tube is held securely, but it can move up or down provided small amount

of force is applied. A stereo microscope is focused on the cell hole and is used

to align the glass tube with respect to the fill line hole. When the alignment is

deemed good, the glass tube end coated with epoxy is lowered into the hole.

After the epoxy is cured the chuck is carefully loosened and lifted up. The end
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of the torsion rod is now inserted into the chuck. Fresh epoxy is put around

the area of the glass tube - silicon surface joint. Then the torsion rod is carefully

lowered onto the silicon squeezing out the freshly applied epoxy. Some of the

epoxy fills the space between the silver and the glass tube, while the rest comes

out on the perimeter of the joint. The excess epoxy is wiped out and the joint

is left to cure. Fig. 5.16 provides a schematic for the geometry of the joint, and

illustrates the two step process involved.
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Figure 5.16: A schematic illustrating the 2 step procedure for making the
epoxy seal. First epoxy joint is between a glass tube and the
cell. Second epoxy joint is between the silver and glass tube
and silicon.
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CHAPTER 6

SIGNATURES OF THE SUPERFLUID STATES OF 3HE CONFINED TO 10%

UNIAXIALLY COMPRESSED AEROGEL

We carefully mapped the torsion pendulum period and dissipation for a

large number of pressures, both in the normal state (temperatures from 100 mK

to about 1-2 mK) and in the superfluid state.

6.1 Empty cell data

Before we can make inferences for the superfluid fraction measured from the

frequency shift, we need to carefully characterize the resonant properties of the

empty pendulum. The empty cell data is necessary in finding the fraction of the

moment of inertia of the fluid that is decoupled from the cell according to Eq.

5.2.

The empty oscillator’s resonant frequency and Q were first measured be-

tween 100 mK and 1.5 mK. In Fig. 6.1 we plot the measured empty cell back-

ground (Q−1 and oscillator period). The background Q ranged from ≈ 8×104 at

100 mK to ≈ 5.7×105 at low temperatures. The period shift showed a minimum

around 30 mK. We also plot the measured Q−1 and period for the oscillator after

it was filled with 3He at 0.14 bar.
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Figure 6.1: (Top Panel): The measuredQ−1 vs temperature (solid triangles)
for the empty oscillator, together with fit (solid line). We also
plot data obtained for the cell filled with 3He at 0.14± 0.03 bar
(solid circles). The fit for the empty cell data is subtracted from
the filled cell data to obtain the signal from the 3He. (Bottom
Panel): We plot the period of the empty cell (solid triangles)
together with the fit through the empty cell data (solid line).
The data for the cell filled with 0.14± 0.03 bar of 3He is shown
as solid circles. Note the offset in the period.
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6.2 Bulk fluid contribution

In order to perform a careful analysis on the data in the superfluid state, we

need to account for any contribution due to bulk fluid outside of the aerogel

sample.

We expect the normal state helium liquid to be well locked to the strands of

the aerogel. Thus, in the normal state any change in the resonant frequency com-

pared to that of a cell with a fully locked fluid should originate from the bulk-

like fluid regions of the cell. Figure 6.2 shows data representing the fraction of

the moment of inertia not coupled to the walls of the cell at the four experi-

mental pressures 0.14, 2.6, 15.2, and 25.7 bar. The decoupled fluid fraction and

dissipation show temperature dependent behavior characteristic of two distinct

bulk fluid regions (two peaks in the normal state dissipation data, two “shoul-

ders” in the normal state decoupled fraction data).

The effective length and diameter of the fill line in the torsion rod and the

cast epoxy cell are 6 mm and 1 mm. The bulk fluid column amounts to 0.8% of

the inertia of the fluid in the cell and is designated as bulk fluid Region 1. In

order to calculate the contribution to dissipation and period shift coming from

the fluid in the fill line, we start by calculating the angular velocity profile Ω(r)

by using the Navier-Stokes equation in a tall cylindrical geometry, which leads

to
∂2Ω

∂r2
+

3

r

∂Ω

∂r
+
iωρ

η
Ω = 0 (6.1)

with Ω(radius of the cylinder) = Ωcell.
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Figure 6.2: The fraction of fluid decoupled from the pendulum vs temper-
ature for four pressures after background subtraction (open cir-
cles). Also shown are the fits for the bulk fluid contribution for
two components - Region 1, fluid in the fill line, a 1 mm di-
ameter, 6 mm long cylinder comprising 0.8% of the total fluid
moment of inertia (solid (black) line), and Region 2, fluid at
the periphery of the cell, modeled as a cavity of height 28 µm
(dashed (red) line) comprising 3.2% of the moment of inertia.
The dash-dotted (green) line shows the sum of the contribu-
tions from the two bulk fluid components.
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Figure 6.3: Values of viscosity in the normal state at the four experimental
pressures for which we have data in the normal state.

Solving for Ω we find the torque exerted by the fluid:

N = 2πR3hη

(
∂Ω

∂r

)
r=R

= β1 + iωβ2 (6.2)

where β1 contributes to the damping of the pendulum and β2 to the moment of

inertia. Temperature dependence of these values is determined by the tempera-

ture dependence of the viscosity of the fluid, η(T ).

Near Tc we expect the normal state bulk viscosity to scale as T−2. Above

T > 10mK the viscosity deviates from the Fermi liquid T−2 behavior and we

use the following relations between the thermal conductivity (κ), heat capacity
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(CV ) and the viscosity (η) to calculate higher temperature values for η:

κ =
1

3
CV v

2
F τκ (6.3)

η =
1

5

m∗

m
ρv2F τη (6.4)

CV = m∗π
2kB
~2

(
V

3π2N
)2/3RT (6.5)

Assuming that density and molar volume do not change in the temperature

range 1-100 mK, and assuming τη ∝ τκ, we can infer that η ∝ κ. To find the

exact values for the viscosity in the normal state, we use the values for η(Tc)

given in Ref. [60] and Ref. [61], and κ(Tc) in Ref. [62] and divide the two values

to find the proportionality factor. We then multiply κ(T ) from Ref. [62] by this

factor for each of the pressures we are interested and we find η(T ) up to 100

mK. The values for the viscosity for the four experimental pressures we used to

calculate bulk fluid contribution in the normal state are shown in Fig. 6.3 In the

superfluid state, experimental values for the superfluid fraction are taken from

Ref. [63] and for the viscosity from Ref. [64]

Numerically solving Eq. 6.1, we can calculate the contribution from the bulk

fluid in the fill line. This contribution is shown with a solid (black) line in Fig.

6.2. It is evident in Fig. 6.2 that there is bulk fluid within the cell we have not

yet accounted for.

The steel cavity containing the aerogel was dry fitted in the epoxy cast to

prevent epoxy running in. We believe this resulted in small pockets of bulk

fluid existing around the periphery of the cell. While we cannot do an exact

calculation for the effects of these regions the same way as we did for the fluid

in the torsion rod, we can still use the uncoupled moment of inertia data (Fig.

6.2) to estimate the contribution to the pendulum’s dissipation. We assume that

the relationship between the real and the imaginary part of the torque arising
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from the cell periphery bulk fluid is the same as that of a uniform thickness

film encompassing all of the cell. For a thin film of fluid with a thickness h and

inertial contribution Iper, the torque exerted is N = β1 + iωβ2, with:

β1 = ωIper
δ

h

sin(h/δ)− sinh(h/δ)

cos(h/δ) + cosh(h/δ)
(6.6)

β2 = Iper
δ

h

sin(h/δ) + sinh(h/δ)

cos(h/δ) + cosh(h/δ)
(6.7)

where δ =
√

2η/ρω is the viscous penetration depth of the fluid. Fitting to

the unaccounted portion of the data in Fig. 6.2, we find h = 28 µm and

Iper = 0.032If , where If is the moment of inertia of all the helium in the tor-

sion pendulum head. These values are consistent with our expectations. The

accuracy to which the epoxy cast and stainless steel cell are machined is within

one-thousand of an inch, i.e. 25 µm, and a film of that thickness around all of the

cell surface amounts to 0.05If . Since the bulk fluid is more likely coming from a

few separate regions around the periphery, rather than from a continuous film,

we would expect that Iper . 0.05If . We also use these values and the viscosity

of 3He to obtain the fraction of decoupled fluid from the periphery (Region 2)

which we plot as the dashed (red) line in Fig. 6.2.

6.2.1 Fourth sound resonances

At the lowest experimental pressures (0.14, 2.6 and 4 bar), the liquid in the

aerogel does not transition to a superfluid state in the temperature range we

have performed our experiments. In this case, the resonance period shift below

Tc originates entirely from the bulk fluid regions. Plotting the data and the

calculated period shift coming from the bulk we see very good fit (see Fig. 6.4),

apart from a series of “peaks” and “ripples” in the observed dissipation and
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1

Figure 6.4: Data and fits for the Q−1 and ∆P at 4 bar.

period shift respectively (Fig. 6.6). We attribute these features to the effects of

4th sound modes of the bulk 3He in the aerogel-free cavities.

The 4th sound velocity for 3He, c4, is the velocity for a sound mode in which

only the superfluid component moves, while the normal component is clamped.

The 4th sound velocity is given by c4 =
√
ρs/ρ c1, where c1 is the ordinary lon-

gitudinal (1st) sound velocity. As the sample cools below T bulk
c , c4 increases, as

does the resonant frequency of a particular mode (f4) until it approaches fdr, the

driving frequency of the torsional oscillator. As the two frequencies approach

one another, the 4th sound mode absorbs energy from the torsional mode, lead-

ing to an increased Q−1 near the mode crossing. The frequency (and period) of

oscillation are also “pulled” by the mode crossing. The correction to the period

shift due to 4th sound is given in terms of the width of the 4th sound resonance
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∆f as:

∆P4 = Ps

1− 1
χ
ρs
ρ

4(1− 1
χ
ρs
ρ
)
2
+ (∆f

fdr
)
2 (6.8)

We first identify the 4th sound resonances in Q−1 and estimate ∆f and χ, a tor-

tuosity parameter. Then, we adjust the scale parameter Ps to match our data for

the period shift. Fig. 6.4 shows data for a pressure of 4 bar, chosen because Tc

and Tca are well differentiated and the individual Q−1 peaks are readily iden-

tified. Five 4th sound resonance modes (no attempt was made to differentiate

between the two cavities or calculate the exact sound modes we are exciting)

were identified at that pressure with c14 = 23 m/s, c24 = 49 m/s, c34 = 79 m/s,

c44 = 118 m/s, c54 = 152 m/s, corresponding to cavity length scales of the order

of a cm, consistent with the lateral dimensions of the cell.

6.3 Superfluid Data

To identify the signatures of the different superfluid phases and the transi-

tions between them, let us first look in more detail at the data for a particular

pressure, P = 32 bar. It is evident from fig. 6.5 that there is large hysteresis loop

between cooling and warming. This is a signature of the first order transition

between A and B superfluid states. On cooling, we transition into the A phase

and we stay in the A phase for quite a while as we cool down. Supercooling the

A deep into the superfluid state is expected for the fluid within aerogels, as was

discussed in section 3.3.1. The hysteresis loop at low temperatures closes upon

the A to B transition. The temperature region over which the A to B transition

occurs is shown between the dotted lines in fig. 6.5. Upon warming after a full

transition into the B state, we observe the fluid persisting in the B state until
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Figure 6.5: Torsion pendulum period shift vs temperature at 31.9 bar
showing data taken while cooling (filled (blue) circles) and
warming (open (red) triangles). The solid (green) line is a fit
of the bulk superfluid period shift. Indicated is the bulk tran-
sition temperature T bulk

c , the superfluid transition temperature
for the fluid in the aerogel, Tca, and the the range of tempera-
tures for the A to B transition.

close to the superfluid transition for the fluid within the aerogel Tca.

Shown in fig. 6.5 is also the calculated bulk fluid contribution to the period

shift of the pendulum. The superfluid in aerogel transition temperature Tca is

determined as the temperature at which the experimental data deviates from

the calculated bulk contribution. Also shown is the bulk superfluid transition

temperature T bulk
c , which is clearly indicated by the response of the quartz tun-

ing fork thermometer.

Fig. 6.6 shows in its top panel a zoom in at the data from fig. 6.5 near Tc. To

extract the actual superfluid fraction for the fluid within the aerogel, we subtract

the bulk contribution from the period shift of the pendulum we measured. The
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Figure 6.6: (Upper panel) Torsion pendulum period shift vs temperature
near the superfluid transition at 31.9 bar. Inset shows the cor-
responding dissipation (Q−1) and broad 4th sound resonance.
(Lower panel) After subtraction of the bulk superfluid contri-
bution we show the superfluid density of 3He in the aerogel.
The arrow designates the onset of superfluidity and dashed
lines define the width of the B → A transition.
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Figure 6.7: The superfluid fraction (ρs/ρ) vs temperature after the bulk su-
perfluid contribution is subtracted. The (blue) circles and (red)
triangles represent data obtained while cooling and warming
respectively at various pressures (offset by 0.05 for clarity).

superfluid fraction determined this way is shown on the lower panel of fig. 6.6.

One of the goals for this experiment is to determine whether the A phase

would reappear on warming. As mentioned in section 3.3.1, in isotropic aero-

gels, the A phase does not reappear on warming. However, in fig. 6.6 we ob-

serve that the cooling and warming traces join at temperature lower than Tca,

and at nonzero superfluid fraction. This indicates that the fluid is in the same

state at the region right below Tca, namely the A phase. Unlike isotropic aero-

gels, the A phase reappears on warming.
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Orientation of the ℓ-vector

From fig. 6.5, it is evident that the superfluid fraction of the A phase is sig-

nificantly smaller than the B phase. In fact the ratio of the measured superfluid

fractions in the A vs B phase is very similar to what was observed in uncom-

pressed aerogels [39]. In section 3.4, we noted that there were two competing

predictions for the alignment of the ℓ-vector by anisotropic disorder: ℓ-vector

being in the “easy axis” – the direction of the compression axis or in the “easy

plane” – perpendicular to the compression axis. From our data, we can con-

clude that the prediction by Volovik in [42] was not realized, if the ℓ - vector

was aligned in the direction of compression we will measure larger superfluid

fraction in the A phase compared to the B phase. Instead, our measurements

support the hypothesis of ℓ-vector being aligned perpendicular to the compres-

sion axis.

Pressure dependence

Data for several experimental pressures is shown in fig. 6.7. As the pressure

is lowered, the hysteresis window of metastability of the A and B phases on

cooling and warming respectively shrinks. Also the difference between A and B

phases gets less pronounced. At pressures below 10 bar, we cannot distinguish

the exact beginning and end of A to B and B to A transitions. This is partly

due to the interference of the interceding slow-mode resonance modes [65] that

obscure the data at the region where the A - B hysteresis loop should be.

As the pressure is lowered the transition temperature of the fluid in the aero-

gel, Tca is more and more suppressed compared to the bulk. Also, as seen in fig.
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Figure 6.8: Pressure dependence of the measured superfluid fraction for
various experimental pressures. Plotted is the data in the B
phase (data taken on warming) versus T/Tca.

6.8, the superfluid fraction (and hence the size of the superfluid gap) is seen to

be lower as pressure is lowered. This ties in with the concept of gapless super-

fluidity discussed in section 3.3. The lower the pressure, the more the gap and

subsequently the superfluid transition temperature suppression is. At the low-

est experimental pressures (below 4 bar), no superfluid transition was observed

down to the lowest measured experimental temperatures (∼ 0.4 mK).
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6.3.1 Width of transitions. Identifying the boundaries of the B

to A transition

The A to B transition on cooling is not instantaneous unlike in bulk; it has a finite

width of ≈ 70µK. It is likely that this is due to inhomogeneity of the sample or

due to pinning of the phase boundary by impurities. The observed width of

the A → B transition suggests that the B → A transition might also be wide.

Thus we sought to resolve the conversion of B phase to A phase by conducting

a series of “turn around” measurements warming the pendulum at 30-60 µK/hr

followed by a period of several hours where the pendulum was warmed slowly

(2-3 µK/hr) until we reached our target temperature. The cell was then cooled

again at 30-60 µK/hr back into the B phase. It was evident that theQ−1 signature

at the A → B transition was a very sensitive indicator of the presence of A

phase, B phase or an admixture of the two. Data for Q−1(T ) at 31.9 bar, as turn

arounds proceeded to successively higher temperatures, are shown in Fig. 6.9.

Based on these turnarounds this sample the width of the B → A transition can

be seen to be ≈ 70 µK. The nucleation of the B phase in aerogel is not influenced

by the adjacent bulk B phase evidenced by the persistence of A phase below

the bulk A → B transition (Fig. 3). At temperatures between the beginning

and the end of the transition, we have part of the fluid in the aerogel being in

the A phase, and part in the B phase. This distribution of admixture of A and

B phases persists upon subsequent cooling to low temperatures until we reach

the temperatures of the A to B transition.
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Figure 6.9: Dissipation data for turn around measurements at 31.9 bar, in
the vicinity of theA→ B transition. The (blue) circles and (red)
triangles represent data taken on cooling from, and warming
to, Tca respectively. The intermediate points represent data
taken on cooling, following turn-arounds at the temperatures
given in the legend. The abrupt jump near 0.73T/Tca in solid
circles is the signature of the bulk A→ B transition.

6.3.2 Phase Diagram

Determining the superfluid transition temperature and the temperatures for

the A to B and B to A transitions we can put all together in the phase diagram

shown in fig. 6.10. On cooling the A phase persists to lower temperatures com-

pared to the bulk transition temperatures (even when the bulk is supercooled).

The anisotropy of the aerogel is seen to extend the region of stability of the

metastable A phase.

A phase reappears on warming, so a thermodynamically stable region in

which A phase is the minimum energy state for both cooling and warming

is observed. Unlike the bulk, there is no polycritical point in the phase dia-
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Figure 6.10: The phase diagram for superfluid 3He in 10% axially com-
pressed, 98% open aerogel determined by this experiment.

gram. Instead the region of stability forms a sliver that thins as the pressure is

lowered, but persists to pressures far lower than the polycritical point pressure

(21.22 bar). Disappearance of the polycritical point and sliver-like shape for the

A phase stability region is seen in bulk when magnetic field is applied (as dis-

cussed in section 2.6). In the present experiment, the magnetic field is zero, but

the effect is precipitated by the anisotropy of the aerogel induced disorder.
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Tc suppression. Mean-free-path and the aerogel coherence length

As discussed in section 3.3.1, there are several models that can describe the

suppression of the superfluid transition temperature and the superfluid gap for

the 3He embedded in the the aerogel. These models were well summarized in

Ref. [36] and [66]. The Isotropic Inhomogeneous Scattering Model (IISM) pro-

posed and described in these references has been very successful in fitting the

several sets of existing experimental data for the Tc suppression caused by the

presence of aerogel impurity. Fitting to our data (green line in Fig. 6.10), we ob-

serve an excellent fit, given that the mean-free-path limit for the quasiparticles

within the aerogel is 140 nm and the aerogel coherence length is 45 nm.

6.4 Anomalous dissipation in the superfluid state

Previous experiments mostly concentrated on the pendulum period shift of

the pendulum due to the superfluid. This experiment is the first such experi-

ment where the pendulum dissipation in the superfluid state has been inves-

tigated thoroughly. A model for the pendulum dissipation due to the normal

fluid embedded in the viscoelastic aerogel was proposed and tested. The re-

sults of these measurements were published in [67].

Here, we will touch on the pendulum dissipation that was seen in the super-

fluid state. As was already seen in fig. 6.9, the measured dissipation was seen

to be significantly higher in the A phase than in the B phase. A comprehensive

summary of the measured dissipation for several experimental pressures plot-

ted versus the superfluid fraction are shown in fig. 6.11. Panel (a) shows the
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Figure 6.11: (a) Data for Q−1 in the B-phase vs ρs/ρ for various pressures
combined in one plot.
(b) Plot of Q−1 in the A-phase vs ρs/ρ for various pressures.
Discontinuities in the data are due to the bulk A → B transi-
tion on cooling.

dissipation measured in the B phase and panel (b) shows the dissipation in the

A phase.

The two superfluid phases have fairly different signatures and superfluid

fraction dependence. In the B phase, the dissipation has a broad peak, it rises up

shortly below Tca to a maximum value at around ρs/ρ = 0.07, and then steadily

decreases as we go deeper in the superfluid state. In contrast, the dissipation

seen in the A phase rises up sharply and steadily in a linear fashion as we go

deeper into the superfluid state. This is at odds with our a priori expectations.

While it is expected to see higher dissipation in the A phase than in the B phase
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due to the gap nodes, normally dissipation is seen to decrease with the rise of

the superfluid fraction. It is also interesting to note the pressure dependence of

the dissipation data: dissipation is seen to increase with pressure.

The “anomalous” dissipation dependence on the superfluid fraction (and

not on the temperature) is a clear mark that this effect comes from the fluid em-

bedded in the aerogel. Note that we have subtracted the expected contribution

from the bulk. While the extra dissipation could be associated with the presence

of low energy surface states within the superfluid gap, it is not clear why the dis-

sipation would rise with increase in pressure (which should increase the size of

the gap for the “dirty” superfluid) or with increase in the superfluid fraction.

A more compelling explanation is that the “anomalous” dissipation seen in

the A phase related to the orbital viscosity of the superfluid texture. The orbital

viscosity parametrizes the resistance of the ℓ-vector field to a change in direc-

tion [68, 69]. Previous experiments with samples of aerogel attached to vibrat-

ing wire resonators immersed in 3He show that flow tends orient the ESP state

orbital texture along the flow [70]. Such an effect is clearly demonstrated for

velocities significantly larger than the velocities of the fluid in our experiment,

but alignment of the ℓ-vector is possibly realized also at lower velocities, albeit

with a smaller magnitude. Changing the direction of the ℓ-vector will dampen

the flow due to the orbital viscosity of the superfluid and manifests itself as the

extra dissipation of the pendulum observed in the ESP state. A similar (but

smaller) effect has been shown for the B-phase if the order parameter is slightly

anisotropic.[71]
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6.5 Conclusion

In this experiment we showed that the addition of anisotropic disorder in the

form of a uniaxially compressed aerogel radically alters the superfluid phase

diagram for the embedded 3He fluid, compared to the bulk. The anisotropy

of the aerogel has the effect of enhancing the width of the metastable A phase

and increasing the width of the region where the A phase is the lowest energy

state (even when compared to an identical uncompressed sample), all in zero

magnetic field. The reappearance of the A phase from the B phase on warming

is manifested at pressures well below the bulk polycritical point.

Alignment of the angular momentum ℓ by compression, predicted in Ref.

[42], is not observed. In addition, we observed increase of the measured dis-

sipation due to the rise in the superfluid fraction, especially in the superfluid

state. Such an effect is counter to what we would expect in the bulk and could

be related to the damping of the motion of the superfluid texture by the aerogel

or to the presence of low lying energy states that emerge within the superfluid

gap due to the presence of the aerogel disorder.

Results presented in this chapter have been published in two journal publi-

cations: [67] and [72]. Portions of the text and several figures presented in this

chapter have been taken from these two sources.
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CHAPTER 7

SUPERFLUID 3HE IN NEMATICALLY ORDERED AEROGEL

We measured the superfluid the period shift and the dissipation of the pen-

dulum for six experimental pressures – 0.1, 3.6, 7.5, 15.4, 29.1, and 32 bar. This

allowed us to infer the superfluid fraction of the fluid embedded in the strongly

anisotropic aerogel, and observe signatures of multiple phase transitions. Our

torsional oscillator experiment probes the superfluid density in the direction

perpendicular to the pendulum axis, and hence perpendicular to the aerogel

strands.

Data for 7.5, 15.4, 29.1 and 32 bar were obtained by filling the aerogel with

pure 3He (less than 10 ppm of 4He). Data for 0.1, 3.6 bar as well as repeated

measurements at 15.4 and 29.1 bar were taken after the aerogel surface was pre-

plated with ∼ 2 monolayers of 4He. No substantial change in the transition tem-

peratures at 15.4 and 29.1 bar was seen between measurements with or without

pre-plated 4He surfaces. It is not clear if the 4He changed the specularity at the

aerogel surface. Pre-plating with 4He, however, changed the spectrum of the

sound modes which are excited in the superfluid (more details on these sound

modes will be discussed in the following sections).

7.1 Empty cell data

In order to extract the inferred superfluid fraction from the period shift of the

torsion pendulum, we need first to characterize the temperature dependence of

the period of the empty pendulum. Data for the empty pendulum period ver-
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Figure 7.1: Torsion pendulum period versus temperature for the empty
cell in the symmetric torsion mode.

sus temperature when the pendulum is excited in its symmetric torsion mode

is shown in fig. 7.1. Unlike the squeezed aerogel experiment, the torsion rod

was made from coin silver, which has a significantly smaller temperature de-

pendence of its period, compared to torsion rods made from beryllium-copper.

Any uncertainty in our measurements due to empty cell period estimation is

minimal.

7.2 Calibration with 4He

Because the shape of the aerogel sample is not rotationally symmetric, the

fluid in the corners will contribute to the pendulum moment of inertia even in

the superfluid state. To account for this and also for the entrainment of the fluid
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by the strands of aerogel (Kelvin drag), we calibrated the superfluid fraction by

filling the sample with pure 4He. Because the healing length of 4He is ∼ 0.1

nm, it is expected that the entire sample should be superfluid (aside from 1-2

monolayers of disordered solid on the surfaces). Thus from a measurement of

the frequency of the empty cell, of the pendulum above the lambda transition,

and at low temperatures well below Tλ, we determined that three quarters of

the fluid inertia decoupled. Thus to find the superfluid fraction, we need to

modify eq. 5.2 into:
ρs
ρ

=
1
3/4

∆p(T )

∆pmax

(7.1)

7.3 Determination of the bulk fluid contribution

The period and the quality factor of the oscillator changes below T bulk
c , indi-

cating the decoupling of the superfluid fraction of bulk fluid. While the aerogel

sample is completely encapsulated with epoxy, so no voids should exist along

its periphery, electron microscope images taken on this type of aerogel show the

presence of discontinuities and micro-cracks dispersed throughout the sample

that could harbor bulk-like fluid.

As we go to temperatures below T bulk
c , a faster drop in the resonant frequency

(rise in the superfluid fraction) is observed below a temperature Tca, which we

identify as the transition temperature for the fluid within the aerogel. Fig. 7.2

shows the superfluid fraction calculated by eq. 7.1 for 0.1 bar. At 0.1 bar, the

difference between T bulk
c and Tca is the largest. Using the values for the bulk

superfluid fraction from [63], and scaling them by a factor of 0.03, we obtain a

good fit to the data between T bulk
c and Tca, indicating that the bulk fluid moment
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Figure 7.2: Superfluid fraction versus T/T bulk
c for 0.1 bar. Shown is data on

cooling and warming (blue, red dots), as well as the estimated
bulk fluid contribution to the superfluid fraction (black line).
The superfluid transition for the fluid in the aerogel is marked
by an arrow.

of inertia amounts to about 3% of the total fluid inertia in the pendulum. In this

case, eq. 7.1 needs to be modified in order to determine the superfluid fraction

only of the fluid within the aerogel in the following way:

ρs
ρ

=
1
3/4

∆p(T )

∆pmax

− 0.03
ρs
ρ

bulk

(7.2)
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7.3.1 Slow mode sound resonances

Starting from the two fluid model for superfluids, there are many ways in

which sound can propagate though the liquid medium. In bulk 3He one finds

first (normal and superfluid components move in-phase), second (normal and

superfluid components move out-of-phase) and fourth sound (as discussed in

section 6.2.1, the normal component is clamped, but the superfluid component

oscillates). In aerogel, the normal fluid is well clamped to the aerogel strands,

while the superfluid is free to move, very much like in the case of fourth sound.

However, the aerogel is not perfectly rigid, but can flex as well. Thus sound

modes for 3He in aerogel are composite modes in which the aerogel, the normal

and the superfluid components all move. Two such modes are possible, the fast

mode in which all components move in phase, and a slow mode in which the

superfluid component is out-of-phase with the flexing of the aerogel strands

and the normal component [65]. The sound velocity of the slow mode, cs, is

related to the speed of sound in aerogel, ca, and the superfluid fraction, ρs/ρ,

through the following expression:

cs
ca

=

(
ρa
ρ(P )

ρs
ρ

)1/2

(7.3)

where ρ(P ) is the density of the fluid at the particular pressure. Since cs de-

pends on ρs/ρ, the slow-mode sound velocity (and therefore the wavelength at

a particular excitation frequency) changes rapidly with temperature below the

superfluid transition, starting at zero at Tca.

As we already discussed in the context of fourth sound resonances (section

6.2.1), when the resonant frequency of the sound standing wave mode crosses

the driving frequency of the pendulum, we observe peaks in the measured dis-

sipation and ripples in the measured period (hence superfluid fraction).
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Figure 7.3: Dissipation versus superfluid fraction for the fluid embedded
in the aerogel (bulk contribution is subtracted) at 0.1, 3.6, 15.4,
and 29.1 bar. Visible are several sound resonance peaks. We
highlight two sets of slow-mode sound resonances, at values of
about 0.1-0.12 and 0.2-0.24 for the superfluid fraction. Arrows
indicated the expected locations of the dissipation peaks based
on the data for 29.1 bar and the ratios of the fluid densities at
the other pressures.

We can use the slow-mode sound resonance to verify that the bulk contri-

bution to the moment of inertia is indeed 3%. In particular, we track the slow-

mode sound resonance dissipation peaks for each experimental pressure (fig.

7.3). Sound resonances occur at the same values for cs for each pressure, and

since ρa and ca are fixed, then ρs/ρ at the dissipation peaks should scale as the

density ρ for different pressures (eq. 7.3). Two sets of arrows in fig. 7.3 indicate

the predicted ρs/ρ for two of the prominent dissipation peaks in our data. The
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values ρs/ρ for 29.1 bar were set by the data, and the values for ρs/ρ at the lower

pressures were determined by multiplying ρs/ρ (29.1 bar) by

(ρs/ρ (P ))/(ρs/ρ (29.1 bar)). We observe good agreement between the observed

and predicted location of the sound resonance dissipation peaks, which would

not have been the case if we had incorrectly estimated the bulk contribution.

7.4 Experimental data in the superfluid state

Data for the superfluid fraction versus T/T bulk
c for 6 different pressures rang-

ing from 32 bar, down to 0.1 bar is shown in fig. 7.4. At high pressures (32,

29.1, 15.4 bar), a clear hysteresis loop is seen between warming and cooling,

indicating a first order phase transition between and an A-like and a B-like

phase. Guided by the results from NMR experiments done on a similar sam-

ple [73, 74, 75] and by the Ginzburg-Landau model predictions described in the

following section, we identify these as polar distorted B, and polar distorted

A. As pressure is lowered, the hysteresis loop gets less pronounced, indicating

a larger degree of distortion of the phases. At 7.5 bar, the difference between

the A and B phases is very small but hysteresis is still present (fig. 7.5), and

at 3.6 and 0.1 bar no difference between cooling and warming is observed. At

this lowest pressures we cannot tell if the low temperature superfluid state is

A-like or B-like. Even if a hysteretic transition takes place, the signatures of the

phases when the superfluid is probed in plane (perpendicular to the strands)

could appear very similar in our measurements.

At temperatures slightly above the hysteresis loop, on both cooling and

warming, we observe a sharp change in slope in the superfluid fraction versus
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Figure 7.4: Experimental data for the measured superfluid fraction versus
T/T bulk

c for both cooling and warming at each of the experi-
mental pressures. Data for each adjacent pressure is offset by
0.15 in the y-direction for clarity. Dashed lines indicate the zero
superfluid fraction level for each pressure. Green arrows mark
the superfluid transition temperature for the 3He in the aerogel
Tca. Magenta arrows indicate the point at which change in the
superfluid fraction data is observed Tkink.
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Figure 7.5: Data for 7.5 bar. A region of slight hysteresis between cooling
and warming is bounded by two vertical dashed lines.

T (see fig. 7.4). The change in slope is especially pronounced at low pressures.

We label the temperature of this feature as Tkink. At 7.5 bar (fig. 7.5), there is

clear indications of both a region of hysteresis, associated with an A to B transi-

tion, and a very sharp and pronounced kink in the superfluid fraction data. It

is evident that there are three superfluid phases present. Near Tca, a high tem-

perature phase is stable, which transitions on cooling to a distorted A phase.

Cooling through the region of hysteresis, the distorted A phase transitions to

a distorted B phase. On warming, the distorted B phase persists through the

region of hysteresis until it transitions to the high temperature phase just below

Tca. We identify Tkink as the temperature of the phase transition between a high

temperature superfluid phase and A or B phase. No hysteresis is associated

with the transition at Tkink, therefore the transition is second order. The super-

fluid phase right below Tca is identified by NMR as an equal spin pairing phase

[73, 74, 75], but as discussed in section 2.4, both the A phase and the Polar phase

are characterized by equal spin pairing.
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Figure 7.6: Plots of the superfluid fraction versus T/T bulk
c for the six ex-

perimental pressures. Data for each experimental pressure is
shown in a separate panel. Highlighted are Tkink and Tca. Lines
are drawn to be guides for the eye and illustrate the change in
slope at Tkink.
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7.5 Ginzburg-Landau model for the fluid in the nematically or-

dered aerogel

Due to the geometry of the highly oriented aerogel, we would expect the

nodal direction in the A-phase to point perpendicular to the strands. This has

been confirmed using NMR in Ref. [75]. The 3 by 3 order parameter matrix

ansatz that describes the possible superfluid states for the fluid in the ordered

aerogel has the following form:

Â =


A⊥ 0 0

0 A⊥ 0

0 Ay A∥

 (7.4)

The conventional bulk A-phase corresponds to Ay = A∥ and A⊥ = 0. Similarly,

the isotropic B-phase has A⊥ = A∥ and Ay = 0. If A∥ ̸= 0 and A⊥ = Ay = 0, then

this will represent the Polar phase. Starting from eq. 2.9 with a modification that

accounts for the effects of the anisotropic disorder suggested by Ref. [44] and

Ref. [76], the form of the Ginzburg-Landau (GL) free energy takes the following

form:

F = −
(
Tca − T

T bulk
c

)
∆2
∣∣A∥
∣∣2 − (Tca − T

T bulk
c

+ δ

)
∆2
(
2|A⊥|2 +

∣∣Ay

∣∣2)+ β1

∣∣∣Tr(ÂÂT )
∣∣∣2

+β2

[
Tr(ÂÂ†)

]2
+ β3Tr

[
ÂÂT (ÂÂT )†

]
+ β4Tr

[
(ÂÂ†)2

]
+ β5Tr

[
ÂÂ†(ÂÂ†)∗

]
(7.5)

Here, ∆ is the value of the condensation energy, Tca and T bulk
c the superfluid

transition temperatures for the fluid within the aerogel and the bulk fluid re-

spectively. The anisotropy in the system is parameterized by δ. The nonzero

value of δ leads to two distinct transition temperatures, Tc⊥ and Tc∥ = Tca, be-

low which the components of the order parameter perpendicular and parallel
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to the aerogel anisotropy axis develop. More precisely δ can be defined as:

δ =
Tc∥ − Tc⊥
T bulk
c

(
1 +

β1 − β2 + β3 − β4 − β5
β1 + β2 + β3 + β4 + β5

)
(7.6)

In the linear pair-breaking regime, δ is given by:

δ ∼= −π
2

4
ξ0

(
1

λ⊥
− 1

λ∥

)
(7.7)

with ξ0 being the zero-temperature coherence length, and λ⊥,∥ being the quasi-

particle mean-free-path perpendicular or parallel to the strands. This is where

the extreme anisotropy of the aerogel comes into play. Spin diffusion measure-

ments on a similarly grown “nematically” oriented aerogel reveal that the mean-

free-path for a quasi-particle traveling along the strands is nearly twice that of

one for a particle moving perpendicular to the strands [77].

Finding numerically the form of the order parameter Â that minimizes the

free energy for each pressure and temperature, we can make inferences for the

equilibrium superfluid phases in different part of the phase diagram. For Tc⊥ <

T < Tc∥, this model predicts that the system will be in the polar phase (A⊥,y = 0,

A∥ > 0). For lower temperature, one finds either a distorted A phase, where

A⊥ = 0 and A∥ > Ay > 0 or a distorted B phase, where Ay = 0 and A∥ >

A⊥ > 0. The relative stability of these phases depends on the magnitude of the

β terms in eq. 7.5. Quasi-particle mean-free paths in the nematic aerogel are

expected to be relatively long (> 450 nm [77]), compared to the mean-free paths

of ordinary silica aerogel (∼ 100 nm). Thus, we believe that the β parameters

are only weakly affected by the disorder, and in our analysis we use the bulk

values given in Ref. [10].

The degree of polar distortion can be parameterized byAy/A∥ in the A-phase

and A⊥/A∥in the B-phase. Both these ratios become smaller at lower pressures
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(corresponding to more polar distortion), and all three phases become less dis-

tinct. The A to B transition is first order and is hysteretic, while A to Polar or B

to Polar is second order and should be free of hysteresis.

7.6 Phase diagram. Correspondence between Tkink and Tc⊥

To test if Tkink is related to Tc⊥ we look for the value of the anisotropy pa-

rameter δ in eq. 7.5, such that we obtain the best match between the predicted

values for Tc⊥ and the observed Tkink for a particular pressure. The resulting

value for δ is of a similar magnitude compared to the one predicted in eq. 7.7,

as we insert the values for λ⊥,∥ measured by spin diffusion (450 nm and 850

nm [77]) insofar as the spin diffusion mean-free path is related to the mean-free

path which enters eq. 7.7 (mass, thermal, and spin transport do not have the

same mean-free path values, but are similar up to a numerical value of order

1). Using eq. 7.6 and the assumption that Tca is Tc∥, we can find the locations of

Tc⊥ at other pressures. Tkink conforms to our prediction for Tc⊥ reasonably well

at low pressures (0.1, 3.6, 7.5, 15.4 bar). At high pressures (29.1 and 32 bar) the

agreement is not as good and the kink is seen at lower temperatures than the

predicted location of Tc⊥. Recent theoretical work argues that this Ginzburg-

Landau theory may break down at high pressures [78], and this could be the

reason why our predictions break down at the highest pressures.

Minimizing the Ginzburg-Landau free energy in eq. 7.5, we obtain the val-

ues for the equilibrium order parameter Â and calculate the expected superfluid

fraction using the recipe described in section 2.5. The only free parameter to ad-

just in this process is the value of ∆ in eq. 7.5. As discussed in section 3.3, the
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Figure 7.7: The ratio of the superfluid gap for the fluid in the aerogel over
the superfluid gap of the bulk fluid is plotted versus the su-
perfluid transition temperature suppression for different aero-
gel samples. Black filled and empty circles represent data from
Ref. [79] plotted against Tc/T bulk

c for two isotropic silica aerogel
samples with different porosities (99.5% and 98%). Filled red
dots indicate the factors by which we scaled the superfluid gap
in our GL model calculated superfluid fractions for the present
experiment plotted versus Tc⊥/T bulk

c .

presence of disorder is expected to result in reduction of the superfluid gap. Fig-

ure 7.7 shows data compiled in Ref. [79] for the measured superfluid gap over

the superfluid gap in the bulk fluid plotted versus the ratio of Tc in aerogel and

in bulk for several isotropic (silica) aerogel samples. It is observed that a strong

relationship between Tc suppression and gap suppression exists. In our aerogel

sample (nematic aerogel), we take Tc⊥/T bulk
c to be the relevant parameter that

should determine the ratio of the superfluid gap for 3He in the aerogel com-

pared to that in the bulk. Values for the ratio of the gap parameter ∆ we used

at each pressure and the bulk gap parameter ∆ is shown in fig. 7.7 with filled

red circles. This ratio was chosen to be temperature independent, but varied

with pressure. As seen in the figure, the factors by which the gap is suppressed
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Figure 7.8: Superfluid fraction data (cooling and warming) plotted along-
side the superfluid fraction calculated using a Ginzburg-
Landau (GL) model for the 3He in the nematically ordered
aerogel.Data is plotted versus 1 − T/Tca, where Tca is the tem-
perature of the superfluid transition in aerogel. The tempera-
ture, Tc⊥ ,at which the components of the order parameter per-
pendicular to the strands become nonzero is indicated for each
pressure with and arrow.

that best match the data vary roughly linearly with superfluid transition tem-

perature suppression in a similar fashion as previously observed for the fluid in

isotropic silica aerogels.

The calculated values for the superfluid fraction dependence on tempera-

ture, guided by our model, assume a transition from a Polar to an A or B

phase. We see very good agreement, especially at low pressures, between the
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Figure 7.9: (a) Experimental phase diagram on cooling.
(b) Experimental phase diagram on warming

data and the calculated values (fig. 7.8). This leads us to conclude that at low

pressures the high temperature phase has characteristics that correspond to the

Polar phase, while at high pressures it has additional structure.

We summarize the locations of the observed phase transitions and we label

the portions of the phase diagram according to the results of our analysis in fig.

7.9
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7.7 Conclusion

This experiment revealed that embedding superfluid 3He in a highly ori-

ented aerogel produces striking new phenomena. The A and B superfluid

phases are both distorted compared to their counterparts in the bulk, and their

region of stability is markedly different compared to their stability in the bulk.

We observe a phase which occurs just below the superfluid transition, which

has no analog in the bulk. Our analysis points to the conclusion that at low

pressures this superfluid state is closely related to the Polar phase.

Results presented in this chapter have been submitted for review to the jour-

nal Nature Physics. Portions of the text and some of the figures presented in

this chapter have been included in the submitted manuscript.
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CHAPTER 8

PHASE DIAGRAM OF A THIN FILM OF 3HE CONFINED WITHIN A 1080

NM DEEP CAVITY

We present data in the superfluid state for five experimental pressures: 0.1,

1.4, 2.5, 3.6, and 5.6 bar. To enhance surface specularity, the surfaces of the

experimental cell were pre-plated with roughly 50 µmol/cm3 of 4He, which

amounted to ∼ 3 monolayers of 4He. This coverage was shown to be sufficient

to make the surfaces nearly specular [52].

8.1 Determining the superfluid fraction from the torsion pen-

dulum resonant frequency

Previous attempts of using a torsion pendulum to study confined films of 3He

encountered problems with the fluid decoupling from the pendulum walls at

temperatures greater than the superfluid transition [80, 81], however, despite

the extremely smooth surfaces of our cell, no sign of decoupling was observed in

our experiment. In fig. 8.1a, we observe a constant shift of the torsion pendulum

frequency data between the empty pendulum and the 3He filled pendulum at a

moderate pressure. In the experiment described in Ref. [80] the pendulum was

filled at saturated vapor pressure. Due to the existence of liquid-vapor interface

a vapor bubble could form within the cell. To avoid such possibility, the cell was

filled above the critical pressure of 3He.

Dissipation of empty and filled cell is plotted in Fig. 8.1b. The extra dis-

sipation due to the fluid in the cell is very small compared to the empty cell

dissipation. This is another indication that the fluid is well coupled to the cell
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Figure 8.1: a. Data for the empty and 3He filled (at 2.55 bar) torsion pen-
dulum resonant frequency versus temperature.
b. Data for the empty and 3He filled (at 2.55 bar) torsion pen-
dulum quality factor versus temperature. Note that the empty
cell seems to be unable to be cooled below ∼ 4 mK. This is
probably due to a time-dependent heat leak from the cell head.
c. Data in the normal state torsion pendulum resonant fre-
quency versus temperature for three experimental pressures
adjusted by adding an appropriate constant so that all the data
lies on the same line. The frequency shift versus temperature
is indicative of the temperature dependence of the torsion con-
stant. 113



Figure 8.2: Data for empty cell and filled cell with 4He (at 3 bar) torsion
pendulum resonant frequency versus temperature. An arrow
marks the position of Tλ.

walls, since the decoupling of the fluid is expected to be associated with a clear

dissipation peak [81].

The resonant frequency shift at different pressures does not scale linearly

with the fluid density. This phenomenon has been seen in the previous torsion

pendulum experiments and is attributed to slight distortion of the torsion rod

axis when the pressure is increased. Subtracting the period of the empty cell

from the period of the filled cell is not sufficient to determine the frequency shift

due to the coupled fluid. Instead, after we completed our experiments with 3He,

we filled the cell with 4He and measured its frequency shift above and below

Tλ. The results of these measurements are shown in fig. 8.2. Below 1 K, 4He

is nearly 100 % superfluid, so any difference between the filled cell and empty

cell below 1 K will be only due to torsion rod distortion. It was determined
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that this effect was responsible for a frequency shift of 1.78 mHz for 3 bar of

pressure. After the effect of torsion rod distortion is accounted for, we observe

that the difference for the torsion pendulum frequency between fully coupled

fluid just above Tλ and the empty cell is 7 mHz. Using the appropriate values

for the density of 4He at these temperatures and pressure, we determine that

the expression for the frequency shift due to the fully coupled normal fluid is:

∆ffully coupled = 46.05[mHz/(g · cm−3)]× ρhelium[g · cm−3] (8.1)

This expression is temperature independent for low temperatures (< 100 mK),

since the density of the 3He fluid does not change with temperature.

We expect that at temperatures of the order of a mK, the empty cell frequency

to scale linearly with temperature. Direct measurements of the empty cell at

these temperatures are not possible since we cannot cool the pendulum to tem-

peratures lower than ∼ 4 mK without employing the large thermal conductivity

of the liquid 3He. Instead, to determine the intrinsic temperature dependence of

the pendulum frequency, we look at the normal state data for the various exper-

imental pressures. Shifting the data for the different pressures accordingly, we

see that the slope for the linear temperature dependence is 0.40056 mHz/mK

(fig. 8.1c). We can now infer the superfluid fraction for the fluid within the

torsion head from the experimental frequency f(T ) through the following ex-

pression:
ρs
ρ

=
f(T )− fnormal(T )

∆ffully coupled

(8.2)

where fnormal(T ) is the linearly extrapolated normal state frequency to temper-

atures below Tc using the 0.40056 mHz/mK slope.
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8.2 Temperature Calibration

During the course of this experiment, it was noted the unusually long time it

took to achieve thermal equilibrium in the torsion pendulum after cooling or

warming (ramping of the magnetic field) was stopped. Most likely, the silver

sinter heat exchanger cooling liquid helium had deteriorated compared to the

previous experiment. A larger thermal resistance between the fluid and the heat

exchanger meant that small heat leaks into the helium will elevate its temper-

ature in relation to the heat exchanger temperature. Fortunately, we could use

the quartz tuning fork as a reliable thermometer measuring the actual temper-

ature of the helium surrounding the fork, which is intimately connected to the

3He within the torsion pendulum. For all pressures we measured, we observed

that bulk superfluid transition measured by the quartz tuning fork occurred at

a progressively lower temperature compared to the expected Tc (table 8.1). For

each pressure, multiple cooling and warming ramps were performed. To ac-

count for thermal lag due to cooling and warming, the measured Tc was plotted

versus the rate of change of temperature (warming rate was multiplied by a fac-

tor of 3, since heat capacity has a factor of ∼ 3 jump just below Tc). The data for

Tc versus rate of change of temperature falls on a straight line when plotted in

this manner. The value for Tc measured in table 8.1 was determined from the

y-intercept (Tc at zero rate of temperature change) of the linear fit to the data at

each pressure. It is clear that there is some heat leak into the fluid, and since

the heat exchanger thermal resistance gets higher with lower temperature, the

thermal lag becomes more severe as temperature gets lowered.

Thermal resistance between the helium and the metal surface, known as the

Kapitza resistance, is expected to scale as T−3. Ref. [82] studied in detail the tem-
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Table 8.1: Measured bulk Tc vs expected.

Pressure [bar] Tc measured [mK] Tc expected [mK] ∆T (Tc) [mK]

5.6 1.460 1.506 0.046

3.6 1.286 1.331 0.045

2.5 1.137 1.219 0.082

1.4 1.009 1.094 0.085

0.1 0.798 0.927 0.129

perature dependence of the thermal resistance of silver sintered heat exchangers

(the type we are using in our experiment), and found that while at higher tem-

peratures the thermal resistance of the silver and the helium within the sinter

pores affect the net heat exchanger resistance and lead to departure from the

T−3 law, at low temperatures (below a few mK), all sintered heat exchangers

exhibited the expected T−3 dependence. If the temperature lag is related to the

heat exchanger thermal resistance as:

∆T =
Q̇

Rheat exchanger

= ∆T (Tc)

(
Tc
The

)3

(8.3)

assuming that heat leak Q̇ is constant throughout each data run, then for each

pressure, we can turn the heat exchanger temperature (measured using the

melting curve thermometer) into the temperature of the helium the following

way:

The = Theat exchanger +∆T (Tc)

(
Tc
The

)3

+∆Trate (8.4)

Here, ∆Trate is the thermal lag due to nonzero cooling/warming rate. Assuming

that ∆Trate does not have a temperature dependence, ∆Trate can be determined

from the difference between the actual Tc measured for each particular data

run and the y-intercept of the Tc versus rate of change of temperature plot (Tc
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Figure 8.3: Data for the helium temperature (adjusted temperature) plot-
ted versus the heat exchanger temperature (melting curve ther-
mometer, unadjusted temperature) as determined for 5.6 bar,
assuming T−3 dependence of the thermal resistance of the sil-
ver sinter heat exchanger

measured in table 8.1). The dependence of the temperature of the helium on the

temperature of the heat exchanger for the pressure of 5.6 bar is shown in fig. 8.3.

The lowest achievable temperature on our demagnetization stage is ∼ 0.3 mK,

so from fig. 8.3, we see that due to the less than optimal performance of our heat

exchanger, the lowest achievable temperature for the helium in our experiment

is ∼ 0.6 mK.

After calibrating the quartz tuning fork for each pressure, we can use the fork

as a very precise primary thermometer in our experiment which has virtually

zero lag with the temperature of the fluid in the torsion head. Data from the

nematically ordered aerogel experiment (chapter 7) for 0.1 and 3.6 bar is plotted

in fig. 8.4a along the data for the fork in the current experiment at 0.1 bar. In the

nematically ordered aerogel experiment, we did not encounter issues with high
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Figure 8.4: a. Data for the normalized temperature plotted versus the
normalized full-width half maximum for the quartz tuning
fork for the 0.1 and 3.6 bar fork data from the nematically or-
dered aerogel experiment. Data for 0.1 bar for the fork from
the current experiment is shown using both unadjusted (melt-
ing curve thermometer) temperature and adjusted temperature
(described in the text).
b. Data for the normalized temperature versus the normalized
full-width half maximum for the quartz tuning fork for the 0.1
and 3.6 bar fork data from the nematically ordered aerogel ex-
periment is plotted versus the adjusted temperature fork cali-
bration in the current experiment..
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thermal resistance of the heat exchanger.The purple trace uses the unadjusted

melting curve temperature (Theat exchanger) for the 1.1 µm cell data set, and clearly

deviates significantly from the expected behavior. The orange trace uses the

adjusted temperature The determined according to eq. 8.4, and we observe good

agreement with previous experiments. Fig. 8.4b shows the calibration data for

the fork at all pressures. Note that the pressure dependence is not large, and

we have a good agreement with the previous experimental data, which leads

credence to our calibration.

8.3 Superfluid Fraction and Dissipation Data

Figure 8.5 shows the superfluid fraction data for the five experimental pressures

on cooling and warming, along with the bulk B phase superfluid fraction data

at each pressure plotted versus the reduced temperature, as determined from

the fork. We see that the measured superfluid fraction is very close to the bulk.

This is not surprising, since Freeman showed that for 3He confined within ap-

proximately 300 nm spaced Mylar sheets, the measured superfluid fraction is

very close to the bulk when the surfaces were preplated with 4He [83]. The fact

that our experimental data shows a good agreement with the bulk is further ev-

idence that the temperature of the helium has been estimated correctly by the

method described in the previous section.

Close to Tcwe observe a single, sharp resonance peak at all pressures (insets

in fig. 8.5). We believe this due to a Helmholtz resonance mode crossing, most

likely in the channel connecting the main cavity with the fill line. It is interesting

to note that the resonance seems more pronounced on warming than on cooling.
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Figure 8.5: Superfluid fraction data for 0.1, 1.4, 2.5, 3.6, and 5.6 bar. Circles
mark the location of the A to B and B to A transitions. See fig.
8.6
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Figure 8.6: Regions of A to B transition on cooling and B to A transition
on warming. Dotted lines indicate temperatures at which the
B to A transition on warming starts and ends. Location of the
A to B transition on cooling is indicated with an arrow at each
pressure. Green line represents the B to A transition accounting
for the bowing of the cell. Bottom right corner panel shows a
cartoon describing the progression of the A to B transition on
cooling and B to A transition on warming.
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While the effect of confinement does not significantly alter the values of the

superfluid fractions measured, confinement has a dramatic effect on the relative

stability of the superfluid phases. We observe a high temperature superfluid

phase, which we identify as the A phase at all pressures. At low temperatures,

the A phase transitions to a low temperature superfluid phase, which we iden-

tify as the B phase. Unlike the NMR experiment at Royal Holloway, in which

a cell with a cavity depth of 700 nm was studied, we observe an A - B transi-

tion at all pressures, down to zero bar. Figure 8.6 shows the superfluid fraction

in the vicinity of A - B transition at each pressure. Figure 8.7 shows the mea-

sured torsion pendulum dissipation (Q−1) over the same temperature range. A

slight drift toward lower values with time for the torsion pendulum dissipation

has been noted in our experiment. The drift is probably due to extremely long

relaxation time of two level systems that determine the mechanical properties

of the defects in the coin-silver torsion rod. For all pressures, except 5.6 bar,

the cooling data was obtained first before the warming data. This is the reason

why cooling data is observed to have higher overall dissipation compared to

the warming data, except for 5.6 bar, at which the cooling data was obtained

after the warming data, in which case it has a slightly lower dissipation.

We observe a sharp jump down in the superfluid fraction (fig. 8.6) and sharp

jump up in the dissipation (fig. 8.7) as we transition from the A phase to the B

phase on cooling at temperature TAB. On warming, the B to A transition is

seen to be gradual, starting at TBA start and ending at TBA end. We can see that

the A phase is associated with higher superfluid fraction and lower dissipation

compared to the B phase. We expect that confinement orients the ℓ-vector of the

A phase order parameter along the pendulum axis. Then, we would be probing

along the direction of largest gap and hence expect a larger superfluid fraction
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Figure 8.7: Measred dissipation (1/Q) of the torsion pendulum in the re-
gion of the A-B phase boundary for the five experimental pres-
sures. TBA start and TBA end are indicated with dotted lines.
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in the A phase compared to the B phase. This is the situation we observe in

our data. The ratio of the A phase superfluid fraction compared to the B phase

superfluid fraction at TAB is shown in table 8.2. The table also shows the values

for TAB, and TBA start and TBA end The A phase superfluid fraction enhancement

is only slight, but agrees well with what is predicted for the bulk. Ref. [84]

predicts ρsA⊥/ρsB to be ∼ 1.03 at 0 bar, ∼ 1.09 at 10 bar, ∼ 1.20 at 20 bar and

∼ 1.275 at 34.36 bar.

Table 8.2: Measured ratios between superfluid fractions of A phase and B
phase.

Pressure [bar] ρsA/ρsB TAB/Tc TBA start/Tc TBA end/Tc

0.1 1.028 0.6930 0.7181 0.7216

1.4 1.037 0.8108 0.8090 0.8263

2.5 1.042 0.8574 0.8484 0.8708

3.6 1.051 0.8836 0.8647 0.8907

5.6 1.055 0.9023 0.8864 0.9179

One of the goals of this experiment was to test the prediction that the stripe

phase will be formed at the onset of the A-B transition. Assuming that stripe

domains are oriented perpendicular to the flow, we would expect that stripe

phase will be revealed as a slight dip in the superfluid fraction measured and

an increase in dissipation. We do not observe any of these tell tale signs in our

data shown in fig. 8.6 and fig. 8.7.

Figure 8.8 shows the locations of Tc, TAB, TBA start, and TBA end on the pres-

sure versus temperature phase diagram. Also with black solid lines are shown

the predicted locations for the A to stripe, stripe to B and A to B transitions [51].

The stripe phase is predicted to be realized only at low pressures. The tempera-
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ture width in T/Tc of the stripe phase region is expected to be roughly the same

between 0 bar and 3 bar, and is expected to get smaller as pressure is increased

further. Above a pressure of ∼ 4.8 bar, no stripe phase is expected to be realized.

In our experiment, we observe a larger temperature window between TBA start

and TBA end as pressure is increased. If this were related to the realization of

stripe phase interceding between the B to A transition, we would expect that

temperature window to shrink at pressures above 5 bar. Instead, we observe

that the difference between TBA end and TBA start is larger at 5.6 bar than at any

of the lower pressures.

Plotting the locations of the observed phase transitions in terms ofD/ξ∆ ver-

sus pressure (fig. 8.9) can give us an insight to the source of the width observed

in the B to A transition on warming (D is the depth of the cavity = 1080 nm, and

ξ∆ is the coherence length defined in eq. 2.35). If we assume that the A phase

becomes the favored phase at values of D/ξ∆ below a certain critical value, the

existence of a finite width for TBA can be explained through the existence of a

distribution of slab thicknesses across the cell’s channel. The beginning of the B

to A transition is associated with transition at the part of the cell with smallest

cavity depth, Dmin = 1080nm (e. g. the place where the silicon is bonded to the

glass), whereas the end of the transition is associated with transition at the part

of the cell with largest cavity depth Dmax (e. g. the center of the annular cavity).

Bowing of the cell due to the fluid pressure can explain the linearly increasing

difference between Dmax and Dmin observed in fig. 8.9 as pressure is increased.

At 1.4 bar and 3.6 bar, we have performed a series of measurements in which

we started from the B phase and warmed partially through the B to A transition

and subsequently cooled back down. For a series of turnaround points getting

progressively closer to TBA end, we observed a fully reversible transition. This
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precludes the possibility that there is an additional first order transition (such

as B to stripe or stripe to A) nested within the beginning and the end of the B to

A transition. These measurements are consistent with coexistence of regions of

A phase and B phase within the channel, with a phase boundary between them

that is free from pinning. Once we have gone past TBA end, subsequent cooling

results in supercooling of TAB. This is because once we have fully converted

all B phase to A phase, no seeds for B phase exist, and hence A phase can get

supercooled. We do not observe superheating of the B phase, because there is

likely seeds of A phase present along the periphery of the cell (cell walls are not

perfectly vertical).

Finite element analysis was done in COMSOL using for the cell geometry us-

ing the following values: Young’s modulus for Si: 170 GPa with Poisson ratio of

0.28, and Young’s modulus for glass: 73 GPa with Poisson ratio of 0.17. Note, us-

ing these parameters reproduced well the measured bowing by the Royal Hol-

loway group on their 700 nm NMR Si-glass cell imaged at 4 K. Results for the

bowing due to pressure are shown in figure 8.10. Knowing the exact profile for

D across the cell, we can perform a numerical calculation for the distribution of

the regions of A and B phase across the cell’s channel as we go through the B

to A transition. Results of this calculation as shown as solid green lines in fig.

8.6. We see very good agreement between the data and the calculation, which

validates this model.

It is evident that points indicating the beginning of the B to A transition on

warming (indicated in fig. 8.8 and 8.9 with orange inverted triangles) are the

locations of the equilibrium transition between A phase and B phase. The A-B

phase boundary is in the vicinity of the predicted A-stripe-B phase boundary by
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Figure 8.8: Phase diagram plotting pressure versus temperature for cool-
ing (a), warming (b), and both cooling and warming (c).
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Figure 8.9: Phase diagram plotting confinement parameter D/ξ∆(T ) ver-
sus pressure for cooling (a), warming (b), and both cooling and
warming (c). Cavity depth D is not adjusted for bowing and is
taken to be 1080 nm for all points.
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Figure 8.10: a. Cross sectional profile for the experimental cell, showing
the amount of bowing for the silicon and the glass for each
pressure.
b. Net distortion of the cavity.

Wiman and Sauls, but deviates from it at 3.6 and 5.6 bars. We note that there is

some uncertainty in the strong coupling parameters that enter in the model of

Wiman and Sauls. The experimental data for the A-B phase boundary should be

able to resolve these uncertainties and help improve their model. We also com-

pare the locations forD/ξ∆(TBA start) and the extrapolated values forD/ξ∆(TBA)

determined by Lev Levitin’s NMR measurements on a 700 nm deep cavity [18].

Our experimental data lies in the vicinity of Levitin’s extrapolation, but deviates

at high pressures. The data for D/ξ∆(TBA) has a linear dependence on pressure

as expected, but has a somewhat smaller slope. This result indicates that there is

not an universal model for the location of the A-B phase boundary in the D/ξ∆

vs T space, but rather the location of the phase boundary also depends on the

actual cavity depth D.

Finally, we want to point out that TAB and TBA fall exactly at the predicted

locations for the A to stripe and stripe to B phase transition temperatures at
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0.1 bar. This could be a coincidence or it could indicate that at 0.1 bar, unlike

what we see at higher pressures, the stripe phase might be realized. Excessive

bowing at higher pressures could be the reason why stripe phase is not realized

at the other experimental pressures. It is worth noting that in fig. 8.6, for 0.1

bar we see a very small dip in the superfluid fraction right below the beginning

of the B to A transition starting at ∼ 0.707T/Tc on warming. Unfortunately, we

could get only to just below the A to B transition in our experiment, and we

were unable to take multiple data sets at 0.1 bar to investigate further. We have

made, however, an identically fabricated NMR cell with the same cavity depth.

It would be worthwhile cooling that cell and investigating whether NMR can

test the presence of stripe phase in that cell.

While we do not observe any “smoking gun” signs for the presence of stripes

in our measurements, we cannot fully rule them out. It is possible that the pres-

sure bowing of the cell orients the stripes into concentric circles with azimuthal

symmetry. Since the flow in that case is along the stripe domain walls, their

effect will be minimal in the torsion pendulum measurements. A NMR experi-

ment done in parallel looking the same geometry is needed, as well as measure-

ments in a cell with far less bowing need to be performed until we can rule out

the presence of the stripe phase.

8.4 Conclusions

We have explored the phase diagram for superfluid 3He confined within a 1080

nm deep cavity. No conclusive evidence pointing to the existence of the pre-

dicted stripe phase was observed.
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8.5 Outlook and future experiments

This experiment was the first successful torsion pendulum experiment studying

confined 3He within a nanofabricated geometry. Building upon the success of

this experiment, several more experiments are currently in preparation.

The first experiment will use the same geometry as the one described here,

but will pattern the channel into a series of thin (< 10 µm) sectors etched by

an additional 220 nm depth to the initial 1080 nm for a final depth of 1300 nm.

The alternating sectors of 1080 nm and 1300 nm should lead to a temperature

range in which A phase will be stable in the 1080 nm regions and B phase will

be stable in 1300 nm regions. We would obtain either a stripe-like modulation

of A-B phase regions will be stabilized or a non-equilibrium A or B phase will

be realized.

In the second set of experiments, cells with cavity depths of 50, 100, 200,

and 300 nm will be made. These cells will aim to revisit two old experiments

[85, 86], in which a possible transition to a two-dimensional superfluid phase

was thought to have been observed.

Finally, a high pressure capable cell of depth of ∼ 600 nm will be made. In

such a geometry, we expect to see A phase having a large region of stability at

low and very high pressures. However, at intermediate pressures, the majority

of the phase diagram will be occupied by the B phase with A phase confined

only very near Tc.
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