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CHAPTER I
INTRODUCTION

Consider a warehouse supplying parts to a high-volume assembly
plant for consumer durable goods such as refrigerators or television sets.
One of the warehouse manager's concerns is to ensure that there is enough
space to accomodate all the parts upon their delivery. In this thesis we
explore the problem of setting parts ordering rules to satisfy the assembly
schedule as well as to make efficient use of both the limited warehouse
space and the parts order and delivery system. The focus of this thesis is
on optimizing the space utilization.

There are two complementary techniques available for optimizing
space utilization: order sizing and delivery scheduling. Reducing the size
of orders has the effect of reducing the space required to hold the cycle
stock. A tradeoff arises in that smaller order sizes necessitate a greater
order frequency which in turn places a greater burden on the parts order
and delivery system.

Delivery scheduling is the technique of coordinating the delivery
times of different orders to optimize space utilization. The greatest
demand for warehouse space occurs if all parts deliveries arrive at the
warehouse simultaneously. By time phasing or staggéring these
deliveries, the peak demand for warehouse space can be moderated.

We refer to the combined problem of order sizing and delivery
scheduling as the Warehouse Scheduling Problem.

The Warehouse Scheduling Problem, WSP, bears many similarities
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to the Economic Lot Scheduling Problem, ELSP, in which production
runs of different products must be sized and sequenced in a single time-
constrained facility. As a result, the evolution of research on the WSP has
closely paralleled that of the ELSP. These two areas are of considerable
academic interest because they serve as paradigms for the general
problem of integrating lot sizing procedures with procedures to
coordinate the detailed timing of operations. In this thesis, we build upon
recent scheduling advances in both areas and suggest, for further
research, how the procedures developed here for the WSP can be applied
to the ELSP problem as well.

The following assumptions are common in the literature of the WSP:

Parts Demand. The demand for parts occurs continuously in time at
known constant rates and backorders are not allowed. This assumption is
reasonable in many high-volume assembly environments because the
assembly schedule is frequently expressed in terms of a production rate
and a production mix. Both the rate and the mix are fixed for periods of
times that are long relative to the parts ordering cycle. Furthermore, the
assembly cycle is often short so that most of the end items in the product
mix are assembled on a daily or even hourly basis. Consequently, parts
must be supplied to the assembly plant at rates that are stable over time. A
part stockout can imply the shutdown of the assembly plant. The assembly
plant carries no buffer stock so backorders are not allowed.

Parts Supply. Problems associated with supply uncertainty are not
considered here. In general, the warehouse must carry safety stock of
each part to buffer the assembly schedule from uncertainties in both

timing and quantities deliveries. To focus on the relationship between lot



sizing and scheduling, we restrict attention to deterministic part supply:
part deliveries occur at a fixed lead time after part orders and deliveries
quantities exactly equal the matching order quantities. We further assume
that the lead times are zero. (It is a trivial matter to offset a delivery
schedule with known positive lead times to derive an order schedule. )
Consequently, in what follows an order is synonymous with a delivery.
Schedule. An order covers a single part number. It consists of a
specification of the part number ordered, the quantity ordered, and the
delivery time of the order. Order quantities are positive and finite.
Delivery times are non-negative with time zero representing immediate
delivery. A schedule is a list of orders sorted by increasing delivery times.
A schedule is said to be demand-satisfying if there exists a finite amount of
initial inventory for each part sﬁch that if the schedule is followed there
will never be stockout. A demand-satisfying schedule is therefore an
infinite list of orders. A schedule and a vector of initial inventories are
said to be_space-bounded if there exists an upper bound on the warehouse
space required to implement the schedule, starting with the initial
inventories. Finally, a cyclic schedule is a finite list of orders, together
with a cycle length, 7, such that the delivery time of each order lies in the
closed interval [0,t]. A key requirement of a cyclic schedule is that the
total quantity of each part ordered in the cycle equal the total demand for
the part over the length of the cycle. Schedules generated from cyclic
schedules are demand-satisfying and space-bounded. This schedule is
repeated periodically every T units of times with the same starting and
ending inventories for each part. A relative cyclic schedule is a cyclic

schedule with a cycle length of 1. A cyclic schedule can be expressed as a



relative cyclic schedule together with a cycle length T, since it is a simple
matter to scale the relative delivery times and the relative order sizes by T.

Performance Criteria. Schedules are evaluated over an infinite time

horizon. The different performance measures of interest are:

1) Maximum space used. Clearly, a local maximum of the space used
will occur at each of the delivery times. The relative maximum space used
is the the largest of these local maxima over one cycle.

2) Long run ordering cost per unit time. We assume that the
diseconomies of frequent orders for a part can be represented in terms of
a fixed order cost levied against each order for the part. Such a cost may
consist of an implicit component such as the economic value of time lost in
changing over the order and delivery system from processing one order
to processing another. A recent example applying such a distinction
between explicit and implicit order costs in multi-stage production
systems may be found in Jackson, Maxwell, and Muckstadt [88]. This
distinction is not considered further in this thesis although a similar
distinction arises in the consideration of space costs. The long run
ordering cost per unit time is the sum, over all parts, of the fixed order
cost per cycle divided by the cycle length.

3) Long run holding cost per unit of time. The holding cost for each
part is proportional to its average inventory. The coefficient of
proportionality, called the carrying charge, is the cost of holding one unit
of the part for one unit of time. The long run holding cost per unit of time
is the sum, over all parts, of the holding cost per cycle divided by the cycle
length.

%) Long run inventory costs per unit time. This is the sum of the long

run ordering cost per unit time and the long run holding cost per unit



time.

,6) Long run space cost per unit time. This is the product of the
maximum space used over the cycle with the opportunity cost of one space
unit of the warehouse for one unit time. If the long run holding cost per
unit time and the long run space cost are both incorporated in the cost
function to be minimized, we assume that the carrying charge (the
inventory holding rate is the product of the inventory carrying charge and
the unit variable cost (Hadley and Whitin[63])) does not include any
component for the cost of renting or leasing the warehouse or the cost of
operating the warehouse. These latter costs must be incorporated in the
opportunity cost for space.

Many authors have considered the WSP with additional assumptions.
Churchman et al[57], Holt[58], Buchan and Koenigsbergs[63], Hadley and
Whitin[63], Parsons[66], Thompson[67], Lewis[70], Starr[70], and
Johnson and Montgomery[74] have ignored the scheduling aspect of the
problem and considered order sizing exclusively. Homer[66], Page and
Paul[76], Zoller[77], and Hall[85] have considered scheduling but have
restricted the reorder intervals to be equal for all parts.

Churchman et al[57], applied the Lagrangian Multipliers Technique,
LMT, as a solution procedure to solve the problem when the scheduling
aspect is ignored. This procedure minimizes the long run average
inventory cost subject to the constraint that the total space required does
not exceed the space available. This constraint formulation allows for the
possibility of receiving simultaneously all the parts at one point in time.
Consequently, the maximum space required obtained by the LMT is an

upper bound on the optimal value obtained by any other technique.



Staggering the deliveries over the cycle to avoid simultaneous
replenishment is an alternative method to order sizing to reduce the
maximum space required. Staggering was known to authors who used
LMT but it was not exploited. Hadley and Whitin[63] state:"Here we shall
not attempt to account for the possibility that orders can be phased in the
certainty case so that it will never be necessary to have the maximum
quantity of each item on hand at the same time". Buchan and
Koenigsbergs[63], Thompson[67], and Lewis[70] insert a normalizing
factor which lies between 0.5 and 1 in the constraint in recognition of the
fact that staggering would take place in practice so such a conservative
bound is not necessary.

In 1966, Homer renewed interest in the subject by considering the
scheduling aspect of the problem. He drew on the ELSP by using the
Common Cycle, CC, approach (Elmaghraby[78]) where the reorder
intervals are restricted to be equal for all parts. In addition, he determines
the best way of spreading out the deliveries over the common cycle length
to avoid simultaneous deliveries so as to minimize the maximum space
required. Page and Paul[76] show that the CC yields a better utilization of
the warehouse space than LMT. However, the CC does not always
produce a better cost solution than LMT. The imposed common reorder
interval may be very different to the optimum unrestricted reorder
interval for some parts. They refine the CC by developing a grouping
heuristic where the parts within each group share the same reorder
interval. However, the reorder interval of different groups can be
different. After computing the maximum space used for each group, they

use the LMT to size the cycle of each group under the assumption of



simultaneous maximum space used across all groups. Goyal[78] shows
that the Page and Paul refined approach can be further improved by
allowing parts to be ordered more than once. The same result of the
Common Cycle approach with staggering was also obtained,
independently, by Zoller[77], and by Hall[85]. Hall includes in his cost
function the cost related to the storage space used. Hartley and
Thomas[82] solve the WSP to optimality for the case of two products
using the staggering technique without the restriction of equal reorder
intervals.

As an extension of his model, Homer[66] suggests that some parts
may be ordered more than once in the cycle, or once every several cycles
if the peak inventory space derived by CC exceeds the space available. He
says:" The problem then becomes one of deciding how many items may be
subject to split deliveries, how many deliveries per item to allow and the
size of each delivery, as well as the optimum spacing of the deliveries.
Preliminary work indicates that these additional variables are not
independent of the sequence in which items are received, thereby
introducing a combinatorial problem of some consequence.” No further
studies were conducted to investigate the effectiveness of his suggestion.
In this thesis, we will consider general schedules in which more than two
products may be ordered several times in different amounts during the
cycle. Only cyclic schedules will be examined. The Zero Switch Rule,
7SR, (Maxwell[64]) in which the quantity ordered for each part should be
sufficient to last until its next order will be followed.

As recognized by Homer, the problem of integrating lot sizing and
scheduling is a challenging problem. This integration was originally

examined by Maxwell[64] for the ELSP. Maxwell[64] proposes a two



stage approach to develop a cyclic schedule. First, the production
sequence in which the parts may be produced more than once in the cycle
is determined, and then the production timing and production quantities
are computed. Delporte and Thomas[77] formulate the problem as a
mixed integer quadratic programming problem to joinly determine the
sequence and the production lengths. However, because of the complexity
of a such formulation, they construct heuristics to determine the
frequencies and the sequence. The production lengths are then derived by
solving a quadratic programming problem. Dobson[87] uses a similar
procedure to that of Maxwell and that of Delporte and Thomas. He first
determines approximate Power-of-Two frequencies, and then he obtains
the sequence by using the Power-of-Two Bin Packing Heuristic. The
optimal schedule for the derived sequence can then be found by using a
parametric quadratic programming algorithm (Zipkin[87]). In this thesis,
a similar approach where the problem is split in different stages to
determine the ordering frequencies, the sequence, the cycle length, the
delivery timing and the delivery quantities will be used.

In Chapter II we show that the optimal cyclic schedules satisfy the
ZSR. We present a general formulation of the WSP that includes binary
variables to determine the positions of each part within the ordering
sequence. For a given sequence, we demonstrate that the formulated
problem can be approximated into two subproblems: a linear program
that minimizes the relative maximum space used and a quadratic program
that minimizes the holding cost.

Chapter III presents sequencing heuristics. We extend the Power-

of-Two Bin Packing Heuristic which is restricted to the power-of-two



integer order frequencies to the case of arbitrary integer frequencies.

Chapter IV deals with the time varying lot sizes models. In the
derivation of these models, we assume that the order frequencies and the
order sequence are given. We reformulate the linear program that
minimizes the relative maximum space used and show that its optimal
solution is characterized by filling the warehouse at each order. We give
conditions under which this linear program and the quadratic program
that minimizes the holding cost have the same optimal solution. When
these conditions are not satisfied, we derive a bound on the cost penalty
that results when using the optimal solution of the linear program as a
solution to the quadratic program. Finally in this chapter, we determine
the optimal cycle length for the model that minimizes the long run
inventory costs per unit time under the storage space constraint.

In Chapter V we consider the equal lot sizes models. We conduct an
erhpirical investigation to estimate a bound on the space penalty by
imposing the equal lot sizes restriction. We develop an efficient algorithm
to minimize the maximum space used that either solves the linear progam
or suggests that a change in order sequence may be desirable.

Chapter VI integrates all the heuristics and algorithms developed in
the previous chapters into one iterative algorithm. The algorithm
computes iteratively the ordering frequencies, the cycle length, the
delivery times, the maximum space used, and the long run inventory CcOSts
per unit time. We show that the algorithm compares favorably with other
methods encountered in the literature.

Finally, Chapter VII summarizes the results obtained in this thesis

and presents possible extensions for further research. In particular, the
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relation between this work and the ELSP is explored.




CHAPTER II

MIXED INTEGER NONLINEAR PROGRAMMING MODELS
FOR THE WSP

The WSP is a complex problem in which the ordering frequencies,
the sequence in which products are ordered, the length of the cycle and the
timing of the deliveries must be determined. It can not readily be
formulated as a single problem. This difficulty in formulation is also
encountered in the ELSP. Most frequently, for both the ELSP and the
WSP, a two stage approach has been suggested in the literature. First, the
production frequencies and cycle length are determined. In this step the
sequencing aspect is ignored and a relaxed problem is solved. Some
authors have used iterative methods to generate near-optimal cycle length
and frequencies (Doll and Whybark([73], Goyal[7 5], Haessler[79],
Delporte and Thomas[77]). The second step of the approach uses these
frequencies and finds a feasible schedule. This two stage approach is also
adopted in this thesis to solve the WSP with the exception that the cycle
length is not fixed by the first stage of the approach; cycle length is
determined in the second stage.

This chapter details several models for the second stage of the
general approach. The models can be combined with heuristics to
determine the order frequencies and cycle length; Chapter VI illustrates
one such combination. For the balance of the chapter, we assume that the
frequencies are given. All of the models presented are based on the Zero

Switch Rule since it will be shown that this rule is consistent with

11
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optimality in the WSP.The models differ with regard to the performance
criteria.
Notation

Before presenting the mathematical formulation, it is useful to
introduce the notation used to describe the parameters and the decision
variables.

Hereafter, the indices i and r are products designators: ir=1,....n,
where 1 is the number of parts. The indices j.k,and 1 designate orders:
j.k,l=1,....,m, where m is the number of orders placed.

Parameters
The following parameters are assumed to be given:

V= warehouse space available;

m;= number of orders for product i, i=1,...,n;
A;= demand rate for product i in unit space/unit time, i=1,....n;
h,= holding cost rate for parti in $/unit space/unit time, i=1,...,n;
K = setup cost(ordering cost) in $/order, i=1,...,n.

Note that demand rates and holding cost rates have been expressed using
units of space. Conversion from units of part to units of space is a trivial
matter given the space required per unit of part.

Decision Variables

The decision variables are:

Zg: inventory of product i immediately prior to delivery of the jth order;
Z?jz inventory of product i immediately after delivery of the jth order;

Zi=75— Z%, lot size of product i on the jth order(equals zero if part 11s

not ordered on the jth order);
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n
Z= total inventory immediately after delivery of the jth order (= 2 Z% )s
i=1

W= maximum space used( since the demand rate is expressed in unit space
per unit time, maximum space used and maximum inventory will be
used interchangeably throughout this thesis);

U= time interval between jth and (j+1)st order, interpreted cyclically;

T= reorder interval of the part ordered on the jth order;

T = cycle length;
{1 if part i is ordered on the jth order,
=

0 otherwise; and

1 if the next order of part i after the jth order is on the kth order,

6ijk’-= { )
0 otherwise.

In the following, a mixed integer nonlinear programming model is
formulated for the problem of minimizing the long run average inventory
costs per unit time. First the objective function is presented, then the
consistency of the ZSR with the WSP is discussed, and finally the
constraints to be satisfied are presented.

The long run average inventory cOsts per unit time includes the long
run average setup cost per unit time and the long run holding cost per unit
time. The average holding cost for product i per unit time is proportional
to the sum of the area of the inventory trapezoids depicted in Figure 2-1
divided by the cycle length. The constant of proportionality is h; for
product i. The long run average setup cost per unit time is the sum, over

all orders, of the setup cost of the product replenished at each order
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divided by the cycle length. Therefore, the long run average inventory

costs per unit time is:

n
—’11-:- ( 2 K; m; + Total average holding cost for all products } (2-1)
i=1

A mathematical expression for the total average holding cost for all

products will be derived below after discussing the use of the ZSR for the

WSP.

Inventory of part i
A ry orp

T A%ime

Figure 2-1 Inventory of Part1

The Zero Switch Rule, ZSR, requires that the quantity ordered for
each part be just sufficient to last until its next order (Maxwell[64]). This
rule is widely used for the ESLP to simplify the problem. It is clear that
7SR is consistent with the objective of minimizing the maximum space

used because no extra inventory will be carried. The next theorem shows
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that ZSR is also consistent with the overall WSP.
Theorem II-1. The optimal cyclic schedule for WSP satisfies the ZSR.
Proof.(By contradiction)

Let Schedule 1 be an optimal schedule for WSP, that is; a schedule
that does not violate the space restriction at any point in time during the
cycle and that minimizes the long run inventory costs per unit time.

To prove the theorem, it is sufficient to show that if the ZSR is not
satisfied for schedule 1, then it is not optimal. The proof is most easily
understood by an example.

For the sake of clarity, suppose that , according to schedule 1, partiis
ordered on the 2nd, 5th, and 9th orders (see Figure 2-2).

I
n
v
e
n
t
0
r
y
0
f
: : Z?z i
- - - >
0 2 s Rk Time
2nd order 5th order Oth order

Figure 2-2 Consistency of the ZSR with the WSP

Consider another schedule that orders (Zi2+Z?2—Z?5), (Zi5+z?5—-z?9),and
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(Zi9+Z?9——Z‘f2) on the 2nd, 5th, and 9th order respectively. The new
schedule sets the inventory of part 1 immediately prior to each delivery of

part i to zero. Clearly, the new schedule is also feasible since the total
inventory at each order is smaller than the total inventory at each order
for schedule 1. Moreover, the average holding cost of part i for this new
schedule is less than the average holding cost for schedule 1 by the amount
of the shaded parallelograms in Figure 2-2 (20 Tp+Z5 Ts+Z To)).
This contradicts the assumption that schedule 1 was optimal. Note that by
(2-1), for given frequencies and cycle length, the two schedules have the
same long run setup cost per unit time. (E.O.P)

Although it is commonly used in formulating the problem, the ZSR is
not necessarily optimal in the ELSP. In the ELSP, the production rate is
finite, so having inventory on hand at the beginning of a production run
allows the run to finish earlier, thereby freeing the scarce ressource(time
on the bottleneck machine) for another use. In the WSP, inventory on
hand when an order arrives creates no similar advantage since the
constraint is on the maximum inventory. Throughout this thesis, all the
models to be discussed assume the ZSR.

Under the ZSR rule, the average holding cost of product i becomes
the sum of the area of the inventory triangles pictured in Figure 2-3 (after
rotating the schedule so that an order occurs at time zero and runout
occurs at time 7). Note that an order of part i corresponds to the jth order
in the overall sequence if and only if d;=1. Thus, the long run average
holding cost per unit time is:

n m
512: Z Z A by 8 TS, (2-2)

=l j=1
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and the long run average inventory Cost per unit of time is:

%—{nzKimi-i-—zl—ii?\ihiﬁijT%}. (2-3)
i=1

i=1 j=1

Inventory of part i
A

0 -
Time
jth order T !

Figure 2-3 Inventory of Part i under the ZSR

Next , the constraints for the general model of WSP will be examined.

Total inventory
A

AN

Figure 2-4 Total Inventory of all Parts
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Figure 2-4 is a sample plot of total inventory for a particular schedule.

As can been seen from Figure 2;4, the maximum inventory must occur on
one of the replenishment points when the orders are received, or
equivalently on one of the ordering points since replenishment is assumed
to be instantaneous. Elsewhere in time, the inventory is depleted with rate
equal to the sum, over all products, of the demand rates.

Therefore, the maximum inventory, W, must satisfy:

W 27Z;, j=1,...m, (2-4)
and the warehouse space availability constraint 1s:
W<V, (2-5)

Let S;; = time interval until part i is ordered again after the jth order,
K
and let Aijk = 2 Sijl'
I=j+1
Throughout this thesis, such summations are to be interpreted in a cyclic

fashion. That is, if k<j, then
m k
Aj = 2 Oij + 2 St -
l=j+1 =1
Note that Aj=1 if and only if the next order of product i after the jth
order is one of {j+1, j+2,..., k}, interpreted cyclically if k<j. Otherwise
Ajx=0. Using this fact, S;; can be expressed as:
-1
Sij = Uj + 2 1- Aijk) Uy. (2-6)

k=j+1
To see this, suppose d;;;=1; ie, the first time part i is delivered after the jth

order is on the j'th order. In this case, Aip=0 for k=j+1,j+2,....j’-1 and

Ajj=1 for k=j',j'+1,..... ,j- Hence, Sij = Uj+Uj +1+...+Uj,,1, as desired.
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By the ZSR, the amount of inventory of part i on the jth order should
be equal to the amount needed to satisfy the demand until the next order of

part i. Therefore,

Z% = 7\,, Sijf, jzl,...,m and i=1,...,n,
and
n
Z.= ) MSi; j=1,...,m. 2-7)
i=1

Now, to determine Tj, the time interval until the order on which the
part ordered on the jth order is reordered, it is necessary to know which
part is ordered on the jth order. Using the definition of 0;; and S;; T; can

be written as:

n
TJ = 2 611 Sij’ j=1,...,m. (2—8)
i=1
Moreover, the sum of the reorder intervals for each product should equal
T.
m
Y 5 Ti=1, i=1,...0. (2-9)
=1
In addition, the time intervals, Uj, should also add to the cycle length.
m
Y u=n. (2-10)
1

Finally, the logical constraints involving the binary variables are:
m
2.8
=1
n

S

m,, i=1,...,n, 2-11)

ij=1 j=1,...,m, (2-12)

i=1
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m
Y 8p=1. i=1,....mm and i=1,...0,(2-13)
k=1
Sijk -84 <0, jk,=1,...m and i=1,...n, (2-14)
and
k k
S su<m DS i=1,..m, k=j1,...j and i=1,...n. (2-15)

I=j+1 l=j+1

Constraints (2-11) require that each part i should be ordered exactly my
times. Constraints (2-12) state that exactly one part should be replenished
on each order. Constraints (2-13) indicate that there has to be precisely
one order on which the next order of part i after the jth order is placed.
Constraints (2-14) ensures that if ik = 1, then necessarily Oy =1. These
are called contingency constraints. Finally, constraints (2-15), together
with constraints (2-13), ensure that no order of part i is placed between
the jth order and the first order of part i after the jth order.

The general model, GM, that we just formulated is a very large
mixed integer nonlinear programming problem. It consists of
(3m2n+2mn+4m+2n+2) constraints excluding the nonnegativety
constraints, and (mn+2m+2) continuous variables excluding the slack

variables and (2m?n+mn) discrete variables.

To recapitulate, the GM can be written in a condense form as:
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n n m
1
i=1 i=l =1
S.t.
W<V,
Z < W,

n
z; = 2 As Sy
i=1
n
T, =) 8; Sy
i=1

m
28T =T
=1
-1
Sij:: UJ+ z (1'_Aijk)Uk’
k=j+1
m
GM) X, U; =1,
.=1
m
D8 =m
1
n
Esu =1,
i=1
m
2 8ijk =1,
k=1

Sijk - Sik S 0,

K K
2 3y < 2 Bij1s

I=j+1 1=j+1

k
M= 2, By
I=j+1

Sijk’ Sij e {0,1},

|

=1,...,m,
j=1,...,m,
j=1,....m,
i=1,...,n,

j=1,...,m and i=1,...,n,

j=1,....m and i=1,...,n,

j.k=1,...,m and i=1,...,n,

j=1,...,m, k=j+1,....] and i=1,...

j.k=1,...,m and i=1,...,n,
j=1,...,m,

j,k=1,...,m and i=1,...,n.
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Hereafter, because of the complexity of the general model
formulated for WSP, we assume that the sequence is given by some
sequencing heuristic. Such heuristics are discussed in the next chapter. In

this case, the GM model reduces to the following nonlinear program.

{ZmK +05227\,h 6,]1*2}

i=l =1

S.t.
W<V,
ZJ<W j=1,...,m,
Zi= 2 %(U +i (1 Al]k)Uk]’ j=1,...,m,
k—J+1
(NLP) '—z SIJ(U + (1“Aijk)Uk)v _]=1 PP ¢ ¢ 8
k=j+1
m
2.8 Ty=1, =1,..n,
=1
m
2.0 ="
=1
U; 20, j=1,....m,

where &;; and Ay = Z 8;; are known for all 1,j, and k.
l=j+1

Let: t= T; /T relative reorder interval;
= Uj /T relative time interval;
zj=7Z;/t relative total inventory on the jth order;

w=W/1 relative maximum inventory.

After this transformation the above model becomes:
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i=l j=1
w TV,
j=-1
Uj+ z (1“"A1Jk)uk < W,
k=j+l
-1
uj+ z (I—Auk)uk = O,

=1,..

.,m.

Now, let Tt be the dual variable associated with the constraint w T< V.

A Lagrangian relaxation of the above model can be obtained by moving

the constraint w T < V to the objective function:

n n m
. 12 22‘ 2
Mm? miKi'*"T{TCW‘*’O.S }LlhISUtJ}‘—nV
i=1

s.t.

20

i=1

=1 j=1

-1
Uj+ z (1-—Aijk)uk <w,
k=j+1
j-1
Uj‘l" z (1—Aijk)uk = O,
k=j+1
m
D=1,
=1
m
Uj = 1,
=1
u: 2 0,

]
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It is clear that this model is separable in terms of the cycle length and
the remaining decision variables. First, the optimal (uJ , t W) is
determined by the following quadratic program.

Min nw+0522x b 8; €

i=l =1

s.t.
n
Z?\q uj+ i(l AU |S W, i=1,....m,
i=1 k=j+1
n
tj—‘ 261] Ilj 2(1—Aijk)uk "-"-0, j=1,...,m,
i=1 k=j+1
26“ =1, i=1,....0,
m
(GQP) Yu=1,
=1 .
u; =0, j=1,...,m.

This model will be referred as the General Quadratic Program, GQP.
Then, given the optimal solution (u;, t;,w*) to QP, the optimal cycle

length, T, is given by the solution to the following problem.

T w +0522x by 8 (1)’

i=l =1
This model will be called the Relaxed NonLinear Program, RNLP. If all

(RNLP) Min

Eml

\___;_____/

parts are ordered only once during the cycle, then RNLP reduces to the
model discussed by Hall[85].

The solution of RNLP is a square root formula and the dual variable

7>0 can be chosen to satisfy the omitted constraint Tw<V.
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imiK
TW +0522k h; Su(t)

i=1 j=1

%k * *
T (u] ,tj SW ,TC) =

The two extreme cases where T is very large ( high storage space
cost) and 7 is very small ( low storage spacé cost) will also be considered
in this dissertation. If 7t is very large, that is ; if the holding cost is
insignificant when compared to the storage space cost, then the following

linear program model is appropriate:
Min w
s.t.

0 |
27‘* u;+ i(l —-Aidug |S W, i=1,...,m,
J

i=1 k—-_)+l

b= Zsij u1+2 (1- Auk)uk =0, j=1,...,m,
i=1 k=j+1
ZSU tJ = 1 .=1‘!"'7n7

LP) mZuj =

=1
Uj 20, jzl,...,m.

On the other hand, for a given cycle length, if the holding cost
dominates the storage space cost (%t is very small), then a quadratic

program is appropriate:
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n m

Min 3, O Aihy 86
=l =1
s.t.
TEA(uﬁZ (1 A,Jk)uk} j=1,....m,
k-_|+1
-1
i=1 k=j+1
m
26“ tj =1 i=1,...,n,
=1
m
QP Yu=1,
=1
y; 20, j=1,....m.

Finally, another model which is worth investigating is the one with a
restriction on the lot sizes. The quantity replenished for each part is
restricted to be the same whenever the part is ordered. Mathematically,

the new set of constraints is :

(Z MO | T ] ( DI )2 LI i=1,...,m,

or, equivalently,

n
I Sl .
tj = — =1,...,m.

bl
=1

Using (2-6) and (2-8) this is equivalent to:

zau( +2(1 Auk)ukJ-— i=1,...,m. (2-16)

k=j+1
The new linear program that minimizes the maximum inventory can be
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expressed as:

Min w
S.t.
n i-1
Zk(uﬁ'z (1—Aijk)uk) <w, i=1,....m,
i=1 k=j+1
S < 2\ S
Sij (uj’*' (1“Aijk)uk} = 2 —, =1,....m,
i=1 k=j+1 i my
m
(RLP) 21,1J = 1,
=1

U 209 j:].,...,m.

This model will be referred as the Restricted Linear Program, RLP.
NLP, QP, LP, and RLP will be discussed in more detail in chapters

IVand V.



CHAPTER III
SEQUENCING HEURISTICS

As pointed out in the previous chapter, although the problem in
which the sequence must be determined for given order frequencies can
be formulated as a mixed integer nonlinear program, it is computationally
impractical for large problems. The complexity of this model is mainly
due to the combinatorial aspect of the problem. When solving the ELSP,
the same difficulty has been circumvented by developing heuristics to
generate promising sequences (Haessler and Hogue [76], Delporte and
Thomas [77], Dobson [87]). Those heuristics are similar in a sense that
they try to evenly space the orders of each product. Similarly, in this
chapter a sequencing heuristic is constructed to develop sequences to be
used for the WSP. First, Dobson's bin packing heuristic which is
restricted to the power-of-two frequencies is reviewed, and then a more

general sequencing heuristic is presented.
III-1 Power-of-Two Bin Packing Heuristic

The first idea behind the Power-of-Two Bin Packing Heuristic 1s to
produce an ordering sequence for which the orders of each product can be
scheduled at equally spaced points in time over the cycle. Equal intervals
are desirable from a holding cost perspective. In the case of power-of-two
frequencies, this is easily done. Suppose rni=2mi with a integer for all

products 1. Let m™ denote the largest frequency. Divide the time scale

28
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[0,1) into m™ equal sized intervals called bins. Number the bins
consecutively 1,2,..mT and define the distance between bin k and bin j to
be (j-k)/m™ if kgj and(m*+k-j)/m if k>j. Let bjk denote the bin to which
the kth order of product i is assigned. The inter-order distance for
product i is said to be equalized if the distance between bj and bjx41,
interpreted cyclically, is the same for all orders k = 1,2,......mj. For
power-of-two frequencies, mt is an integer multiple of the frequency for
every product. Consequently, setting bi=(bjk-1+m*/m;)mod m; ensures
that inter-order distances are equalized. If inter-order distances are
equalized for all products, then it is trivial to produce a schedule for
which the inter-order time intervals are equalized: simply schedule each
order to occur at the beginning of the time interval, or bin, to which 1s
assigned.

The second idea behind the Power-of-Two Bin Packing Heuristic is
to spread the peak demand for space evenly over the cycle. This is
approximated by assigning orders to bins so that the maximum load across
all the bins is minimized. The load for a bin is defined to be the total space
size of the orders assigned to that bin, where the space size of each order
of product i is given by Vi =Ai/m;j. Note that this approximation implicitly
assumes that (a) all orders for the same product have the same lot size, (b)
all orders within a bin occur simultaneously, and (c) orders in other bins
have no effect on the peak demand for space within a given bin.
Assumption (a) is consistent with the first objective of the bin packing
heuristic but assumptions (b) and (c) are almost certainly violated by the
resulting schedule. Nevertheless, Theorem IV-3 below, indicates that,

under certain conditions, this approximation is consistent with the
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objective of minimizing the maximum space required per cycle.

The problem of assigning orders to bins to equalize inter-order
distances and to minimize the maximum load per bin is in itself a difficult
combinatorial problem. It can be formulated as a mixed integer-linear
problem, but we omit the formulation. The heuristic used to solve the
assignment problem is outlined in Figure 3-1. The heuristic assumes that
the products have first been arranged in a lexicographically decreasing
order by ( mj , ¥; ): that is, first by frequency, then in case of a tie by
order space size. Bin(k) is an ordered list of part numbers assigned to bin

number k. Load(k) is the load of the kth bin'.

1.Load(k)=0 k= 1,2,....m%.
Bink) =@ k= 1,2,....m%.
2.Fori=1ton do:
begin,
3. find b* s.t. Load(b*)=min{Load(b):b=1,2,....,(m+/mi)},
4. for k = b* b*+m¥/mj,.....b*+((mj-1) (m*/m;)) do:
begin:
5. Load(k) « Load(k)+ Vi,
6. append i to end of list Bin(k),
end,
end.

7. The sequence P = ( Bin(1), Bin(2), Bin(m™))

Figure 3-1 Power-of-Two Bin Packing Heuristic



Numerical Example 1

The Power-of-Two Bin Packing Heuristic is illustrated using the
example presented in Table 3.1. Note that the parts have been sorted in
lexicographically decreasing order. The different steps of the heuristic

when applied to example 1 are shown in Figure 3-2.

Product 1 2 3 4 b)
Demand rate 12 6 4 3 2
Frequency 4 2 1 1 1
Order space size 3 3 4 3 2

Table 3-1 Example 1 Data

2. 1=1,
Load(k) =3 k=1,2,3,4,
Bink) =(1) k=1,2,34.
2. i=2.
3.b* = 1.
4k =1L
5. Load(1) = 6.
6. Bin(1) =(1,2).
4 k =3,
5. Load(3) = 6.
6. Bin(3) =(1,2).
2. i=3.
3. b* =2.
4. k =2
5. Load(2) =17.
6. Bin(2) = (1,3).
2. i=4.
3. b* =4,
4.k =4
5. Load(4) = 6.
6. Bin(4) =(1,4).
2. 1=5.
3. b* = 1.
4k =1
5. Load(1) = 8.
6. Bin(1) =(1,2,5).
7.P =(1,2,5,1,3,1,2,1,4 ).

Figure 3-2 Illustration of the Power-of-Two Bin Packing Heuristic
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II1-2 The Arbitrary Frequencies Bin Packing Heuristic

Consider the example of a single product which is ordered 11 times
at equally spaced points in time during a cycle of length one unit of time.
If its frequency is rounded to 8, the nearest power-of-two integer, the
maximum inventory will increase by ( 11/8 - 1) =37.5 %. Thus the
round—off to a power-of-two can increase significantly the maximum
warehouse space used, and it is economically worthwile to consider
arbitrary integer frequencies.

The chief problem with considering arbitrary integer freqencies lies
in generating sequences for which the orders for a product can be placed
at equal intervals. That is, the fixed order quantity model, RLP, fora
given sequence with arbitrary integer frequencies, may not be feasible.
For example, consider the following sequence: P = (1, 2,2,1,1).1tis
clear that the set of equations (2-16) of RLP is infeasible for this sequence
since product 2 with the largest reorder interval is ordered twice between
two orders of product 1.

The Arbitrary Frequencies Bin Packing Heuristic, presented below,
is an extension of Dobson's heuristic to the case of arbitrary integer
frequencies that guarantees the feasibility of the fixed order quantity

model.

Let:



33

nt = number of products with frequency mT,

yig = tral relative order time of the kth order of product i. (It 1s
called trial because the exact order time is established using
methods of Chapters IV to VI, and called relative because
yike [0,1)),

bk = bin number of the kth order of product 1,

p(b) =number of product orders inbinb

= |{ (i) :by=b} |,
Bin(b) = ordered list of product orders in bin b

= ((i1.k1)» QLR o) ROy (ip(b)’kp(b)) ),
plb)
Load(b)= Y, v;, space load of binb.
r=1

Bin(b) is said to be a time product ordering if it is ordered
lexicographically increasing in (¥ik» 1)-

If (ik) ¢ Bin(b) but by = b, then we define an operation INCLUDE
on a time-product ordered Bin(b) as follows:

INCLUDE ((i,k),b)

1. Load(b) «Load(b)+ vi.

2. p(b) «p(b)+1.

3. INSERT ((i,k),Bin(b)), where the INSERT opertion inserts (i,k)
into the ordered list Bin(b) while preserving the time product
ordering property.

The computational complexity of the INCLUDE operation is
O(log(n)) since, for any bin b, the maximum number of elements 1n

Bin(b) is n, ( Aho et al [74] ). Figure 3-3 details the different steps of the

Arbitrary Frequencies Bin Packing Heuristic.
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1. Renumber the products so that they are lexicographically
decreasing in (mj,y;) for i=1,2,....0
2. Initialization:
Fork=1tom™ do:
begin,
3. fori=1 ton* do: yii = (k-1)/m™,
4. Bin(k) = ((1,k),(2.%),..... ,(nt k),

5.p() =n",

6. Load(k) = 2 Vi
i=1

end.
7.Fori=n*+1ton do:
begin,
8. b* « argmin{y(b) : b=12,....m%},
9. vi1 < Yip(b*)kp(b*)’
10. INCLUDE ((i,1),b%),
11.fork=2 to m; do:
begin,
12. yix < (yik-1+1/mj) Modulo 1,
13. bj « min { integerb : yixmT<b},
14. INCLUDE ((i,k),bjk)>
end,
end.
15. Concatenate the ordered lists ( Bin(b): b= 1,2,....mH) to
obtain the sequence P.

Figure 3-3 The Arbitrary Frequencies Bin Packing Heuristic
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The computational complexity of the heuristic is no greater than
O(n m™ log(n)). Step 1 of the heuristic needs at most n log(n) computer
operations. The loop beginning with step 8 is evaluated once per product,
the loop beginning with step 12 is evaluated at most m™ times for each
product and the most time-consuming step, step 14, requires O(log(n))

operations.

Numerical example 2
The example in Table 3-2 is used to demonstrate the differents steps

of the heuristic which are illustrated in detail in Figures 3-4 to 3-8.

Product 1 2 3 4
Demand rate 10 8 3 2
Frequency 5 4 3 2
Order space size 2 2 1 1

Table 3-2 Example 2 Data

m* =5 and n*=1

stepl: The products have already been arranged in a
lexicographically decreasing order by (m;j,y5)-

Step 2: Initialization:

3y =02 k1), k=12345.
4.pk) =1, k=12345.
5.Bink) =(1k), k=12345.
6. Load(k) = 2, k=12345.

Figure 3-4 Initialization Step
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e

Step 7. i=2.
g8.b* =1.
9.y21=0.
10. Load(1) = 4,
p(l) =2,
Bin(1) =((1,1,(2.1)-
11.k=2.
12.y92  =025.
13.byy =2
14. Load(2) = 4,
p2) =2,
Bin2) = ((1,2),(2,2)).
11.k=3.
12.y93 = 0.5.
13.bp3 =3
14. Load(3) =4,
p3® =2,
Bin(3) = ((1,3),(2,3))-
11.k =4.
12.y94 =0.75,
13.byg4 =4
14. Load(4) =4,
p@ =2,

Bin(@) = ((1,4),(2,4).

Figure 3-5 Assignment of the Orders of Product 2
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Step 7. 1=3.
8.b* =5.
9.y31=028.
10. Load(5) =3,
pGs) =2
Bin(5) = ((1,5),3,1)).
11.k=2.
12.y3p =0.133.
13.b3p =L
14. Load(1) =5,
p) =3,
Bin(1) = ((1,1),(2,1),(3,2)).
11.k=3.
12.y33 =0.467.
13.b33 =3
'14. Load(3) =5,
p3) =3,.
Bin(3) =((1,3),(3,3),(2,3)).

Figure 3-6 Assignment of the Orders of Product 3
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Step 7. i=4.
8.b* =5.
9. y41 = 0.3.
10. Load(5) = 4,
ps) =3
Bin(5) = ((1,5),(3,1),(4,1)).
11.k=2.
12.y4p =03.
13.bgy =2
14. Load(2) =5,
p@) =3,
Bin(2) =((1,2),(2,2),(4,2)).

Figure 3-7 Assignment of the Orders of Product 4

Step 8
P = (1’2339192,49133929192,193’4)-

Figure 3-8 Concatenation Step

The sequence obtained by the Arbitrary Frequencies Bin Packing
Heuristic is feasible for the fixed order quantity model since a feasible
solution to RLP can be derived from the trial relative order times yik.

Most steps of the heuristic are similar to the steps of the Power of
Two Bin Packing Heuristic except for those involving the relative trial
order times (steps 3,9,12, and 13). These steps are needed to determine

the bin numbers in which to assign the orders of each product (step 13)
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after assigning the first order for that product (step 8), and to position the
order within the sequence for that bin (step 14).

If the frequencies are power-of-two integers, then the Arbitrary
Frequencies Bin Packing Heuristic reduces to the Power-of-Two Bin
Packing Heuristic. To see this, note that once b* is determined for each
product i (step 8), then all its subsequent orders are placed in every m/m;
bins. By step 12, Vik=Yik-1+1/mj (without loss of generality, suppose that
yix<1), then yix m* = ¥ik-1 m* + m*/m;j or bjx =bjk-1 + m™/m;.
Moreover, in the Power of Two Bin Packing Heuristic the operation
INCLUDE is trivial: each order assigned to bin b is appended to the end of
the ordered list Bin(b).

More elaborate sequencing heuristics could easily be constructed.
For example the selection of the bin for which to assign the first order of
product i is currently made on the basis of a simple comparison (step 8).
Instead, we could try assigning the first order of product i to different
bins, compare the vector of bin loads that would result and select the best
one (the bin load vector with the minimum maximum load). Such a
comparison is unnecessary in the Power-of-Two Bin Packing Heuristic
because subsequent orders of a product are always placed in bins that have
the same load as the first order of the product; but it could prove valuable
in the context of arbitrary frequencies. The simple comparison in step 8
appears to work well so experimentation with alternative schemes is left

for further research.
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CHAPTER 1V

TIME VARIANT LOT SIZES MODELS

Because of the complexity of the General Model formulated at the
second stage of the approach to handle the WSP, the combinatorial and
continuous aspects of the problem were separated. In Chapter II an
Arbitrary Frequencies Bin Packing Heuristic was developed to generate
the sequences. In this chapter, we assume that the sequence is given and we
focus on lot sizing, delivery timing, cycle length, and on maximum space
used. The parts will be allowed to be ordered several times in different
amounts during the cycle.

This chapter is organized as follows: Section IV-1 recalls the
assumptions and the notation. Section IV-2 reviews the formulation of the
Linear Programming model , LP, that minimizes the maximum space
used under the Zero Switch Rule, and presents a characterization of the
optimal solution to the LP. Section IV-3 revises the Quadratic Program,
QP, that minimizes the average holding cost and gives conditions under
which a time phasing policy may be optimal for both LP and QP. Finally,
Section IV-4 derives a bound on the quality of the LP for the NLP model.

IV-1 Assumptions and Notation
Before proceeding to the formulation, it is worthwhile recalling the

assumptions and notation introduced in Chapter IL

For a given sequence,the Warehouse Scheduling Problem is

40
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described as follows:

1- there are n parts to be stocked in a warehouse with a limited space;

2- each part is ordered m; times according to the sequence P=(P,..., Pp).
where m is the total number of orders;

3. the demand rate for each part is known and constant, and backorders
are not allowed;

4- the production rate for each part is infinite and the replenishment is

instantaneous;

5- there is a constant setup cost associated with each part;

6- an inventory cost proportional to the value of the stock held and
proportional to the time for which stock is carried is charged to each
part;

7- a storage space cost based on the maximum inventory held is
incorporated in the cost function of RNLP;

8- the problem is to determine the ordering schedule: the timings of the m
deliveries and the quantities delivered, to be repeated periodically
every T units of time.

For the sake of clarity in the formulation, the following matrices will

be used in addition to the notation introduced in Chapter II.

F’  ann by m 0-1 matrix defined by:
{ 1 for I=j,j+1,....k—1 where 3;=1, interpreted cyclically,

0 otherwise;
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E an m by m 0—1 matrix defined by:
1 if s the position of the next order of the part ordered on the jth order,

Ejl == {
0 otherwise;
L anm by m 0-1 matrix whose entries are given by:

1 for l=j,j+1,....k—1 where 8;=1 and dip=1, interpreted cyclically,

le = {
0 otherwise;

R ann by m 0-1 matrix defined by:
1 if &=l

! {0 otherwise;
H  anm by m diagonal matrix with:
H;=Ah; where %=1,
T,t m column vectors, T=(Tj)j[21 and t=(tj)}r21;
Uu m column vectors, U=(Upi2; and u=(u)it1;
A ann row vector, A=\im1;

K  ann row vector, K=(Ki)?=1;
A anm by m matrix whose each row A, is defined by:

A=A F;

e, anm column vector of one's;

e, ann column vector of one’s.

Note that each entry i of the row vector (F® u) is the time interval until
part i is ordered after the jth order; that is, Sij= (FO u).

The notation introduced above is best understood through the
following example. Consider the simple example of two parts where part
one is ordered twice and part two is ordered only once according to the
following sequence: P = (1,2,1).

The parameters of the example are: A =2, M=1,h=h=1L
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Using the definition of the binary variables introduced in Chapter II, it is

easily seen that:

8;1=1,8n =1, d3=1,
S13=1, d123=1, di; =1,
S2=1, 8yp=1, S =1.

Thus
#1)2[110] F@):[mo} F@){ooq
100 111 101
"3 2 0] 110] 001
A =l131 L ={111 E =010
110 3] 001, 100
"2 0 0] .
101
H = R =
010 [m_
10 0 2]

Next, the formulations of the Linear Program, LP, that minimizes
the maximum inventory, and the Quadratic Program, QP, that minimizes

the average holding cost will be derived.
[V-2 Formulation of the Linear Programming Model

The objective function to be minimized for the LP model is the
maximum inventory, i€;

n
W::Max{ Yz :j::l,...,m}, (4-1)

i=1
where Z‘-,‘j is the amount of inventory of part i after receiving the jth

delivery. The initial inventory for each part must be set so that backorders
will not be incurred. Since the ZSR is assumed, the stock of any part on

2 canbe

the jth order should be enough to last until its next order. Thus, Zj;




44

written as:
Z5 = N S, (4-2)
and the total inventory on the jth order is:
n
Zi= ) \iSi. (4-3)

i=1
By definition, Tj is the time interval between the jth order and the

next order of the part delivered on the jth order; ie,

n
Ty = ), 8 Si j=1,...m. (4-4)
i=1
Moreover, the reorder intervals for each part should sum to the cycle
length.
m
26” T) =1, i=1,....n.
j=1

Therefore, the problem that minimizes the maximum inventory can

be written as:

Min ( Max { Z; : j=1,....m 1)

s.t.
n
Z,= > %S j=1,...om,
i=1
n
T; =26ij Si;, j=1,....m,
i=1
m
2511' T =1, i=1,...,n,
=1
j-1 ,
Sj =Uj+2 (1-4) Uy i=1,...,m and i=1,...,n,
k=j+1
U; 20, j=1,...,m.
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As it stands, the above model is not a linear program, but it can be
transformed into one by observing that it is equivalent to minimizing W
subject to W= Max { Z; : j=1,...m } and the remaining equations.
Furthermore, W = Max { Zj :j=1,....,m } is equivalent to W 2= Zj for

j=1,...,m. Thus, the problem becomes:

Min W
S.t.
n 1
z)‘i [Uj‘*'i (1"'Aijk)Uk)—<- W, j=1,....,m,
i=1 k=j+1
n -1
Tj- 2 Sij(Uj‘*'Z (1—Aijk)Uk] =0, j=1,...,m,
i=1 k=j+1
m
5;; Tj =1, i=1,...0,
i=1
UJ 20’ j’:l,...,m.

Or using the matrix notation introduced in the previous section, LP

can be formulated as:

Min W (4-5)
S.t.

AU -We, <0, (4-6)

-LU + T =0, 4-7)

RT —-7e, =0, (4-8)

U 2 0.
Lemma IV-1. The above linear program can be simplified to:

Min W (4-5)
S.t.

AU -We, <0, (4-6)

e, U —1 =0, (4-9)

U 2 0.
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Proof:
Substitution of (4-7) into (4-8) yieldsRL U =1e,

The elements of the matrix (R L) are given by:

m
RDLj= D Ryly= D, Ly=l,

=1 {1 Silzl}

since, by definition, R;; = 1 if part i is ordered on the 1th order, and the
rows of L that correspond to the orders on which part 11s delivered
partition the columns of L ( see the first and third rows of the matrix L in
the example presented above). To see this, consider the example presented

above.
RL=[1 0 1] o z[l 1 1}
010 11 1)
Therefore, the system of equations RL U =7T€q1is composed of n
identical equations e, U="1. (E.O.P)
The new linear program can be further simplified when written in

terms of the relative maximum inventory, w, and the vector of relative

time intervals, u.

Min w (4-10)
S.t.
Au -we,<0, (4-11)
e U =1, (4-12)
u > 0.

Finally, it is clear that the minimum value of w is positive, since the
matrix A is a nonnegative matrix with positive diagonal elements (see
Appendix I for the properties of the matrix A). Then, if we letx =u/w,

(4-12) becomes

’ -1
EnX=W .
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R R . . . .. -1
Moreover, note that mmmimizing w 18 equivalent to maximizing w .

Thus, the above linear program can be transformed to:

Max e'mx (4-13)
S.t.
A x<ep, (4-14)
x2=0.

The next theorem gives a characterization of the optimal solution that
minimizes the maximum inventory.
Theorem IV-1. The schedule that miﬁimizes the maximum inventory
fills the warehouse at each order; ie,

Zi =2y ==Ly, (4-15)

Proof (By marginal analysis)

In the proof by marginal analysis many cases have to be examined.
We illustrate the proof for only one case to convey the essential idea. A
complete proof using the theory of M-matrices is presented in
Appendix II.

Suppose that the total inventories, that correspond to the optimal
schedule do not satisfy (4-15).
Let:

k be the order number such that Z, = Min { Zj :j=1,....m };

i = P, the number of the part ordered on the kth order;

y® be the ordering time of the kth order derived from the optimal

schedule.

Now, consider another schedule where the kth order is placed at time
y®+g, where € is a very small real number.
Suppose that part i is ordered only once, then
Z{™ =Z;— ¢ }; for all j such that j #k,
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n
d 72 =Z+e D, Mo

r=1,r#1

So, for a small &, Max ( Z;™" ) < Max (Z;),
j j

which contradicts that {Zj: j=1,...,m} is optimal (More cases must be
considered if part i is ordered more than once and the maximum
inventory does not occur between order k and the next order of part 1).

(E.O.P)
By the above theorem, the optimal schedule that minimizes the maximum
inventory can be obtained without using the simplex method to solve LP.
The following Corollary gives the explicit optimal solution of LP.

Corollary IV-1. The optimal vector of relative time intervals, u, is

given by:
* A'l'e
u =-— 1m , (4-16)
en A €n
and the optimal relative maximum inventory is:
W* = ——,——-1:—1"‘- (4-—17)
€m A €n

Proof:

By Theorem IV-1, the optimal policy is to fill the warehouse at each
order. The nonsingularity of A is established in Appendix II. Thus, the
optimal solution to LP corresponds to binding constraints; ie,

AX =e, or,equivalently, x =A em,
and (W) =epX = e A e,

or, equivalently, w = (emA'lem)‘l,

andu =w' x = (A ey / (emA o). (EO.P)
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The following Lemmas and Propositions are also a consequence of
Theorem IV-1.
Lemma IV-2. No more than one order can be placed at any point in time
during the cycle when minimizing the maximum inventory.
Proof:

The proof is presented in Appendix IL

Proposition IV-1. The average warehouse utilization rate, p, is given

by:
m n

PP
1

1 =i

- (4-18)
2 W Ag

p=1

n
where A= Z A

i=1

Proof:
Using the result of Theorem IV-1, the reduction in space after the jth

order should be equal to the space needed for the part ordered on the
(j+1)st order(see Figure 4-1).

n
Thus, Y As =tin ZM Siji1»
i=1
n
ti1 Z Ai Giji1
or g =— , =1, (4-19)
As

where (4-19) is to be interpreted cyclically. Therefore, the shaded area of
unused capacity (Figure 4-1) between the jth order and the (j+1)st order

is:
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(tﬁ-l 2 7\’1 61]-&-1)
(u_} ( 3+1 2 )"1 61]4-1} Ks .

Hence, the total space used during the cycle of length 1 is:

W --—2251] Mg

SFl i=1

(4-20)

Finally, the average space utilization is given by:

2 2 & (i (E.O.P)

2)\- A% j._.l i=1

In\Aentory

b

w

jth order

Figure 4-1 Filling the Warehouse
In the next proposition, an explicit formula for the optimal relative

maximum inventory will be derived using the above proposition.

Proposition IV-2. The optimal relative maximum inventory is given

W= .% Y Y sy (1) (4-21)
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Proof:

Using the definition of the warehouse space utilization as the ratio of

the average inventory to the maximum inventory, the warehouse space

utilization can be rewritten as:

é—i(iw) @)’
0= =1 \i=1 ,

(4-22)
w
where the numerator is the average inventory.
Equating (4-22) to (4-18) yields:
m n
1 *2
$(3nefor T
=1 \i=l 3::1 i=1
w 2w Ag
or,
n
1 DN
* i=1 * 2
W= .1___}:__. £ N8y @) (E.O.P)

=1 =1

In the following Lemma, the results of Homer[66], Page and
Paul[76], Zoller[77], and Hall[35] will be derived using the above
formula.

Lemma IV-3. If each part is ordered only once during the cycle, then

u - =1, (4-23)
S
and
n
1A
o1, LE=L | _
w =3 As ~ (4-24)




52

Proof:
If n=m, then
t=1 =1, (4-25)
and (4-23) and (4-24) are obtained by substituting (4-25) into (4-19) and
(4-21) respectively. (E.O.P)

Clearly, by (4-24) the optimal relative maximum inventory is sequence

independent when m=n.
I1V-3 Quadratic Programming Model

Since it assumed that the sequence is given, and therefore the
frequencies are fixed, the long run setup cost per unit time is constant for
a given cycle length. In this case, the objective function to be minimized

1s:

-15 i nz A by 85 T (4-28)

=1 =l
Using the matrix notation introduced in first section, the Quadratic

Program, QP, can be formulated as:

Min ~ THT
2
S.t.
AU <Ven, (4-29)
(QP) RT =te,, (4-30)
LU- T =0, (4-31)
U >0, (4-32)

where T is assumed to be given.
Clearly, the optimal T is unique since H is a positive diagonal matrix.

However, U need not be unique since L 1s of rank (m-n+1).
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. 1 /\' A
Proposition IV-3. A lower bound for QP is given by 5 T HT, where

m
- T .
Ti= Sij—n-;- for j=1,....m.

i=1 i
Proof:

It is clear that the following quadratic program
Min L THT

2
S.t.

RT=7e,

whose optimal solution is

m

T] = 2 81]-1%_ for j=1,...,m s
1

i=1
constitutes a lower bound for QP. This optimal solution states that the
quantity to be replenished for each part i whenever it is ordered is
- T A/ my (E.0.P)
The next two Lemmas and Theorem give conditions under which the
same schedule minimizes both the maximum inventory and the average
holding cost.
Lemma IV-4. Suppose that the optimal maximum inventory of LP 1s
equal to the warehouse space available, V, then both LP and QP have the
same optimal solutions.
Proof:
Suppose that one of the constraints, say the jth constraint, of (4-29)

has a no zero slack. Then, the total inventory on the jth order is smaller
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than V=1 w*, where w" is the optimal relative maximum inventory of
LP, which contradicts that w” is optimal. Moreover, by the uniqueness of
the optimal solution of LP, (u W), then the two problems have the same
optimal solutions. (E.0O.P)
Lemma IV-5. Suppose that the solution to LP yields a schedule with
equal lot sizes and that the optimal maximum inventory does not exceed

the warehouse space available, that is;

* A *
U=t T| = 2611 andw’ 1<V, (4-33)
em A™ €m
then ( u* ,T ) is also optimal for QP.
Proof:

Suppose that (A U*=w 1) < V. The case of equality is considered in
Lemma IV-4. The Karush-Kuhn-Tucker conditions for QP are:

HT + @-R¢ =0 (4-34)
Ao -Lo - = (4-35)

AU <Ven (4-36)

- T+LU = (4-37)
RT =Te, (4-38)
(AU-V) 0 = (4-39)

63 =0 (4-40)

o >0 (4-41)

g >0. (4-42)

Where 0, {, @, § , are the Lagrangian multipliers of (4-29,30,31,32)
respectively. Since U*>0 (see Appendix II) and A U*<V, then (4-39) and
(4-40) are satisfied with &=0=0.Itis also clear that (4-36,37,38) are
satisfied and (4—35) holds with ¢ = 0. Now, consider the system of
equations H T*=R' {. This system is infeasible for unequal lot sizes. To
see this, consider the example presented in Section IV-1. For this

example, the system can be written as:
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2 T? =G
T,=0
2Ty =G,
Clearly, if Ty # T3, the system is infeasible. (E.O.P)

In the above Lemma, it has been supposed that the solution to LP
yielded a schedule with equal lot sizes. This is not always the case unless
some conditions on the parameters and on the sequence are met. In the
next theorem, it will be shown that under some conditions the maximum
inventory will be minimized with a schedule having equal reorder
intervals for each part. Furthermore, under these conditions the theorem
reveals that an explicit solution to LP is available without using the
simplex method or inverting the matrix A.

We now recall some notation introduced in Chapter IIL
Let:

m =Max{m };
1

Ai

Y = ‘I-n'j;
Il'll n

Ys = 22 O Wi
=1 i=l

n

m n n
NOtethat\U522£ Sij)\{li—"—Emi\lji:Z)\.i:}‘us.
=1 i=1 i=1

1=

Theorem IV-3. Given that:
(i) m; = 2% i=1,...,n and o; integer;
(ii) the sequence P = (P,PysersP) is obtained by the Power-of-Two Bin

Packing Heuristic;
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(iii) 2 y,=n for k=1,..m" and n=0,
ie Bin(k)
where Bin(k) < {1,2,.. .n} ( see Section II-1 for the definition of Bin(k)).

Then

L5
g =, — j=1,....m, (4-43)
e I
i=1
n .
u;= ¥ Bijr 15 j=1,...,m, (4-44)

i=1 T8
i Z (: 8’
- 2 Z A4 -5+ 5 = . (4-45)

Fl i=l

Proof:

To prove this theorem, we first show that under the above three

conditions, the relative time intervals are given by (4-44). Then, we argue
that the tj's that correspond to the uj's given by (4-44) satisfy (4-43).
Finally, we show that these uj's are optimal.

An important property of the sequences generated by the Power-of-
Two Bin Packing Heuristic that is useful for the proof of this theorem is
that for a given part i, all parts ordered before part i are the same in each
bin where part i is assigned.

Now, if each bin is considered separately, the problem of minimizing
the maximum inventory will be transformed to the case where the number
of orders is equal to number of parts with W; as the new demand rate for

the ith part and (m*)~! as the new cycle length. Then, for the kth bin, by

Lemma IV-3, the time interval between the jth and (j+1)st orders is:
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n
)
2“’1 6(ilj(~1»1 n
1+ i=1 = }L 2\;{1 6(-}5‘3,1 for 1<j<p(k), (4-46)
m Z v m M i=1

ie Bin(k)

where 8%() is defined as before according to the sequence of the kth bin.

Moreover, by condition (iii) and after summing over all bins, we have:

Z 2 g =nm’,

k=1 ieBin(k)
n
+
or zmi yi=nm,
i=1
+
or Y, =nm.

Hence, the time interval between between the jth and (j+1)st orders for the
kth bin is proportional to the space size of the part ordered on the (G+1)st

order:
Z“ y
i ok
"""Sij+l'
o1 Vs

By (4-46), it can be seen that if the part ordered on (j+1)st order is
ordered more than once, then for each bin where it is assigned, the
relative time interval, u;, is the same. In addition, since the sequence is
generated by the Power-of-Two Bin Packing Heuristic, the parts ordered
before the jth order of the kth bin are the same in each bin where part P; is

placed. Consequently, the ordering time

y= Yi  whereoy=1{i:i=P, for I<I<j 1,

i€ Opk \VS
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is constant in all these bins. Moreover, since the length of each bin is
(m*)'!, then the time interval ( (m*)1 -y;) is also constant in each bin
where 13'j is assigned. Hence, the relative reorder interval of the part

ordered on the jth order of the kth bin (see Figure 4-2) is:

(- £+(_n£_1)__1_+ 1Ly
: Ys m; m" \m oy, ¥s

i€ Ok
=—L, where P; =r.
my
< ) —"
+
m
r r
1 l + ) l 1
<+ Y] —» 4——————-(21__1)__ >4 Yj —»
m, m'
< f; >

Figure 4-2 Relative Time Interval

Now, it remains to show that the relative time intervals given by
(4-46) are optimal, that is; they correspond to the policy of ordering up to

the maximum at each order. It suffices to show that :
m m
Z Al_] Uj = 2 Akj uj fOI' 1¢k
=1 =1

Without loss of generality, we take 1=k-1 and we suppose that m;>1,
where P,=i. By means of the properties of the matrix A presented in

Appendix [, it can be shown that:
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m
Z(Akjuj—Aljuj) =~—7&Suk_1+7&isik

=1
= — Ag U T Aj b

=— A Wi, M by (4—46) and (4-43)

Ve Iy

()
s

=0 since A, = Y. (E.O.P)

IV-4 Solution to NLP

NLP was defined in Chapter II as the problem minimizing the long
run inventory costs per unit time subject to the space availability

constraints. Using matrix notation, NLP can be formulated as:

Min-l-(KRemé-TiHT)

T
S.t.

AU <Venm
(NLP) LU - T =0,
enU =T,

RT =71e,
U > 0.
Tt is clear that a lower bound for NLP is given by the following problem:

| Nﬁn%(KRem+-§-T'HT)

s.t.
RT =r7e,
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Lemma IV-6. The optimal solution to the lower bound problem is given

T =X_  forall jsuch that P=1, (4-47)

(4-48)
The Lagrangian of the relaxed problem of NLP 13
T (KRey+0.5THT)-L(RT-"1e,).
Then, the Karush-Kuhn-Tucker conditions are:
HTt!-R{=0 or T=tH 'R'{ (4-49)
14 2(KRe +#05THT)+{e,=0 (4-50)
RT=te, orusing(@49) {=(RH'R) e, (4-51)

Using the definition of the R and H matrices and after some algebraic

manipulations, it can be shown that:

. MAh
L i=1,...0, (4-52)
my
and thus T; = — VjstP=i.

i
Substituting (4-49) and (4-51) in (4-50) yields:

KRe , - _ _ _ , R
m+—;-en(RH IR RHHH'R'(RH'R) ey—en(RH'R) " e,=0,

T

KRe,

’CZ

or - -% e'n(RH"lR')_len::O,
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=
o

2 KRCm 3 ? Zrni Ki

or'c*r-( , — Trz -—3—:1—-—— : (E.O.P)
e (RH'R) e, A by

A feasible solution to NLP can be obtained by the following
algorithm:

|- Solve LP to get w, u, and t =L u.

21— If T w> V, then set T*=V / W,

thus T is given by:

(AERTE

T = Min =l ,_Y_ L (4-53)
W

Y i=1

If conditions of Theorem IV-3 are not satisfied, then T # T . However,

T can be written as:

. Tj = T;'k + 0y V j such that P; =1, i=1,...,n, (4—54)
n

where Z 5;; 0;=0, i=1,...,n. (4-55)

=l

Lemma IV-7.1If leij\ <Eg T; . that is; if the reorder intervals obtained
by solving LP differ by at most 100e% of the optimal reorder intervals of
NLP, then the error incurred for NLP by using the solution to LP is at
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most 100e%.
Proof:

Let COD be the lower bound on the long run inventory costs of NLP.

ZmK .

ol _ =l L3 A by
T* 2 e ml

The long run inventory cost per unit time of NLP using the solution to LP

is:

%—{ZmK-klzzl,h 5 (T) }

i=1 Fl1 =l

:%{Xm Koty EEM 5, (T}+6y) }

_]—-1 i=1

.l.{ > m, K+.-22x h; 8 ((T}) +291]Tj+el,>}
T

i=1 3-'1 i=1

), {2} .%_ 21: 50 t+ } 2 z Aih; 8 62
i= 1 =

j=1 i=1
_ (~Ib)
=c® 10 r ZEkh 5;0% »
Fl =l

by (4-55). Dividing the right hand side by C) yields:

LY a6 ZEM 56

’C_,l_ =1 i=
s <1+ 2=

(Ib)

C « 2O M by
’c a—r
(t) 21, -

1+
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nz xihiiaij Xt/ my)’
4=l =1

w2 by
(T )2;—;11-;-

<1+€ (E.O.P)

<1

Thus, the error cost incurred by using the optimal solution of the time
variant lot sizes may not be important. A 20% maximum error of
adjustment of the reorder intervals would cause an error of at most 4%
for the long run average inventory costs per unit time.

Reviewing the results of this chapter we highlight the following
observations. Given the order frequency and the order sequence, the
problem of minimizing the maximum space used can be formulated as a
linear program, LP. The optimal solution to LP is characterized by the
property that every order fills the warehouse to the same level of space
used. Furthermore, no two orders occur at the same time. A single matrix
inversion step is all that is required to solve LP. Explicit formulas are
possible for all variables of interest, including the average warehouse
utilization rate. These results generalize the results obtained by Homer,
Page and Paul, Zoller, and Hall under the Common Cycle assumption.

The solution to LP can be used to generate a solution to NLP
formulated in Chapter II. Under certain circumstances, the solution to LP
has the property of equal lot sizes even though the ELS restriction is not
imposed in LP. In these circumstances, it follows that the solution to LP
yields an optimal solution to NLP. These circumstances, correspond to a
lower bound of the power-of-two bin packing problem considered in

Chapter ITI. Hence, this result motivates the sequencing heuristics of
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Chapter IIL

In other cases, the solution to LP may not have the property of equal
lot sizes or equal reorder intervals but the cost penalty of using LP
solution in NLP is less than 100€2% of the optimal NLP solution, where
100£% is the maximum percentage deviation of the LP solution from the
equal reorder intervals.

In the next chapter we consider imposing the requirement that the lot

sizes be equal for multiple orders of the same product.



CHAPTER V

EQUAL LOT SIZES MODELS

The previous chapter focused on the time variant lot sizes solutions
which were obtained by solving LP. However, it was shown in section
V-5 that the equal lot sizes solution constitutes a lower bound for NLP.
Moreover, the equal lot sizes solution presents some managerial
advantages for the processing and the receipt of the orders.

This chapter deals entirely with models employing the equal lot size
(ELS) restriction. In Section V-1 a formulation of the problem to
minimize maximum inventory, RLP, will be developed. In Section V-2
we compare the solution of RLP with that of LP and determine an exact
bound on the space penalty by imposing the equal lot sizes for a special
case. We present an empirical comparison for the case of large problems.
Section V-3 presents an efficient algorithm for minimizing the maximum
space used. The procedure either solves RLP or suggests an improvement
in the order sequence. Finally, we finish this chapter by deriving the

optimal cycle length for the NLP model with the ELS restriction.

V-1 Formulation Based on the LP of Chapter IV

A formulation of the ELS problem to minimize the maximum
inventory can be obtained from the linear program developed in Chapter

IV by introducing the following set of constraints:

A

Lu=t, (5-1)
where

65
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jov

A Si] _
tjz — J—':l,...,m. (5"‘2)
=1 my

ot

’ ’ A ’
Since e, L=ney and eyt = n,the constraint e, u = 1 is redundant.
Thus ELS can be formulated as:
Mn w
s.t.

Au <wep,

A
(RLP) Lu =t,
u =20.

This new linear program will be referred as the restricted linear
program, RLP. Unlike the linear program of Chapter IV, the feasibility
of RLP is not assured. The following example illustrates that RLP may be
infeasible for certain sequence:

P =(1,2,3,2,1,1,2,1,3)
M=3 M=2 M=1

m=4 mp=3 m3=2.

Clearly, P is infeasible since product 2 is ordered twice between two
orders of product 1 whose reorder interval is smaller than the reorder
interval of product 2. However, it was shown in Chapter III that the
Arbitrary Frequencies Bin Packing Heuristic guarantees the feasibility of
RLP. Hereafter, all the sequences are supposed to be generated by the
Arbitrary Frequencies Bin Packing Heuristic.

It was shown in Chapter IV that joint replenishment does not occur
for the time variant lot sizes model, LP. This property may not hold for
ELS model. However, if joint replenishment does occur, it is possible to

modify the sequence and perhaps further minimize the maximum space.
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Lemma IV-1.If, in an optimal solution to RLP, the jth optimal
relative interval, u;, is zero, then the maximum space used can not be
increased by swapping the jth and (j+1)st orders.

Proof:

Let (u*,w*) be the optimal solution of RLP, and AS, LS be the
matrices obtained from A and L respectively by swapping the jth and
(j+1)st orders. Thus the new RLP can be written as:

Min{ w st ASuSwem;LSuzlt\:S;uZO}. (5-3)
Let ((uS)*, (wS)*) denote the new optimal solution .
For any feasible solution, u, of (5-3), we have:
(W)* = Mﬁx AS @d)* < M%x A u,
where Als( is the kth row of AS.

Since uj*-: 0, it is clear that u* is feasible for (5-3),

hence (w5)* < ng A} u*,

Moreover, since u;*=0, I\é[ax Apu* = I}(/Iax Ay u*,

thus (w°)* < Max Ay u* = wk. (E.O.P)

In the next section, an exact bound on the space penalty for
restricting the reorder intervals to be equal for each product will be
determined for a special case, and empirical results for the case of large

problems will be presented.
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V.2 Bounds on the Space Penalty for Using ELS

V-2-1 Exact bound for special case

Consider the problem of two products where product 1 is ordered v
times and product 2 is ordered only once (on the second position of the
sequence). The sequence is generated by the Arbitrary Frequencies Bin
Packing Heuristic. Then, after long algebraic manipulations, it can be
shown that for the time variant lot sizes model, LP, the optimal solution

18:

u: = %2—, where A, = (A +A2), (5—-4)
A Y Ay Ay AV
( ! ] 1zs 7‘2 1zs i=2,..,v+1, (5-5)
7\’\’
N }\' 7\‘\’-*-1 _
W=t 1”2, (5-6)
As Ay — Ay
and for the equal lot sizes model, RLP, the optimal solution is:
A 7\’2
S
A 7\' ’
u, 7[1' (5-8)
S
b = '1\7 =3,V (5-9)
A }3
w ZX ——+)\.7\7_ (5-10)
S

Ay
After letting B = _i_’ the ratio of the optimal solution of RLP to the optimal
1

solution of LP can be written as:
W14 1(B+1) —~VB—-1
w V BB+ - B)

(5-11)

*
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A

or, equivalently, -—V%; =1 +f(B,v),
w

where

v
fpwy =L B VBT (5-12)
V BB+ -B)
The bound on the space penalty by using the ELS is 100 f(B,v)%. Using a

search technique to determine the maximum of 100 f(B,v), it is found
that:

100 f(B,v) < 32 V B>0andv=12.....
Thus the space penalty on the optimal maximum space used incurred by

imposing the ELS restriction is no more than 32% for this special case.

V-2-2 Empirical results

An analytical bound on the increase of the maximum space used by
restricting the reorder intervals to be equal for each product for general
frequencies is very hard to obtain. Consequently, an empirical study was
conducted to develop some understanding on the space penalty of the
restriction. A set of 145 problems was randomly generated and solved.

The data were generated from uniform distribution on the following

intervals:
Number of products  (discrete) [2,10],
Frequencies (discrete) {1,2,4,8} and [1,8],
demand rates (continuous) [10,200].

The sequences were generated using the Arbitrary Frequencies Bin

Packing Heuristic. The 145 problems were separated into two sets. The
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first set has an imposed power-of-two integer frequencies whereas the
second set has arbitrary integer frequencies. Table 5-1 reports the result
of this simulation. The "largest increase” in the second row of the table is
defined to be the maximum space penalty incurred over all the problems
tested. An examination of this table indicates that the ELS restriction has
less of an impact if power-of-two frequencies are used. The average
increase of the maximum space used is 8.77% and the largest increase is
21.82% when using power-of-two frequencies compared to a 25.05% and
54.57% respectively when using arbitrary integer frequencies. This
conclusion is also suggested by the conditions of Theorem IV-3. Note also
that the bound obtained for the special case is between the largest increase

and the average increase.

Set 1 Set 2 Total
Number of problems 72 73 145
l.argest increase 21.82 54.57 54.57
Average increase 8.77 25.05 16.97

Table 5-1 Increase of the Maximum Space Used by Imposing ELS

V-3 Efficient Formulation of the ELS Model

RLP is somewhat large in size with 2 m constraints and (m+1)
decision variables. However, by using the ordering time of the first order
of each part as a decision variable, a new linear program with fewer
constraints and decision variables can be derived. The equal lot sizes
restriction implies that the relative reorder interval of product i is (1/m;)

Thus, once the the ordering time of the first order of each product is
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fixed, the ordering times of all its subsequent orders are also determined.
Let
y; = the ordering time of the first order of part 1.

The ordering time of the kth order of product i,k = 1,2,...,m; is given by:

Yik=yi+ &k-1) L , (5-13)
m.

1
and the ordering time of the jth order j=1,2,....m is

1

y(\l)z Z( yi+ (AU - 1) ‘;‘;") 611 s (5—14)

i=1

J
where A;; = 2 8, is the number of times product i is ordered before the
=1

jth order, inclusive.

Now, the amount of inventory of product i at the time of the jth order
should be equal to the amount needed to last until its next order.
Mathematically,

A ‘
Z"i}:;\oil:(yi-*'al%}—-yg)} (5-15)
1
The first term between the brackets is the ordering time of the next order

of i after the jth order. Then summing (5-15) over all parts and using

(5—14), the total inventory on the jth order can be written as:

n n n n
Ay 5.
Z=D M i A, vi 8 Y — - D (A -2 (5-16)
i=1 i=1 i=1 1 i=1 i
Note that for all j such that 6,=1, r= 1,2,...,n, (5-16) becomes
n
Aji A _
Z; 227\& yryrzlﬁzki ;n—‘%—-rh—s-(Arj—l) Vj st 8;=1, r=1,..n. (5-17)
it s =l i My

The first set of constraints to be considered:

Zj <w j=1,2,..,m,
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or, equivalently, using (5-17)

n
Ay M
—zxiyi+yrzxi+w22xi-r-ni-§-mrj—1) ¥ jst8,=1, r=1,..0. (5-18)
= 121 =1 i T

It is clear that the left hand side of (5-18) is the same for all j st Srj=1,

r=1,....,n. Letting:
n

A A
W= Max{zki—l}-——f‘-(A,j—l) for all j st 6rj=l} r=12,...n, (5-19)

=1 1 T

the number of constraints in (5-18) can be reduced to the following n

constraints:
—z;\'lYI—*-YrEKl-*_WZHT’ I"—-"l,...,n. (5“"20)
i#r i#r

Without loss of generality, let y,=0, and introducing the surplus variables
to (5-20) yields:

n
-2 Ny w—8; = ly, (5-21.a)
=2
- Z AYitYe Z M+w—s =H, TI=2,..0 (5-21.b)
iwr i#l 1#r

Now, after subtracting the first equation from the rth equation for
r=2,3,....n, (5-21.b) becomes:
Ag Yr+ 81— S = Ky — Ky, r=2,...,0. (5-22)

From equation (5-21 a), the maximum inventory can be written as:

n
W=u1+51+27"iYi’
=2

or, after substituting y; = [(14; — 1) + (s; = sPI/Ag for i=2,...n,

Ai Ai
w= Yt Y s (5-23)
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Proposition V-1
w >0, r=1,....n.

Proof.

Recall that [, = Max{ 27\1- — - —I-n— (Ag—1) foralljst 51_3—1}

i=1 l T

Let k be the number of the order on which product r was ordered for the
first time, then

W= Max{zk (2&-&7——-(% _1) forall jst 3 1andj>kj}

1

hence p, > 0 since the first term is positive. (E.O.P)

The second set of constraints should ensures the feasibility of the
schedule (y)2,, that is;
y@+D > y®,  j=1,2,..,m-1, and
y(m) < 1,

or, equivalently, using (5-14),

n

1 .
E(yi+(Aij+1——1)m) ,J+1_2(y1+(A ~1)— ] g = lomm=1, (5-24)

i=1
and

n

Z(yﬁ'(Aim_l)i—)sim <T.
m;

i=1
Finally, the linear program that minimizes the maximum inventory

under the assumption of equal lot sizes is:
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S.t.
(ELSLP) Ayi + S; — 51 = Mi — Hi i=2,....1,
n n
S.. 81
2(5i1'+1‘5ij) Vi =Z{(Aij'"1)"u"(Aij+1‘1) - ] i=1,...m-1,
n n 8
Y yibm ST A D=,
Yi 2 0) i=2,...n,
S >0, i=1,....n.

This will be referred as the Equal Lot Sizes Linear Program, ELSLP.

Now consider the following relaxed version of ELSLP:

Min ) — K+ — S

e T

S.t. ,

(RELSLP) ksyi +8—$91 = K — WU, i=2,...,n,
Yi 20, i=2,...n,

hH 20, i=1,...,n.
RELSLP does not take into account the feasibility of the schedule.

However, it can be solved by inspection. If p; — [ 2 0 Vi=223...n,then

y;= (1 — Uy) / Ag and the solution is optimal for RELSLP since all the
surplus variables are zero. If ( 1Li—t;)<0 for some i, then y;=0 and

s;=—(1;—W1) and the solution is optimal since all the surplus variables
have been assigned the minimum value necessary to satisfy the
equations(recall that the objective function of RELSLP is a weighted sum

of the surplus variables).
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Lemma V-2.

(1) RELSLP is feasible and has a unique solution, (§i ,1=2,3,...,n).
(2) If (y;*,1=2,3,...,n) is an optimal solution of ELSLP for which
constraints (5-24) are not binding, then (y;*, i=2,3,...,n) optimally solves

RELSLP.
(3) If (y; , i=2,3....,n) satisfies (5-24), then it optimally solves ELSLP.

(4) If(y; , i=2,3,...,n) does not satisfies constraints (5-24), then the optinial
solution to ELSLP satisfies (5-24) with at least one constraint binding.
Proof

Note that ELSLP is feasible since the sequence is generated by the
Arbitrary Frequencies Bin Packing Heuristic.
(1), (2), and (3) are obvious.
(4). By (2), if no such constraint are binding, then ( y;*, i=2,3,...,n)
optimally solves RELSLP and by the uniqueness of the optimal solution to

RELSLP, we have (y;*=y; , i=2,3,...,n). But (y; , i=2,3,...,n) does not
sastisfy constraints (5-24), a contradiction. (E.O.P)

Next, an algorithm based on Lemmas V-1 and V-2 is developed to
solve ELSLP.

Algorithm.

1- Compute y; i=1,2,...,n using (5-19).
2— If w;—uq 2 0 then y: = (W—Hq) / Ag and s: =0,

*

otherwise y; =0 and s; = —(Wi—{Ly)-

n n
A A
3- wk = E — Wi+ ), — .
o A o1 s
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4- If y@+1 > yO for j=1,...,m-1, and y™ < 1, where

n

y(j) = Z( Yi* + (AU - 1) '—1"') 61_] j:2’3""’m’
. m;

=1
then (y;" i= 2,3,....n) is optimal, stop.

Otherwise, swap the consecutive orders for which the infeasibility occurs

for the same products to get a new sequence and go to 1.

Note that by Lemma V-2, the infeasibility of (y;", i=2,3....,n) is due
to at least one binding constraint of (5-24). Thus, at least one relative time
interval, u;*, is zero and by Lemma V-1 an improvement of the maximum
inventory may be achieved by swapping the orders for which the
infeasibility occurs. Finally, an upper bound on the number of iterations
to be performed should to be imposed because of a lack of the proof of
convergence. However, it has been observed that that only a small number
of iterations is needed in all the examples tested. Two example are
presented next to illustrate the algorithm. For the first example, the
optimal solution to RELSLP is feasible for ELSLP , whereas for the

second one it is not feasible. Table 5-2 presents the data for the first

example.
Product 1 2 3 4 5
Demand rate 5 4 3 2 2
Frequency 4 2 2 2 o

Table 5-2 Data for Example 1
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The sequence 18 P=(1,2,5,1,3,4,1,2,5,1,3,4).
Step 1. The vector p =( 1.5,3.25,7, 8, 4.25).
Step 2. The vector y*=(0, 0.109, 0.344, 0.406, 0.172).
Step 3. w* =4.125.
Step 4. The corresponding schedule is:
(0, 0.109, 0.172, 0.25, 0.348, 0.406, 0.5, 0.609, 0.672, 0.75, 0.844,
0.906),
which is feasible; hence it is optimal for ELSLP.
The data given in Table 5-3 is used to illustrate the algorithm when
the optimal solution to RELSLP is not feasible for ELSLP.

Product 1 2 3 4 5
Demand rate| 4 2 2 2 2
Frequency 5 4 3 2 2

Table 5-3 Data for Example 2

The sequence is P=( 1,2,3,1,2,4,5,1,3,2,1,2,4,1,3,5).

Step 1. The vector p =(1.267, 1.3, 3, 4.267, 6).

Step 2. The vector y*=(0, 0.0027,0.144, 0.25, 0.3944).

Step 3. w*=2.85.

Step 4. The corresponding schedule is:

(0, 0.0027, 0.144, 0.2, 0.2527, 0.25, 0.3944, 0.4, 0.477, 0.5027, 0.6,
0.7527,0.75, 0.8, 0.811, 0.8944).

Infeasibility occurs on the 5th and 12th orders for which:

P.=2, Pe=4 and P,=2, P ;=4

Swap the 5th and the 6th orders and also the 12th and 13th orders.
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The new sequence is P=(1,2,3,1,4,2,5,1,3,2,1,4,2,1,3.5).

Step 1. The vector 1t =( 1.267, 1.3, 3,3.767, 6).

Step 2. The vector y*=(0, 0.0027, 0.144, 0.2083, 0.3944).

Step 3. w*=2.767.

Step 4. The corresponding schedule 1s:

(0, 0.0027, 0.144, 0.2, 0.2083, 0.2527, 0.3944, 0.4, 0.477, 0.5027, 0.6,
0.7083, 0.7527, 0.8, 0.811, 0.8944),

which is feasible; hence it is optimal for ELSLP (with the modified

sequence).
V-4 Optimal Cycle Length for the NLP Model

In this last section, we will recall the optimal cycle length for the
NLP model which was introduced in Chapter IL.
If NLP is to be solved, then the optimal cycle length would be:

([ n \
2 2 my Ki
i=1

n )\,lh
>

T* = Min {




CHAPTER VI

THE CONVERGENT FREQUENCIES ALGORITHM

In this chapter we integrate the techniques of the previous chapters
into an optimization based heuristic algorithm that determines a complete
solution to the WSP: ordering frequencies, ordering sequence, a relative
cyclic delivery schedule, and a cycle length. Section VI-1 introduces the
algorithm , and Section VI-2 shows that the algorithm compares

favorably with other methods presented in the literature.

VI-1 The Convergent Frequencies Algorithm

Many heuristics have been developed in the ELSP area to find near
optimal frequencies and cycle length(see Elmaghraby[78] for an excellent
review of these heuristics). The heuristics alternate between an
optimization of the long run inventory costs per unit time with respect to
the cycle length for given frequencies and an optimization of the same
objective function with respect to the frequencies for a given cycle length.
As pointed out by Schweitzer and Silver[83], the long run average
inventory costs per unit time need not have a minimum, but have
generally an infimum when minimized with respect to the frequencies and
the cycle length. The algorithm that we are about to present is based on a
similar approach. Computational experience with the algorithm shows
that it yields near-optimal frequencies and cycle length after a small

number of iterations.
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The Convergent Frequencies Algorithm, CFA, is an iterative
algorithm that integrates all the heuristics and methods developed in the
previous chapters. The starting frequencies and cycle length are based on
the solution of the problem in which each part is ordered independently of
the others, the so-called "Independent Solution”. The Arbitrary
Frequencies Bin Packing Heuristic is then used to generate the sequence.
Given the sequence and the cycle length, the optimal maximum inventory
is determined using the algorithm developed in Chapter V. In subsequent
iterations, candidate frequencies are generated for longer and longer
cycle lengths. The corresponding reorder intervals converge to the
reorder intervals of the independent solution. In this way the inventory
cost of constraining all parts to share the same cycle length approaches an
infimum. In practice, convergence is very rapid. The algorithm is based
~ on the equal lot sizes restriction because of the managerial advantages of
equal lot sizes and to facilitate comparison with other algorithms in the
literature. A version of the algorithm using time variant lot sizes is easily
developed.

The optimal reorder intervals for the independent solution are given

by:
/2K, .
TiI = m—li', 1=1,...,n, (6—1)

and the corresponding minimum cost is:
n
CI =Zq/ 27\1th1 (6“‘2)
i=1

Let T* denote any base cycle length such that
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T > Max { T} : i=l,...a}, (6-3)
and
m;(k) { K Tﬂ i=1..n andk=1,2,.... (6-4)
T;

where the symbol [ ] gives the nearest integer, and k is an arbitrary
constant, called the cycle factor.
Let T;(k) denote the reorder interval of part i given a cycle length of

k T+, a frequency of m;(k), and the assumption of equal lot sizes:

Tik)= —— kT i=1,...,n and k=1,2....... (6-5)

m;(k)

Lemma VI-1. T;(k) converges to T§ as k goes to infinity.
Proof:
By (6-4) and (6-5),

kT
B
then T;(k) — T— kT -

kT T
[T}

but-————~05<{ T]_ I +0.5,

thus—-}—+———TJ<T(k) T____._I.(_If____ﬂ,
kL o5 kT _os
T, T;
hence as k — oo, Ti(k) T, Vi (E.O.P)

Note that the same result holds if the frequencies my(k) are obtained by
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rounding up or down the quotient kT / ﬁ).
VI-1-1 CFA for solving NLP

In this section we present the CFA algorithm, discuss the steps of the
algorithm, and illustrate it with an example from the WSP literature.
When solving the NLP with the restriction of equal lot sizes, the

algorithm is composed of the following steps:

n

1) Compute Tf=‘\/(—2 K;)/ (A h;) and C'= E A 2KiAibi,

i=1

let T'=Max T}, and k=1.
1

2)Let mi®) =[kT"/T}] i=1,....n,
m2K) =Tk T/ T} | i=1,...,n,
ml&) =1kT"/Ti | i=1,....0,
m? if C2<C,
mf'(k)z{ \ i=1,....n,
m; otherwise,
. K. mik
whereC’iz——————‘m‘( ) -1—li h, kT&
kT J(k)

Find the set of frequencies that gives the minimum cost for fixed
frequencies to the unconstrained problem; ie, find

(¥ = Min { C(K) : j=1,2,3, 4},

where C/(k) = \/ 2 ( 2 K| m%(k)} (2 -}-H—E—J
i=1 =1 M (k)

and let my(k) =mi (k) for i=1,...,n, and C(k) = o .
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3) Compute the cycle length Tﬂ@“\/ [EK m(k)] ( <k>)

4) Generate the sequence using the Arbitrary Frequencies Bin Packing

Heuristic.

5) Compute the relative equal lot sizes maximum space used, w(k), using
the algorithm developed in Chapter V.

6) If 1(k) w(k) < V, then C*(k) = C(k),

otherwise, t(k)=V/w(k), and C "(K)= (Z‘K m (k)}/‘c(k)-m(k) 2(7\. h,)/(2m;(k)).

i=1
DI (Ck) -C hy/C' <& goto 8, otherwise ke—k+1 and go to 2.

8) If C"(k) = C(k), then C = C(k), otherwise, C*= Min{ CQ): 1=1,....k}.

In Step 2, the set of frequencies is selected among four candidates and
it éorresponds to the one that yields the smallest cost for a fixed
frequencies.

For given frequencies and the equal lot sizes assumption, the long run
average inventory cost per unit time is:

i( K m; X A by
=1 T 2 mi ’

=

thus the optimal cycle length for these given frequencies 1s:

NZE]

and the optimal cost is:




84

In Steps 1 through 5 and Step 7, the algorithm ignores the space
constraint to compute the frequencies and the cycle length, and in Step 6
the cycle length is adjusted, if necessary, to ensure feasibility. Step 8 is

needed because the cost is not monotonically decreasing with k. Finally, a

1
cycle factor of the form k(3> .where o is a given integer, would give a

better solution, but convergence would be slower.
The algorithm is illustrated with the two product example of Thomas
and Hartley[83]. The data is reported in Table 6-1

Product |Demand Rate] Setup Cost Holding Cost
1 1000 25 0.5
2 1000 20 2

The space available is 450 sqft and the optimal cost of the independent

Table 6-1 Thomas and Hartley Example

solution is 440.95659 $. In the first iteration, we have:
k=1: 1(1)=0.2944 m,(1)=1 m,(1)=2 C*(1)=441.59
where W(k)= (k) w(k). In the fourth iteration, we have:
K=d: T(4)=1.267 m,@)=4 m,4)=9 C(4)=440.96

At the fourth iteration £€=0.00044%, thus C*=440.96.

L The result of Thomas and Hartley are given in the table below and

compared with the above solution.

W(1)=367.99,

W(4)=440.96.



&5

Technique Max Space Used| Cost | ml [ m2 | Cycle length| Num [ter
Thomas & Hartley 449 440961 9 | 20 2.835 20
CFA 440.96 44096 | 4 9 1.26996 4

Table 6-2 Comparison of CFA Solution with Thomas and Hartley
Solution
The CFA algorithm needed only four iterations to converge whereas
the Thomas and Hartley algorithm required twenty iterations to complete.
(Comparison of iteration counts can only suggeslt computational
differences, because the Thomas and Hartley algorithm is a completely
different approach) Moreover, the solution obtained by CFA is optimal in
this case since Thomas and Hartley showed that their procedure yields an
optimal solution for the two product problem.
Next, we will show that the CFA converges after a finite number of
iterations for a given cost error €.
Lemma VI-2. The Convergent Frequencies Algorithm converges after a
finite number of iterations.
Proof.
Recall that the stopping criterion for CFA is (Ck)-Cl)/Cl<e,
where € is a small number. Recall also that

c K; mi(k) 1 7"1 h; (k)
Cll)= L
) Z'[ ® 2 m® )

t(k)=\/ (EK m(k)] (2 k‘(k))

Since 1(k) is optimal for the given m;(k)’s, no other cycle length can yield




86

a lower cost. In particular,

S(Km&k 1 xihikT*)
Ck) < ~ :
) Zl( T2 m®

Moreover, since

£_05<( myk) = \:kT}J<g—+OS
T; T; T}

(we suppose, without loss of generality, that the frequencies are given by

i ) . I
rounding to the nearest integer the quotient (kT+/T;)) then,

C(k)<z i(-—-—+05j —xihi_-l‘-f——
kT o5

T!

where a' =
T
After dividing by CI, we get:
Ck) k-025 a a'
+—, where a=—.

& k-05 k’
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Next, the values for k such that 1;; %255 + —i— < 14¢ are to be determined.
k=025 + 2 <14e is equivalent to:

k-05 k
_ek2+(025+a+05¢e)k-0.5a<0, (6-6)

which holds for:

(025+a+0.5 8)+‘\/ (0.25 +a+0.58)2—238
k= T e Ekl,

and for

025+2+05¢) -4 (025+a+05€)° -2ae
k< 2 = k2,

Note that| X1 | > 0ifk > 0.5 for i=1,...n.
Ti
It can easily be proven that k, < 0.5, thus (6-6) holds for k =2 k;.
So for any k 2 k;,

c-C'

€. (E.O.P)
c'

VI-2 Computational Comparisons

The algorithm is first compared with the Doll and Whybark[73]
algorithm and the Brown[67] algorithm using a simple example provided
in the Doll and Whybark paper. The algorithm is also compared with
Goyal[78] results using the Hadley and Whitin[63] example and the
Johnson and Montgomory[74] example. Then, we show that CFA yields

an optimal solution in each of the six problems of two-product problems
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considered in Thomas and Hartley[83]. Finally, we present the results of

two problems whose data are randomly generated. The data for all the

problems are reported in Tables 6-3 to 6-8.

Product [Demand Ratd_Setup Cost | Holding Cost Voo
1 7200 9 1
2 20000 4 1 CIl=760%

Table 6-3 Doll and Whybark Example

Product |Demand Ratg_Setup Cost |Holding Costl  v=15000 sqft
1 50000 50 0.2
2 20000 50 0.2 C1=3421.31%
3 160000 50 0.2

Table 6-4 Johnson and Montgomory Example

Pro;iuct Derleg?)c(i)(l){at SetugOCost Holdialé Cost V=14000 sqft
) 50000 75 0.2 C1=3857.2 %
3 100000 100 0.2

Table 6-5 Hadley and Whitin Example

Problem 1 2 3 4 5 6
Setup Cost(1) 10 10 20 25 25 25
Setup Cost(2) 45 10 10 20 20 20

Holding Cost(1) 1 1 1 0.5 0.5 0.5
Holding Cost(2) 1 1 1 2 2 2
Demand Rate(1)| 2000 | 2000 | 2000 | 1000 | 1000 | 1000
Demand Rate(2)| 1000 | 500 | 5000 | 1000 | 1000 | 1000
\Y 440 84 598 450 300 400
Cost of "IS" 500 300 15999.1]440.96]440.96|440.96

Table 6-6 Thomas and Hartley Examples
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Product |Demand Rate] Setup Cost |Holding Cost
1 400 10 0.5 _
3 350 |3 0.1 V=700 sqft
3 400 | 4 3 I
1 300 | 7 0,067 Cl=213.1906%
5 160 | 5 0.1
Table 6-7 Test Problem 1
Product |Demand Ratel Setup Cost |Holding Cost
1 1000 100 20 V=1550 sqft
2 3000 120 7.5
3 4000 70 20 Cl=10383.36$
4 9200 160 2.5

Table 6-8 Test Problem 2

Comparisons of the results are shown in the next Tables 6-9 to 6-12.

Technique ml m2 |Cycle Length] Cost | Num Iter
D&W 1 3 0.5532 763 2
Brown 1 2 0.0444 765 X
CFA 2 5 0.1 760 2

X not reported.

Table 6-9 Comparison Using Doll and Whybark Example
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Problem Johnson and Montgomory| Hadley and Whitin

Technique J&M |Govyal |CFA |H&W [P&P [Goyal | CFA

Max Space 15000 | 14200 | 14903 | 14000] 14000 | 13751.2| 14000

Excess Cost % 0.9 0.1 0 5.3 1.2 1 0.8

ml X 3 5 X 1 2 2

m2 X 2 3 X 1 3 3

m3 X 6 9 X 1 3 3

Cycle Length x 10.2919]0.4967| x X 0.291 | 0.296

X not reported.
Table 6-10 Comparison Using J &M and H&W Examples

Problem 1 2 2 3 3 4 4 5 5 6 6
Technique T&H]| CFA | T&H| CFA|T&H| CFA | T&H| CFA|T&H| CFA | T&H| CFA
Max space 433|433 | 84 | 84 | 595577 | 44914411300 | 300 | 368 | 368
Excess Cost % 0 170.9170.9] O 0 0 0 [22122]01]0.1
ml 3 2 2 1721 4 9 4 1 1 1 1
m2 1 1 1 [161] 9 20| 9 2 2 2 2
Cycle Length | 0.3 | 0.3 [0.06]0.06]/10.2]0.57[2.84|1.2710.24]0.2410.29 0.29
Num Iter 1 7 1 1169 4 | 20| 4 1 4 3 4

Table 6-11 Comparison to Thomas and Hartley results

Problem 1 2
Number of Products 5 4
Max Space Used 582.117 1458.771
Cost 213.226 10383.96
Frequencies 5-6-20-2-2 7-7-17-6
Cycle length 1.61332 0.71071
Num Iterations 2 6

Table 6-12 Result of Test Problems 1&2
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In the above tables, the excess cost is defined as the cost of the solution in
excess of the independent solution cost.

As can be seen from the above tables, the algorithm behaves
favorably in comparison to other methods in terms of computation
(Thomas and Hartley example) and cost. Finally, if more iterations are
carried out for the two test problems, then their cost solutions come very
close to the independent solution costs:

Test problem 1:
k=11, 1=2.24, m;=29, my=35, m3=113, my=1 1, ms=12,

C"=213.1974, W=675.59.

Test problem 2:

k=28, 1=3.303, m;=33, my=32, m3=79, m=28,

C"=10383.36, W=1530.56.

However, the "penalty" to be paid is a large cycle length and a long
sequence. This was also observed by Dobson[87] for his relaxation
problem to determine production frequencies, and by Muckstadt and

Singer[78] and Schweitzer and Silver[83] for the independent solution.



CHAPTER VII
CONCLUSIONS AND EXTENSIONS

The goal of this thesis has been to develop a method to produce a
cyclic schedule that minimizes the long run average inventory costs per
unit of time without violating a warehouse space capacity constraint. We
have shown that such a schedule must satisfy the Zero Switch Rule. For
given frequencies, this schedule can be obtained by either solving a
complex mixed integer nonlinear program or by first generating a
sequence using a heuristic developed for this purpose and then solving a
linear program or a quadratic program. We have developed an efficient
algorithm that computes iteratively the ordering frequencies, the cycle
length, the maximum space used, the timing of deliveries, and the long
run average inventory costs per unit time. Compared with the existing
methods in the literature, the algorithm has produced the same or better
cost solutions at very little computational expense.

When solving the WSP, we have assumed that the production rates
are infinite. One obvious extension is to relax this assumption.
Vemuganti, Dianich, and Oblak[87] have considered the fixed cycle length
version of this problem. Another extension involves the application of the
Convergent Frequencies Algorithm to the ELSP. The idea of converging
to the independent solution combined with the Arbitrary Frequencies Bin
Packing Heuristic and Zipkin's parametric quadratic algorithm may yield

good cost solutions. The results of this thesis can also be extended to the

92
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one warehouse, multi-retailer problem in which the warehouse and the
retailers have a sevére space limitation. Finally, the case of finite
backorder costs should also be considered. In an environment different to
the high-volume assembly plant, allowing the warehouse to run out of
stock for some period of time will reduce the maximum space used during
the cycle. Vemuganti[88] has examined the fixed cycle length, zero setup
time version of this problem. Gallego and Roundy(88] have extended the
ELSP to allow backorders by using an approach similar to that of
Dobson([87] and Zipkin[87]. The author has already started examining the
first two extensions, whereas the last important extension will be the
subject of a joint research with Guillermo M. Gallego, Columbia

University.



APPENDIX I
Properties of the A Matrix

In this appendix some of the properties of the A matrix will be
outlined.
Lemma

(1) A is a nonnegative matrix.
n

() Aj=%>0,  whereA=D A, and Ay>Ay Vb,
i=1

(3) For arbitrary h € {1,....m} let i=P,.

(3-1) If my=1, then:

App1=Ai, (1)
Ay =Anajth for all j#h-1. (2)
(1) and (2) are interpreted cyclically; ie, if h=1, then h-1=m.

(3-2) If m>1, then:

Apn-1=0, (3)
Ahj = Ah—-lj + }\.i, jzh,...,k"‘l s where Sijkzl ’ (4)
Ay =Anyj A otherwise. (5)

(4) For arbitrary je {1,....m}, let i=Pj.

(4-1) If m=1, then:

jj—l":)‘is (1)
= Ahj—l - )"i’ for all h#j, (6)

=0, (3)

94
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An = An1— A h=k,...,j~1, where 8y;=1 and =1, (6"

Ahj = Ahj——l’ otherwise.
Proof:
(1) and (2) are trivial from definitions of the A and the F(W)'s matrices.
(3) Recall that:
1 for j=hh+1,...k-1, where O =1,
Fyy ={ NG
0 otherwise.

Consider the two matrices F® and F(b-D.

Let i=Py, .clearly,

(D) _ 1 and FiY = 0, for all j#h-1, ®)
and for r#i, we have:
FY=FY, forjhet ¥
and
Fin1 = 0. 1o

(3-1) m;=1 and P,=1, then
Sun=1 and Fi'=1 for j=1,....m. (11)
For j#h-1, we have:

An-Ap_ =M EP-FI) D A FP-F™) by the row definition of A

i
=M1 -0 )+ 0, by (11),(8), and (9).
For j=h-1,
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(h (h)
A1 =MFia+ 2 M Fin

“n +0, by (11) and (10).

(3“"2) rni>1, Sihkzl’ thi, szi, and k=h.
By (7), F{) ,=0. (12)

Then, for j=h,h+1,....k-1, we have:
Ay An-u—MF(h) (h—-l)) +27"r(F(h) F(h—l))

(1 - 0)+ 0, by(?,(®),and(9).

For j=h-1,
h) (h)
Ay =MFip+ Z A Fry

= 0 + 0O by (12) and (10).
For j=h,....,h-2, and j=k,...,m,
AnAn = EP—F+ D A EPF™)

I#1
=2(0 -0 ¥ 0, by (7), (8), and (9).

(4-1) my=1 and Pj=i, then
F =0, for h#j,
Fg*_’ =1, for haj.

F(h) = Fg‘ll forr#i and h=1,....,m, since only one part can be ordered on any

order.
Thus, for h#] we have:
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Ani- Ahj-1=7&i(F(h) Fﬁ}‘.’ ) +Z7\T(F(n) F(h)

=\ 0- 1 )+ O

(4-2) mi>1, Sijzl, Sik::la Sikala and _]¢k

Using the definition of FM, we have:

Y =0, for h=1,...,m,
FS‘.Z =1, for h=k,...,j-1,
and

F(h) =(), otherwise.

1]*‘
Moreover, since ;=1 and only one part can be ordered on any order, then

FV=F®, forr#i andh=1,..,m.

Thus for h=k,..., j-1, we have:
Ahj"‘Ahj~1=7»1(F(h) F§?31)+2KY(F(“) F(h)
=20 -1 M+ 0,

and otherwise

=A(0 -0 )+ 0. (E.O.P)



APPENDIX I

Proof of Theorem IV-1
Before presenting the algebriac proof of theorem IV-1 some
definitions and theorems which will be used in the proof need to be

introduced.

Definition 1

An m by m real matrix Q = ( Qij )is diagonally dominant if :

m

Y oyl <1l j=l,...m (1)

h=1 hej

and strictly diagonally dominant if strict inequality holds in ( 1) for all j;
the matrix is irreducibly diagonally dominant if Q is irreducible,

diagonally dominant, and strict inequality holds in ( 1) for at least one j.

Theorem 1 ( Ortega, Rheinboldt)
The real matrix Q is irreducible if and only if , for any two indices 1

and j , there exists a sequence of nonzero elements of Q of the form :

{ thl’ thhz’ Qh2h3"",Qhkj }'

Definition 2
An m by m real matrix Q is an M-matrix_if it is invertible, Q120 and

th_<.0 for all h#j and j=1,...,m.
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Theorem 2 ( Ortega , Rheinboldt)
Let Q be strictly or irreducibly diagonally dominant and assume

Qp;<0 for h = j and that Q,;>0 for h=1,2,......m, then Q is an M-matrix.

We now are ready to prove that the optimal schedule that minimizes

the maximum inventory corresponds to the warehouse full at each order.
Proof of theorem IV-1

Recall that ( LP ) could be simplified to :

Max e;nx
S.t.
A x<en
x 20.

We will prove that x*=A-le_ (d"=A"le ) is aprimal ( dual ) optimal
solution to ( LP ). The proof is composed of the following three steps
repeated for both the primal and the dual: '

Step 1

Premultiply both sides of the system of equations A x = e, by the
matrix defined as follows:

ij - 1, j=1,...,rn,
GJJ+1 =_1, jzl,...,m'—'l,

Gy =0, otherwise.
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LetC=G Aande =G e, where

& =0, j=1,...m—1,

_Aml AmZ L Amm—l Amm_

where Q is an (m-1) by (m-1) matrix and § is an (m-1) column vector.

Using the properties of the A matrix, the Q matrix can be defined as:

For arbitrary h € {1,...,m-1}, let i=P;.
1. If m;=1, then

n
Qh-1h-1 = A1~ Apn1 = 2 A — A,
r=1

Qh—lj = Ah—1j - Ahj = -2 for j#h—1.

2. If m>1, then
n
Qh-10-1 = Ap-1n-1 — A1 = Z Ar s
r=1

Qhyy = Apgj—Ap= — A for j=h,...k—1, where d;=1.
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Qn1j =Angj— Ay = 0, otherwise.

The vector B is defined as follows:

Bh—l = Ah—lm - Ahm = "‘;\.i, ifme {h,,k"‘l} where Sihkzl s
By =0, otherwise.

Hence:

th < 0 for h-?ﬁ_] with th+1 < 0,
Qi >0 forh=1,...,.m-1,

and
B, <0 forh=1,...,m-1.

Now, letk;, Ky,....kp, be the order numbers on which the m; orders of
part i were placed. Then:
le-lj = - )\'i’ for jzkl,k1+1,...,k2—1,

ka -1j =~ }Li, for j=k2,k2+1,...,k3"‘1,

kai_lj = - Xi, for jzkmi’kmi+1 ,...,kl-‘l .

Thus, the rows of Q that corresponds to part i partition the columns of Q.
Hence A, appears at most once in each column of Q. So, for each column of
Q, there are at most n+1 nonzero entries, a positive element on the
diagonal, and at most n negative entries corresponding to the demand
rates of each part. Therefore, Q is diagonally dominant and strict
inequality holds in (1) for at least one column. The strict inequality holds

for the columns j=1,2,....k-1 where p ; =1.
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Let Qy; and Qyy be nonzero entries of Q. Since Q,;>0 and Qy; <0,
then there exists a chain from th to Qh,j., ie, it exists a sequence of
nonzero elements of Q which forms a chain from th to Qpy- Starting
from Qy; , we follow the following chain:

Qny Qji Qijr1 Qyerjat Qprajen eveeeeee Qui Quj-

Therefore, Q is irreducibly diagonally dominant and by theorem 2 itis an

M-matrix and Q-1=0.

Step 2

Premultiply both sides of C x = ;s by the following matrix:

00. . 0

to get C x =¢ where

O
i

QB

Am2 . . Amm—l Amm_

m1
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and I is an (m-1) by (m-1) identity matrix. Since Q-1>0 and B < 0 we have
Q'p<o.

Step 3

Premultiply both sides of é X :; by the following matrix:

i 0]

0
I

0

0

L—Aml “Amn2 - - - “Amm1 1]

to get the final system of equations:
— - —X]_-‘ _O_
X1 0
I Q'B = (2)

0
00. .0 y Jlxml LL

m—1
where Y= Aqm — D B Appand p=Q" B.
=1

Thus Y > 0-
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Therefore, by solving ( 2 ), we get:
Xy= y‘l >0,

x; =—(Q7' B ¥ 20.

which shows that x*= Ale 2 0.

In the first step of the proof for the dual the matrix G is as follows:
Gij = 1, j-—-l,...,m,

ij—l = —'1, j=2,...,m-—1,
Glm :"'1.

The matrix Q is defined as:

’

th =Ajh - Aj-lh = Ahj - Ahj-—l’ forj,h::l,...,rn-—l.
For arbitrary j € {1,...m-1}, let i=P;
1. If my=1, then
n
Q; = Ay- A= D b
r=1
Qn = Ay — A= i for all h=j.

2. If m>1, then

n
Qji N
r=1
th = Ahj - Ahj~1= "'Xi, hzk,..,j—‘l s where Sﬂqzl and Sik:]- s

Qn =0, otherwise.

Finally, the vector B is defined as follows:
BJ = Am] - Amj_1= "'7\4, ifme {k,,_]-*l} where Sikj::l,

B =0, otherwise.
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Hence:
thSO for h¢_] with Qh—1h<0’
ij>0 forj=1,...,m-1,
and
;<0 forj=1,..m-L.
The remaining part of the proof to show d'= (A')yle_ >0 is similar to the
proof that shows x = Al e, 0.
Finally, by the Strong Duality Theorem, since e;n X = e;n d’, then x*

is optimal for the primal and d* is optimal for the dual. . (E.O.P)

'Finally, we will show how the above proof can be used to prove that
joint replenishment can never occur for the optimal variable lot sizes

schedule that minimizes the maximum inventory.

Proposition IV-1. Joint replenishment does not occur for the optimal
solution to (LP); ie, uj>0.
Proof
Y

It suffices to show that X; > 0, since X;=—=.
W

Step 3 of the proof of Theorem IV-1 revealed that x , = Y—l > 0. Since the

order of the rows is arbitrary it must be the case that X; > 0 for j=1,...,m.

(E.O.P)
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