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ABSTRACT

This thesis examines the relation between optimal rational solu-
tions and optimal integral solutiéns fbr several classes of linear
programming problems. This relationship depends in various ways on
total unimodularity of certain matrices and in Chapter II this topic
is reviewed. Also in this chapter several prelevant examples from the
literature of combinatorial optimization, including network flows,
matroid intersections, matchings, bipartite graphs and balanced
matrices, are discussed from a viewpoint which emphasizes the role of
total unimodularity.

In Chapter III attention is focused on two special classes of
linear programming problems, a "covering" problem min{l-.y: yA > w, y > 0},
which is denoted T(A,w), and a "packing" problem max{l-y:yA <w,y >0},
denoted N(A,w), where A is a nonnegative, integral mxn matrix,

W 1s a nonnegative, integral n-vector and 1 is the m-vector of ones.

For a fixed matrix A, the integer round-up property (IRU) holds for
r(A,w) if the bestﬂintegral solution value for T(A,w) is the integer
round-up of the best rational solution value for T(A,w), for each
nonnegative, integral n-vector w. Similarly, the integer round-down
property (IRD) holds for M(A,w) if, for every nonnegative, integral
n-vector w, the best integral solution value for M(A,w) is the integer
round-down of the best rational solution value for M(A,w). A polyhedron

P is decomposable if, for every positive integer k, each integral



vector in kP = {x: x/k ¢ P} 1is the sum of k integral vectors of P.
It is shown that for a broad class of instances of T(A,w) and M(A.w),
the IRU and IRD properties are equivalent to decomposability of an
associated polyhedron. A recursive characterization of decomposable
polyhedra is given and it is also demonstrated that for a given
nonnegative matrix A, the IRU and IRD properties for T'(A,w) and
H(A,w); respectively, can be checked through a finite process.

In Chapter IV IRU and IRD results are given for linear programming
probleﬁs arising from polymatroids, the intersection of two strongly
base-orderable matroids, branchings, totally unimodular matrices and
the scheduling of precedence related unit execution time jobs on
independent identical machines. An example in which IRD fails for a
problem associated with perfect graphs is also presented.

In Chapter V strong integral min-max and max-min theorems are
derived for certain of the‘linear programming problems considered in
Chapter IV. Such combinatorial min-max (max-min) theorems are obtained
by coupling IRU (IRD) results with the anti-blocking (blocking) theory
of Fulkerson. A new and elementary proof of Fulkerson's Pluperfect
éraph Theorem is given using the techniques developed in Chapter III for

proving finite checkability of the rounding properties.



CHAPTER 1

PRELIMINARIES

I.1 Introduction

The linear programming problem is that of optimizing a linear
functional subject to a set of linear constraints. This problem may

be stated:

max c-y ( )T
I.1.1

subject to yA < w,

where A 1is an mxn real matrix, c¢ an m-vector of real numbers and
w is an n-vector of real numbers. This problem has been studied
extensively in the literature of operations research, and is "well-solved™
in two respects. The duality theory of linear programming provides a
solid theoretical setting for the study of the problem; that is, it
provides us with a strong max-min theorem for linear programming problems.
Further, though the algorithmic aspect of linear programming remains an
interesting and active research area, the simplex method of Dantzig
(1962)#%provides an algorithm for solving linear programming problems
which has proved to be of tremendous practical use.

The integer programming problem arises when one insists on having

integral solutions to a linear programming problem. This problem may

"This method of indexing is used throughout this thesis. The Roman
numeral refers to the chapter, followed by the section within that
chapter and the particular item indexed.

%%his manner is used for citing references included in the bibliography.
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be stated:

max c.y

s.t. yA < w (1.1.2)

y integral,

where A, ¢ and w are as in (I.1.1).

Integer programming problems have also been extensively studied,
and are of great interest since in many applications, only integral
solutions have any physical interpretation. Further, integer programming
is central to the theory of combinatorial optimization, which is the
prirmary concern of this thesis. However, neither a strong duality
theory for generating max-min results, nor any reasonably efficient
method of solution is known for the general integer programming problem.
Indeed, there are many well-known integer programming problems, such as
the knapsack problem, the traveling salesman problem and the triple
assignment problem which are notoriously difficult to solve. A theoretical
explanation for this difficulty is to be found in the theory of NP-
complete problems of Cook (1971) and Karp (1972).

Despite these difficulties, however, there are many important classes
of combinatorial integer programming problems for which integral max-min
theorems are known. In Chapter II, a survey is made of some of these,
including network flows, bipartite graphs, balanced matrices, matchings
and matroid intersections; in particular we view these topics from an

algebraic standpoint.



Attention is then narrowed to two types of linear programming prob-

lems:
min 1l-y
s.t. yA >w (1.1.3)
y >0
and
max l-y
s.t. yA <w (I.1.4)
y >0,

where in both (I.1.3) and (I.1.4), A is an mXn matrix of nonnegative
integers, w is & nonnegative integral n-vector, and 1 is the m-vector
of ones. The main topic of this thesis is a study of programming
problems of type (I.1.3) and (I.l.4) for which the optimal integer
solution value, though not necessarily the same as the optimal rational
solution value, is the round-up (for (I.1.3)) or the round-down (for
(I.1.4)) to the nearest integer of the optimal rational solution value.
In Chapter III this rounding property is studied from an algebraic and
polyhedral viewpoint. 1In Chapter IV the results of Chapter III are
applied to optimization problems for a variety of combinatorial topics,
including polymatroids, matroid intersection, circulations of a totally
unimodular matrix, scheduling and perfect graphs. Finally, in Chapter V

the relation of the blocking and antiblocking theory of Fulkerson



(1970,1971a,1972) to our earlier development is explored, and a new proof

of Fulkerson's (19872) Pluperfect Graph Theorem is given,

I.2 Notation

The following notation is used throughout this thesis.

R the real numbers
R+ the nonnegative real numbers
rR" Euclidean n-space
R* {x ¢ RY: x > 0}
+ r—
7z the integers
z+ the nonnegative integers
7 {x e Z°: x> 0}
+ pr—,
mXn . . .
Z* the nonnegative integral mxn matrices
n < -
X <y, %, ¢ R Xi i-yi’ 1= 1,...,.1
n
X<y, X,y ¢ R - xl < yi, 1= 1,...,n
n n
X-V, X,¥ ¢ R ) X.V.
. i’i
i=1
Ix71, x ¢ R+ the least integer greater than or equal
to x
Ixl, x ¢ R+ the greatest integer less than or equal
to ¥
S|, S a set the cardinality of S
A c B, A,B sets A 1is a subset of B
AcB, A,B sets A is a proper subset of B
B-A, A,B sets {x ¢ B: x £ A}
x(8), T a finite index set, Z s
iz§

SeT, xc¢ R!Tl



.. . . if i S
(x]8), T a finite index set, {:Xl e
¢

. H (xl9), =
Sc<T, xeR ) iF i4é S

X; A,B sets, AcB B-A

1.3 Linear Programming

In this section some basic linear. programming terminology is estab-
lished. For a more complete discussion of the concepts introduced, and
for proofs of the results stated here, a good general reference is
Dantzig (1962). For matrix computations in this section and throughout
the remainder of this thesis, all vectors are assumed to be appropriately
dimensioned, and no distinction is made between row and column vectors.

n

. m .
Let A be an mxn real matrix, w e¢ R, ¢ € R and consider

the linear programming problem:

(1.3.1)

The linear functional c-y is called the objective function of (I.3.1),

the matrix A 1is called the constraint matrix or constraint system

and w is called the right-hand side. A feasible solution for (I.3.1)

is any y € R"  such that yA < w. If (I.3.1) has no feasible solu-

tions, it is an infeasible problem; otherwise it is a feasible problem.

An optimal solution for (I.3.1) is any feasible =z € R"  which maxi-

mizes the objective function c-y, 1i.e., such that c¢-z > c-y for
every feasible y for (I.3.1). Given vy feasible for (I.3.1), the

associated value of y for the programming problem (I.3.1) is the real



number c*y, and the (optimal) value of the programming problem (I.3.1)

ig the wvalue of any optimal solution t¢ it. If a linear programming
problem is feasible but has no optimal solution, then the problem is
said to be unbounded, and its value is +«,

A set C E_Rm is called convex if whenever a e C, b e C and

0 A <1, we have Aa + (1-A)b ¢ C. Given a finite set of points

m

oA

{x ,...,xk} c Rm, a convex combination of those peints is any x ¢ R
k . k

which can be written in the form x = Z Aixl, such that Z Ai = 1
i=1 o i=1

and Ki >0 for i=1,...,k. Glven a set B < R, the convex hull

of B 1is the set of all convex combinations of finite subsets of B.

A polyhedron in R" is the feasible solution set to a finite
system of linear inequalities vyA ivw, where A 1is any real mxn
matrix and w ¢ R". Geometrically, thus, a polyhedron is the intersection
of a finite number of closed half-spaces in R™. Polyhedra are convex
sets. A polyhedron is called bounded if it is a bounded subset of R™.

The polyhedron associated with a linear programming problem is the convex

set of all the feasible solutions to the programming problem. An

extreme point (or vertex) of a polyhedron P is any x ¢ P such that

there do not exist distinct vectors vy ¢ P and =z ¢ P such that

X = Ay + (1-A)z for 0 < X < 1. That is, x ¢ P 1is an extreme point
if it cannot be written as a convex combination of other points in P.
A feagible solution to the linear programming problem (I.3.1) is called

extreme (or basic) if it is an extreme point of the polyhedron associated

with the linear programming problem.
The following characterization of polyhedra will prove useful. For

a proof, see, e.g., Rockafellar (1970).



Theorem 1.3.2. P iva is a polyhedron if and only if there exist

1
finite sets {xl,...,xr} c R"  and {y ,...,ys} < R" such that

. 1
If P has at least one extreme point, then the set {x ,...,xr} may
be taken to be the set of extreme points of P, and if P 1is bounded,

all the uj are to be taken to be equal to zero. [:]
Another useful basic theorem about polyhedra is:

Theorem I.3.3. (a) A bounded polyhedron is the convex hull of its

extreme points.

(b) Every nonempty polyhedron contained in RT has at least one extreme

point. [ |

The associated integer programming problem to a linear programming

problem 1s the linear programming problem with integrality constraints

added. Thus the associated integer programming problem to (I.3.1) is

max c-°y

s.t. yA<w (I.3.4)

y integral.

Feasible solutions, optimal solutions, values and optimal values are
defined for integer programming problems just as for linear programming

problems. The polyhedron associated with an integer programming problem

is the convex hull of all its feasilble solutions.



CHAPTER II

BACKGROUND

In this chapter several important classes of combinatorial integer
programming problems are examined from a perspective emphasizing
unimodularity of the constraint matrix. Thus we first review several

well-known results on total unimodularity of matrices.

II.1 Totally Unimodular Matrices

A square matrix is called unimodular if its determinant is equal

to 1. A matrix is called totally unimodular if each of its square

submatrices has determinant equal to *1 or 0. Hoffman and Kruskal

(1958) have shown:

Theorem II1.1.1. If the constraint matrix A of the linear programming

problem (I.3.1) is totally unimodular and if w 1is an integral vector,
then every basic feasible solution to (I.3.1) will be integral (i.e.,

the polyhedron {y « R yA < w} will have all integral extreme points),

Thus if (I.3.1) is feasible and bounded (and A is totally unimodular,

W o€ Zn), then (I.3.1) will always have an integral optimal solution.
Conversely, if the nonnegativity constraints y > 0 are added to

(I.3.1) and if this modified problem has an integral optimal solution

for every c¢ ¢ R™  and integral w such that it is a feasible problem,

then the constraint matrix A is totally unimodular. [:]

(An elementary proof of this theorem is provided in Veinott and

Dantzig (1968).)



This result is important, since it tells us that at least some
integer programming problems (namely those with totally unimodular
constraint systems and integral right-hand sides) are no more difficult
than their associated linear programming problems. Since the simplex
method for linear programming always determines a basic optimal solu-
tion (when such exists), it will automatically generate an integral
optimal solution in the case of a totally unimodular constraint matrix
and integral right-hand side vector. Linear programming duality theory
can also be used to generate strong integral max-min theorems for such
integer programming problems.

We conclude this section by giving two well-known theorems which
provide sufficient conditions for a matrix to be totally unimodular;
we use these results in our later development, It is not difficult to

prove the following theorem using induction on the size of submatrices of

A (see, e.g., Garfinkel and Nemhauser (1972)).

Theorem II.1.2. (Heller and Tompkins (1958)) Let A be a matrix with

all entries 0, 1, or -1 and say that A satisfies:
(1) no more than two nonzero entries occur in any column;
(2) the rows of A can be partitioned into two subsets Q and Q2
such that:
(i) if a column contains two nonzeroc elements with the same sign,
one element is in Ql and the other in Q2;
(ii) if a column contains two nonzero elements of opposite sign,

both elements are in Ql or both are in QQ.

Then A 1is totally unimodular. []
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Theorem I1.1.3. Let A be a (0,1) matrix which satisfies:

a.. =1 and a 5 = 1 for k > i+l (T7.1.4)

imply that a = ... = =1 for all i,k,j. (That is, in

. . a .
it+l,] k-1,]
each column of A, the entries of value one occur in consecutive

row positions.) Then A is totally unimodular.

Proof: Since any square submatrix of a matrix satisfying (II,1.4) will
clearly inherit this property, it is enough to show that all square
matrices A satisfying (II.1.4) have determinant 0, +1, or -1.

We proceed by induction on n, the dimension of A.

If n = 1, the result is clear. So assume that all (n-1)x(n-1)
matrices satisfying (II.l1.4) have determinant 0, +1, or -1, and let A
be an nxn matrix satisfying (II.1.4). We are done if A has a zero row
or column, so by permuting columns we may assume that a = 1, and further,

11

. 1 o
that the first column of A, say A~ has a minimum number of nonzerc elements

among all those columns Aj of A such that alj = 1. We then deduce
from (II.1.4) that for any i and j, 1 < i,j <m, alj = 1 and

@y 7 1 implies that aij = 1. Let A* be obtained from A by
subtracting the column Al from every column Aj such that alj =1,

5 # 1. Then A* will still satisfy (II.1l.4), and will have precisely
one 1 entry in its first row. Thus, if we let B be the (n-1)x(n-1)
submatrix of A® gotten by deleting the first row and column of A%,
we have det(A) = det(A®) = det(B) = 0, +1 or -1, by the induction

hypothesis. []



11

11.2 Network Flows

Let G = (N,A) be a directed graph with node set N and arc set

A. A directed arc in G (i.e., a member of A) is denoted by a pair

(x,y), x ¢ N, y e N. The arc (x,y) 1s directed from x to y.

G 1s called a two-terminal, capacitated network if it has two
specified nodes, s ¢ N called the source, and t ¢ N called the

sink, and a capacity function on the arcs, c: A~ R+. A feasible

flow of value v in G is a function f: A~ R+ which satisfies

) f(s,y) - Y f(y,s) = v (II.2.1)
(s,y)cA (y,s)eA

X f(x,y) - ‘Z fly,x) = 0, x ¢ N, x £ s,t (I1.2.2)
(x,y)eA (y,x)cA

) flt,y) - ) f(y,t) = -v (I11.2.3)
(t,y)eA (y,t)eA
0 < f(x,y) < c(x,y), (x,y) ¢ A. (I1.2.4)

Given any X ¢ N such that s e X, t ¢ X, a cut separating s

from t in G is the set of arcs {(x,y) ¢ A: x ¢ X, vy ¢ N-X}. Denote

such a cut by (X,X). The capacity of cut (X,X), denoted c(X,X),

is given by z _ c(x,y). Ford and Fulkerson (1962) have shown:
(x,y)e(X,X)

Theorem II.2.5. (Max-flow, min-cut) For any two-terminal, capacitated

network G = (N,A), the maximum value of a feasible flow in G is
equal to the minimum cut capacity of any cut separating the source s

from the sink t. [j
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Thus, given an integral capacity function c: A~ Z+, the problem

max v
(11.2.8)

s.t. (IT1.2.1)-(II.2.4)

will certainly have an integer optimum value. That the problem (I1.2.0)
will also always have an integral optimal solution follows from the

fact that the constraints (II.2.1)-(II.2.3) define a totally unimodular
matrix. The total unimodularity of this constraint matrix follows
trivially from (II.1.2), since the matrix corresponding to these con-
straints has precisely one +1 entry and one -1 entry in each column,

and all other entries are equal to zero. If we call the matrix associated
with the constraints (II1.2.1)-(II1.2.3) A, and let I denote the

}AfxiAi identity matrix, then it is clear that {11.2.6) may be

expressed:

max v
3 t.r_ A 0
-A 0
[x] < (11.2.7)
I -1 C
-T 0
-

Since the constraint matrix for (II1.2.7) is plainly still totally
unimodular and (II.2.7) 1s feasible for any ¢ > 0, we deduce from
Theorem (II.1.1) that (II.2.7) will have an integral optimal solution

whenever ¢ 1s integral.
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Ford and Fulkerson (1962) have also provided an efficient algorithm
for finding a flow of maximum value. As this algorithm starts with any
feasible flow (e.g., f(x,y) = 0 for every (x,y) ¢ A) and generates
an optimal flow through various integral additions and deletions of flow
from arcs, this algorithm can also be seen as ensuring the existence of
optimal integral flows.

Interestingly, as elementary as the maximum flow problem and its
solution appear, many other important combinatorial theorems can be
easily derived from it. Among these are (see Ford and Fulkerson (1962),
Chapter 2) the capacitated supply-demand theorem of Gale (1957),
Hoffman's (1960) circulation theorem, the theorem of Hall (1935) on
systems of distinct representatives of a family of sets, the theorem
of Fulkerson (1871b) on disjoint common partial transversals of two
families of sets, Birkhoff's (1946) theorem on permutation matrices,
and the theorem of Dilworth (1950) on covering the elements of a partially
ordered set with a minimum number of chains in the partial order. Each
of the above results may be stated as a combinatorial (i.e., integral)
max-min theorem, and thus in each instance total unimodularity of the
constraint system provides an algebraic explanation for an integral

max-min theorem.

IT.3 Bipartite Graphs

Let G = (N,A) be an undirected graph with node (or vertex) set N

D

and arc (or edge) set A. Assume further that G is loopless (i.e.,

D

{x,y} ¢ A implies x #¥ y) and that G has no multiple edges (1i.

[}

there is at most one edge between any two nodes x € N, vy ¢ N).
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is bipartite if there exists a partition of the nodes N of G into
two sets S and T such that S uyuT=N, SnT=4¢g, and
{%x,vy} ¢ A implies either x ¢ S and y ¢ T or X ¢ T and y . S.

Let A be the node-arc incidence matrix of G, i.e.,

1 if node i 1is an endpoint of arc
1]
0 otherwise.
It is then easy to see that S and T induce exactly the kind of parti-
tion of the rows of A which guarantees that A is totally unimodular
by Theorem II.1.2. Thus any bounded, feasible linear programming problem

of the form

max c¢°'x
(11.3.1)

will have an integral optimal solution whenever w is integral
(Theorem II.1.1).

An example of a linear programming problem on a bipartite graph is
the Hitchcock transportation problem (see for instance Ford and Fulkerson

(1962)). Let G = (S u T,A) Dbe the complete bipartite graph on S u T;

i.e., let A = {{si,tj}: s € S, tj e T}. Associate to every s, € S

a nonnegative, integral supply a;s to every tj e T associate a
nonnegative, integral demand b,, and assume ) a, = ) b..
J {i:sieS} {j:t.eT} J

J
Further, to every {si,tj} ¢ A associate a nonnegative cost °5 The



Hitchcock problem may then be stated:

Cia¥ys
i,3 J 1]
|7

s.t. z %.. < a., s, ¢S ‘ (I1.3.2)
521 ij — 1 i

>
xij > 0,
or equivalently,
max(- ) Ci’xij
i, M
Tl
s.t. )} x,.<a,, s, €8 (11.3.3)
521 ij — 1 i

which is of the type (II.3.1) for a directed bipartite graph G. One

can think of the ai's as representing supply at vertex i the

bj's as representing demand and vertex bj, and the cij's as unit

shipping costs from S; to tj; hence the term "transportation problem

15

1"
.
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I1.4 Common Independent Sets of Two Matroids

A matroid M = (E,I) is a finite set {el,...,en} and a family

of subsets I of E which satisfy two axioms:

(1) if AcBel, then Acl (IT.4.1)

and (2) if A < E, then all maximal B < A such that (I1.4.2)

B ¢ T have the same cardinality.

The members of 1 are called the independent sets of M; the maximal

members of 1 are called the bases of M. The rank of A c E is the

cardinality of (any) maximal independent set contained in A, and is
denoted r(A).
Matroids provide an abstract setting for the study of many combina-
térial problems; two examples of matroids are:
(1) E = any finite set of vectors in R" and I = the linearly
independent subsets of E, and
(2) E = the edges of a graph, and I = the subsets of E which contain
no cycles (see Section IV.3). |
For a good introduction to matroid optimization and the polyhedral study
of matroids, see Edmonds (1970) and Giles (1975).
Given two matroids on a set E, Ml = (E,Il) and M2 = (E,Iz),
with rank functions vy and ©r, vrespectively, Edmonds (1970) has

2

shown that the extreme solutions to the system,



x(A) j_rl(A), AcE (II.4.3)
%(B) f_PQ(B)a B ckE
x >0,

are precisely the incidence vectors of the subsets of E which are
independent in both Ml and MQ.’ His proof of this result uses the
following interesting techmnique. It is not difficult to see that
among the extreme solutions to (II.4.3) are all the incidence vectors
of sets independent in both Ml and M2, and that any integral
solution to (II.4.3) will be such an incidence vector. However, it
seems perfectly possible that (II.4.3) might have some fractional
extreme solutions.

Although it is not generally the case that the con;traint system
of (II.4.3) will be totally unimodular, Edmonds (1970) has shown that,
given any extreme solution to (II.4.3), the constraints satisfied at
equality by that solution generate a submatrix which can be transformed
via elemeﬁtary row operations into a totally unimodular matrix. From
this and Theorem II.1l.1, it follows easily that all extreme solutions
to (II.4.3) must indeed be integral, giving the desired result.

Thus, although no totally unimodular system yielding the common
independent sets of two matroids as extreme solutions is known, total
unimodularity is again central in establishing this combinatorial
theorem. We use a similar technique in Section IV.1l to show that
certain linear programming problems for polymatroid optimization satisfy

the rounding property discussed in Section I.l.

17



II1.5 Matchings

Let G = (N,A) be a finite undirected graph without loops or

'multiple edges, and let A be its node-arc incidence matrix. The

maximum matching problem for

G is given by:

max 1-+x

Given any S c N, let A(S)

(I1.5.1)

®x integral.

{e e At e = {u,v}, ucsS, v« S}

and consider the following linear programming problem, with the

integrality constraints of (II1.5.1) replaced by additional linear

constraints:

max 1-x

(11.5.2)
, ScN, |8] >3 and odd

Edmonds (1965a) has shown that the basic feasible solutiocns to (II.5.2)

correspond precisely to the feasible solutions to (II1.5.1); thus the

integer programming problem (II.5.1) may be '"replaced" by the linear

programming problem (II.5.2).

R. Oppenheim (1973) has shown that a

18
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further set of linear constraints may be added to (II.5.2) such that for
every extreme sclution to this system, the constreints satisfied at
equality generate a full-rank unimodular submatrix. This provides a
"unimodularity oriented" proof of Edmonds' result. Oppenheim calls

this property "local unimodularity'", and similarly we may call the
property discussed in (II.4), "local totai unimodularity”. The proof
of Oppenheim's result is quite complicated, and thus can hardly be

seen as motivation for Edmonds' result, however it does demonstrate

the rcle of unimodularity in another important family of combinatorial

problems where integrality results are known.

IT.6 Balanced Matrices

A (0,l)-matrix A 1is called balanced if it contains no square
submatrix of odd size all of whose row and column sums are equal to 2,
Consider the following linear programming problems, where A 1is a (0,1)-

matrix, and w and ¢ are nonnegative integral vectors:

min 1l-y

s.t. yA > w (I1.6,1)
0<y=<c,

max l-°y

s.t. YA <w (11.6.2)
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Fulkerson, Hoffman and Oppenheim (1974) have demonstrated the
following theorem, some special cases of which were proved in Berge

(1972).

Theorem II.6.3. If A is balanced, then (II.6.1) and (II1.6.2) always

have an integral optimal solution. [:]

Fulkerson, Hoffman and Oppenheim (1974) also give the following

property of balanced matrices, which they use in proving Theorem II.6.3.

Theorem II.6.4. If A is balanced and {x: Ax = 1, x > 0} is nonempty,

then every vertex of this polyhedron is (0,l1)-valued. [:i
To prove (II.6.4), they actually prove the equivalent property for A:

Property I1.6.5. Let A be balanced and say there exists x > 0

satisfying Ax = 1. Then there exists a set of nonoverlapping columns

B, 5...,a, of A (i.e., a. +a., =0 for r # s) whose sum is the
3 I Ip s

vector of all ones. [:]

However, using the cofactor decomposition of determinants and the
nonoverlapping property of the columns involved, it is clear that the
submatrix of A specified in (II.6.5) must be totally unimodular. Thus
Fulkerson, Hoffman and Oppenheim have actually shown that a balanced
matrix has certain unimodularity properties which are responsible for

the result given in Theorem II.G.H.
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CHAPTER 1II

INTEGER ROUNDING AND POLYHEDRAL DECOMPOSITION

III.1 Integer Rounding

The problems considered in Chapter II ((11.2.8), (I11.3.1), (I1.3.2),
(II.4.3), (II.5.2), (II.6.1) and (II.6.2)) had the property that the
optimal linear programming value and that of the associated integer
programming problem were the same. However, some interesting cases
are also known where the optimal value in an integer maximization problem
is the integer round-down of the optimal value of the associated linear
programming problem, and where the optimal value in an integer mini-
mization problem is the integer round-up of the value of the associated
linear programming problem.

An example of the former is the work of Fulkerson and Weinberger
(1975) on packing integral, feasible flows of a supply-demand network
into an integral vector. Examples of the latter include the work of
Hu (1961) on scheduling problems with assembly tree precedence struc-
tures, Edmonds' (1965b) results on partitioning a matroid into a minimum
number of independent sets, and Weinberger's (1976) work on covering
an integral vector with integral, feasible flows in a capacitated
supply-demand network. All of these problems will be examined in some
detail in Chapter IV, and it will be shown that unimodularity plays a
central role in establishing the rounding property for each of them.

In the remainder of this section, we fix notation that will be
useful throughout the rest of this thesis and take a brief look at
certain resul%s in Fulkerson and Weinberger (1975), to provide an

introduction to the rounding problem.
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Let A be an mxn matrix of nonnegative integers with no zero
columns, let B be an mxn matrix of nonnegative integers with no
zero rows, and let w Dbe an n-vector of nonnegative integers. We will
be primarily concerned with the following two linear programming

problems and their associated integer programming problems:

min 1y
s.t. yA >w T(A,w)
y >0
and
max l'y
s.t. yB <w I{(3,w)
y >0

I'(A,w) 1is commonly called a covering problem, since it is the

problem of minimally covering the "weight" vector w with rows of A.
As long as A 1is nonnegative, and A has no zero columns, [I(A,w)
will always be a feasible problem with a finite optimal value.

N(B,w) 1is commonly called a packing problem, since it is the problem

of packing a maximum number of the rows of B into the vector w. The
nonnegativity of w ensures that M(B,w) will always be feasible (the
vector of all zeros is always a feasible solution), and that B is
nonnegative and has no zero rows guarantees that NI(B,w) will also

have a finite optimal value.
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Given nonnegative integral matrices A and B as above, the

following notation will be used:

yz = an optimal solution for T{(A,w) or TM(B,w),
rz = the value of an optimal solution to T(A,w) or 1(B,w),
i.e., rw =1y s
zi = an optimal integral solution for T(A,w) or Tn(B,w),
and sz = the value of an optimal integral solution to T(A,w) or
n(B,w), i.e., s; = l-z;

With A and B as above fixed, we say that the integer round-up

property (IRU) holds for T(A,w) if TrST = sé for every w e Z
(FPST denotes the least integer greater than or equél to ri.) The

integer round-down property (IRD) holds for T(B,w) if Lrij = g®

for every w ¢ Zi. (Lr;J denotes the greatest integer less taan or

o

equal to Pw'>
Fulkerson and Weinberger (1975) consider the following problem.

Let G = (N,A) be a directed graph whose nodes have been partitioned

23

into N =8 uRuUT. Tor every x ¢ S, assoclate a nonnegative integer

supply a{(x), for every x ¢ T, associate a nonnegative integer demand

b(x), and for every (x,y) ¢ A, associate a nonnegative integer

capacity c(x,y). Such a system is called a capacitated, integral,

supply-demand network.

A feasible flow for (N,A) is a function f: A - R+ which

satisfies:
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) £(x,y) - ) f(y,x) < a(x), xe s (IIT.1.1)
{yeN:(x,y)eA} {yeN:(y,x)eA}
Z fx,y) - 2 Fly,x) = 0, x e R (1171.1.2)
{yeN:(x,y)eA} {yeN:(y,r)eA}
£(y,%) - ) f(x,y) > b(x), xe T (III.1.3)
{yeN:(y,x)eA} {yeN:(x,y)cA}
0 < £(x,y) < c(x,y)b, (x,y) € A. (III.1.4)

Gale (1957) has shown that all the extreme solutions to (III.1.1)-
(III.1.4) are integral (and again one may deduce this from Theorem II.1.1,
sinée the system of constraints given by (III.1.1)-(III.l.4) is totally
unimodular), and has provided simple necessary and sufficient conditions
for (III.1.1)-(III.1.4) to have a solution.

Fulkerson and Weinberger (1975) consider a matrix A whose rows
are indexed by the collection of integral, feasible solutions to (III.1.1)-
(III.1.4), and whose columns are indexed by the elements of A, The
entry aij of A 1is the value of the ith integral, feasible flow on

arc j.

Example III.1.5. Let G = (N,A) be a network with

N = {n ,n2,n

1 ,n5,n6,n7,n8}, and A = {e, = (n ,n3), e_ = (n3,n5),

320y 1 1 2

= {(n,,n

7 1 4)’

e. = (n ,n7), e

3 s = (nz,nu), e. = (n ,na), e. = (n

5 4 6 6°7g)? ©

L

eg = (n3,n6), eq = (n6,n7)}. Let § = {nl,nz} with a(nl) = a(nz) =2,

let T = {n7,n8} with b(n7) =1, b(n8) = 3, and let

R = {ng,nu,n ,n6}. Let ¢ be given by: c(e7) = cle ) = 1,

5 9

C(el) = c(ez) = c(eu) = c(e8) = 2, and c(e3) = C(eS) = c(e6) = 3,

Schematically, this supply-demand network is given by the following diagram.
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supply demand
2 1
5 3

Then we have

el 82 e3 e, e e6 e, g ey

B -
1 1 1 2 3 3 1 0 0
A = 1 0 0 2 3 3 1 1 1
2 1 1 2 2 3 0 1 0

L 2 0 0 2 2 3 0 2 1 []

Fulkerson and Weinberger (1975) proved the following.

Theorem III.1.6. IRD holds for TN(A,w) for every w « Zi, where A

is the matrix of integral, feasible flows in a capacitated, integral,

supply-demand network. [:]

A proof of this result, motivated by the work in Fulkerson and
Weinberger (1975), but simpler and more generally applicable, is contained
in Trotter and Weinberger (1976). The proof relies on two lemmas. Let
v represent the given supply-demand system (N,A) with supplies a,

demands. b and capacities <. For p € R+, let vp represent the
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same supply-demand system, but with supplies pa, demands pb and

capacities pc. Then we have:

Lemma III.1.7. Every integral, feasible flow for where

Vi
1 <ke Z+, is the sum of k integral flows, each feasible for wv. [:]

it

This lemma is proved by induction on k. Given £ a feasible,

integral flow for we need to extract f' an integral "subflow"

Vi
of f so that ' 1is feasible for v and f-f' 1is feasible for Vi1
It is not difficult to see that such an f' will exist if and only if
there exists a feasible flow for the supply-demand network with arc
capacities given by min(f,c) and arc flow lower bounds (all zero in
the original network) given by max(f(x,y) - (k-1)c(x,y),0) (i.e.,
f'(x,y) must be greater than or equal co this quantity.) It is clear
that the flow f/k will satisfy these arc capacities and lower bounds,
and the total unimodularity of (III.1.1)-(III.l1.4) implies that the

existence of such a feasible flow automatically guarantees the existence

of a feasible, integral f'.

Lemma III.1.8. There exists a solution to N(A,w) of value r > 0

if and only if the system v, with modified arc capacities

c'(x,y) = min(w(x,y),rc(x,y)) is feasible. [:]

We use a similar lemma to establish results about integer rounding
in various contexts (see Lemmas III.3.2, IV.1.30 and IV.3,7).
Using Lemmas III.1.7 and III.1.8, one can establish the IRD

property for TN(A,w). We show in Section III.3 that polyhedral
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decomposition of the type described in (III.1.7) is actually equivalent
to the rounding property stated in Theorem III.1.6 in certain instances.
Although the main emphasis of Fulkerson and Weinberger (1975) was
not the IRD result, but actual determination of the value of T(A,w)
through the use of the blocking theory of Fulkerson (1970,1871a), this
paper did first display techniques and a point of view which motivated

much of the work in the remainder of this thesis.

II1.2 Lower and Upper Comprehensive Polyhedra

Given P and ¢ nonempty polyhedra in RT, we say that: P is

lower comprehensive (LC) if P is bounded, and x ¢ P, 0 <y < x implies

y € Py Q 1is upper comprehensive (UC) if x ¢ @ and y > x implies y ¢ Q.

The following three theore..s about LC and UC polyhedra are well-known.
Suppose A is an mxn matrix of nonnegative real numbers with no zero
rows, B 1is a nonnegative mxn real matrix with no zero columns and

w 1s a nonnegative real n-vector. Then the following is clear.

Theorem III.2.1. (1) The polyhedron P = {y ¢ R™: yA < w, y > 0} is

LC; (2) the polyhedron @ = {y ¢ R™: yB > w, y > 0} 1is UC. [:
Conversely, we also obtain

Theorem III.2.2. Let P be a LC polyhedron, @ a UC polyhedron, each

contained in R?. Then:
(1) there exists a nonnegative matrix A with no zero rows and
a nonnegative vector w, such that P = {y ¢ Rm: VA < w, ¥y i_O};
(2) there exists a nonnegative matrix B with no zero columns and

a nonnegative vector v, such that Q={y € R": yB > v, y > 0}.



28

Proof: (1) Let P = {y: yA <w,y > 0} for some A and w. Since
P is nonempty and bounded, A will have no zero rows. It is also
clear that w must be nonnegative, since P LC implies 0 e P.

If (1) fails, we may thus assume that there are some negative entries

. 1 .

in A~, the first column of A. So say a;q <0 for 1<i<k and
ay >0 for k+l < i <m. Let X be the same as A except that

v . % m N

a, = 0 for 1< i<k, and let ={yeR:yA<w,y> 0} To

prove (1), it is then enough to show that P = P. It is clear that

ny
p < P, so suppose there is a y = (yl,...,y ) such that y e P-P.

m
N1 Y
Then y-A" < W but y-A" > W, Let vy = (O,...,O,yk+l,...,ym).
Ny N
Then y-A; = y-Al > W - On the other hand, §~Kl = y-Al; thus
o1 Y ~ .
y-AT > W, and so y ¢ P. But 0 <y <ye P, in contradiction with
P being LC.

(2) Let Q =1y ¢ R": yB > v,y >0} for some B and v.

Suppose bll < Q. Let y = (yl,...,ym) be any vector such that

yB > v, vy > 0, and let Bl be the first column of B. Then since
bll < 0, there exists ¢ > 0 large enough so that if we let
Y
y = (yl+c,y2,...,ym), then §.Bl < Vs and so ? £ 0. But y >y e @,

in contradiction with ¢ being UC. Thus B 1is nonnegative. If

v < 0, then the constraint y-Bl > v, of Q is implied by the non-

negativity requirement y > 0, so all such constraints may be deleted,
leaving matrix B'. If the resulting matrix B' 1is vacuous we take
v =0 and B = Ime, the mxm identity matrix. If B' 1s nonvacuous

we are done, since ( nonempty implies B' has no zero columns. |

Lower and upper comprehensive polyhedra have been extensively

studied, in particular in the antiblocking and blocking theories of
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Fulkerson (1970,1971a,1972). Upper comprehensive polyhedra are studied
in blocking theory, and Fulkerson (1970) has shown that upper compre-
hensive polyhedra occur in "dual" pairs, the extreme points of one
determining the constraint system of the other. Similarly, in anti-
blocking theory Fulkerson (1972) demonstrates that lower comprehensive
polyhedra also occur in "dual" pairs, the extreme points of one determining
the constraint system of the other. Antiblocking theory and blocking
theory will be discussed further in Chapter V.

Given any polyhedron R, let M(R) denote the set of the maximal
integral points in R, and m(R) denote the set of minimal integral

points in R. The theorem which follows is used in Section III.S3.

Theorem IIT.2.3. (1) If P c Rf is LC, then M(P) is finite and

nonempty.

(2) 1f Q E.RT is UC, then m(Q) is finite and nonempty.

Proof: (1) The result is immediate, since P is bounded and 0 € P. [:]

(2) By Theorem I.3.2, there exist points xl,...,xr and yl,...,yS
r . s .
in R™ such that Q ={z ¢ R": z = Z A.xb o+ z u.y], A, > 0,
Ly i B 3 i~
i=1 j=1 5

T
Uj > 0, Z Xi = 1}. Since @ 1is UC, it is clear that all the x
i=1

and yj, i=1l,...,ry 3 =1,...,8 are nonnegative. Thus if we let
B T i T B
Q" ={zeQ:z= ) AT, A >0, ) »; =1} then @ will contain
i=1 i=1 I n B
all the minimal points of Q. Now let @ = {utv ¢ R+: ue @, 0<v< 1},
I I . .
Then Q < Q, Q° 1is bounded and m(Q) E,Q;° (If we Q, w integral,
then there is a 2z = (Zl""’zm) € Q? such that 2z < w. But then
z' = (le1,...,rzm1) satisfies z' integral, z' € QI and z' < w.)

Thus m(Q) is finite, and since Q # ¢, clearly m(Q) # 8. {:]
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1II.3 Polyhedral Decomposition

Given any polyhedron R E_Ri and real number r > 0, let R
denote the polyhedron given by rR = {ry: y ¢ R}. Say that the

decomposition property holds for R if for every € 2, k>1,

+

i i
x, X e R,

k
k
we have that y integral and y ¢ kR imply vy = Z

xi integral for i = 1,...,k. =

Now assume that P énd Q are polyhedra in Ri with integral
extreme points, and assume further that P is LC and Q is UC. Let
A Dbe the matrix whose rows are the elements of M(P), and let B be
the matrix whose rows are the elements of m(Q). By Theorem III.2.3,
M(P) and m(Q) are finite nonempty sets. The following theorem shows
an equivalence between the decomposition property and rounding. In
Chapter .V we make extensive use of this theorem to show that certain
classes of linear programming problems possess the rounding property.
Assume that A (as above) has no zero columns, and B (as above) has

no zero rows. Then:

Theorem IIT.3.1. (a) 1IRU holds for T(A,w) for every w ¢ Zi if

and only if the decomposition property holds for P.
(b) IRD holds for MN(B,w) for every w e z:f if and only if the

decomposition property holds for Q.
Before proving (III.3.1) we establish the following lemma.

Lemma III1.3.2. Let r > 0 be rational. Then

(a) T(A,w) has a feasible solution of value r = l.y if and only

if there is an x ¢ rP such that x > w;
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(b) T(B,w) has a feasible solution of value r = l-y if and

only if there is an x € rQ such that x < w.

Proof: Necessity for (a): Let y be feasible for T(A,w), 1.y = r.

Then, yA ¢ rP and yA > w.

Sufficiency for (a): The case r = 0 is clear, so assume r > 0. We
have x € rP, x > w. Let E index the extreme points of P. Then

¢ P, and thus we can write e Z A.x" with E A, = 1,
r TR | R
5 i¢E i€k
Ai > 0 for each 1 e¢ E, and each x an (integral) extreme point of

we have

5|

P. (Note that since P is bounded, it is the convex hull of its
extreme points--see (I.3.3).)

But then for each i, we may find a row a® of A such that

¥t ival (the a® need not be distinct). Thus %’i. z x.a® and
; 5 i€k
x < + (rr.)a, so w < Y (rx.)a . Thus, putting weight rA.
L L p g
- . i - . i i
i<k 5 i€k
on row a of A for i e [ and weight 0 on other rows of A, gives

the desired solution to T(A,w) of value r.

Necessity for (b): Let y Dbe feasible for n(B,w), 11y = r. Then,

yB ¢ rQ and yB < w.

Sufficiency for (b): If r = 0, the result is clear, so assume r > 0.

Let E index the extreme points of Q. We have x ¢ rQ, x <w and

. s .
so 2. Q. We may then by (I.3.2) write 2= 7 Axto ) L.y’ where
T r . i .
ieb =1
the xl are (integral) extreme points of @, Ay > 0, ) Ai = 1,
ieE

i n
and uj > 0. Since Q is UC, we further know that yj € R+ for each 7;
. . % i . n
i.e., we may write o ( z Aix ) + y as above with vy ¢ R+. Thus
ieE
> X A%
iep T

s



i . . . .
But the x are integral points of @, so for each 1, we

may find a row b* of B such that x zAbl (not all the b’ need

5> 7 A,bt and x> J (rA, )", so
r—, i - . i
iek iek

be distinct). Then,

W > Z (rxi)bl. Thus, putting weight rki on row b’ of B for
icE .

i ¢ E, and weight O on the other rows of B gives the desired solu-

tion to N(B,w) of value r. [:]

Proof of Theorem III.3.1: Necessity for (a): Say IRU holds for

r(A,u) for every u ¢ Zi. Let k ¢ Z+, k>1l, we kP, w>0

and integral. Then by Lemma III.3.2, T(A,#) has a solution of value
k. But k ¢ Z+ and IRU for T(A,w) imply that T(A,w) has an

integral solution of size k3 i.e., there are (not necessarily distinct)

TOWS al,...,ak of A that are integral points of P for which

k . . .
E at > w. Thus, since P 1is LC, there are %7 e P, x* integral,
i=1 3 i
such that Z x" = w. This is the desired decomposition of w.

i=1

Sufficiency for (a): Say that the decomposition property holds for P,

ote

and given w ¢ Zi, say an optimal solution to T(A,w) has value r;.

ofe
¥ X

If v = 0, then it is clear that s; = 0 and we are done. So assume

r* > 0, and let s = 7.
W W

By Lemma III.3.2, there is an x ¢ rip, x > w > 0. But then

W e r:P, since P LC implies P:P LC. Clearly then w e sP, and so
s
the decomposition property for P gives us w = Z x, x P,
. i=1
x* integral for each 1. But then by definition of A, there are
i i i . i
rows a of A such that a > x for each 1 (not all the a need
i . . . .
a gives the desired integral solution to
1

be distinct), and so w <

H~>1W0

i
r(A,w) of value s =.Fr$1.
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Necessity for (b): Say IRD holds for TI(B,u) for every u ¢ Z+.

Let k > 1 be an integer, w ¢ kQ, w >0 and integral. By

Lemma III.3.2, I(B,w) has a solution of value k. Then k ¢ Z+

and IRD for N(B,w) imply that TN(B,w) has an integral solution of

value k. Thus there are rows bl,...,bk of B (not necessarily all

k .
distinct) such that Z bt < w. But bl,...,bk are integral points

i=1 . .
. PO . i .
of Q, so since @ is UC, there are points x ¢ @, x* integral,
k
such that X %t = w, which is the desired decomposition of w.
i=1l

Sufficiency for (b): Say the decomposition property holds for Q,

and given w ¢ Zi suppose II(B,w) has optimal value r:. If

0 <r <1, then it is clear that IRD holds for this w (the vector

=
5

ole

of all zeros is always feasible for IN(B,w)), so assume ©r > 1l. Let

s = Lr¥].
W
e
Then, by Lemma 11I1.3.2, there is an x ¢ r;QJ X < w. But then

W € riQ, since @ UC implies riQ UC. So, w e sQ (note that

), and the decomposition property for @

k3 - kS
r"Q < sy because s < r
WS - N

implies that w = Z %, x* ¢ Q, x* integral for each 1. Thus by
i=1 . . .
definition of B, there are rows b> of B such that bt i_xl
. s .
for each i (the b' need not all be distinct). Hence w > Z bt

o T i=1
gives the desired soclution to M(B,w) of value s = Lrwj. [:]

This completes the proof of Theorem III.3.1.

III.4 "Excess' Polyhedra and Decomposition

Let P be a polyhedron in Ri with integral extreme points,

- . n . . . »
{} a polyhedron in R+ with integral extreme points, and assume P

is given by the constraints,
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fl(x) < oy
f2(x) <,
(I171.8.1)
f (x) <
P - P
x > 0,
and Q is given by the constraints,
gl(x> > By
g,(x) 2 By
(II1.4.2)
(x) > B
g@ - 4
%z > 0,

where for all i,j, a. € R, B, € R and f.: Rn +~ R and g.: rR? > R
i +2 7] + i 3
are linear functionals. The following theorem gives a characterization

of decomposition which is recursive in nature.

Theorem III.4.3. (a) The decomposition property holds for P if and

only if, for every Ww € Zi and every integer k > 1, we have that

w ¢ kP implies that the polyhedron given by the solutions to

f.(w) - (k-Da., . 5D (ITI.4.4)
i i—

A
Hh
pie
—
b
p—g
I A
Q
-
1
}_s

0

| A
X
| A
=
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always contains an integral point.
(b) The decomposition property holds for @ 1if and only if, for
every W € Zi and every integer k > 1, we have that w < kQ

implies that the polyhedron given by the solutions to

B, < g.( < g, (w) - (k=-1)B., 3 =1,..., (IIT.4.5)
] __g] *) "g] " ) J ] &

0 < x < w,

always contains an integral point.

Proof: (a) Necessity: Decomposition for w ¢ kP implies that there
is an x e Pn Zi such that w - x ¢ (k-1)P. This x must satisfy
(IIT.4.4).

Sufficiency: Let =% < ZZ satisfy (III.4.4). Then fi(x) <a.,
i=1,...,p, and x>0, so x ¢ P. On the other hand,

fi(w) - (k~l)ui f.fi(x) implies fi(w—x) §>(k—l)ai for all 1,

and we have w-x > 0, so0 WwW-X ¢ (k-1)P. Now apply the same argument
to w' = w-x ¢ (k-1)P n Zi, and inductively obtain the desired
decomposition of w.

(b) Similar to that for (a). [:]

35

For w ¢ Zi n kP (k > 1 an integer), define the excess polyhedron
of P with respect to w and k, denoted E(P,w,k), to be the
polyhedron given by (III.4.4). Similarly, for w € Zi nkQ (k>1

an integer), define the excess polyhedron of @ with respect to w

-~

and k, denoted E(Q,w,k), to be the polyhedron given by (III.4.5).
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In many of the examples discussed in Chapter IV for which the
rounding property holds, the excess polyhedron not only always contains
an integer point, but has all integral extreme points. For instance,
the excess polyhedron has all integer extreme points for every w ¢ Zi
and integer k > 1 in the cases of integral, feasible flows in
capacitated supply-demand networks discussed in (III.1l), polymatroid
problems discussed in (IV.1l), circulations of a totally unimodular matrix
discussed in (IV.4), and assembly tree scheduling problems discussed in
(Iv.5). 1In each of these cases, unimodularity properties of the con-
straint systems (III.4.4) and (III.4.5) will be seen to explain this
integrality property for the excess polyhedron.

However, it is not always the case that the rounding propérty implies
all integral vertices for the excess polyhedron. This stems from the
fact that, given w ¢ Zj and an integer k > 1, g~ may be expressible
as a convex combination of extreme points of P in more than one way,

with some of the expressions resulting in integral decompositions, while

others do not. This is illustrated in the following example.

Example III.4.6. Consider the problem I'(A,w) where A is given by:

al 1 0 1 1 0 Oﬂ
a2 1 1 0 0 1 0
3
A= a 0 1 1 0 0 1
au 0 0 0 1 1 1
a5 1 1 1 0 0 0
- J
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IRU holds for T(A,w) for every w ¢ Zi. In Section III.5 it will
be shown that it is enough to check the rounding property for this A
for integral vectors w such that 0 <w < (2,2,2,1,1,1). Thus it

is tedious, but straightforward, to check that IRU holds for all w.

5 .
Let P = {x ¢ R6: x < Z r.ats A, =1, A. > 0}.
+ i=1 1

1 1 -

H o~

i=1

Then by Theorem III.3.1(a), P satisfies the decomposition property.
Now consider the problem TI'(A,w) for w = (1,1,1,1,1,1). Then

w ¢ 2P, and we have w = aLL + a5, giving the decomposition of w

and integral optimal solution to T(A,w). Thus au,a5 ¢ E(P,w,2), and
it is further clear that these are the only two integral points in
E(P,w,2). (If x ¢ E(P,w;2), then (w-x) ¢ P.) However, if we let

b = (l,%3%3%3%30) and b2 = (O,%3%3%3%31), then we have bl'z %{al+a2)
and b2 = %{a3+a4); thus bl e P and b2 ¢ P. Further, w = bl+b2,
thus w~bi = b2 € P. Thus bl ¢ E(P,w,2). However, it is not possible
to write bl as a convex combination of a4 and aS, which are the
only two integral points in E(P,w,2). Since E(P,w,2) 1is a bounded
polyhedron, Theorem I.3.3 shows that E(P,w,2) is the convex hull

of its extreme points, and thus must have some non-integral extreme

points.

Note that the difficulty arises out of the non-uniqueness of

w . . .

X (535353535350 as a convex combination of the rows of Aj; 1.e.,
4 5 . . ..

we have §'= %{a +a~), which leads to an integral decomposition, and

w _ 1,1 2 3 4 .

xS E(a +a“+a"+a ), which does not. [j

Examples such as (III.4.6) make it appear less likely that there

is a simple general relation between unimodularity properties of the
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constraints (III.4.4) and (III.4.5) and the rounding property. However,
the fact that the.excess polyhedra must always contain an integral point
if rounding is valid does indicate a possible relation between scme
"local unimodularity" properties of (III.4.4) and (III.4.5) (see

Section II.6) and rounding, though no such result is yet known.

IIT.5 A Reduction Theorem

In this section we prove a reduction theorem for the problems
T(A,w), TM(B,W), W ¢ Zi. As a consequence of this theorem, it is then
shown that IRU and IRD are finitely checkable properties for T(A,w)
and T{(B,w). In Section V.3 we use a similar proof technique to obtain
a new and elementary proof of Fulkerson's Pluperfect Graph Theorem.

Let A be a nonnegative integral mXn matrix without zero
columns, B a nonnegative integral ‘mxn matrix with no zero rows, and
let w e Zi. Say we I if yi optimal for T(A,w) (or T(A,w))
implies y: <1 (i.e., given any optimal vector, all components are

< 1).

Theorem ITI.5.1. (a) IRU holds for T(A,w) for every w ¢ Zi if

and only if it holds for all w ¢ I.
(b) IRD holds for I(B,w) for every w ¢ Zi if and only if it holds

for all w ¢ I.

Proof: Necessity for both (a) and (b) is obvious.

Sufficiency for (a): We proceed by induction on 1l-w. If 1l.w = 0,

then clearly w ¢ I. So assume 1°'w = k > 1, and inductively suppose

that IRU heolds for all w' ¢ Zi such that 1:'w' < k. Further assume



w ¢ I. Thus without loss of generality there is an optimal vector

ot

yo = ((yw),...,(yw%n) for T(A,w) such that (yw)l > 1. Let

..,a, ) be the first row of A and let

(a 1n

11’

w'!' = (max(w._-a

1 ll,0),...,max(wn—a

n . .
ln’o)) € Z+. Then the optimality

of yi and (y*)

NN imply that 1.w' < (1.w)-1. Let

y! = ((y;)l~l,(y§)2,...,(yé)m). Then y'A >w', y' >0 and

ley' = (l-yi)—l. Further, optimality of yz for T(A,w) implies
y' is optimal for T(A,w'), since given any feasible vector

y = (yl,...,ym) for T(A,w'), the vector (yl+l,y2,...,ym) must be
feasible for T(A,w). Thus by the induction hypothesis there is a

z' ¢ ZT such that 1-z' = [1l:y'l and z'A > w'. But then

1

1
and l-z = 1-z'+l, so that 1l-z' = [1-y'l implies 1l-z = ff-y:1. [:j

z = (z +l,z',...,z;) is an integral, feasible vector for T(A,w),

Sufficiency for (b): Again we proceed by induction on 1l-w. If 1'w =
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g,

clearly w e I. So assume 1l°w = k > 1 and inductively suppose that IRD

holds for all w' ¢ Zi such that 1°'w' < k. Further assume w ¢ I.
Thus without loss of generality there is an optimal vector

yr = ((yw)l""’(yw)m) for 1T(B,w) such that (yw)l > 1. Subtract

the first row of B from w to obtain the vector w'. Note that

w > 0, since yiB < w and (y;‘:)l > 1. Further since B has no

vt e - By & 4
zero rows, l-w' < l.w-1l. Let vy ((yw)l l’(yw)Q""’(yw)m)' Then
y'B<w', y'>0 and 1l-y's= (l‘yi)-l. Further, optimality of yi
for T(B,w) implies y' must be optimal for T(B,w'), since given
any feasible vector vy = (yl,...,ym) for M(B,w'), the vector

(yl+l,y2,...,ym) must be feasible for I(B,w). Thus by the induction

hypothesis there is a z' ¢ ZT such that 1-z' = [1.y'} and 2'B < w'.
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But then 2z = (zi+l,z',...,z;) is an integral, feasible vector for
nN(B,w), and l.z = l-z'+l, so that l-yx = l-y'+l and 1l-z' = [1l-y']

imply 1.z = Ll-ySJ. ]

We now show that IRU and IRD are finitely checkable properties for

T(A,w) and TN(B,w).

Corollary II1I1.5.2. Let ci be the ith column sum of A, i = 1,...,n,

di be the ith column sum of B, i = 1,...,n, c' = (c,-1,c —l,...,cn—l)

1 2

and 4 = (dl’dQ""’dn)' Then:
(a) IRU holds for T(A,w) for every w e Zi if and only if it
holds for every integral w such that 0 <w<chy
(b) IRD holds for T(B,w) for every w c Zi if and only if it

holds for every integral w such that 0 < w < d.

Proof of (a): If we I for T(A,w), then clearly w < c', so that

the result follows directly from (III.5.1).

Proof of (b): By (III.5.1) it is enough to show that if IRD holds for

n(B,w) for every integral w, O < w < d, then it holds for T(B,w)
for every w e I.

So we suppose w e I and w f.d. Since w € I, all optimal
vectors for 1(B,w) have all coordinates < 1. Thus, for every optimal

vector v, for N(B,w), we have yiB < d. So if we let

w' = (min(wl,dl),...,min(wn,dn)), then 1(B,w') has exactly the same

optimal solutions as does I(B,w). But w' < d, so by assumption
there exists an integral, feasible solution z' to I(B,w') such
that 1-z' = Ll-y;J. Now since w' < w, z' is certainly also

feasible for 1(B,w); thus IRD holds for I(B,w), as desired. ]



CHAPTER 1V

EXAMPLES

In this chapter we examine integer rounding and decomposition for

several combinatorial problems.

IV.1 Polymatroids
' Polymatroids, a polyhedral generalization of matroids, were
introduced by Edmonds (1970). The following definitions and theorems
are from Edmonds (1970) and Giles (1975).
Let E = {1,...,n}. A polymatroid P in RY is a compact
nonempty subset of Ri such that:
(1) 0<x<yeP implies x ¢ P
(2) TFor each a ¢ Ri, every maximal x ¢ P such that x < a
has the same component sum x(E) = z X,, called the
jeE
rank, r(a), of a (with respect to P). Such a
maximal x is called a basis of a in P.
A polymatroid is called integral if (2) also holds when x and a are
restricted to be integer-valued.
Let LE = {A: A c E}. A real-valued function f on LE is called
a B-function if
(1) £(A) >0, AcE;
(2) A< B implies £(a)c £f(B), AcE, BcE;
(3) f 1is submodular, i.e., f(A u B) + £f(A n B) < f(a) + £(B),
AcE, BcE.

f is called an integral B-function if f is integer-valued and a

B-function.
Ll
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We may use g-functions to define certain polyhedra which are poly-

matroids as follows:

Theorem IV.1.1. Let f be a g-function on L and let P(E,f) be

E’
the polyhedron in Ri given by P(E,f) = {x ¢ RY: 0 < x(A) < f(A), Ac LE},

Then P(E,f) is a polymatroid. Further, if f is an integral B-function,
then P(E,f) 1is an integral polymatroid. [:j
On the other hand, all polymatroids correspond to certain B-functions

in the following sense.

Theorem IV.1.2. Given any polymatroid P c Ri, let a ¢ Ri be an

integral vector such that x < a for every x € P. Where r is the
rank function of P, let fP(A) = r(alA) (i.e., the rank of the vector
a restricted to the subset A) for A c E. Then fp is a B-function,
and P = P(E,fp). Further, if P is an integral polymatroid and

P = P(E,f), then f 1is an integral g-Ffunction. [:]

Note that Theorem IV.1.2 implies that all polymatroids are polyhedra.
Polymatroids are related to matroids (see Section II.4) by the

following theorem.

Theorem IV.1.3. A function f on LE is the rank function of a matroid

M = (E,]) if and only if it is an integral g-function such that
f({j}) = 1 or 0 for every j ¢ E. Such an f determines M by
J el if and only if Jc E and |J| = £(J), where I 1is the family

of independent sets of M. [ |

Thus the rank function f of a matroid M may be used to define

the integral polymatroid P(E,f). It is well-known (see Edmonds (1971))
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that the extreme points of the polymatroid P(E,f) are precisely the
incidence vectors of the independent sets of M. Thus P(E,f) has

all integral vertices in this case. This 1s always true when f is

an integral B—functibn, as stated in the following theorem. This

theorem follows easily from Lemma IV.1.22 below, but was originally proved

by Edmonds (1970) in a different manner.

Theorem IV.l.4. If P(E,f) is an integral polymatroid, then every

extreme point of P(E,f) is integral. [:

We now establish unimodularity properties for certain classes of
matrices which will be useful in proving a decomposition theorem for

integral polymatroids (IV.1.24). Let V = {W. ,...,W } be a family

1 k

of subsets of E which satis’ies:

for any R e V and S ¢ V, either RnS =9 or Rn S e V. (IV.1.5)

Let A be the incidence matrix of such a family V, i.e.,

1 if J e W
13

0 otherwise.

Then A is not necessarily totally unimodular. However, we do have the

following result of Edmonds (1870).

Lemma IV.l1.6. One can obtain from A, by subtracting certain rows from

others, the incidence matrix of a family of disjoint subsets of E.
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are already disjoint, we are finished. Otherwise

Proof: If W . LW

17 k
find any minimal Wi in V such that there exists wj in V with
Wi < wj. Subtract the row of A . that corresponds to Wi from every
row in A corresponding to a WQ in V such that wi < Wz, and
call the altered matrix A'. A' is +then again the incidence matrix
of a family of subsets satisfying (IV.1.5), so we may repeat the

procedure until we have obtained the incidence matrix of a family of

disjoint subsets of E. [:]

Now let Vl and V2 be two families of subsets of E such that
both satisfy (IV.1.5), and let B be the incidence matrix of V1 uv

Then we have:

Lemma IV.1.7. By sub*racting certain rows of B from others, we may

obtain a totally unimodular matrix.

B
Proof: Say B :{jBl:J’ Bi corresponding to Vi’ i=1,2. By
2
Lemma IV.1.6, obtain Bi from Bl and Bé from B2, both the inci-
B'
dence matrices of families of disjoint subsets of E. Let B' :[j %] .
2
B' is then a (0,1) matrix which satisfies the hypotheses of
Theorem II.1.2, and is thus totally unimodular. [:]
Edmonds (1970) has shown:
n

Lemma IV.1.8. Suppose f is a submodular function on [, X ¢ R

E?

is a vector satisfying x(A) < £f(A) for every A c E, and let

V={A < E: x(A) = £(A)}. Then V satisfies (IV.1.5).

Proof: Suppose B €E, CcE are such that x(B) = f(B), x(C) = f(C)

and B nC ¥# ¢g. Then,
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£(B n C) < £(B) + £(C) - £(B y C) (by submodularity of f£)

< x(B) + x(C) - x(B y C)

]

%(B n C)

! A

(B n C).

Thus, equality holds throughout, and in particular, x(B n C) = f£(B n C). [:]

Edmonds (1970) uses (IV.1.7) and (IV.1.8) to prove that the
polyhedron generated by the constraints (IT.4.3) has all integral extreme
points; we use it to establish a decomposition theorem (Iv.1.24) for

integral polymatroids.

Lemma IV.1.9. Suppose f is a submodular function on L k 1is a

E,
positive integer and y is a fixed vector. Consider the polyhedron
defined by the constraints

y(a) - (k-1)£(A) < x(a), A < E. (IV.1.10)

Then, if we have B,C ¢ E and x satisfying (IV.1.10) such that

i

y(B) - (k-1)f(B) = x(B) (IV.1,11)

and y(C) - (k-1)Ff(C) x(C), (Iv.1.12)

then either Bn C =g or x also satisfies

y(B n C) - (k-1)f(B n C) = x(B n C). (Iv,1,13)
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(I.e., given x satisfying (IV.1.10), the family of subsets of L

corresponding to constraints (IV.1.10) which x satisfies at equality

have the property (IV.1.5).)

Proof; The case k = 1 1is straightforward, so assume k > 2.

Note that from (IV.1.11) and (IV.1.12) we get

£(B) = XS?JEEIELQl (IV.1.14)
£(C) = XiElEEIEQEL, (IV.1.15)

and since x satisfies (IV.1.10) for every subset of E, we also have

y(Bu C) - (k-1)f(B u C) < x(Bu C),

or equivalently,

(k-1)F(B u €) > y(B u C) - x(B u C). (1v.1.16)

Then we have,



(B nC)>y(BnC)- (k-1)f(B n C) (since x satisfies (IV.1.10))

> y(B n C) - (k-1)[£(B) + £(C) - £(B u C)] (by the

submodularity of f)

y(B) - x(B) , y(C) - x(C) _
k-1 k-1

(by (IV.1.14) and (IV.1.15))

= y(B n C) - (k-1)[ £(B u C)]

= y(B n C)+ (k-1)F(B u C) + x(B) + x(C) - y(B) - y(C)

=y(Bn<C)+ (k-1)F(Bu C) + x(Bu<C)+=x(Bn<C)-y(BucC)

- y(B n C)

= (k-1)f(B u C) + x(B

[ang

C) ~y(Bu<C)+ x(Bn )

>y(BuC)-x(BucC)+x(BucC)~-y(BucC)+x(BnC)

(by (IvV.1.18))

= x(Bn C).

Thus equality holds throughout and the lemma is proved. {~7

Lemma IV.1.17. Given a submodular function f on LE and a fixed

vector vy, consider the constraints:

0 < x(A) < min{f(A),y(A)}, A c E. (Iv.1.18)

Then, if x satisfies (IV.1.18) and x also satisfies, for some

Bc<E and C<E with Bn C# 6,
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%(B) = min{f(B),y(B)} (Iv.1.19)
x(C) = min{£f(C),y(C)}, (Iv.1.20)

then we also have,
x(B n C) = min{f(B n C),y(B n C)}. (Iv.1.21)

(I.e., given any vector x satisfying (IV.1.18), the family of subsets

D ¢ E such that x(D) = min{ £(D),y(D)} have the property (IV.1.5),)

Proof: Case (i): ‘Say x(B) = £(B) and x(C) = £(C). In this case,

the result follows immediately from Lemma IV.1.8.

Case (ii): Say x(B) = y(B). We know that =x(B') < y(B') for

H

y(B') for every B' c R.

every B' ¢ B, and so we must have %{B")

3]

In particular, since Bn Cc B, x(Bn C)=y(BnC)>
min{f(B n C),y(B n C)} and thus, since x also satisfies (IV.1.18),
we have x(B n C) = min{f(B n C),y(B n C)}, as desired.

Case (iii): If =x(C) = y(C), we argue exactly as in Case (ii). [:]

Combining the previous two results and using Lemma IV.1l.7 we obtain
the result that excess polyhedra for P(E,f) have all integral extreme

points.

Lemma IV.1.22. Let P = P(E,f) be an integral polymatroid, k a

positive integer, and y a fixed nonnegative integral vector. Then

the polyhedron generated by
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y(A) - (k-1)£(A) < x(A) < min{f(A),y(A)}, A < E (IV.1.23)

X Z.O

has all integral extreme points.

Proof: Let x be extremé for (IV.1.23). Then by Lemma IV.1,9, the
submatrix Tl of the comstraint matrix for (IV.1.23) which corresponds
to constraints of form (IV.1.10) which x satisfies at equality will
satisfy the hypothesis of Lemma IV.1.6. Similarly by Lemma IV.1.17,
the submatrix T2 which corresponds to the constraints of form
(IV.1.18) which =x satisfies at equality will also satisfy the
hypothesis of Lemma IV.l.6. Finally, let I' denote the submatrix of

the constraint matrix for the constraints x >0 which x satisfies

Tl bl
at equality. Thus x is the unique solution to T2 [x] = b2 where
It 0

bl and b2 are integral (since P 1is an integral polymatroid--see

Theorem IV.1.2). But then x 1is also the unique solution to

T! b!

1 1
T, | [x] =| b! | where T! and b, are obtained from T, and b, by
2 2 1 1 i i
1 O T'
subtracting certain rows from others, i = 1,2, and T% is a totally
T 2
1
unimodular matrix (Lemma IV.1.7). The matrix Té is then also
IY

totally unimodular (I' is a submatrix of the identity matrix). Thus,

1
bl

since bé is an integral vector, we have by Theorem II.l1.1 that x

0
must be integral. [:j
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Note that if we choose vy large enough so that y(A) > £(A) for

A c E, and then choose k sufficiently large that y(A) - (k-1)f(A) < O

for A ¢ E, then the constraints (IV.1.23) reduce to O < x(A) < £(A),

A c E, and thus we may deduce Theorem IV.1.4 from Lemma Iv.1.22,

We are now ready to prove:

Theorem IV.1.24. (Decomposition for integral polymatroids). Let

P = P(C,f) be an integral polymatroid, and let y ¢ kP be an integral

j

k
k
Z %, where

vector, where k is a positive integer. Then y =
. . ji=1
x) ¢ P and %3 is integral for each j.
Proof: We proceed by induction on k. The case k =1 is trivial,
so suppose the theorem is established for (k-1)P and let vy e kP,
y integral. Then it is sufficient to find x ¢ P, X integral,

such that (y-x)e(k-1)P. But any integral x satisfying (Iv.1.23)

will satisfy this. Note that ¥ gsatisfies (IV.1.23), so the polyhedron
y y

k
defined by (IV.1.23) is nonempty. Since it is also contained in Ri,

it will have extreme points (see Theorem I.3.3), and thus by Lemma

IV.1.22 it will contain an integral point. [_|

Let A be the matrix whose rows are the maximal integral §oints
(i.e., the integral bases) of the integral polymatroid P(E,£). 1In
order to ensure that A has no zero columns (or rows), we will also
assume that P(E,f) is loopless, i.e., £({i}) > 0 for every i ¢ E.
(Analogously, a matroid defined on the set E 1s called loopless if

{i} is an independent set for every i ¢ E.) Then we have:

Theorem IV.1.25. The IRU property holds for T(A,w) for every w < Zi
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Proof: The polyhedron P(E,f) is clearly lower comprehensive, and
by (IV.1.4) it has integral extreme points. Thus (Iv.1.25) follows

from Theorem III.3.1(a). [:[
Restricting our attention to matroids, we immediately get:

Corollary IV.1.26. Let A be the matrix the rows of which are the

incidence vectors of the bases of a loopless matroid. Then the IRU

property holds for T(A,w) for every w ¢ Zi. [:]

Corollary IV.1.26 may also be deduced from the work of Edmonds
(1965b,1971) and Fulkerson (1972)--see Sectlon V.Z2.

If we let A again be the matrix whose rows are the integral
bases of the loopless, integral polymatroid P = P(E,f), it is
natural to inquire about integrality properties of the programming

problem N{(A,w) for w € Zi. Not surprisingly, we obtain:

Theorem IV.1.27. The IRD property holds for II(A,w) for every w ¢ Zi.
We will prove (IV.1.27) via a decomposition result for the polyhedron

P which we defineito be the convex hull of the integral bases of the

B’
polymatroid P. This decomposition result follows easily from (IV.1.24):

). Let x ¢ kP_ n Zn where

Theorem IV.1.28. (Decomposition for B B 4

i i n
x~, where each x € P_ n Z+.

P
k
. B

k is a positive integer. Then x =
i=1

Proof: If x ¢ kPB, then x ¢ kP, and so x ¢ Zi implies

K i i i n

X = z x, x €P, n ¢ Z+ by Theorem IV.1.24. But x € kPB implies
=1 . .

x(E) = kf(E), and so «x*(E) = f(E) for i =1,...,k. Thus X « PB

for i = 1,...,k, which gives the desired result. []
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Note that we may not conclude (IV.1.27) directly from (IV.1.28)
and (ITI.3.1), since PB ic not upper comprehensive. Indeed, in
Section IV.6, we provide an example of a bounded polyhedron in Ri
with integral extreme points such that the decomposition property
holds for the polyhedron, but IRD doés not hold for N(B,w), where
B has as rows the integral extreme points of the polyhedron. In order
to prove IV.1.27, we will need the two following lemmas, the first of

which is due to C. McDiarmid (1976a), and the second of which is very

similar to Lemma III1.3.2.

Lemma IV.1.28. Let Pl and P2 be integral polymatroids, k and £

. n n
integers, V € Z+, W € Z+. Then the set of vectors x such that

x - P.nP

1 o k < x(E) < ¢ ‘and v < x < w is the convex hull of its

integral elements. [:]

Recall that A is the matrix whose rows are the integral bases of

the loopless, integral polymatroid P. Let w e Ri. We then have:

Lemma IV.1.30. NI(A,w) has a feasible solution of value r = l-y

(r > 0 arbitrary) if and only if there exists x ¢ PPB such that

X < W.

Proof: Necessity: Let y be feasible for N(A,w) and 1l-y = r.

Then yA e TP and yA < w.

B

Sufficiency: Let x ¢ rPB. If r = 0, the result is clear, so assume

r > 0. Then %—e PB, and so if we let R index the integral bases of
P, we have Z - Z A.xl, x" e P 5 x" e Zn, Z A. = 1 and
T . 1 B . 1
1€R .1ieR .
ki > 0 for every 1 e R. Thus x = Z (rAi)xl yields the desire

ieR
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packing vector by putting weight rxi on the row of A which corresponds

to the integral basis x". []

ol
@

Proof of IV.1.27: Given w ¢ Zi, let v be the optimal value for

1,

n(A,w) and let s = Lr:J. If s = 0, the result is clear, so assume

s > 1. Then by Lemma IV.1.30, there exists x ¢ riPB such that x < w,

ol
and thus the vector u = sx/r; satisfies u « sPB and u < w. But

applying Lemma IV.1.29 with k = ¢ = sf(E), v = 0 and Pl = P2 = P,

we have that there exists u' ¢ SPB, 0 <u'<w, u' Iintegral. Thus
S . .
by Theorem IV.1.28, u' = Z X", X ¢ P J
j = l R
the desired integral solution of value s = Lr;J to N(A,w). [j

integral, which gives

We immediately conclude,

Corollary IV.1.31. Let A be the matrix whose rows are the Iincidence

vectors of the bases of a loopless matroid. Then the IRD property holds

n
for MN(A.,w) for every w ¢ Z+. [:]

Corollary IV.1.31 can also be derived from work of Edmonds and Fulkerson
(1965), Edmonds (1971) and Fulkerson (1870).
Given an integral polymatroid P = P(E,f), let

Pk = {xe P: x(E) < k} for k =1,2,...,f(E). Then it is easy to show
that Pk is also an integral polymatroid, called a truncation of P.

Let PkB be the polyhedron which is the convex hull of the integral

bases of Pk and let Ak be the matrix whose rows are the integral

points in PkB' Then we conclude:

Theorem IV.1.32., Let P Dbe an integral, loopless polymatroid. Then

with PkB and Ak as above we have (1) the IRD property holds for
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IKAk,W) for every w ¢ Zi, (2) Pk is decomposable in the sense of

B
Theorem IV.1.29, (3) the IRU property holds for F(Ak,w) for every

W € Zi and (4) Pk satisfies the decomposition property. [:]

IV.2 Matroid Intersection: Strongly Base-Orderable Matroids

In the next two sections we investigate rounding properties for
packing and covering problems arising from the common independent sets
of two matroids. Let Ml and M2 be two matroids on E = {1,...,n}
with rank functions ry and Ty respectively, and let t:=max{'Cl: ceC},
where we use C( to denote the family of subsets of E which
are independent in both Ml and MQ. For 3§ = 1,...,t let Cj denote
the family of subsets of E which are indépendent in both Ml and M2
and which have cardinality equal to j. Let A be the matrix whose
rows are the incidence vectors of the maximal members of €, and let
Bj’ for j = 1,...,t, Dbe the matrix whose rows are the incidence vectors
of the members of Cj°

The problems T(A,w), F(Bt,w) and H(Bt,w) (w e Ri) have been
studied in terms of blocking and antiblocking theory {we elaborate on this
in (V.2)); however, little is known in general about the problem I(A,w).

Integer rounding does not necessarily hold for any of these problems, as

the following example of McDiarmid (1976b) shows.

Example IV.2.1. Let E = {81’62’83’64’85’86}' Let Ml be the matroid

whose bases are all subsets of cardinality three of E except
{el’e3’85}’ {el’eQ’eu}’ {ez,eg,ea} and {eu’GS’GB}' Let M? be the

matroid which has bases {el’e3’65}’ {61’64’65}’ {el,eQ,eB}, {el,eg,eu},

{ez,eu,es}, {ez,e3,e6}, {es,es,es} and {84’65’e6}' We indicate that
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Ml and M2 are indeed matroids in the following section. Then we have

1 2 3 4 5 6
1 0 0 1 1 0
1 1 1 0
A= Bt = 0 0
0 1 0 1 0 1
0 0 1 0 1 11.

Let y = (%3%3%3%0 and w = (1,1,1,1,1,1). Then y optimizes T(A,w),
T(A,W), F(Bt,w} and H(Bt,w) with value 1-y = 2. However, the
optimal integral solution for T(A,w) and F(Bt,w) has value 3, and

the optimal integral solution for T(A,w) and H(Bt,w) has value 1. [:

However, McDiarmid (1976b) has identified a class of matroids for
which we do get rounding results for the problems T{A,w), F(Bﬁ,w}
and H(Bj,w). Again nothing is known for the problem T{(A,w). A

matroid M is called strongly base-orderable if for each pair of bases

B and B' of Ml there is a bijection f: B - B' such that
(B'-f(A)) u A is a basis of M for each subset A of B. McDiarmid

and Davis (1975) and McDiarmid (1976b) have shown:

Theorem IV.2.2. Let Ml and M2 be loopless, strongly base-orderable

matrecids. Then

(a) IRU holds for T(A,w) for every w ¢ Zi;

(b) IRD holds for H(Bj,w) for every w ¢ Zi (3 = 1,...,t);

(c) 1if every element of E 1is in some member of Cj’ then IRU holds

for F(Bj,w) (3= 1,...,t).
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IV.3 Matroid Intersection: Branchings

Another matroid intersection problem for which rounding results
hold is that of branchings in a graph. Branchings have been studied
extensively; see Edmonds (1968, 1970,1972), Fulkerson (1974), Giles
(1975), Tarjan (1977), Lovasz (1976) and Harding (1977).

Let G = (N,A) be a loopless directed graph. A cycle of G
is a sequence (no,al,nl,...,nk_l,ak,nk = no) such that:

(i) the ns are distinct for i e {0,1,...,k-1};

(ii) a. € A, either a, = ( ,n.) or a., = (n,,n ) and
i i i i

Pi-1 i-1

the a; are digtinct for 1 e {1,....k}.

A subgraph of G = (N,A) is any graph G' = (N',A') such that
N' < N, A" c A, and (x,y) ¢ A’ implies x e N' and y e« N',
A forest in G 1is any subgraph of G +hich contains no cycles. Given
n e N, let 5é(n) denote the number of arcs in G directed to n
from any other node in N. A branching in G 1is any forest B = (N',A")
such that sé(n) <1 for every mn e N'.

The branchings of a graph can be viewed as the common independent

sets of two matroids defined on the arc set of the graph as follows.

Given a finite set E and a partition of E, E = El U E2 U ... uE

k’
where Ei n Ej = ¢ for 1 <1< 3j<k, and nonnegative integers

a

l,...,ak, the partition matroid on E generated by El""’Ek and

a .,a is the matroid in which F ¢ E is independent if

1’ k
|F n Eil <a, for i=1,....,k. Given a graph G = (N,A), the

forest matroid of G is the matroid on A such that {el,...,ek} S.A

is independent if it is the edge set of a forest in G. It is easy

to check that partition matroids and forest matroids are indeed matroids.
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Example IV.2.1 (revisited). The matroid Ml of (IV.2.1) is actually

the forest matroid of the graph

The matroid M2 of (IV.2.1) is a partition matroid on

e}

E = {e ,e, e ,e_} given by E. = {e_,e_}, E2 = {QQ’eS}’ E3 = {e3 L

1 3°%4°%5°%g 17 '%1°%
and a, = a, =a; = 1. ]

For G = (N,A), let Ml(G) be the forest matroid of G and let
M2(G) be the partition matroid on A generated by An = dé(x) and
a = 1 for n e N. (Note that this is not the partiticn matroid
induced in Example IV.2.1. This is vital, since we will get rounding
result for programming problems associated with the common independent
sets of ML(G) and MQ(G), whereas we saw that these rounding results
failed for the matroids considered in Example IV.2.1.) Let Ml(G)
and MQ(G)* have rank functions ry and Tos respectively, and let

P(G) be the polyhedron in RLAl whose extreme points are the incidence
vectors of sets independent in both Ml(G) and MQ(G). Then Edmonds

(1970) has shown:

Lemma IV.3.1. (a) P(G) = {x ¢ RLAI: x(A) i‘min(rl(A),PQ(A)), A c A}

(b) == (Xl""’XIA[) is an extreme point of P(G) if and only if

{ei e A: x, = 1} is the“edge set of a branching in G. E:
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In order to prove rounding results for branchings, we first prove
a decomposition theorem for P(G). This theorem will follow from a

theorem of Edmonds (1968). For r ¢ N, a branching rooted at r is

a branching B = (N,A') of G = (N,A) such that Sé(r) = 0 and

éé(n) =1 for n ¢ N-{r}. Edmonds' theorem states:

Theorem IV.3.2. The maximum number of edge-disjoint branchings of @

rooted at r € N equals the minimum of [(X,X}[ over all X such

that » ¢ X <« N. [:]

We will also need the following well-known lemma (see, e.g.,

Harary (1969)).

Lemma IV.3.3. Let F = (N',A') be a forest of G = (N,A). Then F

has at most |N|- 1 arcs. [:]

We are now ready to prove a decomposition theorem for P(G), from which
several rounding results for programming problems related to branchings

follow.

Theorem IV.3.4. The decomposition property holds for P(G).

ggggff: Given a positive integer k and x = (Xi""’X]Al) > 0 such that
x ¢ kP(G), it is by iV.3.l(b) sufficient to show that x is the sum

of k vectors, each of which is the incidence vector of a branching in

G = (N,A). Let G, = (N,AX) have arc set consisting of X, copies of

arc €., i= l,...,{AL and for r ¢ N consider the graph

G' = (Nu {r},A'), where A' = Ax u Ar and Ar is the arc set

'The author is indebted to F. R. Giles for first giving a proof of
Theorem IV.3.4.
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consisting of (k - 6& (n)) copies of the arc (r,n) for every n ¢ N.
®
Note that k - Sé (n) > 0 for every n ¢ N, since by IV.3.1 and IV.1.24
X
X 1is the sum of the incidence vectors of k independent sets in MQ(G).

Let r e X< Nu {r}. By Lemma IV.3.3 the number of arcs of G'
which have both their endpoints in X is at most k(|X| - 1), since
by IV.3.1 and IV.1.24 =® 1is also the sum of k incidence vectors of
independent sets of MI(G) (forests of G). But clearly §_.,(n) = k
for every n «¢ i; and thus {(X,iﬁ’ > k. So by Theorem IV.3.2 there
exist k edge-disjoint branchings of G', each rooted at r. Say the
'

LAl and let A, = A. n A
i i X

edge sets of these branchings are Al "

[EEE
for 1 =1,...,k. Then the Ai are precisely the edge sets of branchings

in G, the sum of whose incidence vectors gives the vector x. I

Let A be the matrix whose rows are the maximal integral points
of P(G), 1i.e., the incidence vectors of the maximal branchings in G.

Then we get:

Theorem IV.3.5. IRU holds for T(A,w) for every w ¢ ZlAl.

Proof: P(G) is lower comprehensive by (IV.3.1(a)) and (III.2.1). Thus,

(II1.3.1) and (IV.3.4) imply the rounding property for T(A,w). []i

Using (IV.3.4) we can derive two further rounding results for
programming problems associated with branchings. Let B be the matrix

whose rows are the incidence vectors of the edge sets of the maximum

cardinality branchings of G, and let PB be the polyhedron which is

the convex hull of the rows of B. We first show that P is decomposable.

B
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Theorem IV.3.6. Suppose k 1is a positive integer and x € kPB n ZLAl.

k . .
Then x = z xl, where x* PB n ZtA' for 1= 1,...,k.
i=1

n o~
k]
[

Proof: If x ¢ kPB, then x ¢ kP(G), so x ¢ ZkA‘ implies x =

. i
where x ¢ P(G) n ZlAl for 1 =1,...,k, by (IV.3.4). But

X € kPB implies x(A) = kt, where t is the size of a maximum

cardinality branching in G. Thus x (A) = t for each i, and so

i

X € PB for each i, which gives the desired result. []
We use the following lemma to obtain rounding results for T (B,w)
and n(B,w).

Lemma IV.3.7. (a) In(B,w) has a solution of value r = 1.y if and
only if there exists x «¢ rPB such that x < w.
(b) T(B,w) has a solution of value r = 1.y if and only if there

exists X ¢ P?B such that =z > w.

Proof: Exactly as in (IV.1.30). [:]

(IV.3.7) and (IV.3.6) together with Lemma IV.1.29 gives us the

desired rounding results for N(B,w) and T(B,w).

Theorem IV.3.8. (a) IRD holds for TN(B,w) for all w e ZLAI.

(b) 1IRU holds for T(B,w) for all w e ZLAI, provided B has no
zero columns, i.e., every arc of G 1is in some maximum cardinality

branching.

Proof: Since the polyhedron PB is neither UC nor LC, we may not
directly apply Theorem III.3.1. However, similar techniques do give

a proof (see Theorem IV.1.27).
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ol

Proof of (a): Given w ¢ ZEJ let r; be the optimal value of T (B,w),

and let s = er,L If 0O i‘rz < 1, the result is clear so assume
r® > 1. From (IV.3.7) we see that there exists a vector vy ¢ riPB
such that y < w, and so there exists u « SPB such that u < w.

But then by Lemma IV.1.29 and Lemma IV.3.1, there exists u' ¢ sP

B,
s .
u' <w, u' integral. Thus by Theorem IV.3.6, u' = Z xj,
j IA| . =
X~ € PB n Z+ , for j =1,...,8, which gives the desired integral
solution of value s = Lraj to T(B,w).
Proof of (b): Given w ¢ ZLA{, let ri be the optimal value of

I'(B,w) and let s = fr§1. If »® = 0, the result is clear, so

oa

assume r; > 0. By IV.3.7 there exists vy ¢ P:PB such that y > w,

and so there exists u ¢ SPB such that u > w. But then by Lemma

IV.1.29 and Lemma IV.3.1, there exists u' ¢ sP u' > w, u' integral.

B’
PR, o Al
Thus, by Theorem IV.3.6, u' = Z x°, X~ € PB n Z+ , for
3=1
j =1,...,8, which gives the desired integral solution of value

f1

3

fr§1 to T(B,w). E:

IV.4 Rounding and Polyhedra with Totally Unimodular Constraint Systems

In this section we investigate rounding properties for certain
programming problems arising from polyhedra defined by totally unimodular
constraint systems. First we consider lower and upper comprehensive
polyhedra, and then "circulations'" of a totally unimodular matrix
(see Trotter and Weinberger (1976)).

Let M be a (0,1) totally unimodular matrix with no zero rows or

columns, let w be a nonnegative integral vector and let



P={x ¢ RY: Mx <w, x>0}, Q={xc¢ RY: Mx >w, x > 0}. Let A
be the matrix the rows of which are the maximal integral points of P,

and B be the matrix whose rows are the minimal integral points of

Q. Then we have:

Theorem IV.4.1. (a) The decomposition property holds for P.

(b) The decomposition property holds for U.

Proof of (a): Suppose x ¢ kP n Zi for some positive integer k.

Inductively, it is enough to show that there exists an integral vector
k k k k . .

x  such that x ¢ P and =x-x ¢ (k-1)P. Such an x  will exist

if and only if there is an integral solution y to the system of

constraints

Mx - (k-1)w <My <w3; y >0; x-y > 0. (1v.4.2)

(so that x-y = E:&-x) obviously satisfies

Note that the point y = -

X
k
(IV.4.2), although it may not be integral. But (IV.4.2) generates a
bounded, nonempty polyhedron and M is totally unimodular. Thus by

Theorem II.1.1l we see that (IV.4.2) has an integral (extreme) solution.

Proof of (b): For k a positive integer, let x ¢ k@ n Zi. It is
then enough to show that there is an integral solution y to the

system

W <My <Mx - (k-1)w; y >0; x-y >0. (IV.4.3)

Again y = %— satisfies (IV.4.3), so by the total unimodularity of M,

we get the desired integral solution to (IV.u4.3). [_|

62



63

Theorem IV.4.4. (a) IRU holds for T(A,w) for every w € Zi, provided
that A has no zero columns.
(b) IRD holds for TI(B,w) for every Ww ¢ Zi, provided that B has

no zero Irows.

Proof: By (III.2.1), P is LC and Q is UC. Thus (IV.u4.4) follows

directly from (IV.4.1) and (III.3.1). [:]

Trotter and Weinberger (1976) have given rounding results for
another class of programming problems associated with totally unimodular
matrices. Let N be égz’totally unimodular matrix. The elements of the
vector subspace of R" given by {x ¢ R': Nx = 0} are called the

n n

circulations of the matrix N. Let a e Z, beZ, a < b, and

consider the polyhedron R = {x e RY: Nx = 0, a<x <Db}. Assume
R # #§, and let C be the matrix whose rows are the (finitely many)
integral points of R. The following two theorems are from Trotter and

Weinberger (1976); for completeness, proofs are also given here.

Theorem IV.4.5. The decomposition property holds for R.

Proof: Suppose x € kR n Zi for a positive integer k. As in (IV.4.1l),

it is enough to show that there is always an integral solution to

b; (k-1l)a < x-y < (k-1)b, (IV.u.6)

&
0"
o
o
[ A
«
| A

Since N is totally unimodular, the constraint system (IV.4.6) will
plainly also be totally unimodular, and so it is enough to show that

(IV.4.6) has any solution. But y = E- obviously satisfies (IV.4.6). [:]
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Theorem IV.4.6. (a) IRU holds for T(C,w) for all w « Zi, provided

that € has no zero columns.
(b) IRD holds for I{(C,w) for all w ¢ Zi, provided that C has

Nno zZero rows.

Proof of (a): Given w ¢ Zi, let rz be the value of an optimal

solution to T(C,w). If r3 = 0, the result is clear, so assume

2,

r; > 0. Let s = fr:] and suppose yj is an optimal solution to T(C,w).
Then v*C ¢ r*R. Thus N(y*C) = 0 and r'a < y¥c < r*b. Now let
W W W w ='W =W
x' = §7-yzc. Then x' satisfies
o
W
Nx' = 0; sa < x' < sb; x' > w. (IV.u4.7)

But since N is totally unimodular, the constraint system (IV.4.7)

is also totally unimodular, and thus there is an integral vector X

which satisfies (IV.4.7); i.e., x e sR, x > w.
s . .
Now by (IV.4.5), x = Z xl, where each x  is an integral
i=1

vector in R. By definition of C, each x* is a row of C, and

thus we get the desired integral solution to T(C,w) of value s.

Proof of (b): Given w ¢ Zi, let ri be the value of an optimal

solution to T(C,w). If O i_ri < 1, the result is clear, so assume

) fs

W -

r* > 1, and let s = Lrij. Suppose y; is an optimal solution to

n(C,w). Then yzc € riR, and thus N(in) = 0 and ria :_yic i_rzb.

Now let x' = y;C. Then x' satisfies

Nx' = 0; sa < x' < gby x' < w. (IV.4.8)



Then, since N is totally unimodular, there must be an integral vector

x which satisfies (IV.4.8); i.e., x ¢ sR, x < w. Thus (IV.4.5)
s . .
implies that x = z xl, where each x" ¢ R n Zi. By definition of

C, each x* is a row of C, and thus we get the desired integral

solution to N (C,w) of value s. [:]

In Trotter and Weinberger (1976), it is shown that the rounding

results of Fulkerson and Weinberger (1975) on packing integral, feasible

flows of an integral, capacitated, supply-demand network into an
integral, nonnegative vector (see (III.1l)), and those of Weinberger
(1976) on covering an integral, nonnegative vector with integral,
feasible flows of an integral, capacitated, supply-demand network can
be easily derived from Theorem IV.4.6. Other applications of (IV.4.8),
including a proof that the max-flow, min-cut theorem (see II.2.5) of
Ford and Fulkerson {1962) is a special case of a more general result

on rounding, are also given in Trotter and Weinberger (1976).

IV.5 Job Scheduling

In this section, we consider a rounding resultvfor the following
scheduling problem. We are given a set {jl,...,jn} of jobs which
must be processed by some fixed time t, and we wish to find the
minimum number of machines necessary to do so. Each job is identical,
and so is each machine, in that any job requires exactly one unit of
processing time, and may be processed by any machine. At any given
time a single machine is allowed to be processing only one job.

We are also given a precedence relation among the jobs, and we

denote the fact that job Jj., precedes job 3, b j. < ]
5 J Ik Y ]1 k

65
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(i.e., ji must be fully processed before jk is allowed to begin
processing). The precedence relation is irreflexive (ji ¢ ji) and

transitive (ji < jk < implies ji < jl)’ and thus the relation

L
may be represented by a directed graph (see Example IV.5,6) by directing

an arc from ji to if 9, < jk but there is no ¢ such that

Ik i
ji < jz < jk’ i.e., jk is an immediate successor of ji. The

resulting directed graph is called a (rooted) assembly tree if

(i) for each i e {1,...,n-1}, there exists a unique k ¢ {1,...,n}
such that (ji’jk) is an arc of the directed graph (i.e,, for
ie {1,...,n-1}, ji has a unique immediate successor); (ii) there

is no job jk such that jn < jk. Job jn is then called the root
of the assembly tree.

The assembly tree scheduling problem (AS) may then be formulated:

find the minimum number of processors required to complete all the jobs
jl""’jn of the assembly tree T by a given time t, subject to
the constraints that (i) job ji cannot be processed until all jobs jk
such that jk < ji have been processed, and (ii) once a particular
job begins processing on a particular machine, that job must be processed
continuously by that machine until completion of the job.

A related scheduling problem on assembly trees arises when we no

longer assume that all machines are identical, but rather assign a

processing speed Ai, 0 < Ai < 1, to each machine m, . A machine

with processing speed Xi requires %-— time units to process any
i
job (all jobs are still assumed to be identical), and we allow any

number of machines to process a job concurrently, as long as the sum

of their processing speeds is < 1. The assembly tree scheduling problem
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with machine splitting (ASM) may then be formulated: given an assembly

tree T and a fixed time t, find machines m

l""’mp with processing

speeds A ’Xp such that all jobs may be processed by ml,...,m

IR D

Xi is minimized, subject to the same two con-

1 o~1g

by time t, and

i=1

straints as in AS.

The problem AS has been studied by Hu (1961) and by Coffman (1976).
Muntz and Coffman (1970) studied a problem very similar to ASM, and
gave an algorithm for solving this problem from which an algorithm
which solves ASM may be trivially derived. From the work of Hu (1961)
and Muntz and Coffman (1970), it is clear that a rounding relation holds
between the values of optimal solutions to AS and ASM; we now explore
this rounding relation.

Given an assembly tree T with jobs (nodes) {jl,...,jn}, a

path in T is any sequence of the form

S G s D 1. DR G DA, DD I, I8 ,(5. ,i. ),3., where each
R R T T R by TR K
(ji ’ji ) is an arc of T. The length of a path is the number
L 2+1
of nodes of T in it. It is easy to see that for any Jjob ji in

the assembly tree T, there will be a unique path of the form

ji""’jn in T, where jn is the root of T. The length of this

path is called the label or level of job ji (jn has level one).
If the largest level in T is a, we say that T has height .
Given i ¢ {l,...,a}, let p(i) be the number of jobs in T of
level 1. |

Hu (1961) (see also Coffman (1976)) has shown that the minimum

number of machines m necessary to process all jobs by time

t =a +c (c a nonnegative integer) for the problem AS is given by
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¥
m = max__[—%g' Y p(a+1-9)1. (IV.5.1)
1<y<a Y j=1
Muntz and Coffman (1970) have shown that the minimum sum of all
machine processing speeds necessary to process all jobs by time

t=a+c (ce Z+) for the problem ASM is given by

max  —— % pla+l-9). (1v.5.2)
1<y<a Y¥e 521
It is not difficult to see that (IV.5.1) and (IV.5.2) provide lower
bounds for m for AS and ASM, and Hu and Muntz and Coffman provide
simple algorithms which show that these bounds can be achieved.
It is natural to ask whether the rounding relation between AS and
ASM expressed by (IV.5.1) and (IV.5.2) can be given a polyhedral
explanation, as has been the case with the rounding results thus far
considered. Let T be an assembly tree of height o with n Jobs.

Say the jobs with label a are those with label

]llS“' ,jlgkl;
those with label 2 are ja;l,l’°"’]a;l,ka;l’

a-1 are i | .
Jo1° ’32,k2’

and the root is j&l' Then (IV.5.1) leads us to consider the system
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JRTUE IUNURE IR JOE IO = = i
1112731 J2t22 2,k2] ioc 1,1 o l,ku_l( N T
n
1 1 | 0 O 0 0.. O; 0 0 | 0 c+1l
2l 1 1...1 11 1;0..0|o 0 | 0 - | c42
| | | !
| | | |
- | | | ! —
a-1 1 1 1 11 1oy 1 1 | ol < [erom1
_ | < _
sl 1 1...1 1 1 ... Moy 1. 1 11| c+o
1
I
nxn
— - N | . l o
x>0 (IV.5.3)

where vInxn is the nxn identity matrix.
Ncte that the constraint system (IV.5.3) has the "consecutive ones"
property of Theorem II.1.3, and thus it is totally unimodular. So if
we let B be the matrix whose rows are the maximal extreme solutions
to (IV.5.3), B will have all integral (and thus (0,1)) entries.

Consider the programming problems:

min 1.y
s.t. yB>1 (Iv.5.4)
y >0,
and
min l-y
s.t. yB > 1
(IV.5.5)
y20

y integral.
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Let v%* be the optimal value of (IV.5.4), and s®* the optimal value
of (IV.5.5). It follows easily from the antiblocking theory of Fulkerson
(1972) (see Chapter V) that % 1is given by (IV.5.2), provided that
r# > 1. Since any integral solution to (IV.5.3) will clearly be an
extreme solution, it follows from Theorem IV.4.h that s* = [p¥*1; i.e.,
s% is given by (IV.5.1).

We may associate with every row of B a '"machine history" for AS
by letting it represent the jobs done by one machine; i.,e., associate
with row BfL of B +the set of jobs which correspond to the positive
entries of Bi. It would then be desirable, in order to have a complete
polyhedral explanation for the rounding relation between (Iv.5.1) and
(Iv.5.2), to have a one-to-one correspondence between optimal solutions

.,

to (IV.5.5) and optimal solutions to AS. Thav is, given y* = (yi,...,y;)
an optimal solution to (IV.5.5), it would be desirable to have a solution
to AS in which we have a machine m, corresponding to every y? such
that yj = 1 (note that y% will be a (0,1)-vector), with machine m,
processing precisely those jobs which correspond to positive entries
in the row Bi of B.

However, for the matrix B of (IV.5.5), although every optimal
solution to AS will generate an optimal so;ution to (IV.5.5) (by
setting y? = 1 if there exists a machine in the solution to AS
which processes exactly the jobs corresponding to the positive entries

i . b . .
of B7, and setting vy ® 0 otherwise), the converse is not true.

The following example illustrates this.

Example IV.5.6. Let T be an assembly tree with 15 precedence related

jobs as diagrammed below.
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* :

Then we have o = 4, and if we take ¢ = 2, so that t = o +c =
then (IV.5.1) implies that m = 3 for AS. Let Sl = {1,2,3,13,14,15},

s, = 16,7,8,10,11} and S, = {4,5,9,12}. Then S,, S, and S, are

3 2

all "machine histories" but taken together, they do not generate a

solution to AS which finishes by time o + ¢ = 6. However, if we let
1 if j e Si
B®, i =1,2,3 be the vector B% = , then Bl,

J 0 otherwise

i=1,2,3, are rows of B, and so generate an optimal solution to

(1v.5.5). [_]

IV.6 Perfect Graphs

In (III1.3) we saw that for lower and upper comprehensive polyhedra
the decomposition property was equivalent to integer rounding holding
in certain associated programming problems. Even for polyhedra which
are not comprehensive, the decomposition property often implies roundin
results in associated programming problems, as was the case in Theorems

IV.1.27, IV.2.2(b) and (c), IV.3.8 and IV.4.6. However, for polyhedra
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which are not comprehensive, decomposition does not always lead to a
rounding result. In this section we give a polyhedron associated with
perfect graphs for which the decomposition property holds, but for
which IRD does not hold for II(B,w), where B 1is the matrix whose
rows are the integral points of the polyhedron. For a more complete
discussion of perfect graphs, see Section V.3.

Let G = (N,A) be an undirected, loopless graph without multiple

edges. A clique in G 1is a set X ¢ N such that x, ¢ X, x X

1

[

2

implies {xl,x2} e A. An anticlique in G 1is a set X ¢ N such
that X, ¢ X, X, € X  implies {xl,xz} ¢ A. Given X c N, the

node-induced subgraph of G induced by the node set X is the graph

G' = (X,A'") where A' = {{x,y} ¢ A: x € X, y ¢ X}. Let A, be the

matrix whose rows are the incidence vectors of the maximal cliques of G,
and let BG be the matrix whose rows arve the incidence vectors of the
maximal anticliques of G. G 1s called perfect if, for every node-induced
subgraph G' = (X,A') of G, the minimum number of cliques of G' whose
union is X is equal to the maximum cardinality of an anticlique of G'.
That is, G 1is perfect if si(G'), the value of an optimal integral

solution to T(A.,,l1), 1is given by

G"’
Si(Gv) = max{l-Bé,l Bé' is a row of Bg'}’ for every node-induced sub-

graph G' of G. Perfect graphs have been studied extensively, see
Berge (1970), Chvatal (1975), Fulkerson (1971a,1972,1973), Lovasz (1972a,
1972b), Padberg (1974), Trotter (1977) and Bland, Huang and Trotter
(1976).

As will be seen in (V.3), if G 1is perfect, it is actually the case

wts

that s;g the optimal value for F(AG,W), is given by
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si = max{w~Bé: Bé is a row of BG}, for every nonnegative integral
vector w. Let PB(G) be the convex hull of the rows of AG’ and
N,

P(G) = {x ¢ R 0<x<y, ye¢ PB(G)}. Fulkerson (1972,1873) has

shown that P(G) will have all integral extreme points whenever G

is perfect, and so we have by (III.3.1),

Theorem IV.6.1. If G 1is perfect, then the decomposition property

holds for P(G). [ |

From (IV.6.1) we may deduce another decomposition result. Let
G be a perfect graph, and say the largest clique in G has cardinality
t. Let D be the matrix whose rows are the incidence vectors of the
cliques of G of cardinality t, and let @ be the polyhedron in RLNI

which is the convex hull of the rows of D. Then we have:

Theorem IV.6.2. The decomposition property holds for 4.

Proof: Suppose k 1is a positive integer, and x 1is an integral point

such that x ¢ kY Then clearly x ¢ kP(G), so by (IV.6.1),
k . .

x = ) x*  for some vectors x e P(G) n ZLNi,
i=1 .

x ¢ kQ implies x(N) = kt, and so «x(N) =t for i =1,...,k. Thus

x" ¢ Q for i=1,...,k. [:]

i=1,...,k. But

However, IRD does not hold for the problem T(D,w), as the

following example demonstrates.



7h

Example IV.6.3. Let G Dbe the graph;

Then G 1is perfect, and

1 2 3 4 5 6 7 8 9 10 11 12

Do 1 1 0 0 1

D = — e T - - -
D° (L 11 0 o0 o0
p® Q jlo 1L 0 1 o0 1
D7 o o1 0o 1 1
g |
D (01 1 o o 1

Let w Dbe the vector of ones in Rl2. Then %{Dl~+D2-+D3-+D5-+D6-+D7)
provides a rational solution of value 3 to I(D,w), but the best

integral solution has value 2. [:

Theorem IV.6.2 and Example IV.6.3 are not in contradiction to

Theorem III.3.1, since the polyhedron @ is not upper comprehensive.



CHAPTER V

BLOCKING, ANTIBLOCKING AND ROUNDING

In Chapter IV we generally considered only the relation between
the optimal rational value and the optimal integral value of a
programming problem. Little attention was paid to determining the
actual optimal value of the problem. However, much research has been
devoted to determining the values of programming problems such as those
considered in (IV.1), (IV.2), (IV.3) and (IV.4#). In this chapter some
results in this direction are considered, and the relation of rounding
té them is shown. A good general framework for studying the problems
r(A,w) and H(A,w) (for nonnegative A and w) is the blocking and
antiblocking theory of Fulkerson (1970, 187la, 1872). We begin by

reviewing certain basic facets of this theory.

V.l Blocking and Antiblocking

Let A and B be mxn nonnegative real matrices, A with no
zero columns and B with no zero rows. Let ( be the polyhedron
C ={ce Ri: Ac < 1} and D be the polyhedron D = {d e Ri: Bd > 1}.
Then the polyhedron C = {a ¢ Ri: arc < 1 for every c¢ e C} 1is
called the antiblocker of C, and the polyhedron
D= {bec Ri: b.d > 1 for every d e D} 1is called the blocker of D.

The following two theorems of Fulkerson (1970, 1872) indicate that

antiblockers and blockers each occur in 'dual pairs.

Theorem V.1l.1. Let A have rows al,...,am and let

C = {c ¢ Ri: Ac < 1} have extreme points cl,...,cr. Let C Dbe the

75
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matrix having rows ¢ ,...,cr, and let A = {a ¢ Ri: Ca < 1}. Then,

C=A and A=C. Thus, C=C. []

Theorem V.1l.2. Let B have rows bl,...,bm and let

p = {4 ¢ Ri: Bd > 1} have extreme points dl,...,dr. Let D be the

matrix having rows dl,..., , and let B = {b ¢ Ri: Db > 1}. Then

B, []

D =8B and B =7D. Thus,

We call any nonnegative matrix C such that C and A as in

(Vv.1.1) form an antiblocking pair of polyhedra an antiblocking matrix

of A. Any nonnegative matrix D such that D and B as in (V.1.2)

form a blocking pair of polyhedra is called a blocking matrix of B.

(Fulkerson (1970) restricts B and D to having only rows necessary
in defining the polyhedra U and B (proper rows), and thus obtains
unique blocking pairs of matrices.)
The next two theorems of Fulkerson (13870, 1972) demonstrate the
"prelation of antiblocking theory and blocking theory to the optimal

values of I'(A,w) and I(B,w), respectively, where w € Ri. Given

76

nonnegative matrices A and C, we say that the min-max equality holds

. . n X
for the ordered pair A,C 1if for every w € R+ we have that ros

the optimal value of T (A,w), is given by
i, 3

o,
w

r® = max{w-.c
w -

D, we say that the max-min equality holds for the ordered pair B,D

if for every w € Ri we have that ri, the optimal value of I(B,w),

is given by rz = min{w-d?: d7 is a row of DIJ.

Theorem V.1.3. Let A and C be nonnegative matrices without zero

c is a row of C}. Given nonnegative matrices B and

columns. Then the min-max equality holds for the pair A,C if and only
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if A and C are an antiblocking pair of matrices. Thus if the min-max

equality holds for A,C, it also holds for C,A. [:

Theorem V.l.4. Let D and B be nonnegative matrices without zero

rows. Then the max-min equality holds for the pair B,D if and only
if B and D are a blocking pair of matrices. Thus if the max-min

equality holds for B,D, it also holds for D,B. []

In the following section, we investigate combinatorial min-max and
max-min theorems that arise from (V.1.3) and (V.1.4) for those problems

which we have studied in Chapter 4.

V.2 Relation to Rounding

We may combine our earlier results on rounding with the preceding
material to immediately conclude the following two theorems from (V.1.3)

and (V.l.4).

Theorem V.2.1. Let A and C be an antiblocking pair of matrices and
suppose IRU holds for I'(A,w) for every Ww € Zi. Then the value of
an optimal integral solution to r(A,w) is given by

K
Ei

sy = max{fw'CJT: cd is a row of C}, for every w ¢ Zi. []

Theorem V.2.2. Let B and D be a blocking pair of matrices and suppose

IRD holds for TN(B,w) for every w ¢ Zi. Then the value of an optimal
integral solution to I(B,w) is given by sz = min{LW'djj: 4’ is a row

of D}, for every W ¢ Zi. [:

Thus, if we know that IRU holds for T(A,w) (IRD holds for I(B,w)),

and we know an antiblocking matrix of A (a blocking matrix of B), then
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we can, via (V.2.1)((V.2.2)) generate a combinatorial (i.e., integral)
min-max (max-min) theorem.

We now give the constraint systems of the blocking and antiblocking
polyhedra, and the resulting combinatorial theorems, for certain of the
problems studied in (IV.1)-(IV.3). Such results are also known for
cipculations of a totally unimodular matrix (IV.4)--see Trotter and

Weinberger (1976).

Polymatroids: Let P = P(E,f) be a loopless, integral polymatroid. Let

A be the matrix whose rows are the integral bases of P, and let |E| = n,
C={ce Ri: Ac < 1}, D = {d e Ri: Ad > 1}. Edmonds (1965b,1970,1971)

has shown that the antiblocker of C 1is given by the constraints

x(F) < £(F), FcE (v.2.3)
%, > 0, j ¢ E.
3 = J

Edmonds and Fulkerson (1965) have shown that the blocker of D is

given by the constraints

x(E-F) > £(E) - f(F), F ¢ E. (v.2.4)

From (V.2.3) and (V.2.1), we conclude the following theorem, first

proved algorithmically by Edmonds (1965b,1970).

Theorem V.2.5. Let A Dbe the matrix whose rows are the bases of an

integral, loopless polymatroid P(E,f). Then the value of an optimal
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L

0 (wex)]: x

integral solution to T(A,w) is given by Sé = max{[

is the incidence vector of X < E, X # @}, for every w « Zi. [:

From (V.2.4) and (V.2.2) we conclude (V.2.6), which was first

proved by Edmonds and Fulkerson (1965) and Edmonds (1870).

ols

Theorem V.2.6. With A as in (V.2.5), let s; be the value of an

n

optimal integral solution to T(A,w), with w e Z+. Then s; is

1 - -, . .
?(fjrffij'(w.x)J' x 1is the incidence vector of

E-X, X c E such that £(E) - £(X) > 1}. []

given by 83 = min{t

Intersection of Two Matroids: Let M, and M_ be two loopless matroids

1 2
defined on the set E, with rank functions r, and 5o respectively.
For X < E, let rO(X) = min{rl(X') + PQ(X~X'): X' < X}. Let A be

the matrix whose rows are the incidence vectors of the maximal subsets

of E which are independent in both Ml and MQ. Edmonds (1970) has

proved that the antiblocker of {c ¢ Ri: Ac < 1}, for Eﬂ =n, is given by

x(X) i_ro(X), XckE (v.2.7)

Xj > 0, j e E.

Thus, for strongly base-orderable matroids and branchings (sée

(Iv.2) and (IV.3)), we get the result:

Theorem V.2.8. Let matrix A have as rows the incidence vectors of the

maximal common independent sets of two loopless matroids. Then the
value of an optimal integrél solution to T(A,w), 1is given by

s§ = max{f;g%ijv(w~x)1: x 1s the incidence vector of X < E, X # §},
for every w ¢ Zi. []
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The blocker of {d ¢ Rn: Ad i,l} is not known.

For 1 < k i‘ro(E)’ let Bk Le the matrix whose rows are the
incidence vectors of the subsets of E of cardinality k which are
independent in both Ml and MQ’ McDiarmid (1976a) has determined

that the antiblocker of {c¢ ¢ Ri: B,c < 1} is given by

k

x(E) < k
x(X) i_rO(X), X cE (v.2.9)
x(Xl n X2) 5-r1(X1) + r2(X2)-k, Xl < E, X2 c E such that Xl U X2 = E
xj > 0, i e E.

McDiarmid (1976a), Cunningham (1975) and Edmonds and Giles (1976)
have all independently determined that the blocker of

Bk = {d ¢ Ri: B, d > 1} is given by

k

x(E-X) > k - rO(X), X < E. (v.2.10)

Huang (1976) has given an additional interesting proof of this result.
In the case of strongly base-orderable matroids (Iv.2) and
branchings (IV.3), we deduce (V.2.11) from (v.2.9) and (V.2.1), and

(v.2.12) from (V.2.10) and (V.2.2).

Theorem V.2.11. For 1 <Kk i.PO(E)° let Bk be the matrix whose rows

apre the incidence vectors of the subsets of E of cardinality k which

are independent in both Ml and M2, and assume that every element of

E occurs in some cardinality k independent set (i.e., Bk has no
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zero columns). Then the value of an optimal integral solution to

F(Bk,w) (w e Zi) is given by 33 = max(sl,sz,s3) where

s, = ritﬂﬂ, s, = max{rrl(xl) +lr2(X2) — (w-x')1: x' 1is the
incidence vector of Xl n X2; Xl < E, X2 < E such that Xl U X2 = E
and rl(Xl) + rQ(Xz) -k > 1} and 54 = max{f;—%is-(w.x)W: x 1is the

0
incidence vector of X ¢ E, X # ¢} []

Theorem V.2.12. Where Bk is as in (V.2.11), the value of an optimal

. . . . o . l ."" .
integral solution to H(Bk,w) is given by S mln{LEjj;gTij‘(w x)]:

X is the incidence vector of E-X, X ¢ E such that k~—rO(X) z_l}. [:

In general, many of the constraints (v.2.3), (V.2.4), (V.2.7),
(v.2.9) and (V.2.10) will be redundant. A minimal set of necessary
constraints for (V.2.3) is determined in Edmonds (1870), and for (v.2.7)

in Giles (1975}.

V.3 The Pluperfect Graph Theorem

In this section, we examine the relation of antiblocking theory to
perfect graphs (see Iv.6). If A and B are nonnegative matrices,
we say that the min-max equality holds strongly for the ordered pair
A,B if, for all w ¢ Zz, r(A,w) has an integral optimal solution of
value si = max{w.bj: bj is a row of B}. Given any nonnegative mxn

. . i .
matrix A with no zero columns, we say that a row a of A 1s

inessential if there are nonnegative real numbers A., jo= 1,...,m,
m i m ,
such that A, =0, ) XA, =1, and a < ) A.al. A row of A is
: 1 j:l J —j:l J

essential if it is not inessential.
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Theorem V.3.1. (Pluperfect Graph Theorem, Fulkerson (1972)). Let A
be a (0,1) matrix and let B be an antiblocking matrix of A, Then
the min-max equality holds strongly for A,B if and only if every
essential row of B 1is a (0,l)-vector. Hence, if the min-max equality
holds strongly for A,B, it also holds strongly for B¥*,A, where B¥

consists of the essential rows of B. [:]

We now give a new and elementary proof for (V.3.1) which is based

on the following lemma, whose proof is similar to that of Theorem III.5.1.

Lemma V.3.2. Let A be a (0,1)-matrix with no zero columms. If the

ate
w

optimal value r of T(A,w) 1is an integer for every W ¢ Zn, then
W +

r(A,w) has an integral optimal solution for every w e Zi.

Proof: We proceed on induction on l-w. For 1-w = 0, the result is
. n
clear, so assume the lemma is true for u € Z+ such that 1l-u < k-1,

I EX KX KA
dlet weZ, luw=k. o ((y®) . (yE i
and let w ¢ Z+ l.w = k. Let . ((yw)l ,(yw)m) be any optimal

k2

solution for T(A,w) and without loss of generality assume (y;;)l > 0.

Let al be the first row of A, and consider w' ¢ Zi given by

w; = max(wi~a§),0), 1 <1<mn. By the optimality of yz, we have that
(y:)l > 0 dimplies Ll-w' < l.w. So, by the induction hypothesis,
I'(A,w') has an integral optimal solution, say Zix But note that

y' = (max((yé)l—l,o),(y:)z,...,(y:)m) is feasible for T(A,w'), and

% ., 2. 2.
v oo e
w

& “ % % % %
thus r , = 1-z% < 1-y' <1y =7v . So r , <r-l. So 1l-z2°, <r’-1.
W - W W W W w' —w

)

But then =z = z¥
W

F(A,W), and l'Z = l'Z;;"f'l ir;;~ D

, + (1,0,...,0) is an integral feasible solution for
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Proof of Theorem V.3.l: Sufficiency: Since A,B are an antiblocking pair

of matriceé, we know from (V.1.3) that the optimal value of T(A,w)

is given by rz = max{w.bjr bj is a row of B} for every W € Ri. But
if w e Zi, then clearly ri € Z+, since all essential rows of B are
(0,1)-vectors. Thus (V.3.2) implies that the min-max equality holds
strongly in the direction A,B for every w € Zi.

Necessity: Suppose B has an essential row bk which is not a (0,1)-
vector. Note that Theorem V.1l.l implies that all entries of B must be
less than or equal to one, SO we may assume that 0 < bi < 1. Since bk
is essential, there exists a vector W € Zi such that w-bi is uniquely
maximized over rows bi of B by bk, and Wy > 1 (see Fulkerson

(1972)). Let w' = (w -1l,w

n . . X
1 2,...,wn) € Z+. Since the min-max equality

holds strongly for A,B, we know that w-bk € Z. But w'-bk = w-bk—bk,

1
k k K . , L3 i .
and so w-b -1 < w'-b < w+b . But by assumption, max{w'-b": b is a

-

row of B} is an integer. So there exists a row b? of B such that

w'bi > w‘-bk > w-bk-l, and w'-b ¢ Z. Then clearly w' b3 i’w-bk,

) k . s
and so webA >wb, a contradiction. []

The Pluperfect Graph Theorem is related to graphs in the following way.
Let G be a loopless, undirected graph without multiple edges. Let A
be the matrix whose rows are the incidence vectors of the maximal cliques
of G, and let B Dbe the matrix whose rows are the incidence vectors
of the maximal anticliques of G. Recall that G is termed perfect if
r(A,w) has an optimal integral solution of value max{w~bi: bi is a row
of B} for every (0,1)-vector w. Call G pluperfect if the strong
min-max equality holds for the pair A,B. Then as an immediate consequence

of Theorem V.3.l, we have:
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Corollary V.3.3. Suppose G 1s a loopless, undirected graph without

multiple edges and A and B are the incidence matrices of maximal
anticliques and cliques, respectively, of G. Then the following are
equivalent:
(1) G 1is éluperfect, i.e., the strong min-max equality holds
for the pair A,B;

(2) the matrices A and B are an antiblocking pair. [:

It is clear that pluperfection for G implies perfection for G.

Lovész (1972a, 1972b) established that the converse is also true, i.e.

Theorem V.3.4. G is perfect if and only if G is pluperfect. [:

Theorem V.3.4 is known as the Perfect Graph Theorem, and was first
conjectured (in somewhat different form) by Berge. An immediate

consequence of (V.3.1) and (V.3.4) (see Chvatal (1975)) is:

Corollary V.3.5. For the loopless, undirected graph G without multiple

edges, let A Dbe its clique incidence matrix, and B its anticlique
incidence matrix. Then G is perfect’if and only if A and B are

an antiblocking pair. []

Fulkerson (1973) has shown the following stronger result which only

requires the assumption that the matrices A and B be (0,1)-valued.

Theorem V.3.6. Let A and B be (0,1)-matrices. Then A,B are an

antiblocking pair of matrices if and only if there is a (perfect) graph
G such that the essential rows of A are precisely the incidence vectors
of the maximal cliques of G, and the essential rows of B are precisely

the incidence vectors of the maximal anticliques of G. [:
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Theorem V.3.6 thus characterizes all pairs of matrices for which the
min-max equality holds strongly for every w ¢ Zi, or equivalently, all

integral antiblocking pairs of matrices.
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