A Practical Attribute Grammar

Circularity Test"

Matthew Belmonte

TR 88-920
June 1988

Department of Computer Science
Comell University
Ithaca, NY 14853-7501

" This work was supported in part by the National Science Foundation under grant CCR-8514862.

A Practical Attribute Grammar Circularity
Test ~

Matthew Belmonte
Computer Science Department
Cornell University
[thaca, New York 14853-7501

June 8, 1988

Abstract
Efficient implementations for two optimisations to Knuth’s attribute
grammar circularity test are described. A new method for eliminating
useless visits to productions is introduced. This improves upon a some-
what weaker mechanism introduced previously by Deransart et al. Data
structures and algorithms for graph covering and elimination of redundant
unions are discussed and proven correct.

1 Introduction

It has long been argued [6,2] that circularity tests on attribute grammars arising
in practice are tractable, even though circularity testing for attribute grammars
in general requires an exponential number of steps [3]. The results described
here support this claim. [begin with a short statement of the problem and sum-
marise graph-covering and grammar partitioning optimisations. I then describe
a method for using a flow graph defined by the grammar to ascertain the step
at which a nonterminal dies, that is, the point in the flow graph after which
the nonterminal will never again be referenced. A method for ensuring that
no union of dependency graphs is generated more than once is introduced. A
method for eliminating useless visits to productions is discussed. This is an im-
provement upon weak stability [2]. Finally, the complete algorithm is presented
along with some practical results.

An attribute grammar is circular if and only if it can generate a derivation
tree in which some attribute is circularly defined. Detection of circularities is im-
portant because a language processor generated from a circular attribute gram-
mar definition will not work correctly for all inputs. To facilitate explanation

*This work was supported in part by the National Science Foundation under grant CCR-
8514862.

of the circularity test, all terminal symbols are assumed to have no attributes.
Therefore in the context of this analysis all terminal symbols can be replaced
by the null string. Let G = (N, 0, P, S) be a context-free grammar, where N
is the set of nonterminals, P is the set of productions, and S € N is the root
symbol. A production p € P has the form

‘Ypo - AYpl e ‘anp

where the Xp; are (occurrences of) nonterminals. The set of attributes of a non-
terminal X is denoted A(X). The circularity test proceeds by computing for
each nonterminal X a class S(X') of dependency graphs '. Graphs are added un-
til, for each nonterminal X, S(X) contains dependency graphs representing the
transitive dependencies of A(X) through every possible derivation tree rooted
at X. A general version of the algorithm follows. D,[Gy,..., Gp] denotes the
union of the dependency graph D, for production p with dependency graphs
Gi,...,Gn,. The transitive closures of these unions are projected onto the
attributes of the left-hand-side nonterminal of the production.

forX € Ndo S(X) := 0od;

repeat
choose production p € P;
choose dependency graphs Gy, ..., Gy, from S(Xp1), ..., S(Xpn,), respectively;
S(Xp0) := S(Xpo) J(Dp[Gr....,Gnp)™ N A(Xp0)?);
if D,[Gq, ..., Gn,l; contains a cycle, then the grammar is circular;

until no further change possible in any S

([5] contains a complete explanation of the algorithm.)

2 Graph Covering

The most immediate and beneficial optimisation to Knuth’s original algorithm
is attributed in ‘2] to Lorho and Pair. Since the fundamental operation on all
dependency graphs is union, graphs in a dependency class that are covered by
other graphs in the same class can be discarded without affecting the results of
the algorithm. In tests using attribute grammars for programming languages
(see section 7) about 70% to 80% of all graphs generated were covered. The
penalty for this savings in the space used to store dependency graphs and the
time used to generate combinations of them is the need to compare every new
graph unioned into a dependency class S(X) with O(|S(X)|) old graphs. The
comparison operation is accomplished in time proportional to the number of
edges by imposing a linear ordering on the set of all possible edges and main-
taining each graph as a list of edges in sorted order. This sorting costs nothing
since it can be produced as a side effect of the process by which the graph is

! This set is denoted £(X) in (1], C(X) in (6], D(X) in [2], and S(X) in [5].

generated. A graph is generated by projecting a transitively closed dependency
matrix onto the attributes of the left-hand nonterminal of a production.

3 Partitioning the Grammar

Chebotar [1] defines a dependency relation I'c on the set of nonterminals and
uses it to compute the flow of dependencies through productions. In the graph of
[, vertices can be uniquely labelled by nonterminals and edges can be labelled
by productions. It is more convenient, for this implementation, to define a
dependency relation A on the set of productions, since each iteration must
choose a production through which to propagate dependency information. In
the graph of A, vertices can be uniquely labelled by productions and edges can
be labelled by nonterminals.

Definition 1 A C P x P is a dependency relation on productions such that
pAq = Eie[l,n,}Xpo = Xqi-

In other terms, p is related to g if and only if the nonterminal on the left-hand
side of p occurs on the right-hand side of g. This definition follows the direction
of the flow of dependency information during execution of the circularity test.
The information flows right-to-left through productions. Also, define the inverse
relation A~! that gives a production’s pre-image in A:

Definition 2 A~! C P x P is an inverse dependency relation on productions
such that qA~'p < Jigi1,n,] Xpo = Xqi- A~! can also be viewed as a mapping
from P into its power set 2F, so that A~1(p) is understood as {q|pA~'q}.

The computations using A parallel the computations on ['¢. The graph of A
can be partitioned into strongly connected components using a depth-first search
(8]. Each of these components constitutes a sub-grammar. The circularity test
is run on each of these sub-grammars in turn [1].

Definition 3 Ag C 2P x 2P is a dependency relation on the strongly connected
components of A such that AAoBiff 3pc 4 3q-5pAq.

The graph of Ao has an edge between two components if and only if there is a
dependency between those two components in A. This parallels the definition
of the graph on the strongly connected components of I'¢ in [1]. Upon the
completion of the circularity test on a sub-grammar, the dependency classes of
all nonterminals that occur in the current strongly connected component and do
not label any of its exit edges can be discarded. Because no production (vertex)
in the current strongly connected component will ever again be selected, these
nonterminals (non-exit edges) will never again be referenced. The nonterminals
that do label exit edges must be saved until the completion of the strongly
connected components upon which those edges are incident. The order in which

the components are processed is established by a topological sort of Ag. The
resulting ordering is placed in an array DELTA of size |Ao].

Definition 4 A nonterminal X is dead in a component iff S(X) will never be
accessed during or after the processing of that component.

A nonterminal dies at a component iff it is live in that component and dead in
the nezt component in DELTA.

A mapping DEAD : Z+ — 2V is constructed that gives the set of nonterminals
that die at each component. This construction is accomplished by recording
for each nonterminal X the largest index i into DELTA such that DELTA[¢]
contains a production in which X appears on the right-hand side. This can be
done efficiently during the construction of DELTA. The nonterminals are then
sorted into buckets so that DEADI/, contains the nonterminals whose maxi-
mum DELTA index is i. After the completion of component DELTA[:], the
dependency classes attached to the nonterminals in DEAD/7] are discarded.

4 Eliminating Old Graph Combinations

One wishes never to construct any union Dpigy,...,gn,] more than once [6],

4

because redundant constructions provide no new dependency information.

Definition 5 At a given time, a graph g € S(X) is fresh for occurrence Xp;
of nonterminal X iff it has been created after the most recent selection of p.
g s stale for occurrence X,; iff it ezisted prior to the most recent selection
of production p. A union Dy[g,...,gn,] is fresh iff it contains a fresh graph.
Otherwise, the union is stale.

A dependency class can be represented as a linked list of dependency graphs. As-
sociated with each occurrence X,; of each nonterminal X is a pointer STALE,;
into the dependency class S(X). All fresh graphs precede the position in the list
S(X) that is pointed to by STALE,;, and all stale graphs are at or beyond this
position. Since graphs are always added at the head of the list, all new graphs
added to a dependency class S(X) are automatically fresh for all occurrences
of X. Initially, all STALE pointers are nil. Immediately after a production
has been selected and all fresh unions have been generated, all graphs in the
dependency classes of the right-hand-side nonterminals become stale for these
nonterminal occurrences.

If a graph in the dependency class of some nonterminal is discarded because
it is covered by a new graph that is unioned into the class, then the STALE
pointers for all productions in which the nonterminal occurs on the right-hand
side must be updated. Each STALE pointer that pointed to the discarded graph
must be changed to point just past the discarded graph. (In the algorithm that
appears in this paper, this updating operation is considered part of the union

p2

STALEy,

Figure 1. This illustrates a typical step in the algorithm. The shaded graphs
are stale. The stale combinations 011, 012, 111, and 112 will be excluded
from the computation.

operation.) All stale pointers associated with a production p are discarded upon
completion of the strongly connected grammar component that contains p.

During the generation of unions of dependency graphs, the algorithm uses a
vector Sg to record the initial elements of the dependency classes of the right-
hand-side nonterminals. This vector contains a pointer to the head of each
right-hand-side nonterminal’s linked list. A working vector S, takes its initial
value from 52 and uses the initial elements recorded in Sg to count through all
fresh combinations of graphs. These vectors can become inconsistent with the
dependency classes into which they point if production p is directly recursive.
In this case, a covered graph in S(Xpo) which is discarded might be pointed
to by Sg or by Sp. Therefore the graph covering algorithm must bump any
elements of these vectors which point to a graph that is being discarded. Such
an alteration of an element of S, can cause that element to become stale, so the
graph covering algorithm should also update the number_stale counter described
in the algorithm presented below.

5 An Improvement on Weak Stability

Deransart, Jourdan, and Lorho [2] introduced the notion of weak stability to
prevent recomputation of dependency relations for terminal trees. Their ver-
sion of the circularity test uses an outer loop (loop (1) in the algorithm in
the next section) such that within the current strongly connected component,
each production is selected once during each iteration of the outer loop. Af-
ter the i-th iteration, the circularity test has computed dependency relations

through all possible attributed tree segments of height bounded by z. The idea
behind this optimisation is that tree segments whose leaves are all the null
string? can generate no new dependency information and can therefore be ex-
cluded from the test. Initially, the set WW of weakly stable productions is 8.
Assume that there are no useless productions. Then the updating of W after
each iteration can be described in terms of the relation A by the operation
W= Wu ({p|A~1(p) C W}). Note that {p|A~!(p) = 0} is exactly the set of
null productions. These productions become weakly stable immediately after
they are examined.

I introduce the notion of availability of a production. This is more powerful
than weak stability and includes all the cases in which weak stability applies.

Definition 6 A production p is available iff the dependency class of some non-
terminal on its right-hand side contains a fresh graph, and the dependency class
of each of its right-hand-side nonterminals is nonempty.

This means that a production becomes unavailable immediately after it is se-
lected, and a production can become available only when a new dependency
graph is generated by a production in its pre-image in A. This idea of avail-
ability was mentioned (but not by any name) in [6], with the difference that
all productions were available initially and dependency classes were initialised
to {0}, the set of the empty graph. These loose initial conditions decrease ef-
ficiency, because they allow the algorithm to waste many iterations generating
unions of empty graphs. In this version, the set of initially available productions
is produced using the following algorithm:

for each null production p do
compute D} and test it for circularity;
5(Xpo) := S(Xpo) U {D;}

od

Following the notation in [6], I denote the set of available productions by R.
Denote by U, and W the set of permanently unavailable productions and the
set of weakly stable productions, respectively, at the end of iteration k. Note
that Vpcp(p € RAA~Y(p) CU — p € U), since if there is no path of available
vertices (productions) in A to an unavailable vertex p, then that vertex cannot
become available.

Lemma 1

VW C Us

Proof (by induction on iterations of loop (1)):

Base case:

All null productions are permanently unavailable, since there are no edges

2[2] uses a terminal string instead of the null string. In this context of abstract syntax, the
two notions are equivalent.

incident on them in A and thus no paths through which dependency
information can flow into them. Therefore,
W, CU;.
Inductive step:
Assume W; C UY;.
Show Vpcpp € Wip1 — Wi — pelin
Assume p € W,H - W;
~(p) C W,, by definition of weak stability.
’1() S
() C U, by inductive hypothesis and transitivity of C.
P E R at some point during iteration i + 1, because selecting p will make it unava:
SpE Ui

In fact, in the absence of useless productions, W; = U;. The proof that U; C
W; in this case is similar to the proof above. This shows that the availability
mechanism is at least as powerful as weak stability. The following case illustrates
that it is strictly more powerful. Consider some available production p: 4 —
Xp1 ... Xpn, where some X;; on the right-hand side is not weakly stable. It is
possible that all the graphs generated from fresh unions are covered by graphs
already present in S(A4). (If most of the right-hand-side nonterminals are the
left-hand sides of productions that have been unavailable since the previous
visit to this production, there is a good chance that this situation will arise.) In
this case, S(A) is unchanged, so the productions in A(p) that are unavailable
remain unavailable. This saves useless iterations. This interaction with the
graph covering optimisation is the reason for availability’s superiority to weak
stability.

6 The Algorithm

Within a strongly connected grammar component, productions are chosen in
a depth-first order to increase information flow. This depth-first ordering is a
byproduct of finding the strongly connected components of A. The full algo-
rithm is presented below, and a discussion follows.

construct A;

construct Ayg;

let DELTA[*] be a topological sort of Ag and construct DEAD[*];
initialise all S(X) to 0;

initialise all STALE,; to nil;

R :=0;

n:= 0;

don # [Ag| —

for each null production p in grammar component DELTA[n] do

-~

compute D and test it for circularity;
S(Xy0) := 5(Xp0) U{D; }
R:= RUA(p)
od
1: do RNDELTA[n] £ 0 —
choose p € RN DELTA[n};
R:= R - {p};
for j € [1,n,] do
S0 = S(Xyy)

od;
Sp 1= Sg;
number _stale : = 0;
2: do Sp[number stale + 1" = STALE, number stalet1 —
number stale := number stale + 1
od;

{invariant: All unions involving fresh graphs from S(Xp1)..S(Xp,number stale) have been gener:
3: do number stale # n, —
D := Dy;
=1
4: do j <mnp —
D := DU S,[j]1 .graph;
ji=j+1
od;
compute D1 and test it for circularity;
let g be the projection of DT into A(Xpo);
S(Xpo) := COVER(S(Xp0) U {g}), maintaining consistency of STALE, Sy, and Sy;
Ji=mp;
5: do j > 1 A Sp[j] 7 link = nil —
{Sp[J] has reached the end of its list, so reset it.}
Splil 1= S0l

ji=3—1
od;
Sp(j] := Sp(4] 7 link;
6: do number stale < n, cand S,[number stale + 1] = STALE, number stale+1 —
number _stale := number_stale + 1
od;
{If all pointers have become stale, then force an exit from the loop:}
7 if j < number stale — number stale := n,
| 7 > number_stale — skip
fi
od;
if S(Xpo) has changed, then R := RU {qlpAqAVii<i<n,S(Xq) # 0}

od;

discard all {S(X)
n:=n+1

od

X € DEADInl};

I wish to show that loop (3) computes all fresh unions. Loop (4) computes
the union of the graphs pointed to by the vector Sy, so it is sufficient to show
that (4) is executed for every fresh combination of Sj.

Assign a number k to each element of S(X,;),1 < j - nyp, such that each
list S(X,;) is arranged sequentially in order of increasing k-value. Then com-
binations of graphs can be mapped onto sequences of k-values with one k-value
drawn from each list. The k-values are like digits on an odometer or clock dis-
play, and the process of generating combinations of them is like rolling those
digits in sequence, with the digits arranged from right to left in order of in-
creasing significance. (The analogy does not hold perfectly, because the sizes of
the classes are not all the same.) So loop (5) generates a combination of each
Sp[i]1.graph with all Sy[j]7.graph such that i < j << np.

Loop (2,6) ensures that number stale is the index of the rightmost ele-
ment of a contiguous block S,[1..number stale] of elements that have become
stale. Therefore, at each iteration of (3), all unions involving fresh graphs from
Sp[1..number stale] have been generated. The conditional statement at (7) is
executed in the case that some entire dependency class Sp[number stale + 1]
is fresh. It resets number stale after the leftmost such class is fully processed.
Loop (3) terminates only when all elements of S, have become stale. Therefore,
all fresh combinations are generated.

Suppose some stale union is generated. Either (2) or (6) has just been
executed when the loop guard for (3) is evaluated. Therefore, number stale is
always current when the guard is evaluated. No stale union can be generated
while some element of S, is fresh. Therefore number stale = n, when the first
stale union is generated. But if number_stale = n,, then (3) terminates without
generating any more unions. Therefore, no stale union can be generated.

Lemma 2 Loop (3) computes all fresh unions and no stale unions.
Proof: by the above discussion. O

Lemma 3
All possible unions of dependency graphs are generated ezactly once.
Proof (by induction on iterations of (3)):
Base case:
Initially, there are no dependency graphs and therefore no possible unions.
Inductive step:
Assume all possible unions up through the i-th iteration have been generated.
All fresh unions on iteration i + 1 are generated, by lemma 2.
.. All possible unions up through the i + 1-th iteration are generated, by the definition of f

7 Practical Results

The circularity test described here has been run on several attribute grammars
distributed with the Cornell Synthesizer Generator [7]. These test cases included
grammars for two large programming languages, C and Pascal, as well as Toy, a
small programming language used in compiler construction courses at Cornell,
EFS, an environment for defining and reasoning in formal systems, IDEAL, a
geometric picture specification language, and PV, a program correctness verifier.
The Pascal and Toy grammars include code generation, while the C grammar is
only a semantic checker. The practical effect of the optimisations described here
is that the circularity test on most attribute grammars runs in about twenty
seconds of real time on a Sun-3/60.

Riiha and Saarinen [6] define a grammar to be G(k) if the grammar can be
tested for circularity such that the size of every dependency class is bounded by k
at all times during the execution of the circularity test. (The G(1) grammars are
a subset of the class of absolutely noncircular grammars.) During the circularity
testing process on a G(k) grammar, it is possible for dependency classes to grow
larger than k because of the order in which productions are selected. Hence the
algorithm does not necessarily find the tightest possible upper bound on k. The
grammar for C is G(2), and the grammar for Pascal is G(5). These figures are in
general agreement with those reported for the programming language examples
in [6] and [2]. [2] gives a generalisation of the G notation, and a plethora of
practical results for various combinations of optimisation strategies. The size
distributions for dependency classes have large peaks at low sizes and decrease
rapidly to almost zero. The figures given in the table illustrate this claim. d
is a variable whose value is the maximum size attained by a dependency class.
Thus if for some grammar, for some k, dmax = k, then that grammar is G(k).
Because there is one dependency class for each nonterminal, |N| is the number
of data points for d. #(k) is the number of classes whose maximum size is k. A
comparison of the # (k) values for very small k with | V| reveals a strong tendency
toward very small dependency classes; #(1) approaches |[N|. These figures,
which I take to be typical of those arising in practice, demonstrate the somewhat
misleading nature of G(k) size bounds with respect to the quantification of the
practical complexity of circularity testing. All grammars of complexity greater
than G(3) tested had only one graph in the largest class. In order to capture the
complexity of the process of circularity testing for a language, it is necessary to
consider not the maximum dependency class size but instead the distribution
of dependency class sizes.

10

Grammar |N| dmax E(d) S.D. #(1) #(2)
C 148 3 1.15 0.329 144 2
Pascal 168 5 1.04 0.378 165 2
Toy 69 6 1.09 0.681 67 1
IDEAL 69 4 1.04 0.417 68 0
EFS 91 4 1.08 0.492 87 2

PV 65 3 1.06 0.392 62 2

The average strongly connected grammar component size for all grammars
tested was less than 1.35. This reflects the largely hierarchical structure of most
practical attribute grammars. Two larger components in most programming
languages are the sub-grammar that generates expressions and the sub-grammar
that generates statements. These are groups of mutually recursive productions.
C required 818 union operations on dependency classes, Pascal required 725,
Toy 374, IDEAL 270, EFS 388, and PV 267.

In every grammar there were many cases in which a visit to a production that
was unavailable but not weakly stable was avoided. The number of occurrences
of this case ranged from 40% of the number of productions in EFS to 55% in
PV, 57% in IDEAL, 64% in Pascal, 77% in C, and 82% in Toy. These results
demonstrate the practical superiority of the availability mechanism over weak
stability.

References

[1] K. S. Chebotar. “Some Modifications of Knuth’s Algorithm for Verifying
Cyclicity of Attribute Grammars.” Programming and Computer Software
7:1, 58-61 (January 1981).

[2] P. Deransart, M. Jourdan, B. Lorho. “Speeding up Circularity Tests for
Attribute Grammars.” Acta Informatica 21, 375-391 (December 1984).

[3] M. Jazayeri, W. F. Ogden, W. C. Rounds. “The Intrinsically Exponential
Complexity of the Circularity Problem for Attribute Grammars.” Commu-
nications of the ACM 18:12, 697-706 (December 1975).

[4] D.E. Knuth. “Semantics of Context-Free Languages.” Mathematical Systems
Theory 2:2, 127-145 (June 1968).

[5] D. E. Knuth. “Semantics of Context-Free Languages: Correction.” Mathe-
matical Systems Theory 5, 95-96 (March 1971).

[6] K. Riiha and M. Saarinen. “Testing Attribute Grammars for Circularity.”
Acta Informatica 17:2, 185-192 (1982).

[7] T. Reps and T. Teitelbaum. The Synthesizer Generator Reference Manual,
2/e. Cornell University Department of Computer Science (1987).

11

[8] R. E. Tarjan. “Depth-First Search and Linear Graph Algorithms.” STAM J.
Computing 1:2, 146-160 (June 1972).

12

p0

Figure 1. This illustrates a typical step in the algorithm. The shaded graphs
are stale. The stale combinations 011, 012, 111, and 112 will be excluded
from the computation.

p2 Xo3

operation.) All stale pointers associated with a production p are discarded upon
completion of the strongly connected grammar component that contains p.

During the generation of unions of dependency graphs, the algorithm uses a
vector 52 to record the initial elements of the dependency classes of the right-
hand-side nonterminals. This vector contains a pointer to the head of each
right-hand-side nonterminal’s linked list. A working vector S, takes its initial
value from S and uses the initial elements recorded in Sy to count through all
fresh combinations of graphs. These vectors can become inconsistent with the
dependency classes into which they point if production p is directly recursive.
In this case, a covered graph in S(Xpo) which is discarded might be pointed
to by Sg or by S,. Therefore the graph covering algorithm must bump any
elements of these vectors which point to a graph that is being discarded. Such
an alteration of an element of S, can cause that element to become stale, so the
graph covering algorithm should also update the number_stale counter described
in the algorithm presented below.

5 An Improvement on Weak Stability

Deransart, Jourdan, and Lorho [2] introduced the notion of weak stability to
prevent recomputation of dependency relations for terminal trees. Their ver-
sion of the circularity test uses an outer loop (loop (1) in the algorithm in
the next section) such that within the current strongly connected component,
each production is selected once during each iteration of the outer loop. Af-
ter the i-th iteration, the circularity test has computed dependency relations

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif

