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The use of marker-assisted selection (MAS) to predict genetic value of 

breeding lines is increasing in private and public plant breeding. MAS is an attractive 

alternative to phenotypic selection because MAS can be performed on a single plant or 

seed and decrease selection cycle duration. Advancements in genotyping are rapidly 

decreasing marker costs so that genotyping is becoming cheaper than phenotyping. 

Thus, the potential of MAS to achieve greater gains from selection per unit time and 

cost than phenotypic selection is growing. The ability to achieve genome-wide 

genotyping, however, may not be best utilized by conventional-MAS methods that 

have proven to be largely ineffective for improving the complex quantitative traits that 

dictate the success of new crop varieties.  

 

An emerging alternative to MAS is a technique termed genomic selection (GS) 

that uses a random-effects statistical modeling approach to jointly estimate all marker 

effects. This method does not require significance testing and has the goal of capturing 

small-effect QTL that are excluded by significance thresholds used in conventional-

MAS. The use of GS is becoming a popular tool in animal breeding and is garnering 

the attention of plant breeders; however, evidence regarding the performance and the 

best methodology for applying GS in plant breeding is currently limited. 

 

In this research, GS was compared to conventional-MAS and phenotypic 

selection (PS) by deterministic simulation and empirical evaluations in plant breeding. 



 

 

Performance of these methods was empirically tested in two biparental wheat 

populations and in an advanced wheat breeding population comprised of multiple 

families derived from many different crosses. These studies showed that GS was 

superior to conventional-MAS in predicting the genetic value of breeding lines and 

that GS was competitive with PS in terms of accuracy. Furthermore, results indicate 

that GS could significantly reduce the selection cycle duration and achieve prediction 

accuracies that would enable plant breeders to achieve greater gains per unit time and 

cost than are possible with current MAS strategies. 
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CHAPTER ONE 

GENOMIC SELECTION FOR CROP IMPROVEMENT 

ABSTRACT 

Despite important strides in marker technologies, the use of marker-assisted 

selection has stagnated for the improvement of quantitative traits. Bi-parental mating 

designs for the detection of loci affecting these traits (QTL) impede their application, 

and the statistical methods used are ill-suited to the traits’ polygenic nature. Genomic 

selection (GS) has been proposed to address these deficiencies. Genomic selection 

predicts the breeding values of lines in a population by analyzing their phenotypes and 

high-density marker scores. A key to the success of GS is that it incorporates all 

marker information in the prediction model, thereby avoiding biased marker effect 

estimates and capturing more of the variation due to small effect QTL. In simulations, 

the correlation between true breeding value and the genomic estimated breeding value 

has reached levels of 0.85 even for polygenic low heritability traits. This level of 

accuracy is sufficient to consider selecting for agronomic performance using marker 

information alone. Such selection would substantially accelerate the breeding cycle, 

enhancing gains per unit time. It would dramatically change the role of phenotyping, 

which would then serve to update prediction models and no longer to select lines. 

While research to date shows the exceptional promise of GS, work remains to be done 

to validate it empirically and to incorporate it into breeding schemes. 
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Introduction 

The use of marker-assisted selection (MAS) in plant breeding has continued to 

increase in the public and private sector. Most applications, however, have been 

constrained to simple, monogenic traits (reviewed by Xu and Crouch 2008). While 

MAS has had significant impacts in backcrossing of major genes into elite varieties 

(Holland 2004), backcrossing is regarded as the most conservative of breeding 

methods because improvement occurs through the pyramiding of only a few target 

genes (Lee 1995). Gene pyramiding is inefficient for quantitative traits that are often 

controlled by many small-effect quantitative trait loci (QTL; Kearsy and Farquhar 

1998).  

Current MAS methods are better suited for manipulating a few major effect 

genes than many small effect genes (Dekkers and Hospital 2002). Unfortunately, these 

small effect genes underly the complex polygenic traits that are crucial for the success 

of new crop varieties (Crosbie et al. 2003). Two primary limitations to MAS are 1) the 

biparental mapping populations used in most QTL studies do not readily translate to 

breeding applications and 2) statistical methods used to identify target loci and 

implement MAS have been inadequate for improving polygenic traits controlled by 

many loci of small effect. The application of Genomic Selection (GS), proposed by 

Meuwissen et al. (2001), to breeding populations using high marker densities is 

emerging as a solution to both of these deficiencies. We review here current GS 

methods and their performance. Furthermore, we present future directions for GS 

research and some exciting opportunities GS provides that could revolutionize crop 

improvement. 
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Current MAS Limitations 

The most common method of QTL detection is the use of a biparental mapping 

population. While these studies are important to the understanding of genetic 

architecture, building mapping populations distinct from breeding populations often 

strains the resources of a breeding program. Available resources limit the size of 

mapping populations and consequently, the accuracy of QTL position and effect 

estimates (Dekkers and Hospital 2002; Schön et al. 2004). Also, allelic diversity and 

genetic background effects that are present in a breeding program will not be captured 

with a single biparental population. Therefore, multiple mapping populations are 

needed, QTL positions require validation, and QTL effects must be re-estimated by 

breeders in their specific germplasm. The validation in locally adapted germplasm is 

important because poor estimates of the numerous small effect QTL will lead to gains 

from MAS that are inferior to traditional phenotypic selection (Bernardo 2001). 

Therefore, the resources required for QTL detection coupled with validation and effect 

re-estimation limit the effectiveness of biparental population derived QTL for MAS in 

plant breeding populations (reviewed by Holland 2004).  

To avoid this disconnect between biparental and breeding populations, linkage 

disequilibrium (LD) based mapping can be used for dissection of complex traits in 

breeding populations that already have extensive phenotypic data across locations and 

years (Jannink et al. 2001; Rafalski 2002 ). This strategy avoids the need to develop 

special mapping populations that impose an additional burden on breeding programs. 

Also, mapping within breeding populations will allow for QTL identification and 

allelic value estimates that can be directly utilized by MAS without the need for 

extensive validation (Breseghello and Sorrells 2006; Holland 2004). However, low 
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heritability, small population sizes, few large-effect QTL, confounding population 

structure, and arbitrary significance thresholds found in current association mapping 

efforts allow identification of only a few QTL with overestimated effects (Beavis 

1998; Schön et al. 2004; Xu 2003a).  

To minimize the limitations for successful MAS, Lande and Thompson (1990) 

proposed a visionary two-step approach: 1) select significant markers from large 

marker sets and 2) combine phenotypic information with significant markers in a 

selection index that would explain a significant proportion of additive genetic 

variance. In the first step, they were unable to estimate all marker effects 

simultaneously with simple regression due to the lack of degrees of freedom. 

Therefore, they proposed selecting the most significant markers from the previous 

generation via multiple linear regressions and then re-estimating effects of the selected 

markers in the current generation with independent multiple regressions (Lande and 

Thompson 1990).  

Lande and Thompson (1990) introduced this two-step approach to handle large 

marker sets because they estimated that hundreds of molecular markers would be 

needed to capture a significant proportion of the additive genetic variance. In the early 

1990’s, genome-wide marker coverage was a limiting factor for MAS, but in recent 

years, plant breeders have encountered a major shift in the amount of genomic 

information that is available due to the rapid advances in marker technologies. 

Although genotyping is still a major expense, the declining costs per marker data point 

have facilitated large scale genotyping efforts in breeding programs. For example, the 

Monsanto Company reports that from 2000 to 2006, they experienced a six-fold 

decrease in cost per marker data point and have increased the volume of their marker 
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data by forty-fold (Eathington et al. 2007). The availability of abundant markers and 

the reduction of genotyping costs will present new tools for plant breeders only if 

statistical methodologies for the utilization of genomewide marker coverage are 

developed. 

 The two-step process by Lande and Thompson (1990) has been criticized as 

an inefficient use of available data (Meuwissen et al. 2001): one would rather want to 

use all available data in a single step to get maximally accurate estimates of marker 

effects. Genomic selection (GS) is a form of MAS that simultaneously estimates all 

locus, haplotype, or marker effects across the entire genome to calculate genomic 

estimated breeding values (GEBVs; Meuwissen et al. 2001). This approach contrasts 

greatly with traditional MAS because there is not a defined subset of significant 

markers used for selection. Instead, GS analyzes jointly all markers on a population 

attempting to explain the total genetic variance with dense genomewide marker 

coverage through summing marker effects to predict breeding value of individuals 

(Meuwissen et al. 2001).  

The central process of GS is the calculation GEBVs for individuals having 

only genotypic data using a model that was “trained” from individuals having both 

phenotypic and genotypic data (Fig. 1.1; Meuwissen et al. 2001). The population of 

individuals with both phenotypic and genotypic data is known as the “training 

population” as it is used to estimate model parameters that will subsequently be used 

to calculate GEBVs of selection candidates (e.g. breeding lines) having only genotypic 

data (Fig. 1.1). These GEBVs are then used to select the individuals for advancement 

in the breeding cycle. Therefore, selection of an individual without phenotypic data 

can be performed by using a model to predict the individual’s breeding value 
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(Meuwissen et al. 2001). To maximize GEBV accuracy, the training population must 

be representative of selection candidates in the breeding program to which GS will be 

applied. 

Historically, estimated breeding values (EBVs) for quantitative traits have 

been calculated by best linear unbiased prediction (BLUP) based only on phenotypic 

data of individuals and their relatives (Henderson 1984). The use of EBVs via BLUP 

has been popular in animal breeding and in recent years has been utilized by plant 

breeders (reviewed by Piepho et al. 2007). However, data on markers linked to known 

QTL can also be used for calculation of EBVs (Fernando and Grossman 1989) and 

this method was predicted to increase gains from selection in animal breeding up to 

38% (Meuwissen and Goddard 1996). These results were encouraging but they require 

extensive prior QTL discovery efforts in non-breeding populations. 

Figure 1.1 Diagram of genomic selection (GS) processes starting from the training 

population and selection candidates continuing through to GEBV-based selection. 

Note that while we show here a single occurrence of model training, training can be 

performed iteratively as new phenotype and marker data accumulate.  
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Marker Density and Linkage Disequilibrium   

Genomic selection differs from current MAS strategies because instead of only 

using markers that have a predefined significant correlation with a trait, all markers 

are used to estimate breeding values for each genotype. Consequently, dense marker 

coverage is needed to maximize the number of QTL in LD with at least one marker 

thereby also maximizing the number of QTL whose effects will be captured by 

markers. Target marker density will be dictated by the rate of LD decay across the 

genome, as assessed by the relationship between inter-marker coefficient of 

determination, r2, and genetic distance. 

Rate and pattern of LD decay are affected by population characteristics such as 

evolutionary history, mating system, population size, admixture, recombination rate, 

and selection effects (Gaut and Long 2003). Therefore, LD decay rates are highly 

variable among species, populations, and genomic regions.  Examples of this 

variability in LD decay rates include:  75-500 kb in a diversity panel of rice (Oryza 

sativa; Mather et al. 2007), 10-20 cM (roughly 50-100 Mb) in elite cultivars of wheat 

(Triticum aestivum; Chao 2007; Maccaferri et al. 2005), 0.1 to 1.5 kb in diverse inbred 

lines of maize (Zea mays ssp. mays; Remington et al. 2001; Tenaillon et al. 2001), and 

15-20 kb in a diversity panel of sorghum (Sorghum bicolor; Hamblin et al. 2005). 

Examples from diversity panels may give rough predictions of LD decay in a species, 

but because many factors affect LD, individual breeding programs will need to 

determine LD decay rates on a case by case basis in their specific breeding 

populations. 
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Linkage disequilibrium estimates can be used to determine target marker 

densities for GS. For example, Calus and Veerkamp (2007) used the average r2 

between adjacent markers as a measure of their marker density relative to the decay of 

LD.  They found that for a high heritability trait, average adjacent marker r2 of 0.15 

was sufficient, but for a low heritability trait, increasing the r2 to 0.2 improved the 

accuracy of GEBV predictions. These marker densities may still be out of reach for 

some crops or populations. Looking to the near future, however, high throughput 

sequencing has made marker discovery affordable for most crop species and the 

continued reduction of genotyping costs will facilitate dense genomewide marker 

coverage for all crop species (reviewed in Zhu et al. 2008). Note that the conditions of 

complete genome saturation and of at least one marker in LD with each QTL need not 

be met in order to derive useful prediction models for GEBV. While it is tempting to 

surmise a minimum number of markers needed to obtain useful GEBVs, the many 

factors affecting this number and the lack of empirical results currently available 

would make any guess meaningless. Clearly, this subject requires urgent attention. 

Statistical Models and Performance 

The challenge of QTL analysis is the selection of the appropriate statistical 

model to identify QTL and estimate their effects (Broman and Speed 2002). In 

breeding programs, statistical methods for GS will need to simultaneously estimate 

many marker effects from a limited number of phenotypes. A greater number of 

explanatory variables (markers) than observations (phenotyped lines) leads to a lack of 

degrees of freedom that must be handled through the selection and use of the most 

appropriate statistical model, i.e. the model that results in the highest GEBV accuracy 

with consideration of model complexity and computation requirements. In the 
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assessment of model performance, GEBV accuracy has a precise definition, namely, 

the Pearson correlation between the GEBV and the true breeding value (TBV). 

Accuracy defined in this way is directly proportional to gain from selection when 

selecting on the GEBV, that is, R=irσA, where R is the response, i is the selection 

intensity, r is the accuracy defined above, and σA is the square-root of the additive 

genetic variance of TBV (Falconer and Mackay 1996, p. 189). We briefly describe 

here three models: stepwise regression, ridge regression, and Bayesian estimation. 

Stepwise Regression for MAS 

Traditional MAS considers marker effects as fixed requiring stepwise 

regression (SR) approaches that avoid the lack of degrees of freedom problem by 

fitting markers singly or in small groups. After the model selection process during 

which markers are added or removed from the model on the basis of arbitrary 

significance thresholds, non-significant markers are assigned an effect of zero and 

significant marker effects are simultaneously tested to estimate their effects. This 

stepwise approach to set non-significant marker effects to zero is critical for 

maintaining model estimability (Lande and Thompson 1990). Significance thresholds 

that may maximize response to selection cannot be determined analytically, though 

guidelines have been established through simulation (Hospital et al. 1997; Moreau et 

al. 1998). The general guideline is that liberal p-value thresholds improve selection 

gain (Hospital et al. 1997; Moreau et al. 1998). Nevertheless, when only significant 

marker effects are estimated, only a portion of the genetic variance will be captured 

(Goddard and Hayes 2007) and effects retained in the model can be greatly 

overestimated (Beavis 1998; Hayes 2007), particularly when many effects are tested.  
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Limitations of SR for MAS in practice were reported by (Moreau et al. 2004). 

In 300 test-crossed maize progenies evaluated in 14 trials over 11 locations for dry 

grain yield and grain moisture, they discovered 16 QTL for dry grain yield and 12 

QTL for grain moisture explaining 50% of the total phenotypic variance of both traits. 

When using an index combining phenotypic and marker information for a single cycle 

followed by two cycles of marker-only selection, they observed no genetic gain from 

the two cycles of marker selection (Moreau et al. 2004). They suggested that this 

inefficiency of MAS could be caused by fixation of major effect loci in the first cycle 

of selection and inaccurate estimation of remaining effects resulting in no gain from 

the cycles of marker selection (Moreau et al. 2004). These complications were 

probably consequences of SR that detects only large effects and that overestimates 

effects. 

In a GS simulation by Meuwissen et al. (2001), SR resulted in low GEBV 

accuracy due to limited detection of QTL. The simulated outcrossing population had 

an effective population size of 100 with a trait heritability of 0.5. After 1,000 

generations of random mating to establish mutation-drift equilibrium, generation 1001 

had a population size of 200 (100 males; 100 females). Two generations (1002 and 

1003) of size 2000 with 20 half-sib families of size 100 individuals were then 

simulated. Generations 1001 and 1002 were used to train the model while GEBV 

accuracy was calculated on generation 1003. Genotypic data consisted of 101 multi-

allelic markers on each of 10 chromosomes of length 100 cM. Adjacent pairs of 

markers were considered haplotypes such that 50,000 haplotype effects were 

estimated. The accuracy of GEBV for SR (0.318) was less than that expected for 

strictly phenotype-based BLUP (about 0.4; Meuwissen et al. 2001). In agreement with 

Lange and Whittaker (2001), Meuwissen et al. (2001) concluded that SR’s procedure 
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to identify marker subsets is suboptimal for MAS in situations where the majority of 

the additive genetic variance is generated by many QTL. Note, however, that the 

GEBV accuracy of SR depends on the details of the analysis: using the Meuwissen et 

al. (2001) simulation design, Habier et al. (2007) found that SR produced an accuracy 

of 0.61. Habier et al. (2007) attributed this difference to the use of a less stringent 

significance threshold than was used by Meuwissen et al. (2001). This conclusion was 

supported by simulations showing prediction accuracy changed with changes in 

significance thresholds (Piyasatian et al. 2007). 

Ridge Regression-BLUP for GS 

The ridge regression-BLUP (RR-BLUP) method can simultaneously estimate 

all marker effects for GS (Meuwissen et al. 2001; Whittaker et al. 2000). Rather than 

categorizing markers as either significant or as having no effect, ridge regression 

shrinks all marker effects towards zero (Breiman 1995; Whittaker et al. 2000). The 

method makes the assumption that markers are random effects with a common 

variance (Meuwissen et al. 2001; Table 1.1). Equal variance does not assume all 

markers have the same effect (Bernardo and Yu 2007), but that marker effects are all 

equally shrunken toward zero. Nevertheless, the assumption that individual markers 

have the same variance is unrealistic and therefore RR-BLUP incorrectly treats all 

effects equally (Xu 2003b). Despite the incorrect assumption of equal marker 

variance, RR-BLUP is superior to SR because it is able to simultaneously estimate 

effects for all markers: by avoiding marker selection, it avoids the biases that go with 

that selection (Whittaker et al. 2000). Also, a ridge regression approach is more 

appropriate than SR for instances where there are few or no large effects and many 

small effects (Breiman 1995), as is the case with most quantitative traits.  



 

 12 

In the simulation by Meuwissen et al. (2001), RR-BLUP had a GEBV accuracy 

of 0.732, which was 41% and 33% greater than SR and phenotype-based BLUP, 

respectively. With higher SR significance thresholds, Habier et al. (2007) reported RR-

BLUP resulted in 4% and 11% increase in GEBV accuracy compared to SR and 

traditional BLUP, respectively.  In addition to these studies, Muir (2007) simulated 

512 genotypes with a low heritability trait (h2=0.1) in each of 4 training generations. 

These conditions resulted in an even higher RR-BLUP GEBV accuracy of 0.83 despite 

the lower heritability. This gain in GEBV accuracy was attributed to the four training 

generations used by Muir (2007), as opposed to two generations used in previous 

studies (Habier et al. 2007; Meuwissen et al. 2001).  

In a GS simulation on a population derived from a biparental cross of maize 

inbreds, Bernardo and Yu (2007) found that relative to phenotypic selection, the 

increase in selection gain from RR-BLUP was 18% greater than that from SR for a 

highly heritable trait (h2=0.8) controlled by twenty QTL. For a trait with low 

heritability (h2=0.2) controlled by 100 QTL, the increase in selection gain from RR-

BLUP was 43% greater than that from SR (Bernardo and Yu 2007). Similar results 

were observed by Piyasatian et al. (2007) who found that in the first round of selection 

in a simulated cross between two inbred parents, gain from selection from RR-BLUP 

was 109% and 32% greater than that of traditional BLUP and SR, respectively. 

Bayesian Estimation 

The simplifying assumption of equal and fixed marker effect variances allows 

RR-BLUP parameters to be efficiently computed using maximum likelihood methods 

(Meuwissen et al. 2001). While RR-BLUP can provide a conservative EBV by 
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shrinking all marker effects equally (Muir 2007), the presumably incorrect assumption 

that underlies it can lead to over-shrinking of large effects (Table 1.1; Meuwissen et 

al. 2001; Xu 2003b). Bayesian methods have been adopted in order to relax this 

assumption and better model marker effects of differing sizes (Hayes 2007). Here, a 

separate variance is estimated for each marker, and the variances are assumed to 

follow a specified prior distribution (Meuwissen et al. 2001). 

Meuwissen et al. (2001) proposed two types of prior distribution for the marker 

variance. The first type of prior (BayesA) uses an inverted chi-square distribution with 

degrees of freedom and scale parameters chosen so that the mean and variance of the 

distribution match the expected mean and variance of the marker variances. In the 

simulation design described above, BayesA outperformed both SR and RR-BLUP with 

a GEBV accuracy of 0.798. Different parameter values for the BayesA inverted chi-

square prior distribution have also been proposed that place much higher density on 

marker variances close to zero, thereby forcing more marker effect estimates close to 

zero (ter Braak et al. 2005; Xu 2003b).  

The BayesA method of Xu (2003b) was applied to data from a doubled haploid 

barley (Hordeum vulgare) population of 145 lines with 127 SNP markers covering 

1500 cM for yield, heading date, maturity, test weight, lodging, and kernel weight. Xu 

(2003b) reported that SR and BayesA both found large effect QTL, but that BayesA 

provided better QTL location and effect estimation. Also, in simulation of a 

population derived from a biparental inbred cross, ter Braak et al. (2005) found that 

BayesA prior parameters forcing more marker effect shrinkage gave better estimates 

of QTL effects than did the Meuwissen et al. (2001) parameters. A comparison of 



 

 14 

these different prior parameterizations in an association genetics rather than linkage 

mapping context has not been done.   

The second type of prior distribution Meuwissen et al. (2001) proposed 

(BayesB) contrasts with BayesA by having a prior mass at zero, thereby allowing for 

markers with no effects. The inverted chi-square prior of BayesA may be set to 

strongly regress variances towards zero, but it does not permit the value of zero itself. 

BayesB thus presents a more realistic prior because we expect that some regions of the 

genome will carry no QTL so that some markers should have estimates of zero effect. 

The results from Meuwissen et al. (2001) showed that BayesB had a GEBV accuracy 

of 0.848, greater than all other methods tested. Of the Bayesian methods, BayesB was 

not only more accurate, but was also less computationally demanding. Meuwissen et 

al. (2001) concluded that Bayesian methods outperformed RR-BLUP through better 

estimation of large effect QTL by allowing for unequal variances.  

de Roos et al. (2007) used Bayesian modeling as described by Meuwissen and 

Goddard (2004) in actual dairy cattle data for a single chromosome containing 32 

markers with one being a known causal mutation for fat percentage. They compared 

Bayesian GS that used all marker information to regression on the genotype at the 

known causal mutation and to traditional BLUP with no markers. Using a cross 

validation population of 1,135, they concluded that Bayesian GS and regression on the 

causal mutation had similar accuracies (0.752 and 0.746, respectively), with both 

being superior to traditional BLUP (EBV accuracy of 0.508). Interestingly, the GS 

analysis often did not place the causal mutation in the correct marker bracket but was 

nevertheless able to calculate accurate GEBV. This robustness of GEBV accuracy 
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provides evidence that GS can perform well for breeders in the absence of the 

discovery of QTL (de Roos et al. 2007). 

In the future, genotyping costs will decrease, but it is unlikely that phenotyping 

costs will also decrease thus shifting goals towards reducing phenotyping and 

increasing genotyping. Bernardo and Yu (2007) suggested this shift would be feasible 

when the cost of a marker data point is 5,000 times less than the cost of phenotyping a 

single entry. Regardless of the threshold, it is desirable to decrease the number of 

phenotypic records needed for training models for accurate GEBVs. Simulations by 

Meuwissen et al. (2001) showed that with 2200 phenotypic records, RR-BLUP and 

BayesB had GEBV accuracies of 0.732 and 0.848, respectively. When the number of 

phenotypic records was reduced to 500, RR-BLUP and BayesB GEBV accuracies 

decreased to 0.579 and 0.708, respectively (Meuwissen et al. 2001).  Thus the effect of 

low numbers of phenotypic records was less severe for BayesB than for RR-BLUP. In 

addition, Fernando (2007) found that in contrast to RR-BLUP, BayesB’s GEBV 

accuracy did not decline as the number of markers increased. These findings suggest 

that Bayesian methods may be better suited to handling situations with increased 

colinearity between markers caused by extremely large markers sets and limited 

phenotypic records (Table 1.1). Computational issues may arise for Bayesian methods 

under high marker densities and collinearities, and these will need to be resolved by 

improved statistical methods (ter Braak et al. 2005). 
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Table 1.1 General characteristics and trends of performance for traditional BLUP and 

GS methods. It is important to note these are general summaries based on current 

understanding of model performance.    

Method 
Marker effect; 

variance 
assumptions 

Proportion  
of markers 

fitted in  
model 

Performance with increased 
Large Effect 

QTL 
Small Effect 

QTL 

Inbreeding 
depression; 

loss of 
diversity 

Marker 
density 

QTL 
number  

Traditional 
BLUP N/A N/A  N/A N/A 

Captured 
only by 

phenotype 

Captured 
only by 

phenotype 
Yes 

Stepwise 
Regression Fixed Subset Reduced  Reduced Over-

estimated  Excluded  Marginally 
Reduced 

RR-BLUP Random;  
Equal  

All 
 Reduced † Increased Under-

estimated Captured Reduced  

BayesA 
Random;  
Unique 
All > 0 

All ? Reduced 
More 

accurately 
estimated 

Captured Reduced  

BayesB 
Random;  
Unique  
Some=0 

All 
  Insensitive † Reduced 

More 
accurately 
estimated 

Captured Reduced  

† Source: Fernando (2007) 

 

Inclusion of a Polygenic Effect Term Accounting for Kinship 

Phenotypic information from relatives contribute to an individual’s EBV 

because EBVs vary according to the additive relationship (A) matrix, i.e., a matrix that 

contains, for each pair of individuals, the proportion of alleles for which they are 

identical by descent (van Arendonk et al. 1994; Lynch and Walsh 1998, p. 751). When 

markers are introduced into the analysis, some genetic effects will be captured by 

markers in LD with QTL, but residual genetic effects will still be assumed to vary 

according to the A-matrix. These residual effects can be captured by including a 
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polygenic term in the model. In association mapping, the inclusion of this matrix has 

been popularized as a statistical control for population structure and familial 

relatedness (Yu et al. 2006; Zhao et al. 2007).  

The A-matrix can be calculated on the basis of the pedigree or the marker data, 

with pedigree information providing exact expected relationships and markers 

providing estimated realized relationships. When marker number is high enough that 

marker sampling plays a minor role (i.e., relationship estimates on the basis of markers 

are accurate), marker-estimated relationships will better reflect true relationships than 

will pedigree-expected relationships. In particular, four mechanisms lead realized 

relationships to diverge from their expectation: random Mendelian segregation, 

segregation distortion, selection, and pedigree recording errors. For example, parental 

contributions to inbreds vary from their expected 50% because of random Mendelian 

segregation during selfing. For the genomes of maize and wheat, there is a 10% 

probability that single seed decent derived inbreds will have less than 38% and 43% 

genome contribution from one parent, respectively (Frisch and Melchinger 2007). 

The value of including a polygenic effect term in the model will depend 

strongly on marker density available in the study for two reasons. First, if density is 

such that all QTL are in strong LD with a marker, all genetic effects will be absorbed 

by markers and none will be left for the polygenic term to capture (Bernardo and Yu 

2007; Meuwissen et al. 2001; Zhong and Jannink 2007). Second, even markers that 

are in linkage equilibrium with all QTL carry information about relationships among 

individuals, and this information contributes to the accuracy of GEBV (Habier et al. 

2007). Indeed, this contribution depends on the number of markers included in the GS 
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method and, because SR uses only a subset of markers, it benefits least from genetic 

relationship contributions to GEBV accuracy (Habier et al. 2007).  

Research to look explicitly at the value of including a polygenic effect term 

used adjacent-marker r2 as a measure of marker density. For a high heritability trait 

(h2=0.5), the polygenic effect term increased GEBV up to an adjacent-marker r2 of 

0.14, while for a low heritability trait (h2=0.1), the term made no difference already at 

an r2 of 0.11 (Calus and Veerkamp 2007). At lower adjacent-marker r2 the polygenic 

term fulfills its role of explaining genetic variance not absorbed by markers and it 

therefore contributes to GEBV accuracy (Calus and Veerkamp 2007; Villanueva et al. 

2005).  

Selection Index Theory Applied to Genomic Selection 

 A selection index integrates and weights multiple traits to achieve greater gains 

than if traits with independent thresholds are individually or collectively selected 

(Hazel and Lush 1942; Hazel 1943). Selection indices can incorporate marker data as 

indirect selection traits (Lande and Thompson 1990; Neimann-Sorensen and 

Robertson 1961; Smith 1967). However, current MAS applied to loci selected by SR 

violates the selection index assumptions of multivariate normality and small changes 

in allele frequencies because selection is based on only few large effect loci (Dekkers 

2007; Lande and Thompson 1990). Because GS is based on many markers distributed 

throughout the genome, index selection assumptions are met providing an opportunity 

to use index selection theory to predict response to GS (Dekkers 2007). 
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Dekkers (2007) used selection index theory by adding marker derived breeding 

values as a separate correlated trait to the selection index (Lande and Thompson 

1990). In a simulated swine breeding program, selection on only marker data could 

outperform phenotypic selection for low heritability traits (0.1) even with moderate 

GEBV accuracy (0.55). When marker and phenotypic data were both used for a single 

trait, even greater accuracies were observed. This increase was due to marker 

information that allowed for within family selection (Dekkers 2007). For two 

negatively correlated traits with heritabilities of 0.3 and 0.1, Dekkers (2007) found 

using only markers increased gains from selection over phenotypic selection by 8.5% 

for the index of the two traits and 66% for the low heritability trait alone. Using both 

markers and phenotype increased gains from selection over phenotypic selection by 

21% for the index of the two traits and 80.5% for the low heritability trait alone. These 

results show the potential of GS to increase gains for multiple traits especially in cases 

where phenotypic data is available on selection candidates and traits have low 

heritability.  

Maintaining Genetic Diversity and Reducing Inbreeding Depression 

Gains from selection can be increased by raising the selection intensity or the 

accuracy of EBV of breeding lines. Increased selection intensity reduces the number 

of lines selected thus lowering the effective population size thereby increasing the loss 

of genetic variability. Traditional BLUP increases EBV accuracy by incorporating 

ancestor and collateral relative phenotypes in the calculation (Henderson 1984). But 

including family information in EBV calculation increases the correlation between 

EBV of family members, making it more likely that multiple sibs will be selected 

(Wray and Thompson 1990). Sibling co-selection, in turn also reduces effective 
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population size. Therefore, while increased selection intensity and a higher EBV 

accuracy lead to greater short term gains from selection, they both may reduce long 

term gains by decreasing genetic variation and increasing rates of inbreeding (Quinton 

et al. 1992).  

Daetwyler et al. (2007) reviewed these issues and determined that GS differs 

from simple phenotypic selection and traditional BLUP by using markers to more 

accurately estimate Mendelian sampling variation, i.e., deviations between siblings 

within families. Mendelian sampling variation, generated by random segregation, is 

created anew each generation. Selecting strictly on this variation therefore enables 

sustained genetic progress by decreasing co-selection of sibs and thus reducing 

inbreeding and the loss of genetic variation (Woolliams et al. 1999). Optimized 

selection schemes have been proposed where parent combinations are restricted by 

their level of coancestry to limit the loss of genetic variation and the rate of inbreeding 

(Grundy et al. 1998; Meuwissen 1997). In these schemes an individual’s selective 

advantage depends largely on the Mendelian sampling term, i.e. on its performance 

relative to its siblings (Avendaño et al. 2004). Unlike traditional BLUP based on 

pedigree data that account for average relationships, tracking markers enables GS to 

also track the random segregation that makes up the Mendelian sampling term. The 

benefit is both more accurate EBVs and decreased correlation between EBVs within 

families, countering the mechanism whereby the use of family information increases 

loss of genetic diversity (Daetwyler et al. 2007). Note that the greater emphasis placed 

by GS on the Mendelian sampling term does not completely negate variable long-term 

genetic contributions among individuals and its consequent increase in inbreeding rate. 

In particular, superior individuals carry superior alleles and selection of those alleles 

will, in turn, lead their carriers to leave more offspring behind (Daetwyler et al. 2007). 
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Thus, it still may be advisable to manage rates of inbreeding (e.g., Avendaño et al. 

2004) even in the context of GS. Nevertheless, the advantages of GS in regard to 

inbreeding and the maintenance of genetic diversity should prove valuable for crops 

such as alfalfa (Medicago sativa) that suffer from inbreeding depression and for 

maintaining genetic variation in advanced cycle breeding programs.  

Gains from Selection Per Unit Time 

MAS strategies increase gain mainly through gain per unit time, rather than 

gain per cycle (Bernardo and Yu 2007; Edwards and Johnson 1994; Hospital et al. 

1997; Koebner and Summers 2003; Meuwissen et al. 2001; Muir 2007).  To look at 

GS’s impact on gains per unit time, Schaeffer (2006) suggested a plan for 

implementation of GS into a dairy breeding program. Through reduction in time and 

costs needed to prove the value of a bull, assuming a GEBV accuracy of 0.75, 

Schaeffer (2006) determined that GS could provide a twofold increase in rate of 

genetic gain and save 92% of the costs of the current progeny test based breeding 

program. 

In plants, the importance of generation time varies between crops, but the goal 

of reducing cycle time remains. In maize, a crop that uses doubled haploids and off-

season nurseries, test cross performance selection still requires at least two years 

(Bernardo and Yu 2007) providing an opportunity for GS to reduce unit time per 

selection cycle by reducing the need for progeny test data in every cycle. In the more 

extreme case of oil palm, which takes 19 years to complete a cycle of selection, Wong 

and Bernardo (2008) reported that GS reduced the selection cycle to 6 years. Even 

with small population sizes (N=50) that adversely effected GEBV accuracy, their 
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simulations indicated that GS would outperform MARS and phenotypic selection 

when considering gain per unit cost and time. 

Genotype by Environment Interactions and Epistasis  

Genotype by environment (G × E) interaction is a challenge in plant breeding 

because the large number of experimental lines and environments i.e. locations and 

years make it impossible to test a line in all possible environmental conditions of a 

breeding program’s target region (Allard and Bradshaw 1964). Consider, however, 

that the genotype of any line is composed of alleles that, over time, will have been 

evaluated in a larger sample of target environments than would be feasible for any 

particular line. Thus, it may be possible to accurately predict GEBV even in the 

presence of high G × E. As an extreme example, for winter annual crops, a severe 

winter may only come around once a decade. Variety releases for the region need to 

be hardy to such winters because crop failure even once per decade is too frequent. 

With GS, a given generation of experimental lines need never experience a test winter 

if the alleles they carry were characterized during a severe winter. Similar cases 

include the infrequent but devastating conditions caused by severe drought, flooding, 

disease pressure, and insect infestation.  The broader insight that these examples 

illustrate is that when using GS, lines are not evaluated solely on the basis of their own 

phenotypic performance, but on the basis of information shared across other lines, 

other years and locations, and even possibly other breeding programs. This 

information sharing should provide GS with stability in the face of G × E. 
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Anticipating the effect of epistasis on the potential of GS is difficult. Almost 

all GS prediction accuracy evaluations derive from simulations that adopted additive 

genetic models. There is current debate, at both theoretical and empirical levels, of the 

likely importance of epistasis in the architecture of quantitative traits (Carlborg and 

Haley 2004; Hill et al. 2008; Holland 2007; Mackay 2009). To discuss this issue, it is 

essential to distinguish between the genotypic value versus the breeding value of a line 

(Falconer and Mackay 1996). The genotypic value is the expected phenotype of the 

line given its genotype and includes additive and non-additive genetic effects. The 

breeding value is the expected phenotype of line’s progeny and includes only additive 

effects. The additive models used by GS should predict the breeding value rather than 

genotypic value (Goddard and Hayes 2007). Consequently, correlations between 

GEBVs and line phenotypes may well be lower than those obtained in additive effect 

simulations, but they should nevertheless reflect a line’s value as a parent. For cases 

where estimates of genotypic value are desired in the presence of epistasis, methods 

are currently being developed and tested (e.g., Gianola et al. 2006; Gianola and van 

Kaam 2008; Gonzalez-Recio et al. 2008). Further empirical evaluation of the 

prediction accuracies of these methods should help address the ongoing debate over 

the importance of epistasis in the mapping of genotype to phenotype. Because of the 

small contribution that epistasis makes to breeding value (Holland 2001), genomic 

selection using simpler additive models should be effective for maximizing gain from 

selection. 
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Future Directions 

Statistical Methods 

A statistical model will more faithfully capture QTL information as its 

assumptions about the underlying genetic architecture, made explicit in the prior 

distributions of QTL effects or variance, are more correct (Meuwissen et al. 2001). 

There are two obstacles to translating this fact into improved models. First, GS may 

gain in accuracy not just by capturing more QTL information but also by better 

capturing relationship information (Habier et al. 2007). There may be a tradeoff 

between the kinds of prior distributions of effects that promote the use of these two 

information sources (Habier et al. 2007).  Second, we simply do not know, for any 

complex trait, what the underlying genetic architecture is, and therefore we do not 

have adequate prior knowledge at our disposal. Therefore, statistical models that are 

relatively insensitive to the underlying architecture may be optimal for most 

populations; although, identifying those models remains challenging.  

Finally, the marker technologies upon which GS methods depend are 

constantly changing. Next generation sequencing technologies and improvement of 

genotyping platforms present breeders with powerful tools for characterizing the 

genetic composition of their germplasm. As these technologies continue to evolve, 

they will provide quantitatively and qualitatively different information (e.g., copy 

number and epigenetic variation; Stranger et al. 2007; Zhang et al. 2008), and 

statistical machinery will also need to evolve to use this information efficiently to 

increase prediction accuracy.  
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Software and Database Development 

While statistical methods of prediction must be continually advanced, an 

integral part of their performance will be the software packages used to implement 

them. In conjunction with this software, robust databases that can efficiently link 

breeding lines, testing environments, genotypic data, phenotypic data, and breeding 

programs will need to be developed to simplify flow and use of information. While 

private breeding companies have invested heavily in data management systems that 

will likely be efficient in executing GS (e.g., Eathington et al. 2007), public sector 

breeding programs also need database software that integrates the wide variety of data 

they generate (Heckenberger et al. 2008; Tinker and Yan 2006). Recent developments 

in the public sector are promising, e.g., the barley coordinated agricultural project 

hordeum toolbox (http://hordeumtoolbox.org/); the GDPDM database schema that 

links with the association analysis software TASSEL (http://www.maizegenetics.net); 

the German GABI-BRAIN project (http://brain.uni-hohenheim.de/eng/indexeng.html), 

and the Canadian COOL-DUDE (Yan and Tinker 2007). Adaptation of these tools to 

link with GS and development of user-friendly GS analyses themselves are needed to 

take GS from theory to practice. 

Changes to Breeding Program Structure 

The accuracies of GEBV observed in research offer the possibility that future 

elite and parental lines will be selected on their GEBV rather than on their phenotypic 

records from extensive field testing. The most immediate impact of this circumstance 

would be a great increase in the speed of the breeding cycle (Fig. 1.2; Wong and 

Bernardo 2008), thereby increasing selection gains per unit time. This shift would also 

http://hordeumtoolbox.org/
http://www.maizegenetics.net/
http://brain.uni-hohenheim.de/eng/indexeng.html
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fundamentally alter the role of phenotyping in plant breeding (Fig. 1.2). Note that 

Figure 1.2 offers a somewhat futuristic view of the use of GS, contingent on its 

validation in practice. We do not, at this point, advocate dispensing with phenotypic 

evaluation prior to parent selection. 

The purpose of phenotyping now is to select the best lines from a segregating 

population and to evaluate fewer lines with greater replication in each cycle of 

selection. But, in a GS driven breeding cycle, the purpose of phenotyping is to 

estimate or re-estimate marker effects. It is far from clear, at this point, whether it will 

be advantageous to evaluate only the best lines or to evaluate few lines with high 

replication. Figure 1.2 therefore separates the germplasm improvement cycle from the 

prediction model improvement cycle. Indeed, if we use the guidelines for optimal 

QTL linkage mapping, evaluation should include not just the best, but the best and the 

worst lines (Darvasi and Soller 1992; Lander and Botstein 1989) and many 

unreplicated lines instead of few replicated lines (Knapp and Bridges 1990). Figure 

1.2 also emphasizes the need for model updating and re-evaluation. Marker effects 

may change as a result of allele frequency changes (Muir 2007) or of epistatic gene 

action. Model updating with each breeding cycle should mitigate reduced gains from 

GS caused by these mechanisms. Thus, GS could radically change the practice of field 

evaluation for breeders. Of course, regardless of the breeding method used, final field 

evaluations of varieties across the target environments will be needed before they are 

distributed to farmers. 

GS may also diminish the need for breeders to select parents strictly from the 

set of lines evaluated in their target environments (Goddard and Hayes 2007). Once a 

predictive linear model is established for their target environments, any genotype with 
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high target environment specific GEBV will become a candidate. Thus, GS should 

facilitate germplasm exchange and increase the probability of selecting useful 

germplasm.  

 

 

 

Figure 1.2 Flow diagram of a GS breeding program. Breeding cycle time is shortened 

by removing phenotypic evaluation of lines prior to selection as parents for the next 

cycle. Model training and line development cycle length will be crop and breeding 

program specific. 
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Conclusion 

It has been predicted for over two decades that molecular marker technology 

would reshape breeding programs and facilitate rapid gains from selection (Stuber et 

al. 1982; Tanksley et al. 1989). The failure of current MAS to significantly improve 

polygenic traits has thwarted this prediction. Genomic Selection looks to fulfill it by 

using genomewide marker coverage to accurately estimate breeding values, accelerate 

the breeding cycle, and introduce greater flexibility in the relationship between 

phenotypic evaluation and selection. To do so, however, GS must shift from theory to 

practice. As evident in this review and interpretation, GS has almost exclusively been 

tested through simulation, and, therefore, its potential value should be assessed with 

cautious optimism. The accuracy of GS and its cost effectiveness must now be 

evaluated in breeding programs to provide the empirical evidence needed to warrant 

the addition of GS to the plant breeders’ toolbox.  
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CHAPTER TWO 

PLANT BREEDING WITH GENOMIC SELECTION:                                          

GAIN PER UNIT TIME AND COST 

ABSTRACT 

 Advancements in genotyping are rapidly decreasing marker costs and 

increasing genome coverage. This is facilitating the use of marker-assisted selection 

(MAS) in plant breeding. Commonly employed MAS strategies, however, are not well 

suited for agronomically important complex traits, requiring extra time for field-based 

phenotyping to identify agronomically superior lines. Genomic selection (GS) is an 

emerging alternative to MAS that uses all marker information to calculate genomic 

estimated breeding values (GEBVs) for complex traits. Selections are made directly 

on GEBV without further phenotyping.  We developed an analytical framework to: 1) 

compare gains from MAS and GS for complex traits and 2) provide a plant breeding 

context for interpreting results from studies on GEBV accuracy. We designed MAS 

and GS breeding strategies with equal budgets for a high-investment maize program 

and a low-investment winter wheat program. Results indicate that GS can outperform 

MAS on a per year basis even at low GEBV accuracies. Using a previously reported 

GEBV accuracy of 0.53 for net merit in dairy cattle, expected annual gain from GS 

exceeded that of MAS by about 3-fold for maize and 2-fold for winter wheat. We 

conclude that if moderate selection accuracies can be achieved, GS could dramatically 

accelerate genetic gain through its shorter breeding cycle.  
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INTRODUCTION 

Marker-assisted selection (MAS) has been a useful tool for plant breeders, but 

has had limited success in improving complex traits due, in part, to its inability to 

capture small-effect quantitative trait loci (QTL; Bernardo 2008; Xu and Crouch 

2008).  A promising approach, termed genomic selection (GS), attempts to avoid this 

deficiency by capturing both large and small-effect QTL with dense genome-wide 

molecular marker coverage to predict complex trait values (Meuwissen et al. 2001).  

Prediction accuracies reported by GS studies, coupled with the continued advances in 

high-throughput genotyping technologies, make GS a promising tool to increase plant 

breeding efficiency (reviewed by Heffner et al. 2009).   

 Genomic selection is already revolutionizing the dairy cattle breeding industry 

(Hayes et al. 2009).  Empirical results from several dairy cattle breeding programs 

have shown prediction accuracies of genomic estimated breeding values (GEBVs) to 

be 2% - 20% greater than those of estimates using pedigree information (Hayes et al. 

2009).  While empirical GS results from plant breeding programs are not yet available, 

several studies have shown promising results. Bernardo and Yu (2007) showed 

through simulation that GS produced up to 43% greater genetic gain than marker-

assisted recurrent selection for polygenic traits of low heritability in maize. Using 

empirical barley (Hordeum vulgare L) marker data and simulated phenotypes, Zhong 

et al. (2009), found that GEBV accuracy was similar to that of phenotype-based 

estimates. Finally, Lorenzana and Bernardo (2009) analyzed empirical data from 

maize, barley, and Arabidopsis biparental populations and showed GS response per 

cycle would be at least half that of phenotypic selection for nearly all traits studied.  
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In the above studies, gains from GS on a per cycle basis are not particularly 

impressive.  However, by replacing time-intensive phenotypic evaluation of highly 

complex traits with GEBVs, GS can shorten breeding cycle length and thereby 

increase gains per unit time. This is especially true for perennial crops that require 

many years before phenotypic evaluations can be performed (Wong and Bernardo 

2008). Based on GEBV accuracies found in their study on biparental plant 

populations, Lorenzana and Bernardo (2009) suggest GS gains per year would 

approach 1.5 times that of phenotypic selection in a case where 3 cycles of GS could 

be completed to each phenotypic selection cycle. Likewise, Schaeffer (2006) reported 

that using GEBVs in place of progeny testing in dairy cattle breeding could reduce 

costs by 92% and increase genetic gain per year by two-fold. In a further study using 

different GS breeding schemes, König et al. (2009) projected that GS could reduce 

breeding program costs by 22.4%.  

The reallocation of breeding program resources needed to implement MAS or 

GS affects the overall budget, the selection pressure at different stages, and the length 

of the breeding cycle. Natural tradeoffs arise between allocations for phenotyping 

versus genotyping and for numbers of selection candidates versus the thoroughness of 

their evaluation. Determination of the relative value of MAS and GS will be 

conditional on certain allocation decisions. Our first objective was to compare gains 

from MAS and GS for breeding programs of annual crops while accounting for cost 

and cycle time of each strategy.  Our second objective was to provide a plant breeding 

context for interpreting the potential impact of GEBV accuracy on gains from GS. To 

meet these objectives, we designed example GS and MAS plant breeding programs 

with equivalent budgets and compared them on the basis of gains per cycle and per 

unit time.  To extend the range of application of our results, we designed two distinct 
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programs: 1) a high-investment maize inbred development program resembling 

commercial programs and 2) a low-investment winter wheat program resembling 

public programs.  

MATERIALS AND METHODS 

Selection Criteria 

The economic value of a cultivar includes several traits of different value that 

are often genetically correlated with one another.  The selection criterion used in this 

study was net merit, which is an index encompassing the relative importance of all 

traits beneficial to growers and consumers.  The term net merit is predominantly used 

in the animal breeding literature (VanRaden 2004).  The definition of net merit and its 

calculation by way of an index will differ between breeding programs due to 

differences in breeding goals (e.g., drought tolerance, disease pressure, forage quality 

versus grain yield).  Nevertheless, net merit is expected to have a highly complex 

genetic architecture and low heritability in all situations. 

Maize Breeding Program Structure 

 For maize, the MAS breeding program (MAS-BP) consisted of one stage of 

marker-based selection followed by two stages of phenotypic evaluation prior to 

parent selection (Fig. 2.1). The maize GS breeding program (GS-BP) consisted of a 

single stage of GS prior to parent selection (Fig. 2.1).  Both programs were designed 

using doubled haploids (DHs) to reduce the time required for inbred development 

because DHs are routinely used in commercial, high-investment maize breeding 
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programs (Seitz 2005). We assumed that both programs have access to state-of-the art 

DH conversion technologies and employ off-season nurseries to achieve three growing 

cycles per year. Therefore, the four stages of the DH process – crossing parental lines, 

crossing F1 plants by haploid inducer, double chromosomes of haploid plants, and 

selfing of doubled haploids (DH0) – would take 1 year.  During this process, DH0 

seedlings are genotyped for early generation selection via GS or MAS.  

The first stage of selection in the MAS-BP consists of genotyping 4500 DH0 

lines for well-characterized QTL (e.g., disease resistance) and subsequent marker-

based selection. Of these 4500 DH0 lines, 20% are selected, selfed, and advanced to 

general combining ability (GCA) testing. The optimum number of testers and 

selection intensities for two stages of GCA testing were adapted from Longin et al. 

(2007).  In the first GCA testing stage, 919 DH1 lines are selfed, evaluated for per se 

performance, crossed to a single tester, and testcross progeny are evaluated at three 

locations. Of these 919 DH1 lines, 45 are advanced to the next stage of GCA testing 

where they are selfed, evaluated for per se performance, crossed to five testers. 

Testcross progeny are evaluated at eight locations.  Finally, 10 DH2 lines are selected 

as parents to constitute the next breeding cycle and also enter advanced testing to 

evaluate specific combining ability (SCA) of inbreds prior to commercial 

development.  Cycle length of the designed maize MAS-BP is three years.  

Each maize GS-BP cycle consists of generating 6600 DH0 lines, genotyping, 

GEBV calculation, and selecting ten DH0 lines based on their net merit predictions.  

The ten lines selected are used as parents for the next breeding cycle and also enter 

advanced testing. An additional 56 lines (66 total) are selected, advanced through two 

stages of seed increase and inbred per se evaluation.  Seed quantities from the selfed 



 

 43 

DH0 would likely be sufficient for parent recombination, but not for extensive 

advanced testing; therefore, two cycles of selfing are used to increase seed quantity. 

The additional 56 lines are included in this stage to increase the inbred per se 

performance data available for updating the GS prediction model, as this is an 

important component of maize inbred line net merit.  The data from additional inbred 

testing, advanced testing, and historical records are used for training GS models. Cycle 

length for the designed maize GS-BP is one year. 

Winter Wheat Breeding Program Structure 

 The general structure of the winter wheat breeding program (Fig. 2.2) was 

modeled after the Cornell University Winter Wheat Breeding Program. The winter 

wheat MAS- and GS-BP were designed to be identical for the first five stages. Inbred 

(F5) lines are created by advancing selected individuals through single seed descent 

(SSD).  Greenhouses are used to reduce generation time from 1 to 0.5 years.  F2 and F3 

plants are genotyped for 10 well-characterized QTL (e.g., disease, milling quality) and 

undergo marker-based selection.  This two-stage enrichment strategy is used to 

increase the frequency of desired alleles because of the improbability of obtaining 

progeny homozygous for all target QTL in small populations (Bonnett et al. 2005).  

While these markers could be included in whole-genome profiling for the GS-BP, we 

presumed the enrichment step is still used in a GS-BP to eliminate unnecessary costly 

genome-wide marker scoring and greenhouse space for lines not carrying essential 

QTL alleles.  The number of lines in genotyping stages was set to a multiple of 96 to 

match genotyping plate size for efficiency and cost savings, which are not trivial when 

genotyping on a small scale.   
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In the winter wheat MAS-BP, 288 F5-derived lines are planted in single-row 

plots for seed increase and visual evaluation of agronomic traits.  Twenty-five percent 

of the lines are culled for being visually deficient in agronomic performance and plant 

type.  Once inbred lines have been developed with sufficient amounts of seed, three 

stages of field evaluation are conducted prior to selection of 10 parental lines for 

recombination and advancement to regional testing prior to variety release.  Cycle 

length for the designed winter wheat MAS-BP is seven years.  

In the winter wheat GS-BP, field evaluation prior to parent selection is 

replaced by conducting GS on 288 F5-derived lines.  Ten F5-derived lines are selected 

on the basis of their net merit GEBV and recombined to begin the next cycle.  An 

additional 206 F5-derived lines are selected (which includes those 10 used for 

recombination) to be grown in the field for seed increase. Similar to the MAS-BP, a 

fraction of the lines (33%) are culled during seed increase due to visual agronomic 

deficiencies.  The remaining 144 lines are phenotyped, used for updating GS models, 

and serve as candidates for advanced testing and subsequent variety release. We 

assumed that this additional data would be necessary to supplement data from 

advanced testing for updating the GS prediction model. Cycle length for this winter 

wheat GS-BP is three years.    

Budgets 

Budgets for the maize and winter wheat breeding programs (Table 2.1) are 

represented by maize yield plot units (YPUs), i.e., the cost of growing and evaluating 

a single maize yield trial plot where 1 YPU=US$20 (Bernardo and Yu 2007). The 

budget of the high-investment maize inbred development program (excluding 
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advanced testing and commercialization) was set to 10,000 YPUs (US$200,000). The 

budget of the low-investment winter wheat breeding program (excluding advanced 

testing and commercialization) was set to 3,800 YPUs (US$76,000), which is slightly 

greater than one-third the budget of the maize program.  

The budgets of the GS and MAS breeding programs within each crop species 

were set to be equivalent allowing easy comparison between the two breeding 

strategies in terms of expected genetic gain at equal investment.  Minor differences in 

final budgets resulted from rounding to whole numbers for field plots and population 

sizes (Table 2.1). Budgets were calculated on a per cycle basis by totaling the costs for 

each stage of selection. In practice, plant breeding programs are operated as pipelines 

where each stage occurs once per year so that new selection candidates, parents, and 

varieties are produced each year.  Therefore, despite differing selection cycle lengths 

for the MAS- and GS-BPs, cost per cycle is equivalent to cost per year. This allowed 

gains per cycle and per year to be compared between GS- and MAS-BPs on the basis 

of equivalent budgets.  

Assuming a highly efficient DH production system, the cost of maize DH line 

production was 0.5 YPU (Longin et al. 2007). The GS-BP produces 6,600 DHs 

whereas the MAS-BP produces only 4,500 DHs because of extra phenotyping costs. 

Genotyping is performed using single nucleotide polymorphisms (SNPs), with the cost 

per SNP being between US$0.03-0.15 (Bernardo 2008).  Cost of genotyping and DNA 

extraction was 0.5 YPU for MAS and 1.0 YPU for GS. It was assumed genotyping 

costs do not increase linearly with marker number because of fixed costs for DNA 

extraction and economies of scale. Genotyping for MAS was budgeted for 50-100 

markers with the assumption that high-input maize breeding programs would be 
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selecting many loci identified in previous linkage and association mapping efforts. 

Genome-wide genotyping for GS was budgeted for several hundred or more markers. 

More precise estimates of marker number and cost for private sector maize MAS- and 

GS-BP were not publicly available.  

For the winter wheat programs, costs were approximated using current data 

from the Cornell Winter Wheat Breeding Program. Cost for a yield plot trial was 2.0 

YPUs (US$40), a single greenhouse cycle was 0.4 YPUs (US$8), and a field seed 

increase was 1.0 YPU (US$20). The cost of DNA extraction and MAS genotyping 

was 1 YPU for 10 microsatellites ( ≈$1.50 per marker; Wong and Bernardo 2008). 

DNA extraction and genome-wide genotyping for GS with several hundred or more 

markers was 2.0 YPUs, which is currently possible with Diversity Arrays Technology 

(Akbari et al. 2006). 

We assumed maize and winter wheat MAS- and GS-BPs had been ongoing 

rather than account for all the variable expenses in launching these programs.  This 

includes a trained prediction model and identified and validated marker-QTL 

associations for MAS. Currently, it is unknown how the yearly costs for QTL 

discovery and validation for MAS and the costs of model training for GS would 

compare in practice, partly because of the diverse situations encountered in plant 

breeding programs. To give the MAS-BPs the benefit of this uncertainty, resources for 

these activities were not budgeted in the MAS program, but were included in the GS-

BPs by allocating resources to phenotyping solely for GS model updating. 
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Table 2.1 Budgets of the winter wheat (3,800 YPUs) and maize (10,000 YPUs) MAS- 

and GS-BPs. GS-BP figures are lightly shaded and MAS-BP figures are heavily 

shaded. Tstrs=number of GCA testers, Locs=number of test locations; 

Geno=genotyping; TC=testcross; Pop=population.  
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Calculating response to selection 

Univariate and multivariate (Cochran 1951; Utz 1969) forms of the classical 

breeder’s equation were used to determine the expected genetic gain for each program 

outlined above. The univariate breeder’s equation was used for the GS-BPs because 

they include only one stage of selection. The expected genetic gain can be expressed 

as R=irAσA, where R is the response to selection, i is the intensity of selection (mean 

deviation of selected individuals in units of phenotypic standard deviation), rA is the 

selection accuracy, and σA is the standard deviation of breeding values (Falconer and 

Mackay 1996). Selection accuracy is equal to the correlation between selection criteria 

and breeding value (i.e. correlation between phenotypes or GEBVs and true breeding 

values (TBVs). In the context of mass selection on the phenotype, rA is equal to the 

square root of the narrow-sense heritability. Selection accuracy (rA) will be used herein 

to describe the ability of phenotypes, GEBVS, or their combination to predict TBVs.   

To calculate expected genetic gain of the MAS-BPs, involving multiple stages 

of selection, exact formulas originally derived by Cochran (1951) for two stages and 

extended to three stages by Utz (1969), as described in Tomerius (2001), were used.  

In addition to the parameters that determine expected response from a single stage of 

selection, multi-stage selection is dependent upon the correlation between selection 

criteria employed in each stage (Tomerius 2001). Wricke and Weber (1986) provided 

a detailed description for calculating expected gain from multiple stages of selection.  

We wrote an R program (R Development Core Team 2009) involving the R package 

mvtnorm (Genz et. al. 2009) to numerically determine the truncation points of the 

multivariate distribution for stages two and three. Bulmer’s recursive equation 
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(Bulmer 1971; Falconer and Mackay 1996) was iterated until genetic variance reached 

equilibrium.  The equilibrium genetic variance was used to calculate genetic gain. 

Quantitative genetic parameters for the maize breeding programs 

For the maize model, the relative values of variance components were taken 

from the reference scenario (VC2.2) of Longin et al. (2007).  σ2
GCA = 0.40, σ2

GCAxy = 

0.20, σ2
GCAxl = 0.20, σ2

GCAxyxl = 0.40, σ2
SCA  = 0.20, σ2

SCAxy = 0.10, σ2
SCAxl = 0.10, 

σ2
SCAxyxl  = 0.20, σ2

e= 2, where the subscripts GCA = general combining ability, 

GCA×y = GCA by year interaction, GCA×l = GCA by location interaction, GCA×y×l = 

GCA by year by location interaction, SCA = specific combining ability, and e = 

residual.  The interactions involving SCA correspond to those of GCA.  These 

variance component values produce a h2 = 0.11 on a plot basis.  Longin et al. (2007) 

based these variance components on results from DH testcross populations of 

commercial breeding programs and elite material from the University of Hohenheim 

maize breeding program.   

 In the maize MAS-BP, it was assumed that markers known to be tightly linked 

to or within well-characterized QTL are available.  Considering such a resource, the 

accuracy of MAS (h1) for predicting net merit was set to 0.40.  A lack of published 

MAS accuracies for net merit in private, high-investment maize breeding programs 

forced this approximation.  An accuracy of 0.40 on net merit using MAS is 

undoubtedly an overestimate, but provides a conservative comparison of GS-BP to 

MAS-BP. 
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 Selection accuracies in stages two and three were calculated as 

 where  is the variance of the DH testcross mean in stage i.  For 

stage two,  

 

where L2 is the number of locations and T2 is the number of testers used in stage two.  

For stage three,  is the variance of index scores calculated by combining testcross 

performance in stage two with average testcross performance in stage three (Wricke 

and Weber 1986):  

 

where L3 is the number of locations and T3 is the number of testers used in stage three.  

This set of assumptions will be referred to as the reference scenario, and the resulting 

accuracy will be referred to as the reference heritability.  

 Correlations between selection criteria in different stages were calculated as r12 

= h1 × h2, r13 = h1 × h3, and , where  is the covariance 

between the selection criteria of stages two and three:

 

(Longin et al. 2007; Wricke and Weber 1986). These correlations were used in the 

three-stage selection formulas. 
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 To investigate the effect of our assumptions on the results, we artificially 

varied the accuracies of the MAS-BP.  Accuracies for stages two and three were 

doubled, resulting in h2 = 0.93 and h3 = 1.  This scenario will be referred to as the high-

heritability scenario.  In this scenario, correlations between selection criteria in the 

different stages were calculated as the product of the accuracies of each stage, as r12 

and r13 above. 

Quantitative genetic parameters of a the winter wheat breeding programs 

Relative values of the variance components for the winter wheat breeding 

program were set to σ2
G = 0.40, σ2

Gxy  = 0.20, σ2
Gxl  = 0.20, σ2

Gxyxl   = 0.40, and σ2
e = 

2, where σ2
G  is the additive genetic variance, σ2

Gxy  is the interaction between 

breeding values and years, σ2
Gxl  is the interaction between breeding values and 

locations, σ2
Gxyxl  is the interaction between all three aforementioned factors, and σ2

e is 

the residual variance.  These variance component values produce a plot basis h2 = 

0.13.  These were chosen to be similar to the maize variance components, excluding 

the SCA variance components. 

 The marker-based enrichment stage is equivalent between the winter wheat 

MAS- and GS-BP’s (Fig. 2.1, Table 2.1), and therefore, expected genetic gains were 

calculated for all stages after marker-based enrichment. Three stages of field 

evaluation and selection were included in calculating the expected gain of the MAS-

BP.  Accuracies in the second and third stages of field evaluation were calculated 

assuming performances from previous years were combined with the present year 

performance into an index.  Accuracy for stage i was calculated as , 

where    
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where Yi is the number of years used in calculating stage i index performance (e.g., in 

stage 2, Y=2) and Li is the sum of location-year combinations (e.g., L3 = 7 = 1 location 

in year 1 + 3 locations in year 2 + 3 locations in year 3).  Correlations between 

selection criteria in different stages were calculated as r23, as they were for the maize 

program. 

RESULTS 

 Expected genetic gain per cycle of the maize MAS-BP was 1.34 genetic 

standard deviation units (hereafter abbreviated to “units”) assuming the reference 

variance components (Fig. 2.3).  Under the reference scenario assumptions, a GEBV 

accuracy of 0.55 or greater would be needed for the maize GS-BP to exceed the MAS-

BP in genetic gain per cycle.  The winter wheat GS-BP is expected to exceed the 

MAS-BP in genetic gain per cycle with a GEBV accuracy of 0.75 or greater.  The 

maize GS-BP had a lower “break-even accuracy” than the wheat GS-BP because the 

maize program allocation of resources allowed the generation of more DH lines and 

thus greater selection intensity in the GS-BP than the MAS-BP.  Obviously, the 

expected genetic gain per cycle under the high-heritability scenario was higher, 

requiring GEBV accuracies to be near 1 for the GS-BPs to achieve gains similar to 

those of the MAS-BPs.   

 A more relevant basis on which to compare genetic gain from different 

breeding schemes is, however, on a unit time and cost basis (Fehr 1987).  Budgets of 

the GS-BP and MAS-BP were set to be approximately equal.  For maize, the impact of 

being able to achieve 3 cycles of the GS-BP within the time required to achieve 1 

cycle of the MAS-BP is clearly illustrated in Fig. 2.4.  A similar situation exists for 
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winter wheat: the GS-BP can achieve 2.33 cycles to 1 cycle of the MAS-BP (Fig. 2.4).  

For maize, a GEBV accuracy of only 0.20 is needed for the GS-BP’s expected genetic 

gain per year to surpass that of the MAS-BP under either heritability assumption.  A 

slightly higher threshold of 0.30 was found for winter wheat.  If GEBV accuracies of 

0.50 could be achieved, assuming the reference heritabilities, genetic gain per year for 

GS-BP would exceed that of MAS-BP by about 3-fold for maize and 2-fold for winter 

wheat.  Even under the high-heritability scenario, GS would be expected to provide 

about 2.5- and 1.5-fold more genetic gain for maize and wheat, respectively.  
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Figure 2.1 The maize MAS- and GS-BP schemes. The GS-BP selection cycle length 

is 1 year; whereas, the MAS-BP selection cycle length is 3 years. GS-BP stages are 

lightly shaded and MAS-BP stages are heavily shaded, and stages common to both 

programs are not shaded. 
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Figure 2.2 The winter wheat MAS- and GS-BP schemes. The GS-BP selection cycle 

length is 3 years; whereas, the MAS-BP selection cycle length is 7 years. GS-BP 

stages are lightly shaded, MAS-BP stages are heavily shaded, and stages common to 

both programs are not shaded. GH= greenhouse; Adv= advance; Geno=genotyping; 

PS=phenotypic selection; F5DL= F5 derived line. 
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Figure 2.3 Expected genetic gain per cycle of the GS-BP plotted against the accuracy 

of GEBVs.  Solid line indicates expected genetic gain of the MAS-BP using the 

reference heritability, while the dashed line indicates the expected genetic gain using 

the high-heritability scenario.  Units for maize are GCA standard deviation units.  

Units for wheat are genetic standard deviation units. 
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Figure 2.4 Ratio of annual genetic gain expected to be achieved by the GS-BP to that 

of the MAS-BP.  Ratios were calculated using the reference-heritability (closed 

circles) and the high-heritability scenario (open circles). 
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DISCUSSION 

 Our results show that it is feasible to design a GS breeding program that 

achieves greater genetic gain per year with only low to moderate GEBV accuracies 

and a budget that is equivalent to a MAS breeding program (Fig. 2.4).  At high GEBV 

accuracies, genetic gain using GS is expected to be several fold higher than MAS. 

This result holds even when we assume heritabilities in the MAS-BP that are 

unrealistically high. Since the efficiency of selecting on markers relative to selecting 

on phenotypes increases as heritability decreases (Lande and Thompson 1990; 

Hospital et al. 1997), the advantage of GS over MAS should be even greater if lower 

heritabilities are assumed. 

 Computer simulation studies have found GEBV accuracies between 0.62 and 

0.85 using simulated (Habier et al. 2007; Meuwissen et al. 2001) or empirical marker 

data (Zhong et al. 2009) and simulated breeding values and phenotypes. Also, an 

empirical study of biparental plant populations using cross-validation found the GEBV 

accuracies for grain yield averaged 0.54 and 0.61 for three maize and two barley 

populations, respectively (Lorenzana and Bernardo 2009). Clearly, if these accuracies 

hold for actual breeding programs, our results indicate GS to be a clear winner over 

MAS in terms of genetic gain per unit time and cost.     

 Empirical GEBV accuracies from plant breeding programs are not yet publicly 

available, but high-quality data is available from livestock studies, particularly dairy 

cattle. VanRaden et al. (2009) was able to predict net merit of a validation set with 

0.53 accuracy using 38,416 SNPs and a training population of 3,576 Holstein bulls 

with breeding values measured by progeny testing.  The validation set consisted of 
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1,759 progeny tested bulls independent of the training population. Using this accuracy, 

our results showed gain per year for GS exceeded that of MAS by about 3-fold for 

maize and 2-fold for winter wheat. The differences in population dynamics and 

breeding objectives make it difficult to directly extend GEBV accuracies from cattle to 

plants; however, some of these differences show promise for high GEBV accuracies in 

plants. For example, levels of LD across cattle are much lower (e.g. de Roos et al. 

2008) than LD within plant breeding programs, especially self-pollinating species (e.g. 

Chao et al. 2007). Thus, fewer markers should be needed in plants than animals to 

have all QTL in LD with at least one marker. Also, as cattle GS models have been 

trained with highly accurate phenotypes from a cooperative database consisting of 

extensive bull progeny testing (VanRaden et al. 2009), plant GS models can be trained 

with highly accurate phenotypes obtained through sound experimental design and 

replication in time and space. These attributes, along with the previously discussed 

simulation results, suggest that GEBV accuracies needed for GS to significantly 

outperform MAS in gain per year will be attainable in plant breeding. 

The shorter breeding cycle of the GS-BPs resulted in greater annual gains than 

the MAS-BP under low to moderate GEBV accuracies. Another benefit of 

accelerating cycle time is the concentration of resources on a narrower germplasm 

pool.  This can be best illustrated by the maize breeding programs. Because we 

assumed all phases of the breeding cycle occur each year, the annual budget was equal 

to the budget of a single cycle for each program. Thus, over the three-year maize 

MAS-BP cycle, three times the budget of a single cycle will have been spent, in effect 

spread out over three different sets of germplasm all going through the pipeline. In 

contrast, in the GS-BP during that same time, all of those three budgets will have been 

spent advancing the same set of germplasm. This allows for resources in the GS-BP to 
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be concentrated on advancing a more elite, though narrower, germplasm pool. Gains 

on that pool, cumulating over cycles, are therefore greater. This difference, however, 

would logically also result in a greater loss of genetic diversity over time. Therefore, 

we believe that research on the maintenance of genetic diversity within GS programs 

will be important. 

The commercial maize and public winter wheat breeding programs were 

modeled to provide a contrast of breeding strategies and operating budgets to allow 

more general application of findings.  A major difference in assumptions between the 

two types of breeding programs involved the training populations used for GEBV 

estimation.  In the maize GS-BP, we assumed that inbred testing and large scale 

advanced testing data would be available for training a robust GS prediction model. 

The winter wheat GS-BP, on the other hand, allocated greater resources to additional 

phenotyping to supplement data from regional advanced trials that are much smaller 

and less intensive than a typical commercial maize advanced testing program. These 

extra resources are also allocated in the public winter wheat GS-BP because such a 

program would probably lack access to extensive genotype and phenotype databases.  

Moreover, less intensive phenotyping is used for training the winter wheat GS model 

(unreplicated plots at three locations) compared to a typical commercial maize 

advanced testing program, resulting in lower heritability and thus requiring a greater 

number of lines for model updating. 

 Another important difference between the maize and winter wheat GS-BP’s is 

the frequency of GS model updating.  In the case of the winter wheat GS-BP, three 

years are required for generation of the F5-derived lines genotyped for selection and 

two years are required to obtain phenotypes on lines selected for model updating. 
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Therefore, the training population includes individuals derived from the cycle just 

previous to that of the selection candidates. Selection candidates of the maize GS-BP, 

on the other hand, are separated from individuals in the training population by two 

cycles. This larger separation occurs because only 1 year is required to develop DH 

lines (i.e., selection candidates), and 2 years are needed for selected DHs to produce 

advanced testing results for GS model updating.  Model accuracy is highest when the 

training population includes individuals of the same generation as the selection 

candidates. Accuracy declines as generation number between the last model update 

and selection candidates increases (Habier et al. 2007; Meuwissen et al. 2001; Muir 

2007) because selection causes changes in variances, allele frequencies, and LD 

relationships between markers and QTL (Bulmer 1971; Muir 2007).  Under random-

mating, simulations have shown model accuracy to decrease by about 5% per 

generation (Meuwissen et al. 2001; Habier et al. 2007), but accuracy decrease was 

much more rapid under selection (Muir 2007). Therefore, the greater minimum GEBV 

accuracies required for winter wheat in comparison to maize (Fig. 2.4) could be 

compensated by potentially higher GEBV accuracies in wheat caused by more 

frequent model updating.  

 Our results show potentially enormous benefits from conducting a GS breeding 

program for crops. These findings are in line with similar studies on livestock 

breeding economics and expected genetic gain from GS compared to conventional 

programs (König et al. 2009; Schaeffer, 2006).  Despite the potential benefits, high 

startup costs required for amassing a large enough training population and fear of low 

accuracies are possible hindrances to transitioning to a GS breeding program. A key 

finding of this study is that even at low GEBV accuracies, GS-BPs were able to 

perform at least as well as MAS-BPs due to faster cycles of selection and 
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recombination. While low GEBV accuracy may also raise concern about variability in 

selection response, selection response at low accuracy is generally less variable than 

response at high accuracy (Hill 1974). Nevertheless, GS-BPs will go through more 

cycles of selection and variability accumulates with each cycle so that GS-BP 

variability will likely exceed that of MAS-BP. The deterministic methods used in this 

study analytically predict expected rates of gain, not variation around the expectation. 

Stochastic simulation and perhaps most importantly empirical results are needed on 

genetic gain over time using GS for complex traits, such as net merit, in dynamic plant 

breeding programs.   

 As for any discussion on the impact and use of technology, our assumptions 

and results will quickly be outdated.  Genotyping and sequencing technology is 

advancing at an extremely rapid rate, which is reducing the cost of dense marker data. 

For instance, human geneticists are looking forward to completing ambitious projects 

– $1000 human genome sequence, 1000 Genomes Project, and Personal Genome 

Project – that were nearly unthinkable just a few years ago (von Bubnoff 2008).  

Similar advances are being made in crop genotyping, as more species are being 

sequenced more quickly and new marker technologies are being applied to crops 

(Varshney et al. 2009).  Also, continued advancement in computational techniques for 

predicting GEBVs holds great potential for increasing accuracy at little to no extra 

cost (e.g. Gianola et al. 2009; Habier et al. 2009).  All the while, phenotyping costs are 

stagnant or increasing.  

 We conclude that GS could significantly increase genetic gain per year and 

that results from this study warrant more research on integrating GS in plant breeding 

programs.  The continued advancement of high-throughput genotyping, statistical 
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models for calculating GEBVs, and GS breeding methodologies will only strengthen 

this conclusion. 
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CHAPTER 3 

GENOMIC SELECTION ACROSS ENVIRONMENTS FOR GRAIN QUALITY IN 

BIPARENTAL WHEAT POPULATIONS 

ABSTRACT 

 Genomic selection (GS) is a promising tool for plant and animal breeding that 

uses genome-wide molecular marker data to capture small and large effect quantitative 

trait loci and predict the genetic value of selection candidates. GS has been shown 

previously to have higher prediction accuracies than conventional marker-assisted 

selection (MAS) for quantitative traits. Challenges in modeling genotype-by-

environment interactions, however, reduce GS accuracies. In plant breeding, the 

ability to produce large numbers of progeny per cross and replicate them across many 

environments presents opportunities to meet these challenges. In this study, we 

compared phenotypic and marker-based prediction accuracy of genetic value for nine 

different grain quality traits within two biparental soft winter wheat (Triticum 

aestivum L.) populations. We used a cross-validation approach that trained and 

validated prediction accuracy across years to evaluate effects of model training 

population size, training population replication, and marker density in the presence of 

GxE. Results showed that prediction accuracy was significantly greater using GS 

versus MAS for all traits studied, and that accuracy for GS reached a plateau at low 

marker densities (128-256). Despite the moderate to high heritabilities of the traits 

studied, the average ratio of GS accuracy to phenotypic selection accuracy was 0.66, 

0.54, and 0.42 for training population sizes of 96, 48, and 24, respectively. These 

results provide further empirical evidence that GS could produce greater genetic gain 

per unit time and cost than both phenotypic selection and conventional-MAS in plant 
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breeding with use of year-round nurseries and inexpensive, high-throughput 

genotyping technology.  

INTRODUCTION 

 The use of molecular marker data to predict the genetic value of selection 

candidates is an important tool used in both plant and animal breeding programs. 

Effective marker-assisted selection (MAS) has largely been based on predictions 

derived from a few markers that are linked to large effect quantitative trait loci (QTL; 

Holland 2004). Genomic selection (GS) aims to improve MAS accuracy for 

quantitative traits by capturing both large and small QTL effects with genome-wide 

marker coverage (Meuwissen et al. 2001). In short, GS uses phenotypic and genotypic 

data from breeding lines, i.e. the training population (TP), to estimate marker effects 

that are then used to predict the genetic value of selection candidates having only 

genome-wide marker data, reviewed by (Heffner et al. 2009). With rapid reduction of 

high-throughput genotyping costs, GS is now being implemented widely in dairy 

cattle breeding (Hayes et al. 2009). The current status of GS in private sector plant 

breeding is not publically available; however, several simulation studies (Wong and 

Bernardo 2008; Bernardo and Yu 2007; Zhong et al. 2009; Heffner et al. 2010) and an 

empirical study in biparental maize (Zea mays L.), barley (Hordeum vulgare L.), and 

Arabidopsis thailiana (L.) populations suggest that GS will outperform previous MAS 

methods in plant breeding programs (Lorenzana and Bernardo 2009). 

 Unlike animal breeders, plant breeders have the ability to create large 

biparental populations that can be replicated within and across environments. 

Biparental populations also have extensive linkage disequilibrium (LD), allowing for 
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complete genome coverage with only a few hundred markers.  These features enable 

“context-specific” MAS, where MAS is conducted within each cross by using 

genotypic and phenotypic information from target environments. Marker effects are 

thus relative to the genetic background and testing environments which improves 

prediction accuracy by minimizing error caused by epistasis and genotype by 

environment interaction (GxE; Podlich et al. 2004; Sebastian et al. 2010). Similarly, 

GS can be conducted within biparental populations, herein referred to as biparental-

GS, where a subset of the progeny constitutes the TP to estimate marker effects.  The 

resulting prediction models are then used for predicting genetic value of remaining 

progeny and/or for subsequent cycles of marker-assisted recurrent selection (MARS; 

Bernardo and Yu 2007). 

A context specific approach can address GxE by growing TPs in target 

environments (Podlich et al. 2004; Sebastian et al. 2010); however, two major 

questions remain: 1) how many environments should be used for training, and 2) 

should TP lines be replicated within and across environments or be unreplicated and 

distributed among environments. To maximize GS accuracy, it seems optimal to use 

many training environments and the largest TP possible by not replicating lines. This 

is because the ability to capture QTL effects through LD is improved by using more 

individuals at the expense of replication (Knapp and Bridges 1990). This strategy may, 

however, not always be best as smaller, replicated TPs can result in higher heritability 

and better predictions with GS models that rely more on estimating genetic 

relationships rather than QTL effects (Zhong et al. 2009). The importance of 

estimating relationships or QTL effects will depend strongly on which method 

maximizes GS accuracy and the number of selection cycles that will occur between 

marker-effect re-estimation. This is due to the fact that accuracy from estimating 
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genetic relationships will deteriorate faster from recombination than will accuracy 

from estimating QTL effects if marker-QTL LD is strong (Zhong et al. 2009; Muir 

2007; Habier et al. 2007).  Consideration of these issues, along with the cost of 

genotyping many unreplicated lines and testing in many environments, will be 

important in implementing GS in plant breeding.  

In any marker-based selection strategy, selection response should increase as 

heritability increases. But, scenarios of high heritability will also result in high 

phenotypic selection accuracy, resulting in little benefit of using MAS (Holland 2004; 

Hospital et al. 1997; Lande and Thompson 1990). MAS can, however, compare 

favorably to phenotypic selection for traits with high heritability if MAS cycles are 

shorter and less expensive than phenotypic selection cycles. In the case of oil palm 

(Elaeis guineensis Jacq.) breeding, GS with small TPs (Ntp=50) could reduce the 

selection cycle from 19 yr to 6 yr and increase gains from selection per unit time and 

cost (Wong and Bernardo 2008). This remarkable reduction in cycle time and cost 

favors marker-based prediction even if mediocre prediction accuracies result from 

using small TPs. Despite a less dramatic reduction in cycle time for field crops, 

Lorenzana and Bernardo (2009) calculated GS accuracies and suggested a MARS 

scheme using biparental-GS would approach 1.5 times more gain than phenotypic 

selection for maize and barley.   

In hexaploid wheat (Triticum aestivum L.), there are several important grain 

quality traits that, despite being highly heritable, are strong targets for GS as they are 

polygenic (e.g. Munkvold et al. 2009; Smith 2008) and require significant resources 

for accurate phenotyping. One important grain quality trait is resistance to pre-harvest 

sprouting (PHS), the premature germination of seeds while still attached to the mother 
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plant. PHS prior to harvest causes breakdown of starch and decreases seed quality, test 

weight, and grain value. In addition to test weight, traits used to evaluate overall 

milling and baking quality include: flour yield, flour protein, softness, gluten strength, 

and water absorption. Reliable phenotyping methods have been developed for PHS 

(Anderson et al. 1993) and milling and baking quality (Guttieri et al. 2001; Guttieri 

and Souza 2003; Walker et al. 2008); nevertheless, these phenotypes are costly, time-

consuming, and destructive, making early-generation testing of large populations 

difficult.  

 The objective of this research was to compare the accuracy of phenotypic and 

marker-based prediction of genetic value for nine different grain quality traits within 

two different biparental wheat populations. To meet this objective, a cross-validation 

approach that trained and validated prediction accuracy across years to evaluate 

selection strategies in the presence of GxE was used. Three marker-based prediction 

methods were tested to compare conventional-MAS, using multiple linear regression 

(MLR), and GS, using ridge regression (RR) and Bayes-Cπ (BC). Prediction accuracy 

of these methods was evaluated for three different training population sizes (Ntp= 24, 

48, and 96) to determine accuracies possible for traits, such as wheat grain quality, that 

are expensive to phenotype and will thereby greatly limit Ntp. Finally, the effects of 

marker number (Nm), number of model training environments (Nenv), and replication 

of TP lines across environments on GS prediction accuracy were evaluated. 
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MATERIALS AND METHODS 

Populations 

Two doubled-haploid (DH) biparental hexaploid winter wheat populations 

were analyzed: 1) Cayuga x Caledonia (CC) and 2) Foster x KanQueen (FKQ). The 

CC population contained 209 soft white winter wheat lines and was previously used in 

a PHS QTL study by Munkvold et al. (2009). The female parent, a PHS susceptible 

line, Caledonia, is an off-type selection from Geneva (Sorrells et al. 2004). The male 

parent, a PHS resistant line, Cayuga, is derived from a Geneva backcross to a cross of 

Geneva and Clark’s Cream (Sorrells and Anderson 1998). The FKQ population 

contained 174 soft red winter wheat lines differing for milling quality characteristics. 

The female parent, Foster, is an Agripro Company variety originating from Kentucky 

(VanSanford et al. 1997) and has very good milling quality, ranking 14th of 768 soft 

red wheat cultivars (Guttieri et al. 2008). The male parent, KanQueen, is a semi-hard 

red public variety originating from Kansas in 1949 (Bayles and Clark 1954). 

KanQueen has very poor milling quality ranking 764th of 768 soft red wheat cultivars 

(Guttieri et al. 2008). 

Phenotypic Data 

Data for nine quantitative traits were analyzed with seven milling and baking 

quality traits common to both populations, PHS only for CC, and test weight only for 

FKQ. PHS phenotyping was conducted as described by Anderson et al. (1993) and 

Munkvold et al. (2009). Harvested grain was tempered to 15% moisture and measured 

after milling on a modified Brabender Quadramat Junior mill as described by Finney 
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and Andrews (1986). The milling quality traits measured were flour yield (the 

percentage of flour obtained from milling), and softness (percentage of fine flour 

obtained i.e. that which can pass through a 94-mesh (180µm) screen). The two main 

components of baking quality, gluten strength and water absorption, were measured by 

flour protein concentration and four solvent retention capacity (SRC) tests. Flour 

protein was measured using a near infared analyzer (Unity Spectrastar 2200, Columbia 

MD).  SRC was the measured as amount of solvent retained by the flour after 

centrifugation and draining. The four SRC solvents analyzed each predict different 

components of baking quality: water (H2O-SRC) for global water absorption, sodium 

carbonate (NaCO-SRC) for damaged starch, sucrose (Suc-SRC) for arabinoxylan and 

partially hydrated gliadin content, and lactic acid (LA-SRC) for gluten strength. All 

milling and baking quality tests were done by the USDA-ARS Soft Wheat Quality 

Laboratory in Wooster, Ohio as described by Guttieri et al. (2008).  

All phenotypic data for CC were collected from locations near Ithaca, NY, 

USA. Milling and baking quality phenotypes were collected on 50g samples from 

1.26m x 3m, 6 row plots grown in three years (2005, 2006, and 2008) in one location 

each.  PHS data were collected on samples from 1m rows in a randomized complete 

block design with two replications. Data were collected for six years (2001-2006) with 

two locations in 2002 and 2003 and three locations in 2001 and 2004-2006 for a total 

of 16 environments (Munkvold et al. 2009). Phenotypic data for FKQ was collected on 

50g samples from 1.26m x 3m, six row plots for two years in Ithaca, NY, USA (2005, 

2006) and for one year in Wooster, Ohio, USA (2006).  All milling and baking and 

test weight data were collected on a single replicate and raw scores from each 

environment were used for the analysis. For the comparison of phenotypic accuracy to 

marker-based prediction, PHS was analyzed on a yearly basis using best linear 
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unbiased predictors (BLUPs) for each line in each year by fitting a random effects 

linear model in R (R Development Core Team 2009) that accounted for location, 

replicate, harvest date, and line effects. For the comparison of marker-based prediction 

accuracy when varying Ntp, replication, and number of environments, BLUPs for each 

line in each environment were calculated by fitting a random effects linear model in R 

that accounted for replicate, harvest date, and line effects. 

Genotypic Data 

 The total number of markers available for CC was 484: 215 simple sequence 

repeats (SSRs), 147 Diversity Array Technology markers (DArT; Triticarte Pty. Ltd., 

Yaralumla, Australia), 72 amplified fragment length polymorphisms, 31 target region 

amplification polymorphisms, 16 restriction fragment length polymorphisms, three 

expressed sequence tag-SSRs, and one sequence tagged site (Munkvold et al. 2009).   

The FKQ was genotyped with 5,000 DArT markers (Triticarte Pty. Ltd., Yaralumla, 

Australia) of which 1481 were polymorphic. Marker sets were filtered to 399 markers 

for CC and 574 markers for FKQ by removing redundant or skewed markers 

(α=0.01). Linkage groups were determined by using the Map Manager QTXb20 

computer program (Manly et al. 2001) using the Kosambi mapping function with a 

linkage threshold significance of α=0.001. Missing marker data was then imputed 

based on the observed multipoint marker data using the R/qtl package (Broman et al. 

2003). 
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Marker Effect Estimation  

 Three methods were used to estimate marker effects: 1) multiple linear 

regression (MLR), 2) ridge-regression BLUP (RR), and 3) a Bayesian approach called 

BayesCπ (BC).  Each of these methods was executed using R (R Development Core 

Team 2009). 

Mutliple Linear Regression (MLR) 

Multiple regression of trait values and marker alleles was conducted using a 

forward-backward variable selection approach where markers were modeled as fixed 

effects and significant markers were determined by forward (α=0.2) and backward 

(α=0.2) selection. Relaxed significance thresholds were used to achieve higher 

selection responses than those found using more stringent thresholds (e.g. Hospital et 

al. 1997; Lorenzana and Bernardo 2009). Regression coefficients of markers included 

in the final model were used as marker effects to predict the GEBV of each selection 

candidate. 

Ridge-Regression Best Linear Unbiased Prediction (RR) 

  A RR model was used to simultaneously estimate marker effects through 

modeling markers as random effects with a common variance (Meuwissen et al. 2001; 

Whittaker et al. 2000). The RR model thereby shrinks each marker effect equally 

toward zero, but does allow for markers to have unequal effects. Goddard (2009) and 

Piepho (2009) showed that RR is equivalent to a model where a realized-relationship 

matrix is determined from marker information in order to estimate marker effects 
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(Habier et al. 2007; VanRaden 2008). Variance components to solve mixed-model 

equations (Henderson 1984) and the additive realized-relationship matrix where 

calculated using R package ‘emma’ (Kang et al. 2008). 

Bayesian Estimation: BayesCπ (BC) 

To avoid the presumably incorrect assumption of equal marker variances, over-

shrinking of large effect loci, and not allowing markers to have zero effects, several 

Bayesian models have been proposed (Gianola et al. 2009).  In Bayesian GS models 

that allow for markers with no effect, if the proportion of markers with zero effect (π) 

is assumed known, an incorrect π can negatively affect prediction accuracy (Verbyla 

et al. 2010; Gianola et al. 2009). Therefore, we used BC, which is an extension of the 

BayesC (Kizilkaya et al. 2010), that jointly estimates π from the training data 

(Dekkers et al. 2009, Jannink 2010). Like BayesB (Meuwissen et al. 2001), the BC 

method allows for markers to have no effect; however, markers that are included in the 

model are assumed to have a common variance (Kizilkaya et al. 2010).  We adapted 

BC code written by R.L. Fernando (Dekkers et al. 2009), and for each analysis we 

used starting π parameter of 0.5 and 2,000 iterations with 1,000 burn-in iterations, 

which was sufficient to reach approximate convergence (stabilization of π) for each 

analysis. 

Prediction Accuracy and Cross-validation 

 For each validation line GEBV was calculated as yi=Xi g : where yi  was the 

validation line phenotype, Xi was the vector of the marker scores for that line, and g 

was the vector of marker effects obtained from TP using MLR, RR, or BC. Prediction 
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accuracy (r) was calculated for each model as the correlation of the GEBV and the 

“true” genetic value (TGV) of the selection candidate, divided by the square root of 

the broad-sense heritability (H) of the TGV on a progeny-mean basis 

(r=cor(GEBV:TGV)/H). The TGV was determined by calculating the BLUP for each 

selection candidate across all years not used in the TP by fitting a random effects 

linear model in R that accounted for year and line effects. The correction factor, H, 

was used to account for the estimation error of the TGV (Dekkers 2007). For 

comparison, phenotypic accuracy (rP) was calculated similarly, but the GEBV was 

replaced with a phenotypic estimated genetic value (PEGV): the observed phenotype 

of a selection candidate in the environments used for training the model. Thus, PEGV 

is composed of both additive and non-additive effects that can contribute to 

phenotypic r; whereas, the marker-based prediction models used in this study only 

capture additive effects, i.e. breeding value. 

 The impact of Ntp on r was investigated by using Ntp=24, 48, and 96 to 

correspond with phenotyping limitations of grain quality and current 96 or 384-well 

DNA sample plates. Therefore, the validation population (VP) size was the total 

population size minus Ntp. To avoid bias introduced by genotype by environment 

interactions (GxE), cross-validation was done across environments i.e., training data 

came from a single year and validation data came from all other years. FKQ data 

collected from NY and OH in 2006 were considered unique environments for cross-

validation, as this should not significantly bias accuracy because the correlation 

between NY 2006 and OH 2006 (0.78) was similar to that of NY 2005 and NY 2006 

(0.75).  
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 The impact of Nm on r was investigated by using the maximum Nm available 

(CC=399; FKQ=574) and four subsets of Nm=64, 128, 256, and 384 to correspond 

with current custom high-throughput genotyping capabilities. Marker subsets were 

created using K-means clustering (Hartigan and Wong 1979) in R where each marker 

was treated as an explanatory variable, the number of clusters equaled the Nm, the 

number of random starts equaled 1000, and the marker closest to the centroid of each 

cluster was chosen.  This procedure was considered important to select informative 

marker subsets by minimizing LD between selected markers and maximizing genome 

marker coverage.  

 For cross-validation described above, 30 TPs were randomly selected for each 

Ntp and PEGV was calculated for each. GEBV accuracy was also determined for all 

method-Nm-Ntp combinations. Therefore, each marker-based prediction method was 

used for 900 analyses for test weight (FKQ) and all milling and baking quality traits 

(FKQ and CC) and for 2700 analyses for PHS (CC). The reported r for phenotypic and 

marker-based selection was that average r for all 30 TPs, and prediction methods were 

compared using a paired t-test  (α=0.05) across the 30 TPs.  

To investigate the effect of the replication of TP lines across environments on 

r, the CC-PHS dataset was analyzed as it contained a large number of environments. 

As the number of locations per year in this dataset was unbalanced, an equal number 

of environments for both the training and validation was achieved by dividing the 

dataset into two “year groups” (2001, 2003, and 2005; 2002, 2004, 2006). This odd-

even year grouping should still represent a random sample, as the year number should 

be not predictive of the overall environmental conditions and GxE. We assumed a 

maximum of 96 field plots and two different scenarios were tested: 1) 96 unreplicated 
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lines could all be grown in the same environment, or lines could be replicated across 

environments, i.e. 48, 24, 16, or 12 lines could be replicated across two, four, six, or 

eight environments, respectively, and 2) 96 unreplicated lines could all be grown in 

the same environment or, while still being unreplicated, lines could be split evenly 

across two, four, six, or eight environments. For each scenario, 30 TPs and eight TP-

environment combinations were randomly selected. Calculation of r was done as 

previously described where the TGV of a selection candidate was a BLUP calculated 

using data from all eight environments in the validation data. This was repeated for 

both of the “year groups” and for optimal marker number for each prediction method 

(Nm=64 for MLR and Nm=256 for RR and BC) that was determined by the other 

analyses conducted in this study.  

RESULTS 

Phenotypic and Marker-based Prediction 

Marker-based prediction accuracies (rM) for all methods were greatest for the 

largest TP used (TP=96), with accuracy of RR (rRR) and BC (rBC) being greater than 

the accuracy of MLR (rMLR) for all traits across both populations (Table 3.1). The 

mean rRR (0.52) and mean rBC (0.53) were more than 1.4 times greater than the mean 

rMLR (0.36). For traits shared by both populations, FKQ had greater rM than CC for 

all three methods. In CC, the mean rRR (0.49) was greater than the mean rBC (0.47) 

with rBC being significantly greater than rRR only once (softness). In contrast, FKQ’s 

mean rRR (0.53) was less than its mean rBC (0.58), with rRR never being significantly 

greater than rBC. 
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Table 3.1 Phenotypic and marker-based prediction accuracy for each trait and 

population (pop).  Marker-based prediction was based on Ntp=96 and Nm that lead to 

highest accuracy for each trait-population-method combination 

 

 

 

 

 

 

 

 

The phenotypic prediction accuracy (rP) was significantly greater for all traits 

than rMs for both biparental wheat populations (Table 3.1).  The mean rP across all 

traits and populations was 0.80, with a maximum rP of 0.94 (FKQ:NaCO-SRC) and a 

minimum rP of 0.51 (CC:Suc-SRC).  For the seven milling and baking quality traits 



 

 82 

shared by both populations, the mean rP was 0.79 with FKQ (mean rP=0.89) having a 

1.3 times greater rP than CC (mean rP=0.69). Accordingly, the genetic variance 

component (Vg) and the H2 for each trait were also greater for FKQ than for CC 

(Table 3.1).  

The rM to rP ratio (rM/rP) across all traits (Ntp=96) for both RR and BC was 

0.66, which was 1.47 times greater than MLR (0.45; Table 3.1). When using the best 

marker-based prediction method for each trait-population combination, the mean 

rM/rP among shared traits was greater for CC (0.70) than for FKQ (0.66).  The 

highest rM/rP for CC was 0.84 (PHS, flour yield, and H2O-SRC) and for FKQ was 

0.79 (Suc-SRC). The lowest rM/rP was for softness in both CC (0.37) and FKQ 

(0.49).  

Prediction Accuracy vs. Training Population Size and Marker Number 

 Reducing the Ntp used to predict TGV had a large negative effect on rM (Fig. 

3.1, Supplementary Table 3.1 and 3.2). The mean rM across all traits and methods was 

0.30, 0.42, and 0.59 for Ntp of 24, 48, and 96, respectively. The reduction of rM with 

Ntp was less severe for RR than the other methods. While RR (0.52) and BC (0.53) had 

similar mean rMs at Ntp=96, when Ntp was reduced to 48 and 24, rRR decreased by 

17% and 36% whereas rBC decreased by 33% and 61%, respectively. The reduction 

of rMLR was largest for Ntp=48 (39%) and was similar to rBC for Ntp=24 (59%).  

 The mean rM across all trait-population-Ntp combinations was highest for 

Nm=256 for both RR and BC (Fig. 3.2). In contrast, MLR showed the highest rM when 

Nm was smaller than Ntp, i.e. Nm=64 and Ntp=96. For all methods, rM was 
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significantly different between Nm=64 and 256, but Nm=64 was not significantly 

different from Nm=128, and Nm=256 was not significantly different from 128 and 

384. These results suggest rM reached a plateau between Nm =128 and 256 for RR and 

BC, and a maximum rMLR was achieved when Ntp was greater than Nm. As Ntp 

decreased, rRR and rBC reached plateaus at smaller Nm, with maximum rM achieved 

with Nm ≤ 128 markers for Ntp=24. 

Number of Environments and Replications used for Marker-based Prediction 

With the limit of possible field plots set to 96, decreasing Ntp allowed for 

increased replication of each TP line across environments; however, reducing Ntp had 

an overall negative effect on rM for PHS in CC (Fig. 3.3 and Supplementary Table 

3.3). MLR showed a consistently significant decrease in rM as Ntp decreased, except 

for Ntp= 16 and 12. For RR and BC, there was no significant difference in rM between 

Ntp=96 and 48 or Ntp=16 and 12. In the contrasting scenario where 96 TP lines were 

unreplicated and distributed evenly across one, two, four, six, or eight environments, 

the overall differences rM were negligible for each prediction method (Supplementary 

Table 3.4). For rRR and rBC, TPs with two, four, and six environments (rM ≈ 0.60) 

were significantly higher than one or eight environments (rM ≈ 0.59); whereas, none 

of the scenarios were significantly different for MLR. There were also small 

differences in the standard error (SE) of rM, with training in a single environment for 

each method being having the highest standard error for each method tested 

Supplementary Table 3.4).  
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Figure 3.1 Effect of training population size (Ntp) on mean marker-based prediction 

accuracy (rM) for all trait-population-optimal marker set combinations  
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Figure 3.2 Effect of marker number (Nm) on the mean marker-based prediction 

accuracy (rM) for all trait-population-training population size (Ntp) combinations 
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Figure 3.3 Effect of training population size (Ntp) and replication across different 

numbers of environments (Nenv) on mean marker-based prediction accuracy (rM) 
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Supplementary Table 3.1 Phenotypic and marker-based prediction accuracy for each 

trait and population (pop).  Marker-based prediction was based on Ntp=48 and Nm that 

lead to highest accuracy for each trait-population-method combination 
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Supplementary Table 3.2 Phenotypic and marker-based prediction accuracy for each 

trait and population (pop).  Marker-based prediction was based on Ntp=24 and Nm that 

lead to highest accuracy for each trait-population-method combination 
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Supplementary Table 3.5 Restricted maximum likelihood estimate (REML) of 

variance components for PHS in CC 

 

DISCUSSION 

Marker-based Prediction Accuracy 

Marker-based prediction accuracy using GS was clearly superior to using 

conventional-MAS for all levels of Ntp and Nm for each grain quality trait studied. 

The observed advantage of using a random effects approach (RR and BC) versus a 

fixed effects approach (MLR) for situations of large Nm and small Ntp is consistent 

with results found for other biparental populations in simulation (Wong and Bernardo 

2008; Bernardo and Yu 2007; Piyasatian et al. 2007) and empirically (Lorenzana and 

Bernardo 2009).  

Despite the benefit of a low marker density being adequate to cover the 

genome in a biparental-GS approach, the issue of small Ntp and large Nm will still be 

present due to the practical limitations of Ntp when having a separate TP for each 
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biparental population. This will be especially true for traits, like wheat grain quality, 

that are expensive to phenotype. Accordingly, we evaluated rM for small Ntps (96, 48, 

and 24), and, as expected, rM decreased as Ntp decreased. Notably, RR showed 

considerably less reduction in rM than MLR (Lorenzana and Bernardo 2009) and BC. 

This indicates that predictions based on marker-based relationships are less affected by 

the lack of statistical power to estimate specific marker effects caused by small Ntp 

and large Nm (Zhong et al. 2009). The rapidly increasing trend of the rBC with 

increase of Ntp (Fig. 3.1) suggests that BC may have outperformed RR if larger Ntps 

were used, but it is unlikely that significantly larger TPs will be feasible for each 

biparental population in most breeding programs. 

Bayesian models have outperformed RR previously; however, only small 

differences have been reported between them for polygenic traits (Hayes et al. 2009; 

Zhong et al. 2009; VanRaden et al. 2009; Lorenzana and Bernardo 2009). Despite BC 

having a more realistic assumption of at least some markers having zero effect, the 

average accuracies across both populations also showed little difference between RR 

and BC when Ntp=96 (Fig. 3.1). Interestingly, this trend did not hold true when 

looking at the milling and baking quality traits for each population independently. For 

FKQ, BC was generally more accurate than RR, but for CC, RR was significantly more 

accurate for four traits and BC was significantly more accurate only for softness 

(Ntp=96; Fig. 3.1). 

The advantage of BC over RR for FKQ, but not for CC, was likely influenced 

by size of the marker effects present in each population. FKQ is a typical population 

used for biparental QTL mapping: the two parents were chosen for large phenotypic 

differences to increase genetic variance for the trait of interest, and thereby increase 
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the magnitude of QTL effects and the power to detect them. In contrast, CC was made 

from a cross between two elite parents with good milling and baking characteristics 

resulting in a population with a smaller genetic variance for those quality traits. As BC 

allows for markers with no effect, the markers that remain in the model can have a 

greater contribution to the predicted breeding values than would be possible using RR. 

Therefore, it was not surprising that BC performed better than RR in FKQ, where 

larger QTL effects would be expected. In practice, most breeding crosses will be made 

between elite material and, therefore, be more similar to CC than FKQ. Consequently, 

as seen in CC and previously mentioned empirical studies, RR will likely be 

comparable or even better than Bayesian models for highly polygenic traits in 

biparental-GS because power for QTL detection and effect estimation will be 

restricted by limited genetic variance and small Ntps. 

Prediction Accuracy in the Presence of Genotype by Environment Interaction  

All cross-validation procedures were performed such that training and 

validation data came from distinct environments to attain prediction accuracies that 

were not inflated by confounding GxE. In addition to the cross-validation across 

environments, we investigated both the effects of replicating lines across environments 

and distributing unreplicated lines among environments. Reducing Ntp through 

replicating TP lines across environments had a negative effect on rM (Fig. 3.3 and 

Supplementary Table 3.3). An Ntp less than 48 showed significantly reduced rM, that 

was likely due to adverse effects of small Ntp (as seen in Fig. 3.1); however, a TP with 

Ntp=48 grown in two environments was not significantly different for RR and BC than 

a TP of Ntp=96 grown in a single environment. This suggests that increasing 

replication at the expense of Ntp could be beneficial in cases where costs of 
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genotyping and generating TP lines are greater than increasing seed and replicating TP 

lines across environments.  Increased replication by reducing Ntp may, however, have 

further effects on rM in a recurrent GS scheme as selection candidates will become 

less related to the TP with each cycle of selection. That is, prediction accuracy 

achieved using smaller, replicated TPs will likely decrease more each generation 

because accuracy will largely depend on estimating genetic relationships that rapidly 

breakdown with recombination (Zhong et al. 2009). 

Distributing the TP across more than one environment provided only 

negligible improvements in rM over training all TP lines tested in a single 

environment despite previously reported QTL by environment interactions (Munkvold 

et al. 2009) and GxE explaining 6% of the phenotypic variation for PHS in CC 

(Supplementary Table 3.4 and 3.5). This is not necessarily surprising as we compared 

each scenario by its average rM across all environmental combinations. Therefore, a 

more informative statistic should be rM standard error, and while differences were 

small, rM standard error was highest for all methods when only one environment was 

used to train the model (Supplementary Table 3.4). This result supports the intuition 

that rM stability should increase by training with more environments as multi-

environment training has the advantage of spreading the risks of unpredictable weather 

conditions that can lead to poor data quality, or, in some cases, no phenotypic variance 

(e.g. complete lack of or very extreme incidence of disease, lodging, or drought). In 

addition, traits that exhibit greater GxE than was observed for PHS in CC may 

increase the value of distributing TPs across multiple environments to capture GxE. 

Clearly, GxE will differ for each breeding program, population, and trait. Thus, more 

research is needed to be able to predict the best allocation of TP resources across 
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target environments in order to achieve maximum rM while also considering the cost 

tradeoff of training with more environments.  

Marker-based vs. Phenotypic Selection per Unit Time and Cost 

The accuracy of predicting genetic value was significantly greater using 

phenotypic data than marker data, regardless of marker-based prediction method (Fig. 

3.1, Supplementary Table 3.1 and 3.2). The overall high rP was not surprising as PHS 

has been shown to have a moderate heritability (H2=0.44; Munkvold et al 2009) and 

the other eight quality traits have all been shown to have high heritability (H2 > 0.70; 

Huang et al 2006; Smith 2008). High H2 should also translate into high rM; however, 

statistical power to estimate marker effects is also heavily influenced by Ntp and the 

number of QTL controlling the trait (Beavis 1998). Therefore, the inferiority of 

marker-based prediction to phenotypic selection was expected as all traits studied were 

polygenic (Munkvold et al. 2009; Smith, 2008; Huang et al 2006;) with medium to 

high H2 and Ntp was limited to 96 individuals to represent a feasible maximum Ntp for 

each cross in a wheat breeding program. Furthermore, phenotypic prediction captures 

both additive and non-additive effects; whereas, the GS and MLR models used only 

capture additive effects, i.e. breeding value. So, while appropriate for assessing 

genetic value prediction, rP may be an inflated estimate in terms of breeding value 

prediction accuracy in cases where non-additive effects are present.   

 Even with lower accuracies from marker-based than phenotypic selection, 

greenhouses, off-season nurseries, and low-cost genotyping can allow MAS or GS to 

outperform phenotypic selection on a gain per unit time and cost basis (e.g. Bernardo 

and Yu 2007; Hospital et al. 1997; Wong and Bernardo 2008; Heffner et al 2010). In 
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barley and maize biparental populations, Lorenzana and Bernardo (2009) showed that 

rM was generally at least half that of rP for all traits studied. Assuming the possibility 

of growing three generations per year, Lorenzana and Bernardo (2009) concluded the 

annual gain from GS would approach 1.5 times that of phenotypic selection for maize 

and barley biparental-GS. The prediction accuracies for the grain quality traits across 

environments achieved in this study are consistent with Lorenzana and Bernardo 

(2009), with the average rRR/rP for Ntp=96, Ntp=48, and Ntp=24 equaling 0.64, 0.54, 

and 0.42, respectively. Using their same rough approximation, with only two 

generations per year for winter wheat, our results suggest that GS with Ntp>48 would 

outperform phenotypic selection for wheat grain quality traits. It should be noted, 

however, that each GS cycle without marker effect re-estimation will result in 

decreases in rM from changes in marker effects, gene frequency, and QTL-marker LD 

with each cycle of selection (Bernardo and Yu 2007; Muir 2007). 

In addition to enabling more cycles per year, marker-based selection can raise 

selection intensity by increasing the number of selection candidates. This is possible 

when high-throughput genotyping is cheaper than phenotypic selection. Considering 

the nine grain-quality traits we analyzed, cost of inbreeding a line, increasing seed, 

growing field plots, and phenotyping (~US$60) is at least 3 times the cost of genome-

wide marker coverage on a single plant (~US$20-US$25; cost of 384 SNP genotyping; 

S. Chao and S. McCouch, pers. comm.). Of course, the training cycle will be more 

expensive per line than phenotypic selection alone; therefore, Ntp size will need to be 

balanced with population sizes and genotyping costs of subsequent GS cycles.  
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Future Considerations for Biparental-GS Approaches 

The interest in MAS has largely been centered on its ability to decrease the 

length of the selection cycle; therefore, a major caveat of biparental-GS is that it 

requires phenotyped TP lines from each cross prior to conducting GS. Even in the case 

of maize, where DH lines can be created in a year with the use of winter nurseries, it 

would be at least two years before GS could be implemented for each inbred cross 

(Bernardo and Yu 2007). In contrast, a multi-family-GS approach, as used in cattle 

(e.g. Hayes et al. 2009), uses predictions generated from a TP comprised of advanced 

breeding lines from many families that have already gone through the breeding 

program. This would eliminate the need to wait for phenotypes from a new cross, 

thereby facilitating immediate application of GS to newly generated lines and 

populations and a further reduction of cycle time in plant breeding (Heffner et al. 

2010). 

The application of MAS strategies within each biparental cross will allow 

inexpensive genome-wide genotyping, as LD will be extensive. However, it is 

unlikely that genome-wide genotyping will be a major limitation with the steady 

advancements in high-throughput genotyping (e.g. Deschamps and Campbell 2010).  

Also, biparental-GS is a population-specific approach, which is useful in attaining 

accurate marker estimates as the confounding effects of genetic background, and rare 

allele frequencies are avoided (Podlich et al. 2004; Sebastian et al. 2010). But, 

regardless of the number of environments used, a single season of phenotyping for 

model training, as is typical of MARS (e.g. Bernardo and Yu 2007), could lead to 

inaccurate allele effect estimates if GxE is largely due to genotype by year effects as is 

common in many regions. Increasing the number of seasons of training for each cross 
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maybe advantageous, but this would increase the length of the training cycle. A multi-

family-GS approach that utilizes data from many biparental crosses that extend over 

environments and years (Heffner et al, 2010) may therefore be more attractive for 

capturing GxE as allelic effects would be more robust across time and space. 

Conclusion 

 Marker-based prediction accuracy achieved using GS was clearly superior to 

conventional-MAS for the nine wheat grain quality traits investigated in this study. 

The observed prediction accuracies, coupled with the ability to reduce breeding costs, 

shorten selection cycles, and increase selection intensity, support the use of GS for 

many traits, including high-heritability traits where phenotypic selection is already 

effective.  Looking forward, comparisons between biparental-GS and multi-family-GS 

approaches will be important for making decisions on how to best implement GS in 

plant breeding and maximize gains from selection per unit time and cost. 
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CHAPTER 4 

GENOMIC SELECTION ACCURACY USING MULTI-FAMILY PREDICTION 

MODELS IN A WINTER WHEAT BREEDING PROGRAM 

ABSTRACT 

Genomic selection (GS) uses genome-wide molecular marker data to predict 

the genetic value of selection candidates in breeding programs. In plant breeding, the 

ability to produce large numbers of progeny per cross allows GS to be conducted 

within each family. However, this approach requires phenotypes of lines from each 

cross prior to conducting GS. This will prolong the selection cycle and may result in 

lower gains per year than approaches that estimate marker-effects with multiple 

families from previous selection cycles. In this study, phenotypic, conventional 

marker-assisted selection (MAS), and GS prediction accuracy of genetic values were 

compared for 13 agronomic traits in a population of 374 winter wheat (Triticum 

aestivum L.) breeding lines from an advanced-cycle winter wheat breeding program. A 

cross-validation approach that trained and validated prediction accuracy across years 

was used to evaluate effects of model selection, training population size, and marker 

density in the presence of GxE. Prediction accuracies using GS were 28% greater than 

with conventional-MAS and were 95% as accurate as phenotypic selection (PS) when 

averaged across all 13 traits studied. For net merit, the average accuracy across six 

selection indices for GS was 14% greater than for PS. These results provide empirical 

evidence that multi-family-GS could produce greater genetic gain per unit time and 

cost than both phenotypic selection and conventional-MAS in plant breeding. 
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INTRODUCTION 

Quantitative traits such as grain yield have proven difficult to improve with 

marker-assisted selection (MAS). The main limitations are: 1) small population sizes 

and conventional statistical methods that have inadequate power to detect and 

accurately estimate effects of small-effect quantitative trait loci (QTL), and 2) gene-

by-gene interactions (epistasis) and genotype-by-environment interactions (GxE) that 

have limited the transferability of QTL effect estimates across populations and 

environments (reviewed by Bernardo 2008; Xu and Crouch 2008).  These limitations 

can be mitigated in plant breeding with improved marker-based breeding methods like 

genomic selection (GS; Meuwissen et al. 2001) and with “mapping-as-you-go” 

approaches that continually re-estimate marker effects in breeding populations and 

target environments in parallel with the selection process (Podlich et al. 2004). 

Genomic selection addresses the first limitation by using a random-effects 

approach to jointly estimate all marker effects without significance testing to capture 

small-effect QTL that are excluded by conventional-MAS (Meuwissen et al. 2001). 

Marker estimates for GS are derived from a “training population” (TP), composed of 

breeding material with both phenotypic and genome-wide marker data. Marker 

estimates are then used to calculate genomic estimated breeding values (GEBVs) of 

new breeding lines in the “selection population” (SP). The combination of affordable, 

high-throughput genotyping and GS prediction methods has resulted in marker-based 

prediction accuracies that are revolutionizing cattle breeding (reviewed by Hayes et al. 

2009a and Calus 2010) and show great promise for increasing gains from selection in 

plant breeding (reviewed by Heffner et al. 2009 and Jannink et al. 2010).  
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A “mapping-as-you-go” approach addresses the second limitation by re-

estimating marker-effects in new breeding populations across target environments to 

capture changes in epistasis and GxE that will result from shifts in genetic 

backgrounds caused by selection (Podlich et al. 2004). Well-funded breeding 

programs are able to maximize the context-specificity of marker effect estimates by 

conducting MAS within each new cross (e.g. a biparental population), as they have the 

resources to generate large progeny numbers for each cross and have extensive multi-

environment testing regimens (Sebastian et al. 2010). Unfortunately, this approach 

will also require the phenotyping of a subset of progeny from each cross before 

performing marker-based selection and will fail to leverage data generated from 

previous breeding cycles. Alternatively, MAS cycle times can be reduced to increase 

gains by avoiding this phenotyping step through estimating marker effects with data 

across multiple families in a breeding program (Jannink et al. 2001; Rafalski 2002; 

Breseghello and Sorrells 2006; Heffner et al. 2010). While a multi-family approach 

will be less “population-specific” and may increase error due to epistasis, this 

approach should reduce error due to GxE as it can leverage multi-year data thereby 

providing a greater sample of target environmental conditions (Podlich et al. 2004; 

Heffner et al. 2009).  

Genomic selection within each cross, herein referred to as biparental-GS, has 

been shown to achieve higher prediction accuracies than conventional-MAS in 

biparental populations both in simulations (Bernardo and Yu 2007; Wong and 

Bernardo 2008) and in empirical studies (Lorenzana and Bernardo 2009; Heffner et al. 

submitted). Biparental-GS also has been found to compare favorably to phenotypic 

selection (PS). Lorenzana and Bernardo (2009) reported biparental-GS accuracies for 

maize (Zea mays L.), barley (Hordeum vulgare L.), and Arabidopsis thailiana (L.) that 



 

 
 

107 

would approach 1.5 times more gain than PS when using year-round nurseries capable 

of three GS cycles per year. Heffner et al. (submitted) reported GS prediction 

accuracies (rGS) for nine quality traits in winter wheat (Triticum aestivum L.). Even 

when using TPs as small as 48 inbred lines and a maximum of only two GS cycles per 

year for winter wheat, their results also suggest that biparental-GS would outperform 

PS. 

Performance of GS in plant populations using marker effects estimated from 

multiple families, herein called multi-family-GS, is limited. In a simulation study that 

used empirical marker data and simulated phenotypes for two-row barley, Zhong et al. 

(2009) reported a rGS of ~0.60 for a trait controlled by 80 QTL with a heritability (h2) 

of 0.40. Using two years of phenotypic data from 1,700 maize hybrids to predict 288 

new hybrid combinations grown in two different years, van Eeuwijk et al. (2009) 

reported a rGS of ~ 0.70 for ear height in maize (h2=0.36). Finally, Crossa et al. (2010) 

used cross-validation to evaluate GS in 599 historical wheat lines and 284 maize 

inbreds from the International Maize and Wheat Improvement Center (CIMMYT). 

Using multiple GS models and environments, rGS for wheat grain yield ranged from 

0.36 to 0.61, for maize flowering time ranged from 0.46 to 0.79, and for maize grain 

yield ranged from 0.42 to 0.53 (Crossa et al. 2010). Results from these studies strongly 

support the utility of GS in plant breeding because deterministic simulation has shown 

that if rGS for net merit (i.e. overall performance) exceeds 0.50, GS could greatly 

outperform conventional-MAS in terms of gain per unit time and cost (Heffner et al. 

2010).  

Empirical comparisons between conventional-MAS using markers identified 

by association mapping and multi-family-GS in plant breeding programs are currently 
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unavailable. However, association mapping of human height provides an empirical 

example of the difficulty of capturing genetic variance for highly polygenic traits with 

fixed effect models that have stringent thresholds. Despite a high h2 (~0.80) and a TP 

of tens of thousands of individuals, only ~5% of the phenotypic variance for human 

height has been accounted for with ~50 significant markers (Gudbjartsson et al. 2008; 

Lettre et al. 2008; Weedon et al. 2008; Visscher 2008).  In contrast, Yang et al. (2010) 

fit all 300,000 markers simultaneously as random effects and found that using all 

markers explained 45% of phenotypic variation for human height in a population of 

~4,000 unrelated individuals. Thus, they concluded a large proportion of the genetic 

variance was explained with small-effect markers that do not pass stringent thresholds. 

Relaxing these thresholds can improve the amount of genetic variance explained with 

significant markers (Hospital et al. 1997; Moreau et al. 1998); however, small 

population sizes, low heritability, and confounding population structure will still cause 

small-effect markers to be below significance thresholds. Consequently, genetic 

variance will go uncaptured and significant QTL effects will be overestimated (Beavis 

1998; Schön et al. 2004; Xu 2003). This suggests that GS models should outperform 

conventional-MAS models in plant populations composed of multiple families.  

The objective of this study was to empirically compare phenotypic prediction 

accuracy (rP), conventional-MAS accuracy (rMAS), and rGS when marker effects were 

estimated with multi-family data from a breeding program. To meet this objective, 

cross-validation across years was performed in a population of 374 elite wheat 

breeding lines using genome-wide marker data and several marker-based prediction 

models to predict performance of 13 agronomic traits. For each trait, training 

population size (NTP) and marker number (NM) were varied to investigate their effects 
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on prediction accuracy. Finally, rGS and rP for net merit were compared using index 

selection.   

METHODS AND MATERIALS 

Data 

 A population of 374 soft winter wheat varieties and F5-derived advanced 

breeding lines resulting from many different crosses in the Cornell University Wheat 

Breeding Program were analyzed in this study.  Lines were genotyped with 5,000 

Diversity Array Technology markers (DArT; Triticarte Pty. Ltd., Yaralumla, 

Australia), resulting in 1544 polymorphic markers. Some markers were perfectly 

correlated to each other due to complete LD (r2=1). Therefore, the data set was 

trimmed to 1158 markers by selecting the marker with the least missing data from 

each pair or group of markers that were in complete LD. Missing data was imputed as 

the mean marker score for each marker because precise map position was unknown for 

many of the markers. 

 Phenotypic data for 13 traits were analyzed: grain yield, plant height, heading 

date (i.e. days to heading), lodging, pre-harvest sprouting (PHS), flour yield, flour 

protein, softness, sucrose solvent retention capacity (Suc-SRC), water SRC (H2O-

SRC), lactic acid SRC (LA-SRC), and sodium carbonate SRC (NaCO-SRC). PHS is 

the premature germination of seeds while still attached to the mother plant that 

decreases grain value and was measured as described by Anderson et al. (1993) and 

Munkvold et al. (2009). Milling and baking quality traits were measured as follows: 

flour yield - percentage of flour obtained from milling, softness - percentage of fine 
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flour obtained i.e. that which can pass through a 94-mesh (180μm) screen, protein - 

percent protein of flour measured using a near infrared analyzer (Unity Spectrastar 

2200, Columbia MD), and SRC - amount of solvent retained by the flour after 

centrifugation and draining. The four SRC tests were used to predict overall baking 

quality: H2O-SRC for global water absorption, NaCO-SRC for damaged starch, Suc-

SRC for arabinoxylan and partially hydrated gliadin content, and LA-SRC for gluten 

strength. The USDA-ARS Soft Wheat Quality Laboratory in Wooster, Ohio 

performed all milling and baking quality tests as described by Guttieri et al. (2008). 

Phenotypic data were collected from field trials in two years, 2008 and 2009, 

with three locations per year near Ithaca, NY. Each year, two locations were yield 

plots (1.26 m by 4 m) and one location was single 1 m rows. All traits were measured 

in yield trials and PHS, height, and heading date were also measured in single row 

trials. Each location was arranged in an unreplicated augmented design (Federer, 

1956) with 6 check varieties replicated 10 times each. A two-stage analysis was used 

to calculate line best linear unbiased predictions (BLUPs) because it is less 

computationally demanding than a one-stage analysis and has been shown to generate 

similar results (Möhring and Piepho 2009).  First, BLUPs were calculated for each 

trait in each location with a two-dimensional, first-order autoregressive (AR1 x AR1) 

spatial model with lines as random effects in ASReml (Gilmour et al. 2009). For PHS, 

an additional random effect of harvest date was included. Second, line BLUPs were 

calculated for each year with random effects of line and location. Only the first stage 

was used for H2O-SRC and NaCO-SRC because they were only measured in two 

locations in 2008. 
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Prediction Models 

Six methods were used to estimate marker effects for marker-based prediction:  

association analysis (AA), association analysis including kinship as a covariate (AK), 

ridge-regression BLUP (RR), BayesA (BA), BayesB (BB), and Bayes-Cπ (BC).  All 

statistical procedures herein were executed using R (R Development Core Team 

2009). 

Conventional-MAS Models 

A two-stage approach using association analysis and multiple linear regression 

(MLR) was used to represent conventional-MAS using multi-family data. That is, 

association analysis first reduced the number of markers (predictor variables), and 

MLR then selected markers to be included in the final prediction model and estimated 

the marker effects (regression coefficients) used to calculate GEBVs. AA and AK 

modeled environments and markers as fixed effects, and AK had an additional random 

covariate, a simple identity-by-state allele sharing kinship matrix (K), to account for 

genetic covariance among individuals to reduce the number of false positive marker-

trait associations caused by population structure and genetic relatedness (Zhao et al. 

2007; Kang et al 2008). Calculation of K and detection of marker-trait associations 

were performed with the R package ‘emma’ (Kang et al. 2008). A significance 

threshold of 0.05 was used for AA and AK because relaxed thresholds have been 

shown to increase marker-based prediction accuracy (Hospital et al. 1997; Moreau et 

al. 1998). Relaxed thresholds were also used in MLR for forward (0.2) and backward 

(0.2) variable selection.  
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Genomic Selection Models 

Four GS models were used in this study. RR assumes all markers have a 

common variance (Meuwissen et al. 2001; Whittaker et al. 2000), and thus shrinks 

each marker effect equally toward zero.  RR is equivalent to estimating markers effects 

with a realized-relationship matrix determined from markers (Habier et al. 2007; 

Goddard 2009; Piepho 2009). The additive realized-relationship matrix was estimated 

in R, and the R package ‘emma’ (Kang et al. 2008) was used to estimate the variance 

components to solve mixed-model equations (Henderson 1984). 

Three Bayesian models were used to address the simple, but likely unrealistic 

RR assumptions of all markers having non-zero effects and equal marker variances. 

BA fits all markers but allows each marker to have its own variance (Meuwissen et al. 

2001). In addition to allowing for unique marker variance, BB also specifies that a 

portion of the markers (π) have no effect (Meuwissen et al. 2001). Thus, BB is 

equivalent BA when π =0. Finally, BC assumes common marker variances and allows 

for some markers to have no effect (Dekkers et al. 2009, Jannink 2010). Additionally, 

BC jointly estimates π from the training data to avoid an incorrect π that can 

negatively affect prediction accuracy (Verbyla et al. 2010; Gianola et al. 2009). We 

adapted BA, BB, and BC code written by R.L. Fernando (Dekkers et al. 2009). For BC, 

a starting π=0.50 was used. For BB, π=0.90 was used because preliminary results 

showed that π values of 0.95 and 0.975 generally decreased accuracy. Each method 

was run for 2,000 iterations, had a burn-in period of 200 iterations. This was 

considered sufficient for approximate convergence, as the average correlation of 

results from two independent runs of 40 random TPs for each trait and each model was 

greater than 0.99.  
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Prediction Accuracy and Cross-validation 

Phenotypic prediction accuracy (rP) was the correlation of the observed 

phenotypes from 2008 and 2009. Marker-based prediction accuracy for conventional-

MAS (rMAS) and rGS was the correlation of GEBVs from one year and the observed 

phenotypes on the other year. GEBVs were calculated as GEBVi=Xi g : where GEBVi  

was the GEBV of line i, Xi was the vector of the marker scores for that line, and g was 

the vector of marker effects obtained from TP using a marker-based prediction model. 

Three different training population sizes (NTP=288, 192, and 96) were used for 

marker-based prediction with Nm=1158. Multiples of 96 were used to correspond with 

current 96 or 384-well DNA sample plates. As overall population size was 374 and 

maximum NTP was 288, GEBVs were calculated for 86 lines marker effects estimated 

from the TP. The observed phenotypes and GEBVs of the 86 lines from one year were 

correlated to observed phenotypes of the other year to obtain prediction accuracies and 

to avoid bias introduced by genotype by year interactions. To achieve adequate 

sampling of the genetic diversity both for training and validation, TP lines were 

randomly and proportionally sampled from six genetic clusters of size 48, 79, 95, 38, 

50, and 64. Cluster assignment and selection of optimal cluster number and model 

("VEI": diagonal, varying volume, equal shape) using the Bayesian information 

criterion were done using the R package ‘mclust’ (Fraley and Raferty 2002; Fraley and 

Raferty 2006).  

Four marker densities (NM=1158, 768, 384, and 192) were used to assess the 

impact of NM on prediction accuracy when using a NTP=288. K-means clustering 

(Hartigan and Wong 1979) was used to select informative marker subsets to minimize 
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LD between selected markers and maximize genome coverage. Markers were selected 

using the function ‘kmeans’ in R where: each marker was treated as an explanatory 

variable, the number of clusters equaled the NM, the number of random starts equaled 

1000, and the marker closest to the centroid of each cluster was chosen. Significance 

thresholds for AA and AK were relaxed from 0.5 (NM=1158) to 0.1, 0.2, and 0.3 for 

NM=768, 384, and 192, respectively. 

All six marker-based prediction methods were evaluated for NTP=288 and 

NM=1158 for 100 TPs using training data in 2008 and 2009 for a total of 1,200 

analyses for each trait. Because the Bayesian models were computational intensive for 

cross-validation and a preliminary analysis showed all GS methods produced similar 

trends, only two GS models (RR and BC) were used for investigation of the effects of 

NTP and NM. Therefore, four models (AA, AK, RR, and BC) were used for NTP=192 and 

96 with NM=1158 and NM=768, 384, and 192 with NTP=288. As before, each scenario 

was analyzed each model for 100 TPs using training data in 2008 and 2009, totaling 

an additional 4,000 analyses for each trait. Reported rP, rMAS, and rGS for each trait was 

the average accuracy for all 100 TPs across both years, and prediction methods were 

compared using a paired t-test (α=0.01).  

Net Merit Prediction Accuracy 

To predict net merit, trait predictions were combined using weighting 

determined by the “Smith-Hazel index” (Smith 1936; Hazel 1943) and by the “base 

index” (Panse 1946, Brim et al. 1959; Williams 1962). The estimated Smith-Hazel 

index is aGPb ˆˆˆ 1−= , where b̂  is the vector of estimated trait-weights, 

 

a  is the vector 

of relative economic trait-weights, 

 

ˆ P is the estimated phenotypic covariance matrix, 
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and 

 

ˆ G  is the estimated additive-genetic covariance matrix. The base index ignores 

phenotypic and genetic covariances; thus, trait predictions are weighted simply by 

their relative economic trait-weights.  

Three economic weighting indices were used: 1) emphasis on yield, 2) 

emphasis on milling and baking quality traits, and 3) a “balanced” index representing 

current breeding goals of the Cornell University Wheat Breeding Program (Table 4.2). 

H2O-SRC and NaCO-SRC were excluded from the indices, as they were only 

measured in two locations in 2008. The phenotypic covariance matrix (

 

ˆ P ) was 

estimated using line BLUPs calculated using phenotypes for each line and each trait 

from all four locations. The additive-genetic covariance matrix (

 

ˆ G ) was estimated 

using GEBVs for each trait and each line that were calculated from genotypic data and 

trait BLUPs from all 374 lines using RR. Phenotypic prediction accuracy and RR were 

used for comparing prediction accuracy for each index. For the Smith-Hazel index, 

)ˆ:ˆ( 21 bPhbPhcorrP = and )ˆ:( 21 bPhaGEBVcorrRR =  where: 

 

Ph1 is a vector of 

observed phenotypes from one year, 1GEBV  is a vector of GEBVs from the one year, 

and 

 

Ph2 is a vector of observed phenotypes from the other year. For the base index, 

):( 21 aPhaPhcorrP =  and ):( 21 aPhaGEBVcorrRR = . All phenotypes were 

standardized to mean zero with a standard deviation of one prior to index analyses. 

Net merit accuracies were also divided by the square root of the broad-sense 

heritability (H) of net merit in validation data on a line-mean basis to account for the 

validation phenotypes not being equal to the “true genetic value” (Dekkers 2007). 
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RESULTS 

Marker-based and Phenotypic Prediction Accuracy 

The rGS was greater than rMAS for all 13 traits studied (Table 4.1). For the 

maximum NM  (1158) and NTP  (288), mean rGS (0.58) across all methods and traits was 

28% greater than rMAS (0.46).  A large range of rGS was observed, ranging from 0.17 

(grain yield; BC) to 0.76 (LA-SRC; BA).  The range for rMAS was 0.18 (grain yield; 

AK) to 0.63 (Suc-SRC; AA). Only slight differences were detected between the GS 

models, with BA having the highest mean accuracy across all traits. Accuracy of BA 

and RR were most similar, as BA was significantly different from RR only for grain 

yield (BA=0.22 versus RR=0.20). In most cases where BB and BC were significantly 

different than BA and RR, their rGS were marginally lower than RR and BA, but again, 

differences were quite small. The best conventional-MAS method was AA, which was 

significantly greater than AK for six of the 13 traits.  

A wide range of rP was also observed, ranging from 0.21 (grain yield) to 0.89 

(heading date), reflecting the wide range of H2 for the traits in this study 

(Supplemental Table 4.3). When comparing the rP to the highest rGS achieved across 

all four GS models, rP was greater for nine traits, not significantly different for three 

traits (test weight, H2O-SRC and grain yield), and less than rGS for one trait (lodging; 

Table 4.1). The ratio of rGS and rP (rGS / rP) ranged from 0.84 (heading date) to 1.08 

(lodging) with a mean ratio of 0.95. When comparing the rP to the highest rMAS 

achieved across both conventional-MAS models, rP was greater than rMAS for all traits 

with rMAS/rP ranging from 0.56 (height) to 0.91 (grain yield) with a mean rMAS/rP of 

0.76. Finally, the slope from linear regression of rGS by rP (0.81) and  
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Table 4.1 Phenotypic and marker-based prediction accuracy for 13 traits. Marker-

based prediction was based on NTP=288 

rMAS by rP (0.64) showed that rGS/rP and rMAS/rP decreased as rP increased 

(Supplementary Fig. 4.1).  

Effects of Training Population Size and Marker Number  

Decreasing NTP had a strong negative effect on the mean accuracy across all 

traits for each of the four prediction models tested (Fig. 4.1; Supplemental Table 4.1). 

Decreasing NTP from 288 to 198 and 96 reduced the average rGS by 11% and 30% and 
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rMAS by 24% and 35%, respectively (Fig. 4.1). Reducing NM from 1158 to 768 and 384 

resulted in a small decrease in rGS and a small increase rMAS (Fig. 4.2), while reducing 

NM from 1158 to 192 reduced the average rGS by 10% and rMAS by less than 4%. 

Prediction Accuracy for Net Merit 

Prediction accuracy using the base index and the “yield”, “balanced”, and 

“quality” economic weights (Table 4.2) was greater for GS (RR) than for PS (Table 

4.3). For both GS and PS, the balanced weights had the lowest prediction accuracy 

prior to adjusting for error in the validation data. After adjusting the validation data for 

error by dividing by the square root of the H2 (Dekkers 2007), yield and balanced 

weights had equivalent accuracies and the quality weights had the highest accuracy. 

The Smith-Hazel index resulted in higher rGS than rP for the quality weights, equal 

accuracy for the balanced weights, and lower accuracy for the yield weights. The 

Smith-Hazel index using the yield weights had the highest accuracy while the quality 

weights had the lowest accuracy before and after correction using H. The mean rGS/H 

for all indices (0.54) was greater than the mean rP /H (0.47) as only one index (Smith 

Hazel – yield) resulted in a rP /H greater than rGS/H.  
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Figure 4.1 The effect of training population size (NTP) on marker-based prediction 

accuracy (rM) 
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Figure 4.2 The effect of marker number (NM) on marker-based prediction       

accuracy (rM)  
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Table 4.2 Economic weight indices for index selection 

 

 

Table 4.3 Phenotypic and GS prediction accuracy for net merit using the base and 

Smith-Hazel indices for each economic weight index 
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Supplementary Table 4.1 Effect of training population size (NTP) on prediction 

accuracy. Comparison of GS accuracy and phenotypic prediction accuracy (rGS / rP) 

used the highest accuracy of the two GS models. 
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Supplementary Table 4.1 Continued Effect of training population size (NTP) on 

prediction accuracy. Comparison of GS accuracy and phenotypic prediction accuracy 

(rGS/rP) used the highest accuracy of the two GS models. 
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Supplementary Table 4.2 Effect of marker number (NM) on prediction accuracy. 

Comparison of GS accuracy and phenotypic prediction accuracy (rGS/rP) used the 

highest accuracy of the two GS models. 
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Supplementary Table 4.2 Continued Effect of marker number (NM) on prediction 

accuracy. Comparison of GS accuracy and phenotypic prediction accuracy (rGS/rP) 

used the highest accuracy of the two GS models.  
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Supplementary Table 4.3 Phenotypic and marker-based prediction accuracy for 

NTP=288 and NM=1158. Accuracies were corrected for error in the validation data by 

dividing be the square root of the broad-sense heritability of the validation data (Hyr). 

Comparison of GS accuracy and phenotypic prediction accuracy (rGS/rP) used the 

highest accuracy of the four GS models. 
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Supplementary Figure 4.1 Simple linear regression and linear fits of rGS by rP and 

rMAS by rP.  
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DISCUSSION 

Comparison of Marker-based Prediction Methods 

 In this study, prediction accuracy using GS was superior to conventional-MAS 

in a wheat breeding population composed of multiple families. Averaged across the 13 

traits, the average rGS (0.59) was 28% higher than the average rMAS (0.46; Table 4.1). 

Clearly, the GS approach of jointly estimating all marker effects was able to capture 

more of the genetic variance than the two-stage conventional-MAS approach that first 

selected significant markers and then estimated their effects. This result is consistent 

with previous empirical studies using biparental plant populations (Lorenzana and 

Bernardo 2009; Heffner et al. submitted) and multiple-family animal populations 

(Moser et al. 2009) and provides additional empirical evidence that GS will increase 

the accuracy of marker-based selection in plant breeding.  

Four GS models that each had different prior assumptions for marker effect 

and variance distributions were used in this study to investigate the effect of these 

assumptions on rGS. Despite these model differences, the mean rGS across all traits 

ranged from only 0.58 to 0.60 (Table 4.1). This similarity in model performance is 

consistent with other empirical GS studies (Verbyla et al. 2009; VanRaden et al. 2009; 

Hayes et al. 2009a; Hayes et al. 2009b; Moser et al. 2009; Luan et al. 2009; Lorenzana 

and Bernardo 2009; Su et al. 2010; Heffner et al. submitted). Some differences 

between GS models; however, were significant (α=0.01) as rGS standard errors were 

small because 100 TPs were sampled for each method. Nevertheless, differences were 

small in this study, and it was concluded that rGS was generally not influenced by GS 

model choice.   
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The observed similarity in model performance is likely caused by two key 

factors: 1) effective population size (Ne) and 2) trait architecture (Daetwyler et al. 

2010). First, a population’s Ne determines the number of independent chromosomal 

segments (Me), where each independent segment can be traced back to a single 

ancestor.  Second, the trait architecture refers to the number of QTL (NQTL) and the 

distribution of their effects. The Me is important for RR because RR models genetic 

relationships by estimating the proportion of the genome that is identical between 

individuals. Thus, NQTL does not impact RR performance unless NQTL is very small 

(e.g. NQTL < 10, Daetwyler et al. 2010). In contrast, the Bayesian models used in this 

study assign a portion of the marker effects equal to zero (BC), model unique marker 

variances (BA), or both (BB) to calculate GEBVs by targeting QTL. Consequently, the 

Bayesian models are favored over RR when either NQTL  < Me or a few QTL control a 

large portion of the genetic variance. This is because they heavily shrink or remove 

segments with no effect and/or differentially weight segments that contain QTL with 

small to large effects. When NQTL ≥ Me  and all QTL effects are small (i.e. the 

infinitesimal model), these models are not expected to outperform RR because of the 

high probability that every chromosomal segment will contain a QTL. Therefore, the 

similarity in GS model performance suggests that the traits in this study were likely 

controlled by many small-effect QTL (Daetwyler et al. 2010).  

 Assuming NQTL ≥ Me, an estimate of Me can then be used to predict NQTL 

underlying the traits analyzed in this study (Daetwyler et al. 2010). In this population, 

LD decayed below an r2=0.2 at ~1.5 centiMorgans (cM) suggesting that the Ne was 

~65 individuals using 1/(1 + 4Nec), where c is the recombination frequency (Sved 

1971). Using Goddard’s (2009) theoretical approximation of Me =1⁄4 2NeL/log(4NeL), 

where L was the genome length of wheat in Morgans (~30M), Me was estimated to be 
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~1,000. While this estimate of Me is a rough approximation, this estimate along with 

the observed similarities of model performance suggests: 1) Me was at least several 

hundred, 2) the 13 traits studied here are highly polygenic, 3) these traits will be best 

predicted by GS models that capture the effects of a large number of QTL. 

Model selection should also consider relatedness between the TP and SP 

because genetic relationships deteriorate with each generation. Models that rely more 

on marker-QTL LD, e.g. Bayesian models like those used here, should produce higher 

accuracies than RR in scenarios were the TP and SP are separated by multiple 

generations (Habier et al. 2007; Zhong et al. 2009, Meuwissen 2009).  To conduct 

marker-based selection on selection candidates that do not have phenotypes, the TP 

and SP will be separated by at least one selection cycle. However, in practice, the lag 

between TP and SP may be greater because several GS cycles may occur while 

selected lines go through seed increases and/or inbreeding cycles before entering the 

TP to update the model (e.g. Heffner et al. 2010). Also, TPs that span several cycles of 

selection and have greater genetic diversity would result in larger TPs, Ne, and, 

consequently Me. In such cases, NQTL may be significantly less than Me, even for 

highly polygenic traits, suggesting that Bayesian models would be more accurate than 

RR. Nevertheless, updating the GS model each selection cycle should maintain genetic 

similarity between the TP and SP. Thus, a significant portion of rGS in plant breeding 

programs may still result from capturing genetic relationships with markers.  

Effects of Training Population Size and Marker Number  

The rapid decrease in accuracy with reductions in NTP for both conventional-

MAS and GS (Fig. 4.1; Supplemental Table 4.1) was expected because it is well 
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known that increasing NTP improves the estimation of marker effects (e.g. Knapp and 

Bridges, 1990) and accuracy (e.g. VanRaden et al. 2009, Hayes et al. 2009, Zhong et 

al. 2009). Meuwissen (2009) predicted that the TP size must approach 10*Ne*L in 

order to reach rGS≈0.90 and 1*Ne*L in order to reach rGS≈0.70-0.80 when TP and SP 

are unrelated, e.g. lines in SP come from a different breeding population or the TP and 

SP are separated by many generations. Using this approximation, NTP for this 

population would need to be 9,000 to 15,000 for rGS≈0.90 and 900 to 1,500 for 

rGS≈0.70-0.80. The latter is more feasible for public plant breeding programs, but both 

seem possible for well-funded programs with extensive testing regimens (e.g. 

Eathington et al 2007; Sebastian et al 2010). In most cases, plant breeders will retrain 

models frequently for calculating GEBVs; thus, TP and SP will be closely related and 

high rGS may be achieved with NTP far smaller than 10*Ne*L (Meuwissen 2009). In 

addition to the effect of Ne and L, NTP requirements will be affected by trait 

heritability, particularly when trait heritabilities are low (i.e. h2 < 0.40; Hayes et al. 

2009c). In this study, many traits had low H2, NTP was clearly below the requirements 

estimated above, and accuracy showed a near linear increase with increased NTP. 

Therefore, considerable improvements in rGS should have been achieved in this study 

if NTP was increased.  

Genome coverage is considered optimal when every QTL is in complete LD 

with at least one marker. This is becoming feasible for breeding programs as high-

density SNP platforms and genotyping-by-sequencing are becoming affordable. The 

benefit of increasing marker densities was supported by this study as the highest rGS 

was observed at the maximum NM. Increases in rGS were, however, gradual after NM 

was increased beyond 384. The diminishing return from increasing NM has been seen 

in other empirical studies (Lorenzana and Bernardo 2009; VanRaden et al. 2009; 
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Lorenz et al. 2011; Heffner et al. submitted) and suggests the advantage of high NM 

will be realized only if NTP scales with NM (Muir 2007). Scaling NTP with NM should 

also improve rMAS, but conventional-MAS is still expected to be suboptimal to GS for 

high NM because conventional-MAS is less efficient for situations with few 

observations (small NTP) many predictor variables (large NM) and multicollinearity 

(e.g. Meuwissen et al. 2001). Accordingly, in this study the highest rMAS was not 

achieved with the maximum NM. Thus, scaling NTP with NM and using GS to manage 

situations of few observations and many predictors will be important for plant 

breeders to capture the benefits of affordable, high-density genotyping.  

Phenotypic vs. Marker-based Prediction  

 Phenotypic prediction generally outperformed marker-based prediction, with rP 

being 39% greater than conventional-MAS and 9% greater than GS when averaged 

across traits and prediction methods. Using the highest accuracy achieved for each 

trait, GS was, on average, 95% as accurate as PS (Table 4.1). Traits with high 

heritability should have higher accuracy than those with lower heritability, but the 

same is true for rP. Therefore, there is little room for improving upon rP when H2 is 

high and PS is relatively inexpensive (Holland 2004, Hospital et al. 1997; Lande and 

Thompson 1990). The decreased benefit of rGS and rMAS as rP increases was observed 

here, as the slopes of from linear regression for rGS by rP (0.81) and rMAS by rP (0.64) 

were both less than one (Supplementary Fig. 4.1). Nevertheless, GS was competitive 

with PS suggesting that GS will compare favorably to PS for many traits, especially 

because GS can shorten selection cycles (e.g. Schaeffer 2006; Wong and Bernardo 

2008; Heffner et al. 2010), genotyping is becoming cheaper than phenotyping (e.g. 
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Bernardo, 2008), and NTP become larger as data is accumulated each GS training 

cycle.  

Accuracy of Predicting Net Merit  

 In this study, GS was comparable to PS on an individual trait basis; however, a 

breeder’s primary goal is improving net merit – a single character determined by the 

sum of all economically important traits (e.g. VanRaden 2004). Accordingly, net merit 

can be estimated by an index of genetic values for all traits of interest where each trait 

is weighted by its relative economic importance (e.g. Lin 1978). Three different 

economic weighting indices (“yield”, “quality”, and “balanced”) combining 11 traits 

(Table 4.3) and two selection index methods (“Smith-Hazel” and “base”) were used to 

compare rP and rGS (Table 4.4). The Smith-Hazel index (Smith 1936; Hazel 1943) was 

used because it is considered an optimal index. It accounts for the genetic and 

phenotypic correlations between traits that would cause a simple phenotypic index to 

be an imperfect predictor of the actual breeding goal- additive genetic net merit 

(Lynch and Walsh 2008). A base index that ignores these parameters and simply 

weights traits by their economic values (Panse 1946; Brim et al. 1959; Williams 1962) 

was also used. While theoretically inferior to the Smith-Haze index, the base index can 

be favorable when large data sets are not available for accurate estimation of the 

phenotypic and genetic trait correlations (Williams 1962; Harris 1964). It was 

unknown which method was best for this population; therefore, accuracies were 

averaged across the six indices tested. This resulted in a major finding in this study: 

rGS was 14% greater than rP for net merit (Table 4.3). Only one index resulted in rP 

being greater than rGS: the Smith-Hazel index for yield where rP =0.33 and rGS =0.31. 

It was expected that GS would compare well with PS because rGS was competitive 
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with rP for low H2 traits; however, this was easily the largest rGS/rP observed. As 

improving net merit is the primary goal for breeders, the high relative accuracy of GS 

for net merit was a very interesting result and more research on GS performance for 

net merit is needed.  

Biparental-GS or Multi-family-GS  

Empirical studies of GS in biparental populations have shown that biparental-

GS will likely be superior to conventional-MAS and phenotypic selection in terms of 

gain per unit time and cost (Lorenzana and Bernardo 2009; Heffner et al. submitted). 

Biparental-GS has two clear attributes: 1) relatively low genotyping costs because 

extensive LD should make genome-wide marker coverage achievable with a few 

hundred markers, and 2) marker effect estimates will be “population specific” and 

should mitigate error caused by epistasis and rare alleles. Biparental-GS, however, 

requires phenotypes of lines from each cross prior to conducting GS, which may 

prolong the selection cycle and result in lower gains per year than multi-family-GS. 

Also, biparental-GS may not maximize rGS because NTP will likely be limited because 

a separate TP is created for each cross. This may explain why, for the same nine wheat 

quality traits, rGS /H in this multi-family-GS study (~0.7) was greater than rGS /H in a 

biparental-GS study (~0.5) by Heffner et al. (submitted). Such comparisons of 

accuracies between multi-family and biparental-GS studies, however, should be made 

with caution because differences in genetic variances could make comparisons 

misleading. 

The benefit of using multi-family-GS to reduce cycle time was shown by a 

recent simulation study for wheat and maize by Heffner et al. (2010). Their results 
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suggest that if rGS for net merit approaches 0.5, as reported here, multi-family-GS 

could increase gain per unit time and per unit cost by more than two to threefold in 

plant breeding. Of course, breeders will use TPs to predict untested progeny rather 

than perform cross-validation. Therefore, it remains unclear how rGS reported here will 

compare to those achieved in actual multi-family-GS, biparental-GS, and 

conventional-MAS breeding programs.  

Two main features of this study should make these results relevant to actual 

plant breeding programs: 1) the population consisted of current advanced breeding 

lines of an advanced-cycle breeding program, and 2) predictions were made using 

training data from one year and validated using lines that were not in the TP and 

phenotypes from another year to avoid inflation of rGS caused by common GxE 

deviations in the TP and SP. If the results observed here and by Heffner et al. (2010) 

hold true, GS will dramatically increase gains from selection in plant breeding 

programs.  

Conclusion 

 Advances in high-throughput genotyping, statistical models, and breeding 

methodology are making GS a promising tool for substantially increasing gains in 

animal and plant breeding. This was strongly supported by this study, as the observed 

prediction accuracies suggest that GS will be superior to both conventional-MAS and 

phenotypic selection in terms of gain per unit time and cost. Further research and 

software development is needed to enable widespread adoption of GS in plant 

breeding programs.  
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