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Absrracr: Let T denote a main effect plan for the sn factorial with N 

treatments, that is T is an N x n matrix with elements from the 

{0,1,··· ,s-1}. Denote by T0 ,T1 ,···,Ts_1 theN x n incidence matrices 

of O,l,···,s-1, respectively, so that T • EiT. and ETi = JN • In the 
1 xn 

usual way we write E{Y} • Xu, where X is the (0,1) design matrix 

corresponding to T. A transformation G is obtained for which X • 

X*G', where X* • [1 
. . 
0 • 

T 1 • •. • • T ] thus giving a representation of 
s-1 

the design matrix directly in terms of a full rank (0,1)-incidence 

matrix. The determinants of X'X, X*'X*, and G'G are evaluated. The 

determinant of the information matrix is directly expressible in terms 

of the determinant of a (0,1)-matrix. These results are extended to 

include the general asymmetrical factorial Tisi. Upper and lower bounds 

are obtained for the determinant values of X* when X* is square and in 

general for X*'X*. One important aspect of this representation is 

that the construction of main effect plans and an assessment of their 

goodness via the determinant criteria can be studied directly in terms 

of (0,1) matrices. An extension to include interaction terms for the 

n s factorial where s is a prime or prime power and for the Tis. 
1 

factorial is given. 

*First draft written while on leave from the University of Wyoming and at 
Cornell University, 1972-73. 
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1. Introduction 

In a factorial experiment involving n factors with the ith factor at 

s. levels i=1,2,···,n, the total number of treatment combinations is 
1 
n 
H si. A design is usually represented as an N x n matrix T whose N rows 

i•1 
denote the particular treatment combinations and whose n columns correspond 

to the levels of the n factors. The elements of a column of T correspond-

ing to a factor at si levels are integers from {0,1,···,si-1}, i=1,2,···,n, 

to denote the si levels. 

In the analysis, the matrix T is often replaced by a matrix XN which xn 

reflects the v single degree of freedom parametric contrasts in the 

parametric vector a l from the usual regression equation E{Y } • xa and vx 

Cov{Y} = a 2 IN. The normal equations are X'Xi = X'Y, and solutions to the 

normal equations provide best linear unbiased estimates of estimable 

functions of the parameters in a. The matrix X'X is called the information 

matrix of the design T, and if X'X is nonsingular the variance-covariance 

matrix of a is proportional to (X'X)- 1 • Most criteria of goodness of a 

design depend upon some function of (X'X)-1 as, for example, the determin-

ant, trace, and maximum root criteria. If X'X is singular we consider a 

conditional inverse (X'X) and restrict to estimable functions of the B's. 

Since the matrix X is obtained directly from the matrix T, all of the 

information concerning the goodness of the design (in terms of some 

function of (X'X)-l) is contained within T. Thus for the purpose of 
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constructing good designs and the comparison of designs, the simplest and 

most direct representation of this property in terms of T itself would be 

useful. 

Raktoe and Federer [1970] obtained such a representation directly in 

n 
terms of the (0,1) matrix (l:T) for main effect plans for the 2 factorial, 

where 1 denotes a vector with every element unity. In Section 2 of this 
n 

paper we present a similar representation for the ll si factorial, and we 
i=1 

represent IX*'X'I directly in terms of this representation, where X a X*G'. 

In the third section an upper bound on the IX*I is obtained for both the 

symmetric and asymmetric factorials, and the minimum nonzero value of this 

determinant is indicated. 

The importance of the representation presented lies in the insight 

that may be gained toward the construction of fractional factorial plans 

and the assessment of their goodness via the determinant criteria as shown 

in Section 4. This is illustrated by the four methods of construction, 

using (0,1)-matrices, presented. 
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2. Representat~on of .a~n effect p1ans ~n teras of (0,1)-aatr~ces 

To illustrate the procedure, let us consider the sn symmetrical 

factorial and the corresponding main effect plan T for estimating the 

v = 1+n(s-1) mean and main effect contrasts under the assumption that all 

two-factor and higher-factor interactions are zero. Let T be an N x n Nxn 

matrix of elements j 1j 2···jn, where ji=0,1,···,s-1 for all i, i = 1,2,··•,n. 

The N x 1 observation vector corresponding to plan T is denoted as YT. 

LetT., j•O,l,···,s-1, be theN x n (0,1)-incidence matrix for element j. 
J 

That is, an element ofT. is one or zero as the corresponding element of 
J 

Tj is j or not. Then, 

s-1 
! T 

j=O j 
= J Nxn 

and 
s-1 

T = ! jT. 
jaQ J 

(2.1) 

where J is a matrix for which every element is one. Further, let olxns = 

(a~l) ,a~2 ) .···,a~n), a~ 1 ) ,···,a~n), a~ 1 ) ,···,a~~~) be the overparameterized 

vector of parameters corresponding to the jth level of factor i, i.e., 

(i) 
aj • Note that a mean parameter ~ is not included but could be added if 

desired. For the above overparameterized model, the usual incidence matrix 

is: 

• • • : T ] 
s-1 

(2.2) 

where the vector of ones 1Nx1 for the mean effect ~ is omitted. 

Exa•p1e 2.1. LetT, T0 , T1 , and T2 for a saturated main effect plan for a 

3~ factorial be: 

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 

0 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 

0 2 2 2 1 0 0 0 0 0 0 0 0 1 1 1 

1 0 1 2 0 1 0 0 1 0 1 0 0 0 0 I 

T = 1 1 2 0 ' T • 0 0 0 0 1 • T ,. 
I 

1 1 0 0 T • 
2 

0 0 1 0 

I 2 0 1 0 0 I 0 I 0 0 I 0 1 0 0 

2 0 2 1 0 1 0 0 0 0 0 1 1 0 1 0 

2 1 0 2 0 0 1 0 0 1 0 0 1 0 0 1 

2 2 1 0 0 0 0 1 0 0 1 0 1 1 0 0 
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Then, T9x4 = (O)T0+(1)T1+(2)T2 , J 9 x4 = T0+T 1+T 2 , and x9x12 = [T0 :r1 :T2 ). 

' ( (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) 
The parameter vector u = «0 ,«0 ,«0 ,«0 ,a1 ,a1 ,«1 ,a1 ,a2 ,«2 ' 

«~ 3 ) ,a~ 4 >). Note that E(YT] = (T0 :T1 :T2 )u where Y~ = (Y0000 ,Y0111 ,Y0222 • 

y1012'y1120'y120l'y202l'y2102'y2210)· 

To make XN of full column rank v for N ~ v and T a connected main 
xns 

effect plan, we use the (0,1)-matrix 

x* = [ 1 : r 1 Nxv 
(2.3) 

This is done to utilize the theory and properties associated with (0,1)-

matrices and results obtained by Raktoe and Federer (1970) and Anderson and 
n 

Federer (197 5). Using these results, the theory for s and 
n 

n si factorial 
i=l 

will be extended. It should be noted that a variety of X-matrices could be 

used and could be converted to X* matrices through the transformation 

XG = X*. Originally, the Helmert matrix was used as the X matrix by 

Anderson and Federer (1973,1981). It was noted that orthogonal polynomials 

could also have been used. Using the Helmert orthogonal contrast matrix, 

it was possible to utilize full rank square matrices which have some 

advantages. However, we shall use the X-matrix of (2.2) following a 

suggestion by an associate editor and a referee. In the usual formulation, 

let E(YT) = Xu. In order to obtain unique solutions, we reparameterize as 

follows: 

where 

n 
~ "'(i) 
t.. "'o = ao, 

i•l 

G = nsxv 

0 (i) (i) (i) 
pj = Oij - ao and 

1 
nx1 

0 . . 
n(s-1)x1 

I 1 (x) I 
s- n 

a = G' u 
vxl vxns nsx1 

.. I 
n(s-1) 

(2.4) 

(2.5) 
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where 1 is a vector of ones, 0 is a vector of zeros, I is the identity 
n 

matrix of size nxn which has ones on the diagonal and zeros elsewhere, and 

(x) denotes the Kronecker product of matrices. Under this formulation, 

* X a X G' and 
Nxns Nxv vxns 

n 

(G'G)vxv = - 1n(s-l)xl • 

-1' 
lxn(s-1) 

2I 
n 

I 
n 

I 2I 
n n 

I 
n 

I 
n 

I 
n 

I 
n 

2I 
n 

Rearrangement of the rows and columns of (2.6) allows us to write 

[ n/• 
0' 

·] 
1xn(s-1) 

(G'G) . . . . . . . . . . . 
vxv 

-1 I (x) (I +J ) 
n(s-1)x1 n s-1 s-1 

(2.6) 

( 2. 7) 

where J 1 is a square matrix of side s-1 and with all elements being ones. 
s-

( (1) (1) (1) (2) 
This rearrangement would result from using u' = ~0 .~ 1 ,···, ~s_ 1 , ~0 

(2) (3) (n)) 
~s_ 1 , ~O , ···, ~s- 1 as the parameter vector and rearranging the col-

umns accordingly. The minus ones in the first row of (2.4) were eliminated 

by adding 1/s times the sum of all the other rows to the first row. In 

this form, it is simple to evaluate the determinant of G'G by noting that 

Example 2.2. ForT and X of Example 2.1, 

(2) (3) (4) (1) (2) (3) (4)) 
~1 '~1 .~1 '~2 '~2 '~2 '~2 and G 

n-1 
ns 

u -

(2.8) 

( (1) (2) (3) (4) (1) 
~ 0 .~ 0 .~ 0 .~ 0 .~ 1 , 

and G'G are: 
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1 -1 0 0 0 -1 0 0 0 
1 0 -1 0 0 0 -1 0 0 

4 -1 -1 -1 -1 -1 -1 -1 -1 
1 0 0 -1 0 0 0 -1 0 
1 0 0 0 -1 0 0 0 -1 

-1 2 0 0 0 1 0 0 0 

0 1 0 0 0 0 0 0 0 
-1 0 2 0 0 0 1 0 0 

Gl2x9 "" 0 0 1 0 0 0 0 0 0 G'G • 
-1 0 0 2 0 0 0 1 0 

0 0 0 1 0 0 0 0 0 
9x9 -1 0 0 0 2 0 0 0 1 

-1 1 0 0 0 2 0 0 0 
0 0 0 0 1 0 0 0 0 

-1 0 1 0 0 0 2 0 0 
0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 0 

-1 0 0 1 0 0 0 2 0 

0 0 0 0 0 0 0 1 0 
-1 0 0 0 0 0 0 0 2 

0 0 0 0 0 0 0 0 1 

Rearranging the columns of G'G we obtain: 

4/3 0 0 0 0 0 0 0 0 
-1 2 1 0 0 0 0 0 0 
-1 1 2 0 0 0 0 0 0 
-1 0 0 2 1 0 0 0 0 

~(31t) IG'GI = -1 0 0 1 2 0 0 0 0 = ... 4(33 ) .. 108 
9x9 3 

-1 0 0 0 0 2 1 0 0 
-1 0 0 0 0 1 2 0 0 
-1 0 0 0 0 0 0 2 1 
-1 0 0 0 0 0 0 1 2 

As was noted above, we are using the transformation X 
Nxns * = X G' 

Nxv vxns 

From the fundamental matrix equation (Searle, 1982, Sections 11.2 and 11.7) 

X'Xu • ~u = GX*'X*G'u (2.9) 

where ~ is a vector of the eigenvalues of X'X, u is any vector, and X'X is 

nonnegative definite. Then, 

G'GX*'X*(G'u) m ~(G'u), ~ ~ 0 ( 2 .10) 

and 

G'GX*'X* = ~ (2.11) 

Therefore, 

IG'GX*'X*I • fG'Gf·IX*'X*I • product of positive eigenvalues of X'X, (2.12) 

or 

-1 
IX*'X*I = )G'GJ ll(positive eigenvalues of X'X) 
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The above results are summarized in the following theorem: 

Theorea 2.1. Onder t:he t:ransformat:.ion X= X*G', we have 

* a) XNxv = [1 : Tl • • • T J 
s-1 

b) IG'GI 
n-1 = ns 

c) nsn- 1 1X*'X*I = product: of pos.it::lve e:lgenva.lues of X'X 

d) * -1 X = X G ( G' G) , and when N=v and T :is a sat:urat:ed 
Nxv Nxns nsxv vxv 

p.lan, t:hen 

e) IX* I = [(product: of pos.it:.ive e.igenva.lues of X'X) /nsn-1 t 
The results for the sn factorial are now extended to the general asym

n 

metrical factorial s 1 x s 2 x ·•· X S = 
n II si 

i=l 
s s • 

n 

Since factors may have different numbers of levels, we may change X, X*, G, 
n 

and a accordingly. Let k "' ~ si; then X is Nxk, X* is Nxv, and G is kxv 
i=1 

* for v = 1+k-n. Let each T. of (2.1) be Nxn, and let T. be Tj with all col-
J J 

umns of zeros deleted. Then, let 

[To : 
* * r: -11 XNxk = Tl T2 T3 

n 
(2.13) 

and 
* 

= [ 1 
* * 

T: -11 X Tl T2 T3 Nxv 
n 

(2.14) 

For N' = ( (1) (1) (1) (2) (2) (2) (n) (n) (n) ) 
-1xk aO ' 0 1 ,···,as -l'aO ,al ,···,as -l····,ao ,al ,···,as -1' 

1 2 n 

the above X and X* matrices will need to have the columns rearranged from 

, ( (1) (2) (n) (1) (n) (n) ) a 1xk = a0 ,a0 , .. · ,a0 ,a1 , .. • ,a1 , .. · ,a5 _ 1 . The following G is for 
n 

the former a arrangement: 
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1 

I 
-1' 

I I I 
1x(s1 -1) 

0 0 0 
0 I 

1x(s 1 -1) (s1 -1) 

1 

I I 
-1' 

I I 
0 

1x(s2 -1) 
0 0 

0 I 
1x(s2 -1) (s 2 -1) 

G = 
kxv 

1 

I I I 
-1 I 

I 
0 0 

1x(s3 -l) 
0 

0 I 
s 3 -1) lx(s 3 -l) 

(2.15) 

. I I I I . . . . 
1 -1' 

0 0 0 
1x(s -1) 

n 
0 I 

lx( s -1) (s -1) 
n n 

Then, 

. 
-1' n . 0 0 0 0 . 1x(k-n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
( I+J) ( s 1 -1 ) -1 . 0 0 0 0 

(k-n)x1 . . 
0 . 0 (I+J)(s 2 -1) 0 0 0 . . 

(G'G) "' vxv 
I I I I 

0 0 I 0 I (I+J)(s3 -1) I 0 I 0 . . . 
. . I I I I 

. . . . . . . 
0 . 0 I 0 I I I (I+J)(s -1) . . .. . n . 

Adding suitable multiples of the remaining rows to the first row, the scalar 

n becomes n -
n (s.-1) 

1 
and then all other elements of row one are zero. 

ia1 
In this form, the determinant of G'G is obtained as: 

(2.17) 

s-1 
since the determinant of (I+J)(s -l) is si. Note that this reduces tons 

i 
when all si=s as given in Theorem 1. 

(2.16) 
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These results are combined in the following theorem: 

* Tbeore1a 2.2. Under t:he t:ransformat:.ion XNxk • XNxvG~xk' we have 

* [! * * 
: T: -11 a) X • T1 T2 T3 : ... 

Nxv 
n 

• ( n -
n si-1) n 

b) IG'GI r- n s. 
i""1 si i=1 1 

c) 
n s -1 n 
r _!_) n s. IX*'X*I .. product: of pos.it:.ive e:lgenva.lues of X'X, 

i•1 si i=l 1 

d) x* • X G (G'G)-1 and when N•v andT .is a connect:edsat:urat:ed 
Nxv Nxk kxv vxv' 

p.l an, t:hen 

e) [ ( 
n si-1) ]t 

IX*I • product: of pos:lt:.ive e.igenva.lues ofX'X/ n -i~1~ llsi • 

Statements c) and e) follow from the results given in 

(2.12). The parameters are given by ~ • G'a, where 

o<.i) - ~(i)_ ~o(i). 

equations (2.9) to 

n (i) 
B0 • ! ~0 /n and 

i•1 
P u " The following example illustrates the results. 

J j 

Example 2.3. Consider the following saturated main effect plan for a 

2x3x4x5 factorial. Let 

0000 1111 0000 0000 0000 0000 
01ll 1000 0111 0000 0000 0000 
0222 1000 0000 0111 0000 0000 
0033 1100 0000 0000 0011 0000 
0104 1010 0100 0000 0000 0001 

T llx4 ,. 1210 , To = 0001 ' T1 "" 1010 ' T2 .. 0100 ' T3 • 0000 , and r 4 • 0000 
1021 0100 1001 0010 0000 0000 
1132 0000 1100 0001 0010 0000 
1203 0010 1000 0100 0001 0000 
1014 0100 1010 0000 0000 0001 
1120 0001 1100 0010 0000 0000 
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* and T4 by deleting the first, the first two, and the first 

* [1 * * : T:]. three columns, respectively. Then x11xll - : T1 : T2 : T 3 which 

with columns rearranged to correspond to the a and B used, is: 

1 0 0 0 0 0 0 0 0 0 0 
1 0 1 0 1 0 0 1 0 0 0 
1 0 0 1 0 1 0 0 1 0 0 
1 0 0 0 0 0 1 0 0 1 0 

* 1 0 1 0 0 0 0 0 0 0 1 

xllxll = 1 1 0 1 1 0 0 0 0 0 0 and IX* I = -11 
1 1 0 0 0 1 0 1 0 0 0 
1 1 1 0 0 0 1 0 1 0 0 
1 1 0 1 0 0 0 0 0 1 0 
1 1 0 0 1 0 0 0 0 0 1 
1 1 1 0 0 1 0 0 0 0 0 

11 6 4 3 3 3 2 2 2 2 2 
6 6 2 2 2 2 1 1 1 1 1 
4 2 4 0 1 1 1 1 1 0 1 
3 2 0 3 1 1 0 0 1 1 0 
3 2 1 1 3 0 0 1 0 0 1 

X*'X* = 3 2 1 1 0 3 0 1 1 0 0 and IX*'X*I = 121 
2 1 0 1 0 0 2 0 1 1 0 
2 1 1 0 1 1 0 2 0 0 0 
2 1 1 1 0 1 1 0 2 0 0 
2 1 0 1 0 0 1 0 0 2 0 
2 1 1 0 1 0 0 0 0 0 2 

The above development has been for main effect fractions. Interaction 

terms may be included as well. For example, consider that there are s 1 

levels of Fl and s2 levels of F2, and it is desired to retain all of the 

interaction parameters in the parameter vector p. Further, suppose that 

there are s 3 levels of F3 and s 4 levels of F4 for the four-factor fraction-

al replicate. A saturated main effect plan would consider nK4 factors 

with (s 1-l) + (s 2-l) + (s 3-l) + (s4-l) + 1 = v parameters and combinations. 

To include the interaction parameters of F1 and F2 in a saturated fraction, 

use a three-factor fraction with s 1s 2 levels of the first factor, s 3 levels 

of the second factor, and s 4 levels of the third factor with (s 1s 2-1) + 

(s 3-l) + (s 4-l) + 1 = v parameters and combinations. 
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Exaaple 2.4. Let n=5, s 1a2, s 2=s 3=s 4=s 5=3, and suppose that the inter

actions of F 2 with F 3 and of F 4 with F 5 are desired. The comparable 

three-factor factorial is 2(9 2 ) and for v=Na18 runs, a saturated fraction T 

would be: 000, 101, 011, 112, 022, 123, 033, 134, 044, 145, 055, 156, 066, 

167, 077, 178, 088, 180. 

To include geometrical components of an interaction, simply consider 

each component as another main effect. If there are m geometrical compon-

ents and n main effects, use an n+m factor design. For example, for 

factors F 1 , F2 , and F3 plus a geometrical component of F1 and F 3 , one could 

use the design Tin Example 2.1, where the last column refers to the three 

levels of the geometrical component of the interaction (see Pesotan and 

Raktoe, 1975). 

3. Bounds on the determinants of nonsingular design matrices 

The transformation from X to X* provides a simple proof that the 

determinant of X'X is invariant to any change of level designation for any 

factor. Any permutation of the nonzero levels results only in a correspond

ing permutation of columns in X*, which of course does not change the value 

of the determinant. Likewise, any nonzero level may be interchanged with 

the zero level for any specified factor. The corresponding change in X* is 

a linear combination of the first column of all ones and the columns of 

r 1 ,T 2 , · · • ,Ts-l corresponding to that factor. Again, this does not change 

the determinant. This invariance property is a well known result (see, for 

example, Paik and Federer (1970], Joiner (1973], and Srivastava, Raktoe, 

and Pesotan (1976]), but the representation in terms of (0,1) matrices 

makes it more apparent. 
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Raktoe and Federer [ 1970] obtained the following bound on IIX*II using 

Hadamard's theorem: 

( 3.1) 

Since IX*I must be an integer, we take the integer part of the right-hand 

side of (3.1) as the upper bound. We now obtain a generalization of their 

result for X* matrices, and consequently X matrices, for main effect plans 

from the symmetrical sn factorial. 

Tbeore• 3.1. Let: T be a sat:urat:ed ma.in effect: plan for t:he sn fact:or.ial 

w.it:h N '"" n(s-1) + 1. If X* "' [ 1 : T1 : T2 : • • • : T8 _ 1 ). 

N/2 -sn/2 
IIX*II ~ integer part of N s 

and when s•2, (3.2) reduces t:o equat:.ion (3.1). 

( 3. 2) 

Corollary 3.1. 
n 

Let: T be a ma.in effect: plan for an s fact:or.ial exper.iment: 

w.it:h N ~ n(s-1) + 1. Ihen 

f Nn(s-1)+1 -ns 
IX*'X*I ~ integer part o s ( 3. 3) 

Proof. Various paths to proving the above theorem and corollary are 

possible. One method is that of Anderson and Federer (1973). A second and 

shorter proof (suggested by a referee) follows. Consider the eigenvalues 

of X'X. The eigenvalue zero occurs n-1 times. Since XN 1 1 • n1 1 , xns nsx nsx 

the maximum eigenvalue A of X'X is greater than or equal to 
max 

(3.4) 

The trace of X'X is nN. The average of the remaining n(s-1) positive 

eigenvalues is 

(nM- nN/s)/n(s-1) = N/s ( 3. 5) 



-14-

Since N/s ~ nN/s, the product of the eigenvalues is maximized when 

A • nN/s and all the other eigenvectors are N/s. Therefore, 
max 

IX*'X*I 
n(s-1) 

~ (n:) (;) /IG'GI 

* and since X is a square matrix 
vxv 

This completes the proof. a 

r r 

v -ns 
= N s (3.6) 

(3.7) 

Note: For I Ai = P, the rr Ai is maximum when Ai = P/r for all i. The 
i•l i=l 

proof of this statement is as follows. Let 9 • lliA.i- p(EA.i-P), where pis 

a Lagrange multiplier. Then, 

and 

From the above, 

ITA. "' \,p i ]. 

or 

Then, 

a a 
aA.. 

l. 

= E\ - P = 0 
i 

and 

} ( 3. 8) 

( 3. 9) 

(3.10) 

(3.11) 

Since there is a largest eigenvalue, the product is maximized when all 

eigenvalues Ai = N/s except for the largest one. 1 

Exa.ple 3.1. Consider a set of t orthogonal latin square of order s. This 

t+2 
set may be regarded as an orthogonal main effect plan for the s factor-

ial with N•s 2 • If t=s-1, which is possible whenever sis a prime or prime 

power, the set forms a saturated main effect plan. The s 2 x [l+(t+2)(s-l)] 

1 This note was kindly provided by S.R. Searle, Cornell University. 
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matrix X* is given by X*= [1 T1 T2 

and T~Ti = J- I, i ~ j. Thus 

···T ]whereT'T =(s-1)I+J s-1 i i 

X*'X* .. 

sl 

sl 

sl 

sl' 

si+(J-I) 

J-I 

J-I 

sl' 

J-I 

sl+(J-I) 

J-I 

sl' 

J-I 

J-I 

sl+(J-I) 

(3.12) 

(t+2)(s-2)+2 
The determinant of X*'X* is IX*'X*I = s , which equals the bound 

given in Theorem 3.1. When t=s-1, the design is saturated. Then IX*'X*I = 

s(s-1) s(s-1)/2 
s and IX*I = s , which equals the bound given in Theorem 3.1. 

Exaaple 3.2. Suppose T is an orthogonal array of size N, n constraints, s 

levels, of strength 2, and index\ denoted by (N,n,s,2). That is, T is a 

fraction for an sn factorial in N runs such that for any pair of factors 

each of the s 2 possible combinations of levels occurs exactly \ times. 

Clearly N • Xs 2 and the matrix X*'X* for this fraction is exactly A times 

the matrix (3.12) in Example 3.1. The determinant of X*'X* also attains 

the upper bound given in Corollary 3.1. 

By suitable modifications, Theorem 3.1 may be extended to cover the 

asymmetrical case, as indicated in the following theorem and corollary: 

Tbeorea 3.2. Let: T be a sat:urat:ed ma.in effect: plan for a general asymmet:-
n 

r.ical n s. 
i .. 1 l. 

[!:T1 :T;: 

n 

fact:or.ial w.it:h N • 1 + L (si-1) 
i=l 

··· · T* ] Then . s -1 . 
n 

N/2 n -si/2 IIX*II s integer part of N n s. 
i=l 1 

runs and let: 

(3.13) 
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Corollary 3.2. Let T be a ma1.n effect p.lan for a genera./. asymmetr1.cs.l 
n n 
II s. factor1'a.l w1.th N 2: 1 + 

i=1 ]. 
~ (si-1) runs and let X* be the correspond1'ng 

i=1 
(0,1)-matrLx representat1.on. I hen 

IX*'X*I ~ integer part of Nv 
n 

v = 1 + ~ (s.-1) . 
1 1 

( 3.14) 

Proof. LetS be a diagonal matrix with diagonals (s 1 ,s 1 ,···,s2 ,··•,sn' 

···,s) where s. is repeated s. times. Then, transform X, G, and~ as: 
n l. l. 

x = xst and 

} (3.15) 

and 

Now, we follow the proof given previously for Theorem 3.1. Then, 

IX*'X*I =(product of positive eigenvalues of (X'X)·IG'GI-1 . (3.16) 

"' -t After orthogonalization, the first row of G is S lkx 1with l ·s-ts-tl = 
kx1 n. 

Therefore, 

( 3.16) 

(3.17) 

The maximum eigenvalue ~ of X'X is 
max 

(3.18) 

Now, 

(3.19) 

The average of the remaining k-n positive eigenvalues is less than or equal 

to (kN-nN)/(k-n) = N. Following the same steps as before, we obtain 
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IX*'X*I k ( n s1)-l ~ nNN -n n IT si 
fz} 

and when T is a saturated main effect plan, 

n -s 
IX*I ~ Nv/2 n s i/2 

i•l i 

This completes the proof. o 

n -s 
• Nv rr s i 

i=l i 

The above relates to an upper bound on designs T. Designs T which 

achieve this bound are denoted as D-optimal. The question arises as to the 

conditions required to achieve this upper bound. There is no assurance 

that it can be obtained for all T. The T producing the largest value of 

IX*'X*I will be denoted as D-optimal. The following theorem indicates the 

conditions under which the upper bound can be achieved. 

Tbeorea 3.3. Necessary and suff2c1enc cond1c1ons for ach1ev1ng che upper 

bound of Iheorem 3.2 are chac 

2) a11 1eve1s of a factor occur w1th equa1 frequency and 

12) a11 poss1b1e pa1rs of 1eve1s of two factors appear w2ch the same 

frequency. 

Proof. 2 First let us suppose that the upper bound is attained for the 

matrix X* corresponding to a design T. Then, the matrix X'X has one 

and only one eigenvalue nN and k-n eigenvalues equal to N. Let n(ij,iJ) 

be the number of treatments ofT having factor i at level j and factor i' 

at level j' for j,j' = 1,2,· ··,si (for convenience of notation). When 

ij • ij,, then the number of treatments having factor i at level j is 

denoted as Note that these frequencies are the elements of the 

matrix X'X. 

2 These results follow from the comments of a referee, the necessary part, 
and from Anderson and Federer (1973,1981], the sufficient part. 
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The eigenvector corresponding to \ = nN has to be S-tlk since the 
max 

Raleigh quotient for this vector equals nN. Then, 

nStX'lNx 1 = nst[n(1 1),···,n(1s
1
),n(2 1),···,n(n 8 n)] 

= nNS-tl 
kxl 

(3.20) 

This implies that n(i.) = N/si for all i .. be a kx1 vector 
J J 

having a plus one at the coordinate corresponding to level j of factor i, a 

minus one at level j' of factor i, j¢j', and zeros elsewhere. Then, 

s-te(ij,ij,) is orthogonal to s-tlkx1 and to the kernel of X'X. This 

vector is an eigenvector corresponding to \=N. From these results, 

_2 
= NS [0· · ·0: 10· · ·-10· · ·: • · ·0]' (3.21) 

where the +1 is for factor i at level j and the -1 is for factor i at level 

j'. Since 

and 

= -n(i.,) • -N/s 
J i 

the equalities in the rows of factor i are satisfied. The remaining equal-
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s N/sisi,, i¢i' and all jj' (3.22) 

This completes the proof of the necessary condition. o 

To prove sufficiency, if the conditions for equations (3.20) to (3.22) 

are satisfied, then S-tlkx 1 is an eigenvector of X'X corresponding to 

A= nN; the S-te(i,,i.,) span an eigenspace corresponding to A=N with 
J J 

dimension k-n. This proves the sufficiency of the above equations. 

Exaaple 3.3. Proportional frequency designs and sets of orthogonal F 

squares as discussed by Hedayat and Seiden (1970) provide examples of 

orthogonal main effect plans for the asymmetric factorial. It can be shown 

that the structure of X*'X* for these designs is similar to (3.12). 

n 

Theorea 3.4. The c.lass of saturated main effect designs for the 1I si fac
i=1 

t:oria.l contains designs for which IX*I = 1. That: is the minimum possib.le 

nonzero va.lue is a.lways at:t:ainab.le. 

Proof. The familiar "one at a time design" (see Anderson and Federer, 

1975) has a (0,1) representation as 

[
1 00 ... 0] 

X* z ' 

1 Iv-1 

n 
v-1 = r ( s i -1) 

i=l 

whose determinant is clearly one. The proof is complete since one design is 

exhibited for every case. o 

Corollary 3.3. If T is 8 saturated main effect: p.lan for the 
n 

n 

n si factoria.l, 
i=1 

the minimum poss.ib.le va.lue of I X' X I is n ( s ! ) 2 and this va.lue is a.lways 
ia1 i 

at:t:ainab.le. Thus for any saturated design the IX'XI is a mu.lt:ip.le of this 

minimum va.lue. 

Proof. This follows directly from Theorems 2.2 and 3.4. o 
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Thus for saturated main effect plans, the smallest value of the 

determinant of X, or X*, can always be attained. Plans T achieving this 

value are denoted as D-minimal designs. The upper bound on the determinant 

of X, or X*, will be attained whenever an orthogonal saturated main effect 

design with equal numbers of repetitions on the levels of each factor is 

obtained. In the 3n series, for example, this will occur with n~4 and N=9 

yielding IX*I • 3 3 ; the next orthogonal saturated main effect plan occurs 

for n=l3 and N=27 yielding IX*I = 321 • In cases where an orthogonal design 

does not exist, the upper bound will not be attained. 

* It is noted that the spectrum of values for UX(n+l)x(n+l)U contains 

* all values attainable for HXnxnll· This is easily demonstrated by construct-

* ( . 
ing an x(n+l)x(n+1) a 1( +1) 1. n x : 

0' ) 1xn 
* , 

X 
the determinant (absolute value) of 

nxn 

* which has the same spectrum of values as IIX II nxn · 

* 
This means that a lower 

bound on the upper bound of HX(n+l)x(n+ 1 )H can be obtained from the 

* maximum value of UX H· nxn 
In most cases, this latter value is unknown. 

* For such situations, use the maximum value of IIX II, p~n, for the p for pxp 

which it is known, e.g., for an orthogonal array. Then, any design T which 

* does not have an IIX II between the lower bound on the upper 
(n+l)x(n+l) 

bound and the upper bound is not a good design with respect to D-optimality. 

A design T with an ( 
· I 0 ) * n-p • 

X(n+l)x(n+1) • l(n+l)xl:··~···:·~* .. (~~~) will achieve 
pxp 

the lower bound on the upper bound. 
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4. On the construction of .sin effect plans 

The construction of main effect plans for the symmetric and asymmetric 

factorial is now directly related to constructions of (0,1) matrices with 

certain constraints on the columns. Thus the body of knowledge and 

developed theory of (0,1) matrices can be directly brought to the construe-

tion of main effect plans. In this section we illustrate this with a few 

types of constructions. Recall from (2.1) that for a factor at s levels 

there must be a corresponding set of (s-1) columns in X* with all pairwise 

inner products zero and among these columns at least one row must be all 

zeros. 

Exa•ple 4.1. Circulant Matrix Construct. Let c 2n be a 2nx2n circulant 

matrix whose first row contains ones and zeros such that the ith and 

(n+i)th coordinates are not both one. The remaining rows of C are of 

course just cyclic permutations of the first row. Let X* be 

X*= 
[

1 0
1x2n l 

12nx1 c2nx2n 

n 
This X* matrix is appropriate for a 3 saturated main effect plan, and 

since the theory of circulants is well known the determinant is easy to 

evaluate. To illustrate, we list the first row of a suitable C matrix for 

the 3n factorial with n=3,4,5,6, and 7 and give the corresponding determin-

ant of X*. 

n First row of C N Det. of X* Upper bound 

3 (l 0 1 0 0 0) 7 4 6 
4 (1 1 0 1 0 0 0 0) 9 27 27 
5 (l 1 1 0 1 0 0) 11 88 141 
6 (1 l l 0 l 0 0) 13 208 884 
7 (l 1 0 l 1 0 1 0 0) 15 420 6470 
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A similar construction for the sn factorial would require a (s-1)nx(s-1)n 

circulant matrix with at most one 1 in the i, n+i,2n+i,•••,(s-1)n+i columns 

i•l,2,•••,n. 

Exaaple 4.2. Sum Composition- Let T1 ,T2 ,···,T8 _ 1 be nxn matrices of ones 

and zeros, and let 

s-1 

1 

1 

X* • 1 

1 0 0 

0 

0 

0 

T 
s-1 

Clearly IX*I = n ITil' and the corresponding design is 
i•1 

0 1xn 

T1 

T • 
2T 2 

3T3 

(s-1)Ts_1 

Anderson and Federer (1974) considered possible values for the determi-

nant of (0,1)-matrices and used ten methods of construction to obtain many 

of the possible values. Here we present all possible determinant values 

attainable by the above method of construction for saturated main effect 

n 
plans from the 3 series for n•3,4,5,6, and 7. 
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n = 3: 63 [0,1,2,4] 

n = 4: 6~ [ 0, 1 , 2, 3, 6, 9] 

n = 5: 65 [ 0, 1 , 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 20, 2 5] "' 65 [ 0, 1 , 2, 3, 4, 5] 2 

n = 6: 66 [0,1,2,···,9] 2 • 66 [all possible products of integers 0,1,···,9] 

n = 7: 67 [all integers ~ 18,20,24,32] 2 

where the integers within a square bracket represent possible values for 

the determinant of X*. 

It should be noted that this construction is restrictive and does not 

provide all possible values of lXI. For example, for n=3, and for another 

construction, it is possible to obtain a design for which X=6 3 (3) and which 

is not obtained via the above construction. Even though this method of 

construction gave the largest value obtained for n"'3, it is expected that 

this will hold for larger n. When n=4, the orthogonal saturated design in 

Example 2.1 yields a design for which IXI=6~(27), which is three times 

larger than the largest value obtained from this sum composition. The 

spectrum of possible values or even the largest possible value of lXI is 

unknown at present. The transformation of X to X*, i.e., a (0,1)-matrix, 

is considered to be one step toward the resolution of these problems. 

Example 4.3. The construction of Example 4.2 can be extended to the 

general main effect plans. Let T1 ,T2 ,···,T8 _ 1 be (0,1)-matrices of order 

for N. ~ n, 
1 

such that [0 Ti] could 

be regarded as a main effect plan for the 2n factorial with N.+1 
1 

Now, consider the following design for the s factorial with N = 1 + 
n 

runs: 

T = (0 T' 2T' · • · (s-l)T' ] ' 1 2 s-1 

Then, 

runs. 
s-1 

I Ni 
i=1 



and 

1 

1 

X*= 1 

X*'X*-

1 

N 

T'l 
1 

T'l 
2 

T' 1 
s-1 

0' 

0 

1'T 
1 

TiT1 

0 

0 
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0' 

0 

l'T 
2 

0 

T2T2 

0 

0' 

0 

0 

T 
s-1 

1'T 
s-1 

0 

0 

T' T 
s-1 s-1 

Given the Ti, i=1,2,••• ,s-1, it is a relatively simple matter to compute 

IX*'X*I. 

To conclude, we suggest one addi tiona! construction for main effect 

plans from the sn factorial. This method makes use of a (0,1)-matrix T and 

its complement (J-T) and by arranging these matrices to satisfy constraints 

(2.1) and (2.2). n n 
We illustrate the procedure for the 3 , the 4 series, 

and then for the sn series. 

Exaaple 4.4. Let T be an Nxn (0,1)-matrix of full rank with N ~ n. For 

n 
the 3 series, consider the plan defined by 

and 

with 3N runs. Each of the three levels of each factor occurs N times. For 

this design, 



[

3N 

X* 1 X* = Nl 

Nl 
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Nl I 

T 1 T+(J-T) 1 (J-T) 

T' (J-T) 

Nl' ] 
(J-T) 1 T 

T'T+(J-T)'(J-T) 

If T itself is a structured matrix, then X*"X* has a simple structure. For 

example, if T•I , then 
n 

nl 1 

(J-I) [

3n 

X* 1 X* • nl 

nl 

ni+(n-2)(J-I) 

(J-I) 

nl 
1 l 

ni+(n-s)(J-I) 

and 

n-1 IX*'X*I = 3 n(n2 -3n+3)2 

For the 4n series, the construction is given by 

T 

J-T 

0 

0 

T = 2 

0 

T 

J-T 

0 

and T = 3 

0 

0 

T 

J-T 

n 
In general, for the s factorial we letT,, i•l,2,···,s-l, be sNxn matrices 

l. 

whose ith and (i+l)st blocks are T and J-T, respectively, with the remain-

ing blocks composed of zero matrices. For this construction, we have: 

X*IX* = 

Nl 

Nl 

Nl 

Nl 

Nl 

Nl' 

A 

B 

0 

0 

Nl I 

B 

A 

B 

0 

N' 1 

0 

B 

A 

0 

where A= T'T + (J-T) 1 (J-T) and B z (J-T) 1 T. 

Nl' 

0 

0 

0 

A 
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