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The presence of aquatic vegetation in streams generates coherent structures at

several length scales, that depend on the properties of both the vegetation and the

flow. Stem- and leaf-scale wakes are generated as water moves within the canopy

and the drag discontinuity at the top of the plants creates a free shear layer-

like flow with coherent vortices that penetrate within the vegetation. Models to

estimate velocity, turbulence, mixing rates, dispersion, and residence time within

these complex, vegetated flows, require knowledge of the force exerted by the

plants, often represented in terms of a drag coefficient, Cd, and yet its value is often

left as a calibration parameter, to match numerical models against laboratory and

field data.

We present a laboratory, non-intrusive, drag measuring device. The drag plate

is tested on two well documented cases: uniform flow over a flat plate, and flow

around a rigid cylinder. The successful performance of the device proves it suitable

for direct measurements of drag on more complex, single or multiple, rigid or flexi-

ble elements, which makes it an ideal device for studies on vegetated flow, natural

rough-bed boundary layers, and coastal structures. We use the drag plate, coupled

with quantitative imaging techniques, to capture the velocity field and obstructed

frontal areas associated with it, and we generate an extensive data set for flow

through submerged and emergent arrays of rigid cylinders, as well as submersed

and emergent canopies of live, flexible stems of Eurasian watermilfoil (Myriophyl-

lum spicatum). Direct measurements of drag in flow through aquatic vegetation



are still rare, since most research groups often estimate its value using a simplified

momentum equation, which does not necessarily hold for all scenarios. Our direct

approach allows us to compare those estimates against actual measurements, and

to identify sources of errors in the estimated values.

We use the measured values of drag in rigid cylinders, to obtain fitting param-

eters to predict Cd in canopies of live, flexible stems as a function of solid volume

fraction, φ, and a diameter based Reynolds number, Red = Ud/ν. For live stems,

an effective diameter is proposed as the characteristic length scale, calculated from

values of the volumetric frontal area, a (obstructed frontal area per unit volume,

[L−1]), and the canopy density n (number of stems per unit horizontal area [L−2]),

as de = a/n. The predicted values of Cd, and the newly introduced length scale, de,

successfully perform at estimating the total drag, and balancing both momentum

and turbulent kinetic energy budgets.
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Chapter 1

Introduction

1.1 Objectives

The effect of physical obstructions in flows has always been an important subject in

fluid mechanics. Whether the interest is on single or multiple, regular or irregular

shaped obstructions, researchers have tried to characterize the physical processes

generated by the flow-obstruction interactions.

A main concern has been the proper characterization of the drag force, D,

acting on the immersed bodies. It is customary in fluid mechanics to represent D

as a quadratic function of velocity, as stated in Eq. 1.1.

D =
1

2
ρCdAfU

2 (1.1)

In Eq. 1.1, ρ is the fluid density, Af is a characteristic frontal area of the object,

perpendicular to the mean flow, U is a characteristic velocity of the flow, and

Cd is the drag coefficient, a value that depends on both the flow and obstruction

characteristics.
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Early experimental works, such as that from Wieselsberger (1922a), reported

and analyzed by Schlichting (1979), characterized the drag coefficient for simple

shapes, such as rigid cylinders and spheres, and found a relationship between Cd

and a diameter-based Reynolds number, Red = Ud/ν, where ν is the kinematic

viscosity of the fluid and d is the diameter of the element. In most introductory

fluid mechanics textbooks today, one can find the values of Cd as a function of ReL,

where L is some characteristic length scale of the obstruction, for several simple

shapes. When dealing with more complex geometries, or with arrays of elements

in the flow, such as flow through aquatic vegetation, a standard methodology to

determine the values of Cd is still unknown.

Our primary goal is to characterize the drag exerted by vegetation. It is ex-

pected that high flow rates will generate larger drag forces, able to dislodge or-

ganisms living within the canopy and damage the plants themselves, or to destroy

their assemblages. At the same time, high flow rates can increase mixing rates

to improve the exchange of nutrients. On the other hand, while low flow rates

will produce less drag and create a less turbulent environment, the lower mixing

rates can become less favorable to some organisms (Nikora, 2009). Flexible plants

will bend into a more streamlined configuration to reduce their exposed area and

decrease drag, but that area reduction implies also a smaller surface for nutrient

exchange, which along with self-shading and shading from adjacent stems can de-

crease light absorption. A better understanding of vegetated drag will help us

clarify where the optimal range is for different plant species. We use a direct ap-

proach, measuring the actual drag exerted by the immersed bodies, by means of

a drag plate, with a surface sufficiently large to average over several elements in

the flow. Our novel device, introduced in Chapter 3, allows us to measure with

precision bulk, mean values, and high frequency variation of the drag.
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1.2 Relevant field and laboratory parameters

The interactions between flow and aquatic vegetation have been studied by research

groups from a broad range of fields, mainly focused on either physical or biological

processes.

From a physical processes perspective, is it known that aquatic vegetation a)

impacts mean and turbulent flow structure in channels and coastal regions, b) gen-

erates drag, thus increasing flow resistance, c) controls the residence time within

the water body (Rueda and Cowen, 2005; King, 2011), and d) modifies dispersion

and diffusion within the canopy (Nepf et al., 1997b). From a biological oriented

perspective, the presence of plants in streams a) promotes pollutant removal and

degradation, b) provides shading to suppress algal growth, c) offers food and habi-

tat to native wildlife, and d) the seasonal variations of populations varies the

internal loading of phosphorus and nitrogen to the water column (Jadhav and

Buchberger, 1995). With such a broad range of phenomena involved, we find re-

search groups motivated by both a purely engineering approach, calculating the

increased flow resistance due to vegetated beds on natural and man-made streams

(Freeman et al., 2000; Jarvela, 2002; Baptist et al., 2007), and more ecologically-

oriented research, such as the works on nutrient exchange between vegetation and

the surrounding flow (Su et al., 1996; Ackerman, 1997).

Approaching the study of vegetated flow from a multidisciplinary perspective,

one has to deal with different metrics, customary for each discipline, that must be

“translated” between research groups, as often vegetation metrics from field macro-

phyte surveys, useful for biological studies, have to be interpreted and converted

into useful parameters for fluid mechanics laboratory studies or modelling efforts.

Field surveys follow standard procedures to harvest macrophytes (e.g., see

Johnson et al., 1998), and provide data such as:
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Wd [M ] : Dry weight, measured after 48 hours at 105oC.

Bm [ML−2]: Biomass, the mass or weight of all living material on a unit area,

A, at a given instant in time, usually Bm = Wd/A.

LS [L]: Mean stem length, the total length of the extended stem, not necessarily

the same as canopy height h.

SC [ ]: Species composition, the percentage of dry weight corresponding to

each species in a specific area.

For laboratory experiments, however, we are interested in particular metrics,

such as:

Af [L2]: Frontal area, a cross sectional area perpendicular to the mean flow.

a [L2L−3]: Volumetric frontal area, the total frontal area per unit volume of

fluid.

φ [ ]: Solid volume fraction, the volume of plant material per unit volume.

ηp [ ]: Porosity, ηp = 1− φ.

In Chapter 2 we present the approaches used to convert field data into laboratory

parameters, which are later applied in Chapter 5.

For our live plants studies, we chose Eurasian watermilfoil, Myriophyllum spi-

catum, an aquatic invasive species, commonly found throughout water bodies in

North America (Madsen et al., 1991; Janauer and Dokulil, 2006). It has a a thin

d ⋍ 1 − 2mm, flexible stem, with deeply-divided feather-like leaves. It is a fairly

buoyant plant, with an approximate specific gravity of 0.8 (Koegel et al., 1973),

adaptable to a wide range of conditions, which grows at depths of 0.5 to 9m until it

reaches the water surface, forming a canopy that shades out smaller native plants,

creating a watermilfoil monoculture as a result (Aiken et al., 1979; Johnson, 2008).

Hereafter we use the term ‘canopy’ to indicate the vegetated layer formed by the

branches and leaves of the vegetation, and ‘macrophytes’ to indicate aquatic plants

large enough to be apparent to the naked eye. A distinction is also made between
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submerged (H/h > 1) and emergent (H/h ≤ 1) aquatic plants, where H [L] is the

water depth and h [L] is the canopy height.

1.3 Physical processes involved

To study vegetated flow in a laboratory setting, research groups often use cylin-

drical shapes to recreate the plant canopies. Although flow around a cylinder has

been thoroughly studied, its complexity increases as we add more elements into

the flow, as the works of Williamson (1985), Sumner et al. (1999), and Lam et al.

(2003), have shown for groups of 2, 3, and 4 cylinders, respectively. If the num-

ber increases to hundreds or thousands of elements, as is often the case to model

aquatic vegetation, a bulk, averaging approach has to be used. Dunn et al. (1996)

used wooden dowels and straws to recreate rigid and flexible plants in staggered

arrays (submerged). Nepf et al. (1997a) used randomly arranged wooden cylin-

ders, and added plastic stripes to model flexible branches (emergent). Nepf (1999)

and Tanino and Nepf (2008a) investigated drag on arrays of rigid, wooden cylin-

ders (emergent), the same materials used by Stone and Shen (2002) (emergent

and submerged). Ghisalberti and Nepf (2002) built a scaled eelgrass model using

polyethylene blades attached to a short cylindrical base (submerged).

All the authors mentioned above deal with drag using an indirect approach,

estimating it from velocity and free surface slope measurements, as will be de-

tailed shortly. Additionally, instrumentation, facilities, and methodology, can vary

widely between authors, forcing us to take a more cautious approach to make

comparisons between their results, since, as we discuss in Chapter 2, location, and

number of measurements can yield large differences in the determined values. Re-

search groups working on numerical models of vegetated flow, require experimental

data to calibrate their models, but even with the increasing number of published
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experimental works, finding consistent experimental data, that covers wide ranges

of every relevant parameter, d, a, φ, H/h, is rare.

We generate a unique data set, by using the same facilities and techniques, as

outlined in Chapter 2, to analyze four different aspects of vegetated flow, repre-

sented in Figure 1.1:

A) flow through emergent rigid arrays of cylinders.

B) flow through and above submerged arrays of rigid cylinders.

C) flow through an emergent patch of flexible, live stems of Eurasian water-

milfoil.

D) flow through and above a submerged patch of flexible, live stems of

Eurasian watermilfoil.

Each case shown in Figure 1.1 presents noticeable distinctive features, in response

to the dominant physical processes involved. A simple sketch is presented in Figure

1.2 showing the increasing flow complexity, from the stem wakes on rigid cylinders

(I), the added leaf-scale wakes as the plants start branching out (II), and the mixing

layer-like structure formed between denser and more open regions of the canopy

(III). Under submerged conditions, an additional shear layer is created at the top

of the canopy. Let us discuss the physical processes and the governing equations

applicable for each case represented in Figure 1.1.

For our experimental conditions, assuming a two-dimensional x−z flow, where

x, y, z are orthogonal coordinates, x is positive in the direction of the mean flow, y

is the horizontal, span-wise direction, and z is vertical upwards, with their respec-

tive velocities u, v, and w, the temporally- and horizontally-averaged streamwise

momentum equation, can be written as (Raupach and Thom, 1981; Finnigan,

2000):
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∂ 〈u〉
∂t

+ 〈u〉 ∂ 〈u〉
∂x

+ 〈w〉 ∂ 〈u〉
∂z

= −1

ρ

∂ 〈p〉
∂x

−
(

∂
〈

u′u′

〉

∂x
+

∂
〈

u′w′

〉

∂z

)

+ ν
∂2 〈u〉
∂z2

−
(

∂ 〈u′′u′′〉
∂x

+
∂ 〈u′′w′′〉

∂z

)

− f1 (1.2)

Each term in Eq. 1.2 is horizontally-averaged over an area large enough to eliminate

variations caused by single elements. Horizontal, fully developed flow is assumed,

resulting in no horizontal gradients, and each term being only a function of the

vertical, z−direction. In Eq. 1.2, u and w are the velocities in the x and z directions

respectively, ρ is the fluid density, p is pressure, and ν is the kinematic viscosity of

the fluid. Here we use the Reynolds decomposition, using overbars to indicate time

average, and angle brackets for spatial (horizontal) average, while single and double

primes represent the variations from temporal and spatial averaging, respectively

(Eq. 1.3 and 1.4). Such temporal and spatial decomposition produces the well

known Reynold stresses
〈

u′

iu
′

j

〉

, and dispersive stresses
〈

u′′

i u
′′

j

〉

.

ξ = ξ + ξ′ (1.3)

ξ =
〈

ξ
〉

+ ξ′′ (1.4)

Eq. 1.2 can be further simplified. For steady flow ∂/∂t = 0. A hydrostatic

assumption for pressure yields 〈p〉=ρg
〈

H
〉

. For uniform flow horizontal velocity

gradients are negligible. Poggi et al. (2004a) found the dispersive stresses to be

negligible except for very sparse arrays (ah < 0.1). Rosman et al. (2010) found

dispersive stresses of the same order as Reynold stresses for experiments on model

kelp, but still neglected them due to large uncertainties in their calculation. Our

previous studies using Eurasian watermilfoil also found the dispersive stresses to

7



Figure 1.1: Typical measured vertical profiles of longitudinal mean velocity, U ,
Reynolds stress, 〈u′w′〉, and volumetric frontal area, a, for A) emergent, rigid
cylinders, B) submerged, rigid cylinders, C) emergent, flexible vegetation, and D)
submerged, flexible vegetation.
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Figure 1.2: Expected flow patterns in vegetated flows: I) stem-scale wake turbu-
lence, II) leaf-scale wake turbulence, III) canopy-scale mixing layer.

fall within the uncertainty range (Tinoco, 2008). A simplified horizontal momen-

tum equation is then expressed as:

W
∂ 〈u〉
∂z

= −g
∂
〈

H
〉

∂x
− ∂

〈

u′w′

〉

∂z
+ ν

∂2 〈u〉
∂z2

− f1 (1.5)

For simplicity, U and W are herein used as short hand for 〈u〉 and 〈w〉, respectively.

The free surface slope is defined as S = ∂
〈

H
〉

/∂x. The drag term, f1, must

account for form and viscous drag, and is here parameterized as:

f1 =
1

2
CdaU

2 (1.6)

For each scenario (A, B, C, D) presented in Figure 1.1, the momentum equation

can be further simplified as follows:

In (A) (Figure 1.1), the drag generated by the array of cylinders dominates

over the vertical shear, suppressing all vertical gradients (∂/∂z = 0), yielding

z−independent vertical profiles except very close to the bottom. For such condi-
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tions, where the cylinder wakes and interactions among them control the flow, Eq.

1.1 can be expressed as:

0 = −gS − 1

2
CdaU

2 (1.7)

If all assumptions to get Eq. 1.7 are satisfied (steady state, uniform, fully devel-

oped flow, with a hydrostatic pressure distribution, and viscous and bottom stress

negligibles), the force exerted by the array can be calculated from measurements

of the free surface slope alone. The term gS is independent of z, meaning that the

product Cd(z)a(z)U(z)2 must also be independent of depth. In the simplest case,

with rigid cylinders and a constant drag coefficient along the water column, this

yields an expected uniform, constant velocity profile, as shown in Figure 1.1(A).

In (B), a shear layer is created by the discontinuity of drag between the canopy

and the open water region. An inflection point in the velocity profile is noticed

near the canopy top. Two regions are created: one where Kelvin-Helmholtz (K-

H) vortices control the vertical transport and shear layer growth, and one with

dominating stem-scale eddies, where shear scale energy is converted into wake scale

kinetic energy. Adopting the same terminology as Ghisalberti and Nepf (2006),

we define three characteristic zones in the vertical (see Figure 1.1B): the stem

wake-zone, 0 < z < z1, the exchange zone, z1 < z < h, and the upper shear layer,

h < z < z2. Since vertical stress gradients become important, Eq. 1.5 becomes:

0 = −gS − ∂
〈

u′w′

〉

∂z
− 1

2
CdaU

2 (1.8)

According to 1.8, estimates of drag require not only accurate measurements of the
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free surface slope, but also detailed velocity statistics within the water column,

which requires numerous measurements to find mean values representative of the

region studied.

In (C), the non-uniformity of the frontal area profiles generates a more complex

flow than its rigid counterpart (A). Large vertical gradients of a generate a local,

within canopy, shear layer between the upper, more populated region, and the near

bottom, sparser one. We keep all terms in Eq. 1.2 to investigate their relevance.

W
∂ 〈u〉
∂z

= −gS − ∂
〈

u′w′

〉

∂z
+ ν

∂2 〈u〉
∂z2

− 1

2
CdaU

2 (1.9)

Certain macrophyte species, with smaller variations in a along the water col-

umn, can resemble simpler, rigid structures. In those cases, Eq. 1.7 does a good

job at predicting velocities within the canopy, as shown by Lightbody and Nepf

(2006) in their work with Spartina alterniflora, but it fails for a non-uniform plant

morphology such as Eurasian watermilfoil (Tinoco, 2008).

In (D), structures from the three previous cases appear, resulting in two mixing

layers: a canopy scale shear layer at the canopy top, and a smaller scale shear layer

within the array. To fully investigate the momentum contributions, we use the

same Eq. as for case (C). Difficulties for (C) and (D) increase as plants begin to

bend under larger flow rates, as well as sway periodically. When a boundary layer-

like flow encounters a submersed vegetated patch, the flow is redirected towards

the top of the water column, creating a mixing layer profile due to the higher

velocities above the canopy, generating a Kelvin-Helmholtz instability, resulting in

a stream of coherent vortices that cause a periodic oscillation of the plants. Such a

phenomenon is known as monami in aquatic vegetation (Japanese: mo = aquatic

plant, nami = wave), and honami (ho = cereal) in terrestrial canopies (Ackerman

11



and Okubo, 1993).

To study the turbulent kinetic energy (tke) budget, fully developed flow is

assumed, so all horizontal gradients are neglected, and each term is only a function

of z. The temporally- and horizontally-averaged tke equation for all four scenarios

can be written as:

∂k(z)

∂t
= T (z) + Ps(z) + Pw(z)− ǫ(z) (1.10)

∂k(z)

∂t
=

∂

∂z

[

νt
∂k

∂z

]

−
〈

u′w′

〉 ∂U

∂z
+

1

2
aCdU

2|U | − ǫ(z) (1.11)

In Eq. 1.10, T represents the transport of kinetic energy, PS is the production

of shear kinetic energy, Pw is the production of wake kinetic energy, and ǫ is the

viscous dissipation. Details on the calculation of these values for each scenario

studied, are presented and discussed in Chapters 4 and 5.

1.4 Thesis structure

In Chapter 2 we present the details of the laboratory facilities and experimental

techniques used for all data acquisition, discussing how different methodologies

can yield large variations in the experimental results. Chapter 3 details the de-

sign, calibration, and testing of a drag plate, built to get direct measurements of

vegetated drag in a laboratory setting. In Chapter 4 we investigate the relation-

ships between drag, characteristic velocities, and other representative parameters

for arrays of emergent and submerged rigid cylinders, finding a family of curves

to predict the drag coefficients as a function of solid volume fraction. The mea-

sured drag values are then used to analyze the momentum and turbulent kinetic

energy budgets. In Chapter 5, we present the results and analysis of data from

12



experiments on flexible, live stems of Eurasian watermilfoil. We investigate the ap-

plicability of the predictions from rigid structures in the flexible case, and propose

a methodology to estimate forces on patches of vegetation in the field. Chapter 6

summarizes our findings with final conclusions and states new directions for our

research.
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Chapter 2

Experimental facilities and

techniques

2.1 Introduction

In order to fully characterize flow through aquatic vegetation, the most relevant

variables involved are measured: flow rate, Q [L3T−1], mean and turbulent ve-

locities, Ui, u′

i [LT
−1]; free surface elevation, η [L], and slope, S [ ]; frontal area

obstructed by the rigid or flexible elements, Af [L2], as well as the drag exerted

by such obstructions, D [MLT−2]. In this chapter we discuss the facilities used

for our series of experiments, the design of the arrays of obstructions, and each of

the instruments and techniques used to analyze the flow. Unless stated otherwise,

95% confidence intervals (CI) for the random components of the uncertainty are

calculated from the data records using a bootstrap method (Efron and Tibshi-

rani, 1993). Bias errors are estimated using the root-sum-square (RSS) technique

described by Kline and McClintock (1953).
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2.2 Recirculating open channel flumes

The experiments were conducted at the DeFrees Hydraulics Laboratory (Hollister

Hall, Cornell University), in two existing recirculating type open channel flumes

with glass sidewalls and SAR acrylic beds, ideal for optical access from all sides.

The initial experiments for testing and validation of the drag plate, presented in

chapter 3, were conducted in a 4.50m long, 0.60m wide flume. Studies on arrays

of rigid cylinders and live stems, reported in chapters 4 and 5, were conducted in

an 8.00m long, 0.60m wide flume, which allowed us to study submergence ratios of

H/h = 1.00, 1.25, and 1.80 (Figure 2.1). The notation H/h, as opposed to h/H ,

is adopted for consistency with recent works on canopy flow, as well as to make it

clear that elevations at z/h < 1 are within the canopy, while elevations at z/h > 1

are above the canopy.

Figure 2.1: Sketch of the 8m long, recirculating, open channel flume used to carry
out the experiments reported in chapters 4 and 5.

Both facilities are supported by tilting steel frames, allowing bed slopes of −0.25%

to +2%. For our experiments, the bed slope is set to 0%. The flow is driven

by centrifugal pumps controlled by variable frequency inverters. For simplicity

in the notation, each experiment is initially identified by the frequency at which

it was conducted (e.g., Q02 is the flow rate measured with the pump running at
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a frequency of 2Hz, and so on). Both flumes were designed with a 1.00m by

0.30m removable section of the floor, where the drag plate is installed as detailed

in Chapter 3.

2.3 Arrays of rigid cylinders

Three PVC plates, 6.3mm thick, 1.22m long, and 0.60m wide, fitted with a random

array of vertical rigid cylinders, were placed on the bottom of the flume creating

a 3.66m long patch for each cylinder diameter. Random arrays of h = 0.20m tall,

rigid, acrylic cylinders (US Plastics Corporation, OH, USA) were created assigning

only the number of elements per unit area and the minimal spacing allowed between

cylinders centers, smin = 2d, as follows:

1. Create a rectangular grid, with ∆x = ∆y = 0.1d of the size of the PVC

plate (1.22m by 0.60m).

2. Choose the locations for the total number of cylinders in each plate, Np,

using a uniform random distribution.

3. Each time a location is selected, it must satisfy: a) a distance of at least

d + 0.32 (cm) from the edges, and b) at least 2d from the closest occupied grid

point (i.e. 2d from center to center of the cylinders).

By having the same pattern on each PVC plate we impose a periodic array, re-

peating itself every 1.22m.

Four commercial cylinder diameters were chosen, d = {1/8”, 1/4”, 1/2”, 1”}

(0.32, 0.64, 1.27, and 2.54cm, respectively, Figure 2.2). Since some variation was

observed in the diameter of the elements, sets of 100 elements of each diameter

were measured to determine the exact dimensions. The measured values, shown

in Table 2.1 with their respective 95% confidence interval (CI), are slightly smaller

(≈ 0.1mm) than their nominal values. Given the requirements of the computer
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Figure 2.2: Side view of the acrylic cylinder arrays. Measured diameters d =
{0.31, 0.62, 1.27, 2.53}cm (from top-left to bottom-right).

numerical control (CNC) machine, perforations on the PVC plates were made at

122, 246, 500, and 990 thousandths of an inch (0.310, 0.625, 1.270, and 2.515cm,

respectively). Number of elements per PVC plate, Np, volumetric frontal area,

a (m−1), porosity, ηp, solid volume fraction, φ, and the resulting space averaged

mean separation (center to center distance) between adjacent cylinders, sn, are

shown in Table 2.1.

Table 2.1: Representative parameters for the cylinder arrays.

diameter (mm) Np a (1/m) ηp φ sn/di
d1 = 3.07± 0.15 921 4.0 0.99 0.01 4.83
d2 = 6.15± 0.09 460 4.0 0.98 0.02 3.67
d3 = 12.66± 0.20 230 4.0 0.96 0.04 2.89
d4 = 25.31± 0.25 115 4.0 0.92 0.08 2.39
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2.4 Arrays of flexible, live stems

Stems of Eurasian watermilfoil (Myriophyllum spicatum) were harvested from the

marsh at the Cornell University Experimental Ponds Facility, Site II (Neimi Road),

with the help of Robert L. Johnson, Manager of Cornell Experimental Ponds. The

stems were harvested with the roots still attached, and later washed, hand selected,

and cut to the specific height (∼25cm) as shown in Figure 2.3.

Figure 2.3: Harvesting Eurasian watermilfoil stems. Stems were washed, hand
selected, and cut to the required length for the experiments.

Three plant population densities were investigated, n = {100, 300, 500}stems/m2.

Common field conditions fall within 100−300stems/m2 (Robert L. Johnson (2008),

personal communication). We originally planned to begin at n = 500 and reduce

the number of stems until n = 50 to cover a full order of magnitude, but the den-

sity at n = 50 would have been too sparse to get data comparable with the other

densities.

The arrays were created following a similar process as for rigid cylinders. In-

stead of placing plants as individual stems, in order to better represent natural

conditions, they were arranged in clumps from 3 to 7 stems, following a normal

distribution (µ = 5, σ = 2). To generate the random array, we assumed the di-

ameter of each clump to be 2.5cm, and assigned a minimal separation of 2d, using

the same spacing algorithm as with rigid cylinders. For consistency with the rigid

cylinder experiments, the same length of the flume was covered, creating a 1.22m
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long patch, and repeating it two more times to create the 3.66m long patch. Part

of the set up process as well as a top and side view of the placed stems are shown in

Figure 2.4. Table 2.2 shows the number of stems, Np, and number of clumps, Ncp,

per 1.22m long patch. Values of frontal area, porosity, and solid volume fraction

require a different approach, as detailed in section 2.7.

Figure 2.4: Stems being arranged in 3-7 elements per clump (left), and ran-
domly placed with a minimal separation of 5cm (center). Side view of the
n = 500stems/m2 configuration at H/h = 1 (right).

Table 2.2: Representative parameters for the flexible arrays. Number of stems and
clumps per 4ft long patch (Np and Ncp respectively), and actual number of stems
on the drag plate (Nsdp).

n (stems/m2) Np Ncp Nsdp

500 366 74 122
300 220 44 75
100 74 16 29

2.5 Flow rates

Each flume is equipped with an in-line Venturi flow meter (Lo-Loss PMT-IP series,

Badger Meter Inc.), constructed of a fiberglass reinforced polyester resin body,

and a precision machined PVC throat section, with differential pressure sensors to
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monitor the water flow rate in the channel in real time. The difference between

a high and low pressure port is reported in units of inches of water column, ∆h,

and updated every three seconds. Each value is manually recorded to get 3 or 4

minute long records (60 or 80 samples) for each test. The flow equation and the

discharge coefficient given from the manufacturer are:

Q = K
πd2v
4

√

2g
∆h

12
(2.1)

K =
C

√

1− (dv/Dv)4
(2.2)

C = 0.8221 (2.3)

where g is the gravity acceleration, and Dv = 0.3048m, and dv = 0.1770m, are

the entrance diameter, and the throat diameter of the Venturi meter, respectively.

The worst case accuracy specified by the manufacturer is expected to be ±0.75%

of the reported ∆h.

2.6 Velocities

Particle image velocimetry (PIV) measurements of the 2-D velocity field in the x−z

vertical plane were taken over the entire flow depth in the field of view (FOV) shown

in Figure 2.1 at 3 transverse sections for the rigid cylinders y = {0.14, 0.30, 0.56}m,

and at 7 sections for the flexible plants, y = {0.09, 0.16, 0.23, 0.30, 0.37, 0.44,

0.51}m. Two PIV systems were used.

For the shorter (4.5m long) flume, the image plane was illuminated by a fre-

quency doubled twin-head Nd:YAG laser (Spectra Physics PIV200-10) and a cylin-

drical lens expanding the beams on the x− z plane. The laser operated at 10Hz

on each head with the time between pulses ranging from 8ms to 36ms according to
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the flow speed. Images were acquired with an SMD-Dalsa 1M60-20 digital camera

(1024×1024 pixel array, 12 bit/pixel), fitted with a Nikon 60mm f/2.8D AF Micro-

Nikkor lens. Image acquisition was performed by Vision Now software (Boulder

Imaging Inc., CO). For the emergent and submerged experiments, the 1024×1024

pixel images gave us resolutions between 0.18mm/pixel and 0.36mm/pixel.

For the longer (8.0m long) flume experiments, an Argon-Ion laser (Innova 90

Series Ion Laser, Coherent Inc.), in multi-line mode was used. The laser was

operated in light regulation mode at an output power of 4.5W . The light sheet

was created by a scanning mirror (Model 6860, Moving magnet capacitive position

detector optical scanner, Cambridge Technology). A computer controlled shutter

(Model LS200, nmLase Products, Inc.) was located immediately after the laser

and operated to insure that only a single scan by the scanning mirror was allowed

to illuminate the image plane per camera frame exposure. The camera and image

acquisition system were the same as for the shorter flume studies.

Images are post-processed for instantaneous velocity, using a central-difference

form (Wereley and Meinhart, 2001) of the dynamic sub-window PIV technique

outlined in Cowen and Monismith (1997). Final PIV processing is carried out on

a 32×32 pixel subwindow with a 75% overlap. Stray vectors are removed using an

adaptive Gaussian filter and a local median filter (Cowen and Monismith, 1997).

Temporally- and horizontally-averaged vertical profiles of velocity statistics (e.g.,

U(z), 〈u′w′(z)〉, 〈k(z)〉 ) are obtained by averaging over the x−direction (along

horizontal rows of subwindows from the ∼ 10cm field of view), and then averaging

over the 3 to 7 transverse, y−sections.

Additional measurements were taken with a Nortek Vectrino acoustic Doppler

velocimeter (ADV), equipped with + (“plus”) firmware option, at a 50Hz frequency

for the drag plate experiments reported in chapter 3, and 200Hz for the experi-

ments in chapters 4 and 5. The location of the ADV measurements varied through
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the experiments, from only a few transverse points at a given x and z location to

check for lateral variability, to a full y−z grid to study the flow three-dimensionality

and generation of secondary currents.

2.7 Frontal areas

Frontal areas are straight forward to calculate for the rigid cylinders array based

on the known diameter, submerged length, and number of cylinders. A different

approach is required for real plants. Quantitative imaging is used to measure the

area obstructed by the live plants as a function of elevation, and fluid velocity,

a = f(z, U).

Two approaches were taken:

1. Stems of length L ⋍ 0.25m were placed in a fish tank with the same water

depth as the emergent case experiments (H = 20cm). Pictures of individual stems

(10 in total), as well as clumps of 3 to 7 stems (5 of each) were taken and analyzed

to obtain mean profiles of frontal area (Figure 2.5). A vegetated threshold (VT) to

separate vegetated pixels from the background was manually obtained for each set

of images. Using a white background, the threshold was sharp enough to capture

even the thinnest structures of the stems. Each stem was later measured to obtain

wet and dry weights (oven-dried for 48 hours at 60oC), the former to estimate

the volume of the plants, and thus solid volume fraction φ, and the latter for

biomass calculations (Figure 2.6). The volume of each stem and group of stems is

calculated from their wet weight and the specific gravity of Eurasian watermilfoil

(SGEw = 0.8, Koegel et al., 1973), as V = Ww/(SGEWρ0), where ρ0 is water

density.

As shown in Figure 2.7(A), a linear relationship is found between the total

frontal area (i.e., from the whole stem) of each stem and clump measured and
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their dry weight, Wd(mg) = 2.5 × 106a(cm−1). This relationship allows us to

use field biomass data to estimate a total value of a, and subsequently use our

mean vertical profile per stem as(z) (Figure 2.7(B), obtained from averaging the

vertical profiles of all the individual stems and clumps photographed) to estimate

the actual vertical profile, a(z), correspondent to the reported field conditions (e.g.,

for a reported biomass Bm(g/m
2), we calculate the total a from Figure 2.7(A), and

use the mean vertical profile per stem as(z) (Figure 2.7(B)), to calculate the actual

vertical profile, a(z) = X ·aS(z), such that
∫ h

o
X ·as(z)dz = a). It is expected that

similar relationships can be found for other plant taxa, which will help create a

field-lab model with empirical biomass-frontal area curves for different species, to

facilitate communication between field, laboratory, and numerical researchers.

Figure 2.5: Determination of frontal area. a) Raw images of submerged plants, b)
post processed binary images, c) calculated vertical profile of a.

2. A second approach includes the effects of velocity on the bending of the

plants and subsequent effect on frontal area. As seen in Figure 2.8 for the n =

500 stems/m2 emergent case, the stems bend as the flow rate increases, acquiring

a more streamlined position to offer less resistance to the flow. To account for such

variations, a mirror was placed downstream of the plant canopy, at a 45 degrees
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Figure 2.6: A) Wet weight, B) dry weight, and C) volume, as a function of volu-
metric frontal area, a. Data taken from images of 10 single stems and of 5 clumps
each of 3 to 7 stems.

Figure 2.7: A) Relationship between biomass (measured dry weight) and total
volumetric frontal area (per m2). B) Vertical profile of the mean value of a(z) for
a single stem (per m2)

angle allowing a camera to take pictures from the side (Figure 2.9), thus capturing

a frontal view of the stems. To ensure that only the last rows of stems affected the

measurement, the pictures were taken with the lights off, while two slide projectors,

situated at opposing sides of the flume, illuminated the stems on the final 20cm of

the canopy .

Pictures were taken at each flow rate, capturing 4 images per second for 2 min-

utes. The VT is chosen iteratively by eye, until we find the value that reproduces

the original images the closest. In the first approach, the plants in the fish tank

with a white background had a sharp VT. In the second approach, with the plants
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Figure 2.8: Side view of the downstream edge of the n = 500 stems/m2 plant array
with increasing flow from left to right.

Figure 2.9: Camera focused on a mirror placed at 45o downstream of the plant
canopy (left). View from the camera location with lights off and slide projectors
on each side of the flume (right).

experiencing the flow, VT is not as sharp, and part of the fine structure of the

leaves is lost, especially at higher flow rates when the stems bend, preventing a

uniform illumination on all the leaves. However, even for the worst cases, we still

capture a good mean value, as shown in Figure 2.10 (for n = 500stems/m2, Q16,

fully submerged, see Section 5 for details). To investigate the sensitivity of our

algorithm to the choice of VT, we present the vertical profiles of a obtained by

varying the VT by ± 2, and ± 5, as shown in Figure 2.10. It is noticed that in

the more populated region, the worst case variations will be of the order of 10 and

20% respectively. However, location and magnitudes of the vertical gradients, as

well as the canopy height, do not present significant variations.

Analysis of the images provides not only mean vertical profiles as a function of

velocity (Figure 2.11), but also time variations (Figure 2.12) which evince periodic

25



Pixels

P
ix

el
s

100 200 300 400 500 600

100

200

300

400

500

600

700

800

900

1000

Pixels
P

ix
el

s
100 200 300 400 500 600

100

200

300

400

500

600

700

800

900

1000

0 200 400 600
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Vegetated pixels

z 
(m

)

 

 
VT−5
VT−2
VT
VT+2
VT+5

Figure 2.10: Raw and processed images of frontal area (flow directed out of the
page), and uncertainty from the choice of the vegetated intensity threshold (VT),
by varying the chosen VT by ±2 and ±5 intensity units.

waving of the stems (monami). As the plants bend and h decreases, their biomass

is concentrated over a smaller region, with more vegetated material obstructing

the flow near z = h. However, since the leaves on the branches are also bending in

the direction of the flow, the observed frontal area is actually reduced as the flow

rate increases. Further analysis of the results and their effects on the flow, as well

as representative velocities for each case are presented and discussed in Chapter 5

(Tables 5.1 and 5.2).

2.8 Free surface slopes

Measurement of the free surface slopes deserves special attention, as it is the most

common method of determining the available energy to the flow. The free surface

slope is often used to estimate drag in emergent vegetation (See Eq. 1.7 in Section

1.3). It is often measured by either resistance type surface displacement gages

(Nepf, 1999; Tanino and Nepf, 2008a; Augustin et al., 2009), or ultrasonic, acoustic

wave gages (Barnes et al., 2009). However, the location of the measurements differs
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Figure 2.13: Measured surface displacements with an array of 7 ultrasonic wave
gages spanning the width of the flume at 19 x-locations, for the d=0.64cm cylin-
ders array with UQ=14.37cm/s. Dashed line marks the edges of the drag plate.
Solid line marks the end of the cylinders array. For simplicity only maximum and
minimum values at each x−location are presented

from study to study, from only two centerline points, up- and downstream of the

array (Dunn et al., 1996; Nepf, 1999), to sets of 2 or 3 lateral measurements at

two points within the length of the array (Tanino and Nepf, 2008a). To identify

the expected variations due to the number and location of the gages, and optimize

our own measurements, we used an array of 7 ultrasonic wave gages (S18U Series,

Banner Engineering Corp.), and take 5 minutes long, 50Hz records at 19 locations

along the length of the array, as shown in Figure 2.13. What we observed is a

relatively high variation of ∼ 1mm between the lowest and highest point on each

y−transect, as well as a dramatic change in the slope at the downstream edge of

the array, demonstrating that a) a single centerline measurement is not sufficient,

and b) measurements have to be taken within the length of the array only, to avoid

violations in the assumption of one-dimensional flow.

Based on the results from Figure 2.13, measurements of the water depth for the

rigid and flexible arrays were conducted with arrays of 3 and 2 wave gages, at the

up- and downstream edges of the drag plate respectively, unless stated otherwise

for specific cases.
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2.9 Drag

A main goal of our research is to directly measure the drag on arrays of rigid

and flexible elements. The details of the drag plate, built specifically for such a

purpose, are presented in chapter 3.

2.10 Conclusions

Careful considerations must be made in the selection and implementation of each

measurement technique. This has to be considered when comparing data from

different studies, since changes in even the location of the instrumentation relative

to the arrays in the case of velocities and free surface slopes, or the use of differ-

ent methodologies for determination of obstructed area, or different mechanisms

to estimate or measure drag, create differences in the results that might lead to

inaccurate interpretations. One of our goals is to produce an extensive data set,

with rigid and flexible vegetation, for both submerged and emergent conditions,

acquired in a consistent way, expected to be used as a benchmark for current and

future modeling efforts.
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Chapter 3

Direct and indirect measurements of

boundary stress and drag on simple

and complex arrays of elements

3.1 Introduction

The measurement of boundary stress and form (pressure) drag are critical com-

ponents of investigations of fluid-structure interactions. Forces acting on aquatic

vegetation can induce breaking and uprooting of stems, scour the bottom, and

control mixing rates of nutrients and pollutants that will directly affect both the

plants and the organisms to which they provide habitat. While a variety of methods

have been used to measure each of boundary stress and form drag, both directly

and indirectly, their measurement remains challenging due to the potential for

strong local gradients, the effects of unsteadiness (e.g., wave induced flows), the

motion or deformation of the object of interest (e.g., bending of plants), the need

to make measurements exceedingly close to boundaries, and the complex interac-

tions of wakes when multiple objects are sufficiently close (e.g., flow through plant
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canopies). As discussed by Ackerman and Hoover (2001), methods to estimate

the boundary stress include calculation from the mean velocity profile, momentum

balance, or pressure differences at the boundary layer (i.e., Preston-tube). Other

near-wall methods require more specialized equipment, such as oil-film interferom-

etry, a surface fence, a wall hot wire, or a wall pulsed wire (see Fernholz et al.,

1996, for details).

When dealing with the fluid drag exerted on objects, similar indirect approaches

are often taken, using velocity and pressure data to calculate the drag, but the

problem is potentially more complex due to the strong local gradients, both in

pressure and viscous drag (e.g., at the separation points on bluff bodies). The

use of embedded sensors within objects is primarily restricted to large-scale ex-

periments (Wienke and Oumeraci, 2005) but with the increasing availability of

arrays of MEMS sensors it may soon be possible to instrument relatively small

scale objects. However, such procedures are spatially intensive, as the gradients

in pressure and wall stress must be resolved in all directions of variation, which

results in a rapid increase in cost, complexity, and time required to test different

elements and configurations. If multiple objects are involved the costs will likely

be prohibitive for the foreseeable future.

Researchers have addressed the direct measurement of drag in different ways,

depending on whether the focus of the study was to produce a device capable of

measuring drag in the field (e.g., Callaghan et al., 2007), or to design a laboratory

device able to measure the drag in physically modeled conditions close to the

natural conditions (e.g., Sand-Jensen, 2003; Fathi-Maghadam and Kouwen, 1997).

The present work focuses on the latter, to measure the drag while reproducing

natural conditions in a well controlled experimental set up, able to accommodate

a wide range of velocities, geometries, and configurations.

Our goal is to design a non-intrusive, easy to use device, simple to calibrate,
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that requires minimal maintenance, and allows for the straight-forward mounting

of different multi-object, potentially highly complex configurations. The developed

device, dubbed a drag plate, allows the direct measurement of wall stress (drag

force over the area of the plate), the drag on individual objects, as well as the

drag that arises from complex arrays of objects. Among the important factors

considered in the drag plate design were that calibration should be insensitive to

significant variations in vertical loading and intrusive support structures were to

be avoided (Khalak and Williamson, 1996; Sand-Jensen, 2003).

The drag plate is large enough to spatially average the drag over several ele-

ments, providing more representative mean values of drag, as opposed to measuring

forces on a single element (Fathi-Maghadam and Kouwen, 1997; Freeman et al.,

2000; Callaghan et al., 2007). Barnes et al. (2009) demonstrated that a large shear

plate can yield accurate direct measurements of shear stress. We extend this con-

cept to an open channel by mounting a drag plate on an air-bearing-rail system

external to the facility test section. The plate is isolated from the facility test sec-

tion by a thin gap made water tight with a thin membrane. The force experienced

by the drag plate is monitored by a load cell mounted to the test section frame.

We present a more robust, simple, and yet powerful system for measuring drag in

complicated flows, such as vegetated flows, natural rough boundary layers, coastal

structures, and urban canopies.

3.2 Design and calibration

The specified drag plate has dimensions L = 0.995m long and B = 0.296m wide,

just smaller than the specified opening in the facility bed, which is 1.000m×0.300m.

This specific size was chosen due to the intention of measuring the drag on aquatic

plant canopies and the need to average over multiple plants at various plant stem
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densities. The drag plate consists of three layers: 1) an upper smooth flat PVC

plate maintained at the same elevation as the test facility bottom, in contact with

the fluid, to which can be attached single or multiple elements, 2) a bottom stain-

less steel metal plate to provide rigidity, and 3) a thin, flexible, elastic, abrasion

resistant, 0.15mm (0.006in) thick, latex rubber membrane sandwiched between

the PVC and stainless steel plates, that seals the gap between the flume and the

drag plate (Fig 3.1). The latex rubber membrane performed satisfactorily for each

of the experiments presented in this chapter, but was easily punctured by debris,

and required to be replaced in more than one occasion. For later experiments in

the longer flume, it was replaced with a 0.25mm (0.010in), liquid silicone rubber

(BISCO Silicones, Rogers Corp.), which was found to be less prone to tearing and

punctures.

The drag plate rests on four mounting blocks that each terminate in an air bear-

ing (NewWay air bearings, PA, USA). The air bearings ride on a pair of 25.4mm

(1in) diameter precision stainless steel shafts mounted to the facility frame, par-

allel to the longitudinal direction of the facility, allowing essentially frictionless

displacement in the direction of motion, as shown schematically in Fig. 3.2.

The drag plate system was mounted within the bed of an existing 4.50m long,

0.600m wide recirculating type open channel flume with glass sidewalls and an

SAR acrylic bed in the DeFrees Hydraulics Laboratory in the School of Civil and

Environmental Engineering at Cornell University. The center of the drag plate

is located 2.30m from the facility inlet and laterally on facility centerline. The

flume is supported by a steel frame and the structure of the drag plate device that

holds the stainless steel shafts is mounted securely to this steel frame, allowing fine

vertical adjustment to ensure that the drag plate surface is flush with the flume

bed surface.

A rigid stainless steel rectangular cantilevered beam is mounted to the bottom
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Figure 3.1: Left: View of the drag plate installed in the 4.5m open channel flume
from above and upstream. The top PVC plate, sandwiched latex membrane, and
an O-ring and mounting screws (coming through the membrane from below) are
visible. Right: View from below and to the side of the drag plate. As the flow
displaces the plate (flow is from right to left), the beam connected to the drag
plate (rightmost beam) is forced against the load cell mounted to the leftmost
beam which is attached to the fixed frame.

of the drag plate and set to be just in contact with a 100g, S-beam load cell (Cooper

Instruments and Systems, VA, USA) mounted to the fixed frame, as shown in Fig.

3.1 (right). The load cell is connected to a National Instruments data acquisition

system to sample the output voltage.

Calibration of the drag plate is performed by applying a known force in the

direction of motion on a vertical rod mounted to the topside of the drag plate.

A series of increasing known forces are applied using a spring scale with a 95%

confidence interval of ±0.005N . The process is performed both with an empty

flume, h = 0m, and at the working water depth, h = 0.18m, to investigate the

repeatability of the results under the same horizontal loading conditions, and their

dependence on vertical loading of the plate. The load cell is sampled for 30 seconds

at 50Hz starting 30 seconds after the known force is applied. The results for all

calibrations are consistent and yield the same linear calibration curve, independent

of h, as shown in Fig. 3.3. Values of the recorded voltage output from the load

34



Figure 3.2: Schematic elevation of the drag plate. The location of the test cylinder
of diameter d, and the field-of-view (FOV) of the PIV measurements are shown.
An ADV is located at the downstream edge of the drag plate. Flow is from left to
right, the gap ∆ allows the plate to displace freely, thus applying the drag force D
onto the load cell LC.

cell to an applied force of F = 0.50N for each of the five test cases shown in Fig.

3.3 are given in Table 3.1, along with the bootstrap determined 95% confidence

interval (Efron and Tibshirani, 1993).

Figure 3.3 also shows the results of calibrations taken just before each of the

experiments described in the following sections. It is noted that the exact slopes,

m = −2.00mV/N (Fig. 3.3 left) and m = −1.54mV/N (Fig. 3.3 right), differ sub-

stantially, due to a required replacement of a punctured latex membrane. However,

the new calibration shows the expected linearity and repeatability.

Table 3.1: Drag plate calibration. Recorded values for an applied force of F =
0.50N .

Mean value (mV ) 95%CI (mV )
cal.1, h = 0.00m -0.9895 ±0.0027
cal.2, h = 0.00m -1.0056 ±0.0026
cal.3, h = 0.18m -0.9696 ±0.0037
cal.4, h = 0.18m -0.9854 ±0.0040
cal.5, h = 0.18m -0.9777 ±0.0040
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Figure 3.3: Left: calibration curve for the drag plate. Study for linearity, repeata-
bility, and water depth dependence. Right: Calibration curve for the drag plate
for the studies on drag induced by a flat plate boundary layer and flow past a rigid
cylinder. Vertical bars represent the 95% confidence interval.

3.3 Validation experiments

Two series of validation experiments were performed in the 4.5m open channel

flume on well studied and documented cases: drag induced by a turbulent flat

plate boundary layer and drag induced by flow around a rigid cylinder. A third

series of experiments, measuring the drag on arrays of randomly placed rigid cylin-

ders, is presented to show the power and applicability of the drag plate on more

complex flows. For each series of experiments the facility was filled to a flow depth

of h = 0.180m and multiple flow rates, driven by three variable frequency con-

trolled centrifugal pumps, were tested. For each measurement, the load cell on

the drag plate was sampled at 50Hz. A developing flat plate boundary layer was

established at five increasing flow rates. Simultaneous particle image velocimetry

(PIV) measurements of the 2-D velocity field in the x−z vertical plane were taken

over the entire flow depth (see Fig. 3.2). The FOV was illuminated by a frequency

doubled twin-head Nd:YAG laser (Spectra Physics PIV-200-10) operating at 10

Hz on each head with the time between pulses (∆t) ranging from 16.00ms down
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to 4.00ms with increasing flow speed. The laser beams were expanded within

the x − z plane using a cylindrical lens. Images were acquired by an SMD-Dalsa

1M60-20 digital camera (1024× 1024 pixel array, 12-bit/pixel) fitted with a Nikon

60mm f/2.8D AF Micro-Nikkor lens. Image acquisition at 20Hz was performed by

VisionNow software (Boulder Imaging Inc., CO) producing 10Hz velocity fields,

which were collected in 200s records at each flow rate. Images were post-processed

for instantaneous velocity, using a central-difference form Wereley and Meinhart

(2001) of the dynamic sub-window PIV technique outlined in Cowen and Moni-

smith (1997). Final PIV processing was carried out on a 32× 32 pixel subwindow

with a 75% overlap yielding a 124× 116 (x× z) array of velocity vectors.

3.3.1 Flat plate boundary layer verification test

The PIV velocity fields were averaged in time and horizontally in space to produce

vertical profiles of the various metrics of the velocity. Turbulence quantities were

calculated based on Reynolds decomposition, i.e., ξ′i = 〈ξi〉 − ξi where ξ is the

instantaneous quantity of interest, 〈 〉 indicates the linear process of temporal and

horizontal averaging, and ξ′ is the instantaneous turbulent fluctuation about the

mean quantity 〈ξ〉.

Vertical profiles of the non-dimensional longitudinal velocity u+ = 〈u(z)〉 /u∗

are shown in Fig. 3.5 for all five runs, which are characterized by their momentum

thickness Reynolds numbers, Reθ = U0θ/ν, where U0 is the free stream velocity

taken as the maximum in 〈u(z)〉 and θ is the momentum thickness, defined as

(Kundu and Cohen, 2004)

θ =

∫

∞

0

〈u(z)〉
U0

(

1− 〈u(z)〉
U0

)

dz. (3.1)

The friction velocity, u∗, is calculated by extrapolation of a linear fit to the
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Reynolds stress profile, 〈u′w′(z)〉, in the range 0.1 < z/h < 0.25 to the bottom

of the flume to estimate the wall stress, τw (Fig. 3.4). The friction velocity is

then calculated as u∗ =
√

τw/ρ, where ρ is the density of water. The wall-scaled

longitudinal mean velocity profiles closely follow the log-law

u+ =
1

κ
ln z+ +B (3.2)

where z+ = u∗z/ν and ν is the kinematic viscosity of water, with the von Kármán

constant κ = 0.41, and B = 5.5 (Cowen and Monismith, 1997; Pope, 2000) as

well as the direct numerical simulation (DNS) data of Spalart (1986) which were

carried out at Reθ = 1410.
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Figure 3.4: Normalized Reynolds stress profiles < u′w′ > for all Reθ.

The output from the load-cell was sampled at 50Hz for 5min for each test. The

sample records are time averaged and the final calibration (Fig. 3.3) is applied to

convert the mean voltages to mean forces. The time averaged drag force, D,

is shown in Fig. 3.6 as a function of the mean velocity. Figure 3.6 also shows

the drag force estimated from τw determined from the PIV measured velocity
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Figure 3.5: a) Normalized longitudinal mean velocity profiles u+ = 〈u〉 /u∗ : PIV
experimental data (open symbols); Spalart (1986) data (solid line), and the law of
the wall, u+ = 1

0.41
log(z+) + 5.5 (dotted line).

profiles, assuming a uniform wall stress over the surface of the drag plate, A =

0.995m×0.296m, such that the drag force on the plate is determined as D = τw ·A.

Assuming a uniform wall stress, equal to the measured stress at the downstream

edge of the drag plate, results in an underestimation of drag, since as the boundary

layer thickens as it advances along the drag plate, the associated velocity gradients

near the bottom decrease, generating a reduction on the wall stress as x increases

from the edge of the plate. Using the Schultz-Grunow formula (Pope, 2000) we can

calculate an x−dependent skin-friction coefficient, cf(x) = 0.370(log10Rex)
−2.584,

with Rex = Ux/ν, and a mean cf over the drag plate cf = 1
L

∫ L

0
cf(x)dx, to

estimate the total drag force on the plate as DS−G = A · τS−G, where τS−G =

1
2
ρU2cf . The results are presented for comparison in Figure 3.6.

Both the direct drag measurements and the estimated values based on τw are

seen to follow the expected quadratic velocity drag force relationship, using the

depth integrated velocity, U = 1
h

∫ h

0
u(z)dz, as the characteristic velocity (Equation

3.3).
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Cd =
2D

ρU2A
(3.3)

The actual drag coefficients from the shear plate, Cdsp, can be calculated from Eq.

3.3, and a comparable skin friction coefficient, Cdws (Eq. 3.4), can be calculated

from the determined wall stress for comparison.

Cdws =
τw

1
2
ρU2

. (3.4)

When plotted against Reθ both measured and estimated coefficients fall within the

same range and show a decreasing trend as Reθ increases (Figure 3.6). As seen in

Table 3.2, the drag force measurement for the lowest velocity considered (Reθ =

948) is of the same order as the measurement uncertainty, which propagates into the

calculation of Cd, as seen in Figure 3.6. For the described drag plate configuration,

this represents the drag force where the signal-to-noise ratio is approximately 1.

Table 3.2: Directly measured drag force induced by flat plate boundary layer, its
uncertainty, and relative error.

D (N) δD (N , from 95%CI) δD/D
U1 0.0020 ±0.0017 0.82
U2 0.0153 ±0.0028 0.19
U3 0.0336 ±0.0021 0.06
U4 0.0543 ±0.0023 0.04
U5 0.0881 ±0.0020 0.02

3.3.2 Single rigid cylinder verification test

A rigid cylinder was fixed at the center of the drag plate, as shown in Fig. 3.2. A

series of tests were conducted at the same flow rates as were used in the flat plate

trials across four cylinder diameters: d = {12.7, 25.4, 42.1, 76.5}mm.

The measured drag forces are shown in Fig. 3.7. The results follow closely the
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boundary layer drag coefficients calculated from a) direct measurements on the
drag plate (+), and b) the determined τw (o) Vertical bars represent 95% CI.

expected quadratic power law (Equation 3.5) when using a constant value of the

drag coefficient, Cd = 1.2 (note the diameter based Reynolds number, Red = Ud
ν

,

range is approximately 103 − 5× 104, as seen in Fig. 3.7, where Cd is expected to

be constant).

D =
1

2
CdρdhU

2 (3.5)

The depth averaged velocity, after a continuity-based correction for the obstructed

area of the cylinder is:

U = Um

(

Wf

Wf − d

)

, (3.6)

with Wf = 0.60m being the width of the flume, and Um the measured depth

averaged velocity.

A noticeable deviation arises for the d = 76.5mm cylinder at U = 0.34m/s
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case, during which lateral standing waves formed, due to a resonance between

the Kármán vortex shedding frequency and low-mode lateral standing waves, and

contributed to changes in the induced drag force.
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Figure 3.7: Left: drag force on a rigid cylinder. Symbols represent measured drag
force for different cylinder diameters. Dashed lines calculated based on Eqn. 3.3
with Cd = 1.2. Right: measured drag coefficients for rigid cylinders at various Red.
Solid line calculated from Sucker and Brauer (1975) curve fit to Schlichting (1979)
data. Vertical bars, smaller than the symbols for most D and Cd va;ues reported,
represent 95% CI, .

The individual drag coefficients, as a function of Red, are calculated using the

measured drag force and correspondent depth averaged velocities from Eqn. 3.5,

and the results are presented in Fig. 3.7. The values collapse into a single curve,

with values close to those expected from the classic studies of Schlichting (1979),

represented in Figure 3.7 by the approximation of Sucker and Brauer (1975).

The continuity adjusted (Eqn. 3.6) depth integrated PIV estimates of U , were

verified against the characteristic Strouhal velocity determined from the frequency

of the periodic vortices formed in the Kármán vortex street in the wake of the

cylinders. Given the Red range of 103 − 5× 104, the Strouhal number St = fd/U ,

where f is the shedding frequency, is expected to be constant with a value St = 0.21
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(Schlichting and Gersten, 2000). The shedding frequency, f , was measured from

the peak of the lateral velocity spectra calculated from a Nortek Vectrino acoustic

Doppler velocimeter (ADV - shown in Fig. 3.2). The ADV was sampled at 50Hz

for 327.68s and the characteristic velocity determined as USt = fd/0.21 from the

ensemble averaged spectra (each record was split into 8 non-overlapping records

for ensemble averaging). USt was found to be equivalent to U to within 3% on

average; their mean ratio across the twenty experiments is USt/U = 0.969 with a

95% confidence interval of ±0.024.

3.3.3 Arrays of rigid cylinders

Work on arrays of rigid cylinders will be discussed in detail in chapter 4. Here

we analyze the response of the drag plate to temporal variations generated by the

cylinders, proving its ability to resolve not only mean unidirectional forces, but

also high frequency and periodic variations.

A distinct and interesting feature of the flow through arrays of rigid elements

was captured, which allowed us to test the temporal response of the drag plate.

Lateral standing waves, as shown schematically in Figure 3.8 for the first two

wave modes, were observed at specific velocity ranges at three of the four cylinder

diameters studied.

Wave generation by vortex shedding is reported and studied by Zima and Ack-

erman (2002) and Ghomeshi et al. (2007). Their work is focused on estimating the

wave amplitude, based on the dimensions and number of cylinders in regular and

staggered arrays within the flow. We show the occurrence of the phenomenon in

random arrays, and focus on the ability of the drag plate to resolve it. However,

further research will allow us to expand on existing work, to predict the generation

and effects of such lateral waves in random arrays, at different submergence ratios,
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as functions of d and a.

The natural frequencies of the flume of width B, for a specific water depth H,

are calculated using the gravity wave dispersion relationship to solve for the wave

radian frequency ω (Eq. 3.7), using the expected wavelength λ = 2B/n, for each

wave mode n, as well as the wave number k = 2π/λ, wave period T = 2π/ω, and

frequency f = 1/T . The expected frequencies are thus calculated using Eq. 3.8.

Figure 3.8: Sketch of the modes 1 and 2 of the lateral standing waves observed in
the flume.

ω2 = kg tanh(kH) (3.7)

f =
1

2π

(

πn

B
g tanh(

πnB

H
)

)1/2

(3.8)

The onset of the waves occurs when the shedding frequency of the cylinders

nears a natural frequency of the flume. The flow speeds at which the standing

waves are expected to appear are easily estimated from the frequencies obtained

above. As mentioned in section 3.2, the flows analyzed in the present study fall in

the range where the Strouhal number (Eq. 3.9) has a constant value St ≃ 0.21.

Since the frequencies in Eqs. 3.8 and 3.9 must be the same for the waves to occur,
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we combine both equations to get a simple method to estimate the wave-generating

mean velocities as a function of wave mode n, cylinder diameter d, flume width B

and water depth h, as shown in Eq. 3.10.

St = fsd/U (3.9)

U =
d

0.42π

(

πn

B
g tanh(

πnH

B
)

)1/2

(3.10)

The consistency of the frequencies is apparent by analyzing the frequency spec-

tra of the transverse velocity, Sv, measured drag, SD, and surface elevation, Sη.

The coincidence in the peak values for the three calculated spectra in two of the

studied cases are shown in Figure 3.9. The expected frequencies for modes n = 1

and n = 2 according to Eq. 3.8 are 0.96 and 1.57, respectively, which is just 4%

larger than the measured values of 0.92 and 1.52 in Fig. 3.9.

The drag plate accurately captures the high frequency variations due to the

waves, providing valuable insight as to how the different wave modes affect the

drag on the submerged cylinders. The mean value of the free surface at the two

most central wave gage locations y = {0.265, 0.350}m, can be used to calculate a

time dependent drag as a function of the time dependent water depth, as shown

in Eq. 3.11.

Cd(t) =
D(t)

1
2
ρNdpd · h(t) · U(t)2

(3.11)

h(t) = h + η(t) (3.12)

U(t) =
Q

Bh(t)(1 − φ)
(3.13)

It is clearly apparent that the drag plate responds to the variations in the water

level. As the water depth increases over the drag plate the drag increases and vice

versa. Calculating Cd(t) yields a time series with the same periodic oscillations
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the wave modes n = 1 (top) and n = 2 (bottom).

as the drag records, which can be averaged over the entire record (t > 5min) to

obtain more accurate mean values.

3.4 Conclusions

The drag plate yields accurate measurements for values of the drag force greater

than 0.01N (see Table 3.2). Such small drags are only typical of pure flat plate

boundary layer induced wall stress at low speeds (0.1 m/s in the present case) and

when interested in the drag force on submerged objects (such as the single rigid
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cylinder in the present study) the minimum drag expected is at least an order of

magnitude greater (see Figure 3.7). If one were interested in smaller drag forces

they could likely be accommodated by either a larger area for a wall stress to act

over or if point forces are the concern, then a smaller membrane and hence less

internal energy to overcome to apply a force on the load cell. The drag plate

also proved its ability to capture high frequency variations, as shown by its ability

to resolve the standing waves occurring under resonant conditions in the cylinder

array experiments, providing valuable insight as to how the different wave modes

affect the drag on the emergent elements. The device has been demonstrated to

be capable of accurately measuring drag forces in the phenomena that motivated

its design: vegetated flow, natural rough boundary layers, and coastal structures.

The flexibility of the drag plate design allows it to be installed to test different

configurations of multiple elements with varying geometries and physical prop-

erties, as needed. The dimensions of the drag plate were chosen to fit without

modification all of the open channel and wave tank facilities in the DeFrees Hy-
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draulics Laboratory, which greatly expands the research areas in which the device

will be used. Further modifications will allow the device to measure bi-directional

drag forces in oscillating flows, an area of study with significant need of drag force

measurement, both on man-made structures and the natural environment, such as

sea grass canopy patches.

While the primary purpose of the drag plate is to contribute to state of the art

research, it is also a powerful teaching tool and is currently being used in laboratory

experiments in a large undergraduate introductory fluid mechanics course.

The drag plate concept has been demonstrated to be well suited for the required

tasks. Its usefulness has been proven for the low signal-to-noise ratio application

of pure wall stress measurements, and at higher signal-to-noise ratio conditions

such as flow past a circular cylinder. The experiments detailed in this Chapter

clearly demonstrate the drag plate facility has the desired characteristics of: accu-

racy, repeatability, lack of intrusion on the flow, and simplicity of use for different

geometries and configurations, as shown for randomly generated, cylinder arrays

in the present study; such characteristics make it a powerful tool in the study of

the physical processes on natural streams, coasts and wetlands, in which vegetated

drag, rough boundary layers due to living organisms, and the design of coastal

structures are a wide and evolving field of research.
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Chapter 4

Flow through and above arrays of

rigid cylinders

4.1 Introduction

The use of rigid cylinders has become common practice for laboratory experiments

on model vegetated flow. The work from Dunn et al. (1996) has been used as a

benchmark for numerical models, such as those of Lopez and Garcia (1997, 1998,

2001). Former and current researchers from Dr. Heidi Nepf’s group at MIT have

conducted extensive research on arrays of submerged and emergent cylinders from

1997 to date (e.g., Nepf, 1999; Lightbody and Nepf, 2006; Ghisalberti and Nepf,

2006; Tanino and Nepf, 2008a). Other authors, such as Stone and Shen (2002),

and Poggi et al. (2004c), have used a similar approach to study vegetated flows.

Predictions of drag and drag coefficients for arrays of rigid cylinders are of-

ten conducted by calculating a bulk or height dependent Cd from the simplified

momentum equations (Eq. 1.7 and 1.8) or assuming a constant drag coefficient

of order one. The latter approach over-simplifies the problem by neglecting all

interactions between cylinder wakes and shear-scale eddies, using the same Cd as
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for a single element, while the former approach requires accurate, high resolution

data in both time and space to get mean, representative parameters of the flow.

We bypass the assumptions required to calculate Cd from velocity statistics, and

directly measure the drag, using the device already tested and verified in Chap-

ter 3). Coupling the drag measurements with a detailed analysis of the velocity

field, using both quantitative imaging for 2-dimensional velocity data, and ADV

measurements to investigate the three-dimensionality of the flow, we generate an

extensive data set that allows us to investigate how the measured values match

the estimated values from common approaches.

Analysis of the generated data set for different diameters and solid volume

fractions allows us to develop our own predictions of Cd as a function of φ and

Red.

4.2 Experimental procedure

A 3.66m long section of an 8m long open channel flume is covered by an array of

rigid, 0.20m long acrylic cylinders, as detailed in Section 2.3. Four different arrays

are studied, with the same initial a = 4.0m−1, with di = {0.31, 0.62, 1.27, 2.53}cm.

To study the effects of the variation in a, several cylinders are removed from the

d2 = 0.62cm array to obtain values of a = {1.0, 2.0, and 3.0}m−1. Relevant pa-

rameters for each array: number of elements per plate, Np, volumetric frontal area,

a, porosity, ηp, solid volume fraction, φ, and the space averaged mean separation

(center to center) between adjacent cylinders, sn, are presented in Table 4.1.

Measurements of the 2-D velocity field in the x − z vertical plane were taken

using particle image velocimetry (PIV) over the entire flow depth at the down-

stream edge of the drag plate, using the PIV set-up as detailed in Section 2.6.

To gain access to the full field of view (FOV), several array elements had to be
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Table 4.1: Representative parameters for the cylinder arrays

d (cm) Np a(m−1) η φ sn/di
d1 = 0.31 921 4.0 0.990 0.010 4.83
d2 = 0.62 460 4.0 0.980 0.020 3.67
d3 = 1.27 230 4.0 0.960 0.040 2.89
d4 = 2.53 115 4.0 0.920 0.080 2.39
d2 = 0.62 116 1.0 0.995 0.005 6.72
d2 = 0.62 231 2.0 0.990 0.010 4.89
d2 = 0.62 346 3.0 0.985 0.015 4.1

removed (Fig. 4.1). To test the effect of the removal of cylinders, we analyzed

the 2-dimensional velocity field in the gap, and found no significant changes in the

mean longitudinal velocity over its length, consistent with the findings of Ikeda

and Kanazawa (1996), indicating that the removal of cylinders had little effect on

the measured velocity field. For the emergent case, a single, centerline (y = 0.30m)

vertical plane is investigated, recording 8200 images at 20Hz to get 10Hz velocity

fields, with time between images, ∆t, ranging from 8.00ms to 36.00ms. For the

submerged case, three lateral sections are studied, y = {0.14, 0.30, 0.46}m, and

sets of 1030 images are captured at 2Hz for the 2 off-centerline locations and sets

of 8200 images at 20Hz are taken for the centerline location, with a ∆t ranging

from 8ms to 33ms, yielding 1Hz and 10Hz velocity fields, respectively. Images

are post-processed as detailed in Section 2.6.

4.3 Results from arrays of emergent cylinders (H =

h)

4.3.1 Analysis of drag and velocities

Eight flow rates were initially studied for each diameter, as shown in Table 4.2,

spanning a range of Red = {50 − 5000}. Flow rate, Q, free surface slope, S, and
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Figure 4.1: Side view of the cylinder array. Several cylinders had to be removed
for optical access. Flow from right to left.

drag, D, were measured for each test. PIV was originally conducted at 6 flow rates

for each diameter, but disturbances in the free surface distorted the light sheet

directed from above and prevented us from acquiring good quality images at the

highest flow rates on the largest diameter cylinders.

Table 4.2: Flow rates Q (m3/s) as set by the pump frequency fp (Hz). Charac-
teristic velocity UQ (m/s), and Red are reported.

di (cm) fp (Hz) 4 8 12 16 20 24 28 32

0.31 Q (m3/s)× 10−3 2.52 5.50 8.27 11.14 14.05 16.97 19.87 22.50

UQ (m/s)× 10−2 2.50 5.45 8.19 11.03 13.92 16.81 19.68 22.28

Red 59 130 194 262 330 399 467 529

0.62 Q (m3/s)× 10−3
2.18 5.35 8.13 10.99 13.94 16.88 19.63 22.18

UQ (m/s)× 10−2
2.19 5.35 8.13 11.00 13.94 16.88 19.63 22.18

Red 104 254 386 522 661 801 931 1050

1.27 Q (m3/s)× 10−3 2.52 5.35 8.18 11.04 13.91 16.76 19.65 22.46

UQ (m/s)× 10−2 2.58 5.47 8.35 11.27 14.20 17.11 20.06 22.93

Red 250 530 809 1090 1380 1660 1940 2220

2.53 Q (m3/s)× 10−3 2.52 5.20 7.78 10.67 13.47 16.35 18.54 22.07

UQ (m/s)× 10−2
2.69 5.54 8.29 11.36 14.35 17.42 19.75 23.51

Red 520 1070 1600 2200 2780 3370 3820 4550

To study the lateral (y) variability of the velocity, point measurements of the 3

components of the velocity (u, v, w) were acquired with an ADV (32, 768 samples
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Figure 4.2: ADV measurements of longitudinal velocity, U (m/s), at 15 points
along a y−transect, at z = 0.12m, for diameters d1 = 0.31cm and d2 = 0.62cm, at
two flow rates. Dotted lines indicate the means of the 15 measurements for each
flow rate. Solid lines show the value of their respectives measured mean porous
velocities UQ (m/s).

at 200Hz) at 15 transverse locations at z = 0.12m. As shown in Figure 4.2,

the longitudinal velocity varies almost 30% with respect to the laterally averaged

value, which shows the need for measuring at several locations in order to get a

more representative mean value. For rigid, emergent cylinders, it is expected that

cylinder drag will suppress vertical gradients (Nepf et al., 1997b; Nepf and Koch,

1999), resulting in almost uniform velocity profiles. Figure 4.3 shows the results

from PIV data taken at a single, centerline location, for all diameters, adjusted by

a factor (1− φ)−1 to account for continuity.

To account for the overall spatial variability, given the essentially uniform ve-

locity profiles, a mean porous velocity, UQ, is defined as:

UQ =
Q

BH(1− φ)
(4.1)

Q is measured via a modified Venturi flow meter (see Section 2.5), and H is taken
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cylinders at all the flow rates studied (open symbols). Dotted lines indicate the
estimated velocities from the momentum equation, US, and solid lines show the
mean porous velocities, UQ for each flow rate.
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as the average water depth over the drag plate. UQ values plotted in Figure 4.2

show a difference between a laterally averaged velocity and UQ of up to 6%.

To validate the use of UQ, since only one lateral section was studied using

PIV and hence no lateral averaging can be performed, we compare it against

estimated values. Based on Equation 1.7, a mean velocity can be estimated from

the measured free surface slope S = ∂η/∂x (Eq. 4.2)

Us =

√

−2gS(1− φ)

Cda
(4.2)

For a first order estimate, a constant value, Cd = 1.13, is used (Dunn et al., 1996),

yielding the results in Figure 4.3. The mean porous velocities, UQ, estimated

values, US, and depth averaged values of the vertical profiles, Uh, are compared in

Figure 4.4. It is now clearly noticed how the ratio US/UQ gets closer to unity as the

flow rate increases, attributed to larger uncertainties in the slope measurements

at the lowest flow rates. The choice of a constant Cd = 1.13 is also a source of

uncertainty, a reminder of our main goal to find more accurate ways to estimate

drag coefficients. Differences larger than 20% are noticed on the Uh/UQ ratios,

which is expected since only one location was studied. For analysis hereafter, UQ

values are used as representative bulk velocities.

For each test, the load cell output was recorded for 5min at 50Hz. The ob-

tained drag values, D, show a quadratic relationship with the velocity (Figure 4.5).

Following a similar approach as with a single cylinder, a drag coefficient can be

calculated from Eq. 4.3, where Ndp is the actual number of cylinders on the drag

plate:

Cd =
D

1
2
ρdhNdpU2

h

(4.3)
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Figure 4.4: Ratios of depth averaged, Uh (solid symbols), and estimated, US (open
symbols), velocities over the mean porous velocity, UQ. Error bars represent un-
certainty over the measured slopes used to calculate US.

For emergent rigid cylinders, given the observed generation of waves at some of

the flow rates studied (see Section 3.3.3), Cd is calculated as a time average from

the time dependent equations (Eq. 3.11, 3.12, 3.13). The calculated coefficients

are shown in Figure 4.6 as a function of Red.

Using the measured Cd values, we investigate how the velocity estimates using

the free surface slope perform with the actual, measured drag coefficients as op-

posed to assuming a constant Cd. Figure 4.7 presents both approaches. Since the

actual Cd values are larger than the estimated Cd = 1.13 the new estimates appear

to underestimate the mean, porous velocity, UQ, by as much as 20%.

The simple, yet powerful drag plate approach allows us to find drag coefficients

without requiring further assumptions or simplifications. An alternative common

approach to estimating the drag on fully emergent, rigid elements, leverages the

assumption of steady state, fully developed flow, neglecting bed and free surface

stresses (Tanino and Nepf, 2008a,b). For a flow satisfying all of the above condi-
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Figure 4.5: Measured drag as a function of Red for each diameter tested. Vertical
bars show the 95% CI.

tions, a drag coefficient can be found by solving the simplified governing equation,

Eq. 4.4, where n is the number of elements per square meter, φ is the solid volume

fraction of the array, and ∂h/∂x is the free surface slope:

CdU
2
h

2
nd = −(1− φ)g

∂h

∂x
(4.4)

To compare the estimated values from Eq. 4.4 against the measured Cd values,

ultrasonic wave gages (S18U Series, Banner Engineering Corp.) were placed along

the flume, sampling at 50Hz for 5min, to measure the free surface slope to account

for lateral variations. An array of seven wave gages was used to measure the surface

height at seven transverse locations (y-axis), at several longitudinal locations (x-

axis). Based on the results (Figure 4.8), two conclusions can be made: 1) relatively

large variations are found laterally due to the presence or absence of cylinder wakes,

and 2) the x-location of the wave gages can also introduce errors in the calculations,

since placing the sensors up or downstream, or even too close to the array edges will

lead to an underestimate of the slopes, since the assumptions of one-dimensional

flow are violated. Considering the lateral variations, the ratios of the measured
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Figure 4.6: Drag coefficient as calculated from the drag plate measurements (Equa-
tion 4.3). Vertical bars show the 95% CI.

and estimated drag coefficients are calculated and presented in Figure 4.9. It is

noticed a clear trend for all diameters, where Cd values estimated from the free

surface slope over-predict the actual, measured drag at lower Red, but as Red

increases, they underestimate Cd for as much as 20%. The large uncertainties

in the slopes due to lateral variability confirm the need for a device capable of

measuring the drag without further assumptions of the flow conditions, and the

successful performance of the drag plate assures the ability to study increasingly

complex flows.

We intend to use the data from arrays of emergent, rigid cylinders to predict

values of Cd in more complex flows (submerged arrays, and flexible elements).

Values of Cd for all experiments from Table 4.1 are presented in Figure 4.10. To

investigate the relevance of three characteristic length scales of the flow, Cd is

plotted against three different Reynolds numbers, using d, a−1, and sn as length

scales, but no clear trend is seen (Figure 4.10). To account for array properties

other than the cylinder diameter, we propose the use of a different non-dimensional

parameter, Cdad. By using this term, we notice a seemingly asymptotic tendency

for larger values of Red as a consistent, increasing function of φ (Figure 4.11). The
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Figure 4.7: Comparison of ratios of estimated longitudinal velocities, US, over the
mean porous velocity, UQ, by using a constant Cd = 1.13 (solid symbols), and
using the measured drag coefficients from Figure 4.6 (open symbols).

similarity in the values for the d1, a = 4m−1 , and d2, a = 2m−1 cases is apparent,

both with the same φ = 0.010. By fitting a horizontal line to each φ−curve,

we calculate expected asymptotic values for Cdad in terms of φ, finding a linear

relationship, Cdad = 2.1φ, for φ < 0.04. A quadratic fit is also suggested for the

whole range of φ studied (Figure 4.11).

Ergun (1952) proposed a dimensionless expression for pressure drop in flow

through packed columns, using the mean drag per unit length of cylinder,
〈

fD
〉

=

ρ(1− φ)f1/n, where n =number of cylinders per unit area.

〈

fD
〉

µUQ
= α0 + α1Red (4.5)
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Figure 4.8: Measured surface displacements with an array of 7 ultrasonic wave
gages spanning the width of the flume at 19 x-locations, for the d=0.64cm cylin-
ders array with UQ=14.37cm/s. Dashed line marks the edges of the drag plate.
Solid line marks the end of the cylinders array. For simplicity only maximum and
minimum values at each X-location are presented
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Figure 4.9: Ratios from Cd calculated from the direct drag plate measurements
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Figure 4.11: Dimensionless parameter Cdad as a function of Red and φ.
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Here µ is the dynamic viscosity of the fluid and the ratio α1/α0 can be interpreted

as a ratio of the inertial to viscous contributions of drag (Koch and Ladd, 1997).

The drag coefficient Cd = 2
〈

fD
〉

/
(

ρdU2
Q

)

can be expressed in terms of Eq. 4.5 as:

Cd = 2

(

α0

Red
+ α1

)

(4.6)

Numerical simulations by Koch and Ladd (1997) confirm the validity of Ergun’s

equation for flow through packed rigid cylinders. They found a monotonic decrease

of α1/α0 with increasing φ, but there is no mention of how to estimate the values

of α1 and α0. Results from laboratory experiments by Tanino and Nepf (2008a)

with rigid cylinders with d = 0.64cm, suggest α1 to be a linear function of φ, while

α0 reaches a constant value for φ > 0.15. However, as Tanino and Nepf (2008a)

state, the values of such coefficients are very sensitive to the uncertainties from the

data itself and the linear regressions.

Using Eq. 4.5, a linear relationship is found from our data. We perform a

linear regression to find the α coefficients (Table 4.3) and respective Cd curves for

each φ (Figure 4.12). Values of φ in our tests are lower than those used by Tanino

and Nepf (2008a), but the same tendency towards larger Cd values as φ increases

is noticed.

Table 4.3: Estimated values of α1 and α0 from Ergun’s equation.

d (cm) φ α0 α1

0.31 0.010 50 0.75
0.62 0.020 60 0.84
1.27 0.040 140 0.90
2.53 0.080 200 1.15
0.62 0.005 70 0.60
0.62 0.010 55 0.70
0.62 0.015 60 0.75

To compare the latter approach against our estimates from Figure 4.11, we
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Figure 4.12: Dimensionless drag per unit length of cylinder (left) and estimated
drag coefficient curves from the linear fitting to Ergun’s equation (right).

plot the fitted Cd curves from Ergun’s equation as Cdad, and compare it against

our data (Figure 4.13), noticing a monotonic increase of Cdad with φ. The match

between the data and the estimated values suggests that using Eq. 4.6, with the α

values from Table 4.3, we can now predict the values of Cd for arrays of emergent

cylinders as a function of φ. In addition, we can also find the asymptotic values

for each φ, and find a simpler relationship between Cdad and φ, independent of

Red, for Red > 1000, as shown in Figure 4.14, similar to the one found in our first

estimate (Figure 4.11).

In later sections, we test the consistency of the Cd = f(Red), and Cdad =

f(φ) relationships found for emergent cylinders, against measurements in arrays

of submerged cylinders, and arrays of flexible vegetation.
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Figure 4.13: Dimensionless parameter Cdad as a function of Red and φ.
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Figure 4.14: Dimensionless parameter Cdad as a function of φ for Red > 103.
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4.3.2 Analysis of momentum and tke budgets

Normalized profiles of longitudinal mean velocity U/UQ, turbulent kinetic energy
〈√

k
〉

/UQ, and Reynolds stresses
〈

u′w′

〉

/U2
Q, are shown in Figure 4.15 (from 2-

D PIV data, k = 1
2

(

2
〈

u′

〉

+
〈

w′

〉)

). We compare the velocity profiles against

estimates from the free surface slope (Eq. 4.2). The data profiles only represent

one transverse location, and suggest the need for further spatial averaging.

Estimates of k are obtained from a simplified turbulent kinetic energy equa-

tion, which in the absence of vertical gradients yields a balance between wake

production, Pw, defined as the work done by the flow against form drag, and the

viscous dissipation of turbulent kinetic energy, ǫ, accounting for the conversion of

mechanical energy into internal energy (heat), as stated in Eq. 4.7 to 4.9:

Pw = ǫ (4.7)

ǫ ∼ k3/2

d
(4.8)

Pw ∼
(

1

1− φ

)

1

2
CdaU

2U (4.9)

The dissipation scaling from Tennekes and Lumley (1972) is used, with d as

the characteristic length scale (Tanino and Nepf, 2008b). The production of tke

in the cylinder wakes is calculated as the work input by canopy drag. Solving the

above set of equations, a relationship was found by Tanino and Nepf (2008b), for

rigid, emergent cylinders:

〈√
k
〉

UQ

= γ

(

1

1− φ
0.5Cdad

)1/3

(4.10)

Their experiments with random arrays of cylinders, d = 0.64cm, φ = {0.010−0.35}
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indicated a value γ = 1.1. Using k, UQ, and Cdad data from our experiments,

we find a better agreement for γ = 0.6 (see Figure 4.15, where estimates from

both γ values are given, with the γ = 1.1 clearly overpredicting tke). Only one

lateral measurement was taken, so no spatial averaging from PIV data was possible.

However, we use ADV data, taken at 4 lateral y−locations, at a single elevation

z, for several flow rates, to further investigate the value of γ. Figure 4.16 shows

the mean values of γ, averaged over the 4 lateral locations at each flow rate. The

mean of all experiments yields a value of γ = 0.99, but the large variations observed

betwen lateral locations suggest that further studies with a better averaging scheme

should be performed before claiming a unique, if any, value of γ.

Reynolds stresses
〈

u′w′

〉

, also plotted in Figure 4.15, are negligible, confirming

our original assumption for the simplified momentum equation. An apparent in-

crease of Reynolds stresses for the thickest cylinders d3 = 1.27cm and d4 = 2.53cm,

can be attributed to fewer shedding periods being sampled in the ts = 410s long

PIV records. A non-dimensional time t∗ = ts ·f , where f is the shedding frequency

of a single cylinder, reveals that for the thinnest cylinders, d1 = 0.31cm, we sam-

pled between t∗ = {380− 5000}, whereas for the thickest cylinders, d4 = 2.53cm,

we have t∗ = {53− 218}.

We use records from ADV measurements at mid-depth, at four lateral locations,

to calculate the frequency spectra of the lateral velocity for all four diameters. Each

200Hz record is resampled (averaged down) at 50Hz, ensemble averaged over 8

sub-windows, and horizontally averaged (Figure 4.17). We notice: a) a clear peak

in each curve around the expected shedding frequency for a single cylinder, f =

0.21UQ/d, signaling the scale at which tke is being generated, and b) the inertial

range, with a −5/3 slope, indicating the presence of turbulence at frequencies

higher than the shedding frequency, confirming the injection of tke by stem wakes.

66



0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

z
/
h

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

z
/
h

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

< U > /UQ

z
/
h

0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

d
1

0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

d
2

0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

d
3

0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

<
√

k > /UQ

d
4

−0.01 0 0.01
0

0.2

0.4

0.6

0.8

1

−0.01 0 0.01
0

0.2

0.4

0.6

0.8

1

−0.01 0 0.01
0

0.2

0.4

0.6

0.8

1

−0.01 0 0.01
0

0.2

0.4

0.6

0.8

1

< u ′w ′ >/U 2

Q

Figure 4.15: Dimensionless profiles of U/UQ,
〈√

k
〉

/UQ, and
〈

u′w′

〉

/U2
Q for all

flow rates and diameters studied. Dashed lines in left column show the predicted
velocity US/UQ. Solid and dashed lines in middle column represent the expected
〈√

k
〉

/UQ = γ (0.5Cdad(1− φ)−1)
1/3

using γ = 0.6 and γ = 1.1 respectively.

67



0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2

2.5

3

3.5

4

Re
d

γ

 

 
d

1

d
2

d
3

d
4

Figure 4.16: Calculation of the coefficient γ, from Eq. 4.10 and point measure-
ments of

√
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4.4 Results from arrays of submerged cylinders (H >

h)

4.4.1 Flow characterization

Analysis of the PIV data provides a good picture of the 2-dimensional, x−z velocity

field with high space resolution. However, if one is to study lateral, y, velocities,

or requires data at higher time resolutions, then the amount and complexity of

experiments, as well as the storage capacity required for the PIV images increases

rapidly. In order to study the three-dimensionality of the flow for the H/h = 1.9

case (h = 0.195m for submerged cylinders), point measurements were made with

the Vectrino ADV on a y − z vertical plane, transverse to the flow direction,

creating a grid of 360 points (20 point vertical profiles at 18 lateral locations), with

∆y = 3.0cm and ∆z = 1.5cm, at the same longitudinal location the PIV data was

taken (Figure 4.18). Records of 164s at 200Hz (214 samples) were acquired at each

point.

The values of longitudinal mean velocity for each diameter are shown in Figure

4.18. The presence of local velocity maxima at different locations for each diameter

demonstrates that secondary circulations exist across the flume width, as a result

of the coherent flow structures generated within the canopy.

Figure 4.19 presents side-by-side pseudo-colored images of the three velocity

components (u, v, w). The regions of up- and downwards flow are clearly defined,

and evidence of secondary circulation becomes more clear. Magnitudes of the

downward vertical velocities above the canopy are an order-of-magnitude less than

the longitudinal velocities at the same height, but within the canopy the upward

vertical velocities are of the same order as the longitudinal component.

Pseudo-colored images of the tke and Reynolds stresses are presented in Figure
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Figure 4.18: ADV measurements of U(m/s) along a y − z plane. The sketch
indicates the y−location of the grid points in the region with cylinders removed
(downstream edge of the drag plate). The three lines indicate the locations of the
x − z planes for PIV data. Cylinders drawn at the right scale (distorted by the
x− y dimensions shown). x−coordinates with respect to the upstream edge of the
drag plate.

4.20. The peak of both values is expected to occur at the cylinders height, z = h,

where h = 0.195m for submerged cylinders, but it is clearly being displaced by

variations in the vertical velocity, resulting on variations on the location of the

peak within a ±5cm region from the top of the cylinders.

Studying the time series of velocity and momentum transport (Figure 4.21),

fluid ejections (u′ < 0, w′ > 0), and sweeps (u′ > 0, w′ < 0), can be identified

for all diameters. A scatter plot analysis of u′ , w′ for all diameters (Figure 4.22)

confirms that sweeps dominate ejections within the canopy (Ghisalberti and Nepf,

2006; Ghisalberti, 2010).
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Figure 4.19: ADV measurements of longitudinal, U , lateral, V , and vertical, W
(m/s), time averaged velocities along a y− z plane from d1 = 0.31cm (top row) to
d4 = 2.53cm (bottom row).

Spectra are calculated at three vertical locations: near bottom (wake zone),

at the top of the array (exchange zone), and above the array (upper shear layer).

Each record was resampled (averaged down) to 50Hz, ensemble averaged over 8

sub-windows, and horizontally averaged. Energy input at the shear scale, from the

canopy-scale eddies generated in the free-shear layer-like region, is apparent, as

well as a clear inertial range (−5/3 slope) at frequencies higher than the cylinder

shedding frequency, f = 0.21U/d, an indication of generation of wake kinetic

energy (Figure 4.23).
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Figure 4.20: ADV measurements of < u′w′ > and k (m2/s2) along a y − z plane
from d1 (top row) to d4 (bottom row).
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Figure 4.23: Spectra of vertical velocity at the upper shear layer (dashed line), top
of the array (dotted line), and wake zone (solid line), for all diameters studied,
H/h = 1.9. Solid straight line indicates the −5/3 inertial range. Vertical lines rep-
resent the observed shear frequency (dashed line), and shedding frequency 0.21U/d
(dotted line). Thin solid line represents the frequency spectra from the measured
drag.
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Figure 4.24: Spectra of longitudinal velocity at the upper shear layer (dashed line),
top of the array (dotted line), and wake zone (solid line), for all diameters studied,
H/h = 1.9. Solid line indicates the −5/3 inertial range. Vertical lines represent
the shear frequency 0.4Uhc/h (dashed line), and shedding frequency 0.2U/d (dotted
line). Thin solid line represents the frequency spectra from the measured drag.
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4.4.2 Analysis of drag and velocities

Two submergence ratios were studied: H/h = 1.9 and 1.25. Relevant parameters

for each test are presented in Tables 4.4 and 4.5. PIV was conducted at three

lateral locations, y = {0.14, 0.30, 0.56}m, to get three 2-D, x−z planes for spatial

(lateral) averaging. Sample profiles of U , 〈k〉, and
〈

u′w′

〉

for two diameters, at

Q = 0.007m3/s, and with H/h = 1.9, are shown in Figure 4.25, along with the

mean and 95CI values calculated from the uncertainty analysis, using a bootstrap

method (Efron and Tibshirani, 1993).
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Figure 4.25: Vertical profiles of U ,
〈

u′w′

〉

, and 〈k〉 for a single flow rate, for d1
(top) and d3 (bottom), at the three sections studied, y = {0.14, 0.30, 0.56}m
(H/h = 1.9). Elevation z is normalized by the height of the cylinders, h. Solid
and dashed lines indicate the mean and 95CI, respectively.
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Table 4.4: Relevant parameters for the submerged case PIV experiments, a =
4.0m−1, h = 0.195m, H/h = 1.90.

d Q Uh Red z1 tml U1 ∆U u∗

(cm) (m3/s)× 10−3 (cm/s) Uhd

ν
(cm) (cm) (cm/s) (cm/s) (cm/s)

Q04 0.31 7.0 1.48 46 11.6 20.8 1.3 5.9 0.74

Q08 0.31 14.6 3.33 103 10.1 22.3 2.8 12.2 1.69

Q16 0.31 30.3 7.39 228 8.8 23.6 5.7 24.9 3.44

Q04 0.62 7.0 1.26 78 12.5 21.7 1.1 6.0 0.75

Q08 0.62 14.7 2.43 150 12.2 22.2 2.2 12.8 1.69

Q16 0.62 30.5 5.52 340 7.8 26.4 4.2 26.4 3.64

Q04 1.27 7.0 1.38 175 13.0 20.3 1.2 5.7 0.74

Q08 1.27 14.7 2.99 380 11.1 22.6 2.5 12.5 1.48

Q04 2.53 6.9 1.53 385 12.9 20.4 1.3 5.6 0.70

Q08 2.53 14.6 3.12 790 9.7 23.6 2.5 12.2 1.48

Q16 2.53 30.3 6.51 1640 8.8 24.5 5.1 25.6 3.14

Table 4.5: Relevant parameters for the submerged case PIV experiments, a =
4.0m−1, h = 0.195m, H/h = 1.25.

d Q Uh Red z1 tml U1 ∆U u∗

(cm) (m3/s)× 10−3 (cm/s) Uhd

ν
(cm) (cm) (cm/s) (cm/s) (cm/s)

Q02 0.31 3.0 1.90 60 11.7 11.7 1.8 2.8 0.51

Q04 0.31 6.6 3.89 120 10.4 13.0 3.7 6.0 1.05

Q08 0.31 14.0 8.32 255 10.0 13.0 7.9 11.5 2.19

Q12 0.31 21.5 12.92 400 10.0 13.0 12.3 16.9 3.21

Q02 0.62 3.0 1.41 88 11.7 13.0 1.3 3.6 0.54

Q04 0.62 6.6 2.95 180 9.5 15.2 2.6 7.6 1.16

Q08 0.62 14.1 6.31 390 10.8 13.0 5.7 14.1 2.40

Q12 0.62 21.7 9.62 595 9.5 14.3 8.9 21.1 3.56

Q02 1.27 3.2 1.68 212 12.1 11.7 1.53 3.5 0.54

Q04 1.27 6.7 3.47 440 9.5 14.7 3.11 7.3 1.15

Q08 1.27 14.0 6.80 860 7.4 16.9 5.5 16.7 2.74

Q12 1.27 21.6 11.67 1475 7.4 16.5 10.2 22.8 3.81

Q02 2.53 3.1 2.07 521 10.8 13.4 1.7 3.8 0.55

Q04 2.53 6.6 4.30 1080 6.1 18.2 3.5 7.8 1.14

Q08 2.53 14.0 9.04 2280 3.9 19.9 7.2 15.2 2.40
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Similar measurements are repeated for the four diameters at several flow rates.

Data from each section is normalized by a friction velocity scale, u∗ =
∣

∣

〈

u′w′

〉

h

∣

∣

1/2
,

where
〈

u′w′

〉

h
is the value of the Reynolds stress at the top of the canopy, and

an average of the 3 lateral sections is calculated to get the spatial, horizontally

averaged profiles, as shown in Figure 4.26, where the data collapse onto a single

profile for each diameter. Data from all diameters are plotted in Figure 4.27, where

the self-similarity is noticed for all cases.

The same analysis is conducted for the nearly emergent case, H/h = 1.25,

yielding the results shown in Figure 4.28 (for each diameter), and Figure 4.29 (all

cases). We notice variations between diameters in the non-dimensional velocity,

larger than those for the deeper submergence ratio H/h = 1.9, but with no distinc-

tive pattern between them. There is, however, a noticeable relative increase in the

non-dimensional profiles of 〈k〉 in the range z/h < 1, for both H/h, as the diameter

increases, consistent with the results for rigid cylinders. Using Eq. 4.10, with drag

coefficients calculated from the values in Table 4.3, we compare estimated values

of 〈k〉 for the emergent case to the values obtained within the cylinders in both

submerged studies, now changing the normalization from
√

〈k〉/UQ to
√

〈k〉/U(z),

since a bulk UQ only works for emergent cylinders. Results, shown in Figure 4.30,

using γ = 0.6 found for emergent cylinders, give a good approximation for the

nearly emergent case (H/h = 1.25), but is not consistent for the fully submerged

(H/h = 1.9).

We used the measured, spatially averaged, velocity profiles to investigate drag

on submerged arrays. The drag plate was used to directly measure drag for each

submergence ratio at several flow rates (Figure 4.31). PIV was not used for all

flow rates, only those listed in Tables 4.4 and 4.5. Instead, we use the analysis

from cases where PIV was conducted, and couple it with the measured flow rates

to get estimates of the velocity within the array. We use a depth averaged velocity,
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Figure 4.26: Normalized, horizontally averaged vertical profiles U/u∗, 〈k〉 /u2
∗
, and

〈

u′w′

〉

/u2
∗
, for all flow rates studied, at each diameter di (H/h = 1.9).
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Figure 4.27: Normalized, horizontally averaged vertical profiles U/u∗, 〈k〉 /u2
∗
, and

〈

u′w′

〉

/u2
∗

for all diameters and flow rates studied ( H/h = 1.9).

Uh, integrated from the bottom to the top of the cylinders (0 < z/h < 1). Linear

relationships are found between Q and Uh (Figure 4.32), which allows us to use

all the drag measurements regardless of availability of velocity data from PIV. A

linear relationship is also found between Q and the maximum velocity, Umax, for

each case (Figure 4.33).

By calculating Uh for all cases studied, a relationship between the measured

drag, D, and Reynolds number Red = Uhd/ν can be found similar to the emergent

case. Results for D and Cd (Eq. 4.3) are shown in Figure 4.34 for both submergence

ratios. We plot the values of Cdad in Figure 4.36. These values are lower than

the expected Cdad values from the emergent cylinders data and Ergun’s equation

(dotted line Figure 4.36).

We can compare the Cd values calculated from drag measurements to estimated

values from the momentum equation. For submerged, rigid arrays, we have:
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0 = −gS − ∂
〈

u′w′

〉

∂z
− f1 (4.11)

From Eq. 4.11, a local drag coefficient C ′

d(z) (Dunn et al., 1996; Ghisalberti and

Nepf, 2004) can be calculated (Eq. 4.12, which can be used to calculate a bulk Cd

(Eq. 4.13). Vertical gradients are evaluated with a central difference scheme.

C ′

d(z) =
−gS − ∂〈u′w′〉

∂z
(z)

1
2
aU(z)2

(4.12)

Cd =
1

h

∫ h

0

C ′

ddz (4.13)

Looking at the vertical profiles of C ′

d(z)/Cd (Figure 4.35), a maximum is observed

near z/h = 0.9, and a clear decrease towards zero at the top of the cylinders, which
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Figure 4.30: Predicted and observed normalized values of 〈k〉. For clarity only
data up to z/h = 1 are shown.

has previously been described as representative of the free-end effects on cylinder

drag, where strong longitudinal vortices are generated near the tip, increasing wake

pressure and reducing drag (Ghisalberti and Nepf, 2004). We compare side-by-side

the estimated values of the bulk Cd (Eq. 4.13) and the measured Cd values (Eq.

4.3) in Figure 4.36.

As with the emergent arrays, we use the non-dimensional drag per unit length

of cylinder, fD/µUh, to investigate the Reynolds number dependence of Cd. The

results resemble a quadratic relationship rather than the expected linearity (Figure

4.37-left). A similar behavior is found by Koch and Ladd (1997), but only at very

low Red < 1, with a transition to a linear dependence (Eq. (4.5)) around Red ≈ 3.

Attempts to fit the data to create a set of curves Cd(Red) are conducted, assuming

both linearity (Eqs. 4.5-4.6, Figure 4.37-center), and a quadratic form (Eqs. 4.14-

4.15, Figure 4.37-right).

〈

fD
〉

µUQ
= β0 + β1Red + β2Re2d (4.14)
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Cd = 2

(

β0

Red
+ β1 + β2Red

)

(4.15)

The linear fit fails to capture the apparent increase in Cd as Red increases, while

the quadratic fit suggests a rapid and continuous growth of Cd. We noticed that

the Red values at which Cd starts increasing are not the same for all diameters, and

hypothesize that it occurs due to the transition from laminar to turbulent cylinder

wakes. For a single cylinder, vortex shedding is expected around Red ≈ 50, and

the wakes to become turbulent around Red ≈ 200 (Kundu and Cohen, 2004), but

these transition points depend on the level of turbulence of the flow (Williamson,

1996). Increased intensity of fluctuations in the flow approaching a cylinder (as

those generated by the wakes of upstream cylinders) will delay the onset of vortex

shedding and consequently delay the transition to turbulence (Nepf and Vivoni,

2000), which can explain why this occurs at different Red for each diameter. The

additional shear-scale turbulence from the drag discontinuity at the canopy top

would explain why we observe this behavior in submerged cylinders, but not in the

emergent array.
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4.4.3 Analysis of momentum and tke budgets

As discussed in Section 1.3, the momentum equation for flow through submerged

arrays of rigid cylinders is expected to be a balance of pressure, stress gradients,

and canopy drag, as stated in Eq. 1.8.

In Figure 4.38, we present the calculated, temporally- and horizontally-averaged

values for each term at one particular flow rate for both submergence ratios. The

vertical profiles are calculated from PIV data at each of the three lateral sections

and averaged horizontally, and we use the actual measured drag coefficients (bulk

Cd, constant over h). We also include the viscous stress and advective terms (I

and IV, Eq. 4.16) to investigate their relevance, the first being negligible for all

cases, while the latter appears to reach the same levels as the Reynolds stress

gradient, which can be attributed to a) the flow not being fully developed for all

flow rates, as evidenced by the lack of a fully linear Reynolds stress profile from

the canopy top to the free surface in Figure 4.26, and b) the localized relatively

high magnitude vertical velocities found for H/h = 1.90 (Figure 4.19), which could

be averaged out had we used more than three lateral sections.

0 = −W
∂ 〈u〉
∂z

− gS − ∂
〈

u′w′

〉

∂z
+ ν

∂2 〈u〉
∂z2

− 1

2
CdaU

2 (4.16)

0 = I + II + III + IV + V

The tke budget is also investigated. In particular, the challenge of measuring

the rate of dissipation of tke has been addressed by several research groups. We

calculate dissipation from the PIV data, using the second order velocity structure

function DLL, which has been found to be one of the most robust methods to

estimate ǫ (Doron et al., 2001; Variano and Cowen, 2008; DeJong et al., 2009).
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By definition, DLL is the covariance of the difference in velocity between two

points x+ r and x (Pope, 2000).

DLL = 〈[U(x + r, t)− U(x, t)][U(x + r, t)− U(x, t)]〉 (4.17)

In the inertial subrange, DLL can be expressed in terms of ǫ, r, and a universal

constant C2 = 2.0 (Pope, 2000). Dissipation is thus calculated by a linear fit in

the inertial subrange from a compensated DLL (Eq. 4.18).

ǫ
2/3
DLL =

DLL

C2r2/3
(4.18)

Calculation of dissipation at three elevations for a single flow rate are presented

in Figure 4.39. Vertical profiles of dissipation are calculated first at each of the

three lateral locations, and then horizontally averaged.

We test two dissipation estimates. Shear scale canopy dissipation, defined

as ǫs = 1
2
CdaU(

〈

2u′2
〉

+
〈

v′2
〉

) (Finnigan, 2000; Ghisalberti and Nepf, 2004),

represents the conversion of shear scale turbulence into wake scale eddies, valid at

the exchange zone (z1 < z < h) of the mixing layer. Wake dissipation, ǫw = k3/2/d,

indicates the rate at which wake scale turbulence is dissipated into heat. We found

large variations between ǫDLL, ǫs, and ǫw (Figure 4.40). It is noticed that for

H/h = 1.9, ǫw does a better job in regions far from the influence of the mixing

layer, but for the upper region of the canopy, ǫs gives better approximations. For

the H/h = 1.25 case ǫw closely follows the calculated ǫDLL. Notice that both

estimates can be only used within the array (i.e. z/h < 1).

The rest of the z−dependent, temporally- and horizontally-averaged terms on
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the tke budget, Eq. 4.19, are likewise calculated from the PIV data at each

y−section and horizontally averaged. The shear production, Ps, is the rate at

which tke is produced by the work of the Reynolds stress against the mean ve-

locity gradient. Wake production, Pw, is the work done by the flow against form

drag, and T is the turbulent transport, affected by the multiple scale eddies over

the water column. Each term is defined in Eq. 4.19 to 4.22.

0 = T (z) + Ps(z) + Pw(z)− ǫ(z) (4.19)

Ps = −
〈

u′w′

〉 ∂U

∂z
(4.20)

Pw =
1

2
aCdU

2|U | (4.21)

T =
∂

∂z

[

νt
∂k

∂z

]

(4.22)
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Figure 4.40: Dissipation values from the second order structure function, ǫDLL

(solid line), compared against the model estimates ǫs (dashed line) and ǫw (dash
dotted line), valid only in the shear and wake regions respectively, for the four
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Figure 4.41: TKE budget terms (Eq. 5.6) for the four studied arrays of sub-
merged, rigid cylinders, d = {0.31, 0.62, 1.27, 2.53}cm, at H/h = 1.9, Red =
{50, 80, 180, 390} (left column), and H/h = 1.25, Red = {120, 180, 440, 1080}
(right column).
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Results are shown in Figure 4.41. Well within the array we notice a balance be-

tween wake production and dissipation, with shear production becoming important

at the canopy top, where we notice a loss in turbulent transport. We notice a large,

unbalanced value of Pw for d1 at both submergence ratios (Figure 4.41). The defi-

nition of Pw implies that all energy extracted by drag on the stems appears as tke,

and as we discussed in Section 4.4.2, fluctuations in the flow due to upstream cylin-

ders can delay the onset of vortex shedding and the transition to turbulent wakes

until Red > 200 (Williamson, 1996; Nepf and Vivoni, 2000), and in the absence of

vortex shedding, viscous drag dissipates mean flow energy without generating tke,

rendering our calculated Pw as only an upper limit for Red . 200.

4.5 Conclusions

Data from experiments on rigid, emergent cylinders yields a family of Cd curves,

as a function of solid volume fraction φ. We find advantages in using the non-

dimensional parameter Cdad, instead of Cd, namely a more clear graphic repre-

sentation of the dependence Cd = Cd(φ), and a simpler way to estimate Cdad for

Red > 1000.

Predicted Cd values, using the curves found from rigid cylinder experiments,

give a good approximation to the order of magnitude of the measured coefficients

in submerged conditions, but they over predict Cd for as much as 50%. We hy-

pothesize that this apparent reduction on Cd for submerged arrays in comparison

to the emergent case, can be attributed to interaction between cylinder wakes and

the coherent structures from the shear layer, which would explain the observed

behavior of Cd for the submerged case.

Analysis of velocity spectra clearly show two relevant scales at which tke is

injected into the flow. For emergent arrays, the wake-scale controls the generation
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of tke, while for submerged arrays both the shear-scale and wake-scale appear,

where the shear-scale eddies dominate.

The drag coefficient is often left as a calibration parameter, to close the bal-

ance of the momentum and tke budgets. Estimates of dissipation using a scaling

argument, assuming the cylinder diameter as the length scale, yield good approx-

imations when compared to the more robust estimate from DLL, especially for

H/h = 1.25. The measured drag coefficients perform satisfactorily at balancing

momentum and tke budgets, raising our expectations to use predicted values, from

our rigid cylinder studies, in more complex canopy morphologies.
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Chapter 5

Flow through and above canopies of

flexible, live vegetation

5.1 Introduction

Studies of vegetated flow often rely on indirect estimations of drag and drag co-

efficients. Reynolds stress profiles, free surface slope, and momentum balance are

commonly used to estimate the drag (Dunn et al., 1996; Nepf, 1999; Ackerman

and Hoover, 2001; Lightbody and Nepf, 2006; Ghisalberti and Nepf, 2006; Luhar

et al., 2008). Other research groups have taken a direct approach to measure veg-

etated drag, either with laboratory set-ups (Fathi-Maghadam and Kouwen, 1997;

Freeman et al., 2000; Sand-Jensen, 2003), or building submersible, field devices

(Callaghan et al., 2007).

Sand-Jensen (2003) measured the drag on live stems of different species placed

on a 0.15 × 0.17m platform suspended from a rail above a flume, connected to a

spring balance to measure the force. Given the small size of the platform, that the

stems were placed on the platform only, and that it did not cover the whole flume

width (0.30m), further studies would be required to extrapolate their developing
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flow results to predict drag under large-scale natural conditions. Fathi-Maghadam

and Kouwen (1997) measured bulk velocities and drag on model trees by mounting

a system of load cells on a force-balance apparatus flush with the flume bottom.

In a related study, Freeman et al. (2000) covered a flume with different species of

vegetation and measured the drag in a selected single plant at mid-width mounted

on a platform allowed to displace over ball bearings, which compressed a strain

gage that recorded the exerted drag. However, to infer meaningful drag one must

spatially average over multiple plants under appropriate forcing and the approaches

discussed above are not capable of achieving this. Callaghan et al. (2007) built a

submersible drag measurement system, consisting of a movable trolley allowed to

displace in one direction over ball bearings to compress a load cell. The system is

enclosed in a rigid housing that allows it to mount flush with the bottom of either

a laboratory flume or a natural stream. Its dimensions (0.724m× 0.208m) suggest

that it can measure forces over several elements, but it has only been tested with

a single element attached to it.

Other researchers have addressed the parametrization of the plant morphology

(bending and characteristic obstructed areas) to estimate the drag (Sand-Jensen,

2003, 2005; Green, 2005b; Sukhodolov, 2005; Statzner et al., 2006). They develop

an interesting discussion as to what are the most appropriate parameters for a

standard calculation of drag coefficients on flexible vegetation, whether they in-

clude the projected frontal area of harvested stems (first approach in Section 2.7),

the frontal area of the bent plants (our second approach in Section 2.7), or even

lateral and top-view projections.

We carried out a detailed analysis of the projected frontal area of the vegetation

as it bends and sways with increasing flow rates. We used quantitative imaging to

capture the mean values of obstructed area and its temporal variability, generating

time series of a(z) that allow us to clearly see the changes in canopy height and
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the periodicity of the plant oscillations.

In this Chapter, we investigate how the coupling of the velocity-dependent a

profiles and the direct drag measurements can aid in calculating more accurate

drag coefficients than that estimated from velocity statistics.

5.2 Experimental procedure

A 3.66m long canopy of ∼ 25cm tall live stems of Eurasian watermilfoil (Myrio-

phyllum spicatum), was created in an 8.0m long recirculating open-channel flume

(see Sections 2.2 and 2.4 for details). While the plant height used for this study

only represents the shortest canopies found in the field, the relationships found

from our results are expected to be representative of and applicable to natural

conditions, given its high flexibility and essentially constant stem diameter and

branching pattern (i.e., independent of plant height). Myriophyllum spicatum is

found in lakes, ponds, reservoirs and low energy areas of rivers and streams, thus

usually experiences very low flow speeds. The same PIV setup as used for the

measurements made in the rigid cylinder arrays was used (Figure 5.1), with an

Argon-Ion laser, and a rotating mirror to generate the light sheet from the top

(details in Section 2.6).

Three plant densities were studied, n = {100, 300, 500}stems/m2. Experi-

ments were conducted at two water depths, H = 0.37, and 0.20m. Field and

laboratory observations on canopies of Myriophyllum spicatum have found a de-

cline in milfoil population due to the presence of an aquatic lepidopteran larva,

Acentria ephemerella (Johnson et al., 1998; Gross et al., 2001). Acentria’s primary

feeding site is the apical meristem, inhibiting shoot growth and thus preventing

the formation of taller and denser canopies. By studying the flow field on different

plant densities and submergence conditions, we expect to provide valuable infor-

99



Figure 5.1: Side view of the flume and the PIV setup, flow from left to right. The
head of the Argon-Ion laser is noticed at the left, followed by the shutter and an
array of mirrors to bring the light sheet from the top. Notice the stems removed
at the downstream edge of the drag plate for PIV access, below the location of the
rotating mirror.

mation as to how the reduction of canopy height and population of Myriophyllum

spicatum, as observed under the abundance of Acentria, changes the flow condi-

tions, which can in turn impact the effectivity of the herbivore as a natural control

for milfoil invasions.

Given the increased complexity of the plant morphology as compared with the

rigid cylinders, PIV analysis was conducted at 7 lateral locations, y ={9, 16, 23,

30, 37, 44, 51}cm, to get more accurate laterally averaged statistics. Sets of 1030

images were captured at 2Hz for the 6 off-centerline lateral locations and of 8200

images at 20Hz for the centerline location, with a ∆t ranging from 10ms to 50ms,

yielding 1Hz and 10Hz velocity fields, respectively. Images are post-processed as

detailed in Section 2.6. Figure 5.2 presents an example of the measured veloc-

ity variations from the seven vertical profiles for a submerged, and an emergent

experiment, along with the mean and 95CI from an uncertainty analysis using a

bootstrap method (Efron and Tibshirani, 1993).

Four flow rates were studied for the emergent, H = 0.37m case, and six for the

emergent, H = 0.20m case. For the two highest flow rates of the emergent case,

the plants bend, creating a nearly emergent situation, similar to the H/h = 1.25

scenario for rigid cylinders. Flow rates, free surface slope, and drag, are measured
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Figure 5.2: Vertical profiles of longitudinal velocity, U (top), Reynolds stresses,
〈u′w′〉 (middle), and turbulent kinetic energy, k (bottom), at the seven sections
studied (open symbols) for a single flow rate for the submerged (left) and emergent
cases (right). Solid and dashed lines indicate the horizontal average and the 95CI,
respectively.
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for each experiment at each y−location and later averaged.

Relevant parameters for each experiment, such as flow rate, Q, measured

canopy height, h, submergence ratio, H/h, mean velocity at the canopy top, Uhp,

depth averaged velocity, Uh, depth averaged frontal area, ah, maximum frontal

area observed, amax, amplitude and period of the observed monami, Aw and T ,

are presented in Tables 5.1 and 5.2. Details on the calculation of each parameter

are given shortly.

5.3 Results

5.3.1 Characterization of real vegetation

Quantitative imaging was used to measure a, as detailed in Section 2.7. From the

time series of frontal area, a periodic waving (monami) is noticed for all emergent

(H = 0.37m) experiments (Figure 5.3). The period, T (s), and wave amplitude,

Aw (m), for each submerged experiment are measured from figures of the time

series and confirmed by looking at the frequency spectra.

The results are presented in Table 5.1. Stems of Myriophyllum spicatum are

fairly buoyant (SG = 0.8 (Koegel et al., 1973) ), very flexible, and unable to stand

upright outside of the water, so it is bouyancy that provides the restoring force as

the stems are pushed down, as opposed to other species (e.g., Spartina alterniflora,

Cladium jamaicense) where rigidity limits the motion of the stems.

A time averaged, vertical profile a(z) is obtained for each flow rate (Figure 5.4).

For both cases, H = 0.37 and 0.20m, the plant reconfiguration as the flow rate

increases is evident, reducing almost 50% the plant height for the deeper series,

and creating a transition from emergent to nearly emergent in the shallow case.

Figure 5.4 clearly shows the implications of using a single, bulk a value, or even
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Table 5.1: Relevant parameters for the H = 0.37m case, with flexible vegetation.

n Q h H/h Uhp Uh Rede ah (m−1) amax Aw T

(stems/m2) (m3/s) (m) (m/s) (m/s) Uhdeh
ν

1
h

∫
a(z) (m−1) (m) (s)

×10−3
×10−2

×10−2
×10−2

Q02 100 2.8 0.248 1.48 1.52 1.17 50 0.40 0.74 0.3 14.0

Q04 100 6.3 0.236 1.53 3.35 2.38 95 0.40 0.72 0.6 8.5

Q08 100 13.3 0.185 1.95 4.89 4.25 180 0.42 0.73 1.7 9.2

Q16 100 27.8 0.134 2.66 9.41 7.85 300 0.39 0.59 3.0 5.6

Q02 300 3.1 0.250 1.48 1.85 0.92 50 1.68 3.19 0.3 12.5

Q04 300 6.7 0.241 1.53 3.63 1.88 100 1.57 3.06 1.7 17.1

Q08 300 14.0 0.200 1.85 6.04 3.62 185 1.53 2.73 3.5 12.4

Q16 300 29.0 0.160 2.31 11.84 7.15 315 1.32 2.63 1.0 4.1

Q02 500 3.1 0.245 1.48 1.76 0.64 30 2.14 3.63 0.5 39.2

Q04 500 6.8 0.236 1.50 3.55 1.53 65 2.07 3.33 2.4 26.3

Q08 500 14.5 0.217 1.63 7.46 3.48 125 1.79 3.32 4.6 19.8

Q16 500 30.2 0.185 1.90 13.05 6.45 195 1.52 2.87 2.6 10.0

Table 5.2: Relevant parameters for the H = 0.20m case, with flexible vegetation.

n Q h H/h Uh Rede ah (m−1) amax

(stems/m2) (m3/s) (m) (m/s) Uhdeh
ν

1
h

∫
a(z) (m−1)

×10−3
×10−2

Q01 100 1.5 0.195 1.0 1.25 55 0.43 0.91

Q02 100 2.6 0.195 1.0 2.80 130 0.47 1.06

Q03 100 4.3 0.195 1.0 4.20 150 0.37 0.72

Q04 100 5.8 0.195 1.0 5.50 220 0.40 0.59

Q05 100 7.5 0.175 1.1 6.96 235 0.34 0.56

Q08 100 12.8 0.140 1.4 10.81 375 0.35 0.56

Q01 300 1.5 0.195 1.0 1.11 45 1.25 1.94

Q02 300 2.6 0.195 1.0 2.33 100 1.32 2.63

Q03 300 4.3 0.195 1.0 3.63 130 1.09 2.68

Q04 300 5.8 0.195 1.0 4.96 200 1.23 2.73

Q05 300 7.5 0.165 1.2 6.25 255 1.23 2.49

Q08 300 12.8 0.140 1.4 9.52 340 1.08 2.03

Q01 500 1.5 0.195 1.0 1.08 55 2.52 4.22

Q02 500 2.6 0.195 1.0 2.06 107 2.62 4.40

Q03 500 4.3 0.195 1.0 3.33 160 2.44 3.87

Q04 500 6.0 0.195 1.0 4.80 200 2.08 3.53

Q05 500 7.7 0.190 1.0 6.35 230 1.81 3.28

Q08 500 13.1 0.160 1.2 9.65 310 1.62 2.56
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Figure 5.3: Time series of the measured vertical profiles of a (m−1), for n =
300stems/m2, at H = 0.37m for three of the flow rates studied.
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a single profile a(z) without considering bending of the plants, which in this case

would not only overestimate the obstructed area, but could lead us to completely

miss the physical processes occurring in the nearly emergent case, by treating it

as fully emergent.

Since h varies with velocity, we define it hereafter as the maximum height

recorded from the time series, which is seen to correspond to the mean peak on

the Reynolds stress profile.

5.3.2 Flow characterization

We study the three-dimensionality of the flow by taking point measurements of the

three components of velocity with an ADV along a vertical, y−z plane, transverse

to the flow, at the same longitudinal location where PIV data are acquired. We

produce a grid of ∆y = 3.0cm and ∆z = 1.5cm, yielding 396 grid points (22 vertical

× 18 horizontal) for the H = 0.37m case, and 180 grid points (10 vertical × 18

horizontal) for the H = 0.20m case. Records of 164s at 200Hz (214 samples) were

acquired at each point. Results for mean velocities, as well as Reynolds stresses

and tke are presented in Figures 5.5 and 5.6.

For the submerged case we notice a similar structure as with the rigid cylinders,

with regions of downward velocity above the canopy and upward velocity regions

within the plants. Due to bending of the plants, now we see large variations in

the vertical location of the peak of both Reynolds stress and tke. Both present

a maximum value (in magnitude) around the 0.1m < y < 0.2m, corresponding

to a local minimum in the longitudinal velocity, which also shows a high upwards

vertical velocity, fitting the expected behavior of fluid ejections (u′ < 0, w′ > 0)

observed in rigid cylinders as well. Analysis of the time series of velocity and

Reynolds stresses at the canopy top (Figure 5.7) shows the presence of both sweeps
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Figure 5.5: ADV measurements of U , V , and W (m/s) along a y− z plane for n =
500stems/m2, for the submerged H = 0.37m (top row) and emergent H = 0.20m
case (bottom row).

(u′ > 0, w′ < 0) and ejections (u′ < 0, w′ > 0). These events are also confirmed

by a scatter plot of u′, w′ (Figure 5.8 ).

Analysis of the power spectra shows the input of energy at the shear scale, which

matches the frequency of the observed monami (Figure 5.9). At this velocity, the

shear-scale eddies seem to propagate along most of the water depth. We notice

smaller peaks at higher frequencies for the spectra within the canopy, indicating

tke input from the different stem scales. The waving frequency of the stems is

calculated from frequency spectra of the time series of the frontal area images,

using a horizontal average at z = h.

Data from the emergent case shows a region with slightly negative U velocities,

around 0.1m < y < 0.2m, where Reynolds stresses are fully damped, and we

observe a positive (near bottom) and negative (near top) peak around 0.30m <

y < 0.50m, suggesting that bending of the plants at the right side of the flume

is already taking place, demonstrating the large heterogeneity of the canopy, and
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for n = 500stems/m2, for the submerged H = 0.37m (top row) and emergent
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w′ < 0) and ejections (u′ < 0, w′ > 0) is apparent.

confirming the need for several measurement locations.

5.3.3 Analysis of drag and velocities

Using the h values from the frontal area analysis (Tables 5.1 and 5.2), we can

present the non-dimensional results as shown in Figures 5.10 to 5.11. The data

shown are laterally averaged from the seven x−z planes studied. For the submerged

case, statistics are normalized using u2
∗
= −〈u′w′〉 |z=h (Figure 5.10). It is noticed

that: A) for the larger submergence ratio the flow is not fully developed, with the

Reynolds stress going to zero long before reaching the free surface. B) As opposed

to the rigid cylinders, where a clear two-region flow was observed, here we see what

resembles two shear layers within the same profile: one created by the shear at

the top of the plants, and a smaller, upside down, mixing layer created by local

vertical gradients of obstructed area, due to the tree-like structure of the stems. C)

If one wants to focus only in the canopy top shear layer, a different normalization,
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based on the self-similarity of mixing layers, should be used to collapse all the

non-dimensional profiles around the exchange zone (Ghisalberti and Nepf, 2004).

Two approaches are used for normalization in the emergent case: the first one

using UQ, to be consistent with the experiments on cylinders (Figure 5.11), and the

second using the maximum velocity within the canopy (uM), which performs better

at collapsing all data into a single curve (Figure 5.12). The transition from the

emergent to submerged regime is evident in Figure 5.12, noticing that a) the near

bottom, within-canopy, mixing layer structure, also noticed in the fully emergent

case, remains unchanged as the stems bend, b) for fully emergent vegetation, the

relative magnitude of the kinetic energy
〈

k
〉

/u2
M is similar to the levels reported

for rigid cylinders, while Reynolds stress levels,
〈

u′w′

〉

/u2
M , are now larger, c) as

the flow transitions to nearly emergent, both values reach a maximum nearly an

order of magnitude larger than their fully submerged counterparts.

Figure 5.13 shows the measured drags, averaged over the 7 lateral runs, as a

function of flow rate. The range of flow rates studied had to be reduced with respect

to the rigid case to avoid damage to the stems. Comparing Figure 5.13 (flexible

plants) to Figure 4.31 (rigid cylinders), we notice that: A) the n = 500stems/m2

series, having similar values of a as the rigid cylinders experiments (see Table 5.1)

yields drag values of the same order as the rigid arrays for similar flow rates, and

B) for each n, instead of a clear quadratic growth D ∼ Q2, we observe an almost

linear behavior, assumed to be caused by the reduction in frontal area as the plants

start bending.

We start our analysis by using two approaches to define a bulk drag coefficient

CDB (Eq. 5.1 and 5.2). A first bulk drag coefficient, CDB1 is defined based on the

total obstructed area from stems on the drag plate, Afh (m2), and a depth averaged

velocity, Uh (from the bottom to the top of the canopy). A second coefficient, CDB2,

is defined based on the z−dependent values of Af(z)U(z)2.
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∗
= −〈u′w′〉 |z=h, for all flow rates studied, at

each plant density, n = 100, 300, 500stems/m2.
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Figure 5.11: Normalized, horizontally averaged vertical profiles U/u∗, 〈k〉 /u2
∗
, and

〈

u′w′

〉

/u2
∗
, for H = 0.20m, with u∗ = UQ, for all flow rates studied, at each plant

density, n = 100, 300, 500stems/m2.
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Figure 5.12: Normalized, horizontally averaged vertical profiles U/u∗, 〈k〉 /u2
∗
, and

〈

u′w′

〉

/u2
∗
, for H = 0.20m, with u∗ taken as the maximum velocity within the

plants, for all flow rates studied, at each plant density, n = 100, 300, 500stems/m2.
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Figure 5.13: Measured drag as function of Q. Presented values averaged from 7
runs. Vertical bars for 95CI.

D =
1

2
ρCdB1(Afh)(Uh)

2 (5.1)

D =
1

2
ρCdB2

∫ h

0

Af (z)U(z)2 dz (5.2)

To be consistent with the previous analysis on rigid elements, the calculated

values of CdB1 and CdB2 are plotted against a Reynolds number based on an ef-

fective diameter, Rede = Uhdeh/ν , where we define de = a/n, from the simplified

definition of a = nd for rigid cylinders. Since de for real plants varies with depth,

a depth averaged value, deh, is used. Results are shown in Figure 5.14. Both

coefficients, with the exception of the least dense case (n = 100stems/m2) at

H = 0.37m, present a rapid decrease up to Rede = 300, asymptotically towards a

seemingly constant value around CdB ⋍ 1.9.

The non dimensional parameter used for rigid cylinders, Cdad, is here modified

with a depth averaged ah, and the effective diameter de, as CdBahde. As it appears

in Figure 5.15, the H = 0.20m experiments present larger values for denser arrays
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Figure 5.14: Bulk drag coefficients CdB1 and CdB2, as defined in Eq. 5.1 and 5.2,
for H = 0.37m (open symbols) and H = 0.20m (solid symbols). Vertical bars for
95CI. Dashed line for Ergun’s equation fit, α1 = 0.6, α0 = 70.

(larger φ). Data from each case do not present the clear trend noticed in the rigid

case, and the now shorter range of Rede does not allow us to estimate a function

Cdad = Cdad(φ) as with previous results.

In order to use Ergun’s equation parameters α0, and α1, found from our experi-

ments in rigid cylinders, to predict drag coefficients in real plants, we need to: 1) es-

timate the volume occupied by the plants, according to the linear relationship found

in Figure 2.6 as a function of a ( Vplants(cm
3) = 3.5× 104a(cm−1) ), 2) use the cal-

culated volume to find the respective solid volume fraction, φ = Vplants/Vfluid; and

3) use the appropriate α parameters (Table 4.3) for each calculated φ to calculate

Cd. Values of solid volume fraction for plants are quite low (φ = {0.0004−0.0022}

and φ = {0.0005− 0.0034} for submerged and emergent plants, respectively) com-

pared to the rigid cylinders studied (φ = {0.005 − 0.080}). We use the α values

from the lowest φ (φ = 0.005, α1 = 0.6, α0 = 70) and get estimates for Cdahde

(Eq. 5.3).
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Figure 5.15: Measured and estimated values of CdB1ahde and CdB2ahde, for H =
0.37m (open symbols, dashed lines) and H = 0.20m (solid symbols, solid line).
Vertical bars for 95CI.

The estimated values, using a constant ah(n,Q = 0) throughout each series,

show a good agreement with the measured values, performing better for the emer-

gent (H = 0.20m) case, as shown in Figure 5.15. Using the measured a for each

particular experiment, the match between predicted and measured values improves,

as shown in Figure 5.16, where the ratio of measured to estimated Cdahde values

is presented, with most values falling between a ±20% margin, getting better for

larger Rede .

Since we are using the same α values for all cases, we can assume that at

this lower range of φ, the dependence Cd = Cd(φ) is either minimal, or being

indirectly accounted for by using Rede from de = a/n, and a single fit for all

flexible experiments can be found from the CdB data, with α1 = 0.6, α0 = 70
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Figure 5.16: Measured to estimated ratios for CdB1ahde and CdB2ahde, for H =
0.37m (open symbols) and H = 0.20m (solid symbols). Vertical bars for 95CI.

(Figure 5.14). If we compare the measured and estimated Cd values, we get the

exact same ratios as shown in Figure 5.16. With the observed fit for the results

from the bulk drag coefficient CdB1, we can now get local drag coefficients, Cd(z),

as a function of U(z) and a(z) (Figure 5.17).

The vertical profiles of Cd (Figure 5.17) for all cases coincide in a clear decrease

as the flow rate increases, with more uniform values for large a. Since we know

Cd(z), we can estimate the vertical profiles of the drag force per unit fluid mass:

f1e(z) =
1
2
Cd(z)a(z)U(z)2 (Figure 5.18).

To compare against the measured drag per unit fluid mass, f1m = D
ρV

, where

ρ is the fluid density, and V = Adphp, with Adp being the area of the drag plate,

we average the f1e profiles over depth, and calculate the ratio between measured

and estimated values of f1 (Figure 5.19, left). The estimated Cd values seem to

mostly underestimate drag for the slowest flows (Rede < 200), while the agreement

between both quantities improves as Rede increases. It is observed that for Rede <

200 the deviation between measured and predicted values is correlated with n,
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Figure 5.17: Predicted Cd(z) values for H = 0.37m (top row) and H = 0.20m
(bottom row).

noticed to a larger degree in the submerged case. Estimated values of drag using

our approach outperform the assumption of a constant Cd = 1.0 (Figure 5.19,

right).

In summary, we found a good agreement between the measured drag coefficients

and the values estimated from a methodology based on rigid cylinders results. The

process followed to calculate drag coefficients can be extended to other laboratory

and field studies, as outlined below.

For laboratory experiments, we can measure the frontal area and the volume of

the plants to estimate the solid volume fraction, or use empirical curves of volume

vs. frontal area (e.g., 2.6) to estimate φ, and move onto step 5. If we only have

data from macrophyte surveys, the following steps are proposed:
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Figure 5.18: Vertical profiles of predicted values of drag force per unit fluid mass
for H = 0.37m (top row) and H = 0.20m (bottom row).

1. Using biomass values and species composition from field surveys, we estimate

the biomass corresponding to the species of interest.

2. Using empirical curves of biomass vs frontal area for a particular species

(e.g., Figure 2.7), one can estimate the total frontal area per unit volume.

3. Using curves of volume vs frontal area (2.6), the volume occupied by the

plants, and thus solid volume fraction φ, can be estimated.

4. For a more detailed analysis, to obtain height dependent drag coefficients,

with the estimated total a, and knowing the mean length of the stems, we can

estimate how the total area a is distributed along the water column from typical

vertical profiles of a(z) (Figure 2.7).

5. The coefficients α0 and α1 are chosen according to the estimated φ (Table
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4.3).

6. Using Eq. 4.6, we predict the values of Cd.

The a priori determination of Cd not only will allow us to know the expected

drag on canopies of real vegetation, it will help us to predict the penetration depth

of large, mixing layer-scale eddies into submerged canopies, which control mass

and momentum exchange (Nepf and Ghisalberti, 2008); Cd can be used to esti-

mate the turbulent kinetic energy, which in turn is used to calculate longitudinal

dispersion (Lightbody and Nepf, 2006), turbulent diffusion coefficients and lateral

dispersion in random arrays (Tanino and Nepf, 2008b) to describe nutrient and pol-

lutant transport in plant canopies; it allows calculation of how turbulent kinetic

energy is being distributed along the water column, detecting the more energetic

and turbulent regions of the canopy directly affecting organisms living within; and

overall allows for more accurate predictions of velocity profiles, indispensable for

restoration efforts in streams and coastal regions, as well as to determine how veg-

etated regions help mitigate the impacts of storms and tsunamis on coastal regions
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(Kathiresan and Rajendran, 2005; Kerr et al., 2006; Vermaat and Thampanya,

2006).

5.3.4 Analysis of momentum and tke budget

We investigate the relevance of each term in the simplified, temporally-and horizontally-

averaged, z−dependent momentum equation (Eq. 5.4).

0 = −W
∂ 〈u〉
∂z

− gS − ∂
〈

u′w′

〉

∂z
+ ν

∂2 〈u〉
∂z2

− 1

2
CdaU

2 (5.4)

0 = I + II + III + IV + V

In Figure 5.20 we present the momentum budget terms for the H = 0.39m case,

at low (left column) and high (right column) flow rates. Similar results for the

H = 0.20m series are presented in Figure 5.21. All temporally- and horizontally-

averaged vertical profiles are obtained by averaging over the x−direction from PIV

data, and then averaging over the seven transverse, y−sections studied. Vertical

profiles of drag coefficients are estimated from Eq. 5.5.

Cd(z)a(z)de(z) = 2

(

0.60 +
70

Rede(z)

)

a(z)2

n
(5.5)

For the emergent case, there is a clear balance between only the pressure and drag

terms (II and V ), where the estimated Cd values perform successfully at balancing

the momentum budget.

A more complex scenario is noticed for submerged vegetation. The viscous

term (IV ) is still negligible compared to the other contributions. The advective

term (I) now appears of the same order as the Reynolds stress gradient (III).
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Figure 5.20: Momentum budget terms (Eq. 5.4) for all plant densities, n =
{100, 300, 500}stems/m2 (top to bottom), for the H = 0.37m case, for test Q04,
Rede = {95, 100, 65} (left column), and test Q16, Rede = {300, 315, 195}.
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Figure 5.21: Momentum budget terms (Eq. 5.4) for all plant densities, n =
{100, 300, 500}stems/m2, for fully emergent flow, Q02, Rede = {130, 100, 107}
(left column), and nearly emergent, Q04, Rede = {220, 200, 200}. H = 0.20m.
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Analysis of the tke budget is conducted in an analogous manner to the rigid

case. We use the second-order structure function, DLL to estimate dissipation,

ǫDLL, and compare it against the estimates for wake and shear dissipation, ǫw and

ǫs. To calculate ǫw, we propose the use of the z−dependent effective diameter,

defined as de(z) = a(z)/n, such that the vertical profile of dissipation is given as

ǫw(z) = k(z)3/2/de(z).

While we still see large variations in the calculated values, the results are con-

sistent with the findings from rigid cylinders, with ǫw performing better far from

the influence of shear, and following closely the shape of ǫDLL for the emergent

case, while ǫs gives better estimates near the canopy top for the submersed case.

Using the same definitions from rigid arrays, each horizontally-averaged term

of the tke budget is calculated as:

0 = T (z) + Ps(z) + Pw(z)− ǫ(z) (5.6)

Ps = −
〈

u′w′

〉 ∂U

∂z
(5.7)

Pw =
1

2
aCdU

2|U | (5.8)

T =
∂

∂z

[

νt
∂k

∂z

]

(5.9)

For the submerged experiments the balance between ǫ and Pw is still maintained in

the wake zone, with contributions from turbulent transport and shear production

around the top of the canopy.

For the emergent case, since we noticed very low values of dissipation ǫDLL

for the n = 100 series (Figure 5.23), we include both ǫDLL and the estimated ǫw

values in Figure 5.25. It appears that shear production and turbulent transport

are damped, leading to a balance between wake production and dissipation. As
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Figure 5.22: Dissipation values from the second order structure function, ǫDLL

(solid line), compared against the estimates ǫs (dashed line) and ǫw (dot-dashed
line), assumed to be only valid in the shear and wake regions respectively, for all
plant densities, n = {100, 300, 500}stems/m2, for test Q04, Rede = {95, 100, 65}
(left column) and Q16, Rede = {300, 315, 195}, for the H = 0.37m case.
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Figure 5.23: Dissipation values from the second order structure function, ǫDLL

(positive x-axis), compared against the estimates ǫs and ǫw (negative x_axis),
assumed to be valid in the shear and wake regions respectively, for all plant
densities, n = {100, 300, 500}stems/m2, for the fully emergent flow, Q02,
Rede = {130, 100, 107} (left column), and nearly emergent, test Q04, Rede =
{220, 200, 200}. H = 0.20m.

127



−4 −2 0 2 4

x 10
−5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

z/
h

 

 
n=100

T
P

s

P
w

ε
r

−4 −2 0 2 4

x 10
−5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
n=300

z/
h

−4 −2 0 2 4

x 10
−5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

z/
h

n=500

tke budget (m2/s3) (Q
04

)

−1 −0.5 0 0.5 1

x 10
−3

0

0.5

1

1.5

2

2.5

 

 
n=100

T
P

s

P
w

ε
r

−1 −0.5 0 0.5 1

x 10
−3

0

0.5

1

1.5

2

2.5 n=300

−1 −0.5 0 0.5 1

x 10
−3

0

0.5

1

1.5

2

2.5

tke budget (m2/s3) (Q
16

)

n=500

Figure 5.24: tke budget terms (Eq. 5.6) for all plant densities, n =
{100, 300, 500}stems/m2 (top to bottom), for the H = 0.37m case, for test Q04,
Rede = {95, 100, 65} (left column), and test Q16, Rede = {300, 315, 195}.
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Figure 5.25: tke budget terms (Eq. 5.6) for all plant densities, n =
{100, 300, 500}stems/m2, for fully emergent flow, Q02, Rede = {130, 100, 107}
(left column), and nearly emergent, Q04, Rede = {220, 200, 200}. H = 0.20m.
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it appears in Figure 5.25, as we increase the number of plants, we start over

predicting wake production Pw. One must recall that the way we defined Pw (Eq.

5.8), assumes that all energy extracted from the mean flow by canopy drag is

turned into tke, which does not hold when the wakes are not fully turbulent (for

Red < 200 in rigid cylinders (Nepf and Vivoni, 2000)), in which case our defined

Pw becomes an upper limit.

130



5.4 Conclusions

We used a quantitative imaging methodology to successfully measure time series

of vertical profiles of obstructed frontal area as a function of velocity, capturing

in detail the height reduction and periodic oscillations of the stems. The recorded

periodic motions match the frequency of the shear scale eddies, generated by the

drag discontinuity at the top of the canopy.

Analysis of the velocity fields showed significant spatial variations due to both

the local heterogeneity of the canopy and swaying of the plants. However, the

robust spatial (horizontal) averaging scheme conducted, allowed us to obtain rep-

resentative mean values of each parameter of interest.

As expected from previous results, the drag plate yields accurate measurements

even for the sparsest arrays, at which other indirect methods, based on free surface

measurements, begin to fail as the magnitude of the slope approaches uncertainty

limits. The ability of the drag plate to measure vegetated drag is demonstrated,

and the coupling of drag, measured frontal areas, and a detailed characterization

of the velocity field gives us certainty in the measured drag coefficients.

Using the analysis conducted on results from rigid cylinders and introducing a

length scale analogous to the rigid cylinders, an effective diameter de = a/n, we

predict Cd values as a function of φ and Rede . The predicted values are used to

calculate the actual forces on the canopy, yielding a good match to the measured

values, and outperforming the assumption of a constant, order one drag coefficient.

The success of the predicted Cd values leads us to propose a series of steps

to predict drag coefficients for the field based on empirical curves relating frontal

area, volume, and biomass of specific plant species.
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Chapter 6

Conclusions

1. We have presented the development of a laboratory device, a drag plate, that

outperforms similar attempts at directly measuring drag on aquatic vegetation,

thanks to a) its ability to capture both mean values and instantaneous, high fre-

quency drag variations, b) its sensitivity to small force variations, as demonstrated

by the measurements in pure bottom stress, and the capture of periodic oscillations

by wake generated waves, c) its dimensions, large enough to allow for averaging

drag over multiple elements, d) its non-intrusive design, removing added stresses

from submerged mounting frames, which at the same time facilitates an easy set up

of any single or multiple structure study, regardless of shape or flexibility, e) the ac-

cessibility to all of its components, allowing easy adjustment or replacement of the

load cell without dismounting the drag plate or perturbing the elements mounted

above it, and f) its specific design to match existing test sections available in the

open channel flumes and a wave tank in the DeFrees Hydraulics Laboratory at

Cornell University.

2. We used the successfully tested drag plate, coupled in state of the art quan-

titative imaging techniques, to produce an extensive and unique data set, for four

flow scenarios: flow through rigid, emergent cylinders; flow over submerged, rigid
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cylinders; flow through flexible, live stems; and flow above live, flexible stems. Our

data set provides a) representative spatially averaged values of the velocity field,

b) velocity dependent profiles of obstructed area, c) detailed laterally averaged

measurements of the free surface slope, d) bulk flow rates, and e) the measured

total drag force for each test, a parameter rarely measured directly for vegetated

flows. By using the same facilities and methodologies for all of the flow scenarios

studied, we obtain a more robust, consistent data set, optimal for calibration of

numerical models, such as the one by King and Cowen (2011).

3. Starting from a similar approach from previous laboratory (Tanino and

Nepf, 2008a) and numerical works (Koch and Ladd, 1997), we investigate the de-

pendence of drag coefficients on solid volume fraction and diameter based Reynolds

number for arrays of rigid cylinders. We found a family of curves to predict Cd

as a function of φ and Red. Our data suggests that such relationships are better

represented by a parameter Cdad, instead of Cd alone, and in fact, plotting the

Cdad curves as a function of Red for all the investigated values of φ yields a simpler,

linear relationship to estimate drag coefficients at Red > 1000.

4. We used the Cdad curves, found from experiments on rigid cylinders, to

predict vertical profiles of drag coefficients for the flows on live, flexible stems. To

account for the plant morphology in the estimation of Cd, we introduced an addi-

tional length scale, analogous to the cylinder diameter, an effective stem diameter,

defined as de(z) = a(z)/n, thus calculating Cd as a function of Rede . We used

the predicted drag coefficients to estimate the drag experienced by the canopy.

The estimated values closely match the actual measurements except at the lowest

Reynolds numbers, where the drag is largely underestimated. Those discrepances

are attributed to the sensitivity of the fitting parameters α1 and α0, as well as the

lack of data from lower densities φ < 0.005.

6. The main objective to predict drag in complex canopy arrays is achieved,
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and we propose an extended methodology presented here as a way to estimate

vegetated drag in the field, using macrophyte surveys as a starting point. For

such a method to perform satisfactorily, several representative species, according

to their morphology, will have to be investigated to produce the required empirical

relationships between biomass, frontal area, and plant volume.
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