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This dissertation is driven by a vision to continue improvements in system 

functionality by alleviating bottlenecks in interconnects and enabling the processing of 

large amounts of information on a chip.  Light was the key for achieving long-haul 

interconnects 35 years ago and is now becoming the key for achieving high speed data 

communications on smaller scales [1-3]. The ultimate goal of this research is continue 

this trend to the smallest possible scale by developing a complex integrated Silicon 

Nanophotonic chip. Here I will present some of the building blocks for such a chip. 

This dissertation is divided in five chapters, organized as follows. Chapter 1 

gives an overview of why optical interconnects are needed on the chip scale. Then it 

discusses the challenges and the advantages of using a Silicon platform for such a 

photonic chip. We then provide a solution to the challenges by using compact 

resonators to dramatically increase light-matter interaction. 

In Chapter 2 we demonstrate one of the most basic building blocks of a silicon 

nanophotonic chip – an all-optical modulator, where one beam of light controls the 

propagation of another.  First we present low-powered all-optical modulation using a 

one-dimensional photonic crystal nanocavity. Then we demonstrate ultra-fast 

modulation using a ring resonator device with an integrated PIN diode. The diode is 

used to dramatically increase the speed of typical silicon modulators to at least 20 

Gbit/s. 



 

 

In Chapter 3 we discuss using evolutionary algorithms to design silicon 

nanophotonic devices that outperform human designs. In order to demonstrate the 

promise of evolutionary algorithms we present an example that designs a photonic 

crystal with a bandgap that is larger than previous human designs.   

In Chapter 4 we present a new technique for achieving wavelength conversion 

where the wavelength of light confined in a resonator is changed by dynamically 

tuning the resonator.  We discuss theoretically how this occurs and then demonstrate it 

experimentally using a ring resonator device. 

Finally in Chapter 5, we demonstrate photonic transitions where light is 

transitioned between the discrete states of a resonator, in analogy to electronic 

transitions in an atom. 
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CHAPTER 1  

SILICON NANOPHOTONICS INTRODUCTION 

1.1 SILICON OPTICAL INTERCONNECTS 

Electronic devices are becoming faster and faster; however, over the last 

several decades, the electrical interconnections between these devices have had trouble 

keeping up [4].  For example, most long haul high-speed data/voice communications 

use fiber optic connections instead of an electrical option because the signal loss in 

electrical wires is too high [1].  On a shorter scale, the buses that carry information 

from one chip to another inside a computer system consistently run at much slower 

speeds than the chips themselves due to problems with electrical interconnects.  The 

electronics industry expects that soon even the interconnections within the chips will 

not be fast enough to sustain the speeds of the individual transistors.  Like the case for 

long haul telecommunications, replacing electrical interconnects with optical 

interconnects at ever-shorter scales offers an ideal solution because of the ability for 

optical interconnects to offer high bandwidths, low latencies, and low power operation 

[5]. IBM has outlined a timeline for such a transition to optical interconnects for the 

varying length scales as seen in Figure 1.1 [3]. Recently optical interconnects have 

become quite common at the inter-rack scale and even within the rack and there have 

already been significant commercial developments at the board and even at the chip 

level [6-8].  

  As the need for optical interconnects at smaller scales increases, the need for 

complex systems that integrate optical and electrical components arises.  And the 

monolithic integration of a suite of optical and electronic capabilities on one substrate 

is the natural progression for the vision of such an integrated photonic system.  

Because of its widespread use in the very mature microelectronics industry, silicon is 
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the natural choice for such a platform [9].  Silicon, however, has not traditionally been 

considered an ideal optical material due to its low electro-optic coefficients, low light 

emission efficiency, and high fiber-to-waveguide coupling losses.  However, silicon 

has several big advantages. It is transparent at telecommunication wavelengths, 

enabling the direct interfacing with fiber based telecommunication networks and 

equipment. Another advantage is that silicon has a high index of refraction (136% 

larger than Silica glass used for fibers), which enables very compact micron sized 

devices. Compact devices can operate with very low powers and are considerably 

more sensitive than their larger counterparts. In addition, recent progress in 

nanofabrication techniques and efficient fiber-waveguide couplers has rendered most 

of the previous problems obsolete (such as, weak non-linear effects and high losses), 

making silicon an excellent platform for the integration of complex electronic and 

photonic functionality all on one chip [10, 11]. 

 
Figure 1.1. Optical interconnect timeline for various length scales (from [3]). 
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1.2 PASSIVE SILICON NANOPHOTONIC DEVICES 

So far many different passive silicon nanophotonic devices have been 

demonstrated. Such as, waveguide branches and sharp bends [12], ultra-high Q 

photonic crystal nanocavities [13, 14], ring resonators [15-18] and microdisc 

resonators [19]. However, the flow of light in all of these devices is fixed by the 

devices design and fabrication.  The challenge is to achieve active silicon 

nanophotonic devices which are low-powered, ultra-fast and very compact.  

 

1.3 SILICONS OPTICAL PROPERTIES FOR ACHIEVING ACTIVE DEVICES 

In this dissertation I will focus on dynamic silicon nanophotonic devices on a 

chip. There are several mechanisms in silicon for achieving active devices. The first 

effect that we will consider, and also happens to be one of the strongest, is the thermo-

optic effect where the refractive index of Silicon changes with temperature and is 

given by [20, 21]: 

! 

dn
dT

=1.86 "10
#4
K

#1 (1.1) 

However, this effect is quite slow, in turn, only allowing devices to operate at a 

maximum speed of approximately 1 MHz [20, 22].  

 Since silicon is centrosymmetric there is no Pockel’s or any other χ2
 effects 

[23]. So, we turn our attention to the Franz-Keldysh and Kerr (χ3) effects. The Franz-

Keldysh effect is known as an electro-absorption effect because it changes the 

absorption of silicon when an external field is applied. The external field induces 

tunneling between the valence and conduction band. Since it is a band effect it is most 

prominent near the bandgap of Silicon at Eg=1.12 eV, which is a serious disadvantage 

because this corresponds to a wavelength of approximately 1.1 µm, which is not used 

in telecommunications systems. In addition, the Franz-Keldysh effect is quite small; it 
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induces a change in absorption of approximately 2.5 cm-1 at 1.1 µm and less than a 

10th of that at telecom wavelengths [23], in turn, requiring centimeter long devices in 

order to get an appreciable change in transmission. 

 The Kerr effect in Silicon has been measured to have the following coefficients 

[24]: 

! 

n
2

= 0.45 "10
#13

  cm
2

W( ) (1.2) 

! 

" = 0.79  cm
GW( )  (1.3) 

where n2 is the intensity dependent refractive index, and β is the two-photon 

absorption coefficient. Assuming typical silicon waveguide dimensions of 450x250nm 

and an average optical power of 1 mW we can calculate that n2=4x10-8 and β=7x10-4 

cm-1.  Obviously this effect is quite weak and in order to take advantage of it short 

pulses with peak powers of at least 10W  (1pJ, 100fs pulse) are needed. Such pulses 

are easily attainable but it is questionable whether they are telecommunications 

compatible and meet the goal of achieving low-powered devices. 

 The last appreciable effect in Silicon is the free-carrier plasma dispersion 

effect. When free-carriers are generated it changes the refractive index and absorption 

of silicon, as given by [25]: 

! 

"n = # 8.8 $10#22 % "N + 8.5 $10#18 % "P( )
0.8[ ]

"& = 8.5 %10#18 % "N + 6.0 $10#18 % "P

 (1.4) 

Where ΔN (cm-3) is the change in electron concentration, ΔP (cm-3) is the change in 

hole concentration, Δn is the change in refractive index and Δα (cm-1) is the change in 

absorption coefficient.  For a carrier concentration of 1017 the change in index and 

absorption are Δn=0.0004 and Δα=1.45 cm-1 (e-1 of 6.9mm). Unfortunately the change 

is so small that it would require a big device and high powers in order to accumulate a 
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large phase or transmission change. However, the effect can be quite fast – it is only 

limited by how fast carriers can be moved in and out of the device, which can be less 

than 10 ps [26, 27]. 

 

1.4 RESONATOR: KEY TO ACTIVE DEVICES 

 
Figure 1.2.  Schematic of a resonator showing that light traverses back and forth. 

Even though the free-carrier plasma dispersion effect is quite weak we can 

exploit it by using a resonator to dramatically increase the sensitivity of the effect. 

Consider the schematic diagram of a resonator shown in Figure 1.2. The resonator is 

formed by two mirrors. And light is incident from the left, then bounces back and forth 

between the mirrors and finally exits after a certain number of bounces. Now imagine 

that the refractive index in the resonator has been changed by a small amount. After 

each pass the light will accumulate more and more of a phase change so that the total 

accumulated phase will be Φ=N⋅2π/λ⋅Δn⋅d where N is the total number of passes, λ is 

the lights wavelength, Δn is the change in refractive index, and d is the mirror spacing. 

Therefore, we see that by using a resonator we can effectively accumulate the same 

amount of phase as in a device that is N times larger, where N can be anywhere from 

10-106 [13, 14, 28]. This point illustrates the advantage of using resonators in order to 

create a very compact device that operates with very low powers. The only tradeoff is 

that the resonator is highly wavelength sensitive. It can only transmit light when it is 
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on resonance, defined as when an integer multiple of wavelengths can fit between the 

two mirrors, and it becomes more and more sensitive to wavelength the higher the 

number of passes, N.  

Now we will consider how a resonator works from a more theoretical 

framework based on coupled-mode theory. Since in this dissertation most of the work 

is done using ring resonators we will specifically derive the equations pertaining to it. 

However, similar expressions can be derived for the many other classes of resonators 

[29].  

 
Figure 1.3. Schematic of a ring resonator 

Consider the ring resonator schematic shown in Figure 1.3. It consists of 

lossless coupling between the input/output waveguide and the ring resonator, which 

can be described by the following matrix [30]: 
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where τ is the component of the amplitude that is not coupled, and κ is the waveguide-

ring amplitude coupling coefficient. Since the coupling is lossless, by power 

conservation they are related by: 

! 

" 2 +# 2 =1 (1.6) 

In addition, the transmission around the ring resonator is given by: 

! 

a2 = b2 " e
#$ 2%R

" e
i2% 2%R

&o
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(1.7) 

where α is the propagation loss per unit length from scattering/absorption or any other 

processes (it could also be gain). From these equations we obtain that the power 

transmission of the ring resonator device is: 
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And the total circulating power in the ring is: 
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On resonance (i.e. when 2πR/λoneff is an integer) we get: 

! 

T = b1
2

=
e
"# 2$R

" %( )
2

1" %e"# 2$R( )
2  (1.10) 
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From this we see that the transmission of the resonator can be 0, and the power 

circulating in the resonator is maximized when: 
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! 

e
"# 2$R

= %  (1.12) 

This condition is known as critical coupling and results from the perfect destructive 

interference of the transmitted field τa1 and the field coupled from the resonator κa2. 

Next it can be shown that the quality factor, which is the measure of the wavelength 

sensitivity of the resonator, is approximately given by [31]: 

! 

Q "
#o

$#FWHM
%
& 'e()2&R 2&Rng

1( 'e()2&R( )#o
 (1.13) 

where ΔλFWHM is the Full-Width-Half-Maximum bandwidth of the resonance and ng is 

the group index of the ring waveguide. We see from this result the verification that by 

either reducing the loss or by reducing the coupling to the waveguide (i.e. increasing 

τ) that the wavelength sensitivity (the Q) increases. Reducing the loss/coupling is 

equivalent to increasing the number of round trips the light takes in the resonator. In 

addition, we see that the intensity in the resonator under critical coupling can be 

approximated from 1.11 as: 

! 

C = a2
2

"
1

#2$R
 (1.14) 

And we see that as the loss is reduced in the resonator (or as the coupling is reduced) 

the intensity in the ring resonator can dramatically increase because the light takes 

many more round trips in a very compact volume. 

 

1.5 SUMMARY 

In conclusion, we’ve shown the promise of using silicon nanophotonics for 

chip scale interconnects. We discussed the challenges associated with silicon, 

including the weak optical properties of the material. And proposed a solution where 

we use optical resonators to dramatically enhance the sensitivity to silicon’s optical 
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properties. This enables us to realize active devices that are compact, fast and 

efficient. In the remainder of the dissertation we will present several novel active 

silicon nanophotonic devices that can be used in the silicon nanophotonics toolset. In 

Chapter 3 we also discuss how to design more efficient devices using evolutionary 

algorithms. 
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CHAPTER 2  

ALL-OPTICAL SWITCHING AND MODULATION  

2.1 INTRODUCTION 

One of the most basic functionalities of an active silicon nanophotonic chip is 

the ability to switch, route and/or modulate a beam of light. In general, there are three 

mechanisms for changing the flow of light in silicon – optically, electrically and 

thermally.  As discussed in chapter 1.3 the thermo-optic effect in Silicon is large, 

however, even with the most recent designs switching speeds are limited to 

approximately 100 kHz to 1 MHz [20, 32].  Optical effects, such as the Kerr effect, are 

generally negligible for only but the highest pump powers making such an effect 

incompatible with a realistic on-chip platform [33]. The only other fast effect that is 

appreciably significant is the free-carrier plasma dispersion effect, which can be 

invoked either electrically or optically through linear or non-linear absorption. 

However, up until only recently, this effect required very large devices and high 

powers in order to significantly accumulate enough phase or intensity change [16, 17]. 

Almeida and Barrios showed that by using a resonator it is possible to 

significantly increase the sensitivity of the free-carrier plasma-dispersion effect, in 

turn, enabling compact and ultra-low powered all-optical (and electro-optic) switching 

and modulation [16, 17, 34].  They demonstrated that using a 10 µm ring resonator it 

is possible modulate a beam of light using less than 1 pJ of pump beam energy, with 

modulation depths great than 70%, and with switching times of 450 ps. Although this 

is a significant improvement over previous devices there are several improvements 

that can be made in order to obtain better performance.   

The first issue that I will address in this chapter is the required pump energy. It 

is well known that the energy needed to shift the resonance of a resonator is 
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proportional to Eswitch∝ V/Q, where V is the mode volume and Q is the quality factor 

of the resonator [35]. Given a fixed quality factor, it is relatively intuitive that by 

reducing the size of the device the required switching energy will correspondingly 

decrease. Here I will show this is the case by demonstrating all-optical switching in a 

photonic crystal device with a mode volume of only V=0.1 µm3, compared to the ring 

resonators mode volume of approximately 7 µm3. This work was the first 

demonstration of an all-optical switch using a photonic crystal device in any material 

system, in turn, highlighting the promise of using photonic crystals for achieving ultra-

compact low-powered devices. 

Next I will address the issue of the switching speed of the device. In Almeida’s 

previous device the speed was limited to approximately 450 ps, which was determined 

by the recombination of the photo-excited free-carriers. The bulk recombination 

lifetime of Silicon is on the order of microseconds.  In Almeida’s ring resonator device 

the recombination is primarily determined by surface-states introduced by the etching 

of the Silicon waveguides during the fabrication process.  One approach to increase 

the speed of the device is by introducing more defect states through either more 

surface etching or by ion-implantation [16, 17]. However, both of these approaches 

have a severe drawback in that they will introduce additional loss, which will 

significantly affect the Quality Factor of the ring resonator, and consequently increase 

the required switching energy. Instead, the approach I used to significantly increase 

the speed of the device is to introduce a PIN-diode around the ring resonator and use it 

to quickly extract the free carriers using the electric field of the reverse biased diode. 

With this device I will show an order of magnitude increase in switching speed, 

enabling 20+ GHz all-optical modulation/switching on a chip. 
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2.2 PHOTONIC CRYSTAL DEVICE 

Figure 2.1 shows a scanning electron micrograph of the photonic crystal device 

used to demonstrate all-optical switching. The one-dimensional photonic crystal (see 

[36]) consists of a high index contrast Silicon waveguide (width 450 nm, height 250 

nm) embedded with two sets of four silicon dioxide (SiO2) filled holes of diameter hdbr 

(200 nm).  The set of four holes are spaced apart by a (380 nm), creating a distributed 

bragg reflector (DBR).  The two sets of DBRs are spaced apart by ac (880 nm), 

forming a nanosized cavity where the field is greatly enhanced, in turn, increasing the 

devices sensitivity to small refractive index changes.   A small 100 nm (hnc) diameter 

SiO2 filled hole is embedded in the center of the nano-cavity. The addition of this 

defect at the center of the cavity creates a local discontinuity in the field, increasing 

the strength of the field in the center of the cavity, which improves the sensitivity of 

the device [37]. The devices were fabricated using Silicon on Insulator (SOI) wafers 

with 250 nm of crystalline silicon on top of a three microns thick buried oxide layer. 

The structure was defined using electron-beam lithography using FOx-12 spin-on 

oxide as a negative resist and etch mask and etched by Chlorine based reactive ion 

etching (RIE). The holes were filled and the structure clad with SiO2 using plasma 

enhanced chemical vapor deposition. 

The measured transmission of the quasi-TE (electric field parallel to the plane 

of the chip) mode of the device, as shown in Figure 2.2, is highly wavelength 

dependent. Due to the resonant nature of the nano-cavity, only light with a wavelength  
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Figure 2.1. Scanning electron micrograph of the top-view of an one-dimensional 

photonic crystal nanocavity embedded in a Silicon waveguide (from [38]). 

that is a half-integer multiple of the effective cavity length is efficiently transmitted.  

The device transmission can be modeled by assuming that it is equivalent to a Fabry-

Perot cavity given by  

! 

T =
Iout

Iin
=

L(1" R)2

(1" LR)2 + 4LRsin
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neff d
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) 
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where S is a scaling factor, L are the round-trip losses of the cavity, R is the 

reflectivity of the distributed bragg reflectors, neff is the effective index of the 

waveguide, d is the effective cavity length, and λ is the wavelength of the probe light 

[16].  The model was fitted, as shown in Figure 2.2, to the measured transmission 

using: S = 4.8196e-5, L = 1  (assumed lossless),  R = 0.9542, neff = 2.46 (calculated 

using an eigenmode solver), and d = 0.939 µm (≈3(λr/2neff)).  The cavity quality-

factor is Q=λr/ΔλFWHM=(2πneffd/λr)(R0.5/(1-R)) = 200, where λr = 1.54 µm is the 
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resonance wavelength, and ΔλFWHM = 7.7 nm is the resonance full-width-at-half-

maximum (FWHM). This quality factor corresponds to a cavity photon lifetime of 

λr
2/(2πcΔλFWHM) = 0.165 ps, where c is the speed of light in vacuum [16]. This 

relatively short cavity lifetime corresponds to the lower limit for the temporal response 

of a device based on such a cavity. 
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Figure 2.2. Measured and fitted transmission of the one-dimensional photonic crystal 

nano-cavity device (from [38]). 

Due to the high confinement nature of the photonic crystal device, a small 

refractive index change in the cavity leads to a large shift of the resonators spectrum. 

Consequently, a probe signal operating at a wavelength close to the resonators 

spectrum can be strongly modulated. As seen in Figure 2.3, by blue-shifting the 

resonators spectrum by 8 nm, a probe signal fixed at λprobe = 1532 nm, can be 

modulated from “OFF” (original spectrum) to “ON” (shifted spectrum). As will be 

shown later, an 8nm shift is possible with a refractive index change as small as 0.025. 
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This shifting of the cavity spectrum is the basic means used to achieve all-optical 

switching. 

 
Figure 2.3. Example probe transmission before and after an 8 nm blue-shift of the 

cavity spectrum, demonstrating that a probe signal with a fixed wavelength 

(λprobe=1.532 nm in this example) can be modulated from off to on (from [38]). 

2.2.1 SLOW SWITCHING 

Here we use nanosecond pump pulses centered at a wavelength λpump = 440 nm 

to inject free-carriers within the one-dimensional photonic crystal cavity and thereby 

tune its real refractive index and optical absorption coefficient. At this wavelength, the 

strong linear absorption in silicon causes 90% of the photons transmitted into the top-

silicon layer to be absorbed within a thickness of only 250 nm. Once the pulse is 

absorbed, photo-excited free-carrier electron-hole pairs are generated inside the 

photonic crystal, inducing a change in the real refractive index and optical absorption 

coefficient, as given by [25]: 
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Figure 2.4. Schematic of the pump-and-probe setup. A nanosecond dye laser is used 

to pump the device.  A tunable laser is used to probe the device. Probe light 

transmitted thru the device is collected at the output of the waveguide and fed into a 

high-speed photodetector (from [38]). 

where Δn is the real refractive index change, Δα is the absorption coefficient change 

(in cm-1), ΔN is the change in the electron concentration (in cm-3), and ΔP is the 

change in the hole concentration (in cm-3). The change in the cavities refractive index 

causes the spectrum to blue-shift as seen in Figure 2.3. 

Figure 2.4 shows the schematic of the pump-and-probe setup used for 

characterizing the device. The laser source for the pump is a dye laser pumped by a Q-

switched Nitrogen laser.  The dye (Coumarin 440) laser generates 2.4 ns pulses at 

λpump
 = 440 nm with nano-Joule pulse energies at a 36.5 Hz repetition rate. The pump 

light is coupled into a single mode fiber. The output from the fiber is collimated and 

then attenuated using neutral density filters before being focused by a lens onto a spot 

diameter of 3 µm centered on the device, completely covering the nano-cavity and the 

DBR’s. A tunable continuous-wave laser provides the probe signal at wavelength 

λprobe which is coupled into the silicon waveguide by an external tapered-lensed fiber 
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and an on-chip fiber-to-waveguide nanotaper coupler [10]. The quasi-TE transmitted 

light is collimated by a lens (NA = 0.55), discriminated by a polarizer, and focused 

into single mode fiber through a collimator. The probe signal is detected by a high-

speed DC-33GHz photodetector with a nominal fall/rise time of 30 ps and 650 

Volt/Watt gain. A 20-GHz digital sampling oscilloscope is used to record the probe 

signal. 

The temporal response of the transmitted probe signals are shown in Figure 

2.5-2.7 for three probe wavelengths λprobe= 1532 nm (below resonance), λprobe= 1535.5 

nm (half-width-at-half-maximum [HWHM] below resonance), and λprobe= 1539.5 nm 

(on resonance), respectively. The pulse energy incident on the device plane is 

approximately 60pJ. These temporal responses confirm that the free-carrier plasma 

dispersion effect (FCPDE) is the dominant mechanism for inducing the modulation of 

the probe signal.  Figure 2.5 and Figure 2.6 show that the transmitted probe power 

increases when the pump is incident on the device. This increase is due to a blue shift 

of the spectrum, induced by a reduction of the real refractive index in Silicon from the 

generation of free-carriers. 

In Figure 2.6 the probe wavelength is set a HWHM below the resonance. 

Under optical pumping, once the resonance is fully shifted, the probe wavelength is 

effectively a HWHM above the resonance (it’s actually only shifted to the 70% point 

but the probes transmission is reduced by strong optical absorption at the peak of the 

pump pulse). Thus, the transmitted probe power increases then decreases on the rise of 

the pump pulse, and then increases and decreases again on the fall of the pump pulse. 

From this we can ascertain that the maximum response time of the device is definitely 

less than 1.5ns (a fall-rise cycle).  
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Figure 2.5. Temporal response of probe at λprobe

 = 1532 nm (below resonance). The 

pump is not to scale and is only for reference (from [38]). 
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Figure 2.6. Temporal response of probe at λprobe

 = 1535.5 nm (Half-width-at-half-

maximum below resonance). The pump is not to scale and is only for reference (from 

[38]). 
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The modulation depth, defined as MD = (Imax - Imin) / Imax, where Imax and Imin 

are, respectively, the maximum and minimum transmitted probe optical power, was 

measured to be MD = 60% for λprobe = 1532 nm (Figure 2.5) and MD = 71% for λprobe 

= 1539.5 nm (Figure 2.7), The modulation depth is limited by optical absorption 

induced by an increased concentration of free carriers. The modulation depth can be 

improved by using a photonic crystal nano-cavity with a higher quality factor, 

consequently requiring fewer free-carriers to induce a smaller spectrum shift. 
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Figure 2.7. Temporal response of probe at λprobe

 = 1539.5 nm (on resonance). The 

pump is not to scale and is only for reference (from [38]). 

From these results it is seen that there is a small thermal contribution to the 

temporal response of the probe. The thermooptic effect induces a change in the real 

refractive index of Silicon as given by [21]: 

! 

"n =1.8 #10
$4
% "T  (2.3) 

where ΔT (in Kelvin) is the induced change in temperature. The refractive index 

change results in a red-shift of the cavity spectrum.  The effect is seen in Figure 2.7 for 
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the case where the probe wavelength is set to the resonance wavelength. One can see 

that following the pump pulse, the transmitted probe power recovers to 100% only 

after several nanoseconds. This is because the induced red-shift of the cavity spectrum 

keeps the device slightly off-resonance until the heat has sufficiently diffused. 

The thermooptic effect is also clear in Figure 2.6 where the second maximum 

(i.e. on the decline of the pump pulse) does not quite reach the same level as the first. 

This is because the free-carrier plasma dispersion effect and the thermooptic effect are 

competing processes (i.e. blue-shift vs. red-shift). At the beginning of the pulse the 

FCPDE dominates but at the end the thermooptic effect is “prematurely” recovering 

the cavity spectrum towards its original position, however, the optical absorption 

induced by the free-carriers is still significant, in turn reducing the level of the second 

maximum. If the thermal effect were absent both of the peaks should be exactly the 

same. 

 The theoretical temporal response of the probe signal was obtained by 

modeling the free carrier dynamics and the thermal effects.    The free-carriers are 

subject to the rate equation given by [39] 
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where ΔN= ΔP is the change in free carrier concentration, τfc is the free-carrier 

lifetime, Rpump is the pumping rate, Nph is the number of photons absorbed by the 

device, and τpump is the duration of the pump pulse.  The first term of Eq. 2.4 models 

the relaxation of the free-carriers from their excited state and is dictated by the free-

carrier lifetime.  The second term is the excitation of the free-carriers after absorbing a 

pump photon.  
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When free-carriers are generated by the 400nm pump beam there is excess 

energy with respect to the bandgap of Silicon.  This excess energy is quickly 

converted to thermal energy (Epump – Ebandgap), following the relaxation from the initial 

energy level (Epump) to the bottom of the conduction band.   Additional heat is then 

generated from multi-phonon processes that relax the free-carriers from the 

conduction band to the valence band.  Heat generated from Auger recombination is 

negligible because with the induced carrier concentration (~1019 cm-3) in this device 

the Auger lifetime is greater than 10ns [40],  considerably longer than the free-carrier 

lifetime.  Thus, the change in the thermal energy is subject to the rate equation given 

by [39] 
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where ΔQ is the change in thermal energy per unit volume, Epump is the energy of a 

pump photon (λpump=440 nm), Ebandgap  is the bandgap of Silicon,  τtr is the thermal 

relaxation time, ΔT  is the change in temperature, ρSI = 2.33⋅10-3 (in kg/cm3) is the 

density of Silicon, and Cv = 705 (in J/(kg-K)) is the heat capacity of Silicon.  The first 

term of Eq. 2.5 models the instantaneous heat generation from excess photon energy, 

the second term models the generation of additional thermal energy from multi-

phonon relaxation processes, and the last term models the relaxation of the additional 

thermal energy from heat diffusion. 

The theoretical temporal response of the probe signal was obtained by applying 

the pump excitation (Rpump(t)) to the above rate equations (Eq. 2.4 and 2.5). The 

generation of free-carriers (ΔN=ΔP) induces a change in refractive index and optical 

absorption given by Eq. 2.2. The temperature change induces a refractive index 
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change given by Eq. 2.3.  Applying these changes of the refractive index and optical 

absorption to the cavity spectrum fit from Eq. 2.1, at a fixed probe wavelength, the 

temporal response of the cavity transmission can be obtained. Since the pump 

excitation was applied to not just the nano-cavity, but also the DBRs, three-

dimensional finite-difference-time-domain simulations were used in conjuction with 

Eq. 1 to obtain the change in the cavity spectrum from the changes of real refractive 

index and optical absorption coefficient. It was found that an Δn = –0.02 refractive 

index change induces a Δλ= –6.4 nm shift in the cavity spectrum and that the variation 

is linear. The cavity losses from absorption, L=exp(-ΔαdRT) (from Eq. 1), were 

obtained using dRT = 1.2 µm, where dRT is the effective round-trip cavity length.  

We obtain from the experimental data and the theoretical model that the 

maximum wavelength shift of the cavity spectrum is Δλ = -6.7 nm. This corresponds 

to a total refractive index change in the silicon of Δn = –0.021. The refractive index 

change attributed to the free-carrier plasma dispersion effect is Δn = –0.025. This 

refractive index change is caused by an equivalent free-carrier concentration of ΔN = 

ΔP = 1.14⋅1019 cm-3. This concentration induces an optical absorption coefficient of 

Δα=0.0165 µm-1 (0.07 dB/µm). We also determined that the thermo-optically induced 

refractive index change is Δn = +0.004. This refractive index change is 6.5 times 

smaller than the one from the FCPDE effect, confirming the dominance of the FCPDE 

as the primary modulation mechanism. Considering the pump beam size and profile, 

the overlap of the beam with the geometry of the device, and the reflections from the 

focusing lens and the interfaces in the structure, we estimate that the device absorbed 

only 7pJ of the incident 60 pJ of pump energy. 
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2.2.2 FAST SWITCHING 

In the previous section nanosecond pump pulses were used. Here we use a 

much shorter pump pulse in order to determine the maximum speed of this device and 

the performance relative to Almeida’s ring resonator device. The experimental setup is 

similar to the one seen in Figure 2.4 except the pump source is now a Ti:Sapphire laser 

that has been frequency doubled to 415 nm using a BBO (Beta-Barium Borate) 

crystal. The pulses have a duration of 1.5 ps. 

 
Figure 2.8. Temporal response of a probe signal for two different probe wavelengths 

(on resonance and below resonance) using a one-dimensional photonic crystal 

nanocavity (from [41]). 

The temporal response of the transmitted probe signals are shown in Figure 2.8 

for two probe wavelengths: λprobe1 = 1,534.5 nm (below resonance) and λprobe2 = 

1,541.5 nm (on resonance). The probe signals were both modulated by 70%.  We 

obtained from the experimental data a wavelength peak shift of  Δλ = -4.5 nm and a 

relaxation time of τfc = 470 ps. Taking all reflections from the different interfaces and 
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the size of the focused pump beam into account, we estimate that only 1 pJ of linearly 

absorbed pulse energy was needed to achieve this modulation. Therefore, the one-

dimensional photonic crystal nanocavity achieved a ~12.5 larger wavelength peak 

shift with only ~6.7 times more pulse energy than the ring resonator modulator [16, 

17].  The amount of wavelength shift can be considerably reduced, and also the pulse 

energy, by using a high quality factor two-dimensional photonic crystal nanocavity as 

a modulator. 

 

2.3 ULTRA-FAST SWITCHING USING AN INTEGRATED DIODE 

In previous experiments the modulation time of the device was limited to 450 

ps by the carrier recombination time dictated by the unpassivated sidewalls of the 

structures. In contrast, here we demonstrate all optical modulation with picosecond 

modulation time by incorporating a p-i-n diode into the ring resonator device. The 

effective free-carrier lifetime of photo-excited carriers can be greatly reduced by 

reverse biasing this diode [42, 43].   The applied voltage induces an electric field 

across the intrinsic region where the waveguide lies, enabling the extraction of the 

generated electron-hole pairs from the waveguide under reverse bias.  

A schematic drawing and the fabrication details of the p-i-n diode ring 

resonator device can be seen in Figure 2.9 and Figure 2.10.  The diode is formed 

around the ring resonator waveguide. It is well known that a ring resonator, coupled to 

a waveguide, has an optical transmission that is highly sensitive to signal wavelength 

and is greatly reduced at wavelengths in which the rings circumference  
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Figure 2.9. Schematic drawing of the PIN ring resonator device used for all-optical 

modulation. A reverse bias is applied across the ring in order to extract carriers 

quickly. 

 
Figure 2.10. PIN diode ring resonator fabrication process. All of the masks are 

defined using electron-beam lithography. 

corresponds to an integer multiple of guided wavelengths.  By tuning the refractive 

index of the ring waveguide, the resonant wavelengths of the device can be altered. 
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The measured passive spectrum of the device is seen in Figure 2.11. Here we use 10-

ps pump pulses with a wavelength of λpump = 1528.6 nm, close to one of the ring 

resonances, to inject free-carriers through two-photon absorption inside the ring 

resonator[16], thus inducing a change in the refractive index in the ring 

waveguide[25].  A continuous-wave probe beam with a wavelength close to another 

resonance will be strongly modulated by this induced  

 
Figure 2.11. Passive measurement of the spectrum of the PIN ring resonator device. 

λpump
 is wavelength at which the pump beam operates and is tuned to one of the rings 

resonances. The inset shows the probe resonance where several probe wavelengths are 

indicated and are referred to. 

refractive index change. The probe beam wavelength is set around a resonance at 

λprobe=1559.0 nm, corresponding to two free-spectral ranges (FSR = 15.2 nm) away 

from the pump resonance. The transmission of the device is reduced by more than 13-

dB at the probes resonance. The cavity quality-factors for the pump and probe 

resonances are Qpump ≈ λpump / ΔλFWHMpu = 18200 and Qprobe ≈ λprobe / ΔλFWHMpr = 
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39000 , where ΔλFWHMpump = 0.084 nm and ΔλFWHMprobe = 0.04 nm are the full-width-

at-half-maximum bandwidths. 

In order to dramatically increase the speed of the device the photo-excited free-

carriers are extracted using a reverse-biased diode. To measure the extraction time the 

probe signal wavelength (λprobe_ss = 1558.973) and pump energy coupled to the chip (8 

pJ) are set so that probe wavelength is tuned only within the quasi-linear spectral 

region of the probe resonance (i.e. a small signal modulation) as is seen in Figure 2.11. 

This ensures that the extraction time can be directly measured from the probes 

dynamic time response. If the modulation were non-linear it would be more difficult to 

get this information from the data. We should note that the theoretical maximum 

modulation speed of this device, if the extraction time can be absolutely minimized, is 

fundamentally limited by the resonant cavity lifetimes as calculated to be τpump = 14.8 

ps and τprobe = 32.3 ps [16, 17]. 

Here we use the optical experimental setup described in [16].  The DC reverse-

bias is applied to the ring resonator device using electrical probes. Figure 2.12 shows 

the measured extraction time as a function of reverse-bias voltage with errors bars 

derived from the uncertainty due to photo detector response time and cavity lifetime. 

The inset of Figure 2.12 shows the probe signal for a reverse bias voltage of 4V.  As 

seen, the probe signal initially decreases after the pump pulse is applied.  The time it 

takes for this transition to occur is determined by the resonant cavity lifetimes, τprobe
 

and τpump, which dictates how quickly the optical field in the resonator is built up.  The 

initial decrease is then followed by an exponential increase, corresponding to the 

extraction time of the photo-excited carriers as determined by fitting a simple 

exponential decay to this part of the probe signal temporal response  (shown as a 

dashed line over the temporal signal).  After the exponential increase, the probe signal 
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does not return to its initial state, but instead slowly increases, as a fraction of the 

carriers generated in the ring are not extracted by the diode because it only 

encompasses two-thirds of the ring as is seen in Figure 2.9. The dynamics of any 

carriers in the remaining third is solely determined by slow recombination 

mechanisms, and is thus equivalent to the open-circuit recombination time of 1.19 ns. 

If the diode were to encompass the entire ring then the carrier dynamics would solely 

be determined by the reverse-biased diode carrier extraction time.  

 
Figure 2.12. Carrier extraction time as a function of reverse-bias voltage.  The inset 

shows the temporal probe signal for reverse-bias V = 4V and the exponential fit used 

to obtain the extraction time (1/e point) (from [26]). 

In order to investigate the performance of the device with large modulations 

the probe wavelength was set to λprobe1 = 1558.95 nm, the pump pulse energy coupled 

to the chip set to 19 pJ, and a reverse-bias voltage set to 10 V (extraction time 50 ps). 

Figure 2.13 shows the time dependence of the probe signal under these conditions. 

The amount of modulation, defined by MD = (Imax – Imin)/Imax, where Imax and Imin are 

the maximum and minimum transmitted probe powers, is measured to be MDprobe = 
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79.5%.  This modulation depth (MD) is limited by the photodetector response time; 

the actual amount of modulation is estimated to be 84%. The time it takes for the 

probe signal to restore to its maximum value from the minimum of its transmission is 

measured to be τ = 122 ps.  This time is longer than the extraction time (50 ps)  

 
Figure 2.13. Experimental (solid) and theoretical (dashed) temporal response of the 

probe signal with reverse-bias V = 10 V.  The inset shows the required switching 

energy (Pump Energy Dissipated) needed to maintain the same modulation depth for 

different reverse biases (from [26]). 

because the time response of the device is determined by the convolution of the free-

carrier dynamics (an exponential decay of 50 ps) and the non-linear modulated 

spectrum (a lorentzian), at this pump energy and probe wavelength.  Another 

contributing factor is the third of the ring waveguide where the carriers cannot be 

extracted. This region has a stronger contribution here because the larger pump energy 

injects more free-carriers, which take more time to recombine to a small enough level 

to change the probes transmission. In turn, the slowly recombining carriers act to slow 

the return of the probe transmission to its maximum value. 
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The theoretical time dependence of the probe signal transmission shown in 

Figure 2.13 (dashed-line) is calculated using an analytical model for the ring resonator 

transmission [30], and a model of the carrier dynamics governed by the following rate 

equations: 
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where ΔN is the change in free-carrier concentration, τextract = 50 ps is the extraction 

time with a reverse-bias of 10 V, τopen=1190 ps is the open-circuit extraction time, n is 

the number of photo-excited carriers per unit volume, τprobe = 32.3 ps is the resonant 

cavity lifetime,  Nph is the total number of absorbed photons, Vring is the volume of the 

ring resonator, and τpump = 10 ps is the pump pulse duration.   From Eq. (2.6), the 

change in the refractive index and optical absorption of the silicon ring waveguide is 

obtained [25].  These changes are applied to an analytical model of the ring resonator 

transmission response to obtain the theoretical temporal response of the probe signal 

[30].  From this model we determine that the probe resonance is shifted by Δλ = -

0.044 nm, which corresponds to an effective index change of Δneff = -1.12•10-4, or 

equivalently to a refractive index change in the silicon waveguide of ΔnSi = -1.08•10-4. 

This refractive index change is caused by a maximum carrier concentration of 

ΔN=ΔP=1.93•1016 cm-3 [25].   We estimate that the amount of pump pulse energy 

absorbed inside the ring to excite such a carrier concentration is only 41 fJ. Thus, only 

a small portion of the pump power is actually absorbed. The remaining pump power, 

which is necessary for the two-photon absorption effect [16], is scattered off the ring 

in this device. By adding another adjacent waveguide to the ring this scattered pump 

power could be recycled for use with other modulators on the same chip. The amount 



 

31 

of probe absorption induced by the excited free-carrier concentration is estimated to be 

only Δα = 0.3 cm-1 [25], which has the effect of reducing the achievable modulation 

depth by only 3.4%. 

For a given modulation depth the required pump energy increases as a function 

of the applied reverse-bias. This is because the faster the carriers are extracted the 

smaller the maximum carrier concentration is (and, in turn, refractive index change). 

Thus, more pump energy is needed to achieve the same modulation depth. Using the 

carrier extraction times shown in Figure 2.12 and the theoretical model described 

above, the absorbed pulse energies required to maintain the same amount of 

modulation depth (MD = 84%) are obtained for different applied reverse-bias 

voltages.  Note that here we show only the energy absorbed by the pump pulse, not the 

total pump energy. In the inset of Figure 2.13 we show the required pump energy as a 

function of the applied voltage. Errors bars are derived from uncertainty in the 

extraction times in Figure 2.12. It is seen that the required pump energy increases 

linearly with voltage; a modulator operating under a 15 V reverse-bias voltage 

requires almost twice the amount of energy than a modulator under 0 V bias. Also 

shown are the experimentally derived absorbed pulse energies for four different 

reverse-bias voltages (triangles), as obtained from the measured diode currents, 

showing good agreement with the calculations. 

The device we have demonstrated can be used as a modulator in all-optical 

networks. The modulation bit-rate of the device is determined by the carrier extraction 

time.  Using a micron size ring resonator, under a reverse-bias voltage of 10 V, a bit-

rate of 5 Gbit/s is possible [44].  Such a rate would be realizable if the diode were to 

encompass the entire ring.  We estimated that the pump energy needed to be coupled 

into the ring resonator at this bit-rate is as low as 2.2 pJ [20]. This estimated energy is 
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lower than the one used in this work (19 pJ) because the pump pulse used here has a 

bandwidth of 0.37 nm, which is approximately 4.4 times wider than the devices pump 

resonance. Thus, less than a quarter of the pump energy was actually coupled to the 

ring. A pump beam with a sufficiently narrow bandwidth, operating at a 5 Gbit/s bit-

rate, would require an average power of only 11 mW, which is easily achievable using 

fiber based amplifiers. 

 

2.4 SUMMARY 

In this chapter we demonstrated all optical switching using a photonic crystal 

nanocaviy. The devices size is on the order of the diffraction limit of the light confined 

within it.  By minimizing the devices size low switching powers can be achieved. Here 

the required switching energy was comparable to previous larger devices because the 

quality factor of the device was quite low.  However, in the future a photonic crystal 

nanocavity with a Q-factor on the order of a million, as has recently been 

demonstrated [13], could be used in order to demonstrate sub-femto-Joule switching. 

We also demonstrated ultra-fast all-optical switching of a ring resonator device 

by integrating a PIN-diode around the ring waveguide. By reverse-biasing the diode 

we were able to sweep the injected carriers out in times shorter than 25-picoseconds, 

enabling 20+GHz all-optical switching/modulation on a silicon chip.  
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CHAPTER 3  

EVOLUTIONARY ALGORITHMS FOR NANOPHOTONICS  

3.1 INTRODUCTION 

It isn’t always straightforward as to how to design a nanophotonic device to 

have the best possible performance. In the past nanophotonic device designers have 

started with something that works reasonably well and then iteratively tweaked the 

design by trial and error. However, this trial/error process is time consuming, random 

and the new design typically isn’t the best possible one. Even though it is possible to 

automate this simple search process and with a few tricks improve it slightly, in the 

end it just isn’t efficient. 

Recently there has been significant interest in a class of global search 

algorithms known as evolutionary/genetic algorithms. The beauty of evolutionary 

algorithms is that they are simple to implement, they don’t require extensive problem 

specialization and they are generally quite good at finding the “globally best” solution 

(it is usually impossible to truly know if the solution is really the globally best). 

Evolutionary algorithms are inspired by natural evolution and operate by repeatedly 

selecting, varying, and replicating successful individuals in a population of candidate 

solutions [45-47], or otherwise simply put - the survival of the fittest. These 

algorithms are well suited for finding solutions to problems that involve very large and 

complex search spaces that do not have smooth gradients leading to an optimum. In 

particular, evolutionary algorithms are well suited for searching open-ended design 

spaces that are not conveniently characterized by a finite set of parameters, but are 

spanned instead by an unbounded set of features or primitives, such as the design 

space of arbitrary functional geometries and morphologies [48]. 



 

34 

Evolutionary Algorithms have been shown to be an effective method for 

solving problems in nanophotonics. They have been applied to design waveguide and 

photonic crystal based spot-size converters [49, 50], fiber Bragg gratings [51], 

transitions between traditional index-guided and PC waveguides [52] and photonic 

crystal band gaps [53]. However, these previous works have used evolutionary 

algorithm implementations where the devices are represented using a simple binary 

bitmap. In this chapter, using a test problem, I will show that this is usually not the 

best design representation and I will present an alternative representation based on 

trees that is inspired by genetic programming [46]. This new tree representation 

enables the discovery of devices that outperform human designs. 

The test problem I will investigate in this chapter is the maximization of the 

band gap of a two-dimensional photonic crystal [54]. I would like to note that after 

this initial demonstration our group has successfully used evolutionary algorithms to 

demonstrate ultra-small mode volume nanocavities by exploiting the electric field 

discontinuity at dielectric interfaces [55], to demonstrate efficient grating couplers, 

and to demonstrate light localization in pseudo-random dielectric configurations [56]. 

 

3.2 MAXIMIZING PHOTONIC CRYSTAL BANDGAP 

Photonic crystals are structures that possess a photonic bandgap – a range of 

frequencies where light is forbidden from propagating in the crystal [57-59]. By 

creating defects in the photonic crystal, light with a frequency in the bandgap can be 

guided or trapped, enabling the control of the flow of light on the nanoscale. It is 

interesting to note that the first photonic crystals were not designed and fabricated in a 

laboratory but were evolved over millions of years in nature. They create the beautiful 

colors in butterfly wings [60, 61] and are even found in creatures of the sea such as the 
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Sea Mouse [62]. Photonic crystals have traditionally been hand-designed by trial and 

error with some insight from the extensive research of crystalline atomic lattice 

structures [58, 63]. This has yielded simple lattices and unit cells, such as a square 

lattice of cylinders [59]. The large bandgap of these photonic crystals has been 

achieved by varying the parameters of the lattice [64], however, it is not known 

whether these simple structures truly achieve the maximum bandgap for a given index 

contrast.   

In this chapter we use an evolutionary algorithm (EA) to systematically search 

for photonic crystals with maximal bandgaps [47]. Evolutionary algorithms have been 

shown to be effective tools for exploring hard design challenges, and have recently 

proven to be an effective design automation tool that can sometimes outperform 

human designs [46, 54]. The evolutionary algorithm used here starts with a population 

of randomly generated photonic crystals that in general possess no bandgap. The fittest 

photonic crystals, those approaching higher band gaps, are selected and mated with 

each other. During mating the elements of the parent photonic crystals are crossed 

over (swapped), and are then subject to mutation (randomly changing high/low 

dielectric constants).  This process is repeated for many generations after which we 

find photonic crystals that not only have bandgaps, but also have bandgaps larger than 

the ones created by humans. 

We should note that similar works have been attempted before. However, they 

seeded the evolutionary algorithm with a human made photonic crystal with a known 

bandgap, in turn, the evolutionary algorithm only optimized the bandgap of the seed 

crystal [53]. In this work, we are able to achieve large bandgaps without seeding, 

opening the possibility for the algorithm to discover photonic crystals that would have 

never otherwise been imagined by humans. In addition, the previous work focused on 



 

36 

higher energy bands [53]. In contrast, here we focus on a bandgap between the first 

two bands because the lower energy bandgap will fall under the light-line, enabling 

practical fabrication of the designed photonic crystal in a thin dielectric slab system 

[58]. 

 

3.3 METHODOLOGY 

In this chapter the unit cell is the element of the photonic crystal that is subject 

to evolution. The unit cell is discretized by a 32x32 grid of square pixels that can each 

either have high (3.4 - Silicon) or low (1 - Air) dielectric material. To apply the 

evolutionary algorithm to the design of the photonic crystal, the unit cell is represented 

by a chromosome – a blueprint of the makeup of the cell. We look at two types of 

chromosome representations in this chapter: bitmaps (direct encodings) and trees 

(generative encoding). Both bottom-up and top-down trees are explored. 

The bitmap representation consists of a binary string of length 1024 (32×32) 

where a ‘1’ corresponds to high dielectric material, and a ‘0’ corresponds to a low 

dielectric material. Each bit in the binary string corresponds to a unique grid point of 

the 32x32 unit cell, as shown in Figure 3.1. In this representation there are 21024 

possible photonic crystals. Such a large number of possible photonic crystals are 

impossible to explicitly search, in turn, pointing out the necessity for an evolutionary 

algorithm to discover the best photonic crystal design. 
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Figure 3.1. A unit cell discretized onto a 32x32 grid and its associated binary string. 

The binary string encodes the unit cell row –by- row. Each pixel in the unit cell is 

assigned to be high (1) or low (0) dielectric material (from [54]).  

The tree representations define the unit cell using ‘clumps’ of high or low 

dielectric material.  This is a much more efficient representation, since photonic 

crystals generally have clumps of dielectric material, as opposed to isolated pixels. 

This efficiency allows the evolutionary process to better exploit the substructure of the 

search space.  In the top down tree representation the unit cell is recursively split into 

subdivisions by partition lines, starting at the top of the tree and going down. At the 

bottom of the tree are terminal nodes that determine the dielectric material (0 or 1) of 

the corresponding subdivision. The lines that split the unit cell are uniquely identified 

by their start and end points, where the start and end points lay on the outside 

perimeter of the unit cell. Tree nodes to the right of a split are inclusive, so that all 

pixels that have a position ‘greater than or equal’ to the split-line are included. Tree 

nodes to the left of a split are exclusive, so that all pixels that have a position ‘less 

than’ the split-line are included.  An illustration of this representation and how it is 

interpreted into the pixilated unit cell is shown in Figure 3.2a. 

In the bottom-up tree representation rectangles of dielectric material are 

recursively combined to form a larger structure. The rectangles are defined by a width  
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(a) (b) 

Figure 3.2. (a) Illustration of an example 10x10 unit cell (32x32 is used with the 

evolutionary algorithm) and a top-down tree that can be used to construct this unit 

cell. The black (white) pixels are high (low) index material.  The numbers label the 

perimeter of the unit cell.  Starting at the top of the tree and going down, each split, a 

dividing line uniquely defined by two perimeter pixels, sections the unit cell into 

ever-smaller areas. The terminal nodes assign dielectric material (i.e. high or low) to 

these areas.  Next to each terminal node is an illustration of the result. Light-gray 

coloring designates the sub-area that has been defined by the splits (i.e. the terminal 

nodes sibling ‘acts’ on this light-gray area).  The complete unit cell is obtained by 

combining all of the sub-areas into one.  (b)  Illustration of an example 10x10 unit 

cell (32x32 is used with the evolutionary algorithm) and a bottom-up tree that can be 
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used to construct this unit cell. The numbers around the unit-cell label the x-y grid.  

Starting at the bottom of the tree and going up, rectangles defined by a width, height, 

center and index are combined using boolean AND and OR operator nodes.  The 

illustrations next to the nodes show how the rectangles are defined and combined to 

obtain the unit cell. The light-gray coloring indicates that those pixels are undefined 

and the boolean operators subsequently have no effect on them (i.e. defaults to OR). 

If there are any undefined pixels in the resulting unit cell, they are automatically set 

to be low index material (from [54]). 

and height, center, and a dielectric material (0 or 1). Going up the tree, the rectangles 

are combined by the Boolean operators AND and OR.  An illustration of this 

representation and how it is interpreted into the pixilated unit cell is shown in Figure 

3.2b. 

The evolutionary algorithm used here operates in the following steps: 

Step 1: Initialization.  The evolutionary algorithm starts with a population of 100 

randomly generated chromosomes. In the bitmap representation each pixel in the unit 

cell has a 50% probability of being high or low index material. In the top town tree 

representation, the top node is a randomly generated split. The children nodes are 

randomly generated to be a split, or a high or low index terminal node, all with equal 

probability.  In the bottom up representation, the top node is a randomly generated 

boolean operator. The children nodes are randomly generated to be one of the boolean 

operators, or a rectangle of dielectric material, with equal probabilities. 

Step 2: Fitness evaluation. Each chromosome in the population is then converted into 

a 32x32 unit cell. The high (low) index pixels are assigned an index of 3.4 (1).  The 
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unit cell is then repeated on a square lattice of period a.  Next, the bands of the 

photonic crystal are calculated and any bandgap (or lack of) is obtained. A software 

package was used to solve for the bands of the photonic crystal by preconditioned 

conjugate-gradient minimization of the block Rayleigh quotient in a planewave basis 

[65].   

In previous works the fitness criteria used was the gap to mid-gap ratio [53]: 

! 

Fitness =
Etop " Ebottom

Emiddle  
(3.1) 

where Etop, Ebottom, Emiddle are the top, botton and the middle of bandgap, respectively. 

However, since the initial population of randomly generated photonic crystals in 

general does not possess a bandgap, they were artificially assigned a small fitness 

value [53]. A search using such a fitness criterion has no gradient to follow during the 

initial phase, and therefore drifts blindly in the search space. The lack of gradient may 

explain why the previous attempt that used this fitness criterion eventually needed to 

seed the population with a hand-designed solution with an existing bandgap. In this 

work we have developed a fitness criterion that is suitable for crystals that do not 

already possess a bandgap, thereby enabling the discovery of new types of photonic 

crystal structures from scratch. Our measure of fitness is the amount of overlap of the 

top and bottom bands, here referred to as the overlap area. Since no assumptions were 

made about the symmetry of the unit cell it is necessary to calculate the bands over the 

entire first brillouin zone. Figure 3.3 shows a band diagram for a randomly generated 

photonic crystal that does not possess a bandgap. Only the first brillouin zone points 

along the ΓX1MX2Γ quadrant are shown for compactness. It is clear that 

there is no bandgap between the bands but there is a significant overlap. The amount 

of overlap is defined by an overlap area: 
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Figure 3.3. Band diagram of a randomly generated photonic crystal with no bandgap.  

The vertical axis is the frequencies normalized to (c/a) where ‘c’ is the speed of light 

and ‘a’ is the lattice period. The horizontal axis are the brillouin zone points. The inset 

shows the reciprocal lattice and the corresponding Brillouin zone points. The shaded 

light-gray boxes indicate the areas where the two bands overlap each other. The 

bounds of the boxes are obtained from the points in the band diagram where the top 

band is below the top of band 1. The height of the boxes is always the same; it’s 

defined from the bottom of band 2 (here at the X1 point) to the top of band 1 (here at 

the M point). The width is from the left-most to the right-most points (including the 

interpolated ‘half-way’ points) that fall below the top of band 1.  The total overlap 

area (Eq. (3.2)) can be obtained from the sum of the areas of the individual shaded 

boxes (from [54]).  

! 

Overlap Area =
Etop,1 " Ebottom,2

Etop,1 + Ebottom,2( ) 2
#
Noverlap

Ntotal  
(3.2) 

where Etop,1 is the top of the bottom band, Ebottom,2 is the bottom of the top band, 

Noverlap is the number points in the band diagram where the top band is below the top 

of the bottom band, and Ntotal is the total number of points (i.e. the individual dots in 

Figure 3).  To improve the speed of the band calculations, only four points between 
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each Brillouin zone symmetry point (i.e. Γ, X1, M, X2) was calculated, so an 

additional point is linearly interpolated ‘half-way’ between each one of the points. 

This interpolation is shown in Figure 3.3 where the left and right edges of the two 

overlap areas don’t fall on points that were actually calculated, they fall on the ‘half-

way’ points, as indicated by the bold square points (these are the only half-way points 

shown on this diagram).  For photonic crystals that do posses a bandgap, the 

traditional fitness criteria (Eq. (3.1)) is used. 

Step 3: Selection. The 100 chromosomes are then selected for the next generation 

using a fitness-dependent selection criterion.  Two selection methods were used: The 

first is rank selection, where the likelihood of an individual being selected is 

proportionate to its rank in the population (i.e. the photonic crystals are ranked from 

largest to smallest overlap to smallest to largest bandgap). A stochastic-uniform-

sampling (SUS) method was used to implement the selection in a way that guarantees 

minimal selection noise [47]. The second selection method used was deterministic 

crowding (DC) [66], which helps maintain diversity of solutions by comparing 

solutions only to those that are most similar to them. Diversity of solutions in the 

population must be maintained if crossover-operators are expected to produce 

anything new. Selected chromosomes become the parents for a new generation of 

chromosomes. 

It is important to ensure that the fitness of the population does not decrease in 

the newly created population.  This is done by practicing elitism – a random 

chromosome in the new population is replaced with the best chromosome from the 

previous generation. 



 

43 

Step 4: Variation.  Two new offspring are created from two selected parents. To 

create the child chromosomes, portions of the two parent chromosomes are crossed 

over with a crossover probability of 70% (i.e. 30% of the time the children are exact 

copies of the parents).  In the bitmap representation, two random points in the 32x32 

unit cell are picked.  All of the pixels in the rectangle defined by these two points are 

swapped between the parents to create the new children. The order of the two points 

(i.e. point 1 or 2) determines how the rectangle is defined. If point 2 is farther away 

from the origin (i.e. greater) than point 1, then the rectangle spans from point 1 (upper-

left corner of rectangle) to point 2 (lower-right corner of rectangle). If point 2 is closer 

to the origin than point 1, then the rectangle spans from point 1 in one unit-cell to the 

neighboring unit-cells. However, since the chromosome only encodes the one unit-cell 

and not a periodic array of them, the rectangle must be wrapped back into the one unit-

cell (i.e. where point 1 is). This is done by moving the portions of the rectangle in the 

neighboring-cells to their equivalent positions in the ‘main’ unit-cell, as illustrated in 

Figure 3.4  In the tree representations, a random node in each of the two parent trees is 

selected. Then the nodes and all of their respective children are swapped between the 

two parents trees to obtain the two new children. 

In the next step of variation the chromosomes in the new population are 

mutated.  In the bitmap representation, each bit in the 1024 bit long chromosome is 

subject to be flipped from a 0 to a 1 or vice versa with a mutation probability of 1%. In 

the tree representations, each node in the tree is mutated with a probability of 1%. The 

manifestation of the mutation depends on the type of node. For a split node, the start 

and end points are randomly offset by +1 or 0, each with an equal probability. A 

terminal node can switch from high to low dielectric material or vice-versa. A Boolean 

operator node can switch from AND to OR or vice-versa. And lastly, for a rectangle 
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node, the width, height, and center can each be offset by +1 or 0, with equal 

probability.  

In tree representations variation is followed by pruning in order to keep the tree 

from becoming overly large. Unfortunately the pruning has the unwanted effect that it 

may blindly destroy a tree that would otherwise have a very high fitness. To minimize 

this risk the number of levels that the trees are pruned to was tuned over many trials to 

minimize the effect. Elitism also helps to minimize the risk. 

Step 5: Repeat from step 2 until a stopping criterion is met. 

 

 
Figure 3.4. An example rectangle that spans from point 1 in the ‘main’ unit-cell to 

points in the neighboring unit-cells.  This representation is equivalent to a rectangle 

that spans the corners of the ‘main’ unit-cell (from [54]). 

 

3.4 RESULTS AND DISCUSSION 

The evolutionary algorithm was run for 1500 generations to obtain large 

bandgaps for the TE Polarization (electric field in the plane of the photonic crystal) of 

light. The evolutionary algorithm could easily be applied to the TM polarization, as 
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well. First we consider the evolutionary algorithm using the stochastic-uniform-

sampling selection criterion (SUS). After the 1500 generations, using the bottom-up 

tree and top-down tree representations, the SUS evolutionary algorithm yielded 

photonic crystals with bandgaps as large as 30.86% and 31.89%, respectively, as 

shown in Figure 3.5. The band diagram for the top-down tree photonic crystal is 

shown in Figure 3.6.  However, the bitmap representation achieved a bandgap of only 

5.12%. This was improved upon by using a coarser grid of 16x16 pixels, as shown in 

Figure 3.7.  

 
Figure 3.5. Photonic crystals and unit-cells (insets) created by the SUS evolutionary 

algorithm. From left to right: Bitmap Representation (5.12% Bandgap), Bottom up 

tree (30.86% Bandgap), Top down tree (31.89% Bandgap) (from [54]). 

It is clear from these results that the tree representations considerably 

outperformed the bitmap representation.  This is because the trees are able to encode 

the information in the unit-cell much more efficiently than a bitmap. The bitmap 

representation yields a lot of extra ‘noise’, or random pixels that degrade the quality of 

the photonic crystal, as seen in Figure 3.7 and especially in Figure 3.5 where the 

search space is extremely large (21024 possible solutions). The random pixels 

effectively reduce the index-contrast, so by manually removing the noise the bandgap 
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can be improved considerably (even for the 32x32 grid where there clearly is a 

photonic crystal that is capable of supporting a bandgap, there is just too much noise), 

but doing so is time-consuming and undesirable for general design purposes. The tree 

representations are much less susceptible to this noise problem since they deal 

hierarchically with ‘clumps’ of dielectric material as opposed to individual pixels. 

 
Figure 3.6. Band diagram of the photonic crystal discovered by the SUS evolutionary 

algorithm using a top down tree representation.  The vertical axis is the frequencies 

normalized to (c/a) where ‘c’ is the speed of light and ‘a’ is the lattice period. The 

horizontal axis  is the brillouin zone points. The inset shows the reciprocal lattice and 

the corresponding Brillouin zone points (from [54]). 

Figure 3.8 shows some performance metrics of the SUS evolutionary 

algorithm, plotted as function of generation.  Figure 3.8a shows the best fitness for the 

different representation types.  For fitness values below 1 the fitness is the overlap 

area, for values above 1 the fitness is the bandgap, i.e. a fitness of 1.25 is a bandgap of 

25%. Figure 3.8b shows the average hamming distance of the population.  The 

hamming distance is a measure of how different the photonic crystals in the population 
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are.  The larger the hamming distance, the more diverse the population. It is important 

to maintain a diverse population as long as possible because otherwise the growth of 

the over-all population is stunted since all of the photonic crystals become essentially 

the same. Once the crystals are very similar, crossover between parents becomes 

rather ineffective. Consequently, the algorithm may prematurely converge to only a 

local maximum, rather than a global maximum. It is clear from Figure 8 that the 

evolutionary algorithm converges to a solution rather quickly, within only 100 

generations. This is a weakness of the stochastic-uniform-sampling evolutionary 

algorithm. We now consider another type of selection criterion, deterministic 

crowding, that is slower to converge but is able to maintain a very diverse population, 

thereby delaying convergence and promoting useful crossover. 

 
Figure 3.7. Photonic crystal and the unit-cell (indent) obtained using the bitmap 

representation with a 16x16 grid.  The bandgap of the photonic crystal is 21.92% 

(from [54]). 



 

48 

 
Figure 3.8. Search performance of the SUS evolutionary algorithm. (a) Best fitness as 

a function of generation for each of the chromosome representations, (b) Average 

hamming distance as a function of generation. The curves were smoothed for 

presentation purposes.  Error bars are derived from three independent runs started 

from randomized initial populations. 

Figure 3.9 shows the results of the deterministic crowding evolutionary 

algorithm for the different types of chromosome representations. Using the bottom-up 

tree and top-down tree representations, the evolutionary algorithm yielded photonic 

crystals with bandgaps as large as 29.7% and 30.73%, respectively, comparable to the 

bandgaps achieved using stochastic-uniform-sampling.  However, now the bitmap 

representation is able to achieve a bandgap as large as 21.32% on a 32x32 grid. The 

performance metrics are shown in Figure 3.10.  The results are also compared with a 

completely random search (i.e. step 1 and 2 are repeated).  The bitmap approach was 

also compared with a parallel hill climbing algorithm (i.e. the unit cells are randomly 

mutated, if there was an improvement the photonic crystal is kept, otherwise 

discarded).  As seen in Figure 3.10a, the deterministic crowding evolutionary 

algorithm outperforms a completely random search for all of the representation types, 
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consequently stochastic-uniform-sampling does too (See Figure 3.8).  The 

evolutionary algorithms using the bitmap representation also outperform the parallel 

hill climbing algorithm, which only reaches a maximum bandgap of 1.71%. Figure 

3.10b confirms that the deterministic crowding evolutionary algorithm is able to 

maintain a high-degree of diversity throughout all of the generations, enabling the vast 

improvement in the bitmap representations performance. However, when using the 

tree representations, deterministic crowding didn’t offer a performance advantage over 

stochastic-uniform-sampling, even after 1500 generations.  

 
Figure 3.9. Photonic crystals and unit-cells (insets) created by the deterministic 

crowding evolutionary algorithm.  From left to right: Bitmap Representation (21.32% 

Bandgap), Bottom up tree (29.7% Bandgap), Top down tree (30.73% Bandgap) (from 

[54]). 

As seen in Figure 3.10a, the random search (i.e. step 1 and 2 are repeated) 

achieved a best bandgap of 27.16% when using the top down tree representation. This 

is much better performance than all of the results obtained when using the bitmap 

representation. The reason for this is because of the tree representations efficient 

encoding of the unit cell.  Despite the size of the grid, trees enable for an open-ended  
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Figure 3.10. Performance metrics for the deterministic crowding algorithm with the 

different chromosome representations. Comparisons to a random search algorithm and 

parallel hill climbing algorithm (only for the bitmap approach) are shown.   a)  Best 

fitness as a function of generation. The ordering in the legend corresponds with the 

ordering of the fitness’s on the graph (from best to worst).   b) Average hamming 

distance as a function of generation. The curves were smoothed for presentation 

purposes.  The left graph includes deterministic crowding and parallel hill climber. 

The right includes only random searches.  Error bars are derived from three 

independent runs started from randomized initial populations. 
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design space – i.e. the number of grid points can quadruple yet the tree is still able to 

encode the entire unit-cell without changing. The bitmap representation is plagued by 

‘rogue’ pixels that reduce the effective index of the unit-cell, and this problem gets 

worse the finer the grid gets. Thus, the bitmap representation is best used with very 

coarse grids. Despite the very good performance of the random tree search, it is clear 

that an evolutionary algorithm was still needed to discover photonic crystals with even 

larger bandgaps. 

We observed that the cross-over from a fitness below 1 to above 1 is very 

predictable (i.e. the population has no bandgaps and then develops bandgaps). A 

photonic crystal that may have a fitness of 0.98 in a previous generation (i.e. little to 

no overlap of the bands), after being crossed over and mutated with another parent will 

develop a small bandgap (~ 1%) in the next generation (of course, it’s possible that 

after crossover and mutation that its fitness will decrease but eventually the right 

mating will occur), and consequently after many such generations develop into a 

photonic crystal with a rather large bandgap.  This progression is predictable because 

as the photonic crystal bands develop less and less band overlap, structures evolve in 

the unit-cell that are able to support a bandgap.  The bandgap arises once the structure 

is fine-tuned and the overall index-contrast is increased and subsequently the noise 

level is reduced.  Even though the bitmap representation yielded a small bandgap 

when using a 32x32 grid and stochastic-uniform-sampling, the structure of a photonic 

crystal that could yield a large bandgap is very clearly seen in the noise of Figure 3.5. 

The evolutionary algorithm in fact found the correct structure; it was just unable to 

properly deal with the large amount of noise.  This predictability shows that our 

overlap area fitness criteria is excellent for obtaining photonic crystals with large 

bandgaps when starting from ‘random noise’, and consequently without seeding. 
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The best published human design for a photonic crystal using a square lattice 

and the TE polarization is shown in Figure 3.11.  It has a bandgap of 28.35% for this 

index contrast (3.4 to 1) [64]. Our evolutionary algorithm has found photonic crystals 

that improve over this design by 12.5%. The evolutionary algorithm achieved this by 

not optimizing the human-designed structure but by finding new types of photonic 

crystal structures altogether.  As seen in Figure 3.5 and Figure 3.9, the discovered 

photonic crystals are highly-skewed and non-uniformly scaled. It has previously been 

shown that the bandgap of simple photonic crystals can sometimes be improved by 

reducing the symmetry of the unit cell and the lattice [64, 67, 68]. By making no 

assumptions about the symmetry of the unit cell, our evolutionary algorithm has found 

that the photonic crystals with the largest bandgaps tend to share this characteristic. 

This result has also been observed in nature, the photonic crystals in butterfly wings 

also exhibit a lack of strong symmetry and non-uniform scaling [60, 61].   Lastly, the 

largest known photonic crystal bandgap for TE polarization is obtained using a 

triangular lattice (a square lattice was used here) of hexagonal air holes embedded in a 

high index background, which resembles a honeycomb structure [64]. Here, with the 

constraint of a square lattice, the EA attempted to recreate this structure as seen in 

Figure 3.5. However, the resulting honeycombs are not symmetric; they are skewed 

and non-uniformly scaled. By doing so the EA was able to find structures that improve 

over the best human design for a square lattice.  
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Figure 3.11. Best human designed photonic crystal with a bandgap of 28.35%. The 

photonic crystal is a square lattice of square air  (index -1) holes of width and height 

0.8*a (a is the periodicity of the lattice) embedded in a background of high index 

material (index - 3.4). 

3.5 SUMMARY 

We have demonstrated the ability to use evolutionary algorithms to discover 

novel photonic crystal structures with large bandgaps. Starting with a completely 

random population of photonic crystals that possess very small or even no bandgaps, 

we obtain photonic crystals with larger bandgaps than the best human design. We 

compared two types of selection criteria, stochastic-uniform-sampling and 

deterministic crowding, and two chromosome representations, bitmaps and trees. Each 

selection method and representation has advantages and disadvantages; so, future 

problems must be evaluated to determine the best approach for the problem. In 

practice, a combination of these techniques may yield the best results. For example, a 

bitmap representation would work very well for fine-tuning small regions of the unit-

cells obtained from the tree representations.  In conclusion, we’ve shown that 

evolutionary algorithms can be used as a robust design and optimization tool in the 

field of photonics. 
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CHAPTER 4  

ADIABATIC WAVELENGTH CONVERSION 

4.1 INTRODUCTION 

I wanted to answer a simple question – if there is light trapped in a resonator 

and then the resonator is tuned to a new resonant frequency, what happens to the light? 

Does it simply dissipate away because the light and the resonator are no longer in 

sync?  The answer to this question surprised me – it turns out that the light actually 

changes its frequency in order to follow the state of the resonator. The remainder of 

this chapter is devoted to how this occurs and the experimental demonstration of this 

wavelength conversion technique. 

Previous approaches to wavelength conversion on a silicon chip rely on non-

linear effects such as cross-gain modulation, cross-phase modulation, cross-absorption 

modulation, four-wave mixing, difference frequency generation [69-72], or free carrier 

effects [73]. However, all of these approaches have one thing in common – they are 

fundamentally all-optical, i.e. they operate by imparting the optical signal carried by a 

high intensity pump beam onto a probe beam. In contrast, in this chapter we present a 

new way to change the frequency of light based on the dynamic tuning of a resonant 

cavity where the wavelength of the light can be tuned using any means, including 

electrically, optically or even mechanically.  

It is well known that tuning the parameters of an optical cavity induces 

filtering of different colors of incident light [74]. Here we demonstrate that tuning the 

parameters of the cavity also changes the frequency of any trapped light. This is an 

effect often observed with classical oscillators, such as a guitar string. For example if 

we pluck the guitar string we generate a sound wave at a particular frequency. Now, 

before the strings vibration dies out, we change length of the string by moving our 
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finger or turning the tuning peg. As the length of the string is changed the frequency of 

the sound wave changes. Or in other words the sounds frequency follows the state of 

the resonant guitar string. Here we are doing the same thing but instead are 

dynamically tuning a micro-optical resonator in order to change the frequency of light.  

 

4.2 THEORY AND SIMULATIONS 

In order to investigate this effect, consider the photonic crystal resonator 

shown in Figure 4.1. The structure consists of a line defect waveguide and a point 

defect cavity created by ‘removing’ three air holes. The photonic crystal has a lattice 

constant of a=420 nm and the air holes have a radius of r=130 nm.   We used 2D 

FDTD simulations for our analysis.  The refractive index of the background is set to 

n=2.75, which is a good effective index approximation of an air-bridge slab with an 

index of 3.5. We found that the resonator has a resonance at λres=1525 nm with a 

quality factor of Q=4000.   

 

Figure 4.1. Photonic crystal resonator used for wavelength conversion (Black – 

n=2.75, White – Air). Light is launched into the line-defect waveguide and monitored 

in the center of the resonator.  
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Figure 4.2. Envelope of the y-component of the electric field in the center of the 

photonic crystal resonator. Solid red line: Time response of the unmodulated 

resonator. Blue dashed line: Time response of the modulated resonator. Top: The time 

dependence of the index of refraction of the background material. 

The 2D FDTD simulation is performed by sending a 500-fs gaussian pulse at 

the resonant wavelength (1525nm) into the line defect waveguide. The wavelength 

conversion is achieved by reducing the index of the entire background material 

(n=2.75) by Δn=0.01 once the field in the resonator has reached its maximum (to 

enable the maximum amount of light coupled into the resonator to be converted). Here 

the index is reduced linearly over a 250 fs period starting at t=3ps and ending at 

t=3.25ps.  The index is maintained at n=2.74 after the reduction as seen at the top of 

Figure 4.2. The time response of the field in the resonator with this index modulation 

is shown as the blue dashed line in Figure 4.2.  As seen, it follows the time response of 
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the unmodulated cavity (red solid line) almost exactly, indicating that no light has 

been lost as a result of the refractive index tuning. In addition, the light decays from 

the resonator at the same exact rate, in turn, indicating that the light is still somehow 

on resonance. 

 

Figure 4.3. Spectra of the light in the resonator in the unmodulated (red solid line) and 

the modulated (blue dashed line) cases. A wavelength shift of Δλ=-5.2 nm is obtained 

when the index is reduced by Δn=-0.01. 

The reason the light is still on resonance is because the wavelength of the light 

is being changed in order to stay on resonance with the cavity. This is seen in Figure 

4.3 which shows the spectrum of the light in the resonator for the modulated (blue 

dashed line) and unmodulated (red solid line) cases. Both spectra are obtained by 

taking the discrete fourier transform (DFT) of the time response shown in Figure 4.2 

after the index has been reduced (i.e. after t=3.25 ps). As seen, when the index is 

reduced by Δn=-0.01 the wavelength of the light in the resonator is completely shifted 

by Δλ=-5.2 nm and there is no light at the original wavelength (red solid peak). 
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Therefore, all of the light has been converted to a new wavelength by tuning the 

photonic crystal resonator. It was also verified that state of the resonator and the new 

wavelength are the same. In addition, we performed the simulation for many different 

refractive index changes and found that any wavelength can be generated (i.e. 

Δλ/λ=Δn/n). Lastly, we found that this process is independent of the tuning rate, with 

the simple caveat that the change has to occur while the light is still in the resonator 

since it is continuously leaking out as seen in Figure 4.2. This fact  directly proves that 

this process is fundamentally different from the spectral distortion effects induced by 

Kerr non-linearities or high speed modulations. We should note that there is an upper 

limit on the tuning rate in order to preserve adiabicity as will be discussed in the next 

chapter. 

In order to understand why this effect is occurring consider the one-

dimensional dispersion relation for light: 
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where ω is the lights frequency, c is the speed of light, n is the refractive index of the 

medium, k is the wave number (2π/λ), t is time and z is distance. It is clear from this 

equation that if the refractive index changes only with time then the frequency of the 

light has no choice but to change because the speed of light is fixed and the spatial 

wavelength is fixed. Therefore, this simple dispersion relation is the basis for why the 

frequency of the light changes when the refractive index of the cavity is changed. We 

see this is the case for all waveforms in the following derivation starting from a one-

dimensional wave equation [75]: 
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where ε(t) is the time dependent dielectric function. Now consider that we have a 

wave packet with an electric field described by E(t)=f(t)ei(kox-ωot), we have: 
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And with the slowly varying amplitude approximation (i.e. d2f/dt2 is small): 
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After some simple algebra we have: 
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And this can be solved with the analytical solution: 
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Therefore, the electric field has an instantaneous frequency of: 
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We see from this result that the frequency of the light follows the refractive 

index change directly, regardless of the speed of the dielectric change. The only 

requirement for this process is that the light is still in the system during the change and 

that the index change is transitionally invariant. We note that this process is 

fundamentally different from traditional frequency generation processes such as sum 

or different frequency generation. In sum or different frequency generation a field with 

a frequency of ω2-ω1 is needed in order to change the frequency of the light from ω1 to 

ω2. We see from Eq. 4.7 that with this new technique any frequency can be generated 

with a corresponding refractive index change.  

Now we turn to the topic of energy conservation for this wavelength 

conversion process. Consider Figure 4.4 where we show a zoom in of the envelope of 

the intensity in the cavity as shown in Figure 4.2. At t=3ps the refractive index is 



 

60 

changed from 2.75 to 2.74. We see that the energy in the cavity actually steps up when 

the refractive index is reduced. However, one would have expected the opposite, since 

the energy of a mode goes as E ∼ n2|Ey|2 (n was reduced so E should have reduced).  

 
Figure 4.4. Zoom in of field shown in Figure 4.2 during the refractive index change at 

t=3ps. It is clear that the energy in the cavity increases during the wavelength 

conversion process when the refractive index reduces.  

 
Figure 4.5. Change in energy in the cavity, change in wavelength and change in E/ω 

for different refractive index reductions. This shows that Δ(E/ω) is an adiabatic 

invariant. 
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We can explain this result by investigating Figure 4.5 where we show the 

change in energy in the cavity and the change in wavelength for different refractive 

index reductions. From this we see that the energy in the cavity continually increases 

as the wavelength is changed to shorter and shorter wavelengths. In fact, the energy in 

the cavity increases by the same amount as the change in wavelength so that the ratio 

E/ω remains exactly the same, as plotted in Figure 4.5.  Therefore E/ω is a conserved 

quantity for this wavelength conversion process. This ratio can be understood from 

classical mechanics by the action integral, which is a measure of the evolution of a 

system:  
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where p is the momentum, q is the spatial coordinate, H is the Hamiltonian for a 

harmonic oscillator, ω is the oscillator frequency, m is the mass and E is the energy. 

The action integral is calculated over one oscillation and is computed directly as the 

product of the maximum momentum and maximum displacement. We see that the 

action integral gives the same result of E/ω and is well known in classical mechanics 

as being an adiabatic invariant for classical oscillators which undergo an adiabatic 

change [76].  Consequently, the wavelength conversion process presented here is also 

an adiabatic process. We can understand the significance of E/ω by calculating the 

adiabatic invariant for two different states of the photonic resonator: 
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where N is the number of photons in the mode, ω1,2 is the frequency of the light,  and 

h_bar is Planck’s constant. Thus, as the photonic crystal is modified from one state to 

another the number of photons will remain constant.  This result ignores any loss of 

photons as a result of the finite quality factor of the resonator. The implication of the 

adiabatic invariant is that the adiabatic wavelength conversion process itself is 

inherently lossless (i.e. all photons are converted to the new state). We should note 

that this is fundamentally different from sum/difference frequency generation 

processes where the number of photons must follow N3hω3= N1hω1+ N2hω2. 

 

4.3 EXPERIMENTAL METHODS 

The only requirement for the adiabatic wavelength conversion process is that 

the resonator is modified in a time scale much shorter than the photon lifetime [75-77]. 

Until only recently most on-chip resonators had a photon lifetime on the order of a 

picosecond making it extremely difficult to meet this requirement for the wavelength 

conversion process.  However, we recently demonstrated the ultra-fast tuning of 

compact silicon ring resonators with photon lifetimes of tens of picoseconds making 

the work presented here possible [16, 17]. The cavity used here to change the 

frequency of incoming light is a 6-µm-diameter silicon ring resonator with a 

waveguide cross-section of 0.45 by 0.25 microns similar to the one seen in Figure 4.6 

[17].  Unlike the resonator in Figure 4.6 we use an add/drop configuration here where 

an additional waveguide is added adjacent to the ring as seen in Figure 4.8e. This 

additional waveguide is known as the drop port. The ring resonator is measured to 

have free spectral range (FSR) of FSR = 29.1 nm, corresponding to a group index of 

ng=4.45 [30]. The quality-factor is Q ≅ λ0/ΔλFWHM = 18614, where λ0 = 1,563.3 nm is 

the resonance wavelength, and ΔλFWHM = 0.084 nm is the resonance full-width-at-half-
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maximum. This Q-factor corresponds to a photon lifetime of τph=λ0
2/(2πcΔλFWHM) = 

15.5 ps, where c is the speed of light in vacuum [17].  

 
Figure 4.6. Scanning electron micrograph of a silicon ring resonator side-coupled to a 

waveguide (adapted from [17]). 

 
Figure 4.7. Experimental set-up used to measure the wavelength-conversion process. 

OSA, optical spectrum analyser; PC, polarization controller; OPO, optical parametric 

oscillator; BBO, beta-barium borate crystal. The pump (illuminating the top of the 

resonator) is used to induce a dynamic change in the cavity, while the probe light 

(supplied by the OPO) is confined in the ring resonator (from [78]). 

In order to induce a fast dynamic change in the resonator, we generate a 

refractive index change using free-carrier injection.  The carrier concentration is 

induced using short optical pump pulses, however the injection of carriers can also be 
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achieved electrically [43]. As seen in Figure 4.7, the optical pump is incident on the 

top of the ring resonator and is linearly absorbed, which generates free-carriers. The 

free-carriers cause the ring’s refractive index to reduce and in turn causes the 

resonators resonance to blue shift [17, 25]. This resonance shift causes the wavelength 

of probe light confined in the resonator to also blue-shift by the same amount as 

depicted in Figure 4.8e. 

The experimental setup is seen in Figure 4.7. The pump source is a mode-

locked Ti:Sapphire laser that generates 100-fs pulses at 830 nm with 5 nJ of energy at 

a Rpump=76.47 MHz repetition rate. A beta-barium-borate (BBO) crystal is used to 

generate second-harmonic pulses centered at λpump = 415 nm. At this wavelength, the 

strong linear absorption in silicon causes 90% of the photons transmitted into the 250 

nm thick silicon layer to be absorbed [17]. After SHG, the pump pulses are coupled 

into a short (less than 10 inch) SMF-28 fiber and then exit the output facet, which is 

placed close to the top surface of the resonator. The energy of the pulse incident on the 

ring resonator plane is less than 25 pJ.  The Ti:Sapphire also  pumps an Optical 

Parametric Oscillator (OPO), which produces the probe pulses. The probe pulses are 

passed through a Δλ=0.25nm filter (pulse duration measured and theoretically 

calculated to be approximately τΔn=18 ps), then polarized and coupled into the silicon 

waveguide by an external tapered-lensed fiber and an on-chip fiber-to-waveguide 

nanotaper coupler [17]. The quasi-TE (quasi-TE was chosen over quasi-TM due to its 

higher Q) light coupled into the ring resonators drop port is then coupled into a fiber 

by a lens/collimator and then detected by an optical spectrum analyzer (OSA). The 

pump and probe pulses are aligned in time so that the leading edge of the pumps pulse 

occurs when probe amplitude in the resonator is at a maximum.  
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4.4 RESULTS/DISCUSSION 

 
Figure 4.8. Wavelength conversion dependence on cavity detuning. a–d, 

Transmission spectra for four different detunings of the incident probe light 

wavelength relative to the cavity mode. Maximum conversion occurs when the probe 

is tuned to be on resonance, the dashed line is when the probe input power is reduced 

by 4.6 dB (a). The final wavelength is determined only by the degree of dynamic 

cavity change. e, Illustration of the wavelength-conversion process. f, The peak 
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transmission of the probe when the pump is off. The four initial probe wavelengths (a-

d) are indicated. (from [78]) 

In Figure 4.8a-d we show the normalized probe transmission for four different 

detunings (indicated as a-d on Figure 4.8f) of the incident probe light wavelength 

relative to the initial cavity mode, λprobe-λo. The probe transmission is normalized to 

the peak transmission of the probe when the pump is off (shown in Figure 4.8f). The 

pump energy is fixed in these four figures. When the probe is in resonance or close to 

resonance with the cavity mode (Fig. Figure 4.8a and Figure 4.8c, respectively), a high 

degree of light is converted from the initial to the final wavelength. When the initial 

wavelength of the probe is detuned from the resonance (seen in Figure 4.8b and Figure 

4.8d) very little light is converted because very little is initially coupled into the 

resonator. One can see that the final wavelength is the same in all of these cases and is 

consequently independent of the initial one. This is because the converted wavelength 

is determined only by the final state of the resonator, which is fixed in these four 

examples because the pump energy is fixed. In addition we verified that the final 

wavelength was in fact the same as the final state of the resonator using a temporally 

delayed probe pulse. It is also seen in Fig. Figure 4.8a (dashed) that when the probe 

input power is reduced by 4.6dB the measured transmitted probe signal is also reduced 

by the same amount and is otherwise unchanged, indicating that the probe itself does 

not induce any non-linearities.  
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Figure 4.9. Dependence of the measured wavelength change with the absorbed pump 

energy (square dots – measured, solid line – linear fit).  a-b,The insets show the 

transmitted probe power vs. wavelength relative to the initial cavity resonance for 

absorbed pump energies of 0.419 pJ (upper-left inset, λinitial-λfinal=0.339 nm, Induced 

Carrier Concentration ΔN=1.65x1017 cm-3) and 1.38 pJ (lower-right inset, λinitial-

λfinal=2.08 nm,  Induced Carrier Concentration ΔN=1.39x1018 cm-3), respectively. 

(from [78]) 

In contrast to other processes demonstrated to date for wavelength conversion 

such as Raman-based [72] and four wave mixing [69-71], the change in wavelength is 

solely determined by the pump intensity and not by the pump or probe wavelengths. 

This is because the wavelength change is determined solely by the resonance tuning of 

the ring [76, 77], which is controlled by the injected free carrier concentration. In 

Figure 4.9 we show the linear dependence of wavelength change with the absorbed 

pump energy (square dots – measured, solid line – linear fit). The insets show the 

probe power vs. wavelength relative to the initial cavity resonance for absorbed pump 

energies of 0.419 pJ (upper-left inset, λinitial-λfinal=0.339 nm) and 1.38 pJ (lower-right 
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inset, λinitial-λfinal=2.08 nm). Note that the absorbed pump energy is approximately 7% 

of the incident pump light, due to the small overlap of the pump beam (spot size 

diameter of approximately 10 microns) and ring area. This is not a fundamental 

limitation and can be solved using an in-plane pumping scheme used previously by 

our group [16]. The slope of the fitted line is equal to 1.75 nm/pJ in close agreement 

with the theoretical value of λoCNλpump/(nehcV)=1.67 nm/pJ, where λo is the resonant 

wavelength, CN=3⋅10-21 cm3 is the approximate free-carrier plasma effect coefficient 

[25], λpump is the pump wavelength, ne=2.4 is the resonators effective index[26], h is 

Planck’s constant, c is the speed of light and V is the volume of the ring. 

 
Figure 4.10. On/off conversion efficiency dependence on wavelength change. The 

solid line shows our theoretical calculations and the square dots show our 

experimental conversion efficiency results. The maximum conversion efficiency 

(34%) was extrapolated from a fit of the experimental data. Free-carrier absorption 

reduces the conversion efficiency for increasing wavelength changes. (from [78]) 

The experimental on/off conversion efficiency is plotted in Figure 4.10 (square 

dots) as a function of wavelength change. We define the conversion efficiency as 



 

69 

η=100⋅P(λfinal)/P_off(λo)⋅Δλfinal/Δλo where P(λfinal) is the peak probe power at the final 

wavelength, P_off(λo) is the transmitted peak probe power when the pump is off (seen 

in Figure 4.8f), Δλfinal is the FWHM (Full-width Half Maximum) of the probe signal at 

the final wavelength and Δλo is the probe FWHM when the pump is off.  Note that the 

FWHM’s are included in the efficiency calculation because the bandwidth of the light 

changes slightly when the pump is on. This is because only a portion of the input 

probe pulse is converted. Therefore, the light at the initial and final wavelengths has 

shorter temporal durations than the original input pulse (seen in Figure 4.8f) and 

consequently larger bandwidths. This will be explained in detail in the next paragraph. 

In Figure 4.10 it is seen that the conversion efficiency decreases as the wavelength 

change increases, and correspondingly as the pump power increases (also seen in the 

insets of Figure 4.9).  This is because as more free-carriers are generated more of the 

light at the final wavelength is absorbed [25]. This is confirmed by calculating the 

theoretical efficiency (solid line in Figure 4.10) as given by η=ηo·Qpump/Qno-pump, 

where Qpump=πng/λoα is the cavities quality factor in the presence of free-carriers [73], 

Qno-pump=18614 is the quality factor with no pump and ηo=34% is a fitting parameter 

verified using FDTD simulations, α is the roundtrip loss in the ring resonator and is 

given by α=αno-pump+αpump where αno-pump=4.81 cm-1 is the inherent loss of the ring 

and αpump=14.5·10-18·ΔN=14.5·10-18·Epump⋅λpump/(hcV) [cm-1] is the loss induced by the 

free-carriers where Epump=(λinitial-λfinal)/1.75 [pJ] is the absorbed pump energy [25, 26].  

The theoretical efficiency of the wavelength conversion process is 100% as 

was discussed in the previous theory section [76, 77]. However, this is only the 

efficiency for the light that is in the resonator during the conversion process. In reality 

not all of the probe pulse can be in the resonator during the conversion process. Here 

only a maximum of 34% of the pulse was actually in the resonator. Some of the light 
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at the leading edge of the pulse leaks out of the ring before the conversion process 

begins, which is clearly seen as the light at the initial wavelength in Figure 4.8a (and 

in the insets of Figure 4.9). In addition, the light at the trailing edge of the probe pulse 

which hasn’t yet entered the ring resonator when the conversion occurs can’t be 

converted because the ring resonator is now not on resonance with that light.  This 

problem was recently addressed by Gaburro et. al who proposed a solution based on a 

coupled resonator waveguide in order to ensure a larger portion of the probe pulse is in 

the system during the conversion [79]. 

 
Figure 4.11. Relative conversion efficiency as a function of the cavities transition 

time from its initial to final state. The transition time is normalized to the photon 

lifetime of the cavity. The solid line is an exponential decay fit to data calculated using 

two-dimensional finite difference time domain simulations. a-b, The insets show the 

measured probe power with two different pump pulse durations (cavity transition 

times). (from [78]) 
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As discussed earlier the only requirement for the adiabatic wavelength 

conversion process is that the light remains in the cavity during the dynamic tuning of 

the cavities state. Or in other words the tuning time should be much shorter than the 

photon lifetime of the cavity [77]. This is seen in Figure 4.11 where the relative 

conversion efficiency as a function of the cavities transition time from its initial to 

final state (normalized to the lifetime of the cavity) is plotted. The curve was 

calculated using FDTD simulations.  One can see that the e-1 point of the curve is 

approximately at the point where the index change time is equal to the photon lifetime, 

as expected.  In the inset we show two experimental transmission spectra, one where 

the pump pulse is sent through a short 10 inch piece of SMF28 fiber and another 

obtained by sending the pump through 3.5 meters of fiber in order to lengthen the 

duration of the pump pulse to be on the order of the photon lifetime of the cavity. In 

the latter case it is seen that there is significantly less light at the final state and it is 

spread out from the initial to the final state of the resonator. This is because the light is 

continuously leaking out during the slow conversion process. This fact illustrates that 

the wavelength of the light confined in the resonator directly follows the state of the 

resonator. These results point out that in order to get a significant power conversion at 

the final wavelength in this device the cavity change needs to occur in a time scale less 

than 10 psec. This requirement can be relaxed using a higher Q cavity [13, 80]. We 

should note that in this work the Q of the device does decrease slightly due to free-

carrier absorption [25, 30, 73]. However, it never reduces enough for the cavity 

transition used here (100 fs) to not be fast enough. 
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4.5 SUMMARY 

In conclusion we demonstrated a new technique for changing the wavelength 

of light – adiabatic wavelength conversion where the state of a cavity is dynamically 

tuned. Here a ring resonator cavity was tuned by injecting free-carrier optically. In the 

future carriers could be injected or extracted on the required time-scales using recently 

demonstrated PIN diode electro-optic modulators [26, 27].  This work could open the 

door to a chip-based wavelength division multiplexing system where a large range of 

wavelengths could be generated from a single light source at a single wavelength. A 

wavelength change of up to 2-3 nm was demonstrated but much larger wavelength 

shifts could be obtained by cascading multiple devices. The ability of dynamically 

tuning the properties of a resonator could also enable the stopping of light as was 

pointed out recently by Yanik et al[75, 81]. Note that in this work free-carrier 

absorption limits the conversion efficiency as the wavelength change increases.  In 

future devices this absorption loss could be counteracted by gain or by extracting the 

carriers using a reverse-biased diode [26, 42, 70]. 
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CHAPTER 5  

NON-ADIABATIC WAVELENGTH CONVERSION:  

PHOTONIC TRANSITIONS 

5.1 INTRODUCTION 

It is well known that light can be generated by direct electronic transitions in 

an atom, quantum well, quantum dot, or in general between quantized electronic 

states.  The modes of an optical cavity are also quantized, their separation in frequency 

being inversely proportional to the size of the cavity. However, it is commonly 

believed that it isn’t possible to transition light from one resonant mode to another 

linearly independent mode. In this chapter we show experimentally that it is indeed 

possible to induce direct photonic transitions between modes of a cavity, in analogy to 

electronic transitions in an atom [82] or in a quantum well [83]. This is achieved by 

using ultra-fast tuning of the refractive index of the cavity over a time interval that is 

comparable to the inverse of the frequency separation of modes.  

 
Figure 5.1. Illustration of the adiabatic and non-adiabtic wavelength conversion 

process using an infinite potential well analogy.  
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In the previous chapter we demonstrated adiabatic wavelength conversion 

where the wavelength of light confined in the resonator was changed by dynamically 

tuning the resonators state. An illustration of this process, using an infinite potential 

well as an analogy, is shown at the top of Figure 5.1. We see that as the size of the 

well is slowly increased the wavelength of the mode simply increases. At the bottom 

of the same figure we that when the size of the well is increased much more quickly 

then many other states are excited. This is the basis for the non-adiabatic wavelength 

conversion process presented in this chapter.  

The only requirement for inducing a photonic transition is that the resonator is 

changed in a time much shorter than the inverse of the frequency separation of the 

modes. This point is illustrated in Figure 5.2 where we see that the spectral response of 

the change in the resonator overlaps several of the cavities modes. In this case the 

necessary fourier components for the transition are large enough in order to transfer 

substantial amounts of energy from one mode to another.  If the resonator change were 

too slow it would have a much narrower spectral signature which would overlap only 

a single cavity mode and just result in a small adiabatic change. 

 
Figure 5.2. Illustration that the spectral response of the resonators change must 

overlap many of the cavities modes in order to induce photonic transitions. 
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We should note that transitions between optical modes were previously 

observed using a modulator in large optical cavities, for example in frequency comb 

generators [84] and mode-locked lasers [85]; however, the spacing between the modes 

is quite small, typically less than 50 GHz, since the cavities are so large. Here in 

contrast we show the effect for the first time in ultra-compact cavities in which the 

modes are very far from each other, approximately one order of magnitude farther 

than in previously demonstrated macroscopic systems.  

 

5.2 DEVICE 

 
Figure 5.3. Microscope image of the large ring resonator with input, thru and drop 

ports (from [86]). 

In the previous chapter we demonstrated adiabatic wavelength conversion 

using a 6 µm ring resonator that had a mode spacing of 29.1nm. However, no photonic 

transitions were observed because the modes were spaced too far apart.  Here we 

demonstrate photonic transitions using a larger 100 µm ring resonator that has a mode 

spacing of only 1.9nm (237 GHz). This mode spacing is small enough that transitions 
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to several modes can be observed. The photonic transitions are induced with the same 

pump laser used in the previous chapter where 100-fs pump pulses (2 THz) induce a 

refractive index change in the cavity. The probe signal is supplied by a tunable 

continuous-wave laser. A microscope image of the ring resonator is shown in Figure 

5.3 and the quasi-TM transmission of the through and drop ports of the device are 

shown in Figure 5.4. The full width at half maximum bandwidth of the resonances is 

0.13 nm, which results in a quality factor Q=12,000. This quality factor corresponds to 

a photon lifetime of approximately 10 ps. 

 
Figure 5.4. Quasi-TM transmission of the through and drop ports of the ring 

resonator. 
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5.3 RESULTS/DISCUSSION 

 
Figure 5.5. Demonstration of photonics transitions (a) Spectrum of the drop port 

measured for a ring resonator with a radius of 100 µm. A band-pass filter is used to 

eliminate amplified spontaneous emission noise of the input probe laser. The green 

line shows the reference spectrum when pump is off, and the probe beam is on one of 

the rings resonances. The red line shows the spectrum when the pump is on and 

demonstrates that the input light is transitioned to 15 of the ring resonators adjacent 

states (c) The diagram of the discrete cavity states of an optical microcavity before (b) 

and after (c) pump is incident on the sample. The diagram illustrates that light is 

transition from one state to many other states when the resonator is dynamically tuned. 

(from [86]) 
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In Figure 5.5a we show the spectra of the transmitted light initially resonant 

with one of the ring’s resonance wavelengths when the pump is off (green line) and 

when it is on (red line). It is seen that when the pump laser is turned on, 15 new 

wavelengths are generated, all of which are located at the new resonances of the ring 

resonator. This uniquely demonstrates that photonic transitions between different 

cavity modes have been realized in this silicon microcavity. The furthest mode has a 

wavelength blueshift of more than 8nm from the initial wavelength. A schematic 

drawing of this process is shown Figure 5.5b and c illustrating that light is transitioned 

from the initially excited cavity mode to the 15 other modes by the dynamic tuning of 

the cavity’s refractive index. 

In order to understand the mechanism of the photonic transitions, one can 

follow a derivation similar to the time-dependent theory of electronic transitions in 

quantum mechanics, thanks to the similarity of Maxwell’s equations and the 

Schrödinger equation, to obtain the probability amplitudes for the optical modes [87, 

88]: 
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Here Hm is the magnetic field of the mth-order cavity mode, µ is the permeability 

constant, ε is the dielectric function of unperturbed system and δε(r,t) is the time and 

spatial dependent perturbation of the dielectric function. We see that in order to induce 

photonic transitions, the spatial part of δε(r,t) must produce a non-vanishing integral 

in Eq. (5.2). Since Hm and Hn are orthogonal for m≠n, this can only be realized by a 

non-uniform spatial dielectric change. In order to satisfy the condition of non-uniform 

spatial dielectric change, when the ring is illuminated by the pump care is taken to 

ensure that the spot size of the pump beam only overlaps a portion of the ring. 

Additionally, as deduced by Eq. 5.1, the temporal variation of δε(r,t) must have a non-

zero Fourier component near the transition frequency (defined as Δω= ωm- ωn). To 

achieve this condition, one can modulate the index at a frequency equal to Δω 

resulting in resonant transitions [87, 88], which is exactly the case of interband 

transitions in photonic crystals [88]. Alternatively, one could use an ultra-fast index 

change where the frequency bandwidth of the time-dependent index change overlaps 

Δω as illustrated in Figure 5.2. This condition can be approximated as τc ~ 1/ Δω, 

where τc is the time to complete the index change. In the experiment here we achieve 

an index change in a time scale of the order of 100 fs, corresponding to the inverse of 

a frequency of the order of 1THz, spanning a number of cavity modes separated by 

~100 GHz.  

 In order to verify the influence of the ring resonator on the measured spectrums 

here we investigate the results for several different pump/probe configurations. In 

Figure 5.6a, we show the spectrum of the transmitted light when the pump is off and 

the probe wavelength is set to be on resonance. The large peak near 1567.5 is the 

initial mode of the cavity directly excited by the CW laser; the other peaks are a result 

of the background amplified spontaneous emission (ASE) noise of the CW laser. 
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These peaks provide a reference for all of the other  cavity modes in the spectral range 

under consideration. In Figure 5.6b the pump is turned on, however the incident probe 

light is tuned to be off-resonance with the ring resonator. Here we see no sign of 

conversion to new wavelengths despite the modulation of the cavity’s dielectric 

function by the pump beam. This is due to the fact that since no resonant mode is 

excited by the input wavelength, there can be no transition to other states (ASE 

excitation of the resonances is too weak). However, as we tune the input wavelength 

to be on resonance with the ring, seven new wavelengths appear at the new resonances 

of the cavity, indicated by green arrows in Figure 5.6c. This uniquely demonstrates 

that all of the new wavelengths are generated by conversion of the initial probe state to 

the new photonic states. Note in Figure 5.6c that the new wavelengths appear at the 

resonances of the perturbed ring which are slightly blue shifted from the initial states 

by the induced refractive index change. Since the photon lifetime (10 ps) is much 

smaller than the carrier recombination lifetime (450 ps) the converted photons leak out 

from the resonator (and are measured) before the ring returns to its unperturbed state. 

The 0th order conversion comes from the adiabatic transition of initial mode to the 

perturbed mode of the same order. This adiabatic frequency conversion was 

investigated in the previous chapter, however, its frequency shift is limited by the 

index change. In contrast, here the transitions between the modes of different orders 

do not suffer from this limitation. From Figure 5.6c, the maximum wavelength shift is 

-6.7 nm, and the absolute conversion efficiencies for the 0th order and -1st order are 

0.03% and 7×10-4% respectively. These conversion efficiencies seem low because the 

CW probe light is only converted whenever a pump pulse occurs (every 13 ns). Taking 

this into account and the photon lifetime of the cavity we determine the conversion 
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efficiency per pump pulse to be approximately 38% for the 0th order mode and 1% for 

the -1st order. 

 
Figure 5.6. Cavities influence on photonic transitions a) Spectrum measured at  the 

drop port of the ring resonator when the pump is off. The input wavelength of the CW 

laser is in resonance with the ring cavity (large peak). The smaller peaks are the other 

resonances of the ring resonator which are excited by the amplified spontaneous 

emission noise of the probe laser. b) Spectrum when the pump is turned on. However, 

the input probe wavelength is detuned from the rings resonance therefore no photonic 

transitions are evident. c) Same as in (b) but now the input wavelength is in resonance 

with the ring cavity. Seven new wavelengths appear in the spectrum. The black arrows 

indicate the original modes and the green arrows indicate the wavelengths generated 

by the photonic transitions. (from [86]) 
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Figure 5.7.  Changing the transition probabilities by increasing the cavity tuning. The 

spectrums for three different cavity tunings (increasing from top to bottom) are shown.  

It is seen that the amount of light in each of the final modes depends on the degree of 

cavity tuning (The amount of cavity tuning increases linearly with pump energy). The 

spectrums are as follows: (top) Tuning: 0.66 nm, 0-order efficiency: 19%, 1st-order 

efficiency: 3.6% (middle) Tuning: 0.96 nm, 0-order efficiency: 7.5%, 1st-order 

efficiency: 3.7% (bottom) Tuning: 1.25 nm, 0-order efficiency: 3.3% 1st-order 

efficiency: 5%. 
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The amount of light that transitions to a particular mode depends on how far 

away it is from the initially excited mode as is clearly seen in Figure 5.6. The amount 

of light in each mode also depends on the degree of cavity tuning as seen in Figure 

5.7. As one would expect as cavity modes move closer/further away to the initial 

mode the transition probability increases/decreases. This is seen in Figure 5.7 where 

the amount of light in the final 0-order mode decreases and amount of light in the 1st-

order mode increases as the cavity tuning is increased. We should note that the amount 

of light in the modes to the left on the initially excited mode is considerably greater 

than those on the right. This is because the modes are blue-shifted (shifted to the left) 

by the induced refractive index change and this inherently gives a bias for the 

transitions to the left. 

  
Figure 5.8. Spectra for different pump pulse durations. It is evident that the 

probability of nonadiabatic transitions increase as the pulse duration becomes shorter. 

(from [86]) 
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In order to verify that the cavities refractive index has to be changed much 

faster than the inverse of the frequency spacing of the modes here we measure the 

transmitted spectrum with several different pump pulse durations. The pump pulse 

duration is varied by using a two-grating system, in which grating dispersion is 

introduced to temporally expand the pulse [89, 90]. We see in Figure 5.8, where the 

spectra for different pulse durations is shown, that the transition probabilities for -1-

order and 1-order transitions decrease as the pulse duration increases. This is the case 

because as the pulse duration increases the frequency bandwidth of the dynamic index 

change decreases, decreasing the transition probabilities to modes of different orders 

according to equation 1 and seen in Figure 5.2. We have also demonstrated from this 

result that as the cavity tuning is slowed it is possible to achieve adiabatic wavelength 

conversion as demonstrated in the previous chapter.  

 

5.4 SUMMARY 

In conclusion, we experimentally demonstrate generation of new frequencies 

by inducing photonic transitions between discrete modes of a silicon optical 

microcavity, in analogy to electronic transitions. This effect allows the generation of 

new wavelengths of light in materials such as silicon which are generally not optically 

active [42, 70]. Additionally, this work could enable on-chip generation of multi-

wavelength comb sources that could find numerous applications in sensing, 

metrology, and optical communications. Amplifiers can be used to boost and equalize 

the power at the newly generated wavelengths enabling a practical comb source on a 

chip. By varying the magnitude of the index change and the probe input wavelength 

the converted wavelengths can be tuned over the entire operational range of the ring 

resonator which is more than 100nm. In this work, the quality factor of the micro-ring 
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resonators used is moderate, compared with those photonic crystal microcavities and 

suspended micro disks or toroids [13, 74]. A larger quality-factor may benefit the 

conversion efficiency as the trapped light can stay longer in the cavity.   
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