The Local Nature of A-Coloring
and Its Algorithmic Applications*t

Alessandro Panconesi
Aravind Srinivasan

TR 92-1303
September 1992

Department of Computer Science
Cornell University
lthaca, NY 14853-7501

*A preliminary version of this paper appeared as a part of the paper "Improved
Distributed Algorithms for Coloring and Network Decomposition Problems”, in the
Proceedings of the ACM Symposium on Theory of Computing, pp. 581-592, 1992.
1 This research was supported in part by NSF PYI award CCR-89-96272 with
matching support from UPS and Sun Microsystems.

The Local Nature of A-coloring and Its Algorithmic
Applications *!

Alessandro Panconesi & Aravind Srinivasan
Department of Computer Science
Cornell University, [thaca NY 14853
E-mail: {ap, srin}@cs.cornell.edu

September 16, 1992

Abstract

Given a connected graph G = (V, E) with |V| = n and maximum degree A such that
G is neither a complete graph nor an odd cycle, Brooks’ theorem states that G can be
colored with A colors. We generalize this as follows: let G — v be A-colored; then, v can
be colored by considering the vertices in an O(logs n) radius around v and by recoloring
an O(logs n) length “augmenting path” inside it. Using this, we show that A-coloring G
is reducible in O(log® n/log A) time to (A + 1)-vertex coloring G in a distributed model of
computation. This leads to fast distributed algorithms and a linear—processor NC' algorithm
for A-coloring.

1 Introduction

A main concern when designing efficient algorithms for distributed networks is locality. A
message—passing distributed network can be thought of as a graph where vertices are processors
communicating via the edges of the graph; the absence of shared memory disallows the fast
dissemination of information and hence, computation must be based on local data. The question
of locality can be stated as follows: can each processor compute its part of the output by
searching only a small neighborhood of itself?

In a distributed network the following trivial strategy is always possible: the network elects a
leader (say, the processor with maximum 1D) which then collects all of the information, computes
and sends the answers to the rest of the network. This takes time proportional to the diameter
of the network (the diameter of a network is the maximum length of a shortest path between
any pair of vertices) which can be @(n), where n is the number of nodes in the network. We
are interested in subdiametric time protocols, in general, ones that run in time polylogarithmic
in n.

In this paper we are concerned with the vertex coloring problem in a distributed model
of computation, where a synchronous network G wants to compute a vertex coloring of its

*A preliminary version of this paper appeared as a part of the paper “Improved Distributed Algorithms
for Coloring and Network Decomposition Problems”, in the Proceedings of the ACM Symposium on Theory of
Computing, pages 581-592, 1992.

'This research was supported in part by NSF PYI award CCR-89-96272 with matching support from UPS
and Sun Microsystems.

own topology. This problem is interesting because a coloring is a partition of the vertices into
independent sets, thus defining a schedule for the processors to compute in parallel, since an
independent set defines a set of processors that can compute in parallel without interfering with
their neighbors.

Given a graph G = (V,E) with |V| = n, A will denote its maximum degree, i.e., the
maximum number of neighbors of any vertex. A A—coloring of a graph is a vertex coloring that
uses at most A colors. In this paper we prove a surprising result about the “local” nature of
A-colorings, which has several interesting consequences.

Theorem Let G be a connected graph such that A > 3, G is not a clique, and all but one vertex
v of G is A-colored. Then, we can eztend the A-coloring to the whole of G by recoloring a path
originating from v, which is of length at most O(loga n).

This theorem can be used to compute a A-coloring of G inductively by adding vertices one
by one and each time applying a “small radius search”. Hence, this result is a generalization of
a well-known theorem of Brooks [3] (see also the discussion in Bollobas [2]), which states that
every connected graph of maximum degree A which is neither an odd cycle nor a complete graph,
can be colored with A colors. Brooks’ proof does not appear to have this locality property. The
O(logs n) bound is tight up to a constant factor, in the sense that there exists a family of graphs
and partial A—colorings of them, for which a search of radius (loga n) is required.

The small radius search can be carried out effectively in our distributed model of computation
and in NC, allowing us to derive several algorithmic results. The intuition behind our algorithms
is the following. Suppose a graph G is A-colored except for a set of uncoloreed vertices P. If
the vertices in P are sufficiently far apart, we can extend the coloring to the whole of G by
a simultaneous application of the small radius search to all vertices of P. The problem is to
construct a set P with the desired property. We now give an overview of the various algorithmic
consequences of the small radius search that we establish in this paper.

There is a simple and beautiful randomized distributed algorithm to compute a (A + 1)-
coloring in O(logn) expected time, due to Luby [12]. Our “small radius search” theorem leads
to a reduction from A—coloring to (A + 1)—coloring. This allows us to derive fast randomized
distributed and NC algorithms for A-coloring. We also prove that for any A > 2, the problem
of A-edge coloring a bipartite graph G needs Q(diam(G)) time distributively, even given an
unlimited amount of randomness (whereas this can be done in NC: see Lev, Pippenger &
Valiant [10]). For paths and even cycles, edge coloring and vertex coloring are equivalent and
hence, we can state the following distributed version of Brooks’ theorem:

Theorem A connected graph G is A-colorable in ezpected polylogarithmic time in the distributed
model of computation if and only if G is neither a complete graph nor a degree-2 graph.

When A is bounded by a polylogarithmic function of n, we can implement the reduction to

(A + 1)-coloring deterministically in polylogarithmic time, distributively.

Theorem A connected graph G is A—colorable in O(A polylog(n)) time in the distributed model
of computation if and only if G is neither a complete graph nor a degree-2 graph.

By using ideas from [12], the randomized reduction can be implemented and derandomized
in NC with O(]V | +| E|) processors, yielding the first known linear processor NC algorithm for
A—coloring. The existing NC algorithms for A-coloring all seem to need superlinear processors
(Hajnal & Szemerédi [6], Karchmer & Naor [7], and Karloff [8]).

Theorem A connected graph G can be A-colored in the PRAM model of computation with
linearly many processors and in polylogarithmic time if and only is G is neither a clique nor an
odd cycle.

The reduction to (A + 1)-coloring can be implemented sequentially with a depth first search
(DFS), which yields a linear time sequential algorithm for A-coloring. The details of this con-
struction do not appear in this paper.

By making use of the notion of network decomposition (Awerbuch, Goldberg, Luby & Plotkin
[1], Panconesi & Srinivasan [13]) we obtain one final theorem.

Theorem A connected graph G is A-colorable in O(n(™) time in the distributed model of com-
putation where €(n) = O(1/+/logn), if and only if it is neither a complete graph nor a degree-2
graph.

It is an important open problem whether a A-coloring or a (A +1)-coloring can be computed
deterministically in polylogarithmic time in the distributed model of computation.

2 Definitions

We first introduce our distributed model of computation and then give some graph-theoretic
definitions.

A distributed network is a graph G where each vertex is a processor with a distinct 1D, and
each edge is a bidirectional communication link. There is no shared memory. The network is
synchronous and computation takes place in a sequence of rounds; during one round a processor
sends messages to its neighbors, then collects all data sent to it by its neighbors, and then
performs some local computation. The complexity of a protocol is given by the number of
rounds. Hence, if we want a protocol to terminate within ¢ rounds, every vertex can communicate
with only the vertices which are at a distance of at most ¢ from it. We do not charge for local
computation; in other words, we want to study the complexity of a problem when communication

is the bottleneck, imposed by this locality (i.e., the absence of a global shared memory).

Given a graph G = (V,E)and aset S C V, G[S] denotes the subgraph induced by S, and
G - S denotes G[V — S]. When S = {v} for some v € V, we write G — v instead of G — {v}.

A vertex coloring will be denoted by x(-); if § is a set of vertices, then x(5) is the set of
colors used by the vertices of §. The maximum degree of G is denoted by A. When a vertex v
is uncolored, we say that v is pebbled, and represent this situation by letting x(v) =L. If 5 is
a set of pebbled vertices and G — § is legally A-colored we say that G is partially A-colored.
We denote the set of neighbors of a vertex v by N(v), and its degree by deg(v). If v is pebbled
and | x(N(v)) = {L}| < A, then there is a spare color for v; if we color v with a spare color, the
pebble at v is said to be removed.

The following operations will be used often. Suppose v is pebbled and | x(N(v)) — {L}| = 4A;
let u be any non—pebbled neighbor of v with color a, say. A step is the following recoloring
operation: X'(v) = a, x'(u) =1, and x/(w) = x(w), for all w € V' — {u,v}. A very important
property of the step operation that will be used throughout the paper is that if P is the set of
pebbled vertices and a pebble makes a step from u to v, then this step operation transforms a
legal A—coloring of G — P into a legal A—coloring of G — ((P — {v})U{u}). A walkis a sequence
of steps (see Figure 1). Clearly, a walk transforms a partial A-coloring into another partial
A-coloring.

An (a, B)-ruling forest with respect to G and a subset V' C V' is a forest of rooted trees
F = {T;}, where each tree is a subgraph of G, with the following properties:

e For each i, the root of T, called the leader of T; and denoted by I(T), is in V'
¢ each vertex in V' belongs to some tree;

e the trees are disjoint i.e., each vertex in the forest belongs to a unique tree;

e inter-root distance is at least a, and

o tree depth is at most 3 (the depth of a rooted tree is the maximum distance between the

root and any leaf).

Notice that trees of an (a,B)-ruling forest can contain vertices not in V’. This notion was
introduced by Cole & Vishkin [4], and generalized by Awerbuch, Goldberg, Luby & Plotkin [1].
A (k, klog n)-ruling forest can be computed in O(klogn) time distributively [1].

An important notion in distributed graph algorithms is that of a network decomposition (also
called cluster decomposition) introduced in [1]. Given a graph G = (V, E) and a partition of V
into a set of clusters C, define the cluster graph Gc = (C, E¢), where E¢c = {(C;,C;) | 1 #
j A JueCyveC; : (uv) € E}. A (d(n),c(n))-network decomposition of G is a set of
clusters C and a vertex-coloring of G¢ with O(c(n)) colors, such that each cluster has diameter
O(d(n)).

The best-known deterministic result for computing a network decomposition in a distributed
system is contained in [13], where it is shown how to compute an (n€(™), n¢("))—decomposition in
O(n<(™) time, where e(n) = O(1//Iogn).

The next definition introduces the class of graphs that we will consider for A-coloring:

Definition 1 A nice graph is a connected graph G which is not a complete graph, with A > 3.

x b 2 6

Y O Y

Figure 1: Steps and walks

3 Distributed Brooks’ Theorem

In this section, we show that given a partially A—colored nice graph G with one pebbled vertex
vo, we can extend the coloring to G by recoloring an “augmenting path” of length O(loga n).
Brooks’ theorem follows as a corollary. For the sake of clarity, we first give a weaker result, an
O(y/n) bound, and then give the stronger result.

We first establish our result in the easy case of when a vertex of degree less than A is “near”
the pebbled vertex. Let G = (V, E) be a graph of maximum degree A; a vertex v € V' is called
a sanctuary if deg(v) < A.

Lemma 1 Let G be a nice graph with one pebbled vertez vo. If v € V is a sanctuary at distance
¢ from vy, then the pebble can be removed by walking it for at most £ steps.

ProofF. Let P = vg,v;,...,v = v be any simple path between vy and v, and consider the
following procedure. Initially vg is pebbled; if there is a spare color at vp we remove the pebble,
otherwise we make a step to v;. Once v; is pebbled, if there is a spare color at v; we remove the
pebble, otherwise we make a step to vz, and so on. This procedure is correct because each step
maintains a partial coloring. Eventually, unless a spare color is found along the way, we reach
v = v which has a spare color because its degree is less than A. a

Note that the search for a sanctuary within a distance of £ can be easily implemented in
O(¢) time both in the distributed model of computation and in the PRAM model using linearly
many processors.

The rest of this section is devoted to establishing the existence of a short augmenting path
in the case when there is no sanctuary near the pebbled vertex. A graph with no sanctuary near
the pebble must be “locally A-regular”. The next definition makes this notion precise.

Definition 2 Let G be a nice graph with one pebbled vertez vg. G is A-regular within radius £

if there is no sanctuary at a distance of at most £ from vo.

The following definition introduces the basic structure that allows us to extend the coloring
from G — vp to G, when G is locally A-regular within a radius which will be specified later.

Definition 3 Let G be a partially A-colored nice graph with one pebbled vertex vo. A T-path
is a path P = vg,vy,...,v,, where v, has two neighbors z and y such that: (i) x(z) = x(y), and

(ii) z,y ¢ P.

Our aim is to prove that if there is no sanctuary within O(loga n) distance from the pebbled
vertex then there is a T-path of length O(loga n), and to show how to find it. First, we show
that a T-path allows us to extend the coloring to G. The idea is that the pebble can walk from
vg to v, along the T-path; once at vy the pebble can be removed because neither z nor y has its
color changed by the walk.

Lemma 2 A partially A-colored graph with one pebbled vertez vo and a T-path P, can be A-
colored by walking the pebble along P.

PROOF. As in the proof of Lemma 1 we walk the pebble along P starting from vo. Eventually,
unless we find a spare color along the way, we reach vy, which has two neighbors z and y with

the same color, and whose colors are not changed by the walk of the pebble. a
Given two paths P; = vg, v1,. .., v and Py = Vg, Uk41, - - -, VI, their concatenation is the path
P, e Py = vg,V1,...,Vk,Vks1,- - -5 Ul LThe set of colors of the vertices in a path P is denoted by

X(P). When | x(P)| = 2 we call P bichromatic. If P is bichromatic with colors « and 3, we say
that P is an (a, 3)-path. In what follows, the set of vertices of a path P will be denoted by the
same letter P.

Definition 4 A stem is a simple path P = vy e Py e P such that: (i) vo is pebbled, and (i1) P,
has at least four vertices and is bichromatic.

Definition 5 Let P = vg,vy,...,0, = vg ® Py @ P; be a stem, where P, = vi,vit1,...,Vp. A
P-detour is any simple path P' such that: (i) P’ has end-points v; € P and at vj4ix € Pa, where
i<j+k<pandk>2 and (ii) PN P = {vj,vj4x}.

If P’ is a P-detour then vy, ..,v; ¢ P’ is a T-path (see Figure 2). In the sequel, when there is
no danger of confusion, we shall refer to a P-detour simply as a detour.

The next lemma is the basic tool used to prove our main theorem. It states that if G is
A-regular within radius 3¢, then given a stem P of length at most £ we can either spawn off
a bichromatic path P’ of length £, or we can find a T-path of length at most 3¢. By repeated
applications of this spawning operation we can grow what roughly is a A-regular tree. If we
show that by growing the tree we always include only additional vertices then the tree rapidly
covers G and we can find a T-path of length O(log, n).

Suppose we have a path P = v, ..., v, and a path P’ originating from some vertex v € P.
If PN P C {v,v,} we say that P and P’ are divergent. From now on, let a,3 and v be three
distinct colors.

Definition 6 Let P = vy e P; ¢ P; be a stem. An {-branch is any bichromatic path originating
from v € P, which is simple, divergent from P and is of length ¢.

6

Figure 2: A detour yields a T-path

Lemma 3 Let G be a partially A-colored nice graph with one pebbled vertex vy, and let G be
A-regular within radius 3¢, for any £ > 5. Let P = vg e Py o P, be a stem of length at most ¢,
such that Py = v;,...,v,, Xx(P2) = {a,B}, and x(v;) = a. Then, for any v different from o and
B, either there is an £-branch Piy, originating from viy1 such that x(Piy1) = {B,7}, or there
is an £-branch P;y, originating from viyy such that x(Piy2) = {a,7v}, or there is a T-path of
length at most 3¢.

PrOOF. Let Pi;; be the path obtained by following a (8,7)-path Q; starting from v}, for
¢ edges or till Q; ends, whichever occurs earlier; let P42 be the path obtained by following an
(a,v)-path Q, starting from v;4, for £ edges or till Q2 ends, whichever occurs earlier. Let 2’
and z be the last vertices of P,y and P, respectively. We first show that either P42 is simple
and divergent from the stem P, or there is a T-path of length at most 2¢. If P and P;42 are not
divergent, there is a detour to or from v;4; and hence a T-path of length at most 2¢. On the
other hand, if Pi43 is not simple then P’ = vy, ..., v} ® Piy2 contains a T-path (see Figure 3).

If the length of P;y; is £, then we are done. Otherwise, consider P;;;. First, we show that if
P; ;1 does not go through 2, the last vertex of P;,,, we are done. Since z is the last vertex of the
bichromatic path Pi;; and since G is A-regular within radius 3£, z must have two neighbors
z and y with the same color (if the pebbled vertex vp is a neighbor of z then there is a detour
from vo to vi47 of length at most £+1). If P! = vy, .., v;42 @ Piy2 is not a T-path, at least one of
z and y, say z, must be in P’. But z & P42 because Piy; is simple, and z ¢ {vo, .., v;} or there
is a detour from z to v;42 of length at most £ + 1. The only possibility then is that z = viyq. If
x(z) = @, then we are done since vo, v1, ..., Vi+1 is a T-path, otherwise consider the (3, v)-path
Pi41 = Vit1,2,...,2'. The last vertex z' of P;4; again must have two neighbors z’ and y' with
the same color and one of them, say z’, must be v;, or else we have a short T-path. But this

Figure 3: If P4, is not simple we find a T-path

is also ruled out, or else we could reach v;;2 with a detour starting from v; that uses Py and
Piy2 “backwards”, resulting in a T-path of length at most 3¢ (see Figure 4). O

The above lemma is independent of the particular y chosen as long as v ¢ {a, 3}, so that

we can spawn off a total of A — 2 new bichromatic paths, some from v;;; and some from v;4,.

Corollary 1 Let G be a partially colored nice graph with one pebbled vertez, and let G be A-
regular within radius 3¢, for any £ > 5. Then, given a stem P of length at most ¢, we can spawn
off A — 2 £-branches from it, or else there is a T-path of length at most 3¢.

Lemma 3 shows how to inductively generate new stems from old ones. The next lemma
shows how to find an initial stem; it is the basis of an induction proof showing the existence of
a short T-path.

Lemma 4 Let G be a partially A-colored nice graph with one pebbled vertex vo, and let G be
A-regular within radius 3¢, for any £ > 5. Then G either has a stem of length at least four or
has a T-path of length at most four.

ProOOF. Since G is not a clique, vy has two neighbors z and y such that (z,y) ¢ E; let
x(z) = a and x(y) = B. Starting from vp we perform a walk along an (e, B)-path P according
to the following procedure: let v; be the current pebbled vertex; if there is a free color at v;
then remove the pebble, otherwise make a step to a vertex v;+1 not previously visited, such that
x(viz1) € {@, 8}. If no T-path is found this procedure must perform at least four steps, because

no sanctuary can be found within 4 steps and the shortest (o, 3)-path between z and y must

Figure 4: If P,y and Piy, fail we find a T-path

have at least three edges. a

By combining Lemmas 3 and 4 we can obtain Brooks’ Theorem as a corollary.
Corollary 2 Every nice graph G can be A-colored.

ProoF. The proof is by induction on the number of vertices. The basis is trivial. The
induction step is to assume, for some vertex v, that G — v is partially A-colored and that v is
pebbled. If G is not A-regular then there exists a sanctuary at distance at most n — 1 from v
and hence, by Lemma 1, we can extend the coloring to v. Suppose then that G is A-regular.
First we invoke Lemma 4 to get an initial stem, then we invoke Lemma 3 by setting ¢ = n.
Since branches of such length cannot exist, we must find a T-path of length at most 3¢ and can
remove the pebble. a

We now prove that if G is a partially A—colored graph with one pebbled vertex vo, then
the pebble can be removed by a walk of length at most O(y/n). Let £ = 3 /n. If thereis a
sanctuary at a distance of at most 3¢ from vo, then we are done by Lemma 1; otherwise G is
locally A-regular within radius 3¢ and we show that a T-path of at most O(/n) length must
exist. Lemma 4 ensures that we can find a first stem P of length four. Given P, with one
application of Lemma 3, we can can spawn off an ¢-branch P’. This gives a new stem S of
length at most | P'| + | P| = £+ 4. Then, we subdivide P’ into contiguous blocks of three edges
each (adjacent blocks share a vertex), and apply Lemma 3 in each block, thus generating a
sequence of bichromatic paths Q1,@Q2,..., Q\/;, each of length £. Notice that if any two distinct
Q: and Q; intersect, then there is an S-detour of length at most 2¢, and hence a T-path of

9

Figure 5: Q; and @; cannot intersect

length at most 3¢ + 4 (see Figure 5). Any Q; which is not divergent from the stem 5 yields a
T-path of length at most 2¢ + 4. On the other hand, if all @;’s are divergent from .5, then there
must be a pair of ¢-branches Q; and Q that intersect each other, since we have generated at
least £2/3 + 4 vertices.

The basic idea of this proof is to generate a tree of diameter O(y/n) starting from an initial
stem and to spawn off £-branches by repeatedly applying Lemma 3. When a new {-branch
Q; is spawned off, we either get a T-path if Q; intersects the existing tree (this happens if
Q; intersects other {-branches or is not divergent from the stem) or we generate ¢ brand new
vertices. Clearly, after O(y/n) spawning operations, no new vertices can be included, and the
¢-branch must intersect the existing tree.

A more intricate use of the same technique shows that we can generate a tree of depth
O(loga n) with the same properties, and hence show the existence of an O(loga n) length T-
path.

Theorem 1 Let G be a partially A-colored nice graph with one pebbled vertex, and let G be
A-regular within radius 3¢, where £ = Tlogya_4n+ 11. Then, G has a T-path of length at most
3¢.

ProOF. We show how to generate a tree of depth O(loga n) which covers all the vertices of
G, unless a T-path of length O(logp n) was found. We want to generate a sequence of trees
{Ty: k=0,1,2,...} all rooted at vo; Tx41 is generated from Tk by simultaneous applications
of Corollary 1. The idea is that if P = vg,v1,...,v, is a stem and if P’ is a bichromatic path
spawning off from v; in P, then P” = vg,...,v; @ P’ is a new stem. The new stem can be used
to generate more stems, and so on.

A first stem P of length 4 can be generated by Lemma 4. From P we generate a bichromatic
path P! = wo,w; ... w7 of length 7 where wo € P, and subdivide it into two blocks B; and

B,, where By = wy,wz, w3, wq and By = wy, ws, we, wr. Call By and Bz adjacent. Note that

10

Figure 6: New bichromatic paths are divergent from the old tree

P’ = wg,w; ® By @ By. The stem P with the 7-branch P’ attached to it, forms the first tree 7.
Each block B; has two internal points from which new paths can be spawned off. These points
are wp and w3 for By and ws and we for B;. From Corollary 1, we can use each B; to generate
A — 2 new bichromatic paths of length 7. Each of these is subdivided again into two blocks and
each block is used to spawn off A —2 new paths of length 7, and so on. In this way, we generate
a sequence of trees Ty rooted at vg. Tk41 is obtained from T by simultaneously spawning off
the new length 7 paths from all the unused blocks B in Tj. Assuming that the depth of T} is at
most £ = 7logya_g n + 11, we will show that the depth of Tk4; is at most £. We want to argue
that Tk4q is a tree, that is that the new paths do not intersect each other and do not intersect
the branches of the old tree Ty, or else we can find a T-path of length at most 3.

Let B be an unused block of Tk, ¢ and y be its internal points with x(z) = o # 8 = x(¥),
and P be the stem B belongs to. Some of the new A — 2 paths might originate from z and
some from y; an internal point which is the origin of a new path is called a turning point. Let
P’ be one of the new paths, and let ¢ be its turning point; by Lemma 3, P’ and the stem P are
divergent, or there is a T-path of length at most 3¢. Also, P’ cannot intersect other branches of
T or there is a detour to t and hence a T-path of length at most £ + 7 (see Figure 6).

Now, consider an (a,v;)-path P, and an (a,7;)-path Py ,; originating from, say, vertex z.
If they meet, then they must meet at some vertex colored a, which cannot be the last vertex
of Py n; o Py, since both of these last vertices are at a distance of 7, an odd number, from
z along their respective paths, and hence will be colored v; and v; respectively. Hence, if Py
and P, ,; meet, they do so at an internal vertex of each of these paths, and hence we find a
T-path of length at most £+ 7 (see Figure 7). An (a,7;)-path originating at z and a (3,7;)-path
originating at y cannot intersect because {a,7:} N {B,7;} = 0. New paths from different blocks
cannot intersect, or else there is a path between two turning points t; and t;. In turn, this gives
a detour between the least common ancestor of ¢t; and t; (which is a vertex of T) and either ¢,
and t3. So, Tk is indeed a tree. If we collapse each pair of adjacent used blocks in Tk4; into

11

one vertex, we obtain a tree where every collapsed vertex has degree at least 2A — 4 but for the
unused blocks and the initial stem, and whose depth is reduced by at most a factor of 7; hence,
the depth of Tk4; is at most £.

The process we have described has the property that when Ty, is generated from T}, either
a T-path is found or the branches that we spawn off only include new vertices. Clearly, after at
most ¢ iterations (i.e., when we generate T¢41 from T¢) the new branches must intersect the old
tree because the whole graph is covered. a

Figure 7: Bichromatic paths cannot meet

Note that for A > 3, 7Tlogoa_4n + 11 = O(loga n). Theorem 1 and Lemma 1 ensure that a
short augmenting path can always be found. There is either a sanctuary at a distance of at most
3¢ = 21log,p_4 n + 33 from the pebble, or a T-path of at most that length. It can be verified
that both Lemma 1 and Theorem 1 can be implemented in O(log, n) time in the distributed
model of computation, and with linearly many processors in the PRAM model.

Finally, an Q(loga n) radius search is necessary in general, to remove a pebble. Consider a
rooted tree T in which every non-leaf node has degree A, and a partial A-coloring of T' such
that there is a pebble at the root, and for any non-leaf node v, the colors of v’s children are all
distinct. The color of at least one leaf of T must be changed to give the root a legal color, since

at least one child of v must be recolored, to recolor any non-leaf node v.

4 Algorithms for A-coloring

In this section, we show how the small radius search can be applied to the design of efficient
distributed and parallel algorithms for computing A-colorings. The algorithms are based on a
reduction from A—coloring to (A + 1)-coloring which can be implemented distributively by an
O(log® n/ log A) expected time randomized algorithm or by an O(Alog® n/log A) time determin-

12

X OQT

8 r

Figure 8: Steps must be scheduled

istic algorithm. These yield, respectively, randomized and deterministic distributed algorithms

for A-coloring with the same complexity bounds.

4.1 The Randomized Reduction

We now describe a randomized distributed algorithm for A-coloring that runs in O(log® n/log A)
expected time. The idea is to first compute a (A + 1)-coloring, which can be thought of as a
partial A—coloring, and then to remove a color class.

An outline of the algorithm is as follows. Let G = (V, E) be the network. First, compute a
(A 4 1)—coloring with colors 1,2,...,A, L and pebble all vertices with color L. Then, compute
a (k,klogn)-ruling forest F with respect to G and the set P of pebbled vertices, where k =
clogn/log A is more than twice the search radius required by Theorem 1; this can be achieved
by an appropriate choice of c¢. Recall that the root of each tree in the forest is pebbled, and that
each pebbled vertex belongs to a unique tree in the forest. If we are able to remove all non-root
pebbles, then we can apply Theorem 1 in parallel on the roots, and by our choice of ¢, each root
will either find its own T-path or its own sanctuary, without interfering with the other roots,
and will remove the pebble.

The problem, then, is to remove all non-root pebbles. This can be achieved by making use of
a randomized process described below, which uses a slight modification of an idea of Luby [12].
The idea behind the reduction is to make all pebbles walk to the root along the path specified
by the tree; the pebbles are either removed along the way if a spare color is found, or are
eventually “absorbed” by the root, which is itself a pebble. Each walk, however, is a recoloring
operation and we must ensure that in doing several of them in parallel, we always have legal
partial colorings of the graph. A symmetry-breaking problem arises when we have adjacent
pebbles; moving pebbles in parallel might result in an inconsistent coloring (see Figure 8).

We now describe the randomized process which allows us to remove all non-root pebbles.
Each vertex in G has a list A, of available colors: A4, = {1,...,A} — x(N(v)), for all v. We
denote the current color of v by x(v) and the new color after one step by x'(v). In parallel, each

pebbled vertex v does the following:

Randomized Reduction.
If no neighbor of v is pebbled, then the pebble is removed if A, is nonempty, and the

13

pebble makes a step to v’s parent if A, is empty. If v has some pebbled neighbor,
we say that v is asleep. With probability 1/2, v remains asleep and does nothing,
i.e., X'(v) = x(v) =L. With probability 1/2 it wakes up, in which case v chooses a
tentative color a uniformly at random from A,; if a is also chosen by some neighbor
of v then x/(v) = x(v) =1, else X'(v) = a and the pebble is removed.

First, we show that by executing the randomized reduction we never produce an inconsistent
partial coloring; second, we prove that the expected running time to remove all non-root pebbles

is polylogarithmic and in fact, that it is polylogarithmic with high probability.

Lemma 5 Let G be a partially colored nice graph, and let P denote the set of pebbled vertices.
Let P' be the set of pebbled vertices after one step of the randomized reduction. Then, G — P’ is
A-colored legally.

ProoF. The claim follows from inspecting the randomized reduction. If a pebble has no
neighboring pebbles then it is removed if there is a spare color, or it makes a step, if there is
no spare color. In both cases the new partial coloring is legal. For the case when there are
neighboring pebbles let v denote the pebbled vertex. A tentative color is assigned as the new
color to v only if the same tentative color was not chosen by any neighboring pebble. The
correctness then follows from the observation that non-pebbled neighbors can be pebbled but

cannot change their color. a

The next lemma shows that all non-root pebbles are removed within O(log®n/logA) time
with high probability: the failure probability is inverse polynomial. With essentially the same
proof it is possible to show that the running time is O(f(n)log® n/log A) with probability at
least 1 — 2~ %(/(n)),

Lemma 6 Let G be a partially colored nice graph with n vertices, P be the set of pebbled vertices,
and F be a (k,klogn)-ruling forest with respect to G and P, where k is any positive integer.
Then, if we run the randomized reduction, every non-root pebble is removed within O(klog®n)

time with probability at least 1 — 1/q(n), for any polynomial q(-).

PrOOF. We want to set up the necessary machinery to invoke a theorem by Karp that
will give us the claim [9]. First, we argue intuitively that if v € P has some pebbled neighbor,
then it is removed with probability at least 1/4; a formal proof can be easily derived and can
be found in [12]. Let B = N(v) N P be the set of pebbled neighbors of v, and let W C B be
the set of pebbled neighbors of v in B that wake up. Since every pebbled vertex wakes up with
probability 1/2, the expected size of W is E[|W|] = | B|/2. Every u € W chooses a tentative
color uniformly at random from its list A,. In the worst possible scenario, all vertices of W will
choose a color which is also in A,. But since |A,| > |B| = 2E[|W|], the probability that v
chooses a tentative color not chosen by any u € W is at least 1/2. The claim follows from the
fact that v wakes up with probability 1/2.

We can summarize the algorithm by saying that when v is pebbled, the pebble makes a step
to the parent of v if there are no neighboring pebbles and there is no spare color, it is removed if

14

there are no neighboring pebbles and there is a spare color, and it is removed with probability at
least 1/4 if there are neighboring pebbles. For the sake of the analysis, we modify the algorithm
as follows: if v has no neighboring pebbles and there is no spare color, the pebble makes a step
with probability p = 1/4, otherwise it is removed with probability p = 1/4. Given ¢ pebbles,
we want to study the random variable T(£), which denotes the time by which every pebble has
either made a step or been removed. Clearly, an upper bound for 7'(-) with the new algorithm
is also an upper bound for T(-) with the old one.

Let h(£) be the random variable denoting the number of pebbles that after one step are
neither removed nor have made a step, then E[h(£)] = (1 — p)¢. Then, T(1) = 1 and T(¢)

satisfies the following recurrence
T(¢) =1+ T(h(£)).

Let b = (1 —p)~' = 4/3 and u(n) = |logyn] + 1; u(n) is the minimal integer solution to the

recurrence
U(n) = 1+ U(E[h(n)]) = 1+ U((1 - p)n).
Then by Theorem 3 of Karp [9], we see that for any d > 1,
Pr(T(n) > u(n) + d) < p?~1.

This probability is inverse polynomial when d = O(logn). Also note that this upper bound
on the probability applies to any configuration of the pebbles. Hence, T'(n)klogn is an upper
bound on the time by which every pebble is removed, because a pebble can walk at most klogn
steps before being absorbed by the root pebble; so the total time taken is O(klog? n), with high
probability. O

We summarize the whole algorithm now.

¢ Compute a (A + 1)-coloring of G with colors 1,2,...,A, L. This can be done in O(logn)
expected time distributively using a randomized algorithm of Luby [12].

e Pebble all the vertices with color L, and let P be the set of pebbled vertices. Compute
a (k, klog n)-ruling forest F with respect to G and P, where k = clog, n for a suitable
constant ¢. This takes O(klogn) = O(log? n/log A) time using an algorithm of Awerbuch,
Goldberg, Luby & Plotkin [1].

e Run the randomized reduction. At the end all non-root pebbles are removed. This takes
O(log®n/log A) time with high probability.

o Apply the small radius search on the roots in parallel. Each pebble will either find its
T-path or its sanctuary, and will be removed. This takes O(logn/log A) time.

The overall complexity is dominated by step 3. The correctness of the algorithm follows
from Lemma 5, which proves the correctness of step 3, and by the correctness of the small
radius search, which ensures that step 4 is correct. This yields the following theorem.

15

Theorem 2 IfG is a nice graph, then it can be A-colored in the distributed model in O(log®n/log A)
ezpected time.

4.2 Deterministic Distributed A—coloring

In this section, we give a deterministic distributed A-coloring algorithm of complexity O(A log> n/log A),
so that when A is bounded by a polylogarithmic function of n, the complexity is polylogarithmic.

In the previous algorithm, randomness was used in two places; to compute a (A + 1)—coloring
and for the randomized reduction. The basic idea is that we can substitute the randomized
procedure of Luby by an O(Alogn) time distributed algorithm for (A + 1)-coloring, due to
Goldberg, Plotkin & Shannon [5].

To remove all non-root pebbles we use the fact that the graph induced by P, the set of
pebbled vertices at any given time, is itself (A + 1)-colorable in O(Alogn) time. The coloring
is used to schedule the motion of the pebbles, using the fact that pebbles in a color class can
safely take decisions simultaneously. (Recall that a color class is an independent set.) We
first give the algorithm to remove all non-root pebbles— the deterministic reduction, and then
prove its correctness. As in the previous section, prior to invoking the reduction we compute a
(k, klog n)-ruling forest, where k = clogn/log A for an appropriate value of c.

Deterministic Reduction.

Repeat klog n times (the maximum tree depth):

1. Let G[P] be the subgraph induced by the set of pebbles P. Compute a (A+1)-coloring
of G[P] and let Cy,..,Ca+1 be the color classes.

2. Sequentially, for i = 1,2,...,A+1 do the following: in parallel, each non-root pebbled
vertex v € C; checks if | x(N(v))] < A. If so, a spare color is chosen and the pebble

is removed.

3. Let Q be the set of remaining non-root pebbles; in parallel, for each pebbled vertex
v € Q, if |[x(N(v))] < A then color v with a spare color and remove the pebble, else
the pebble makes a step to v’s parent.

In order to prove the correctness of this algorithm it is enough to show that each of the klogn
many iterations transforms a legal partial coloring into a new legal partial coloring. Notice that
the coloring of step (1) is used only to schedule the operations of the pebbles and should not
be confused with the partial coloring of G. Step (2) gives a legal partial coloring because each
color class C; is an independent set; if v € C; none of its neighbors will change its color, and v
can safely color itself if a spare color is available. To prove the correctness of step (3) we first
prove that Q is an independent set. Suppose not, and let u and v be two adjacent pebbles in Q.
Without loss of generality suppose that u € C; and v € Ci4, where k > 0. But since u had an
uncolored neighbor when it was processed, namely v, it could have colored itself then. Hence
Q is an independent set. A pebbled vertex v in step (3) either performs a step or colors itself;
since Q is an independent set, for all u € N(v), either u does not change its color or it becomes
pebbled (i.e. some pebble made a step to u). In either case the color assigned to v is legal.

16

We now argue that all non-root pebbles are removed by the end of the algorithm. Consider

any pebbled vertex v; for each of the klogn = O(log? n/log A) iterations, either the pebble is
removed or it makes a step towards the root, which decreases the distance of the pebble from the
root by one. Each iteration takes O(Alogn) steps (which is the complexity of Step 1), which
gives a total of O(Alog® n/log A) time to remove all non-root pebbles. The whole algorithm is

summarized as follows.

e Deterministically compute a (A + 1)—coloring with colors 1,2,...,A, L in O(Alog n) time
by using an algorithm of Goldberg, Plotkin & Shannon [5]. Pebble all vertices with color
1.

o Compute a (k,klogn)-ruling forest with respect to G and the set of pebbles, where k =
O(logn/log A). This takes O(klogn) time [1].

¢ Compute the deterministic reduction to remove all non-root pebbles. This takes O(Ak log?n) =
O(Alog® n/log A) time.

e Apply the small radius search to all pebbled roots in parallel. Every pebble will either
find its own T-path or its own sanctuary, and will be removed. This takes O(log, n) time.

The complexity of this algorithm is dominated by that of the deterministic reduction. Hence,

Theorem 3 If G is a nice graph, it can be A-colored deterministically in the distributed model

of computation in O(Alogn/log A) time.

5 Further Applications of the Small Neighborhood Search

In this section, we discuss briefly some other consequences of the small radius search. First, we

show how the randomized algorithm of Section 4.1 can be derandomized in NC with linearly

many processors. Second, we discuss a deterministic O(n€(M) time algorithm for A-coloring in
the distributed model, where ¢(n) = O(1/+/logn).

5.1 A linear processor NC algorithm

The randomized algorithm for A—coloring can be implemented and derandomized in the PRAM

model using linearly many processors by making use of the standard techniques discussed in [12].

To our knowledge, this is the first linear processor NC algorithm for A—coloring; the existing

algorithms seem to require superlinear processors [6, 7, 8].

The distributed randomized algorithm of section 4.1 has four steps. We now describe how

each of them can be implemented in the PRAM model.

Step 1 is the (A + 1)-coloring algorithm of Luby and can be derandomized with linearly

many processors [12].

To implement Step 2, computing a ruling forest, and Step 4, performing the small radius

search, it is sufficient to simulate the message passing distributed model in NC. This can

be easily done by introducing a processor for each edge and by noticing that the operations

17

performed at each node only require O(1) time. Both these steps essentially require performing
BFS searches for O(log? n/log A) and O(logn/log A) depth respectively.

To implement the randomized reduction we consider the following modification of Step 3.
Let G be a partially A-colored graph with a set of pebbles P. We run (the derandomized NC
version of) Luby’s (A + 1)-coloring algorithm on G, which induces a (A + 1)-coloring of the
pebbles with colors 1,...,A, L. Let C be the pebbles that got color L; all pebbles in P — C.
have a legal color and C is an independent set and hence, all pebbles in C, can make a step
to the root.

Notice that here, unlike the distributed implementation, we first run the coloring algorithm
and then all pebbles in C; make a step. This requires a kind of synchronization and global
knowledge that is easily available in NC but not in the distributed model.

Each run of the (A + 1)-coloring algorithm requires O(log® nloglogn) time [12] and we can
have at most O(log? n/ log A) runs before all non-root pebbles in the ruling forest (whose trees
have depth O(log? n/logA)) are removed. Paths and even cycles can be easily colored in NC
in O(logn) time; hence, we can state the following theorem.

Theorem 4 A graph G can be A-colored in the PRAM model of computation with linearly
many processors in O(log® nloglogn/log A) time if and only if G is neither a clique nor an odd

cycle.

5.2 A Sublinear Time Distributed Algorithm

Problems like MIS and (A + 1)-coloring can be solved in O(d(n)-c(n)) time distributively, given
a (d(n), c(n))-decomposition of G. The generic algorithm for such problems, given a network
decomposition, will iterate through the color classes, clusters of color 1 being “processed” first
in parallel, clusters of color 2 being processed next, and so on. Inside each cluster the following
trivial algorithm can be used: the maximum ID vertex within the cluster is elected as leader,
which then collects information about all vertices in the cluster, solves the problem by itself, and
then distributes the solution to all vertices in the cluster. The bounds on the cluster diameter
and the number of colors used, yield the bound on the time complexity of this generic algorithm.

It is known how to compute an (n¢("), n¢(")).decomposition distributively in O(n¢(™) time
where €(n) = O(1/y/Iogn) [13]. Such a decomposition can be used to give a deterministic and
distributed implementation of Step 1 and Step 3 of our A—coloring algorithm.

Step 1, computing a (A+1)-coloring, can be implemented with the generic algorithm outlined
above: cycle through the color classes, and when processing color class c, extend the partial
(A + 1)-coloring to all clusters of color ¢. The extension to the coloring in each cluster of color
¢ can be computed by the leader of the cluster by means of global communication inside the
cluster, with the time complexity being proportional to the diameter of the cluster. Since both
the number of colors and cluster diameter are O(n<(™), the total cost of this implementation is
O(n<(™),

A naive implementation of the reduction of Step 3 is as follows. Let t(n) = O(log?n/log A)
be the maximum tree depth of the ruling forest, d(n) = O(n€(™) be an upper bound on the
diameter of each cluster of the network decomposition, and let ¢(n) = O(n<(")) be the number of

18

colors used in the network decomposition. Then, for i = 1,2,...,¢(n) and for ¢ = 1,2,...,¢(n)
do the following: each leader in clusters of color ¢ schedules the motion of the pebbles inside
the cluster until they are either removed or step outside the boundary of the cluster. Inside
each cluster the trivial algorithm outlined above is used. This takes O(t(n)c(n)d(n)) = O(n<(™)
time, where ¢(n) = O(1/+/Iogn).

The main observation is that each time a cluster is activated, each pebble in the cluster is
either removed or makes at least one step. So, it is sufficient to activate each cluster ¢(n) times
to remove all non-root pebbles.

The correctness of the implementations of Step 1 and Step 3 follows from the fact that a
node in a cluster C cannot be adjacent to a node in a cluster C’ whose color is the same as that
of C. Step 4 of the algorithm can be implemented with a BFS of depth O(log n/log A) at most.
The following theorem summarizes the whole discussion.

Theorem 5 A nice graph G is A—-colorable in O(n*() time in the distributed model of compu-

tation, where €(n) = O(1//logn).

6 Lower Bounds for some Distributed Coloring Problems

In this section, we prove an Q(diameter(G)) lower bound for edge coloring bipartite graphs
optimally (i.e. with A colors) in the distributed model of computation, and then show that
the same lower bound applies even when the processors are allowed randomness. When A = 2,
coloring the edges is the same as coloring the vertices. Linial has proved lower-bounds for

computing various types of vertex colorings distributively, using different techniques [11]

6.1 Deterministic Coloring of Paths

We first analyze the simpler case of coloring paths and then we will deal with general bipartite
graphs. In this case, two—coloring the edges is the same as two—coloring the vertices. We will

describe our lower-bounds in terms of vertex coloring.

Theorem 6 Let t(n) = o(n), and G be a connected graph with A = 2. Then, there is no
distributed protocol that computes a two—coloring of the vertices of G in O({(n)) time.

PRrROOF. We consider the case where G is a path; the proof is similar if G is an even cycle.
The motivation for this result is that two—coloring a path amounts to computing the parity of
a given vertex.

Let s(i,t) be the state of vertex i (i is the ID of the vertex) at time . From the definition
of our computation model, it follows that for any path-coloring protocol,

s(i,t) = f(t,i,iL,iR,s(i,t— 1),s(iL,t - 1),s(ip,t — 1)),

where iy and ig are the ID’s of the neighbors of i. Also, s(3,0) is the same for all vertices
i. The above equation implies that if d(i,7) is the distance between two vertices i and j, any

information starting from i needs d(i, j) steps to reach j. This observation is the basis for the

19

proof. Let t = t(n) be the worst—case complexity of a protocol P for two-coloring paths, and
assume that ¢(n) = o(n). Consider a path A : v1,.., V2t .., Viety .y Vi, . Vige, . Un—1, Un; NOtice that
v; is surrounded by a neighborhood of radius t and it is at least 3t+1 far away from v;. Consider
now the path where v, is inserted somewhere between vy; and v;_; this changes the parity of
the path, i.e. the coloring of v; and v; in A must be different from that in B, when the protocol
P is used. But from the state transition function it follows that

SA(isk) = SB(ivk) A SA(”U],k) = SB(vlak)’ 0 S k S t,

where the subscripts A and B denote the paths A and B. In other words, for any sublinear ¢(n),
the states of v; and v; in A and B will be exactly the same and hence they will receive the same

colors in both cases, contradicting the presumed correctness of P. a

6.2 Optimal Edge Coloring of Bipartite Graphs

In this subsection, we prove the same lower bound of Q(diameter(G)) for edge coloring general
bipartite graphs optimally, i.e., with A colors. The idea of the proof is the same as before; if a
protocol is constrained to finish within ¢ steps, then a vertex cannot “tell the difference” between
two situations where the topology of the network is the same in a neighborhood of radius ¢, but
not outside this neighborhood.

Theorem 7 For any A > 2, there is no subdiametric time deterministic protocol for edge

coloring an arbitrary graph of mazimum degree A with A colors, in the distributed model.

ProOOF. The proof is by contradiction. Our graph G will be made by linking together in a
chain-like manner certain subgraphs. Each subgraph is defined as follows. Consider a complete
bipartite graph Ka—_1,a—1 and let by,..,ba_1 be the vertices on one side of the bipartition and
¢1,..,ca—1 the other side. Connect all of the b;’s to a vertex a and all of the ¢;’s to another
vertex d. Finally, connect d to another vertex e. Such a graph will be called a A-widget. A
5-widget is shown in figure 9.

The widget is such that it forces a color on edge (d,e), as follows. Recall that since a A-
widget is a degree A bipartite graph, it has a A-edge coloring. Without loss of generality,
suppose we use colors 1,..,A — 1 for the edges incident on vertex a. This implies that if we
consider the remaining edges incident on any b;, then exactly one of them must use color A,
which means that each ¢; has exactly one edge (c;,b;) colored A. In turn, this means that none
of the edges incident on vertex d can use color A and this forces to color the color A on edge
(d,e).

If we connect A-widgets in a chain-like manner so that the e vertex of one widget coincides
with the a vertex of the next widget, we are going to have a degree A bipartite graph.

We are now ready to prove our claim. Suppose there is a protocol P to A-edge color
bipartite networks with n vertices and with maximum degree A, with subdiametric worst—case
time t = t(n,A). Consider a chain A with at least 3¢ + 3 A-widgets. Let W; be the ith-widget
starting from the left, and let a;, b;j, cij, d; be its vertices. Without loss of generality, assume

20

3
<

{4>.//

Figure 9: A 5-widget

that all edges (d;, a;4+1) are colored with color A. We now modify the chain A by removing any
vertex v from the last widget Wa;43 from the left and inserting v between d; and a;41; we have
the two new edges (d;,v) and (v,as4+1). Let this be chain B. Clearly, the insertion of v implies
that color A cannot be used on both edges incident on v; this implies that the coloring of the two
subchains at the left and right side of v must be different. However, if we consider widgets W,
and W49, they will behave exactly the same as they did in chain A since they are at distance
greater than ¢ from v and from W43, and this will cause a conflict of colors somewhere in the

chain. O

6.3 Randomized Coloring

We now prove that the same Q(diam(G)) lower bound applies when the processors are allowed
to use random bits. At each step of the protocol, each processor can flip a fair coin independently
any number of times; this is equivalent to assuming that each processor is given all of its random
bits at the beginning of the protocol. There are two types of randomized protocols: Monte Carlo
and Las Vegas. The definition of acceptance for a Monte Carlo protocol is that the protocol
should find a A—edge coloring in any degree A bipartite graph with probability at least 1/2. On
the other hand, a Las Vegas protocol always computes the correct answer, but its running time

is a random variable.

Theorem 8 There is no Monte Carlo distributed protocol that finds a two-coloring of a path

with n vertices in worst-case time o(n).

21

Figure 10: A chain of widgets

PROOF. We use the same strategy as for the previous proof. Assume that there is a protocol
P which violates the assumptions of the theorem; given a path A where P is supposed to work,
construct a new path B by changing the parity of two vertices. If we take these two vertices far
enough they will behave in the same way in both chains, and the resulting coloring in B will be
invalid.

Let A be a path such that n/4 > 2t (where ¢t = o(n) is the worst—case time complexity of
P), and let us subdivide it into 4 parts of equal length:

Ay Az As Ay
A= mv(n/4)+;"v2n/;v(2n/4)+:"'v3n/4‘v(3n/4;:i—1"'vn"

Let the parts be A;, Az, A3, and A4. Let b be the number of random bits assigned to each
processor. Given the random assignments to the processors (b bits to each of the n processors)
we form a string of length bn by concatenating the assignments; we call this a string assignment.
Since the protocol works on A with probability at least 1/2, there must be at least 2bn—1
string assignments that find a right coloring; let S be this set of string assignments. Consider
Hy = Ay U Az and Hy = A3 U Ag. Let Sy = {a; 0a3 € {0,1}*"/?| 3z,y € {0,1}*"/* Is €
S s=aozoazoy} and let n; = |S1|. Similarly, let S = {azoay € {0,132 | 3z,y €
{0,1}**/4 35 € § s = z 0 az 0 y o aq} and ny = S. Without loss of generality, suppose ny 2 ny;
since | S| < | Sy x Sz, nyng > 20771, It follows that

bn—1

ng>2z .

Let us now construct a new path B by removing vy, the last vertex of A4, and inserting it
in the middle of A;. We now claim that the probability that in B the vertices in H; compute

22

exactly the same colors for themselves as they compute in A is at least 1/1/2. This would give
us the claim.

Notice that since v, is at distance greater than ¢ from the vertices in H;, the vertices in H;
will compute an invalid coloring when given any sequence of random strings from $;, for any
assignment of random strings to Hy. This happens with probability

2 _2¥F 1
ey 2 o = 7
which is the desired probability. a

Theorem 9 There is no Las Vegas distributed protocol that finds a two-coloring of a path with

n vertices in ezpected time o(n).

PROOF. Assume that there is such a protocol P with expected running time at most T'(n) =
o(n). Given a path, run P on it for 2- T(n) steps; by Markov’s inequality, a valid two—coloring
would have been found with probability at least 1/2 in time 2-T(n) = o(n), violating Theorem 8.

a

Corollary 3 There is neither a Monte Carlo distributed protocol that finds a A-edge coloring of
an arbitrary degree A bipartite graph in subdiametric time, nor is there a Las Vegas distributed
protocol that finds a A-edge coloring of an arbitrary degree A bipartite graph in subdiametric
ezpected time.

ProoF. The same arguments as in Theorems 8 and 9 go through if we use the chain of
widgets of Theorem 7 instead of a path. a

Acknowledgments

Our sincere thanks go to Prof. David Shmoys, for his generous advice, support and suggestions.
Many thanks to Radhakrishnan Jagadeesan and Suresh Chari who formalized the lower bound
approach for us. We also thank Prof. Gianfranco Bilardi, Prasad Jayanti, David Pearson, Desh
Ranjan and Pankaj Rohatgi for valuable discussions, and Prof. C. R. Muthukrishnan for his
kind help during the summer of 1991.

References

[1] B. Awerbuch, A. V. Goldberg, M. Luby, and S. A. Plotkin. Network decomposition and
locality in distributed computation. In Proceedings of the IEEE Symposium on Foundations
of Computer Science, pages 364-369, 1989.

23

[2] B. Bollobds. Graph Theory. Springer Verlag, New York, 1979.

(3] R.L. Brooks. On colouring the nodes of a network. Proc. Cambridge Phil. Soc., 37:194-197,
1941.

[4] R. Cole and U. Vishkin. Deterministic coin tossing with applications to optimal parallel
list ranking. Information and Control, 70:32-53, 1986.

[5] A. V. Goldberg, S. A. Plotkin, and G. E. Shannon. Parallel symmetry-breaking in sparse
graphs. SIAM J. Disc. Math., 1:434-446, 1989.

(6] P. Hajnal and E. Szemerédi. Brooks coloring in parallel. SIAM J. Disc. Math, 3(1):74-80,
1990.

[7] M. Karchmer and J. Naor. A fast parallel algorithm to color a graph with A colors. Journal
of Algorithms, 9:83-91, 1988.

[8] H. J. Karloff. An NC algorithm for Brooks’ theorem. Theoretical Computer Science,
68(1):89-103, 1989.

[9] R. M. Karp. Probabilistic recurrence relations. In Proceedings of the ACM Symposium on
Theory of Computing, pages 190-197, 1991.

[10] G. F. Lev, N. Pippenger, and L. G. Valiant. A fast parallel algorithm for routing in
permutation networks. IEEE Transactions on Computers, 30:93-100, 1981.

[11] N. Linial. Locality in distributed graph algorithms. SIAM J. Comput., 21(1):193-201, 1992.

[12] M. Luby. Removing randomness in parallel computation without a processor penalty. In
Proceedings of the IEEE Symposium on Foundations of Computer Science, pages 162-173,
1988. To appear in a special issue of Journal of Computer and System Sciences, devoted
to FOCS 1988.

[13] A. Panconesi and A. Srinivasan. Improved distributed algorithms for coloring and network
decomposition problems. In Proceedings of the ACM Symposium on Theory of Computing,
pages 581-592, 1992.

24

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif

