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Abstract 

A series of small, hypothetical data sets of increasing complexity 

regarding characteristics such as numbers of observations and empty 

cells are being used to ascertain the precise nature of output values 

(which are often not labeled unequivocally) from computer routines de-

signed for analysis of variance of data having unequal numbers of ob-

servations in the cells. All possible analyses and calculations are 

known for the data sets and comparison with those of the computer out-

put values reveals what those values exactly are. The different com-

puting features of a variety of routines are easily identified by this 

means. 

Introduction 

Analysis of variance of data having unequal numbers of observations in the 

subclasses (hereafter called unbalanced data) is considerably more complicated 

than that of equal-subclass-numbers data (balanced data). Not only are the cal-

culations more extensive and complicated, with a variety of alternatives for 
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partitioning a total sum of squares, for example, but interpretation is also more 

difficult. In recent years the calculation problem has largely (but not entirely) 

been overcome: there are now numerous computer packages that will do most of the 

necessary arithmetic. But the difficulty of interpreting the analyses still re­

mains, and indeed it has become increasingly more evident (e.g., Speed et al. 

[1978]). Furthermore, insofar as computer packages are concerned,there is the 

prerequisite to interpreting calculation~of knowing exactly what calculations 

are represented by each individual computer output value. For example, in any 

particular package just exactly what is the sum of squares labeled "A" or "due 

to A"? With balanced data it can usually mean only one thing, but with unbalanced 

data it may mean one of several things, and its use can be and is different in 

different computer packages. Statisticians must therefore know not only what 

these different meanings might be, but also which of them occurs in each of the 

different computer packages that they use. Statisticians also need a vehicle for 

ascertaining from new programs what their output values are. 

Reading program documentation is one method of ascertaining exactly what a 

program's output is; but in the case of analyses of variance of unbalanced data 

it is usually a most unsatisfying method. To the extent that users read a docu­

mentation in anticipation of learning statistics from it, their dissatisfaction 

with documentation is quite reasonable; after all, a user of statistical computer 

packages is meant to know the underlying statistics and should be reading docu­

mentation to find out solely what it is that a package does. A documentation does 

not have to be a statistics manual. 

Regardless of documentation, there are at least two other methods for ascer­

taining precisely the mathematical description of computer output. One is to read 

program code - a quite impractical task for most people. The other is to use the 

routine on small, hypothetical data sets for which all possible analyses and 
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calculations are known exactly (preferably in rational fractions rather than 

decimals), or can be obtained with desk facilities. Comparing these known cal­

culations with computer output provides a basis for ascertaining what the computer 

output is. For example, in the analysis of rows-by-columns data (A by B), exactly 

what is the sum of squares in a computer output that is labeled "A"? Is it R(!J.,A), 

R(A!IJ.), R(A!IJ.,B), SSAw, or, under some circumstances is it R(AiiJ.,B,AB)?; i.e., is 

it the total sum of squares due to fitting a mean and rows, or that due to fitting 

rows adjusted for the mean, or due to fitting rows adjusted for the mean and 

columns, or that due to rows in the weighted squares of means analysis - or is it 

something else? Comparing known values of these possible interpretations with 

computer output reveals what that output is. 

A possible weakness of this comparative method is, of course, that it is 

based solely on numbers and so, arising from idiosyncracies of input values in 

the hypothetical data sets, one might be led to conclusions about the meaning of 

output values that do not hold true in general. Using a series of data sets 

guards against this possibility. 

Procedure 

This method of comparing computer output with pre-calculated analyses of 

benchmark data sets is being used in a project at the Biometrics Unit, Cornell 

University. It is based on seven data sets, each consisting of a small amount 

of hypothetical data which, of themselves, have no intrinsic value other than 

being a vehicle for ascertaining what calculations are being done by different 

computer routines designed for computing analyses of variance of unbalanced data. 

The seven data sets represent, in some approximate sense, data of increasing 

complexity regarding features such as numbers of observations, numbers of empty 

cells, interactions and covariates. Their general characteristics are shown in 

Table l. 
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Table l. Characteristics of seven sets of hypothetical data 
used for ascertaining what calculations are being 
done by computer routines designed for analyses of 
variance of unbalanced data. 

Set Characteristics 

Balanced data 

l 2-way crossed classification, 4 rows, 3 columns and 2 observations per cell. 

Unbalanced data, 2-way crossed classifications 

2 4 rows, 3 columns, 0 or l observation per cell, no interaction. 

3 2 rows, 3 columns, all cells filled. 

4 2 rows, 3 columns, one empty cell. 

5 3 rows, 4 columns, 4 empty cells. 

Covariance analysis, with l covariate 

6 l-way classification, 3 groups, with 3, 2 and 2 observations. 

7 2-way crossed classification, same layout as Data Set 5. 

Although the data sets of Table 1 are by no means an exhaustive array for 

their intended purpose, they have proven to be varied enough to illustrate and 

verify numerous computing procedures in the routines that have been used to date: 

BMDP2V, GENSTAT ANOVA, SAS GLM, SAS HARVEY and SPSS ANOVA. 

Results 

Certain features of these routines that are very apparent from this kind of 

study are now listed, using as illustration the analysis of a 2-way crossed 

classification. The model is taken as 

!J. + 0:. + ~. + y .. 
1. J l.J 

(l) 
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with i = 1, • • • , a, j = 1, b, and k = 1, · • ·, n .. for n .. > 0, and n .. = 0 
lJ lJ lJ 

for cells having no data. Customary dot and bar notation is used for totals and 

means; e. g., 

y. 
l· • 

b nij 
= L: 2: y . . k, 

j=l k=l lJ 
n. 

l• 

b 
= L: n .. , 

. l lJ J= 
y. 

l• • = y. /n. ' l• . 1.• 

and reductions in sums of squares are exemplified by 

and 

with 

R(!-L,a, t3, Y) 

b 
u :::o {y. - 2: n .. y . } 
- l•. . lJ • J• 

J=l 

a b 

= 2: 2: n. -~. ' 
i=l j=l lJ lJ• 

a 
= 2: n. ~ 

i=l l• l• • 
n .. ~ .. 

= u'Tu 

b 
and T = {o .. ,n. - 2: n .. n., ./n .l 

- ll l• . l lJ l J • j) 
J= 

for i, i' = 1, , a - l (e. g., Searle [1971, p. 297]); and 

SSA = sums of squares for the a-effects in the 
w 

weighted squares of means analysis. 

Full details of these notations are in Searle [1971, Chapters 7 and 8]. 

We also use expressions like 

and 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

introduced in Searle, Speed and Henderson [1979]. They are sums of squares for a 
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model (l) in which the elements are ~' a, ~ and y and satisfy what are often 

called the "usual" or L:-restrictions, namely 

a . 
r: ex. = o, 

i=l l 

b 
L: ~. = o, 

j=l J 

a . 
L:y .. =OVj 

i=l lJ 
and 

b . 
L: y .. = 0 Vi . 
. 1 lJ J= 

Suppose we have the normal equations for such a model~ the L:-restricted model: 

they yield the second terms in (6) and (7). From those equations delete ~ and 
. 

the ~-equation, and for the remaining equations calculate the inner product of 

the solution vector and the vector of right-hand-sides. The result is what we 

(8) 

call B*(a,~,Y)r; of (6); and R*(~,~,Y)r; of (7) is obtained similarly. The over­

head dots show that it is a restricted model, the L: indicates that it is the 

L:-restrictions being used, and the asterisk indicates they are being used through­

out all of the calculations- for otherwise R(a,~,Y) would, by definition, be 

identical to R(cx,~,y) and R(~,cx,~,y). Further details of (6) and (7) are avail-

able in Searle, Speed and Henderson [1979]. With this notation we are able to 

summarize some features of the five computer routines considered to date. 

l. In SPSS, the total main effects sum of squares is R(cx,~l~). Without option 

10, the succeeding items are R(cxf~,~) and R(~j~,cx), which do not sum to 

R(cx,~f~); with option 10, those items are a partitioning of R(cx,~l~), such as 

2. The SPSS Multiple Classification Analysis is based on a no-interaction model 

even if the input model being used contains interactions. "Unadjusted devi-

ations" are simply deviations of marginal means, e.g., y. - y , and the 
l• • • •• 

~ 

corresponding ETA-value is [R(aj~)/SSTm]2 • "Adjusted deviations" are simply 

solutions to normal equations based on the weighted L:-restrictions like 
~ 

L:n. a. = o. 
l• l 

The resulting BETA-values are values like (L:n.a~2/SST )2 , where 
l l m 

SST is the total sum of squares corrected for the mean. m 
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3. BMDP2V uses ~-restrictions, e.g., equation (8). 

4.. BMDP2V does not print a solution to the normal equations. 

5. BMDP2V calculates sums of squares of the nature illustrated in (6) and (7). 

This means that 

Sum of squares due to mean= ~(~!a,~,Y) r n ~ • . . . .. 

And for the case of all cells filled (i.e., every cell containing data) 

Sum of squares due to A 

Sum of squares due to B = I{*(~l~,&;i) = 

SSA · w , 

SSB 
w 

(9) 

(10) 

When there are empty cells in the data the second equalities in (9) and (10) 

do not hold. 

6. BMDP2V cannot handle interaction models when data have any empty cells. 

7. GENSTAT ANOVA is designed for balanced data and handles unbalanced data using 

"missing value" techniques; this requires the user to indicate which values 

in his data are "missing". 

8. SAS HARVEY uses ~-restrictions and yields many of the same sums of squares as 

does BMDP2V. But its calculation procedure is "indirect", using the "invert 

part of the inverse" rule for full rank models (see Searle [1971, p. 115] and 

Searle, Speed and Henderson [1979]). 

9. SAS HARVEY outputs numerous sums of squares and products, and correlations, 

based on the columns of the X-matrix in E(y) = Xb; for analysis of variance --
models these outputs are of no use. 

10. For unbalanced data and interaction models, SAS HARVEY will function only if 

there is at least one level of the A-factor and one level of the B-factor that 

has data in every cell; i.e., at least one row must have data in every column 

and one column must have data in every row. 
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11. SAS GLM, basing its calculations on a generalized inverse of the coefficient 

matrix of the normal equations for the unrestricted model (1), calculates four 

types of sums of squares and arbitrary forms of estimable functions that can 

be used to explain hypotheses corresponding to each. For each sum of squares, 

the estimable function has the form f = ~'b where ~· is a vector whose ele-........ 
ments are linear functions of r arbitrary values, for r being the degrees of 

freedom of the sum of squares; and the hypothesis that is tested by using the 

sum of squares as the numerator of an F-statistic is then H : f. = 0 for 
l 

i = 1, 2 ••• 
' ' 

r, where the individual f. are r linearly independent forms 
l 

of f obtained from using r sets of the r arbitrary values that are the basis 

of ~· in f = ~'b. 

The four types of sums of squares are as follows: 

Type 1: R(aj~), R(~j~,a), ···, for fitting factors sequentially. 

Type 2: R(al~,~), R(~l~,a), ···, for fitting each factor adjusted for all 

others (but not adjusted for interactions of other factors with, nor 

for factors nested within, the factor concerned). 

Type 3: Implicitly uses the ~-restrictions like (8), as does BMDP2V and SAS 

HARVEY. 

Type 4: Based on "contrasts" derived from non-unique, balanced subsets of 

filled cells of the data. 

Further details of this classification are available in Searle [1979]. 

12. SAS GLM output has a vector labeled "ESTDfATE" following the table of sums of 

0 squares. It is the solution to the normal equations X'Xb = X'y, correspond-.......... 
ing to the generalized inverse G of X'X that is used (customarily one that ........ 
corresponds to restrictions of setting certain individual effects to zero). 

Following the "ESTDfA.TE" vector is a vector labeled "T FOR HO PARAMETER = O". 
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This is a t-statistic, but its use is not always a test o:f H: parameter = 0; 

it is, only when there is no B :following the output ESTIMATE value. Otherwise 

it is a test o:f h!b = 0 where, :for the i'th element in the ESTIMATE vector h. 
-~ l 

is the i'th row o:f GX'X. An example, :for a no-interaction 2-way classi:fication 

0 model with :four a-e:f:fects is that corresponding to a 1 the t-statistic tests 

Availability o:f Annotated Output 

Output generated by processing the data sets o:f Table l through each computer 

routine has been extensively annotated with illustrations, comments and descrip-

tions that expand upon the preceding results. The resulting document :for each 

routine includes the data sets and their basic analyses, and is available as an 

Annotated Computer Output (ACO), in 8 X ll :format, :for the following routines: 

B.MDP2V, GENSTAT ANOVA, SAS GLM, SAS HARVEY, and SPSS ANOVA. The ACO' s are obtain-

able (~5 each) :from the Biometrics Unit, 339 Warren Hall, Cornell University, 

Ithaca, New York, 14853. 

The project is expected to continue, using other computer routines and up-

dated versions of routines as they appear. Only routines :for :fixed e:f:fects models 

have been considered to date, but those :for variance components estimation are 

likely to become part o:f the project also. Suggestions :for improvements and ex-

tensions to the project, and to the annotated outputs themselves, will be welcomed. 
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