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Chemical engineering in the electronics industry: progress
towards the rational design of organic semiconductor
heterojunctions
Paulette Clancy
We review the current status of heterojunction design for

combinations of organic semiconductor materials, given its

central role in affecting the device performance for electronic

devices and solar cell applications. We provide an emphasis on

recent progress towards the rational design of heterojunctions

that may lead to higher performance of charge separation and

mobility. We also play particular attention to the role played by

computational approaches and its potential to help define the

best choice of materials for solar cell development in the future.

We report the current status of the field with respect to such

goals.
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Introduction
Developments in electronic devices over the past 50 years

have revolutionized the way we conduct our daily lives,

including the use of organic electronics in cell phones,

display technologies and sensors, and ultra-fast processors

that have improved the speed of computers in ways

unimaginable a generation ago. For example, cell phone

subscriptions worldwide passed 5 billion customers in

2010. The electronics industry is a major contributor to

the global economy, valued at more than $300 billion in

2010 [1].

Chemical engineering in the semiconductor
industries
Chemical Engineers have played a strong role in the

development of semiconductor materials and processing.

Indeed, the American Institute of Chemical Engineers

reports that �15% of graduating BS chemical engineers

are employed in the electronics industries each year [2].
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This is typically the second or third highest percentage

destination behind chemicals (�25%), similar to fuels

(12–20%), and above foods and pharmaceutical employ-

ment. At the PhD level, employment of chemical engin-

eers by the electronics industry is around 20–30%, vying

for the most popular destination with chemicals. The

attraction of hiring chemical engineers in the electronics

industry is clear: Many fabrication processes and materials

design issues require a deep understanding of the under-

lying chemistry, physics and mathematics, and especially

of thermodynamic and kinetic processes coupled to

chemical reactions and reactor design that are the hall-

mark of a classically trained chemical engineer. Chemical

engineers are trained to understand and apply physical

and chemical concepts over extensive orders of magni-

tude in length-scale (and often time-scale). For example,

understanding the atomic-level (sub-nm) details of

charge absorption and separation, the multi-nanometer

concepts of phase segregation or charge diffusion, and

macroscopic (meter-scale) aspects concerning high-

throughput processes such as the roll-to-roll processing

of organic thin film devices.

The interplay between chemical engineering and nano-

technology/electronics is likely to strengthen in the years

ahead. For example, the focus of many modern chemical

engineering departments is increasingly at the molecular

scale; hence, nanotechnology and molecular-scale proces-

sing profitably draw upon the educational training of a

chemical engineer. The tradition of chemical engineers in

the energy industry is expanding beyond oil and gas

industries to new energy opportunities in solar energy,

batteries, biomass conversion, and photosynthetic-

inspired processes. This opens the door to an expanded

role for chemical engineers in green energy solutions.

Further, many molecular-level aspects concerning the

success of organic devices are beyond the capabilities

of current experimental techniques and require the assist-

ance of computational methods. Moreover, compu-

tational methods not only offer an enhanced analysis of

existing material systems, but also offer the exciting pro-

spect of ‘materials by design’ or computationally led

materials discovery, as will be discussed below. A recent

article points out that ‘computational modeling has long

served as a central component of the chemical engineering

toolkit’ [3] and predicts that ‘density functional theory and

Molecular Dynamics will one day do for chemical engin-

eering what finite element modeling did for mechanical

engineering.’ [3] Stapleton writes that computational
Current Opinion in Chemical Engineering 2012, 1:117–122
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engineering will ‘transform’ biochemical engineering in

the next 25 years. This can also be said for the role of

computational engineering on the field of electronics and

nanotechnology, and the development of green energy

technologies. In the future, chemical engineers are sure

to play a strong role, given their inherently systems-based

education, on life cycle analysis and issues of broader

concern in the renewable energy and sustainability

spheres.

Solar energy and the role of the heterojunction
We focus here on the role of organic semiconductors as

potential candidate materials for solar energy production

[4�,5]. Within this domain, we limit our discussion to the

heterojunction in solar cells. This (single or multiple)

interface between two dissimilar materials is the most

critical factor in determining the efficiency of charge

separation and transport, as explained below. Organic

semiconductors are ‘2nd generation’ photovoltaic (PV)

materials. They are a relatively new and not particularly

efficient choice for solar cells, with minimal market

share. In contrast, Si solar cell technology is well estab-

lished and current engineering work is mostly focused on

cost reduction. Contrasts between organic and inorganic

PV materials are well covered in the literature [6��]. The

efficiency of organic solar cell materials is approaching

the �10% value for power conversion efficiency that is

generally considered the economically viable threshold

for widespread deployment. While amorphous silicon

(�12–15%) and crystalline silicon (25–30%) remain ‘gold

standards’ for efficiency, approaching the ideal Shock-

ley–Queisser limit (�33%) for a single p–n junction [7],

the competitive ‘edge’ of all-organic and hybrid organic–
inorganic solar cells is their inexpensive cost, plentiful

raw materials, and opportunity to use solution proces-

sing. The key metric for the widespread deployment

solar cells is, however, not efficiency but cost per Watt. As

of the date of publication, this ‘levelized cost of elec-

tricity’ [8] for solar energy is in the neighborhood of

$0.75 W�1.
Figure 1

Common heterojunction designs. From left to right: Planar, ‘bulk’ and ordere

Rowell MW, McGehee MD: Mater Today 2007:10, 11, 28.
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When sunlight interacts with a suitable solar cell an

exciton (an excited electron–hole pair) is formed which

diffuses through the (absorber) material until it reaches a

heterojunction formed by the interface between two

dissimilar materials (akin to a p–n junction). This inter-

face is designed to attract electrons preferentially to one

material and holes to the other material. This charge

separation leads, ultimately, to the transport of electrons

and holes to different electrodes and produces an electric

current. If the energy of the exciton decays before it can

reach this heterojunction, the charges can recombine and

the absorbed energy is lost. There are other mechanisms

whereby the energy is lost, including recombination at

defects or at charge traps. In fact, the biggest loss mech-

anism is the loss of ‘excess energy’ of the photo-excited

carrier, that is, energy of the ‘hot’ electron above the

conduction band. This has inspired the development of

multi-junction cells, or multi-exciton cells. The exciton

diffusion length is short, typically only a few nm for

organic semiconductors. Thus, only excitons relatively

near the heterojunction can be expected to charge–sep-

arate and contribute to the generation of charge carriers.

The basic principles are well described by Nelson

[9��,10]. Many excellent and recent reviews exist

[11�,12�,13,14].

Much of the experimental focus for developing efficient

organic solar cells has centered on designing a hetero-

junction that maximizes charge separation; see Figure 1

for a schematic of interface designs. Planar organic inter-

faces, such as that in Figure 2, offer the advantage of ease

of creation and control over the morphology and distance

that excitons have to travel. Very thin films ensure that

excitons can diffuse to the interface before the charges in

the exciton recombine. While so-called ‘bulk’ interfaces,

featuring dispersed domains of different semiconducting

materials, ameliorate the charge recombination problem,

the random array of domains provides little control over

charge transport. Indeed, it is somewhat surprising that

organic PV devices work as well as they do, because the
Current Opinion in Chemical Engineering
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Figure 2
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Example of a planar heterojunction showing the abrupt interface

between C60 (top) and pentacene (bottom) as described by a snapshot

from a Molecular Dynamics simulation.
phase segregation into electron-transporting and hole-

transporting domains relies on the (fortuitous) formation

of bicontinuous structures. Further, efficient charge trans-

port assumes that a continuous path exists to the relevant

electrodes. The kinds of materials involved in solar cells

range from inorganic nanocrystals in p-conjugated poly-

mers (see, e.g. [15]) and nanocrystals in polymers [16], to

all-organic heterojunctions, such as modified (TIPs) pen-

tacene materials [17], blends of polyphenylvinylene

(PPV) and methano-fullerenes [18] and poly(3-hexylthio-

phene) (P3HT)-fullerene derivatives [19] and solid-state

dye-sensitized solar cells [20].

The lure of improved efficiency in charge transport and

greater control over the morphology has spurred consider-

able interest in developing an ordered set of heterojunc-

tions that could lead to ‘superhighways’ for electrons and

holes. Several promising families of candidate materials are

already under study. For instance, ‘covalent organic frame-

work’ materials offer advantages of ‘pipelining’ electrons

and holes in more rigid and more ordered structures with

(perhaps) less processing issues [21,22]. Closer to device

implementation, Koch and co-workers [23] have used

glancing angle deposition to create nanocolumns of inter-

penetrating morphology. This design gives rise to encoura-

gingly high efficiencies. McGehee et al. have also provided

processing routes to ordered organic PV materials in inno-

vative intercalated structures [24,25].
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There is a critical need for computational methods to help

solve the challenge of their optimal design. The hetero-

junction is buried within the device and inaccessible to

most experimental tools. This defines a unique opportu-

nity for computationally led discoveries, both for better

fundamental understanding of the underlying charge

transfer processes, and for the prediction of novel

materials with better characteristics.

The role for theory: Rational design of
heterojunction components
The early history of material choices for all-organic solar

cells was largely a matter of trial and error, given the

almost limitless palette of possible molecules. The focus

for p-type materials was originally centered on the acenes

[26], particularly pentacene, whose solar cell efficiencies

were in the 1–2% range, close to amorphous silicon.

Thiophenes and thiophene derivatives have attracted

attention [27], including now a far larger palette of per-

ylenes, rubrene and more exotic examples [28,29]. Selec-

tion of an n-type material started with C60, whose electron

mobility is close to silicon. The field moved its attention

to the solution-processable PCBM (6,6-phenyl-C61-buty-

ric acid methyl ester) and its derivatives [30]. More

recently, other nonfullerene molecules, such as parylenes

and perylene diimide thin films have dramatically

improved electron mobilities to around 1–3 cm2/(V s)

[31]. In the past few years, there has been a move towards

a more rational design of heterojunction materials. This

requires that we understand the interaction (and packing)

between donor and acceptor molecules and the chemical

design of these molecules that ultimately determines

both intermolecular interactions and packing. We will

explore progress towards rational design of these

materials in the remainder of this paper.

Charge transport in organic semiconductors is widely

represented as occurring through charges ‘hopping’ from

one molecule to another. Band-bending and other con-

cepts from conventional semiconductors have only lim-

ited applicability here. Theories exist to capture this

hopping mechanism for charge transport [11�,32,33],

but the estimation of charge mobilities remains limited

by the need to find values for the relevant molecular

parameters. Charge carrier diffusion is coupled to

vibrations in the lattice (both intermolecular and intra-

molecular). Researchers have interpreted these coupling

constants as arising from local electron-vibration site

energies, or reorganization energies in Marcus–Hush

(electron-transfer) theory [34], and nonlocal electron-

vibration coupling, the dependence of so-called ‘transfer

integrals’ on the relative orientations of neighboring

molecules and their separation. The need to achieve

favorable intermolecular orientations for charge transfer

leads to a desire for increased order in the material [35�].
A ‘tutorial review’ by Troisi [11�] describes how this small

polaron theory interpretation of charge transport in
Current Opinion in Chemical Engineering 2012, 1:117–122
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molecular crystals has been revised in the light of recent

experimental studies which show that band-like transport

is possible in highly purified and carefully created samples

that were designed to minimize defect concentrations. No

temperature exists at which these ultra-pure materials

show a ‘hopping’ transport. Troisi concedes that the

language of small polaron transport is so ingrained in our

interpretation of studies of small organic semiconductors

that discussion of hopping transport is likely to continue

long after its applicability has been refined. These results

also call to the fore the potentially significant role of defects

and grain boundaries to create charge trap states, and the

lack of understanding of charge states at heterojunctions.

The link between order at the heterojunction and charge

mobility is still largely unknown. Verlaak et al. [36] note:

‘. . . exact details of the energetic landscape near an organic

semiconductor hetero-interface, and its implications for

the dynamics of charge dissociation and recombination,

remain largely unexplored.’

Computational studies have provided considerable

insight to help remediate this situation. There is some

convergence towards a strategy for a computational route

between modeling a material and predicting its more

macroscale mobility: This invariably involves a sequence

of computational methods that cover multiple scales from

the quantum scale to mesoscale (or macroscale). A typical

approach is to use Density Functional Theory (DFT) or

other quantum chemical approaches, often in conjunction

with Molecular Dynamics (MD), to obtain a geometry

optimization of representative motifs of the system, fol-

lowed by a calculation of transfer integrals and reorgani-

zation energies and, finally, a Kinetic Monte Carlo (KMC)

simulation using this library of energies as the input

parameters [37–40]. Poole–Frenkel plots (mobility versus

field strength) have shown that energetic disorder can

reduce the mobility by many (at least six) orders of

magnitude! [38] This computational protocol is often

undertaken in conjunction with Wide Angle X-ray Scat-

tering (WAXS) and/or NMR experimentation [41�,42�].

Studies of the effect of defects and grain boundaries are

less common: Rivnay et al. adopt a quantitative measure

of order through a paracrystallinity parameter, g [43�].
Disorder in PBTTT (poly[2,5-bis(3-alkylthiophen-2-

yl)thieno(3,2-b)thiophene]), for example, has a paracrys-

tallinity index of 7% (10% is considered amorphous). Gap

states are more numerous with increasing g (disorder).

Troisi [11�] quantifies the lifetime of trap states to be on

the order of 0.1–1 ps for hole trap states 0.3 eV above the

valence band edge of pentacene and suggests that slow

spectroscopies may be ‘blind’ to the traps’ existence and

more likely to probe ‘bulk’ charge carriers’ states. Vehoff

et al. [44�] used a combination of MD and charge carrier

dynamics simulations to investigate the dependence of

charge transport on morphology and the dimensionality of

the percolation network. Hole mobilities were generally
Current Opinion in Chemical Engineering 2012, 1:117–122 
over-estimated by 3–4 orders of magnitude (except for

rubrene) and assumed to be due to the neglect of grain

boundaries and defects. It is thus reasonable to conclude

that charge transport is defect-limited.

For future effective heterojunctions, the experimental

challenges will involve managing a complex set of vari-

ables including processing and environmental conditions

that affect the structure of the interface and hence the

device operability. Each of these steps involves uncer-

tainties and stochastic outcomes. From a computational

viewpoint, the challenges are different, but equally diffi-

cult. For computation, intermolecular and intramolecular

interactions govern the eventual outcome, but expressing

these forces is an ongoing challenge [45]. A second major

challenge is to leverage and scale this knowledge to move

from the electronic structure or molecular level simu-

lations to experimentally relevant length-scale and time-

scale. Few, if any, packages seamlessly pass information

from one simulation package (say, electronic structure to

Molecular Dynamics to lattice-based Kinetic Monte

Carlo simulations).

The drive to use computational approaches to rationally

design organic semiconductors has some momentum. For

example, Bao and Aspuru-Guzik used Density Func-

tional Theory screening and Molecular Mechanics to

select a particularly high-mobility molecule [46]. Yong

and Zhang use a combination of DFT and time-depend-

ent DFT to select candidate electron-donor molecules

[47]. Forrest provided some rules to achieve efficiencies

above 1% [48], quoting an upper bound for the efficien-

cies of small molecule organic solar cells of about 20%,

which is above the threshold for economic viability. In the

search for design rules, it is just as important to define the

boundaries at which an approach becomes ineffective; see

for example, Refs. [48–51].

Finally, despite the experimental complexities involved,

the future of solar cells will surely lie in the design of

multi-junction cells with the lure of exceeding the Shock-

ley–Queisser limit. PV devices with cascaded energy gaps

more efficiently harvest the broad-solar spectrum and

thereby ameliorate the biggest loss mechanism. Recent

reviews already exist for tandem cells, focusing on theor-

etical considerations [52], while organic multi-junction

devices are starting to be prepared [53,54].

Summary
Computational efforts to help guide the selection of

candidate materials and the design of heterojunctions

for electronic devices appear to be at the onset of some

potentially important breakthroughs for small molecule

organic devices. We have moved beyond the use of

computational assistance to simply explain experimental

results and are beginning to uncover rules to help guide

experimental choices of molecules. Rational design of
www.sciencedirect.com
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high-performing materials appears to be an achievable

goal.

A suitable computational toolkit exists to provide vital

information that we pass from one length-scale and time-

scale to another. More effort is needed to study the effects

of disorder, defects and grain boundaries on mobility.

Simulation could also be profitably used to optimize

processing methods that minimize the creation of charge

traps or suggest materials that finesse their creation. The

next major hurdle will be to tackle the reverse design of

materials in which we select the material properties and

then find materials whose design fulfills these criteria.
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end-functional polythiophene to control the morphology of
nanocrystal-polymer composites in hybrid solar cells. J Am
Chem Soc 2004, 126:6550-6551.

17. Lloyd MT, Mayer AC, Tayi AS, Bowen AM, Kasen TG, Herman DJ,
Mourey DA, Anthony JE, Malliaras GG: Photovoltaic cells from a
soluble pentacene derivative. Org Electron 2006, 7:243-248.

18. Brabec CJ, Padinger F, Hummelen JC, Janssen RAJ, Sariciftci NS:
Realization of large area flexible fullerene-conjugated polymer
photocells: a route to plastic solar cells. Synth Mater 1999,
102:861-864.

19. Krebs FC: Fabrication and processing of polymer solar cells: a
review of printing and coating techniques. Solar Energy Mater
Solar Cells 2009, 93:394-412.

20. Grätzel M: Dye-sensitized solar cells. Rev Photochem Photobiol
C 2004, 4:145-153.

21. Wan S, Gandara F, Asano A, Furukawa H, Saeki A, Dey SK, Liao L,
Ambrolgio MW, Botross YY, Duan X et al.: Covalent organic
frameworks with high charge carrier mobility. Chem Mater
2011, 23:4094-4097.

22. Spitler EL, Dichtel W: Lewis acid-catalysed formation of two-
dimensional phthalocyanine covalent organic frameworks.
Nat Chem 2010, 2:672-677.

23. Yu S, Klimm C, Schafer P, Rabe JP, Rech B, Koch N: Organic
photovoltaic cells with interdigitated structures based on
pentacene nanocolumn arrays. Org Electron 2011, 12:2180-2184.

24. Cates NC, Gysel R, Beiley Z, Miller CE, Toney MF, Heeney M,
McCulloch I, McGehee MD: Tuning the properties of polymer
bulk heterojunction solar cells by adjusting fullerene size to
control intercalation. Nano Lett 2009, 9:4153-4157.

25. Mayer AC, Toney MF, Scully SR, Rivnay J, Brabec CJ, Scharber M,
Koppe M, Heeney M, McCulloch I, McGehee MD: Bimolecular
crystals of fullerenes in conjugated polymers and the
implications of molecular mixing for solar cells. Adv Funct
Mater 2009, 19:1173-1179.

26. Anthony JE: Functionalized acene and heteroacenes for
organic electronics. Chem Rev 2006, 106:5028-5048.

27. Lloyd MT, Anthony JE, Malliaras GG: Photovoltaics from soluble
small molecules. Mater Today 2007, 10:34-41.
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