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1 Introduction 

Cost measurement can be roughly defined as measuring resource consumption, in terms of dollars, for a 

given medical intervention. Cost measurement in health care has become increasingly popular in recent 

decades and shows no signs of abating; a critical look at current trends is available in Triplett (1999). 

This trend of measuring costs results from society's willingness to pay for health care interventions. 

Given budgetary constraints, we must wisely allocate resources in order to maximize health benefits 

for individuals. Gaining insight into patient-level factors that affect the cost of medical interventions is 

therefore crucial if we are to devise cost-effective strategies for prevention and intervention. 

This paper is concerned with the problem of modeling lifetime (i.e., cumulative) medical costs measured 

from some well-defined point of patient entry (e.g., start of treatment) to some well-defined event (e.g., 

death). In follow-up studies with finite time horizons, it is inevitable that some individuals under study 

are censored prior to observing the event of interest. In such cases, lifetime costs are also censored, and an 

important issue emerging in the biostatistics literature is the proper handling of such data. In particular, 

even in cases where censoring on the time scale is purely administrative (i.e., random), censored lifetime 

cost endpoints are subject to "induced" informative censoring. Lin et al. (1997) describe this problem 

in the context of patient-level cost functions. Individuals who accrue costs at higher (lower) rates will 

tend to have larger (smaller) cumulative costs at both censoring and event times. Consequently, the 

transformation of time by the individual cost functions induces dependence between the respective values 

of the cost process at the censoring and event times. This dependence exists even if the censoring and 

event times are themselves independent. 

Similar problems arise in other settings involving endpoints that may be viewed as random transforma­

tions of survival times. For example, Gelber et al. (1989) discuss the dependence between the censored 

and uncensored quality-adjusted lifetime measure TWiST. Zhao and Tsiatis (1997) formulate and solve 

a related problem that deals with the nonparametric analysis of quality-adjusted survival time data. In 

fact, problems of induced informative censoring occur naturally in cases where the process of interest 

(e.g. cumulative cost) is increasing over time and its observation is stopped due to the occurrence of 

a possibly dependent terminal event (Strawderman, 2000). In such cases traditional survival analysis 

tools (e.g., Kaplan-Meier, Cox proportional hazards models, etc ... ) that assert independence between 

censoring and the outcome variable are no longer appropriate. 

A handful of statistical methods appropriate for dealing with lifetime cost data, and more generally re­

sponse variables subject to induced informative censoring, have been proposed. Essentially all published 

work has dealt with the problem of non parametric estimation, ignoring important covariate information; 

see, for example, Lin et al. (1997), Zhao and Tsiatis (1997), Cook and Lawless (1997), van der Laan and 

Hubbard (1999), Bang and Tsiatis (2000b), and Strawderman (2000). Considerably less work has been 
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done leading to valid estimators that adjust for patient covariate information. Bang and Tsiatis (2000a) 

consider median regression for lifetime cost data assuming censoring is independent of all else, includ­

ing covariates. Lin (2000a) considers proportional-means regression models under similar assumptions. 

Lin (2000b) considers direct extensions of the linear regression model, and allows censoring to further 

depend on covariates. The fundamental difference between Lin (2000a) and Lin (2000b) is whether one 

prefers to allow for multiplicative versus additive covariate effects on lifetime costs. All of the methods 

proposed thus far entail restrictive assumptions regarding the relationship between lifetime cost and 

covariate information. 

In this paper we focus on modeling the lifetime cost distribution as a function of patient covariates. 

Kooperberg, Stone, and Truong (1995a) develop and implement hazard regression (HARE) modeling 

for noninformatively censored data by modeling the log hazard function using linear splines and their 

tensor products. We adapt their approach to informatively censored lifetime cost data by employing 

appropriate "inverse probability of censoring weighted" (IPCW) estimating equations derived from those 

of the original HARE model. This modeling paradigm, referred to as IPCW-HARE, proves versatile 

in its lack of restrictive assumptions (e.g., proportional hazards, a linear relationship between survival 

time and covariates, etc ... ) and in its user-friendly software implementation. Further development and 

discussion of issues unique to IPCW-HARE are given in Section 2. A fundamental difference between 

IPCW-HARE and the methods of Lin (2000a,b) and Bang and Tsiatis (2000a) is that we have elected to 

model the conditional distribution function of lifetime cost given covariates rather than a single summary 

measure (e.g., mean or median cost). This approach affords certain advantages. For example, in addition 

to being able to compute various summary measures (e.g., mean or median costs), one may gain further 

insight by exploring the conditional hazard, density, and cumulative distribution function of costs for 

different covariate patterns. In Section 3, we evaluate the utility of IPCW-HARE for estimating mean 

and median costs using simulation and compare our results to the estimated mean and median costs 

respectively obtained using the methods of Lin (2000b) and Bang and Tsiatis (2000a). Finally, in Section 

4 we analyze some cost data associated with two common modes of dialysis for Medicare patients with 

end-stage renal disease. 

Although we focus here on modeling lifetime medical cost data, the present framework extends without 

alteration to other settings involving continuous outcomes. For example, our methods can be used for 

quality of life studies, where censoring induces a dependence between the censored outcome process 

and the actual outcome (e.g., Zhao and Tsiatis, 1997). However, because the focus is on modeling the 

hazard function of an absolutely continuous random variable, the methods to be discussed here are not 

appropriate for discrete outcomes. Thus, for example, the present modeling framework would not be 

appropriate in the recurrent event setting considered by Cook and Lawless (1997) since the lifetime 

cumulative number of events is a discrete outcome variable. 
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2 HARE and its IPCW extension 

2.1 Notation and Assumptions 

In order to discuss the notion of "lifetime cost", we must first define a notion of "lifetime". Similarly to 

Lin (2000a,b), we assume interest lies in costs accrued over the period [0, L], where L < oo. Patients may 

experience a terminal event U (e.g., death) prior to L, and we shall subsequently interpret "lifetime" as 

being the minimum of these two times. More precisely, let T = min(U, L) denote "lifetime", and define 

the "lifetime cost" V to be the cost accumulated over [0, T]. Evidently, V is the terminal cost if U:::; L 

and is (say) the £-year cost otherwise. The role of L, as well some restrictions on its selection, are 

discussed further in the last paragraph of this section. 

As described in the Introduction, the event T, hence V, will not be observed for all patients. For a 

given patient, let C and D respectively denote a potential censoring time and corresponding censored 

value of lifetime cost. We suppose that (i) if T :::; C, then V :::; D; and, (ii) if T > C, then V > D. 

A standard convention in survival analysis is that only X = min(T, C) and 6. = I {T :::; C} may be 

observed for a given patient. Consequently, observable data on any given patient are assumed to take 

the form (Y, X, 6., Z), where Y = min(V, D) and Z represents a vector of baseline covariates. Note in 

particular that 6. serves as the censoring indicator for both lifetime and lifetime cost. Our observed data 

are assumed consist of a random sample of the form (Yi,Xi,6.i,Zi), i = 1 . .. n. 

We have chosen to model the hazard function of V given Z; hence, it is explicitly assumed that V is a 

continuous random variable. For simplicity, it is further assumed that (1) T and C are also continuous 

random variables; (2) the covariates Z are bounded; (3) T and Care independent given Z; and, ( 4) V and 

Care independent given Z. Importantly, however, no assumptions are made regarding the dependence 

between T and V or T and Z. Technical considerations further dictate that L must satisfy K(LIZ) > 0 

with probability one, where K(ciz) = P(C > ciZ = z). To better understand this condition, suppose 

L were equal to the largest possible terminal event time U (i.e., L = sup{t : P{U > t} > 0}) and 

that K(Liz) = 0 for all possible realizations z of Z. This implies all patients are censored prior to 

L; consequently, without further assumptions on the rate at which costs accrue over time for different 

patients, it would be impossible to estimate the total cost on [0, £]. 

2.2 HARE: A Brief Review 

Kooperberg et al. (1995a) propose a hazard regression (HARE) model for positive, right-censored time­

to-event data. In particular, they assume 

p 

log>.,13(vlz) = L,BjBj(viz)I{v > 0}, 
j=l 
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where \a(vlz) denotes the conditional hazard function for the uncensored outcome variable (e.g., V), 

B 1 .•. Bp form a basis for a space of functions defined in V and Z, and (3i is the regression coefficient 

associated with the jth basis function. Essentially, the functions Bj, j = 1 ... p together define linear or 

spline functions of the outcome and/or continuous covariates, linear functions of categorical covariates, 

and two way interactions. A full description of the basis, as well as the space of functions spanned by 

(1), can be found in Kooperberg et al. (1995a, §5). The HARE model (1) is exceptionally flexible in its 

use of piecewise linear splines and does not apriori make restrictive assumptions about the relationship 

between V and Z (e.g., proportional hazards). Notably, the HARE model does contain the (parametric) 

proportional hazards model as a special case since, under (1), .A_a(vlz) = >..0 (v)g(z) (say) if none of the 

basis functions Bj(vlz) simultaneously depend on v and z. 

Kooperberg et al. (1995a) fit (1) to randomly right-censored data using maximum likelihood, the relevant 

partial likelihood being 
n 

II >...a(YiiZi)~i F!J(YiiZi), (2) 
i=l 

where Fp(ylz) is the survivor function associated with the hazard function >.p(ylz). Employing a notion 

of "allowable spaces", they utilize a stepwise addition and deletion procedure for choosing basis functions 

that represents a hybrid of well-known stepwise addition and deletion procedures appropriate for linear 

and generalized linear models. The Bayesian Information Criterion (BIC; see Schwarz, 1978) is used 

to select the final model from the sequence of fitted models. We refer the reader to Kooperberg et al. 

(1995a) for further details regarding the model fitting and selection procedures, and Kooperberg, Stone, 

and Truong (1995b) for some relevant asymptotic theory. 

2.3 IPCW-HARE: HARE for informatively censored data 

The likelihood (2) is valid assuming censoring is noninformative. As discussed earlier, this assumption 

is violated when analyzing censored lifetime cost data. In particular, if one applies HARE directly to 

the observed data (Yi, Xi, 6.i, Zi), i = 1 ... n, an inconsistent estimate of the hazard function, hence 

desired summaries (e.g., means, medians, etc ... ), is the likely result. In this section, we propose a 

modification of HARE in order to account for the informatively censored nature of lifetime medical cost 

data. Importantly, the model (1) is not being changed; rather, the method by which (1) is estimated is 

what requires modification. 

To motivate the basic IPCW-HARE estimating function, suppose there is no censoring. Then, the 

contribution of the ith individual to the loglikelihood function for (3 = ((31 ... (3p) T takes the following 

exponential family form (Kooperberg et al, 1995a): 

(3) 

5 



for Yi ~ 0; note that Yi = Vi here since we have assumed there is no censoring. The resulting score 

vector contribution is si ((3) = (Si1 ((3) 0 0 0 Sip ((3)) T, where 

du. (4) 

Based on a random sample of size n, the MLE of f3 is obtained via the score equation Stuu(/3) = 

2:::~= 1 Si ((3). In the missing data literature, S full ((3) is generally referred to as the "full data" score 

function, an appropriate characterization since it is derived from the full data (V, T, Z). Obviously, the 

MLE of f3 cannot be computed via Stuu(/3) in the presence of censored data. 

In a rather general missing data setting, Robins and Rotnitzky (1992) propose to construct estimating 

functions from complete observations by inversely weighting "full data" contributions by the respective 

probability of being observed. In the context of the present problem, and assuming that our observed 

data take the form (Yi, Xi, 6.i, Zi) i = 1 ... n, a valid IPCW estimating equation for f3 is 

(5) 

the normalization of n-1 being used for notational convenience only. By reweighting score contributions 

using this IPCW scheme, we are calculating an M -estimator for f3 that accounts for the informatively 

censored nature of the data. In fact, under mild conditions, (5) is easily shown to be an unbiased 

estimating function for (3; see, for example, Robins and Rotnitzky (1992). 

Since K(·!·) is generally unknown, an estimate of K(·!·) must be substituted into (5) in practice. In 

the case where the censoring process is not influenced by covariates (e.g., administrative censoring) this 

is easy to do using the Kaplan-Meier estimator. If censoring does depend on covariates then a model 

must be chosen. A simple and attractive choice here is to assume that the censoring mechanism follows 

a Cox proportional hazards model. In addition to being widely used and well understood, this model 

contains the important case of independent censoring. Whatever estimate of K(·!·) the user employs, 

the resulting estimating function takes the form 

-1 ~ L\i Sipcw ((3) = n L....t ~ Si (!3), 
i=1 K(Xi!Zi) 

(6) 

and the estimate jj is that which solves Sipcw(f3) = 0. Since (5) and (6) coincide when K(·!·) = K(·!·), 

we only consider (6) from this point forward. 

The estimating function (6) forms the core of IPCW-HARE, and replaces the score function derived 

from (2) that is used by HARE. We now briefly outline some relevant asymptotic properties of 7J. 
Precise statements of regularity conditions are purposely avoided since the asymptotic results provided 

below do not account for the data-driven fitting procedures employed by IPCW-HARE and thus are not 

useful for statistical inference. Rather, these results are used primarily in §2.4, where some important 
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changes to the model building and model selection criteria originally employed by HARE are discussed 

in detail. These changes represent a necessary consequence of the move away from a maximum likelihood 

estimation framework. 

Suppose the set of basis functions Bj(·l·), j = 1 .. . p, hence the dimension of the parameter space, 

is fixed and finite. Let (3* E IRl be the unique maximizer of the strictly concave function E[£1 (/3)] 

with £1 (/3) being given by (3). In the appendix, consistency of fi for (3* is established provided the 

estimated weights satisfy certain consistency conditions. Let SipcwC/3) denote the derivative of Sipcw(/3) 

with respect to /3, and suppose that -SipcwC/3*) ~ M(/3*), where M = M(/3*) is nonsingular. Then, 

under suitable conditions, it follows that 

where Q is the asymptotic variance of (6) at /3*. This result holds whether or not K(·l·) is estimated 

from the data, with the effect of estimating K (·I·) being entirely reflected through Q. Specifically, if 

K(·l·) is known, 

in contrast, when K(·l·) is estimated from the data, the actual form of Q depends on the model and 

method used for estimating K(·l·). In the appendix, a specific formula for Q is devised for the case 

where K(·l·) follows a (semiparametric) Cox proportional hazards model and is estimated accordingly. 

The criteria used by IPCW-HARE in building models are discussed in detail in the next section. These 

criteria depend in part on the assumed asymptotic behavior of {3, and in particular on the matrices Q and 

M. The contrast in asymptotic behavior that results from knowing versus estimating K(·l·) has some 

important practical implications. Specifically, suppose first K(·l·) is regarded as an estimated quantity. 

Then, the dependence of Q on the model for the censoring mechanism implies that different censoring 

models (e.g., a semiparametric versus fully parametric Cox proportional hazards model) necessitate 

completely separate implementations of IPCW-HARE. Such dependence further rules out the use of 

HARE and other data-adaptive methods for estimating K(·l·) since their asymptotic behavior cannot be 

characterized precisely. The situation changes dramatically when K(·l·) is regarded as a known quantity 

(i.e., treated as known, even if it is estimated). In particular, since Q no longer depends on the assumed 

model for K(·l·), it may be estimated using Q = n-1 'f:.i{i;i{i;[, where {i;i = K(:.;IZ;)Si({j). Because 

computation of Q only requires the estimated weights (i.e., as opposed to knowledge of the model that 

generated them), the same implementation of IPCW-HARE may be used however K(·l·) is estimated. 

For a fixed set of basis functions, the implications of treating the estimated quantity K(·l·) as known 

are clear: while the consistency of (j is unaffected, fixed-size tests and fixed-level confidence sets will 

respectively have incorrect size and coverage. The decision rules employed by IPCW-HARE during the 

model building process do not rely on formal tests of significance or fixed level confidence sets, and 
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Kll·) is in fact held fixed throughout the entire model-building phase. Consequently, in the context 

of adaptively building a model for a given dataset, the need to acknowledge the fact that K(·l·) is 

estimated is less clear. Moreover, the possible limitations that result from ignoring the fact that K(·l·) 
is estimated are offset by very substantial practical gains. For example, in addition to allowing the user 

to employ any reasonable method for estimating K(·l·), tremendous gains in computational efficiency 

are realized. Since standard errors will be computed via nonparametric bootstrap (i.e., resampling 

(Yi, Xi, .6-i, Zi), i = 1 ... n with replacement), such gains in computational efficiency become important, 

particularly for large datasets. Bootstrapping is also advantageous since the standard deviation estimates 

reflect both estimation of the weights and the adaptive model selection scheme. 

2.4 IPCW-HARE: Important modifications to HARE 

Despite our reweighting of the HARE score equations, many of the procedures described in Kooperberg 

et al. (1995a) used for fitting (1) to data (e.g., knot placement, starting values, etc ... ) were able to 

be utilized by IPCW-HARE without significant alteration. However, some important modifications to 

HARE were also required. Essentially, these modifications were needed in two places: adding and deleting 

basis functions and selecting the "best" HARE model. For reasons discussed earlier, our particular 

implementation of IPCW-HARE treats K(·l·) as known for the purposes model building; consequently, 
0 - I ~ ~ ~~T ~ .6.· ~ 

m what follows we employ M = -SipcwUJ) and Q = n-1 Li 1/Ji'I/Ji , where 1/Ji = K(X;IZ;) Si(/3). The 

changes to be described below drastically reduced the incidence of overfitting (i.e., the propensity of 

HARE to fit the model to extreme data points), and as our simulation results will show, yield estimators 

with good overall performance. 

2.4.1 Stepwise Addition and Deletion of Basis Functions 

During the addition phase of the model building process, HARE attempts to enrich the class of hazard 

functions covered by (1) by moving from (say) a p-1 dimensional "allowable space" G0 to a p dimensional 

allowable space G that contains G0 • In practical terms, this is handled by adding a candidate basis 

function Bp, hence coefficient /3p, to the model. At any given step, there are a potentially large number 

of candidates; consequently, due to the computationally intensive nature of the fitting process, HARE 

cannot refit the model and compare loglikelihoods like one might do with a generalized linear model. 

Instead, HARE "tests" the hypothesis that (1) is a member of G0 using a Rao statistic, and in particular 

adds the basis function which maximizes this statistic (or minimizes the p-value). Kooperberg et al. 

(1995a, §4) provide further details. 

Like HARE, IPCW-HARE starts with a constant hazard function and adaptively builds a sequence of 

larger models. The version of the Rao statistic used by HARE is not really appropriate for use by 
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IPCW-HARE because it uses the inverse information matrix as an estimate of variance. Let jj0 denote 

the solution obtained by setting (6) equal to zero for the model corresponding to G0 . Suppose the test 

we are conducting is for f3v = 0. Let Sa(f3) denote (6) for a candidate hazard model corresponding to 

space G, let -Ma(f3) be its first derivative, and let Qa(f3) denote an estimate of Var[Sa(fJ)]. Finally, 

let Sav(f3) denote the pth element of Sa(f3). Then, the Rao statistic we use in deciding whether or not 

to add a basis function is 
2 ~ T~-1 ~ T 

R = nSav(f3o) C Sav(f3o) , 

where lJo = (jj0 , O)T and Cis computed via (5) of Heritier and Ronchetti (1994) with (in their notation) 

M = Ma(ffo) and V = Ma 1 (ffo)Qa(ffo)M01 (ffo). The basis function added at a given step is then that 

with the largest value of R 2 . The Rao statistic R2 reduces to that used by HARE if V = M-1 , as would 

be the case under maximum likelihood estimation. 

Kooperberg et al. (1995a, §11.4) list 3 criteria used by HARE for deciding whether to continue adding 

basis functions. Two of these have clear practical justifications; the last essentially corresponds to a 

likelihood-ratio-based criterion for assessing improvement in model fit. Specifically, suppose the present 

model has P basis functions. Then, HARE stops adding basis functions if 2(Cp -fv) < (P- p) - 1 

for some p with 2 ~ p ~ P- 3, where fp and Pp respectively represent the (estimated) loglikelihood 

for a model with P and p basis functions. Since the fitting process ensures that the model with p basis 

functions is nested within the model with P basis functions, 2(fp -Pp) is approximately distributed as 

x1:.-v (i.e., assuming that the model with p basis functions is sufficient). Thus, HARE discontinues the 

addition phase if the change in loglikelihood values does not exceed its mean value (minus one). 

REMARK: Asymptotically, HAREs criteria boils down to unnecessarily adding a basis function with 

probability P {x}._P > P - p - 1}. Since P - p 2: 3, it is easy to show that this probability is at most 

0.57, and monotonically decreases to 1/2 asP- p get large. Hence, the decision to add a basis function 

when it is in fact not needed is roughly equivalent to tossing a (slightly) biased coin. 

Since IPCW-HARE is not maximum likelihood, HAREs particular criteria for assessing model fit carries 

questionable relevance. Let £i(jj<vl) and £i(jj<Pl) denote the contribution of patient i to the full data 

loglikelihood (3) for nested models respectively having p and P basis functions; note that these are to 

be interpreted in a similar manner to Pp and fp. Consider the likelihood-ratio-type statistic 

see, for example, Heritier and Ronchetti (1994, eqn. 6). If K(·l·) were known, L; could be derived as the 

likelihood ratio statistic assuming the data follow a density proportional to exp( -T(Y, X,~' Z, (3)), where 

T(Y,X,~,Z,/3) = ~£(/3)/K(XIZ) and £(/3) is computed similarly to (3) (cf. Ronchetti, 1997, §3.1). 

Consequently L; represents a reasonable statistic for assessing improvement in model fit. However, 

the (asymptotic) mean of this statistic is not P - p. In fact, under suitable conditions, L; behaves 
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asymptotically like a finite mixture of xi random variables, the mixing coefficients being governed by 

the eigenvalues of a certain matrix depending on Q and M defined in Section 2.3 above; see Heritier and 

Ronchetti (1994, §2 and Proposition 3a) for further details. Analogously to HARE, the criteria we use 

for stopping the addition of basis functions is L;, < /iP-p- 1, where /iP-p denotes an estimate of the 

mean of the appropriate mixture of chi-square random variables. 

Finally, upon stopping stepwise addition using the rule described above, we begin stepwise deletion. The 

decision rule for keeping the pth basis function is based on the Wald statistic 
~2 

w2 = ~p 
Vpp 

where V = n-1 M01 (-g)Qa(-g)M01 (fj) and -g is the solution to (6) under model G. In particular, for a 

given model dimension, the basis function corresponding to the smallest value of W 2 is deleted. Similarly 

to the stepwise addition phase, this criteria reduces to that used by HARE if Ma = Qa, and the process 

of deleting basis functions is continued until the smallest possible model is reached. 

2.4.2 Model Selection 

The stepwise process of adding and deleting basis functions creates a sequence of models for the hazard 

function, one of which must be selected. HARE employs the Bayesian Information Criterion (BIC; see 

Schwartz, 1978) for this, and chooses between models using penalized comparisons between loglikeli­

hoods. For reasons similar to those described in the last section, a modification is employed due to the 

absence of an appropriate likelihood. Ronchetti (1997) develops a Robust Akaike Information Criterion 

(AICR) for theM-estimator setting. Let -g denote the parameter estimate obtained under a given model, 

and consider (cf. Ronchetti, 1997, eqn. 3.2) 

~ ~i ~ - ~ 
AICR = 2 ~ ~ · l!i(/3)- a 1og(nu)tr(M-1Q), 

i=l K(XiiZi) 

where M and Q denote estimates of M and Q evaluated at -g, nu denotes the number of uncensored 

observations, and a is a fixed multiplier. Roughly speaking, the role of AICR is similar to BIC, and 

model selection by IPCW-HARE is carried out by selecting the model with the maximum value of AICR, 

the default choice of a being 1. The use of log(nu) as the penalty parameter is meant to emphasize the 

fact that the amount of information present in censored data substantially depends on the number of 

uncensored observations rather than total sample size. 

3 Simulation Results 

To evaluate the performance of IPCW-HARE we conducted Monte Carlo simulations with various life­

time cost schemes. IPCW-HARE approximates the hazard function of the cost variable as a function of 
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covariates; for simplicity we report only the mean and median lifetime cost estimates derived from this 

hazard estimate for specific covariate patterns. We fit restricted models, in which no covariate-by-cost 

interactions are allowed (i.e., proportional hazards, or PH=T); we also fit unrestricted models (PH=F) 

in which covariate-by-cost interactions are allowed. Importantly, in none of our examples is there an ob­

vious "true" model, meaning that the resulting data generation scheme is in exact correspondence with 

a member of the parametric family of models we are working within. Hence, in each case the hazard (1) 

at best represents an approximation to reality, and these simulation results constitute an illustration of 

the "real world" performance of the IPCW-HARE procedure. 

Since a nice analytic expression for the mean cost under the IPCW-HARE model is not available, we 

estimate this using Monte Carlo. In particular, for a given hazard function estimate, we generate 2,000 

random lifetime cost observations using HAREs built-in function rhare, and then take a simple average 

of these to obtain our Monte Carlo estimate of the mean lifetime cost. To estimate the median cost, we 

again use the built-in functionality of HARE by employing the qhare function provided with the original 

HARE software. The censoring weights are computed using the product-integral form of the survivor 

function appropriate for a Cox regression model; see Andersen et al. (1993, eqn. 7.2.34) for details. All 

simulations employ 2,000 replicated datasets of size n = 200. 

Our first simulation is adopted from Bang and Tsiatis (2000a). Survival and censoring times (in years) 

respectively follow Uniform[0,10] and Uniform[0,12.5] distributions. We set L = 10 years, which leads 

to approximately 40% censoring. A single covariate Z is assumed Uniform[20,70]. The cost function 

for an individual i consists of a one-time baseline diagnostic cost Boi, an annual cost Bij uniformly 

distributed throughout each jth year, and a death cost Di uniformly distributed over the last year 

of life. Specifically, Boi = 500 + lOOZi + Ei, Bij = 400 + 10Zi + c:~i, and Di = 1000 + 200Zi + c:~1 

where C:i is Uniform[2500,7500], c;~j is Uniform[500,1300], and c~1 is Uniform[5000,15000]. Notice that the 

covariate only affects cost, and does so linearly; survival and censoring variables do not depend on this 

information. Although censoring is independent of the covariates, the weights are still estimated using a 

Cox proportional hazards model with Z as the lone covariate. In order to assess the effect of including 

weights (and hence of informative censoring on cost), we have included results obtained from fitting the 

original (i.e., unweighted) HARE model to these data for comparison. Finally, we have also included the 

estimators of Lin (2000b) and Bang and Tsiatis (2000a), which ought to perform very well here due to 

the structure of the cost function. 

The results of the first simulation are summarized in Tables 1 and 2. IPCW-HARE is seen to perform 

well in estimating both mean and median lifetime cost across the range of Z. In contrast, HARE 

demonstrates a substantial negative bias for all covariate patterns, the largest bias being on the order 

of $1,900. Consequently, there is a significant (and predictable) effect of informative censoring in this 

example. The fact that IPCW-HARE leads to more variable estimates is expected; HARE uses both 
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censored and uncensored cost observations, while IPCW-HARE only uses uncensored cost observations. 

Consequently, HARE, though biased, makes more efficient use of the available data. The estimators of 

Lin (2000b) and Bang and Tsiatis (2000b) generally outperform those produced by IPCW-HARE for 

respectively estimating the mean and median costs. This is also to be expected since these methods are 

specifically designed for estimating the effects of covariates with a linear relationship to lifetime cost. 

Finally, it is seen that the allowance for interactions between cost and covariates makes little difference 

in the IPCW-HARE estimates, indicating a proportional hazards assumption is reasonable here. 

The first simulation assumed costs accrue uniformly on a yearly basis, and that costs increase linearly as 

a function of a single covariate. In our second simulation, we instead allow the cost-incurring episodes 

to occur at random times; that is, we assume recurrent events with associated costs. The first covariate 

zli is Uniform[10,50] and the second covariate z2i is Bernoulli with p = ~. Given zli = Zl' survival 

times are Gamma distributed with a conditional mean of ~; z1 years; the unconditional mean survival 

time is 12 years. Censoring times are Exponential with a mean of 18 years and L=15. Conditional 

on failure time and covariate information, the recurrent events follow a homogeneous Poisson process 

with rate .\(s/Ti = t, Zli = zl) = 0.01 · z1 ·log(max(3, t)) and the cost of each event is distributed as 

Uniform[$2000,$5000]. Initial costs for patients, or Boi, are assumed Uniform[$0,$5000] if Z2i = 0 and 

Uniform[$5000,$10000] if Z2i = 1. Finally, given Zli = z1, the death cost Di is $10000 Uniform[1,j(z1)] 

where f(zl) = .JZJIO E (1, 2.24), and is uniformly distributed over the last two years of life. This 

leads to an average of 7.6 cost-incurring episodes per patient over the course of their (truncated) lifetime 

and 34% censoring. Importantly, the covariate Z2 affects baseline costs only, and does so linearly; the 

covariate Z1 affects both survival and cost in a nonlinear way. Censoring is independent of the covariate; 

however, the weights are estimated using a Cox proportional hazards model based on both Z1 and Z2 . 

The results of the second simulation are given in Tables 3 and 4. The mean and median of the covari­

ate Z1 both occur at 30. Comparing the IPCW-HARE models "PH=F" versus "PH=T", we see the 

former tends to exhibit substantially less bias, indicating proportional hazards may not be a reasonable 

assumption. Across the range of Z, IPCW-HARE (PH=F) is seen to outperform the simple regression­

based estimators for estimating both mean and median costs. Although the Bang and Tsiatis (2000a) 

estimator does very well for zl = 15, its performance degrades significantly as zl' hence the level of 

censoring, increases. Comparing Table 4 and Table 2, we further see that the efficiency gains of these 

regression methods over IPCW-HARE are significantly reduced when the true cost function and linear 

regression model fail to coincide. 

In our third and final simulation, we move away from the previous two paradigms and simulate lifetime 

cost directly. That is, we employ a model to generate only the lifetime cost v,;, rather than computing 

it indirectly via accumulating intermediate costs. We also allow for both survival and censoring to 

depend on relevant covariates. The covariate Zli is Uniform[10,70] and Z 2i is Bernoulli with p = ~- If 
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10 :S Zil < 30, the survival time U; is Exponential with mean 20 years; if 30 :S Zil < 50, U; is Exponential 

with mean 15 years; and if 50 :S Z;1 :S 70, U; is Exponential with mean 10 years. The censoring time 

C; is Exponential with mean 25Z2; + 18(1- Zz;) years. We set L=25 and T; = min(U;, L). This leads 

to approximately 39% censoring overall. Finally, the terminal cost Vi is assumed to follow a Gamma 

distribution with mean a(Z;)(3(T;, Z;) and standard deviation J a(Z;)(3(T;, Z;). The shape parameter 

a(Z;) = ~Z2;Z[;+ i (1-Z2;)Z[; and the scale parameter (3(T;, Z;) = Z2i log(1+T;)+2(1-Z2;) log(1 +T;). 

This implies, given T; and Z;, that the average cost equals ~(2- Zz;) 2 Z[; log(1 +T;) and that the standard 

deviation equals )3(2- Z2;) 312 Z1; log(1 + T;). Consequently, mean lifetime costs generally rise (and 

become more variable) as Z1; rises; the rates at which these costs rise (and their level of variability) 

depends on Z2;. Consequently, there is a rather complicated interaction between the effects of Z1 , Z2 

and T on the terminal cost V. 

The results of the third simulation are given in Tables 5 and 6. In terms of bias, IPCW-HARE performs 

very well in estimating both mean and median lifetime cost across the various covariate combinations. 

In contrast, the linear regression models perform rather poorly, in some cases having enormous bias. 

In fact, for the covariate combination (15,1), these regression models led to negative simulated average 

mean and median lifetime costs. To be fair, these linear regression methods might perform better if, for 

example, costs were placed on the log scale, interaction terms were placed in the model, and nonlinear 

covariate effects were allowed. This was not done to better illustrate the point that IPCW-HARE is able 

to produce reasonable estimates with much less preliminary analysis. 

This suite of simulations suggests that IPCW-HARE performs well under a variety of situations, and 

show in particular that (i) IPCW-HARE-based estimates tend to be less biased than those obtained 

using methods that impose stronger assumptions; and, (ii) this increase in accuracy usually comes at 

some expense in precision. Our results also indicate that the ignoring the censored cost observations 

entirely probably entails a significant loss in precision (i.e., see Table 2); we return to this issue in the 

Discussion. We suspect that some portion of the residual biases observed in Tables 1, 3, and 5 are a result 

of model misspecification. Specifically, despite being adaptive, IPCW-HARE eventually yields estimates 

able to accurately approximate functions that lie within some restricted class only. Consequently, in 

finite samples model misspecification is still an important consideration. Reducing such bias should be 

possible by increasing the flexibility of the basis; for example, by employing using cubic instead of linear 

splines. 

4 End-Stage Renal Disease Data 

The data consist of subjects with End-Stage Renal Disease (ESRD) collected from the United States 

Renal Data System (USRDS). Individuals were included in the study if they started peritoneal dialysis 
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or hemodialysis within the window of January 1, 1992 thru December 31, 1996. All subjects are 66 

and older, have Medicare as a primary payer, and are possibly censored due to loss-to-follow-up, end 

of study (12/31/96), or kidney transplant. Available covariates include age at the start of treatment 

(66-70, 71-75, and > 75), gender, whether diabetes is the primary cause of ESRD, and race (white, 

black, and other). There are 38,732 subjects available for analysis; however, because IPCW-HARE 

is computationally intensive, we have elected to use four random sub-samples (n = 1, 000 from each 

dialysis x diabetes status category) for this illustration. The reason for this really rests more in the 

need to compute standard errors via bootstrap thari it does in fitting the model itself. A comparison of 

summary statistics between these sub-samples and the entire data set indicates that our subsamples are 

representative samples. 

For this analysis we focus on estimating mean lifetime dialysis costs for various patient profiles; for 

example, 66-70 year old diabetic white males on hemodialysis vs. 66-70 year old diabetic white males 

on peritoneal dialysis. We have truncated the time scale to 4 years (i.e., L = 4 years) in order to ensure 

that our "probability of censoring" weights remain positive. Hence we are really estimating the four-year 

costs for different modes of dialysis. Since nearly 80% of dialysis patients survive less than four years 

(USRDS, 1999), we still refer to this estimate as the mean lifetime cost. 

The data were stratified by dialysis modality and diabetic status and then analyzed separately. Within 

each strata, our regression model was fit using the following dichotomous covariates: gender, middle-old 

(71-75), old-old(> 75), black, with the respective baseline categories taken to be male, 66-70, and white. 

For this analysis, the race category "other" is excluded; in each case these patients comprise less than 

5% of the sample, and even less in terms of the number of deaths. Since all covariates are dichotomous, 

splines are being fit to costs only, with interactions between pairs of covariates and with cost being 

selected adaptively. The standard deviation of the resulting point estimates were approximated using 

1000 bootstrap samples. 

Table 7 summarizes the results of this analysis, and certain interesting patterns emerge. For example, 

at all reported age/race combinations, blacks exhibit higher average treatment costs than whites; also, 

controlling for diabetic status, hemodialysis is more costly than peritoneal dialysis. Generally, lifetime 

treatment costs do not appear to differ much by gender, and no clear trend emerges for the costs of 

treating diabetic versus non-diabetic patients. The estimated bias of these point estimates, obtained via 

bootstrap approximation, ranges from -$10,000 to $14,000 for hemodialysis point estimates and from 

-$4,400 to $11,700 for peritoneal dialysis point estimates. Except for black hemodialysis patients, his­

tograms of these mean estimates were observed to be unimodal and approximately normally distributed. 

The lack of multimodality indicates that estimated covariate effects largely remained stable across the 

bootstrap iterations. The mean estimates for black hemodialysis patients were bimodal, the second mode 

being centered closer to the average cost for their white counterparts. Consequently, the differences in 
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liftime cost observed by race in hemodialysis patients may be somewhat overstated. 

Two interesting trends identified by the above analysis are that hemodialysis tends to be more costly 

compared to peritoneal dialysis and that black patients tend to be more costly than white patients. How­

ever, the above analysis does not elucidate whether this difference is due to differences in survival times 

by modality or race, different baseline health measures on these patients, or whether e.g. hemodialysis 

is simply more costly. One way of standardizing lifetime costs to better compare hemodialysis versus 

peritoneal dialysis is to compute a cost-effectiveness ratio (CER). For a given mode of dialysis, the 

numerator of the CER represents some functional of lifetime cost; correspondingly, the denominator 

is a corresponding measure of treatment effectiveness (e.g. survival or quality-adjusted survival). See 

Siegel, Laska, and Meisner (1996) for a review of methods used in the economic appraisal of health care 

interventions. 

We calculated CERs to evaluate the relative effectiveness of hemo- versus peritoneal dialysis for various 

subgroups of patients aged 66-70 years. We respectively computed the estimated mean lifetime cost and 

survival time (i.e., measured in months, and truncated at 4 years) using IPCW-HARE (see Table 7) and 

HARE; the results are shown in Table 8. Each CER thus represents "the average cost of dialysis per 

additional month of life with treatment." For the sake of comparison, we also computed and report CERs 

using median costs and survival in Table 8. Controlling for diabetic status, one tentative conclusion from 

this analysis is that peritoneal dialysis is in general less costly than hemodialysis for dialysis patients 

aged 66-70 years old. For example, the average additional cost per month of life for hemodialysis 

patients is $1065 for diabetics and $520 for nondiabetics, the differences in medians being somewhat 

lower. The trends observed by race in Table 7 are now less evident, due largely to the fact that black 

ESRD patients tend to live longer than white ESRD patients. Adjusting for survival differences, Table 

8 in fact suggests that the median cost per month of life for treating white patients may exceed that 

for black patients, especially among hemodialysis patients. Finally, controlling for modality, another 

trend emerging from Table 8 is that diabetics tend to be more costly to treat than nondiabetics. For 

example, the additional average cost per month of life for diabetic patients is $665 for hemodialysis 

patients and $120 for nondiabetics. Importantly, this rudimentary cost-effectiveness analysis does not 

account for variability in the point estimates used in constructing these ratios, and one must be careful 

not to overinterpret these results. A more formal cost-benefit analysis might proceed from here with the 

computation of confidence intervals. Laska, Meisner, and Siegel (1997) give a review of methods in this 

area; a rather novel approach to evaluating CERs is described in Cook and Heyse (2000). 
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5 Discussion 

The HARE model (1) is able to incorporate patient covariates while avoiding restrictive assumptions 

on their relationship to cost. We have established the utility of incorporating an IPCW weighting 

scheme into HARE for the purposes of dealing with censored lifetime medical cost data. By upweighting 

completely observed individuals, we are able to account for the informatively censored nature of the cost 

data, and at the same time avoid restrictive assumptions on the relationship between costs, survival, and 

covariates. This approach is quite useful in cases where understanding the cost structure is desirable for 

one or more covariate patterns, but less so for marginal analyses (i.e., V alone). Regarding the latter, 

reasonably efficient nonparametric estimators for functionals of the marginal cost distribution can be 

easily constructed; see, for example, van der Laan and Hubbard (1999), Bang and Tsiatis (2000b), or 

Strawderman (2000). However, one must impose further structure in order to model the conditional 

distribution [VIZ]. IPCW-HARE facilitates this with its highly data-adaptive capabilities, and our 

simulation studies show that it performs quite well in a variety of settings for fixed covariate patterns. 

The addition of the IPCW weights into the HARE score equation necessitated substantial modification 

of the HARE fitting procedures. In large part, these changes were required in order to cope with the 

fact that one is no longer working within a maximum likelihood setting. From a practical point of view, 

these changes enhanced the robustness of fitting procedures, and in particular were found to substantially 

reduce the incidence of "overfitting". The decision to compute the matrix Q assuming K(·l·) is known 

was made primarily for practical reasons. Our simulation results indicate that the resulting estimators 

perform well. Limited comparisons suggest that the major consequence of estimating Q assuming K(·l·) 

is known rather than estimated is a slightly larger model. This appears to result from differences in 

the magnitude of the penalty term in the corresponding AICR statistic. Further research on the most 

appropriate criterion for model selection, as well as alternative methods for adaptively building models, 

is needed. Some recent work by Sin and White (1996) on more general Kullback-Leibler-based model 

selection criteria may prove useful here. 

IPCW-HARE has a number of useful advantages over existing regression methods, many of which can 

be traced to the absence of restrictive parametric assumptions on the joint distribution of (V, T, Z). 

However, despite encouraging results, there are still some important practical limitations. Few of these 

are actually limitations of HARE itself, as we explain below. Major issues to consider when using this 

methodology include (i) the potential inefficiency of using only the data from complete cases; (ii) the 

unspecified dependence of the response variable V on T; (iii) the need to specify a model for the censoring 

mechanism; and, (iv) the failure to use the history of the cost process, if available. 

We may handle the problem (i) by augmenting the IPCW-HARE estimating function to include ad­

ditional information on censored subjects. Intuitively, adding any function of the censored cost data 
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with mean zero is a possible choice; the key is to select it so as to achieve a significant reduction in 

variability. Adjusting the IPCW-HARE estimating function in this manner would substantially increase 

the computational complexity of IPCW-HARE, and we will not attempt to explore these issues further 

here. In-depth discussions of such adjustments in related problems can be found in Rotnitzky, Robins 

and Scharfstein (1998) and Scharfstein, Robins, and Rotnitzky (1999). 

The problem in (ii) stems from the unspecified dependence of V on T, which makes it difficult to 

assess whether the difference between, say, E[VJZ = z1] and E[VJZ = z2] is really due to differences 

in cost, differences in survival, or both. This is a direct result of the choice to model [VJZ] instead of 

[V, TJZ], a drawback not unique to this paper. Indeed, essentially all papers on this topic referenced 

here take this same point of view. In our example we used CERs to partially address this difficulty in 

interpretation. More formally, this problem might be addressed by modeling the conditional distribution 

[V, TJZ] = [VJT, Z][TJZ]. In fact, including T as a covariate in the present implementation of IPCW­

HARE appears to pose no fundamental difficulty with the theory, and consequently one could alleviate 

this difficulty in interpretation by adjusting cost comparisons to a common survival time. Moreover, 

HARE could be used to model [TJZ], keeping with our goal of making as few parametric assumptions 

as possible on (V, T, Z). 

The difficulty with (iii) is that, outside certain favorable settings (e.g., a randomized trial with only 

administrative censoring), the true censoring process is unknown. The importance of this rests in the 

fact that IPCW-HARE requires the correct model for censoring probabilities. Gross misspecification 

of these will certainly produce estimators whose properties are as questionable as those produced by 

standard survival techniques. However, the modeling burden must be placed somewhere. We have 

chosen to place this burden on the censoring process, a practice with significant value that has been 

established in numerous previous papers of Robins and his coauthors. 

Finally, the problem with (iv) relates to the fact that our model only uses the cumulative cost at a 

patient's last follow-up or death time to build the distribution of lifetime cost. Models that incorporate 

aspects of a patient's entire cost history (e.g. monthly dialysis costs) will yield a richer, more complete 

picture of the lifetime cost distribution. Lin (2000b) and Bang and Tsiatis (2000a) propose handling this 

in much the same way, namely by considering a fixed partition of the time scale. Variations on IPCW­

HARE could presumably be used in this setting as well. However, such approaches seem inefficient in 

general, since they do not utilize the possible correlation between cost increments across different time 

intervals. Methods for incorporating this information are a subject of ongoing research. 

17 



Acknowledgements 

The authors would like to thank Drs. Fritz Port and Bob Wolfe of the USRDS and University of Michigan 

for useful discussions and financial support relevant to this project. They also acknowledge the assistance 

of Larry Agadoa, NIH Project Officer for the United States Renal System, in obtaining permission to 

use this USRDS data. 

References 

Andersen, P.K., Borgan, 0., Gill, R.D., and Keiding, N. (1993). Statistical Models Based on Counting 

Processes. New York: Springer-Verlag. 

Bang, H. and Tsiatis, A.A. (2000a). Median Regression with Censored Cost Data. Unpublished. 

Bang, H. and Tsiatis, A.A. (2000b). Estimating Medical Costs with Censored Data. Biometrika, 87, 

329-344. 

Cook, J.R. and Heyse, J.F. (2000). Use of an Angular Transformation for Ratio Estimation in Cost­

Effectiveness Analysis. Statistics in Medicine, 19, 2989-3003. 

Cook, R. and Lawless, J.F. (1997). Marginal Analysis of Recurrent Events and a Terminating Event. 

Statistics in Medicine, 16, 911-924. 

Gelber, R.D., Gelman, R.S., and Goldhirsch, A. (1989). A Quality-of-Life-Oriented Endpoint for 

Comparing Therapies. Biometrics, 45, 781-795. 

Heritier, S. and Ronchetti, E. (1994). Robust Bounded-Influence Tests in General Parametric Models. 

Journal of the American Statistical Association, 89, 897-904. 

Hiriart-Urruty, J-B. and Leman§chal, C. (1996). Convex Analysis and Minimization Algorithms I. 

Springer-Verlag, Berlin. 

Kooperberg, C., Stone, C.J., and Truong, Y.K. (1995a). Hazard Regression. Journal of the American 

Statistical Association, 90, 78-94. 

Kooperberg, C., Stone, C.J., and Truong, Y.K. (1995b). The L 2 Rate of Convergence for Hazard 

Regression. Scandinavian Journal of Statistics, 22, 143-157. 

Laska, E., Meisner, M., and Siegel C. (1997). Statistical Inference for Cost-Effectiveness Ratios, Health 

Economics, 6, 229-242. 

Lin, D.Y., Feuer, E.J., Etzioni, R., and Wax, Y. (1997). Estimating Medical Costs from Incomplete 

Follow-up Data. Biometrics, 53, 419-434. 

18 



Lin, D.Y. {2000a). Proportional Means Regression for Censored Medical Costs. Biometrics, 56, 775-

778. 

Lin, D.Y. (2000b). Linear Regression of Censored Medical Costs. Biostatistics, 1, 35-47. 

Pollard, D. (1990). Empirical Processes : Theory and Applications. NSF-CBMS Regional Conference 

Series in Probability and Statistics, vol. 2. Institute of Mathematical Statistics, Hayward, Calif. 

Robins, J.M. and Rotnitzky A. (1992). Recovery of Information and Adjustment for Dependent 

Censoring Using Surrogate Markers. In AIDS Epidemiology: Methodological Issues, Ed. N. Jewell, 

K. Dietz, and V. Farewell, pp.297-331. Boston: Birkhauser. 

Ronchetti, E. (1997). Robustness Aspects of Model Choice. Statistica Sinica, 7, 327-338. 

Rotnitzky, A., Robins, J., and Scharfstein, D. (1998). Semiparametric Regression for Repeated Out­

comes with Nonignorable Nonresponse. Journal of the American Statistical Association, 93,1321-

1339. 

Scharfstein, D., Rotnitzky A., and Robins J. (1999). Adjusting for Nonignorable Drop-Out Using 

Semiparametric Nonresponse Models. Journal of the American Statistical Association, 93, 1096-

1120. 

Schwarz, G. (1978). Estimating the Dimension of a Model. Annals of Statistics, 6, 461-464. 

Siegel C., Laska, E., and Meisner, M. (1996). Statistical Methods for Cost-Effectiveness Analyses, 

Controlled Clinical Trials, 17, 387-406. 

Sin, C-Y. and White, H. (1996). Information Criteria for Selecting Possibly Misspecified Parametric 

Models. Journal of Econometrics, 71, 207-225. 

Strawderman, R.L. (2000). Estimating the Mean of an Increasing Stochastic Process at a Censored 

Stopping Time. Journal of the American Statistical Association, 95, 1192-1208. 

Triplett, J.E. (1999). Measuring the Prices of Medical Treatments. Washington: Brookings Institution 

Press. 

U.S. Renal Data System, USRDS 1999 Annual Data Report National Institutes of Health, National 

Institute of Diabetes and Digestive and Kidney Diseases Bethesda, MD, April1999. 

van der Laan, M.J. and Hubbard, A. (1999). Locally Efficient Estimation of the Quality-Adjusted 

Lifetime Distribution with Right-Censored Data and Covariates. Biometrics, 55, 530-536. 

Zhao, H. and Tsiatis, A.A. (1997). A Consistent Estimator for the Distribution of Quality Adjusted 

Survival Time. Biometrika, 84, 339-348. 

19 



Table 1: Bias of Estimates for pt Cost Paradigm 

IPCW-HARE Original HARE Linear 
True Cost PH=F PH=T PH=F PH=T Regression 

Mean: Z=25 $30,861 -$468 -$542 -$1,746 -$1,753 $83 
Median: Z=25 $31,640 -$50 -$78 -$1,376 -$1,369 $116 
Mean: Z=35 $34,396 -$157 -$198 -$1,873 -$1,873 -$69 

Median: Z=35 $35,265 $162 $136 -$1,560 -$1,556 -$15 
Mean: Z=45 $37,745 $14 $28 -$1,841 -$1,837 -$34 

Median: Z=45 $38,726 $205 $200 -$1,649 -$1,649 $18 
Mean: Z=55 $41,121 $224 $277 -$1,795 -$1,788 -$26 

Median: Z=55 $42,206 $290 $301 -$1,737 -$1,739 $32 
Mean: Z=65 $44,605 $112 $201 -$1,819 -$1,800 -$126 

Median: Z=65 $45,773 $0 $33 -$1,920 -$1,926 -$41 

Caption Table 1: Simulation consists of 2000 data sets, each with n=200. We use the Cox proportional 

hazards model to estimate K(.). "PH=" T: a proportional hazards model, F: covariate-by-cost inter­

actions are allowed. The "true cost" is empirically obtained from a data set of size n =30,000 with 

the specified covariate pattern. The results in the "Linear Regression" column respectively correspond 

to the estimators of Lin (2000b) (rows labelled "mean") and Bang and Tsiatis (2000a) (rows labelled 

"median"). 

Table 2: Standard deviations under 1st Cost Paradigm 

IPCW-HARE Original HARE Linear 
True Cost PH=F PH=T PH=F PH=T Regression 

Mean: Z=25 $30,861 $1,907 $1,798 $1,194 $1,194 $1,161 
Median: Z=25 $31,640 $1,924 $1,824 $1,208 $1,209 $1,349 
Mean: Z=35 $34,396 $1,265 $1,303 $957 $959 $794 

Median: Z=35 $35,265 $1,240 $1,278 $945 $944 $919 
Mean: Z=45 $37,745 $1,213 $1,242 $1,021 $1,028 $681 

Median: Z=45 $38,726 $1,207 $1,237 $1,032 $1,037 $771 
Mean: Z=55 $41,121 $1,335 $1,384 $1,172 $1,177 $920 

Median: Z=55 $42,206 $1,357 $1,405 $1,229 $1,242 $1,034 
Mean: Z=65 $44,605 $2,070 $2,077 $1,617 $1,624 $1,333 

Median: Z=65 $45,773 $2,071 $2,106 $1,703 $1,715 $1,507 

Caption Table 2: Empirical standard deviations over 2000 simulated datasets corresponding to Table 1. 
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Table 3: Bias of Estimates for 2nd Cost Paradigm 

IPCW-HARE Linear 
True Cost PH=F PH=T Regression 

Mean: Z=(15,0) $20,386 $511 -$1,053 -$1,410 
Median: Z=(15,0) $17,984 $1,472 $2,194 $172 
Mean: Z=(15,1) $25,452 -$1,062 -$2,089 -$1,685 

Median: Z=(15,1) $23,076 -$338 -$1,283 $146 
Mean: Z=(30,0) $38,614 -$3 $346 $2,183 

Median: Z=(30,0) $35,368 -$795 -$1,370 $4,155 
Mean: Z=(30,1) $43,695 -$866 -$1,527 $1,894 

Median: Z=(30,1) $40,595 $230 -$260 $3,995 
Mean: Z=(45,0) $64,305 $244 $817 -$1,687 

Median: Z=(45,0) $65,267 -$189 $501 -$4,375 
Mean: Z=(45,1) $69,143 $67 -$1,216 -$1,733 

Median: Z=(45,1) $70,206 -$504 -$1,677 -$4,248 

Caption Table 3: Simulation consists of 2000 data sets, each with n =200. We use the Cox propor­

tional hazards model to estimate K(.). "PH=" T: a proportional hazards model, F: covariate-by-cost 

interactions are allowed. The "true cost" is empirically obtained from a data set of size n =30,000 with 

the specified covariate pattern. The results in the "Linear Regression" column respectively correspond 

to the estimators of Lin (2000b) (rows labelled "mean") and Bang and Tsiatis (2000a) (rows labelled 

"median"). The censoring percentages for z1 = 15, 30, and 45 are approximately 20%, 35%, and 45%, 

respectively. 

Table 4: Standard Deviations for 2nd Cost Paradigm 

IPCW-HARE Linear 
True Cost PH=F PH=T Regression 

Mean: Z=(15,0) $20,386 $2,090 $2,159 $3,196 
Median: Z=(15,0) $17,984 $1,801 $1,787 $2,601 
Mean: Z=(15,1) $25,452 $2,808 $2,867 $4,541 

Median: Z=(15,1) $23,076 $2,561 $2,522 $4,458 
Mean: Z=(30,0) $38,614 $3,311 $3,422 $3,012 

Median: Z=(30,0) $35,368 $3,912 $3,962 $4,096 
Mean: Z=(30,1) $43,695 $4,247 $4,688 $4,440 

Median: Z=(30,1) $40,595 $4,964 $5,501 $5,196 
Mean: Z=(45,0) $64,305 $6,472 $7,455 $5,789 

Median: Z=(45,0) $65,267 $7,920 $8,460 $7,799 
Mean: Z=(45,1) $69,143 $8,199 $8,928 $6,662 

Median: Z=(45,1) $70,206 $9,047 $9,709 $8,256 

Caption Table 4: Empirical standard deviations over 2000 simulated datasets corresponding to Table 3. 
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Table 5: Bias of Estimates for 3rd Cost Paradigm 

IPCW-HARE Linear 
True Cost PH=F PH=T Regression 

Mean: Z=(15,0) $1,309 -$91 -$63 $1,422 
Median: Z=(15,0) $1,432 -$210 -$203 $988 
Mean: Z=(15,1) $327 -$13 -$23 -$1,5791 

Median: Z=(15,1) $356 -$43 -$56 -$658t 
Mean: Z=(30,0) $4,840 -$39 -$147 $462 

Median: Z=(30,0) $5,173 -$343 -$543 -$932 
Mean: Z=(30,1) $1,212 -$36 -$30 $107 

Median: Z=(30,1) $1,295 -$110 -$134 $224 
Mean: Z=(45,0) $9,558 $349 $74 -$1,684 

Median: Z=(45,0) $9,930 -$76 -$304 -$3,868 
Mean: Z=(45,1) $2,388 $19 $66 $1,503 

Median: Z=(45,1) $2,481 -$11 -$59 $858 

Caption Table 5: Simulation consists of 2000 data sets, each with n =200. We use the Cox propor­

tional hazards model to estimate K(.). "PH=" T: a proportional hazards model, F: covariate-by-cost 

interactions are allowed. The "true cost" is empirically obtained from a data set of size n =30,000 with 

the specified covariate pattern. The results in the "Linear Regression" column respectively correspond 

to the estimators of Lin (2000b) (rows labelled "mean") and Bang and Tsiatis (2000a) (rows labelled 

"median"). The censoring percentages for ( z1, z2) read from the top to the bottom of this table are 

respectively 49. 40, 44, 35, 34, and 28%. Bias estimates marked with a t correspond to a negative 

simulated average cost (mean or median). 

Table 6: Standard Deviations for 3rd Cost Paradigm 

IPCW-HARE Linear 
True Cost PH=F PH=T Regression 

Mean: Z=(15,0) $1,309 $169 $156 $308 
Median: Z=(15,0) $1,432 $185 $172 $574 
Mean: Z=(15,1) $327 $44 $40 $389 

Median: Z=(15,1) $356 $49 $45 $420 
Mean: Z=(30,0) $4,840 $505 $473 $446 

Median: Z=(30,0) $5,173 $573 $544 $518 
Mean: Z=(30,1) $1,212 $130 $120 $176 

Median: Z=(30,1) $1,295 $145 $130 $147 
Mean: Z=(45,0) $9,558 $1,154 $1,046 $737 

Median: Z=(45,0) $9,930 $1,230 $1,195 $681 
Mean: Z=(45,1) $2,388 $270 $259 $389 

Median: Z=(45,1) $2,481 $314 $277 $352 

Caption Table 6: Empirical standard deviations over 2000 simulated datasets corresponding to Table 5. 
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Table 7: Mean 4-Year Costs for Various USRDS Subgroups; 66-75 years old 

Race and Hemodialysis Peritoneal Dialysis 
Gender Diabetic Non-diabetic Diabetic Non-diabetic 

White Male $142,900 $125,562 $105,369 $114,133 
(10,423) (7,567) ( 4,405) (7,300) 

Black Male $161,011 $147,759 $132,847 $132,751 
66-70 (16,930) (16,322) (9,867) (14,069) 

years old White Female $144,042 $124,891 $103,910 $112,262 
(11,080) (7,158) (3,933) (7,418) 

Black Female $160,843 $148,205 $134,043 $132,788 
(15,647) (16,389) (9,628) (14,171) 

White Male $120,977 $125,838 $105,430 $112,041 
(11,721) (6,744) (5,020) (4,932) 

Black Male $141,727 $149,886 $133,481 $132,918 
71-75 (15,999) (15,178) (10,800) (13,503) 

years old White Female $124,005 $125,527 $106,594 $113,072 
(10,050) (6,005) (4,402) (5,654) 

Black Female $142,219 $148,195 $133,614 $132,337 
(13,533) (15,707) (10,286) (13,654) 

Caption Table 7: Estimated mean costs obtained using IPCW-HARE. Numbers in parenthesis are stan­

dard errors based on 1000 bootstrap replications. Censoring percentages by column are approximately 

20%, 24%, 17%, and 12%. 

Table 8: CERs Based on Means and Medians for Various USRDS Subgroups 66-70 years old 

Race and Hemodialysis Peritoneal Dialysis 
Gender Diabetic Non-diabetic Diabetic Non-diabetic 

White Male $5,309 $4,396 $4,104 $3,921 
Mean Black Male $5,149 $4,590 $4,095 $4,062 
CER White Female $5,179 $4,386 $4,025 $3,843 

Black Female $4,980 $4,587 $4,132 $4,054 
White Male $4,688 $4,002 $3,646 $3,481 

Median Black Male $4,153 $3,305 $3,574 $3,214 
CER White Female $4,338 $4,002 $3,646 $3,481 

Black Female $3,915 $3,305 $3,574 $3,214 

Caption Table 8: For each USRDS subgroup and covariate pattern, the mean cost-effectiveness ratio 

(CERs) is computed by taking the appropriate entry from Table 7 and dividing it by the corresponding 

average survival time, measured in months and truncated at 4 years. Median CERs are computed 

similarly (median costs and survival for these subgroups not shown). 
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6 Technical Appendix 

Proposition 1 Suppose that K(XIZ) > 0 with probability one. Further, assume P{A/K(XIZ) > 

0} > 0 and SUPu,z IR(uiz)- K(uiz)l ~ 0. Then, with probability tending to one, there exists a unique 
~ ~ p 

solution f3 such that f3 -+ /3*, where /3* E IRP is the unique maximizer of the strictly concave function 

E[t'1 (/3)] with t'1 (/3) being given by (3). 

Proof of Proposition 1: 

Andersen and Gill (1982) make use of concave function theory to prove consistency of the regression 

parameter under Cox's proportional hazards model. The HARE model, for a fixed set of basis functions, 

has a nice exponential family structure that allows direct use of Theorem ILl and Corollary II.2 of 

Andersen and Gill (1982) for proving consistency of the p-dimensional solution vector (j. 

Let B be any open convex subset of IRP and define 

The exponential family structure of the HARE model (see e.g. Kooperberg et al., 1995a, §3) ensures 

the likelihood contributions t'i(/3), i = 1 ... n are concave functions of f3 E E. The assumptions of the 

proposition imply that, with probability tending to one, the weights Wi = Ai/ K(XiiZi), i = 1 ... n are 

nonnegative, finite, and such that Wi > 0 for at least some i. It follows that H(/3) forms a random 

sequence of concave functions in f3 E B (cf. Hiriart-Urruty and Lemarechal, 1996, Proposition 2.1.1). 

Moreover, for each f3 E B, H(/3) ~ E[t'1 (/3)], wh~re E[t'I(/3)] is itself concave. Hence, by Theorem ILl 

of Andersen and Gill, sup/3EB IH(/3)- E[t'I(/3)]1 ~ 0 for any compact set B C E. 

The results of Kooperberg et al. (1995b) imply that E[t'1 (/3)] has a unique maximum at f3 = (3*. Since 

our choice of B above is in fact arbitrary, let B be chosen such that /3* E B C B. Then, since 7J maximizes 

H(/3), it follows by Corollary II.2 of Andersen and Gill (1982) that 7J ~ /3*, proving the desired result. 

0 

Proposition 2 Suppose the hazard function for censoring follows the Cox proportional hazards model 

>.c(uiz) = >.0c(u)exp{rJ'z}. Forthe data (Xi,l-Ai,Zi)i = 1. . . n, let::Y and Aoc(t) be obtained in the 

usual manner, and assume the conditions of§ VII.2.2 of Andersen et al. {1993} hold. Then, 

n 

.;nsipcw(/3*) = n-1/ 2 L ¢(Yi, xi, Ai, Zi, (3*' 1'o) + Op(l) 
i=l 

where 
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Mf(u) = J{X; :S u,~; = 0}- lou I{Xi ~ s}A.c(siZ;)ds, 

and g(u, V;, T;, Z;, (3*, "Yo) is given in (16}. 

Proposition 3 Consider the same setting as Proposition 2. Let S~vcw ((3) denote the derivative of 

Sipcw(f3) with respect to (3, and suppose that -S~pcwU3*) ~ M(/3*), where M = M(/3*) is nonsingu­

lar. Then, 

vn(73-!3*) 4 N(o,M-1QM-1 ) 

for Q = E[w(Y, X,~' Z, (3*, /'o)wT(Y, X,~' Z, (3*, /'o)]. In particular, with v02 = vvT for any vector v, 

Q = E [{SI(/3*)}02] - to {wo(u,/3* ,/'o)}02 dAoc(u)- Ah-l AT (8) 
K(TIZ) Jo so(u,/'o) 

where h-1 is the asymptotic variance of fo(-;y- "Yo) and so(u, "Yo), A = A(/3*, "Yo) and w0(u, (3*, "Yo) are 

respectively defined in ( 13 )- ( 15). 

REMARK: The matrix Q is derived directly from (7). Using the fact that Mf (·), i = 1. .. n are 

orthogonal local square-integrable martingales with respect to a conveniently defined filtration (e.g., 

see Zhao and Tsiatis, 1997), the calculations involve simple and well-known variance and covariance 

identities for martingales. Estimation of Q may be carried out using appropriate approximations for 

each of the terms in (8). However, to ensure positive definiteness, it is preferable to compute Q via 

n-1 "LJ$i;f'[, where ;f; is obtained from (7). In either case, the functions w0(u,(3*,/'o) and matrix 

A(/3*, "Yo) must be recomputed every time a basis function is added or deleted during the model building 

phase. 

REMARK: The results in Propositions 2 and 3 in no way depend on S;(/3) being the particular full data 

score derived under model (1). In fact, these asymptotic representations continue to apply to any mean 

zero function of the full data having finite variance, provided K (·I·) is estimated via a Cox model. Hence, 

for example, our results contain those of Lin (2000b) for a single time interval as a special case. 

Proof of Proposition 2: 

We suppose Z is q x 1 and f3 is p x 1. Also, for any vector v, we let v00 = 1, v01 = v, and v02 = vvT. 

We may write 

~ ~; = ~i _ ~ ~; (K(XiiZi) _ 1) . 
K(X;IZi) K(XiiZi) K(XiiZi) K(XiiZi) 

(9) 

As pointed out in Andersen et al. (1993, §VII.2.3), there are a variety of different, yet asymptotically 

equivalent, ways to estimate K(·lz) based on -;y and Aoc(t). Let us assume K(·iz) is estimated as in 

(7.2.34) of Andersen et al. (1993); then, employing the Duhamel equation (cf. Andersen et al., 1993, 

eqn. 2.6.5), 

(10) 
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where Li(u) = Ac(uiZi)- Ac(uiZi), Ac(siZi) = Aoc(s) exp{::yT Zi}, Ac(siZi) = Aoc(s) exp{!'J' Zi}, and 

Ri(u) = I{Xi ~ u}. Using (9) and (10), we thus find 

(11) 

Using results in Andersen et al. (1993, pp. 503-506), it is not difficult to establish that, for a given 

Z = z* and t > 0, the following expansion holds for Ac(tlz*)- Ac(tlz*): 

where 

J(t,')'o,z*) = exp{'yg' z*} ( (z*- 81 ~u,')'o~) dA0c(u), 
lo so u,')'o 

(13) 

and M0 (u) = "L.j=1 M{(u) for M{(u) = I{Xj:::; u,6.j = 0}- J0uYj(s)dAc(s1Zj)· Substituting (12) 

into (11) (i.e., with z* = Zi) and rearranging terms, 

. * __ 1 ~ 6.iSi(f3*) ~(~ ) -1 ~ roo [ -1 ~ ·( . * l dMf(u) -1/2 
S,pcw(f3 ) - n ~ K(XiiZi) +A ')'- ')'o + n ~ Jo n ;;;. ~1 u)S3 ((3 ) so(u, "Yo) + op(n ) 

where 

APXQ = roo [n-1 t~i(u)Si(/3*) (zi- 81 (U,')'o))T] dAoc(u). 
lo i=1 so(u,')'o) 

and 
6,.i T 

~i(u) = K(XiiZi) Ri(u) exp{/'0 Zi}· 

Let b(V, T, Z) be any bounded function of the full data vector (V, T, Z). Then, since 6.! {X ~ u} = 
6.! {T ~ u }, it is easy to show that 

E[~(u)b(V,T,Z)] = E[I{T ~ u}exp{'yg'Z}b(V,T,Z)], 

and hence that 

~i, In-' t,<;(u)b(V;,T;, Z;)- E[I{T 2 u}exphfZ}b(V,T, Z)]l !; 0 

(e.g., Pollard, 1990, Theorem 8.3). Thus, 

S . ((3*) _ -1 ~ [ 6.i S·(f3*) roo Wo(u,(3* ,')'o)dMc( )] A(~_ ) ( -1/2) 
tpcw - n ~ K(XiiZi) • + Jo so(u,')'o) i u + ')' ')'o + Op n ' 

where A= Apxq(.B*,')'o), 

APXQ((3*,')'o) = roo (w1(u,(3*,')'o) -wo(u,(3*,')'o) 8rt,')'oj) dAoc(u), 
lo so u,')'o 
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and 

(15) 

Finally, since 

(cf. Andersen et al., 1993, §VII.2.2), it follows that 

n 

..fii,Sipcw(f3*) = n-l/2 .2::: '1/J(}i, xi, Ai, zi, j3*' 'Yo)+ Op(l) 
i=l 

where 

with 

( Tr T z j3* ) wo(u,j3*,'Yo) A(j3* )"-1( ) (z sl(u,')'o)) g u, vi, i, i, , 'Yo = ( ) + , 'Yo L.. 'Yo i - ( ) . 
so u, 'Yo so u, 'Yo 

(16) 

Noting that 
Ai _ 1 _ { 00 dMf(u) 

K(XiiZi) - } 0 K(uiZi) 

(e.g., Strawderman, 2000, Lemma 1), one may rewrite the contribution of individual i as 

a form useful for variance calculations ( cf. Zhao and Tsiatis, 1997). 
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