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ABSTRACT 

A per-run measure of D-optimality is given for designs with unequal 

numbers of runs. The measure is illustrated with examples. Although the 

number of runs may vary with the design, the parameter set should be 

similar and perhaps the same for all designs being considered. Some 

comments are made relative to this and illustrated with examples. 

INTRODUCTION 

Situations arise wherein an investigator desires to determine the 

relative merits of a group of treatment designs which have different 

numbers of runs. For example, several fractional replicates may be under 

consideration for a particular investigation. If one uses D-optimality, 

i.e., the determinant of X' X where X is the design matrix for a 

single-degree-of-freedom set of parameters, the design with the larger 

number, r, of runs, may turn out to have the larger value simply because 

there are more runs. In order to offset this and to take account of the 

number of runs it is suggested that the following per-run P-opt1ma11ty 

measure could be used: 

IX'XI/r • D 
r 

where 1·1 is the value of the determinant. 

* In the Technical Report Series of the Biometrics Unit, Cornell 
University, Ithaca, NY 14853, U.S.A. 



-2-

The above measure may be criticized on the ground that it does not take 

into account the incr~ase in every diagonal element of X'X when more runs 

are included. To take account of this, it is suggested that D-optimality 

for fractions with different numbers of runs be measured by 

I! X'XI = D . r rm 

This corresponds to using variances and covariances rather than sums of 

squares and cross products. Such a measure as this appears to 

overcompensate and hence is not used here. 

Some examples illustrating these measures are presented below. Also, 

the selection of a relevant set of parameters as the estimable parameter 

set is a problem. It is noted that this set may vary from fraction to 

fraction. 

EXAMPLE 1 

Let design 1 be the fractional replicate for r = 9 runs obtained from a 

latin square of order 3. The design is: 

Combinations (Y) 
Column 

Row 0 1 2 0 0 0 0 1 2 2 0 
0 1 2 1 2 0 2 2 

0 0 1 2 0 2 1 2 2 l l 0 
l 2 0 l 1 0 1 1 2 2 0 l 
2 l 2 0 l l 0 2 

The corresponding contrast design matrix X, parameter vector II and 

observation vector Y is 

l l 1 1 l l 1 l l M Yoooo 
1 l 1 0 -2 -1 1 0 -2 A1 y0121 
1 1 1 -1 1 0 -2 -1 1 A2 y0212 
1 0 -2 1 1 0 -2 0 -2 B1 y1011 

XII = 1 0 -2 0 -2 l l -1 1 B2 • E yll02 = E(Y) 

1 0 -2 -1 1 -1 1 1 1 c1 y1220 

1 -1 1 1 1 -1 1 -1 1 c2 y2022 
1 -1 1 0 -2 0 -2 1 1 D1 y2110 

1 -1 1 -1 1 1 1 0 -2 D1 y220l 

where E [·) denotes expectation. 
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The determinant of X'X is 

9 0 0 0 0 0 0 0 0 

0 6 0 0 0 0 0 0 0 

0 0 18 0 0 0 0 0 0 

IX'XI • 0 0 0 6 0 0 0 0 0 - 9·6~ ·18~ - 1,224,440,064. 

0 0 0 0 18 0 0 0 0 

0 0 0 0 0 6 0 0 0 

0 0 0 0 0 0 18 0 0 

0 0 0 0 0 0 0 6 0 

0 0 0 0 0 0 0 0 18 

Since there were r • 9 runs, 

Dg = I X I X l/9 - 9 • 6'~ • 18'~ /9 • 6'* • 18'* • 

The aliasing structure and degrees of freedom for the above fractional 

replicate is: 

Effect Degrees of Freedom 

M l::$ AB2c 1 

A l::$ BC2 + ABC 2 2 

B l::$ AC + ABC 2 

c l::$ AB2 + AB2c2 2 

AB l::$ Ac2 + BC 2 

where l::$ means confounded with and the effects are geometrical components 

(see e.g., Federer, 1955). The estimable parameter set isM, A1 , B1 , C1 , 

A 2 , B2 , C2 and contrasts among the levels of the geometrical component of 

interaction AB. 

EXAMPLE 2 

A competing design for three factors at three levels would be a 

response surface design with 4 center points and 2 3 corner points. 

XP • E(Y) would be 



1 1 1 1 -1 1 -1 -1 -1 

1 1 1 -1 -1 -1 -1 1 1 

1 1 1 1 l 1 1 1 l 

1 1 1 -1 l -1 1 -1 -1 

1 -1 l l -1 -1 1 -1 1 

1 -1 1 -1 -1 1 1 1 -1 

l -1 l 1 1 -1 -1 1 -1 

1 -1 1 -1 1 1 -1 -1 1 

1 0 -2 0 0 0 0 0 0 

1 0 -2 0 0 0 0 0 0 

1 0 -2 0 0 0 0 0 0 

1 0 -2 0 0 0 0 0 0 
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M 

A1 

A2 

B1 

c1 

A1B1 

A1c1 

B1Cl 

A1B1C1 

= E 

y002 

y022 

Yooo 
y020 

y202 

y222 

y200 

y220 

y1ll 

y11l 

yl11 

yll1 

Note that the contrasts are different than for design 1 and that A2 , B2 , 

and C2 are completely confounded with each other, which is the reason for 

omitting B2 and C2 in the parameter vector ~. 

A1 B1 C1 • The absolute value of the determinant of X'X is: 

12 0 0 0 0 0 0 0 0 

0 8 0 0 0 0 0 0 0 

0 0 24 0 0 0 0 0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 8 0 0 0 0 0 

0 0 8 0 0 0 0 

0 0 0 8 0 0 0 

0 8 0 0 8 0 0 

0 0 8 0 0 8 0 

0 0 0 8 0 0 8 

• 12(24)(87 ) a 603,979,776 . 

The aliasing structure in terms of the geometrical effects is rather 

complex. For the aliasing structure in terms of contrasts as given in ~ 

above, the aliasing structure may be obtained as follows. Let x27 be the 

contrast matrix for a 33 factorial. Partition x27 as 
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where x 9x9 is the first nine rows of the above X matrix which is the design 

matrix for the vector of means for the nine distinct treatments. Then, 

X9x9 P + x 9xlB P0 = E(Y) where P0 is the parameter vector for the remaining 

contrasts from a 33 factorial not included in P above. Then 

P + (x9x9x9x9)-1x9x9x9xl8 Po= P + APo = (x9x9x9x9)-1x9x9E(Y) • 

where A denotes the aliasing structure of other effects with those in p. 

EXAMPLE 3 

Consider the design given in Table 8A.8 in Cochran and Cox (1957) for 

k = 3 factors A, B, and C. The contrast matrix X, the parameter set vector 

a. and the vector of observations y are: 

XP a 

1 -1 -1 -1 1 1 1 -1 c c c c 2 

1 1 -1 -1 -1 -1 1 1 c c c c 2 

1 -1 1 -1 -1 1 -1 1 c c c c2 

1 1 1 -1 1 -1 -1 -1 c c c c 2 

1 -1 -1 1 1 -1 -1 1 c c c c2 

1 1 -1 1 -1 1 -1 -1 c c c c 2 

1 -1 1 1 -1 -1 1 -1 c c c c 2 

1 1 1 1 1 1 1 1 c c c c2 

1 a 0 0 0 0 0 0 e d d de 

1 -a 0 0 0 0 0 0 e d d d 

1 0 a 0 0 0 0 0 d e d de 

1 0 -a 0 0 0 0 0 d e d de 

1 0 0 a 0 0 0 0 d d e d2 

1 0 0 -a 0 0 0 0 d d e d 2 

1 0 0 0 0 0 0 0 d d d d2 

1 0 0 0 0 0 0 0 d d d d2 

1 0 0 0 0 0 0 0 d d d d2 

1 0 0 0 0 0 0 0 d d d d 2 

1 0 0 0 0 0 0 0 d d d d 2 

1 0 0 0 0 0 0 0 d d d d 2 

M 

A1 

B1 

cl 

AlB1 

A1cl 

B1Cl 

AlBlC1 

A2 

B2 

c2 

A2B2 

= E 

Yooo 

y200 

y020 

y220 

y002 

y202 

y022 

y222 

y(a+l)ll 

y(-a+l)l1 

yl(a+l)l 

yl(-a+l)1 

yll(a+l) 

y11(-a+l) 

ylll 

ylll 

ylll 

ylll 

ylll 

ylll 
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Note that the mean of the last column needs to be subtracted from each 

element of that column to form a contrast set. In the above a = 2. 75 s 

.6818, c • .3172, d • -.6828, e = 2.1456, de= -1.4651, d 2 = .4663, and 

c2 = .1006. 

together with the above set. Since there are 15 distinct combinations, 

three additional parameters are estimable. These were not determined but 

could be if desired. 

For the above, 

20 0 0 0 0 0 0 0 0 0 0 0 

0 b 0 0 0 0 0 0 0 0 0 0 

0 0 b 0 0 0 0 0 0 0 0 0 

0 0 0 b 0 0 0 0 0 0 0 0 

0 0 0 0 8 0 0 0 0 0 0 0 

IX'XI = 0 0 0 0 0 8 0 0 0 0 0 0 = 20b 3 8~ (2.0850)(12.9321)(15.9997)(23.4126), 

0 0 0 0 0 0 8 0 0 0 0 0 

0 0 0 0 0 0 0 8 0 0 0 0 

0 0 0 0 0 0 0 0 f g g h 

0 0 0 0 0 0 0 0 g f g h 

0 0 0 0 0 0 0 0 g g f h 

0 0 0 0 0 0 0 0 h h h i 

where b = 8+22 "5 s 13.6569, f = 14.6743, g = -1.3254, h • -6.5781, and i = 

10.4065. 

20(13.6569)383(3,077.9006) = 2,608,292,814(3077.9006). 

Since there are 15 distinct combinations, there are 15 parameters in 

p. There are r = 20 runs. The sum of squares among the six responses Y111 

provides an error for testing effects. A usual way for partitioning 

degrees of freedom among the 20 observations is: 
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Source of Variation 

Total 

Correction for mean 

First order efects (A1 ,B1 ,c1 ) 

Second order effects (A2 ,B2 ,c2 ,A1B1 ,A1c1 ,B1C1 ) 

Lack of fit (remaining parameters) 

Error 
COMPARISON OF DESIGNS 

Degrees of Freedom 

20 

1 

3 

6 

5 

5 

Note that designs can be compared on the basis of the set of 

parameters in a, the determinants of X'X, and/or other criteria (see e.g., 

Ra k toe e t a 1. , 1 9 81 , Chapter 5) . The usual situation in regard to 

D-optimality is that a is implicitly assumed to be fixed and the same for 

all the designs in the class being compared. For response surface 

situations, the restrictions are not so rigid regarding a. Here a may be 

partitioned into first order parameters, second order parameters, and lack 

of fit parameters. The first two are clearly defined but the last is not. 

Lack of fit parameters for the a in Example 1 are AB a AC 2 s BC while for 

Example 3, they are A1B1c1 , A2B2 , and three other parameters. In Example 

2, the lack of fit parameter is A1B1c1 and the second order parameters are 

may not be a problem if A2 ,B2 and c2 all respond in the same direction. 

Despite the above, an investigator might be interested in the design 

in Example 1 plus the fold-over fraction (see Raktoe and Federer, 1986), 

with r = 18 runs versus the design of Example 3 with r • 20 runs. Then for 

whatever set of parameters under consideration the X'X matrices are 

determined for each design. Then, to compare the relative efficiencies of 

the two designs, one takes the determinants of X'X for each design and 

divides by the number of runs; then, the ratio of these two values, i.e., 

D18 ;o20 is one measure of the relative efficiencies of the two designs. A 

fold-over design for the design in Example 1 is: 
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Design of Example 1 Fold-Over Design 

000 222 

OI2 210 

021 201 

I01 121 

110 112 

I22 100 

202 020 

211 011 

220 002 

For the above 2/3rds fraction of a 33 , the main effects are not 

confounded with two-factor interaction effects. For the parameter vector 

a• - [M, A1, B1' c1, A2, B2, c2, A1B1' A1c1' B1c 1 ], the design matrix X is 

I 1 I I I 1 1 I I I Yooo 
1 1 I 0 -2 -1 I 0 -1 0 y012 

1 1 I -1 I 0 -2 -I 0 0 y021 
1 0 -2 I 1 0 -2 0 0 0 y101 
1 0 -2 0 -2 I 1 0 0 0 M y110 

1 0 -2 -I I -1 I 0 0 I AI y122 
I -1 I I I -1 1 -I 1 -I A2 y202 

I -1 1 0 -2 0 -2 0 0 0 B1 y211 

1 -1 I -1 1 1 1 1 -1 -1 BI • E y220 

1 -1 I -1 1 -1 I 1 1 I B2 y222 
1 -1 1 0 -2 1 1 0 -1 0 c1 y210 

1 -1 1 1 1 0 -2 -1 0 0 c2 y20I 
I 0 -2 -1 1 0 -2 0 0 0 A1B1 y121 

1 0 -2 0 -2 -1 1 0 0 0 Aiel yl12 

1 0 -2 I 1 1 1 0 0 1 B1CI YIOO 
1 1 1 -1 1 1 1 -1 1 -1 y020 
1 1 1 0 -2 0 -2 0 0 0 YOll 
I 1 I I I -1 1 1 -I 1 y002 
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18 0 0 0 0 0 0 0 0 2 

0 12 0 0 0 0 0 0 0 2 

0 0 36 0 0 0 0 0 0 -4 

0 0 0 12 0 0 0 0 0 2 

IX'XI = 0 0 0 0 36 0 0 0 6 2 - 268,469,821,440 . 

0 0 0 0 0 12 0 0 0 -2 

0 0 0 0 0 0 36 6 0 2 

0 0 0 0 0 0 6 8 -2 4 

0 0 0 0 6 0 0 -2 8 0 

2 2 -4 2 2 -2 2 4 0 8 

Then D18 tn20 = (268,469,821,440/18)/(80,300,177,774.6/20) = 3.34(20/18) • 

3.7, indicating the design with 18 runs (denoted as Example 4) is nearly 

four times better using D-optimality as a criterion. 

parameter set for the two designs is the same. 

Another way to compare the designs is as follows: 

Note that the 

Degrees of freedom for Example 

Source of variation l 2 3 4 

Total 9 12 20 18 

Correction for mean l 1 1 1 

First order effects 3 3 3 3 

Second order effects 3 4 6 6 

Lack of fit terms 2 1 5 8 

Error amon 0 3 5 0 

Note that some "lack of fit" effects may sometimes to be nonexistent and 

hence could be considered to be a measure of error variation. 
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