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Abstract: There IS a widespread concern that published results In 

most disciplines are highly biased in favor of statistically 

significant outcomes. We propose a model to explicitly account for 

publication bias using a weight function that describes the 

probability of publication for a particular study in terms of a 

selection parameter. A Bayesian analysis of this model using flat 

priors on both the parameter of interest and the selection parameter 

is carried out using Gibbs sampling to calculate the posterior 

distributions of interest. The model is studied in detail for the 

case of a single observed result and then extended to provide a 

method for interpreting meta analyses. We consider models In which 

the probability of publication for a study might depend on other 

characteristics of the study, In particular on the size of the 

study. Finally we apply our model to a published meta analysis 

which examines the effect of coaching on scores on the Scholastic 

Aptitude Test. 



Section 1 - Model and Notation 

A researcher reading an article in a scientific journal 

observes a p-value, x. If the reader is interested In estimating 

some parameter 8 related to x, and knows the distribution f(xjB), 

then any usual statistical procedure (maximum likelihood, Bayesian 

methods, etc.) could be invoked. If e IS a standardized mean 

difference, or effect size, In a two sample problem with known and 

equal variances for the two populations then we can write B=(p2 -p1 )/u 

where we consider p2 the mean of the treatment population, p 1 the 

mean of the control and u is the common standard deviation. We can 

show (Cleary, 1993) that the density of the p-values is given by 

2 
f(x!B) = exp(<I>- 1 (1-x)·~·B- n:) where n is the common sample size 

for the treatment and control groups. 

Suppose that the reader suspects that the journal in question 

publishes all submitted results that are statistically significant 

at some level a, but is less likely to publish articles with x > a. 

In this case any estimate of B should take this selection bias into 



-2-

account. If we assume that non-significant results are published 

with probability p, we can model the selection bias with the weight 

function w(xlp) - I + p I Then the observed value of x - [x<a] · [x~a]. 

is actually coming from the distribution 

g(xiB,p) = f(xiB)·w(xlp) 
E(w(xlp)) 

Throughout this discussion we take a=.05. 

( 1.1) 

This model and others similar to it have been studied from 

several points of view. Bayarri and DeGroot ( 1986,1991) focused 

attention on publication bias by considering estimates of B from the 

above, but only for the cases p = 0 and p = 1. Iyengar and 

Greenhouse (1988) discuss joint maximum liklihood estimation of e and 

p. Cleary (1993) presents a range of values for B by computing 

maximum likelihood and Bayes estimates as functions of p. The 

papers of Dear and Begg (1992) and Hedges (1992) propose similar 

weighted models. 

In the following we consider joint Bayes estimation of the 

parameter of interest, e, and the selection parameter, p. We begin 

in section 2 with the case of a single observed x, using flat priors 

on e and p. We apply Gibbs' sampling to determine the posterior 

distributions of interest, and we examine some of their properties. 

In section 3 we expand the model to consider an application in meta-

analysis with p constant for all studies. Then in section 4 we 

consider a model in which the size of the selection parameter for an 

individual study is determined by some of the characteristics of the 
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study itself. These meta-analytic methods also rely on the Gibbs' 

sampler, as described by Gelfand and Smith (1990), (see also Casella 

and George (1992) for an introduction) to determine the posteriors. 

In section 5 we examine the application of our model to a meta-

analysis of the effects of coaching on SAT scores reported by 

DerSimonian and Laird (1983). 

Section 2 - Estimation for a Single Study 

Our goal 1n this section is to use Bayes methods to find 

estimates forB and p 1n the model (1.1) as above. We note that upon 

computing the expected value in the denominator, this expression can 

be written as 

g(xiB,p) 
exp(4>-1(1-x)· f!LB- nB2)·[I[ ] + p·I[ ]] \j2 4 x<a x~a 

= 
1- (1-p)·4>(4>- 1(1-a)- ~·B) 

(2.1) 

Throughout this section we consider x to be the p-value from a one-

sided test of the hypothesis H0 : B = 0 vs. H1 : B > 0. Choosing 

priors ~(B) and ~(p) so that the calculation of posteriors would be 

analytically tractable seems difficult or impossible. We will use 

the flat priors ~(B)=:1, -oo < B < oo, and ~(p)=:1, O:Sp:Sl. These 

priors are a sensible starting place if we assume there is limited 

prior knowledge of the sizes of the parameters, and they make a good 

starting point for exploring the methodology. The conditional 

posterior distributions can then be written out as 



1r(B!x,p) 

1r(p!x,B) 

-4-

= 00 
g(xiO,p) ·7r(O) 

J g(xiO,p)·7r(O) dB 
-00 

= 1 
g(x!B,p)·7r(p) 

fg(x!B,p)·7r(p) dp 
0 

and (2.2) 

.(2.3) 

Before discussing the numerical work necessary to carry out the 

Gibbs sampling algorithm, we make some observations on the behavior 

of 7r(plx,O) for some special cases. 

2.1 - Limiting Behavior of the Posteriors 

A reader observing a single significant p-value in a journal 

could, depending on their attitude about publication bias, interpret 

that result in two very different ways. If unconcerned with 

publication bias they would take any given estimates at face value. 

If certain that publication bias exists they may dismiss the result 

as a Type I error that found its way into publication. Because the 

range of reasonable interpretations is so large it is important that 

any model claiming to shed light on publication bias be well 

understood in the extreme cases. In this section we consider the 

limiting behavior of the posterior (2.2). 

Looking carefully at the formula for 7r(plx,O) in equation 2.3 

and substituting g(x!B,p) from (2.1) while setting 7r(p)=1 we get 

7r(plx,B)= 
[I[ J+p·Ic JJ/(1-(1-p)·~c~- 1 (1-a)- lli.o)) x<a x ~a \12 . (2.4) 
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Though complicated, this expression can be evaluated exactly by 

considering separately the cases x<a and x2a. Using the shorthand 

A= A(B) = ~(~- 1 (1-a) -~-B), 

the denominator of ~(pJx,B) can be evaluated as follows: 

For x<a, 

1 1 
l1- ( 1-p) · A dp = 

-ln[1 - A] 
A 

For x 2 a, 

1 p 

l1-(1-p) ·A dp = 
A+ (1- A)·ln(1- A) 

A2 

Substituting these expressions back into equation (2.4) gives us an 

expression for ~(pJx,B) which depends on the significance of x. The 

next two theorems note the asymptotic behavior of ~(pJx,B). We first 

consider the case where x<a, which corresponds to the observation of 

a significant p-value. 

Theorem 2.1: For x<a, we have 

a.) lim ~(pJx,B) = 
8-t-00 

0 if p:f;O 

00 if p = 0 

b.) lim ~(pJx,B) = 1 for all p. 
8-+oo 

Proof: Evaluations of the limits are straightforward. 
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These results show that the model behaves sensibly for extreme 

values of (}. Examining part (a.) in practical terms we reason as 

follows. We have observed a significant p-value x. If (} is actually 

very small, say a negative number of large magnitude, this i~ very 

unlikely. We would expect almost all results to be non-significant. 

The fact that the one observed value 1s significant 1s strong 

evidence of publication bias, and sends all of the posterior mass to 

be concentrated at p=O. In (b.) the increasing value of (} makes it 

very unlikely that a non-significant x would ever be observed. 

Since any study will be published if it shows a significant result, 

the selection bias mechanism does not come into play and thus little 

information about the selection parameter 1s acquired. The 

posterior tends to retain the uniform shape of the prior. 

We now examine the behavior of ~(plx,B) in the case when x ~ a, 

which corresponds to the observation of a non-significant p-value. 

Theorem 2.2: For x ~ a, we have 

a.) lim ~(plx,B) = 1 . 
B--+-oo 

b.) lim ~(plx,B) = 2p . 
B--+oo 

Proof: The evaluations of the limits with L'Hopital's Rule are 

straightforward. 

Again these results make sense in light of the model 1n use. 

Part (a.) tells us that if the effect s1ze 1s very small, 

observation of a single non-significant study does not provide much 
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information about the selection parameter. The result 1n (b.) 1s 

also not surprising, it indicates that observation of a p-value 

greater than a when B is actually large means that it is likely that 

p is quite large. Overall, the effect of these two theorems IS to 

suggest that the model employed 1s a reasonable one. 

2.2 - Implementing the Gibbs Sampler 

Now we return to the question of computing numerical estimates 

for B and p, applying the Gibbs sampling algorithm to the posteriors 

1r(Bix,p) and 1r(plx,B). By choosing a starting value for p, call it 

Po, we can iteratively sample between these two conditionals for a 

given x. More precisely we choose Bj by sampling at random from the 

distribution 1r(Bix,pj_ 1), then choose Pj by picking randomly from 

1r(plx,Bj). This produces two interlocking Markov chains whose 

stationary distributions are 1r(Bix) and 1r(plx). We can then use 

usual Bayes measures, such as the posterior mean or median, as our 

estimates of B and p. 

Application of the Gibbs sampler depends on being able to 

sample at random from the distributions 1r(Bix,p) and 1r(plx,B). Due 

to the complicated expressions for these distributions, this must 

also be done using another Markov chain method, the Metropolis 

algorithm (Metropolis et. al. 1953, Tierney 1991). 

Table 2.1 presents the posterior means for B and p for various 

values of x. In each study we assume that control and treatment 
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sample sizes are both 20. The means are based on 1000 observations 

each from 1r(Bix) and 1r(plx) after ignoring the first 100 values. 

This waiting period was chosen after testing sets of 100 

observations beyond the first 100, and noting no major chang~s 1n 

the means or standard deviations from set to set. Also presented 1n 

the table is the MLE for B calculated at the posterior mean for p. 

Table 2.1: Posterior means based on 1000 Gibbs sampling iterations. 

X E(plx) E(Bix) B E(pix) 

.001 .4997 .9301 .9470 

.010 .4931 .6470 .6678 

.045 .4614 .3997 .4380 

.100 .5663 .2889 .3368 

.250 .5747 .1802 .1674 

The standard deviations of the estimates in table 2.1 range 

from .0082 to .0098. Individual values of B and p both have standard 

deviations of approximately .28 throughout the range of the table. 

Two features of table 2.1 stand out immediately. First, we see 

that our mean for p varies only slightly from the prior mean of 0.5. 

This makes sense as the observation of a single study can obviously 

tell us very little about the selection process. It is worth noting 

that the appearance of a value that is just barely significant 

causes the lowest estimate of the selection parameter. 

with our intuition. 

This agrees 

Secondly we see that the posterior means for B are 1n relatively 
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good agreement with the MLE evaluated at the posterior mean for p. 

This is no surprise as the flat prior Bayes estimate when there is 

no selection parameter is essentially the likelihood estimate. For 

the single study case we thus have little reason to prefer the_ more 

complex Bayes approach over simply evaluating the MLE for (} when 

p=.5. In the next section we discover that in the meta-analysis case 

we can begin to learn more about the value of p and make joint 

estimation less problematic. 

Section 3 - Gibbs Sampling and Meta-analysis with Constant p 

We expand the model of the previous section to the meta-

analysis case. We begin by examining the case in which the 

selection parameter p is constant across studies. The analysis is 

very similar to section 2.2. We again choose the flat priors 

1r(O)=:l and 1r(p)=:l. Here we assume we have observed the p-values 

for k independent tests of hypothesis as described previously, we 

denote these by x = (x1 , ... ,xk). Similarly we let ni represent the 

control and treatment sample sizes if they are identical, or we may 

use mi to stand for the harmonic mean of the control and treatment 

sample sizes if these are different. 

The joint density of the xi's can be written as 

g(xiO,p) 
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It is this distribution that we use to find the form of ~(plx,B) and 

~(Bix,p). In this case the choice of the flat priors means that the 

conditional posteriors will simply look like g(xiB,p) divided by the 

appropriate marginal. We can then apply the Gibbs sampler as 1n the 

previous section. 

Table 3.1 contains the results of this procedure carried out 

for a meta-analysis of k=4 studies, using several x values. We 

again print the posterior means for p and B based on 1000 

observations from the posteriors ~(pix) and ~(Bix), and for 

comparison we provide the MLE for B evaluated at the mean of the p 

values. In the table we assume each study had sample sizes of n=20 

for both control and treatment groups. 

Table 3.1: Posterior means based on 1000 Gibbs sampling iterations. 

Meta-analysis case. 

Case X E(plx) E( B I x) 8 E(pjx) 

1 (.001,.001,.001,.001) .4672 .8957 .9450 

2 ( .010, .010, .010, .010) .3804 .5842 .6398 

3 (.045,.040,.035,.030) .1191 .1408 .3021 

4 ( . 080' . 060' . 040' . 020) .5513 .4364 .4598 

5 ( .400' . 300 ' . 200' . 100) .6366 .1753 .1902 

Notice that the observation of several studies all of which are 

just barely significant (Case 3) causes the estimate of p to be very 

low. The relatively small size of the posterior means for B compared 

to the MLE's evaluated at the corresponding mean p is probably due to 
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the many extremely small values of B which are found when the 

simulated value of p is very close to zero. Notice how the presence 

of a pair of studies not significant at the classical cutoff of 

a=.05 (case 4) causes a substantially larger estimate of B than a 

similar set of p-values (case 3) that are all "just barely" 

significant. Densities for the distributions ~(pix) and ~(Bix) 

corresponding to case two of Table 3. 1 above are shown in figures 

3.1 and 3.2. 

Section 4 - A Model for p Based on Study Characteristics 

We turn now to the problem of performing a Bayesian analysis 

when the size of p varies from study to study. One simple approach 

in theory, but difficult to implement In practice or 

computationally, would be to assign a different prior distribution 

for each P·. I 
A more sensible approach IS to focus on what 

characteristics of the study make us believe it was more or less 

likely to be published, and then build a model which explicitly 

includes those characteristics. 

Let ti be the value of some study characteristic. By choosing 

an appropriate scale of measurement we could use sample size, amount 

of funding, reputation of journal, previous work of the authors or 

any other variable we think is important in determining probability 

of publication. An interesting effort of this type has been carried 

out for a set of clinical trials by Berlin, Begg and Louis ( 1989). 

We consider trying to model the value of pi by assuming the equation 
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1r(plx) 

0 

co 

0~~~--~--~---L--~--~----~--~--~--~_j 
D.D 0.2 0.4 0.6 0.8 1.0 

p 

.Figure 3.1 Posterior density of p given x = (.01,.01,.01,.01) 

"<t 
~~-r----~----~----~----~----~~----r-----~----, 

() 

Figure 3.2- Posterior density of() given x = (.01,.01,.01,.01) 
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(4.1) 

holds. It 1s important to remember that we can not use ordinary 

logistic regression if all of our observations are from the set of 

published studies. What we are able to do is put priors op the 

values of a and b, as well as th~ effect size 8, and then use Gibbs 

sampling to find posterior distributions for a, b and e that are 

conditional only on x. We then use these conditionals to estimate 8 

and p . This technique can clearly be extended to include more than 

one study characteristic in the model equation. Alternatively, we 

could do maximum likelihood estimation of a, b and 8. The reduction 

in dimension from estimation of k+1 to three parameters might serve 

to reduce the high variance usually associated with likelihood 

estimates of selection parameters. 

future consideration. 

We leave this approach for 

The outline of our estimation plan is as follows: 

Step 1.) Determine the study characteristic of most importance 

in determining publication probability. Choose a measurement scale 

for this characteristic and calculate ti for each study. 

Step 2.) Choose priors ~(a), ~(b) and ~(0) that are appropriate 

for the problem under consideration. 

Step 3.) Write down the forms of the conditional posterior 

distributions ~Calx,O,b), ~(blx,O,a) and ~(Oix,a,b). Choose values 

a 0 and b0 , and find e1 by sampling from ~(Oix,a0 ,b0 ) using the 

Metropolis algorithm or other iterative scheme. Continue the Gibbs 

sampling algorithm, and the resulting values of a, h and 8 can 

eventually be considered as coming from the posteriors ~Calx), 



-14-

~(blx) and ~(Bix). 

Step 4.) Using the posterior means from step 3, compute an 

estimate of pi for each study; and an estimate of the effect size B. 

This estimate of B could be compared to the MLE for B using the 

estimated p. 

We now provide an example in which we choose sample size as the 

most important predictor of publication probability. Our t. 
1 

is 

taken to be ni/50 where ni is the common sample size for control and 

treatment groups. This model considers 50 to be a typical sample 

size and scales other studies relative to this standard. 

The choice of the priors ~(a) and ~(b) should be considered 

carefully. For our example we take ~(a) to be normal with mean zero 

and variance nine. The mean of zero corresponds to p=. 5, the 

variance is chosen to reasonably reflect the logit scale. The prior 

for b should be a strictly positive distribution since we do not 

want a large sample size, weighted by a negative value of b, to drag 

down the probability of publication for a large study. We take ~(b) 

to be the exponential distribution with mean and variance 1. We 

emphasize that this 1s one of just many possible models. The prior 

~(B) is again chosen to be the improper flat prior, 11'(B) = 1. 

A summary of some results from this model for collections of 

k=2 studies are presented in Table 4.1. The posterior means are 

computed using 1000 observations after computing and discarding 100 

observations. This 100 step "burn in" to the Markov chains seems 

sufficient as the posterior means examined in groups of 100 show no 

consistent pattern of increase or decrease. In each case the v~ctor 
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x represents the p-values from two studies which have sample s1zes 

n1=20 and n2=80 respectively. The vector p* in the table represents 

the values of the pi's from equation (4.1) using the posterior means 

for a and b. The table includes two estimates of e, the pos~erior 

mean E(Bix) from the Gibbs sampling routine, and B * which is the MLE 
p 

fore evaluated at p*. 

Table 4.1: Posterior means based on 1000 Gibbs sampling iterations. 

Model for pi based on sample size, n1=20, n2=80. 

Case x E(alx) 

1 (.0001,.0001) -0.440 

2 (.0100,.0450) -1.576 

3 (.0450,.0450) -1.764 

4 (.2000,.3000) -0.609 

5 (.0450,.3000) -3.880 

E(blx) 

.574 

.496 

.514 

.531 

.482 

p* 

( .448' . 617) 

( .201' .314) 

( . 1 7 4 ' . 281 ) 

( .402' . 560) 

( .024, .043) 

E( e I x) 

.729 

.254 

.203 

.043 

-.021 

8 * p 

.746 

.271 

.217 

.087 

-.032 

In the first four cases, the components of p* are close in size 

to the value for a common value of p computed by the program of the 

last section. A dramatic exception occurs in Case 5. Note that 

this combination gives strong evidence of publication bias based on 

sample size since a small study with a p-value slightly less than 

.05 is published, while a larger study with an insignificant value 

also appears. For the given p-val ues and sample sizes, the model 

which assumes a common p for each study finds E(p I x)=. 471; much 

larger than the estimates of p*. This suggests that the model under 

study is in fact very sensitive to the sample size; future work 
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could include picking priors for a and b that are more robust. 

As usual we see that the application of a more complicated 

model has resulted in estimates that make sense if the model is 

indeed correct. If 1n fact sample s1ze has little to do wi tb the 

probability of publication, then this model could seriously 

underestimate that probability. This in turn would lead to an 

estimate of 0 that is too small. We conclude by suggesting that the 

technique 1n this section is appropriate if there 1s strong 

historical evidence that publication lS dependent on other 

covariates. If there is no such evidence, a statistician performing 

a meta-analysis might present a range of effect size estimates for 

different selection models. 

Section 5 - Case Study: The Effect of Coaching on SAT Scores 

One early and especially thoughtful meta-analysis in the field 

of education is DerSimonian and Laird (1983). This paper is a 

review of studies evaluating the value of coaching for students 

preparing to take the Scholastic Aptitude Test, or SAT. The authors 

were motivated to undertake the project when two previous reviews of 

the literature on the subject had reached rather different 

conclusions as to the effectiveness of coaching and review programs. 

Both of the previously published reviews had been criticized for 

their failure to exclude studies of questionable validity, so a 

further examination of the issue seemed in order. 
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The problem considered by DerSimonian and Laird exactly fits our 

description of a two-sample problem with a control group of 

uncoached students, and a treatment group of students who have 

received some preparation for the exam. The variable of intere~t IS 

the mean number of points gain~d by the treatment group, this can be 

converted to an effect size by dividing by the standard deviation. 

Our assumption of known variance, in this case u2 = 1002 , is 

reasonable since the SAT is designed and thoroughly pre-tested to 

produce such a result. (The authors and previous reviewers both 

propose separate analyses for the verbal and mathematics portions of 

the SAT.) We are also quite clearly interested in the one-sided 

testing problem, as we unlikely to believe that a coaching program 

would cause a decrease In scores. Finally, and perhaps most 

importantly, DerSimonian and Laird mention In the introduction to 

their methodology that they are choosing to ignore the effects, if 

any, of selection bias. It will be interesting to see how 

consideration of this will effect the conclusions of their study. 

In this paper we consider only the set of studies that the 

authors consider most reliable, those Ill which students were 

carefully matched or randomized to treatment or control. Table 5.1 

provides the data from these studies. Note that the estimated 

effect size given for each study is the value computed without 

adjusting for selection bias. The last column represents the 

estimated value of p for each study computed using the model of 

section 4. 
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Table 5.1 Sample sizes, estimated effect SIZe without publication 

bias, p-value, and estimated value of p for matched or 

randomized studies of coaching effectiveness. 

i nt,i n . c,I obs. effect ( B i) p-value(xi) p* 

1 45 45 .084 .3446 .558 

2 52 52 .110 .2877 .575 

3 154 111 .144 .1251 .738 

4 239 320 .084 .1635 .918 

Using the data in this table, DerSimonian and Laird estimate 

the effect size, using a simple random effects model, as .101. 

Using our MLE with p =(1,1,1,1) we get essentially the same value, B 
= .102. (The slight difference is accounted for because they use 

the actual variances instead of assuming u=100. This also accounts 

for a difference in the size of the reported p-values.) Thus we see 

that for the case of no selection bias, our model confirms their 

result. We now analyze the data in table 5.1 using the methods of 

section 3 and section 4. 

Since all four reported studies show a p-value insignificant at 

a=.05, there is not a great deal of evidence to suggest that there 

is any sort of strict publication bias at that level. Given the 

nature of the data and the size of the studies, we consider making 

the cutoff for certain publication at a=.20. Using this cutoff and 

applying the flat-prior Bayes approach of section 3 we find 

E(plx)=.538 and E(Bix)=.052. Graphs of the posterior distributions 

~(pix) and ~(Bix) are attached as figures 5.1 and 5.2. 
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Figure 5.1 - Posterior density of p for the SAT data using the 

flat prior Bayes approach. 

1r(8jx) 

() 
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Figure 5.2 - Posterior density of 8 for the SAT data using the 

flat prior Bayes approach. 
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Several features of the posterior densities are worth noting. 

In Figure 5.1 we see that the presence of two studies that are not 

significant at our cutoff of a=.20 shifts the posterior for p away 

from zero. This lack of small values for p accounts for the sym~etry 

of the posterior for 0 seen in Figure 5.2. (Compare to Figure 3.2 

where ~(Oix) Is skewed left when the distribution of p IS 

concentrated near zero.) While DerSimonian and Laird's overall 

estimate of B = .101 is deemed to be just barely significant (at the 

.05 significance level) in their random effects model, we see In 

Figure 5.2 that our flat prior Bayes model gives P(O~Oix) much 

larger than .05. 

The use of the model presented in section 4 yields a similar 

result. The estimated values of p are provided in Table 5.1 These 

values were computed using the posterior means E( a I x)=-0 .195 and 

E(bjx)=.477. The posterior mean of 0 is .050 and the distribution is 

virtually identical to that given In Figure 5.2. Again, 

consideration of publication bias results in the estimate of the 

effect size losing its tenuous hold on significance. 

DerSimonian and Laird conclude that in the best quality studies 

there is some very slight evidence that coaching improves verbal SAT 

scores, but that the size of the effect 1s so small as to be 

unimporant practically. Incorporating publication bias into the 

models makes the case for improvement due to coaching even weaker. 
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