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We consider canonical invariants of flat surfaces and complex structures, including

the combinatorics of Delaunay triangulations and boundary strata of the Siegel

half-plane. These objects have been previously considered by various other authors;

we provide fresh perspectives on how they arise naturally, develop some new results

on their geometric structure, and give explicit examples of applications. We also

study an important infinite family of flat surfaces, and extend this family by adding

a surface of infinite genus, the study of whose affine structure leads to interesting

new examples of dynamical and geometric behavior.
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CHAPTER 1

PRELIMINARIES

1.1 Flat surfaces, locally Euclidean surfaces, and differen-

tials

The field of flat surfaces is a playground for a range of subjects from elementary

Euclidean and hyperbolic geometry to complex analysis and dynamical systems.

It has its origins in Teichmüller’s theory of extremal quasi-conformal maps and

the theories of Nielsen and Anosov on surface homeomorphisms. Until the 1970s,

the perspective was primarily that of complex analysis. In the 1980s, it began to

shift to a more elementary geometric viewpoint, with dynamical questions playing

a larger role. The main connection between these two perspectives is the relative

ease with which a surface can be endowed with a conformal structure. Among

the conformal maps of C are the Euclidean isometries. Thus an ordinary “flat”

geometric surface, such as a polyhedron or the usual torus R2/Z2, has a canonical

conformal structure associated to it. The Euclidean structure is then specified by

a differential, holomorphic with respect to the conformal structure. Even apparent

singularities for the geometric structure, such as the vertices of a polyhedron or

more generally any “cone-type” points, are shown to be nothing more than zeroes

or “at worst simple” poles for the differential. (See [46] for a careful exposition.)

As Teichmüller’s work shows, in the moduli theory of Riemann surfaces, pref-

erence is given to quadratic differentials—that is, tensors that are locally of the

form f(z) dz2. From the geometric perspective, these may be constructed from

polygons in R2 whose edges are identified by either translation or rotation by π.
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There are several classes of surfaces that are interesting to consider, and the

terminology to describe them is not quite standard. We will therefore take locally

Euclidean surface to mean a surface without boundary formed from Euclidean

polygons by gluing their edges via isometries. If the polygons are located in R2

and all of the edge identifications are by translations, then we call the result a

translation surface—in the complex analytic realm, this corresponds to a Riemann

surface carrying an abelian differential. Most of our results will be concentrated on

a class intermediate between these two—we will take flat surface to mean either

a translation surface or a Riemann surface carrying a quadratic differential, which

from the elementary point of view can be constructed from polygons in R2 by gluing

edges via translations or central symmetries (rotations by π). We will mention, in

§4.4 and only briefly, a class of surfaces that encompasses the flat surfaces (but

not more general locally Euclidean surfaces), called homothety surfaces.

1.2 Actions of linear groups and projective linear groups

The spaces of translation surfaces and flat surfaces admit actions by SL2(R) and

PSL2(R), respectively, via post-composition with charts of the translation or flat

structure. The action by SO2(R) is trivial on the level of complex structures, and

merely rotates the directions on each surface. This fact is used to identify the

PSL2(R) orbit of a flat surface with the unit tangent bundle of the upper half-

plane H, with the underlying space H corresponding to a Teichmüller disk in the

moduli space of Riemann surfaces.

The (projective) Veech group of a flat surface is the subgroup of PSL2(R) con-

sisting of elements that send the surface to an isometric flat surface (i.e., the

2



stabilizer of the flat surface, although one needs to pay attention to the marking in

many applications). Equivalently, it is the group of derivatives of homeomorphisms

that are affine with respect to the flat structure. (See [15] for a clear exposition,

as well as an indication of connections with the complex analytic viewpoint.)

There is great interest in knowing the Veech group, or better yet the affine

group, of a given flat surface; it is generically trivial, but many important surfaces

appear with “large” Veech groups. Two of the best-known constructions of surfaces

with non-trivial affine groups have been provided by Thurston (later refined by

Veech), in his classification of surface automorphisms, and by a paper of Arnoux

and Yoccoz. We will present these constructions later in this work.
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CHAPTER 2

RESULTS OF THIS THESIS

Here we state the main results of this work.

Part I: Delaunay triangulations of flat surfaces

In the first part, we consider the data of Delaunay triangulations of flat surfaces.

These data determine a canonical partition of the Teichmüller space of flat struc-

tures, which leads to a tessellation of the disk (hyperbolic plane) attached to each

flat surface. These tessellations have been considered by W. Veech in a preprint [48]

and recently by A. Broughton and C. Judge [8]. We provide independent proofs

of Veech’s results, and draw new consequences from the construction. Specifically,

we have the following:

Theorem 2.1. Each flat surface generates a tessellation of the upper half-plane

that is invariant under the Veech group Γ of the surface. If Γ is a lattice, then

it has a finite-index subgroup with a fundamental domain composed of tiles of the

corresponding tessellation. The squares of the edge lengths and angle cotangents

appearing in the tessellation lie in the holonomy field of the generating flat surface.

Moreover, we conjecture the following: Each tile of the tessellation associated to

a flat surface is contained in a hyperbolic triangle, possibly with vertices at infinity,

and therefore has area at most π. Apart from the finiteness of the area of the tiles,

this would be the first universal bound on the geometry of these tiles. We expect

a proof of this result to be forthcoming.
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Part II: Complex structures and odd cohomology

In the second part, we address a question raised by J. Hubbard: Is it possible to

characterize the Jacobian (or some sub-abelian variety) of a Riemann surface using

purely topological data? This question remains open, in general. The specific con-

text of Hubbard’s question involves a complex structure J0 on the odd cohomology

of a Riemann surface X0 (with respect to an involution that appears as part of

the construction), and asks whether this complex structure coincides with that on

the odd part of the Jacobian of X0. We answer this question in the negative, and

provide a characterization of J0 in the case that a certain polynomial appearing in

the construction is irreducible.

In these investigations, we found it useful to develop and augment some of the

theory of the Siegel half-plane H in as coordinate-free a way as possible. We obtain

the following results:

Theorem 2.2. The Siegel half-plane H of complex dimension (n2 + n)/2 has, in

the Lagrangian Grassmannian variety of a certain related complex vector space, a

canonical boundary which is stratified by real manifolds indexed by 1 ≤ p ≤ n and

having dimension n2 + n − (p2 + p)/2. A geodesic for the Siegel metric on H has

two endpoints in ∂H, which must lie in the same stratum.

Using these boundary strata, we are able to distinguish certain complex-

analytic maps into H, and to conclude:

Theorem 2.3. The complex structure J0 on H1(X0,R)− belongs to a family {Jt} of

complex structures that does not coincide with those arising from any Teichmüller

disk having non-elementary Veech group. In particular, J0 does not coincide with

the complex structure arising from the Jacobian of X0.
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The family {Jt} will be given explicitly, and shown to extend to a maximal

holomorphically immersed disk in the Siegel half-plane of H1(X0,R)−.

Part III: Examples

In the third part, we provide examples of iso-Delaunay tessellations, primarily in

the case of surfaces with lattice Veech groups, which lead to independent verifica-

tions of what their Veech groups are.

Finally, we carry out an in-depth study of an exceptional family of translation

surfaces, those provided by P. Arnoux and J.-C. Yoccoz. We prove:

Theorem 2.4. The Arnoux–Yoccoz surfaces converge metrically on compact sub-

sets of the complements of their singular points to a surface of infinite genus car-

rying a natural 1-form of finite area. The Veech group of this limit surface is

isomorphic to Z× Z/(2).

6



Part I

Flat structures
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CHAPTER 3

DELAUNAY WEIGHTS OF PURE SIMPLICIAL COMPLEXES

3.1 Delaunay triangulations in Euclidean space

Definition 3.1. Let τ be a connected, pure k-dimensional simplicial complex em-

bedded in k-dimensional Euclidean space Rk such that its vertex set τ 0 is discrete,

and let τ ⊂ Rk be its underlying set of points. The empty circumsphere condition

states that, for each simplex T ∈ τ , no point of τ 0 is contained in the interior of the

sphere circumscribed around T . If τ satisfies the empty circumsphere condition

and τ is convex, then τ is called a Delaunay triangulation of its vertex set.

Note that τ is not required to be finite, but it must be locally finite. Given a

discrete set of points τ 0 ⊂ Rk, there are several ways of proving the existence of a

Delaunay triangulation τ of τ 0, one of which we will give below. The uniqueness (up

to certain trivial exchanges) is obtained by comparing the Delaunay triangulation

with the dual Voronoi construction, which we here omit. A key observation before

proceeding further is Delaunay’s famous lemma [14], which reduces the empty

circumsphere condition to one that can be checked “locally”, i.e., on adjacent

pairs of facets.

Proposition 3.2 (Delaunay lemma). Let τ be as in the previous definition, and

assume τ is convex. Then τ satisfies the empty circumsphere condition if and only

if every subcomplex consisting of two adjacent facets of τ does.

Delaunay’s proof is elementary and extremely geometric. First, recall that the

power of a point P ∈ Rk with respect to a sphere S ⊂ Rk is the following invariant:
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let a secant line to S through P be drawn, let P ′ and P ′′ be the points of intersection

of this line with S, and compute the scalar product 〈P ′ − P, P ′′ − P 〉. If the line

is taken to be the diameter through P , then this reduces to |P − O|2 − ρ2, where

O is the center of S and ρ is its radius. Now Delaunay’s argument consists of

looking at the linear segment [AB] from an arbitrary vertex A ∈ τ 0 to a point B

in the interior of an arbitrary facet T ∈ τ , such that the segment only intersects

k-faces and (k − 1)-faces of τ . Let T0, T1, . . . , Tn = T be the sequence of facets of

τ that are intersected by [AB] while moving from A to B, and for each 0 ≤ i ≤ n,

let ai be the power of A with respect to the circumsphere of Ti. The assumption

that pairs of adjacent simplices satisfy the empty circumsphere condition implies

that the sequence {ai} is non-decreasing, and because a0 = 0, we have an ≥ 0.

Therefore A is not contained in the interior of the circumsphere of T .

Note that, if two simplices in Rk share a facet, then each has a “free” vertex, and

the property that one of these free vertices is not contained in the circumsphere

of the other simplex is symmetric: the common facet determines a hyperplane

H in Rk, and the two free vertices must be on opposite sides of H (otherwise,

the interiors of the simplices would overlap). By considering the possible relative

positions of two spheres that intersect along a sphere of one lower dimension, we

see that one free vertex is contained in the second sphere if and only if the second

free vertex is contained in the first sphere.

Thus the entire situation reduces to determining whether one point in Rk is

contained on or outside the sphere determined by another set of k+ 1 points. This

is checked by means of the insphere test. Let T be a simplex in Rk with vertex set

{v0, v1, . . . , vk}, ordered so that {v1 − v0, . . . , vk − v0} is a direct basis of Rk, and

let S be the circumsphere of T .
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Proposition 3.3 (Insphere test). Given any point v′ of Rk, let ∆ be the (k+ 2)×

(k + 2) determinant

∆ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(v0)1 (v0)2 · · · (v0)k |v0|2 1

(v1)1 (v1)2 · · · (v1)k |v1|2 1

...
...

...
...

...

(vk)1 (vk)2 · · · (vk)k |vk|2 1

v′1 v′2 · · · v′k |v′|2 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Then ∆ is


negative if and only if v′ lies inside S;

0 if and only if v′ lies on S;

positive if and only if v′ lies outside S.

The proof proceeds by considering the paraboloid P with equation xk+1 =

x2
1 + · · ·+x2

k in Rk+1. Each vi projects vertically to ṽi = ((vi)1, . . . , (vi)k, |vi|2) ∈ P ,

and the k + 1 points {ṽ0, . . . , ṽk} are contained in a unique hyperplane H. The

intersection of H with P is an ellipsoid, which is the vertical projection to H of

the sphere S ⊂ Rk ⊂ Rk+1. Because the orientations on H and Rk induced by

the upward vertical direction in Rk+1 correspond to each other via the vertical

projection Rk → H, {ṽ1 − ṽ0, . . . , ṽk − ṽ0} is a direct basis for H. Now, if ṽ′ is the

vertical projection of v′ to P , it follows that the (k + 1)× (k + 1) determinant∣∣∣∣ṽ1 − ṽ0 · · · ṽk − ṽ0 ṽ′ − ṽ0

∣∣∣∣ ,
which equals ∆, is positive if and only if ṽ′ lies above H (in which case v′ is outside

of S), negative if and only if ṽ′ lies below H (in which case v′ lies inside of S), and

0 if and only if ṽ′ lies on H (in which case v′ lies on S).

This method of proof also leads to what is perhaps the simplest proof of the

existence of a Delaunay triangulation for a discrete set τ 0 ⊂ Rk: the vertical
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projection of τ 0 to P is again a discrete set τ̃ 0, and its convex hull is therefore a

(possibly unbounded) polyhedron C. If C is unbounded, we set τ̃ = ∂C, and if C is

bounded, then we obtain τ̃ from ∂C by deleting any cells whose interiors lie over

the interiors of other cells in C. If any of the facets of τ̃ are not simplices, they

may be triangulated, making τ̃ into a simplicial complex. The vertical projection

τ of τ̃ to Rk is an embedding, and by the proof of the incircle test, it is a Delaunay

triangulation of its vertex set τ 0.

We now wish to convert the incircle test, which relies on a set of coordinates,

into a purely metric statement, which will allow us to extend the definition of

Delaunay triangulations to simplicial complexes that are Euclidean on each facet,

but are not necessarily embedded. For the remainder of this paper, we will only

concern ourselves with the case of two-dimensional complexes whose underlying

space is a manifold, which we will call simplicial surfaces.

3.2 Cotangents and Delaunay weights

The expression for the cotangent of an angle formed by a pair of vectors ξ, η ∈ R2

will be useful throughout what follows:

cot ∠(ξ, η) =
〈ξ, η〉
|ξ η|

, (3.1)

where 〈ξ, η〉 denotes the inner product of ξ and η, and |ξ η| is the determinant of

ξ and η, i.e., the standard 2-form on R2 evaluated on ξ and η. Note also that if

α, β, γ are the angles in a triangle, then they satisfy

cotα cot β + cot β cot γ + cot γ cotα = 1. (3.2)
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The surface of equation xy + yz + zx = 1 is a hyperboloid H of two sheets,

one corresponding to the cotangents of three angles that sum to π and the other

corresponding to the cotangents of three angles that sum to 2π. The metric induced

on this hyperboloid by the quadratic form −(xy + yz + zx) makes each sheet

isometric to the standard hyperbolic plane (e.g., the upper half-plane model), and

this isometry can be realized concretely by sending the point z in the upper half-

plane to the cotangents of the angles in the triangle (0, 1, z). This metric will

appear later as the Teichmüller metric on the bundle of quadratic differentials.

Definition 3.4. Let T1 and T2 be a pair of Euclidean triangles, joined along a

common edge E. Let α and β be the angles opposite E. We call

w(E) =
cotα + cot β

2

the Delaunay weight of E (suppressing its dependence on T1 and T2 in the terminol-

ogy, but context will always make abundantly clear what determines the weights

on E). We will call an edge in a simplicial surface τ Delaunay if its Delaunay

weight is non-negative, and we call τ a Delaunay triangulation of τ if all edges are

Delaunay.

Here is the motivation for the above definition. We may assume that T1 and T2

lie in the same plane, and by classical geometry they satisfy the empty circumcircle

condition if and only if the sum of the angles opposite F is less than or equal to

π. This condition is transcendental in the edge lengths, however, and we would

like to give an algebraic condition. If α and β are angles strictly between 0 and π,

then we have

α + β ≤ π ⇐⇒ cotα + cot β ≥ 0,

and the equality is also an if-and-only-if statement (see Figure 3.1). The 1/2 in
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Definition 3.4 is a normalizing factor that will make some later results look more

natural; it is also consistent with the notation of [5].

O

y = 1cotαcot(π − α) cot β

α−α
β

Figure 3.1: Proof that α + β ≤ π ⇐⇒ cotα + cot β ≥ 0.

Definition 3.5. Let T be a Euclidean triangle and E a distinguished edge of T .

The modulus of T with respect to E is

µE(T ) =
altitude of T from vertex opposite E

length of E
=

2 · area of T

(length of E)2

For many purposes, it is more useful to use the inverse of the modulus of a

triangle (e.g., it is additive along cylinders, since all the triangles have the same

height; it appears naturally in descriptions of the space of triangles up to similar-

ity). If ξ, η ∈ R2 form a direct basis and ζ = ξ− η, then the triangle T with ξ, η, ζ

as side vectors has inverse modulus

µ−1
E (T ) =

〈ζ, ζ〉
|ξ η|

(3.3)

with respect to the side E along which ζ lies. We note that the tangent space to the

hyperboloid H (mentioned following equation (3.2)) at a point (cotα, cot β, cot γ)

corresponding to a triangle T with angles α, β, γ can be described as the kernel of

the 1× 3 matrix whose entries are the inverse moduli of T with respect to each of

its sides; this follows from the relation

µ−1
E (T ) = cotα + cot β

where E is the edge of T between the angles α and β.
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Lemma 3.6. Let T1 and T2 be Euclidean triangles in R2 joined along a common

edge E. Then a sufficient condition for E to be a Delaunay edge is

µ−1
E (T1)µ−1

E (T2) ≤ 4.

T1

T2
(`/2, 0)(−`/2, 0)

(0, h1)

(0,−h2)

Figure 3.2: An inequality involving inverse moduli of joined triangles.

Proof. We may assume without loss of generality that E is the segment along

the x-axis from (−`/2, 0) to (`/2, 0), T1 lies above the x-axis, and T2 lies below

the x-axis (Figure 3.2). Let h1 be the altitude of T1 and h2 be the altitude of

T2, both taken with respect to E. Then the Delaunay weight of E is minimized

when the “free” vertices of T1 and T2 lie on the y-axis. The center of the circle C

through (−`/2), (`/2), and (0, h1) is located at (0, h1
2−(`/2)2

2h1
), and the radius of C

is h1
2+(`/2)2

2h1
. In order for (0,−h2) to lie outside of the interior of C, we must have

h1h2 ≥ (`/2)2. This inequality is equivalent to the one in the statement of the

result, and if it is satisfied, then E is a fortiori a Delaunay edge for T1 and T2.
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3.3 Delaunay triangulations of flat surfaces

Definition 3.7. Let (X, q) be a flat surface and Z be a discrete subset of X that

includes the singularities of q. A (q, Z)-triangle on X is the image of a 2-simplex on

X, embedded on its interior, whose edges are geodesic with respect to |q|1/2, whose

vertices lie in Z, and whose interior contains no points of Z. A (q, Z)-triangulation

of X is a simplicial structure on X, all of whose facets are (q, Z)-triangles. We

denote by T (X, q, Z) the set of (q, Z)-triangulations of X. A (q, Z)-triangulation

of X is Delaunay if all of its edges are Delaunay.

For simplicity, we will almost always drop the (q, Z) prefix and refer simply to

“triangles”, “triangulations”, and “Delaunay triangulations” of X.

The principle concern is the existence and uniqueness of Delaunay triangula-

tions. These have been established for compact half-translation surfaces (or locally

Euclidean surfaces more generally) by a series of results over the last two decades.

• In [45] (originally circulated as a preprint starting c. 1987), Thurston sketched

the construction of Delaunay triangulations for locally Euclidean structures

on a sphere.

• Masur and Smillie [29] proved the existence of a Delaunay triangulation

for any compact locally Euclidean surface by dualizing the construction of

Voronoi cells and applied properties of the Delaunay triangulation of a sur-

face to get sharp estimates in their study of non-ergodic directions.

• Rivin [38] studied triangulations of simplicial surfaces by attaching weights

to the edges, which he called dihedral angles (these weights are similar to our

Delaunay weights, but they are defined simply by adding the angles opposite
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an edge of the triangulation, and not the cotangents of these angles); he de-

scribed the space of locally Euclidean surfaces for which a given triangulation

is Delaunay as a polytope in the space of functions on the edge set of the

triangulation.

• Veech [50] first described a partition of the Teichmüller space of flat surfaces

by the combinatorial structure of the Delaunay triangulations of its points

and showed that this partition is equivariant with respect to the action of

the mapping class group, analogously to Penner’s partition of the decorated

Teichmüller space [35].

• Indermitte, Liebling, Troyanov, and Clémençon [24] considered “edge flips”

between various triangulations (and also give an application of Delaunay

triangulations and Voronoi cells to modeling biological growth).

• Bobenko and Springborn [5] took up the work of Rivin and Indermitte et al,

and completed the proof of the uniqueness of the Delaunay triangulation of

a surface, using a method similar to that of Delaunay’s original proof (see

the discussion following Proposition 3.2); they also use what we have called

Delaunay edge weights to define an intrinsic Laplacian on the vertex set of

a simplicial surface.

We summarize these results in the following proposition:

Proposition 3.8. Let (X, q) be a compact flat surface and Z a non-empty discrete

subset of X containing the zeroes of q. Then X has a Delaunay triangulation,

unique up to exchanges of edges with Delaunay weight 0. Any triangulation of X

may be transformed into a Delaunay triangulation by a finite sequence of edge flips,

at each step exchanging an edge having negative Delaunay weight for a transverse

edge of positive Delaunay weight.
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CHAPTER 4

ISO-DELAUNAY TESSELLATIONS

4.1 Pre-geodesic conditions on points of SL2(R)

We denote the half-plane model of the hyperbolic plane by H, and we use z = u+iv

for the canonical coordinate on H. Geodesics for the Poincaré metric |dz|/v can be

either lines or circles perpendicular to the u-axis. These two kinds of geodesics can

be unified algebraically: any geodesic γ is the set of points satisfying an equation

of the form

a(u2 + v2) + bu+ c = 0 with b2 − 4ac > 0.

The latter condition ensures that the geodesic has exactly two endpoints in ∂H =

R ∪ {∞}:

• if a 6= 0, then the endpoints are the (real) solutions to au2 + bu+ c = 0;

• if a = 0, then the endpoints are ∞ and −c/b.

In this model, the isometry group PSL2(R) acts by fractional linear transforma-

tions: 
a b

c d


 · z =

az + b

cz + d
.

We make this into a right action by defining z · [A] = [A]−1 · z. The stabilizer of i

under this right action is SO2(R)/{±id}. The projection P : PSL2(R)→ H given

by P ([A]) = i · [A] canonically identifies PSL2(R) with the unit tangent bundle of

H; each right coset of SO2(R)/{±id} is sent to the set of unit vectors at a point of

H. We choose a canonical representative of each coset via the QR-decomposition
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in SL2(R):

A =

a b

c d

 =

cos θ − sin θ

sin θ cos θ


v−1/2 −uv−1/2

0 v1/2

 where

cos θ =
a√

a2 + c2
, sin θ =

c√
a2 + c2

, u = −ab+ cd

a2 + c2
, and v =

1

a2 + c2
.

(4.1)

With this notation, P ([A]) = u+ iv, and the second matrix in the factorization of

A is the canonical representative of the coset to which A belongs.

We now characterize subsets in PSL2(R) of the form P−1(γ), where γ is a

geodesic in H.

Definition 4.1. A pre-geodesic condition on points A ∈ SL2(R) is one that can

be expressed by an equation of the form 〈Aξ1, Aξ2〉 = 0 for some ξ1, ξ2 ∈ R2 such

that |ξ1 ξ2| 6= 0.

Note that, when ξ1 and ξ2 are fixed, the function 〈Aξ1, Aξ2〉 on SL2(R) is

invariant under the involution A 7→ −A, and therefore it is also a well-defined

function on PSL2(R).

Lemma 4.2. For every geodesic γ in H, there exist ξ1, ξ2 ∈ R2 such that

P−1(γ) =
{

[A] ∈ PSL2(R) | 〈Aξ1, Aξ2〉 = 0
}
.

Conversely, every set of this form, with |ξ1 ξ2| 6= 0, projects via P to a geodesic in

H.

Proof. We show the second claim first. Let ξ1 = (x1, y1) and ξ2 = (x2, y2). Then,

using the QR-decomposition for points A ∈ SL2(R) and the notation of (4.1), we

have

〈Aξ1, Aξ2〉 = v−1
(
x1x2 − (x1y2 + x2y1)u+ y1y2(u2 + v2)

)
.
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The discriminant of the equation 〈Aξ1, Aξ2〉 = 0 is then

(x1y2 + x2y1)2 − 4x1x2y1y2 = x2
1y

2
2 − 2x1x2y1y2 + x2

2y
2
1 = |ξ1 ξ2|2,

and so the set of solutions to this equation projects to a geodesic in H provided

|ξ1 ξ2| 6= 0.

Now suppose γ is given, and let r1, r2 ∈ R ∪ {∞} be its endpoints. If one of

these, say r2, equals ∞, then take ξ1 = (r1, 1) and ξ2 = (1, 0). If both lie in R,

then take ξ1 = (r1, 1) and ξ2 = (r2, 1). Then the set of solutions to 〈Aξ1, Aξ2〉 = 0

projects to γ via P .

Thus the endpoints of the geodesic P (
{

[A] | 〈Aξ1, Aξ2〉 = 0
}

) are the cotangents

of the angles formed by ξ1 and ξ2 with the positive x-axis; that is, we recover S1 =

RP1 as the boundary of H. We note that the description we have given for geodesics

in H is closely related to the description of H as the space of inner products on R2,

modulo scaling: for any A ∈ SL2(R), A>A is symmetric and positive definite, and

therefore it defines an inner product on R2. This inner product depends only on the

right coset of SO2(R) to which A belongs (see (4.1)). The equation 〈Aξ1, Aξ2〉 = 0

is satisfied by those A for which ξ1 and ξ2 are orthogonal in the corresponding

inner product.

Example 4.3 (Another example of a pre-geodesic condition on points of SL2(R)).

Given two non-colinear ξ1, ξ2 ∈ R2, require that Aξ1 and Aξ2 have the same length.

This situation is described by the equation 〈Aξ1, Aξ1〉 = 〈Aξ2, Aξ2〉, which is equiv-

alent to the condition 〈A(ξ1 + ξ2), A(ξ1 − ξ2)〉 = 0.

It is worth considering what meaning a “solution” to 〈Aξ,Aξ〉 = 0 could have

when ξ is a non-zero vector in R2. To make sense of this equation, we consider
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more generally equations of the form 〈Aξ,Aξ〉 = r, where r ≥ 0. For r > 0, the

solutions to 〈Aξ,Aξ〉 = r project to a horocycle in H: setting ξ = (x; y) and using

the QR-decomposition again, we have

〈Aξ,Aξ〉 = r ⇐⇒ x2 − 2xy u+ y2(u2 + v2) = rv

which if y = 0 is the equation of a horizontal line, and if y 6= 0 is the equation of a

Euclidean circle tangent to the real axis at x/y = cot ξ. If we fix ξ and let r → 0,

then in the case y = 0 the intersection of the horizontal line with the imaginary

axis tends to∞, and in the case y 6= 0 the radius of the circle tends to 0. We have

thus proved the following.

Lemma 4.4. Let ξ ∈ R2 be non-zero, and let c ∈ ∂H denote the cotangent of the

angle ξ forms with the horizontal direction. Let {An} be a sequence in SL2(R).

Then the following are equivalent:

1. P ([An])→ c in the horoball topology as n→∞;

2. ‖Anξ‖ → 0 as n→∞.

Recall that horoball topology on H is generated by open sets of H and, for each

point c of the boundary ∂H, the union of {c} with any open horoball centered at

c. Note that this is a refinement of the topology on H induced by its inclusion

into CP1. In particular, the topology induced by the horoball topology on ∂H as

a subspace is discrete.

At this point, we could examine the sets of solutions to general equations of

the form 〈Aξ1, Aξ2〉 = r—these correspond to sets that project via P to Euclidean

circles that intersect the real axis (curves of constant curvature between 0 and

1)—for which the pre-geodesic and “pre-horocyclic” conditions are limiting cases,

but we will not need them in the future, and so we set aside this study.
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We can obtain “new” pre-geodesic conditions by taking certain “linear combi-

nations” of “old” ones. We obtain the following by expanding and factoring the

discriminant.

Lemma 4.5. Let ξ1, ξ2, η1, η2 ∈ R2 and a, b ∈ R. Then the equation

a 〈Aξ1, Aξ2〉+ b 〈Aη1, Aη2〉 = 0

defines a pre-geodesic condition on points of SL2(R) if and only if

a2|ξ1 ξ2|2 + b2|η1 η2|2 + 2ab
(
|ξ1 η1| · |η2 ξ2|+ |ξ1 η2| · |η1 ξ2|

)
> 0.

We close this section by considering inequalities of the form

〈Aξ1, Aξ2〉 ≥ 0.

If |ξ1 ξ2| = 0, then this inequality is either always or never satisfied, depending

on the sign of 〈ξ1, ξ2〉. If |ξ1 ξ2| 6= 0, then the solutions to this inequality project

to a hyperbolic half-plane (as opposed to the Poincaré half-plane, which is all of

H). Such a half-plane is equivalent to an oriented geodesic: the half-plane is the

set of points “to the left” as we move along the geodesic in the direction of its

orientation. Thus, if |ξ1 ξ2| > 0, we call cot ξ1 the first endpoint and cot ξ2 the

second endpoint of the corresponding geodesic.

4.2 Iso-Delaunay half-planes for convex quadrilaterals

Let Q = P1P2P3P4 be a simple quadrilateral in the plane, oriented counterclock-

wise. We allow two adjacent sides to be colinear, but in this section we will use

the phrase “strictly convex” when we wish to exclude this possibility (i.e., “Q is
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strictly convex” means that Q equals the convex hull of {P1, P2, P3, P4}, and not

of any proper subset). For clarity, we will also assume Q has non-empty interior,

or equivalently that the vertices of Q do not all lie in a single line. We say Q is

cyclic if it is inscribable in a circle (see Figure 4.1).

Lemma 4.6. The condition “A(Q) is cyclic” is a pre-geodesic condition on A ∈

SL2(R) if and only if Q is strictly convex.

In a certain sense, this is geometrically obvious: if A(Q) is cyclic, then it is in

particular strictly convex. But the image of a non-convex quadrilateral by a linear

map can never be strictly convex. Conversely, if Q is strictly convex, the natural

equation that arises apparently has the form of a pre-geodesic condition on points

of SL2(R). This is what we will verify.

Proof. Set ξ1 = P2 − P1, ξ2 = P3 − P2, ξ3 = P4 − P3, and ξ4 = P1 − P4. The

statement that Q is strictly convex is equivalent to |ξi ξi+1| > 0 for all i, where the

indices are to be taken modulo 4. Note that Q can have at most one angle that

equals or exceeds π, so at most one of these inequalities can fail to be satisfied.

Relabeling (cyclically) if necessary, we may assume that |ξ1 ξ2| > 0 and |ξ3 ξ4| > 0.

The condition for A(Q) to be cyclic is cot ∠(Aξ1, Aξ2) + cot ∠(Aξ3, Aξ4) = 0,

or

|ξ3 ξ4| 〈Aξ1, Aξ2〉+ |ξ1 ξ2| 〈Aξ3, Aξ4〉 = 0, (4.2)

where we have used the fact that A ∈ SL2(R) to extract it from the determinants.

By Lemma 4.5, Equation (4.2) defines a pre-geodesic condition if and only if

|ξ1 ξ2| · |ξ3 ξ4|+ |ξ1 ξ3| · |ξ4 ξ2|+ |ξ1 ξ4| · |ξ3 ξ2| > 0.

Substituting ξ4 = −(ξ1 + ξ2 + ξ3) and ξ3 = −(ξ1 + ξ2 + ξ4) in the middle term, we
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obtain

|ξ1 ξ2| · |ξ3 ξ4|+ (|ξ1 ξ2|+ |ξ1 ξ4|) · (|ξ1 ξ2|+ |ξ3 ξ2|) + |ξ1 ξ4| · |ξ3 ξ2| > 0,

which simplifies (after collecting a few terms and dividing by 2) to

|ξ4 ξ1| · |ξ2 ξ3| > 0.

Because both factors on the left cannot simultaneously be negative, this inequality

holds if and only if Q is strictly convex. This completes the proof.

P1

P2

P3

P4

ξ1

ξ2

ξ3

ξ4

Figure 4.1: A cyclic quadrilateral: both diagonals have Delaunay weight zero.

Corollary 4.7. Suppose Q is strictly convex, and let D be a diagonal of Q. If

wA(D) denotes the Delaunay weight of A(D) in A(Q), then the equation wA(D) = 0

is a pre-geodesic condition on A ∈ SL2(R).

This is simply a restatement of Lemma 4.6. We also will need a more detailed

study of the various possibilities for a diagonal of a quadrilateral to have non-

negative Delaunay weight.

Corollary 4.8. Let T1 and T2 be triangles in R2 with disjoint interiors, joined

by a common edge E. Let HE be the projection to H via P of the set defined by

wA(E) ≥ 0.
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1. If T1 ∪ T2 is a strictly convex quadrilateral, then HE is a closed hyperbolic

half-plane.

2. If T1 ∪ T2 is a non-convex polygon, then HE = H.

3. If T1∪T2 is a triangle, then one side E1 of T1 is aligned with a side E2 of T2;

in this case, HE = H and the equation wA(E) = 0 corresponds to the point

of ∂H that is the cotangent of the common angle that E1 and E2 form with

the x-axis.

Remark 4.9. If Q is already cyclic, as in Figure 4.1, the endpoints of the geodesic

in H described by Lemma 4.6 are given by the directions of the bisectors of the

angles formed by the intersection of the diagonals of Q. I thank Chris Judge for

pointing this out to me. In our approach, this can be seen as follows. Given any

two non-zero vectors ξ, η ∈ R2, a non-zero vector σ bisects the angle ∠(ξ, η) if

cot ∠(ξ, σ) = cot ∠(σ, η), which equation can be rearranged as

|η σ| 〈ξ, σ〉+ |ξ σ| 〈η, σ〉 = 0. (4.3)

If we assume further that |ξ η| 6= 0, then (4.3) is equivalent to the condition

|η σ|2 〈ξ, ξ〉 − |ξ σ|2 〈η, η〉 = 0. (4.4)

(This equivalence derives from the facts that |η σ| ξ−|ξ σ| η is colinear with σ and

that (4.3) is equivalent to |η σ| ξ + |ξ σ| η being orthogonal to σ.) By Lemma 4.5,

if the vectors ξ, η, σ satisfy |ξ σ| · |η σ| 6= 0, then “Aσ bisects the angle ∠(Aξ,Aη)”

is a pre-geodesic condition on A. We need to show that, for appropriate values

of the three vectors, this is equivalent to a cyclicity condition involving the side

vectors of a quadrilateral.

Suppose we have as before a simple quadrilateral Q with side vectors
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ξ1, ξ2, ξ3, ξ4, and Q is cyclic. For θ ∈ S1 and ε > 0, consider the matrix

Aθ,ε =

cos θ − sin θ

sin θ cos θ


1 + ε 0

0 1− ε


 cos θ sin θ

− sin θ cos θ

 ,

whose invariant directions are±(cos θ, sin θ) and±(− sin θ, cos θ). (The middle fac-

tor in the expression for Aθ,ε is just the first-order Taylor expansion of exp ( ε 0
0 −ε ).)

Using the fact that Q is cyclic, we obtain

|ξ3 ξ4| 〈Aθ,εξ1, Aθ,εξ2〉+|ξ1 ξ2| 〈Aθ,εξ3, Aθ,εξ4〉 = 2ε
(
|ξ3 ξ4| 〈Rξ1, ξ2〉+|ξ1 ξ2| 〈Rξ3, ξ4〉

)
,

(4.5)

where R =

cos2 θ − sin2 θ 2 cos θ sin θ

2 cos θ sin θ sin2 θ − cos2 θ

. We are looking for values of θ such

that the coefficient of ε in (4.5) is zero.

The diagonals of Q are given by the vectors ξ1 + ξ2 and ξ2 + ξ3. Let σ be a unit

vector that bisects the angle ∠(ξ1 + ξ2, ξ2 + ξ3); that is, ‖σ‖ = 1 and (from (4.4))

|ξ2 + ξ3 σ|2 ‖ξ1 + ξ2‖2 − |ξ1 + ξ2 σ|2 ‖ξ2 + ξ3‖2 = 0.

After replacing one copy of ξ1 + ξ2 with −(ξ3 + ξ4) and one copy of ξ2 + ξ3 with

−(ξ1 + ξ4) in each term, expanding, and recollecting terms, this condition becomes

0 = |ξ1 σ| 〈ξ1, σ〉
(
|ξ3 ξ2|+ |ξ4 ξ2|+ |ξ4 ξ3|

)
+ |ξ2 σ| 〈ξ2, σ〉

(
|ξ3 ξ1|+ |ξ3 ξ4|+ |ξ4 ξ1|

)
+ |ξ3 σ| 〈ξ3, σ〉

(
|ξ1 ξ4|+ |ξ2 ξ4|+ |ξ2 ξ1|

)
+ |ξ4 σ| 〈ξ4, σ〉

(
|ξ1 ξ3|+ |ξ2 ξ3|+ |ξ1 ξ2|

)
.

It can be shown by a direct but somewhat lengthy computation that, if σ =
(

cos θ
sin θ

)
,

then this expression equals the coefficient of ε in (4.5). Therefore the angle bisectors

of the diagonals of Q are the invariant directions that determine the geodesic.
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4.3 Consequences of a construction by Veech

Let C be an ordinary Euclidean cylinder with boundary components ∂1C and ∂2C,

and let Z1 and Z2 be non-empty finite subsets of ∂1C and ∂2C, respectively. We

will construct the Delaunay triangulation of C with respect to Z = Z1 ∪ Z2, i.e.,

we endow C with the structure of a simplicial complex τ in such a way that the

0-cells of τ are points of Z, the connected components of ∂1C − Z1 and ∂2C − Z2

are 1-cells of τ , and each of the remaining 1-cells of τ is a segment connecting a

point of Z1 and a point of Z2 and having non-negative Delaunay weight in τ .

For each pair of adjacent points P, P ′ in Z1 or Z2, let σ(P, P ′) be the directed

segment that is perpendicular to ∂1C and ∂2C and has its first endpoint at the

midpoint of [P, P ′]. The segments σ(P, P ′) partition C into rectangles. We call

one of these rectangles oriented if the directed segments point in opposite direc-

tions, and non-oriented otherwise. The union of a non-oriented rectangle with an

adjacent oriented rectangle yields a new oriented rectangle. An oriented rectangle

is direct if the orientation induced by the directed edges is direct, and indirect

otherwise. If two segments with opposite directions are superimposed, we say they

form a degenerate rectangle. Define the inverse modulus of an oriented rectangle

R to be µ−1(R) = ±`/h, where h is the distance from ∂1C to ∂2C and ` is the

remaining dimension of R, taken with a positive sign if R is direct and with a

negative sign if R is indirect.

∂1C

∂2C

· · ·· · ·

P P ′

σ(P, P ′)

Figure 4.2: A direct, a non-oriented, and an indirect rectangle
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Lemma 4.10. Let P1P
′
1P2P

′
2 be a quadrilateral, oriented counterclockwise, such

that [P1P
′
1] is parallel to [P2P

′
2], and let R be the oriented rectangle formed by

σ(P1, P
′
1), σ(P2, P

′
2), and the lines supporting [P1P

′
1] and [P2P

′
2]. Then the Delau-

nay weight of [P1, P2] equals the inverse modulus of R.

P1 P ′
1

P2P ′
2

Proof. Assume the lines (P1P
′
1) and (P2P

′
2) are horizontal, as in the figure above.

Let h be the distance between these two lines, and let the x-coordinates of

P1, P
′
1, P2, P

′
2 be x1, x

′
1, x2, x

′
2, respectively. Then the Delaunay weight of the edge

[P1P2] is

1

2

(
x′1 − x2

h
+
x1 − x′2

h

)
=

1

h

(
x1 + x′1

2
− x2 + x′2

2

)
,

which is the inverse modulus of R.

Now we complete the above construction by adding one edge for each rect-

angle of the partition. Each oriented rectangle—direct or indirect—arises from

a trapezoid as in Lemma 4.10 and determines which diagonal of the trapezoid

should be chosen. Any non-oriented rectangle belongs to a maximal sequence of

adjacent such rectangles, which is flanked by two oppositely-oriented rectangles;

these latter two determine a pair of edges with a common endpoint, which should

be connected to all vertices on the opposite boundary component in between the

pair of edges. A degenerate rectangle arises from an isosceles trapezoid, for which

both diagonals have zero Delaunay weight, and either can be chosen to complete

the triangulation.
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Lemma 4.11. Let (X, q) be a compact half-translation surface, let Z ⊂ X be a

discrete subset containing the singular points of q, and let θ ∈ RP1. Then θ is a

periodic direction of (X, q) if and only if there exist τ ∈ T (X, q, Z) and a sequence

{An} ⊂ SL2(R) such that P ([An]) → cot θ in the horoball topology and τ is a

Delaunay triangulation of [An] · (X, q) for all n.

For completeness, we include the proof of this lemma here, although it is entirely

due to Veech [48]. (We have made a slightly more general statement that does not

affect the details of the proof in any way.)

Proof. By applying
[(

cos θ sin θ
− sin θ cos θ

)]
, we may assume that θ is horizontal.

First, suppose the horizontal direction of (X, q) is periodic. Using the con-

struction from the start of this section, compute the Delaunay triangulation of

each horizontal cylinder. Since each triangle of these trianglations has a horizontal

edge, by contracting the horizontal direction we may make the inverse moduli of

these triangles as small as we like (see Equation (3.3) on page 13). In particular,

because there are finitely many triangles, we may contract the horizontal direction

sufficiently that all these inverse moduli are smaller than 2. Then by Lemma 3.6

all of the horizontal saddle connections are in the Delaunay triangulation of such

surfaces. If, while contracting the horizontal direction, we expand in the vertical

direction, then the partition of the horizontal cylinders into oriented and non-

oriented rectangles does not change (although the inverse moduli of the rectangles

vary, they do not change sign), and so the Delaunay edges crossing each cylinder

also remain so.

Next, suppose P ([An]) → ∞ in the horoball topology, and τ ∈ T (X, q, Z) is a

Delaunay triangulation for every [An] · (X, q). We wish to show that every triangle
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of τ has a horizontal edge; then these triangles can be joined along their non-

horizontal edges to give a cylinder decomposition of (X, q). Write τ = τθtτθ ′, where

τθ is the set of faces of τ that have a horizontal edge, and τθ
′ is its complement.

Suppose τθ
′ 6= ∅. For all sufficiently large n, each element of τθ has two angles

that measure > π/4, and each element of τθ
′ has an angle that measures > 3π/4.

Let F0 ∈ τθ ′, let α0 be its largest angle, and let E0 be the edge opposite α0. E0

cannot join F0 to an element of τθ, since for any F ∈ τθ, two of the angle of F

are larger than π/4, and the remaining angle is opposite a vertical edge, while E0

cannot be vertical. Hence E0 joins F0 to some F1 ∈ τθ ′. The largest angle α1 of F1,

also being > 3π/4, cannot be opposite E0, and so the edge E1 opposite α1 satisfies

length(E1) > length(E0). Continuing inductively, we construct a sequence of edges

E0, E1, E2, . . . , with length(Ei+1) > length(Ei) for all i. But the set of edges of τ

is finite, so this is a contradiction. We conclude τθ
′ = ∅, that is, τ = τθ.

Here are some other consequences of the above construction.

Corollary 4.12. Let (X, q) be a compact flat surface, and assume that θ ∈ RP1 is

a periodic direction of (X, q). Then there is a horoball neighborhood B of cot θ such

that, whenever P ([A]) ∈ B, any Delaunay triangulation of [A] · (X, q) contains all

saddle connections in the direction θ.

Proof. The inverse modulus of a triangle depends only on its base and its height.

Therefore, for all sufficiently “small” horoball neighborhoods of cot θ, the inverse

moduli of the triangles obtained by applying Veech’s construction to the direction

θ are all < 2. By the above reasoning, every Delaunay triangulation of points in

this region must include the saddle connections in the direction θ.

Corollary 4.13. Let C be a horizontal cylinder with distinguished non-empty finite

subsets of the two components of ∂C, and let τ be its Delaunay triangulation.
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Let w+ (resp. w−) be the smallest Delaunay weight of the edges of τ forming an

obtuse (resp. acute) angle with ∂C, measured in the direct sense from the boundary

component. Then the Delaunay triangulation of C remains unchanged by ( 1 t
0 1 ) for

−w− ≤ t ≤ w+.

We will deduce other consequences in the next section.

4.4 Iso-Delaunay tessellations

Definition 4.14. Let Σ be a set of convex, finite-area (but not necessarily com-

pact) polygons in H. Then Σ is a tessellation of H if the elements of Σ cover H,

and whenever σ1 and σ2 are distinct elements of Σ, either σ1 ∩ σ2 is empty or it is

either a side or a vertex of both σ1 and σ2. If Σ is a tessellation, then the elements

of Σ are called the tiles. The edges and vertices of a tessellation are the sides and

vertices of its tiles.

Definition 4.15. Given a tessellation Σ of H, an isometry f : H → H is an

automorphism of Σ if {f(σ) | σ ∈ Σ} = Σ. Aut(Σ) is the group of all such auto-

morphisms; Aut+(Σ) is the subgroup of orientation-preserving automorphisms.

Note that Aut+(Σ) has index at most 2 in Aut(Σ).

Lemma 4.16. Let Σ be a tessellation of H. Then Aut(Σ) is a discrete group of

isometries. In particular, Aut+(Σ) is a Fuchsian group.

Proof. It is equivalent to show that Aut(Σ) does not have non-identity elements

that are arbitrarily close to the identity. First observe that any finite-area polygon

has a discrete stabilizer in Isom(H). Let p ∈ H, σ ∈ Σ be such that p is an interior
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point of σ and p is not fixed by any element in the stabilizer of σ. Then there

exists some ε(p) > 0 such that any element f ∈ Aut(Σ) moves p by at least ε(p):

either f stabilizes σ, in which case the above observation applies, or it moves σ

to another tile of Σ, in which case p is moved by at least twice its distance to the

boundary of σ. Because p cannot be moved arbitrarily small amounts, Aut(Σ) acts

discretely on H.

Any triangulation τ ∈ T (X, q, Z) determines a closed, possibly empty, geodesi-

cally convex region in H: for each edge E ∈ τ , define

HE = P
(
{[A] ∈ PSL2(R) | wA(E) ≥ 0}

)
and define the tile corresponding to τ as

Hτ =
⋂
E∈τ

HE. (4.6)

Example 4.17. Let Λ ⊂ C be a lattice, and let X = C/Λ be the corresponding

torus, carrying the 1-form ω induced by dz. Let Z be the one-point set consisting

of the image of Λ on X. Any (q, Z)-triangulation of X then consists of a symplectic

basis for the homology of X, and their sum; these partition X into two congruent

triangles, with their corresponding edges E1, E2, E3 glued. Let E = {E1, E2, E3},

and let w : T (X) → RE be the weight map. Because each edge is opposite two

congruent angles in a triangle, the image of w lies in the hyperboloid of equation

x1x2 +x2x3 +x3x1 = 1, and the weights are all positive precisely when the triangles

composing X have no obtuse angle, i.e., when xi ≥ 0 for all i, which condition

determines an ideal triangle (see Figure 4.3). Because SL2(Z) acts transitively on

the symplectic bases of H1(X,R) and each basis determines an ideal triangle, the

regions Hτ arising from the triangulations τ ∈ T (X,ω, Z) determine an SL2(Z)-

invariant tessellation of H by ideal triangles, i.e., the Farey tessellation.
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Figure 4.3: Left: The hyperboloid x1x2 + x2x3 + x3x1 = 1. Right: The

ideal triangle cut out by the coordinate planes.

Because any τ ∈ T (X, q, Z) has only finitely many edges, (4.6) is a finite

intersection, and therefore its boundary is piecewise geodesic. We conjecture the

following bound on its geometry: Hτ is contained in an ideal triangle in H, and

hence has area bounded by π. Veech shows that the tiles have finite area by applying

a result of Vorobets [52] that a compact flat surface has only countably many saddle

connections. From our conjectured bound and another observation by Veech, we

obtain that origami provide the extreme case of the Farey tessellation.

Corollary 4.18. Hτ has area π if and only if (X, q, Z) is affinely equivalent to an

origami for which Z consists of all the corners of the square tiles.

Definition 4.19. Let (X, q, Z) be a pointed compact flat surface, and set

Σ(X, q, Z) = {Hτ | τ ∈ T (X, q, Z), Hτ has non-empty interior}.

We call Σ(X, q, Z) the iso-Delaunay tessellation of H arising from (X, q, Z).

It follows from our previous work that:

Theorem 4.20. Σ(X, q, Z) is a tessellation of H, in the sense of Definition 4.15.
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Remark 4.21. Other tessellations of H can be defined by other pre-geodesic condi-

tions associated to flat surfaces, as has been done, for example, by J. Smillie and

B. Weiss [43] using the condition in Example 4.3: each tile of their tessellation is

associated to a saddle connection E of the flat surface, and consists of point in H

for which E has the shortest length among all saddle connections.

The following observation is a result of the fact that the Delaunay triangula-

tion(s) of a surface depends only on its metric structure, and not on the marking.

Proposition 4.22. Σ(X, q, Z) is Γ(X, q, Z)-invariant.

Here is a consequence of Corollary 4.12.

Theorem 4.23. If Γ(X, q, Z) is a lattice in (P)SL2(R), then it contains a finite-

index subgroup having a fundamental domain composed of (finitely many) tiles of

Σ(X, q, Z).

Proof. Let Γ = Γ(X, q, Z). Then H/Γ has finite area, and therefore finitely many

cusps. Each of these has a neighborhood that only intersects tiles of Σ(X, q, Z);

after removing these tiles, the remainder is compact. Because the boundaries of

the tiles of Σ(X, q, Z) consist of finitely many geodesic segments, no sequence of

tiles can accumulate on the boundary of any fixed tile. Therefore, each tile has an

open neighborhood that does not completely contain any other tile. These neigh-

borhoods cover the compact portion of the fundamental domain, and therefore

finitely many of them cover it.

When the holonomy field (see [25]) of a flat surface is known, we can also obtain

some elementary number-theoretic restrictions on the corresponding tessellation.
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Proposition 4.24. Let K ⊆ R be the holonomy field of (X, q, Z). Then the cusps

of Σ(X, q, Z) lie in K∪ {∞}. Moreover, each geodesic supporting an edge of a tile

in Σ(X, q, Z) has an equation with coefficients in K, and therefore an endpoint of

any such geodesic, as well as the cotangent of any angle in a tile of Σ(X, q, Z) lies

in at most a quadratic extension of K.

Proof. A cusp of Σ(X, q, Z) corresponds to a periodic direction on (X, q, Z), whose

(co-)slope must lie in K∪{∞} (cf. [18]). The endpoints of a geodesic supporting an

edge of Σ(X, q, Z) are solutions to a (linear or) quadratic equation with coefficients

in K. Likewise, the cotangent of the angle between two Poincaré geodesics in H

may be obtained as a square root of a rational expression in the coefficients of the

geodesics.

On the necessity of (±1)-holonomy for finite area of tiles

An example of a homothety surface shows that several of the results of this section

depend not only on the compactness of X, but also on the fact that q yields a

well-defined area on X. Many of the definitions for homothety surfaces carry over

naturally from the case of locally Euclidean surfaces, and so we omit them.

Let h > 1, and let X be the torus that is the quotient of C − {0} by the

homothety z 7→ hz, with the induced homothety structure h. Homotheties form

a normal subgroup of all affine maps, and so in general the space of homothety

surfaces also admits an action by GL2(R). In the case of (X, h), this action is

trivial: all elements of GL2(R) commute with the transition map z 7→ hz. Thus

we can say that the “Veech group” of (X, h) is all of GL2(R). We mark four points

of X, Z = {(±1, 0), (0,±1)} and triangulate (X, h, Z) as in Figure 4.4. This
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triangulation is Delaunay in the sense we have given, as angles are scale-invariant.

Figure 4.4: A homothety structure on the torus with a corresponding affine

triangulation; the inner boundary is glued to the outer by a cen-

tral homothety with scaling factor h > 1.

There are only two distinct conditions that arise from the requirement that

edges remain Delaunay:

• each diagonal of a trapezoid already has weight 0 and remains so when the

trapezoids are stretched in the directions of slope ±1, thus leading to the

condition |z| ≥ 1;

• each edge of slope ±1 yields the condition |z| ≤ h;

• the remaining edges are diagonals of non-convex quadrilaterals, hence they

do not create any constraints.

The region described therefore has infinite area.

Several people I have spoken with have said they thought about this surface at

one point or another. The following behaviors of “geodesics” (linear trajectories)

are interesting:

• every direction has two closed trajectories;
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• any trajectory that is not periodic accumulates on the parallel closed trajec-

tories, one in forward time and the other in backward time.

This also explains the failure of Veech’s argument for the iso-Delaunay region to

have finite area—it depends on a result of Vorobets [52] that at most countably

many directions can have periodic trajectories.

A

B

B

A

Figure 4.5: A genus 2 surface formed from two copies of the surface in Fig-

ure 4.4.

Another useful property of this surface is that it can be used to construct

homothety surfaces whose affine group contains a reducible mapping class that is

not contained in the affine group of any translation or flat surface. Start with

two copies of the torus described above. Slit each of them and sew them together

as shown in Figure 4.5. Then applying the linear map ( 1 0
0 h ) induces an affine

automorphism which is a composition of Dehn twists around disjoint curves, some

direct, some indirect. This latter property is what rules out the possibility of this

homeomorphism being contained in the affine group of a flat surface: when such

elements are the product of Dehn twists around disjoint curves, they must all be

in the same direction.
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Part II

Complex structures
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CHAPTER 5

STRATA OF GRC(C⊗ V ) AND COMPLEX STRUCTURES ON V

The Grassmannian variety of a complex vector space admits a natural stratifi-

cation when the vector space is equipped with a real structure. In this chapter we

describe these strata.

Given a function f : X → Y , gr f denotes its graph in the space X × Y .

5.1 A lemma on direct sum splittings

Lemma 5.1. Let V be a vector space. Given A and B in GL(V ), set V ′ =

ker(A − B) and V ′′ = ker(A + B). If A2 = B2, then V ′ and V ′′ are invariant

subspaces for both A and B. If A−1B = B−1A, then V = V ′ ⊕ V ′′.

Proof. Suppose A2 = B2. Then because B is nonsingular, we have

ker(A+B)A = kerB(B + A) = ker(A+B),

and therefore V ′′ is invariant under A. By similar arguments, V ′′ is invariant under

B, and V ′ is invariant under both A and B.

Now suppose A−1B = B−1A. To split V into the sum V ′⊕V ′′, we want to find

a projection P : V → V ′ such that id − P is a projection V → V ′′. That is, we

want to solve the system 
(A−B)P = 0

(A+B)(id− P ) = 0

P 2 = P
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for P . The first equation yields AP = BP . Substituting into the second equation,

we obtain A+B − 2AP = 0, from which

P =
1

2
(id + A−1B) and id− P =

1

2
(id− A−1B).

The third equation is then satisfied because (A−1B)2 = id.

Example 5.2. If A is any involution on V , then its (±1)-eigenspaces sum to all of

V . Any isomorphism G from V to its real dual space V > induces an involution on

Hom(V ) by A 7→ G−1A>G; for example, if G gives rise to an inner product, then

this is the transpose or adjoint operator, and Lemma 5.1 becomes the statement

that every matrix can be uniquely written as the sum of a symmetric matrix and

an anti-symmetric matrix.

Example 5.3. If J1 and J2 are complex structures on V that commute, then the

subspaces defined by the equations J1 = J2 and J1 = −J2 are complementary

complex vector spaces with respect to both J1 and J2. If J is any complex struc-

ture on V , then two commuting complex structures on Hom(V ) are given by pre-

composition and post-composition (right and left multiplication, respectively) by

J . The subspace of Hom(V ) on which these coincide is the space of complex-linear

maps, and the subspace on which they differ is the space of complex-antilinear

maps (with respect to J in both cases).

5.2 Complex conjugation

A complex vector space is a real vector space V with a linear map J : V → V

such that J2 = −id, or in other words a real vector space with a faithful action by

C that distributes over vector addition. The real vector space C has a canonical
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complex structure, which we shall denote mi, and the canonical real structure

x+ iy 7→ x− iy, which we shall denote ·̄. In order to have a real structure on the

complex vector space (V, J), i.e., an involution conj : V → V that extends the

action of C on V to include complex conjugation, we must have a distinguished

real subspace V ⊂ V such that V is the (+1)-eigenspace of conj and JV is the

(−1)-eigenspace of conj. Clearly conj and V determine each other, and so there is

no loss of generality in assuming that (V, J, conj) is simply (C⊗R V,mi, ·̄), where

the operations in the latter triple act on the first coordinate of C⊗R V . Hereafter

we write C⊗ V = C⊗R V .

5.3 Intersections of subspaces of C⊗ V

Let V be a real n-dimensional vector space, and let ν : V → C⊗V be the canonical

inclusion ν(v) = 1⊗v. We denote by G = GrC(C⊗V ) the Grassmannian variety of

complex subspaces of C⊗V and by Gp = GrC(p,C⊗V ) the connected component

of p-dimensional subspaces. Observe that, if W is a complex subspace of C ⊗ V ,

then so is W = {x | x ∈ W}.

Lemma 5.4. If W ∈ G, then dimC(W ∩W ) = dimR(W ∩ ν(V )).

Proof. The subspace W ′ = {x + x | x ∈ W ∩W} is fixed pointwise by complex

conjugation. Moreover, iW ′ = {x − x | x ∈ W ∩W} because i(x + x) = ix − ix

and W ∩W is invariant under mi. Therefore W ∩W = W ′ ⊕ iW ′ as real vector

spaces, and W ′ = W ∩ ν(V ). Because dimRW
′ = dimR iW

′, we conclude both are

equal to dimC(W ∩W ).

For 0 ≤ p ≤ n, we define δp : Gp → Z by δp(W ) = dimC(W ∩W ) and we set
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Gqp = δ−1
p (q). Note that, in order for Gqp to be non-empty, we must have q ≤ p and

q ≥ max{0, 2p− n}. The Gqp are the natural strata of Gp.

Example 5.5. Suppose V = R2. Then C⊗ V = C2 canonically. The Grassman-

nian component G1 is simply the complex projective line CP1, i.e., the Riemann

sphere, consisting of complex lines in C2 parametrized by their slopes. The stratum

G1
1 is the real projective line RP1 ⊂ CP1, i.e., the extended real axis, consisting of

those complex lines in C2 that are complexifications of lines in R2. The remain-

ing non-trivial stratum G0
1(R2) has two components: the upper half-plane and the

lower half-plane in C.

The following theorem is the goal of this section:

Theorem 5.6. Each non-empty stratum Gqp is a smooth submanifold of G with real

dimension q(n− q) + 2(n− p)(p− q). The closure of Gqp in Gp is
⋃
q′≥q Gq

′
p .

In the following chapter, we will specialize to the case of strata that form a

boundary to the Siegel half-plane. This special case has already been introduced

by Friedland and Freitas [17] (see also Freitas’s thesis), but much of the structure

of the strata can be obtained from this more general context. For example, it is

immediate that the action of GL(V ) on C(V ) extends continuously to an action

on the boundary, as is the following result.

Lemma 5.7. The natural action of GL(V ) on G preserves each stratum Gqp. The

action is transitive when restricted to a stratum.

Proof. The action of ·̄ commutes with the action of GL(V ), because they act on

different factors of C⊗ V . This implies the first claim.
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To show the second claim, let W1,W2 ∈ Gqp , and let W ′
1 = W1 ∩ ν(V ), W ′

2 =

W2 ∩ ν(V ). Choose R-bases B′1 and B′2 for W ′
1 and W ′

2, respectively, and complete

these to C-bases B1 and B2 of W1 and W2. Each Bi may be chosen so that the

real and imaginary parts of its elements form an R-linearly independent set: this

follows from

2(p− q) + q = 2p− q ≤ n

by the assumption that Gqp is non-empty. We can therefore choose an element of

GL(V ) that sends B1 to B2, by acting on the real and imaginary parts.

Remark 5.8. Lemma 5.7 says that each stratum is an orbit of the reductive group

GL(V ) acting on a complex Grassmannian variety. This means that several of the

results in this section could be obtained by a “Matsuki-type” correspondence; I

thank Allen Knutson for pointing this out to me. We will continue to give concrete

proofs tailored to the situation at hand, however.

Lemma 5.9. Let Gqp be a nonempty stratum. Then the product Gqq ×G0
p−q is a rank

q(p− q) complex affine bundle over Gqp via the projection (E,F ) 7→ E + F .

Proof. Let (E,F ) ∈ Gqq × G0
p−q. Our first claim is that E ∩ F = {0}. Indeed, if

α⊗v ∈ F , then α(α⊗v) = |α|2⊗v is also in F ; this element is fixed by conjugation

on C⊗V , hence also contained in F , which implies α⊗v = 0. Therefore E+F is an

element of Gp. Moreover, it lies in Gqp because (E+F )∩ (E + F ) = E. Conversely,

if W ∈ Gqp , then W ∩W is a point in Gqq , and any complement to W ∩W in W is

a point in G0
p−q. Therefore the map is surjective.

Given W ∈ Gqp , W ∩W is the unique maximal subspace of W fixed by conju-

gation. Therefore the fiber over W consists of all pairs (W ∩W,F ), where F is a

complement to W ∩W in W . Once we choose a particular point (W ∩W,F0) in
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the fiber, the whole fiber is parametrized by HomC(F0,W ∩W ), with the param-

eterization A 7→ (W ∩W, grA).

To get a local vector bundle structure, observe that a smooth section s :

U → G0
p−q defined on a small open set U in Gqp induces a section (perhaps on

a smaller open set) W 7→ (W ∩W, s(W )). The fiber over W is then identified with

HomC(s(W ),W ∩W ).

From this result (and its proof), we can compute the tangent space to each

stratum:

Lemma 5.10. Let W ∈ Gqp, where Gqp is a nonempty stratum. Set W ′ = ν(V )∩W .

Then

TWGqp ∼= HomR(W ′, V/W ′)⊕ HomC(W/(W ∩W ), (C⊗ V )/W ).

Proof. Recall that any choice of a complement E to W in C⊗V yields an identifi-

cation TWGp ∼= Hom(W,E) ∼= HomC(W, (C⊗V )/W ) (see for example [51, §10.1]);

this is the basis of our analysis.

Write W = W1⊕W2, where W1 = C⊗W ′ = W ∩W , and W2 is a complement

to W1 in W . The tangent space to Gqq × G0
p−q at (W1,W2) is HomR(W ′, V/W ′) ⊕

HomC(W2, (C ⊗ V )/W2). But W2
∼= W/W1, and the tangent space to the fiber

over W at (W1,W2) is HomC(W2,W1); the quotient of HomC(W2, (C⊗ V )/W2) by

HomC(W2,W1) is HomC(W2, (C⊗ V )/W ). The result follows.

The identification in Lemma 5.9 can in fact be shown to be canonical (i.e.,

independent of all choices in the proof), but we will not need this fact.
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Proof of Theorem 5.6. The (real) dimension of Gqp follows from Lemma 5.9. It is

embedded as a smooth submanifold of Gp. because it is an orbit of GL(V ). Its

closure is shown to be as stated by letting subspaces of various dimensions approach

their conjugates. This also shows that δp is an upper semicontinuous function.

5.4 The manifold of complex structures on a real vector

space

Now let V be a real 2n-dimensional vector space. Define the inclusion ν : V →

C ⊗ V and the strata Gqp as before. Our focus will be on the component Gn of

GrC(C ⊗ V ). Set U(V ) = G0
n, the open stratum of Gn. When K ∈ U(V ), we

have the canonical splitting C ⊗ V = K ⊕ K, and so the tangent space to Gn

at K may be identified with HomC(K,K). We recall that the exponential map

HomC(K,K) → Gn is given by A 7→ grA. We will see that U(V ) is naturally

isomorphic to the space of complex structures on V , and that the remaining strata

in Gn form a natural boundary to the space of complex structures; the points of

this boundary have strong geometric meaning.

The manifold of complex structures on V is the subvariety C(V ) of Hom(V )

defined by

C(V ) = {J ∈ Hom(V ) | J2 = −id}.

It is a smooth manifold because GL(V ) acts transitively on it by conjugation.

Each point J ∈ C(V ) splits Hom(V ) (see Example 5.3) into a sum of J-linear and
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J-antilinear maps—which we denote by

HomJ(V ) = {A ∈ Hom(V ) | AJ = JA} and

HomJ(V ) = {A ∈ Hom(V ) | AJ = −JA}

—and makes Hom(V ) itself into a complex vector space, with the complex struc-

ture given by post-composition by J , which we denote LJ ; HomJ(V ) and HomJ(V )

are complex subspaces. We have dimC HomJ(V ) = dimC HomJ(V ) = n2. Differ-

entiating the condition J2 + id = 0 shows that HomJ(V ) is the tangent space to

C(V ) at J . Because the complex structures LJ vary smoothly with J , they en-

dow C(V ) with an almost-complex structure. The following result shows that this

almost-complex structure on C(V ) is integrable.

Theorem 5.11. C(V ) and U(V ) are isomorphic as almost-complex manifolds.

The basic correspondence between points in these two manifolds is often used

in Hodge-theoretic situations (see for example [20, App. A.4] or [51]). This result

in itself is therefore not new, but it seems to have remained “folklore” knowledge

(cf. [4]). Consequently, we will sketch the connection between C(V ) and U(V ),

then more carefully extract some results that will be useful in later chapters.

Given J ∈ C(V ), let k(J) be the real 2n-dimensional subspace

k(J) = {1⊗ Jv − i⊗ v | v ∈ V } ⊂ C⊗ V.

From the equality k(J) = k(−J) = {1 ⊗ Jv + i ⊗ v | v ∈ V } we conclude

k(J) ∩ k(J) = {0}. That k(J) and k(J) are complex subspaces of C ⊗ V can

be checked directly, or by an appeal to Lemma 5.1. (Note that k(J) and k(J) are

also defined by the respective equations ix = −Jx and ix = Jx.) Thus we have a

function k : C(V )→ U(V ).
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To obtain an inverse map, we must associate to each K ∈ U(V ) a unique

complex structure j(K) on V . If K ∈ U(V ), then ν(V ) is transverse to both K

and K, and the (real) dimension of all three is equal. Hence the projection of ν(V )

onto either component of the sum K ⊕K is a linear isomorphism. We denote by

κ : V → K the composition of ν and the projection C⊗ V → K. Then

j(K) = κ−1 ◦mi ◦ κ

is a complex structure on V . This defines a function j : U(V )→ C(V ).

The action of GL(V ) on C(V ), as previously observed, is by conjugation. The

action on U(V ) is the canonical one induced on Gn by the action on the second

factor of C ⊗ V . These actions are conjugated by j and k since, for A ∈ GL(V ),

we have

k(AJA−1) = {1⊗AJA−1v−i⊗v | v ∈ V } = {1⊗AJv−i⊗Av | v ∈ V } = A(k(J)).

As could be expected at this point, we have:

Lemma 5.12. The maps j and k are inverse GL(V )-equivariant bijections.

We also have natural interpretations of complex-linear and complex-antilinear

maps of V in terms of maps between subspaces of C⊗ V , which shed light on the

how the tangent spaces to C(V ) and U(V ) relate to each other.

Lemma 5.13. Let J ∈ C(V ), and set K = k(J). Then we have the following

equalities:

HomC(K) = HomC(K) = HomJ(V )

HomC(K,K) = HomC(K,K) = HomJ(V )

when elements of the latter sets, acting on C⊗V , are restricted to the appropriate

subspaces.

46



Proof. Let A ∈ HomJ(V ). Then K and K are invariant subspaces of A, because

A(1⊗ Jv ± i⊗ v) = 1⊗ AJv ± i⊗ Av = 1⊗ J(Av)± i⊗ Av for all v ∈ V.

Similarly, if A ∈ HomJ(V ), then A sends K to K (as well as K to K). Thus

we have the inclusions HomJ(V ) ⊂ HomC(K) and HomJ(V ) ⊂ HomC(K,K). A

dimension count shows that the inclusions must be surjections, which proves the

equalities.

Lemma 5.14. If λ is an eigenvalue of A ∈ HomJ(V ), then −λ is also an eigen-

value of A, and J interchanges the corresponding eigenspaces.

Proof. Let A ∈ HomJ(V ), and suppose v ∈ C ⊗ V satisfies Av = λv. Then

AJv = −JAv = −λJv, from which the result follows.

By composing k with the canonical charts at points of U(V ), we get canonical

charts on C(V ). The next lemma gives explicit formulas for these charts and their

inverses, as well as domains on which they are defined.

Lemma 5.15. Let J0 ∈ C(V ), and set K0 = k(J0). If J ∈ C(V ) is such J0J does

not have 1 as an eigenvalue, then k(J) is the graph in K0 ⊕K0 = C⊗ V of

A = (J0 − J)(J0 + J)−1 ∈ HomJ0
(V ) = HomC(K0, K0).

Conversely, if A ∈ HomJ0
(V ) does not have 1 as an eigenvalue, then

j(gr(A)) = J0(id− A)(id + A)−1 ∈ C(V ).

Proof. By definition, k(J) = {1⊗ Jv − i⊗ v | v ∈ V }. Since k(J) ⊂ K0 ⊕K0, for

every v ∈ V there exist unique v′ and v′′ in V such that

1⊗ Jv − i⊗ v = (1⊗ J0v
′ − i⊗ v′) + (1⊗ J0v

′′ + i⊗ v′′).
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This leads to the system of equations
Jv = J0(v′ + v′′)

v = v′ − v′′
.

Solving for v′′ in terms of v′, we find

v′′ = (J0 − J)(J0 + J)−1v′,

which proves the first result.

If A ∈ HomJ0
(V ) does not have 1 as an eigenvalue, then by Lemma 5.14 neither

does it have −1 as an eigenvalue, and therefore id + A is invertible. The second

result now follows from the first by solving the first equation for J .

Example 5.16. Suppose V = R2 and J0 is the standard complex structure [ 0 −1
1 0 ].

Each point
[
a −(a2+1)/b
b −a

]
in C(V ) is identified with a + bi ∈ C, and TJ0C(V ) is the

space of constant Beltrami forms α dz/dz, α ∈ C. The formulas in Lemma 5.15

become the following Möbius transformations:

z 7→ (i− z)/(i+ z) and w 7→ i(1− w)/(1 + w),

which exchange the upper half-plane H with D. The only point J in U(V ) such

that J0J has 1 as an eigenvalue is −J0, corresponding to −i, which is sent to ∞

by the first map above.

We record here the condition for a map from a domain U ⊂ C into C(V ) to

be holomorphic. If z is a coordinate on U , let D′ and D′′, respectively, denote

differentiation with respect to Re z and Im z. Suppose J(z) : ζ 7→ Jζ is a family of

complex structures parameterized by ζ ∈ U . Then the Cauchy–Riemann condition

for J(z) to be holomorphic is

(D′ + JζD
′′)J(z) = 0. (5.1)
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5.5 Strata of Gn(V ) in local coordinates

At this point it is clear that the dimension of the (+1)-eigenspace of an element of

HomJ(V ) is important, and we suspect that it relates to the strata of Gn(V ). The

following lemma makes this relationship precise.

Lemma 5.17. Let J ∈ C(V ) and set K = k(J). If A ∈ HomJ(V ) = HomC(K,K),

then

δn(gr(A)) = dimR ker(id− A) = dimR ker(id + A).

Proof. For 1⊗ Jv − 1⊗ v ∈ k(J) and A ∈ HomJ(A), we have

(1⊗ Jv − 1⊗ v) + A(1⊗ Jv − 1⊗ v) = 1⊗ J(id− A)v − i⊗ (id + A)v

This element of grA is fixed by conjugation if v ∈ ker(id + A) and in the (−1)-

eigenspace of conjugation if v ∈ ker(id − A). From this observation the result

follows.

The boundary of C(V ) is therefore sent by the chart centered at J0 to the affine

subvariety of HomJ0
(V ) defined by any of the following:

det(id− A) = 0, det(id + A) = 0, det(id− A2) = 0.

The principle stratum G1
n of ∂C(V ) is a dense subset. More generally, as a corollary

to Theorem 5.6, we have

Corollary 5.18. The dimension of Gpn ⊂ ∂C(V ) is 2n2 − p2.

Given J0 ∈ C(V ), the eigenvectors of −JJ0 = J−1J0 for J in the domain of

the chart given in Lemma 5.15 coincide with those of the image element, and the
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eigenvalues are related by a naturally arising fractional linear transformation: if v

is an eigenvector of A = (J0− J)(J0 + J)−1 with corresponding eigenvalue λ, then

−JJ0v = (id− A)−1(id + A)v = (id− A)−1(1 + λ)v =
1 + λ

1− λ
v. (5.2)

This relation will be particularly useful in studying local versions of the Siegel

half-plane in the next chapter.
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CHAPTER 6

THE GEOMETRY OF H AND ITS BOUNDARY

In this chapter, we introduce a symplectic structure on a vector space and place

the associated Siegel half-plane in the context of the previous chapter, thereby

recovering much of its classical geometry, while also refining some of the results

and proofs.

6.1 Linear maps from a vector space to its dual spaces

Let V be a finite-dimensional real vector space. We denote by V > = Hom(V,R) the

real dual of V . If W is another real vector space, then any linear map A : V → W

has a dual map, called its transpose, A> : W> → V >, defined by A>α = αA.

Recall that V is canonically isomorphic to its double dual space V >> by sending

v ∈ V to the evaluation map ev v : α 7→ αv. Hence the transpose of a map V → V >

is again a map V → V >.

Any linear map B : V → V > induces a bilinear form b on V , defined by

b(v, w) = (Bw)v, which is non-degenerate precisely when B is an isomorphism. We

call B : V → V > symmetric if B> = B and anti-symmetric if B> = −B. A pseudo-

Euclidean structure on V is a symmetric linear isomorphism G : V → V >, and a

symplectic structure on V is an anti-symmetric linear isomorphism Σ : V → V >.

A linear map B : V → V > is positive semi-definite, written B ≥ 0, if (Bv)v ≥ 0

for all v ∈ V . B is positive definite, written B > 0, if (Bv)v > 0 for all v 6= 0;

in particular, such a map is an isomorphism. A Euclidean structure is a positive

definite pseudo-Euclidean structure.
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Given a pseudo-Euclidean structure G, a linear map A : V → V is called self-

adjoint or symmetric with respect to G if (GA)> = GA. The bilinear form induced

on V by a symplectic structure is called a symplectic form, and the bilinear form

induced by a (pseudo-)Euclidean structure is called a (pseudo-)inner product.

An element of Hom(V ) is said to be diagonalizable if its eigenspaces span V . For

clarity and later reference, we restate the spectral theorem for finite-dimensional

vector spaces.

Theorem 6.1 (Spectral theorem). A linear map V → V is diagonalizable if and

only if it is symmetric with respect to some Euclidean structure on V .

Proof. The “if” part is the usual spectral theorem. The “only if” part is by

construction: suppose A ∈ Hom(V ) is diagonalizable. Choose an eigenbasis for

A, and let G be a Euclidean structure for which this basis is orthogonal. Then

(GA)> = GA.

The set Hom(V,C) of real linear maps V → C is equipped with a canoni-

cal complex structure, which is post-composition by mi. Now suppose that V is

equipped with a complex structure J : V → V , J2 = −id. The conjugate space of

V , denoted V , is V equipped with the complex structure −J . We are interested

in the complex dual space of V , which we denote by V ∗ = HomC(V,C), and also

in the dual conjugate and conjugate dual spaces of V , respectively denoted (V )∗

and (V ∗).

The spaces (V )∗ and (V ∗) are canonically isomorphic; both consist of complex-

antilinear maps V → C, and there is an explicit complex-linear isomorphism be-

tween the two, given by α 7→ α. The evaluation map v 7→ ev v again yields
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canonical isomorphisms of V with its double complex dual, double dual conjugate,

and double conjugate dual spaces.

The transpose operator is defined as before and sends a linear map A : V → W

to the linear map A> : W ∗ → V ∗; it enjoys the same linearity properties as A

(i.e., if A is complex-linear, then so is A>, and likewise for complex-antilinearity).

In addition, we now also have a conjugate transpose operator, which is defined by

A∗α = αA. The conjugate transpose of A may be viewed in a number of ways,

but most usefully as a map (W ∗) → (V )∗, in which case it again enjoys the same

linearity properties as A. Hence the conjugate transpose of a map V → (V )∗ is

again a map V → (V )∗.

A pseudo-Hermitian structure on V is a complex-linear isomorphism H : V →

(V )∗ such that H∗ = H. This is equivalent to the conditions that ReH be a

pseudo-Euclidean structure on V and that ImH be a symplectic structure on V .

A linear map A : V → V is called self-adjoint or Hermitian if (HA)∗ = HA. A

Hermitian structure is a pseudo-Hermitian structure whose real part is a Euclidean

structure.

Example 6.2. The complex manifold C(V ) carries a canonical pseudo-Hermitian

structure H on its tangent bundle, defined on each tangent space TJC(V ) =

HomJ(V ) by

(A,B) 7→ (HJB)A = trBA− i trBJA = trAB + i trAJB.

The symmetry of ReHJ is a standard property of the trace. The anti-symmetry of

ImHJ arises from the definition of HomJ(V ) as the space of J-antilinear maps. H

is clearly invariant under the action of GL(V ) by conjugation, since, on the level of

tangent spaces to C(V ), the action of GL(V ) is the adjoint action, which preserves

traces.
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We will soon see subspaces of HomJ(V ) on which HJ is a Hermitian structure.

6.2 Compatible complex structures

Three important subspaces of Hom(V ) play starring roles in what follows. Suppose

G is a pseudo-Euclidean structure, Σ is a symplectic structure, and J is a complex

structure on V . Then we have the classical orthogonal, symplectic, and complex-

linear groups

OG(V ) = {A ∈ GL(V ) | A>GA = G},

SpΣ(V ) = {A ∈ GL(V ) | A>ΣA = Σ},

GLJ(V ) = {A ∈ GL(V ) | AJ = JA}.

For the sake of simplicity, we will drop the subscripts of the first two when clarity

permits. The Lie algebras of these groups are

so(V ) = {A ∈ Hom(V ) | (GA)> = −GA},

sp(V ) = {A ∈ Hom(V ) | (ΣA)> = ΣA},

HomJ(V ) = {A ∈ Hom(V ) | AJ = JA}.

Each of these has a natural complement in Hom(V ). We have already seen that

HomJ(V ) complements HomJ(V ) (see previous chapter). By Example 5.2, a com-

plement to sp(V ) is {A ∈ Hom(V ) | (ΣA)> = −ΣA}, and a complement to so(V )

is {A ∈ Hom(V ) | (GA)> = GA}. This latter is precisely the space of maps on V

that are symmetric with respect to G.

The interesting equation to study is G = ΣJ ; this is (almost) the compatibility

condition. Note that when two of G,Σ, J are given, there is at most one possibility
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for the remaining one that is an object of the appropriate type. Note also that

when G, Σ, and J satisfy this relation, we obtain the fourth kind of classical group,

a unitary group, as the intersection of any two of the above groups:

U(V ) = O(V ) ∩ Sp(V ) = O(V ) ∩GLJ(V ) = Sp(V ) ∩GLJ(V );

The corresponding pseudo-Hermitian structure on V is H = G + iΣ. The Lie

algebra of U(V ) is

u(V ) = so(V ) ∩ sp(V ) = so(V ) ∩ HomJ(V ) = sp(V ) ∩ HomJ(V ).

One wonders, given a fixed Σ, for which J ∈ C(V ) is ΣJ a pseudo-Euclidean

structure? The answer is precisely the ones that are themselves symplectic. Using

the above notation, this statement becomes:

∀ J ∈ C(V ), J ∈ sp(V ) ⇐⇒ J ∈ Sp(V ).

We write CΣ(V ) = C(V )∩Sp(V ). The tangent space to Sp(V ) at J ∈ CΣ(V ) is the

space of operators A : V → V that are symmetric with respect to ΣJ , i.e,

TJSp(V ) = {A ∈ Hom(V ) | (ΣJA)> = ΣJA},

which shows, firstly, that the dimension of Sp(V ) is 2n2 + n, and, secondly, that

the normal space to Sp(V ) at J can be identified with soΣJ(V ). The tangent space

to CΣ(V ) at J is of course HomJ(V )∩ sp(V ); it is moreover a J-invariant subspace

of TJC(V ), which shows that CΣ(V ) itself is a complex manifold.

The connected components of CΣ(V ) are indexed by the signature of the

quadratic form associated to ΣJ . We say that J ∈ CΣ(V ) is compatible with

Σ if ΣJ is a Euclidean structure. The set of all complex structures compatible

with Σ forms the Siegel half-plane H:

H = {J ∈ CΣ(V ) | ΣJ > 0}.
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(For a discussion of compatible complex structures, see for example [11, Part V].)

The action of GL(V ) on C(V ) restricts to an action of Sp(V ) on CΣ(V ); the sta-

bilizer of each point is the corresponding unitary group. This action preserves the

connected components of CΣ(V ) (because Sp(V ) is connected), hence in particular

Sp(V ) acts on H.

Proposition 6.3. If J ∈ H, then the pseudo-Hermitian structure HJ defined in

Example 6.2 restricts to a Hermitian structure TJH ⊂ TJC(V ).

Proof. We only need to show that (HJA)A = trA2 > 0 for all A 6= 0. This

follows from the spectral theorem, because A is symmetric with respect to ΣJ ,

and therefore all of its eigenvalues are real.

Therefore H carries a canonical Sp(V )-invariant Riemannian metric, the Siegel

metric. In §6.4, we will again have occasion to apply the spectral theorem when

we describe the geodesics for this metric (and a family of related metrics). First,

however, we examine equivalent descriptions of H, including its image by the log-

arithmic map and how a choice of coordinates leads to the description by complex

matrices.

6.3 Isotropic subspaces and Λ(C⊗ V )

Let V be a real vector space of dimension 2n, and fix a symplectic structure Σ on V .

A subspace W of V is isotropic if (Σw)v = 0 for all v, w ∈ W . Given A ∈ Sp(V ), it

is well-known that for each eigenvalue λ of A, the corresponding eigenspace Eλ is

isotropic if λ 6= 1, and more generally its symplectic complement is the sum of all

eigenspaces Eλ′ where λ′ is an eigenvalue of A and λλ′ 6= 1. An isotropic subspace
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W ⊂ V is Lagrangian if dimW = n. The set of Lagrangian subspaces of V forms

the Lagrangian Grassmannian Λ(V ) ⊂ GrR(n, V ). The symplectic structure on V

extends to a symplectic structure on C⊗ V , and so the same definitions apply in

the complexified case, as well.

Let U(V ) ⊂ Gn be as in the previous chapter, along with the functions j :

U(V )→ C(V ) and k : C(V )→ U(V ).

Proposition 6.4. The image UΣ(V ) of CΣ(V ) in Gn by k is U(V ) ∩ Λ(C⊗ V ).

Proof. Let J ∈ C(V ). For any v, w ∈ V , we have

(Σ(1⊗ Jw − i⊗ w))(1⊗ Jv − i⊗ v) = (ΣJw)Jv − (Σw)v − i((ΣJw)v + (Σw)Jv)

The real part of this expression vanishes for all v, w ∈ V if and only if J ∈ Sp(V ).

The imaginary part vanishes for all v, w ∈ V if and only if J ∈ sp(V ). Because

the conditions J ∈ Sp(V ) and J ∈ sp(V ) are equivalent, the result is shown.

Proposition 6.5. Let J ∈ CΣ(V ), and let L ⊂ V be any subspace. Then L is

isotropic if and only if L ⊥ΣJ JL. In particular, if L ∈ Λ(V ), then V splits into

the orthogonal sum L⊕ JL.

Proof. The first claim follows immediately from the equality (Σw)v = ((ΣJ)w)Jv.

The second claim follows from a dimension count.

We write Λp = Λ(C ⊗ V ) ∩ Gpn. The smallest stratum Λn
∼= Λ(V ) is known to

be the Shilov boundary of H (that is, it is the smallest set S of boundary points

such that every harmonic function on H attains a maximum on H ∪S). Recently

[17], it was shown that H ⊂ Λ(C ⊗ V ) is the Busemann 1-compactification of H.

We can now compute the dimensions of all strata (cf. Corollary 5.18).
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Theorem 6.6. Λp is a smooth real manifold of dimension n2 + n− (p2 + p)/2.

Proof. This simply requires lightly modifying the proofs of Lemmata 5.9 and 5.10,

applying the symmetry of elements of the tangent space with respect to a Euclidean

structure.

6.4 Geodesics in H

Throughout this section, whenever λ is an eigenvalue of a linear operator, we use

Eλ to denote to corresponding eigenspace.

Lemma 6.7. If A,B ∈ Hom(V, V >) are both positive definite, then all of the

eigenvalues of A−1B are positive.

Proof. Suppose λ is an eigenvalue of A−1B with corresponding eigenvector v 6= 0.

Then Bv = λAv. Thus we have (Bv)v = λ(Av)v, and because A > 0 and B > 0,

also λ > 0.

Theorem 6.8. Let J0 and J1 be in H. Then

1. −J1J0 is diagonalizable, and all of its eigenvalues are positive.

2. For any eigenvalue λ 6= 1, J0 and J1 interchange Eλ and E1/λ. If 1 is an

eigenvalue, then E1 is invariant under both J0 and J1.

3. (−J1J0)t is in Sp(V ) for all t ∈ R.

Proof. First observe that −J1J0 = −J1Σ−1ΣJ0 = (ΣJ1)−1(ΣJ0). The first claim

now follows from the spectral theorem and Lemma 6.7.

58



An eigenspace Eλ is the kernel of−J1J0−λ·id. This map factors as J1(λJ1−J0),

and because J1 is non-singular, Eλ is also the kernel of λJ1− J0. Suppose v ∈ Eλ.

Then (J1 − λJ0)J0v = −J1(λJ1 − J0)v = 0, and therefore J1 maps Eλ to E1/λ.

Because −J0J1 has the same eigenspaces as −J1J0, the same argument shows that

J1 maps Eλ to E1/λ. In particular, if 1 is an eigenvalue, then E1 is invariant under

J0 and J1.

By part (1), (−J1J0)t is defined on each Eλ by w 7→ λtw. We need to show

that this map is symplectic. Suppose λ, λ′ ∈ E , and v ∈ Eλ, w ∈ Eλ′ . Then

(
Σ(−J1J0)tw

)
(−J1J0)tv = Σ(λ′

t
w)λv = (λλ′)t(Σw)v.

If λλ′ 6= 1, part (2) shows that both sides of this equality are zero. If λλ′ = 1,

then the equality shows that Σ is preserved on Eλ⊕E1/λ (or on E1, if λ = λ′ = 1).

Because the Eλs sum to V , this shows that (−J1J0)t is symplectic for all t ∈ R.

We obtain as a corollary the following extremely well-known properties:

Corollary 6.9. Sp(V ) acts transitively on H by conjugation. H is path-connected.

Proof. Let J0, J1 ∈ H. Part (3) of Theorem 6.8 implies in particular that
√
−J1J0 ∈

Sp(V ). We will show that
√
−J1J0J0

√
−J0J1 = J1. The inverse of

√
−J1J0 is

√
−J0J1, because taking inverses of linear transformations commutes with taking

square roots (when both exist). It suffices to show that J2 equals
√
−J1J0J0

√
−J0J1

on Eλ⊕E1/λ for each λ 6= 1, since J1 = J0 on E1 if 1 is an eigenvalue. On Eλ⊕E1/λ,

J1 restricts to (1/λ)J0 ⊕ λJ0,
√
−J0J1 restricts to λ−1/2id ⊕ λ1/2id, and

√
−J1J0

restricts to λ1/2id⊕λ−1/2id. J0 interchanges Eλ and E1/λ. Therefore J1 equals the

composition of
√
−J0J1, J0, and

√
−J1J0. (See Figure 6.1.)
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It follows that, given J0, J1 ∈ H, Jt = (−J1J0)t/2J0(−J0J1)t/2 is a path from J0

to J1.

Eλ

E1/λ

u

J0u

Eλ

E1/λ

1√
λ
u

J0

(
1√
λ
u
)

Eλ

E1/λ

u

J1u = 1
λJ0u

Figure 6.1: A geodesic motion in H.

Theorem 6.8 also suggests a family of metrics on H: given J1, J2 ∈ H, let E be

the set of eigenvalues of −J2J1. Then define

dα(J1, J2) =
1

2

(∑
λ∈E

dimEλ | log λ|α
)1/α

(1 ≤ α <∞).

(Recall that Eλ denotes the eigenspace corresponding to the eigenvalue λ.)

Proposition 6.10. For every 1 ≤ α <∞, dα is a metric on H.

As observed by Freitas–Friedland, given J0, J1 ∈ H, the path t 7→

(−J1J0)t/2J0(−J0J1)t/2 is geodesic for every dα, and it is the unique geodesic from

J0 to J1 if 1 < α <∞. The Siegel metric is d2.

Lemma 6.11. Let J0, J1 ∈ H, and let m be the multiplicity of 1 as an eigenvalue

of −J1J0. Set Jt = (−J1J0)t/2J0(−J0J1)−t/2 and K±∞ = limt→±∞ k(Jt) ∈ G. Then

δ(K±∞) = n−m/2.

Proof. Let E0 be the subspace on which −J1J0 restricts to the identity, and let E+

(resp. E−) be the sum of the eigenspaces with corresponding eigenvalues greater
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(resp. less) than 1. Set F0 ⊂ C⊗ V to be the image of E0 under the isomorphism

V → k(J0). As t → ±∞, k(Jt) limits to F0 ⊕ (C ⊗ E±). Because dimRE± =

(2n−m)/2, the result follows.

Corollary 6.12. The endpoints of a geodesic in H for any metric dα, α > 1, lie

in the same stratum Λp of ∂H.

6.5 Local coordinates on H

We have already shown that H is a complex manifold. As is well-known, it is in

fact biholomorphic to a bounded, contractible, open region in a complex vector

space. We present this as follows:

Proposition 6.13. Let J0 ∈ H. Then the canonical chart k0 on C(V ) at J0 includes

all of H in its domain and sends H to an open, contractible, bounded domain of

TJ0H.

Proof. There are several pieces to prove.

First, given any other J ∈ H, all eigenvalues of J0J are negative by Theo-

rem 6.8, hence in particular J0J does not have 1 as an eigenvalue. Therefore, by

Lemma 5.15, all of H lies in the domain of the canonical chart at J0.

Secondly, we show that any symplectic J maps to HomJ0
(V )∩ sp(V ) under k0.

That is, we want to determine the condition on A ∈ HomJ0
(V ) such that k0

−1(A)

is symplectic. Because k0
−1(A) is a complex structure, we have

J0(id− A)(id + A)−1 = (id− A)−1(id + A)J0.
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(Note that power series in A commute.) The requirement (Σk0
−1(A))> = Σk0

−1(A)

is equivalent to each of the following:

(id + A>)−1(id− A>)ΣJ0 = Σ(id− A)−1(id + A)J0,

(id− A>)Σ(id− A) = (id + A>)Σ(id + A),

−A>Σ− ΣA = A>Σ + ΣA,

(ΣA)> = ΣA.

Thirdly, k0(H) is open because it is a component of the complement in

HomJ0,Σ
(V ) of the zero set of det(id− A).

Fourthly, we show that k0(H) is bounded. Each eigenvalue of A = k0(J), J ∈ H,

is related to an eigenvalue of −JJ0 by Equation (5.2) on page 50. Because all the

eigenvalues of −JJ0 are negative, the eigenvalues of A must lie between −1 and 1.

This gives a bounded condition on A (since its eigenvalues are real).

Finally, we show that k0(H) is contractible. Since all the eigenvalues of A ∈

k0(H) have absolute value less than 1, the same holds for tA, t ≤ 1. Therefore

k0(H) deformation retracts onto the origin.

It is worthwhile to consider how to recover the more standard definition of H as

the set of symmetric n×n complex matrices with positive definite imaginary part.

This classical representation of H has many advantages, among them the simplicity

of its definition, but it fails to include within its scope the entire boundary of H

that we wish to study. It will be useful to have an easy set of conditions to check,

however, for the application we make in the next chapter, and more generally the

rest of this section can serve as reference for those who wish to know how the

different representations are related.
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Choose L ∈ Λ(V ) and a basepoint J0 ∈ H. Then, by Lemma 6.5, V = L⊕J0L,

and therefore any other J ∈ C(V ) can be expressed in block-matrix form as follows:J11 J12

J21 J22

 : L⊕ J0L→ L⊕ J0L.

The equation J2 = −id translates to the conditions

J2
11 + J12J21 = −idL

J2
22 + J21J12 = −idJ0L

J11J12 + J12J22 = 0

J21J11 + J22J21 = 0

. (6.1)

Now we determine the conditions to ensure J ∈ H. Lemma 6.5 implies that

J21 = projJ0LJ is an isomorphism from L to J0L, hence invertible. In this case,

the system (6.1) is equivalent to

J12 = −(J2
11 + idL)J−1

21 and J22 = −J21J11J
−1
21 . (6.2)

Σ itself can be written as
(

0 Σ12

−Σ>12 0

)
, where Σ12 ∈ Hom(J0L,L

>) is an isomor-

phism, because L and J0L are both in Λ(V ) (again by Lemma 6.5). For J to be

in CΣ(V ), ΣJ must be symmetric, which translates to
(Σ12J21)> = Σ12J21

Σ>12 J12 = J>12 Σ12

Σ12J22 = −J>11 Σ12

. (6.3)

Combining the second equation in (6.2) with the first equation in (6.3), the final

equation in (6.3) becomes

(Σ12J21J11)> = Σ12J21J11. (6.4)
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Lastly, we need ΣJ > 0. Clearly we must have Σ12J21 > 0, because this is the

restriction of ΣJ to L. But this condition is also sufficient: if u ⊕ v ∈ L ⊕ J0L,

then by setting u′ = J−1
21 v, we can reduce the computation of (ΣJ(u ⊕ v))(u ⊕ v)

to a computation in L. We get

(Σ21J21u)u− (Σ12v)J12v + (Σ12J22v)u− (Σ12v)J11u

= (Σ12J21u)u+ (Σ12J21u
′)(J11

2 + idL0)u
′ − (Σ12J21J11u

′)u− (Σ12J21u
′)J11u

= (Σ12J21u)u+ (Σ12J21J11u
′)J11u

′ + (Σ12J21u
′)u′ − 2(Σ12J21J11u

′)u

= (Σ12J21u
′)u′ + (Σ12J21(u− J11u

′))(u− J11u
′).

Both of the terms in this final sum are non-negative. If v 6= 0, then the first term

is positive, and if v = 0 but u 6= 0, the second term is positive. Thus we obtain

the “bilinear relations”:

Proposition 6.14. If J =
(
J11 J12
J21 J22

)
is any element of Hom(V ), then necessary

and sufficient conditions to have J ∈ H are Σ12J21 > 0, (Σ12J21)> = Σ12J21, and

the equations of (6.2) and (6.4).

Given J =
(
J11 J12
J21 J22

)
∈ H, the functions X = J11J

−1
21 and Y = J−1

21 therefore

both map J0L→ L and satisfy the conditions

Σ12Y
−1 > 0, (Σ12Y

−1)> = Σ12Y
−1, and (Σ12X

−1)> = Σ12X
−1.

(These expressions have meaning because Σ12 is an isomorphism J0L→ L>. Note

also that the latter equation is indeed equivalent to (6.4), because J11 is symmetric

with respect to Σ12J21 if and only if J−1
11 is.) Conversely, given such maps X, Y :

J0L→ L, the functionXY −1 −(XY −1X + Y )

Y −1 −Y −1X

 ∈ Hom(V )
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lies in H. After choosing an orthonormal basis for L (with respect to ΣJ0), and tak-

ing the image basis in J0L, the above expressions define a bijection between H and

the appropriate space of matrices, of the form X+ iY . Under this correspondence,

the action of Sp(V ) on H (by conjugation) becomes an action by “generalized

fractional linear transformations”: ( A B
C D ) : Z 7→ (AZ +B)(CZ +D)−1.

6.6 Torelli space and the period map

Given a compact Riemann surface X of genus g ≥ 1, let σ be the symplectic form

on H1(X,Z) given by algebraic intersection of curves. Let Ω(X) ∼= Cg denote the

space of abelian differentials on X. Given ω ∈ Ω(X) and a smooth simple closed

curve γ, we call perγ(ω) =
∫
γ
ω the period of ω along γ. The value of this integral

depends only on the homology class [γ] ∈ H1(X,Z), and therefore the period map

per : [γ] 7→ perγ is a canonical injection H1(X,Z) → Ω(X)∗. The image of per in

Ω(X)∗, which we will simply denote per(X), is clearly a lattice, and so the quotient

Jac(X) = Ω(X)∗/per(X) is a complex torus, called the Jacobian of X. Jac(X)

is characterized by choosing a symplectic basis for H1(X,Z) and computing its

period matrix, as described below.

We need to recall some general facts about dual bases. Suppose W is a complex

vector space of dimension d, and W = {w1, . . . , wd} is a basis for W . Then we get

a canonical evaluation map evW : W ∗ → Cd, whose jth component is evwj . The

dual basis to W is the basis W ∗ = {w1
∗, . . . , wd

∗} for W ∗ such that wj
∗(wk) = δjk.

(Note that the element wj
∗ depends on the entire basis W , not just the element wj.)

If W ′ = {w1
′, . . . , wd

′} is any other basis for W , then evW ′(W ∗) = [wj
∗(wk

′)]dj,k=1

is the change-of-basis matrix that converts the coefficients of a vector in the basis
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W ′ to its coefficients in the basis W . Observe that evW ((W ′)∗) = evW ′(W ∗)−1.

With notation as in the previous paragraphs, choosing a basis for Ω(X) induces,

by composition of evW with the period map, a linear map ΠW : H1(X,Z) → Cg,

as in the diagram below:

H1(X,Z)
per //

ΠW &&MMMMMMMMMMM
Ω(X)∗

evW

��
Cg

Let A and B be subsets ofH1(X,Z) of size g, each spanning a Lagrangian subspace

in H1(X,R) = R⊗ZH1(X,Z), and together forming a symplectic basis for H1(X,Z)

(for example, start with a canonical system of curves on X—say {α1, . . . , αg} and

{β1, . . . , βg}—and take the images of these in H1(X,Z)). Note that per(A ) and

per(B) are both C-bases for Ω(X)∗; we identify A and B with their embedded

images in Ω(X)∗. The Riemann period matrix of X with respect to the basis

A ∪B is defined to be Π = ΠA ∗(B). If we write out what this means, we find

Πjk =

∫
βj

αk
∗,

in accord with the usual definition of the period matrix. More generally, given

any (symplectic) basis W of Ω(X), the g× 2g matrix

[
ΠW (A ) ΠW (B)

]
is called

a full period matrix for X; this is the matrix of ΠW with respect to A ∪B and

W . To obtain the standard Riemann matrix from a full period matrix, compute

Π =
(
ΠW (A )−1

)
ΠW (B).

6.7 Example: the KFT family

As an example of applying the results of this chapter to a family of Riemann

surfaces, we consider the KFT family of [39]. This is the family of genus 3 sur-
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faces whose automorphism groups contain the symmetric group on four letters—

including Klein’s quartic curve, the quartic Fermat surface, and the tetrahedron

(that is, the six lines determined by four points in projective space), hence the

name. Rodŕıguez and Gonzáles-Aguilera compute the period matrices of these

surfaces as having the form

Z = τZ0, where Z0 =


3 −1 −1

−1 3 −1

−1 −1 3

 and τ ∈ H

These are precisely the matrices stabilized by the image of a certain faithful repre-

sentation S4 → Sp6(R) (see [39] for details). By work of Silhol in [41], this family

of surfaces is a Teichmüller curve generated by a quadratic differential—in fact, an

origami, which exhibits the S4 symmetry of the family as its group of isometries.

If Z = τZ0, then X = xZ0 and Y = yZ0, where τ = x+ iy. Let I3 be the 3× 3

identity matrix. Then the complex structure in H3 corresponding to Z is

Jτ =
1

y

 xI3 − (x2 + y2)Z0

Z0
−1 −xI3


Taking the product of two of these, we get

Jτ2Jτ1 =
1

y1y2

(x1x2 − x2
2 − y2

2)I3 [x1(x2
2 + y2

2)− x2(x1
2 + y1

2)]Z0

(x1 − x2)Z0
−1 (x1x2 − x1

2 − y1
2)I3


The determinant of −Jτ2Jτ1 − λ · id is(

λ2 − 1

y1y2

(
(x1 − x2)2 + y1

2 + y2
2)
)
λ+ 1

)3

the discriminant of whose inner quadratic polynomial is always non-negative.

Therefore to move between two distinct points of KFT along a geodesic in H3

requires uniform motion in three two-dimensional symplectic subspaces.
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CHAPTER 7

ODD COHOMOLOGY

7.1 Orientation covers of generic quadratic differentials

Let X be a fixed surface of genus g ≥ 2, and let π : X̃ → X be a degree 2 covering

branched over 4g−4 points. The genus of X̃ is then g̃ = 4g−3. The sheet exchange

τ : X̃ → X̃ induces an involution on the first cohomology group of X̃, splitting

it into a (+1)-eigenspace H1(X̃,R)+ and a (−1)-eigenspace H1(X̃,R)−. We call

elements of H1(X̃,R)+ even cohomology classes and elements of H1(X̃,R)− odd

cohomology classes, both with respect to τ . If X̃ is given the structure of a differ-

entiable manifold, then a representative form of an even (resp. odd) cohomology

class is called an even (resp. odd) form on X̃. Each cohomology class in H1(X,R)

pulls back by π to an element of H1(X̃,R)+, and likewise any even cohomology

class on X̃ descends to a cohomology class on X. Hence dimRH
1(X̃,R)+ = 2g,

which implies dimRH
1(X̃,R)− = 6g − 6.

When X is a Riemann surface and q is a quadratic differential on X with simple

zeroes, then the above situation arises naturally by taking π : X̃ → X to be the

double cover of X branched at the zeroes of q, and endowing X̃ with the conformal

structure that makes π conformal. Since π ◦ τ = π, τ is also conformal. (Locally

over a zero of q, π looks like z 7→ z2 and τ looks like z 7→ −z.) Then π∗q is the

square of an abelian differential ωq ∈ Ω(X̃), with ωq well-defined up to a choice of

sign. In this case, ωq is called a square root of q, and the pair (X̃, ωq) is called the

orientation cover of (X, q). If Q(X) denotes the space of quadratic differentials on

X, then the map Q(X) → Ω(X̃) defined by q′ 7→ ωq
−1π∗q′ is an injection whose

image is Ω(X̃)−, the space of odd abelian differentials on X̃ (which is isomorphic as
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a real vector space to H1(X̃,R)−). As in the topological case considered previously,

abelian differentials on X pullback via π to differentials in Ω(X̃)+, the space of

even abelian differentials on X̃.

If Y is any Riemann surface of genus g(Y ) ≥ 1 and {ω1, . . . , ωg(Y )} is a basis

for Ω(Y ), then {[Reω1], [Imω1], . . . , [Reωg(Y )], [Imωg(Y )]} is a basis for H1(Y,R).

Ω(Y ) is a complex vector space, and the corresponding complex structure on

H1(Y,R) sends [Reω] to [Imω] for any ω ∈ Ω(Y ). Obviously, if Ω(Y ) has a

splitting into even and odd forms, then this way of finding a basis for H1(Y,R)

preserves the splitting, and we obtain a basis of the even and odd cohomology of

Y ; in particular, ω ∈ Ω(Y )− if and only if [Reω] ∈ H1(Y,R)−, or equivalently

[Imω] ∈ H1(Y,R)−.

7.2 The Thurston–Veech construction

Next we describe a special case of the Thurston–Veech [44, 49] (or “bouillabaisse”)

construction of quadratic differentials and an associated complex structure on the

odd cohomology of a surface. Let X be a compact orientable surface of genus

g ≥ 2. The largest number of disjoint, pairwise non-homotopic curves on X is

then 3g − 3 (corresponding to “splitting the surface into pairs of pants”). We call

such a collection a maximal multicurve on X. Take two multicurves A and B on

X such that no element of A is homotopic to an element of B. Assume, moreover,

that the union of all the curves cuts X into simply-connected pieces. Encode the

intersections of elements of A and B in a (3g − 3) × (3g − 3) matrix M , which

can also be thought of as the matrix of a linear transformation RA → RB.

For each intersection of an element in A and B, we construct a metric rectangle
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on X. Its dimensions are dictated by the entries of an eigenvector of M>M : RA →

RA , as follows: Topological considerations show that some power of M>M has all

positive entries, which means that it is a Perron–Frobenius matrix, and therefore its

largest eigenvalue λPF has multiplicity 1 and a corresponding eigenvector v with all

positive entries. u = λ
−1/2
PF Mv is then an eigenvector of MM> with corresponding

eigenvalue λPF. A rectangle crossed by α ∈ A and β ∈ B has its height given by

the α component of v and its width given by the β component of u.

Actually, there is a real parameter of choice in the construction: we could take

u = etλ
−1/2
PF Mv for any real t, and we would then find v = e−tλ

−1/2
PF M>u. We

thus obtain a family of Riemann surfaces Xt, each carrying a specific quadratic

differential qt.

7.3 A question about abelian varieties

J. Hubbard posed a question regarding these surfaces. Suppose the following:

1. all of the components of the complement of A ∪B are either hexagons or

rectangles;

2. the intersection matrix M is invertible.

The first condition implies that every qt has only simple zeroes. So, as in the

previous section, we take an orientation cover (X̃t, ωt) of each (Xt, qt), chosen

continuously. We can identify all these topologically with a branched double cover

X̃ → X. The second condition implies that the lifts of the elements of A ∪B to

X̃ form a basis for H1(X̃,R)−. We even have the symplectic form on H1(X̃,R) in
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the coordinates of Ã and B̃:

Σ =

 0 −2M>

2M 0

 .
These lifts are purely topological, and hence we do not need to consider a sub-

script on either the homology classes or the symplectic form. The corresponding

symplectic form on cohomology is Σ> = −Σ.

J. Hubbard posed a question dealing with a family of complex structures on

the odd cohomology of X̃t; the idea is to turn cohomology classes supported on Ã

into classes supported on B̃. We define, for all t ∈ R, in the basis dual to Ã ∪ B̃:

Jt =

 0 −(M>M)
− 1

2
− t

log λPFM>

M(M>M)
− 1

2
+ t

log λPF 0

 , t ∈ R. (7.1)

(It is important to note that M>M is a positive definite symmetric matrix, so

all of its eigenvalues are real and positive.) The question is: does this complex

structure coincide with the “natural” complex structure described previously?

This question may be phrased in terms of analytic curves in the Siegel half-plane

H. After choosing the data of a pair of multi-curves A and B on X, there is a free

real parameter in the Thurston–Veech construction of flat surfaces, and varying

this parameter produces a family of surfaces Xt that are related by the Teichmüller

geodesic flow. The Jacobians of the corresponding double covers X̃t split into

even and odd parts; each of these parts is again an abelian variety, polarized

(but not principally so) by the restriction of the symplectic form on H1(X̃,R).

The odd parts of the Jacobians of the X̃t lie in the Siegel upper half-plane H ⊂

C(H1(X̃,R)−). The complex structure proposed by Hubbard also extends to a

one real-parameter family of complex structures. We shall show that all of these

complex structures also trace out a curve H. The question is whether these two
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curves coincide.

The main result of this chapter is as follows:

Theorem 7.1. The family Jt extends to a holomorphically immersed maximal disk

in H that does not coincide with the disk arising from any Teichmüller disk having

non-trivial Veech group. In the case that the Thurston–Veech construction produces

an irreducible characteristic polynomial, Jt is obtained by acting independently on

the subspace of H1(X̃,R)− spanned by {[Reωq], [Imωq]} and each of its Galois

conjugates via a diagonal action.

7.4 Complex structures on the odd cohomology of bouill-

abaisse surface covers

We again use E (M>M) to denote the set of eigenvalues of M>M , and λPF to

denote its Perron–Frobenius eigenvalue.

Using the results of chapter 6, we can examine how the complex structures

(7.1) relate to each other geometrically by looking at the following product:

−Jt2Jt1 =

(M>M)
t1−t2

log λPF 0

0 (M>M)
t2−t1

log λPF

 .
The spectrum of this matrix is {λ±(t1−t2)/λPF | λ ∈ E (M>M)}. The eigenspace

corresponding to λ±(t1−t2)/λPF is Eλ±1 .

Lemma 7.2. We have the following limits in GrC,n(H1(X̃,C)):

lim
t→+∞

k(Jt) = C⊗ V− and lim
t→−∞

k(Jt) = C⊗ V+,

where V+ is the sum of the Eλ with λ > 1 and V− is the sum of the Eλ with λ < 1.
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Proof. Two defining equations for k(Jt) in C⊗ (Ã ∪ B̃ ) are

x = −i(M>M)
− 1

2
− t

log λPFM>y and y = iM(M>M)
− 1

2
+ t

log λPF x,

where x ∈ C ⊗ Ã and y ∈ C ⊗ B̃. We recall that M> sends eigenvectors of

MM> to eigenvectors of M>M with the same eigenvalues. Now by looking at the

appropriate equation on each Eλ ⊕ E1/λ, we conclude the desired result.

Let B = {z ∈ C | |Im z| < π/2}; B is conformally equivalent to the open unit

disk via the map z 7→ tanh(z/2). We will construct an analytic family of complex

structures on H1(X̃,R)−, varying with a parameter t in B. To simplify notation,

we introduce the function, for real t,

Θ(t) =
t

log λPF

logM>M.

This function yields a matrix whose leading eigenvalue is t; we will be most con-

cerned with behaviors near t = ±π/2.

Now we extend our family of complex structures to a complex disk. For each

t = t′ + it′′ ∈ B, define Jt in the basis Ã ∪ B̃ by

Jt′+it′′ =

 − tan Θ(t′′) − sec Θ(t′′)(M>M)−
1
2
− t′

log λM>

M(M>M)−
1
2

+ t′
log λ sec Θ(t′′) M(tan Θ(t′′))M−1

 (7.2)

In order to show that this is well-defined for all t ∈ B, we need to show that the

spectrum of M>M is bounded below by 1/λ. Recall that all of the eigenvalues of

M>M are positive.

Lemma 7.3.

1. For all t ∈ B, Jt ∈ H.

2. Jt depends analytically on t.
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Proof.

(1) Using the trigonometric identity tan2 θ− sec2 θ = −1 and the fact that all real

powers of a positive definite matrix are positive definite, direct computation shows

that Jt satisfies the conditions of Proposition 6.14 for any t ∈ B. (Note that Ã

and B̃ are Lagrangian subspaces of H1(X̃,R)−, and that Jt Ã = B̃ for all t.)

(2) Let D′ denote differentiation with respect to t′ = Re t and D′′ denote differ-

entiation with respect to t′′ = Im t. Recall that at any J ∈ C(V ), the complex

structure on TJC(V ) is given by left-multiplication by J . Now the family Jt is seen

by direct computation to satisfy equation (5.1) on page 48.

Lemma 7.4. The disk Jt : B → H extends continuously to a the boundary ∂B =

{z ∈ C | |Im z| = π/2}, and δ(k(Jt)) = 1 for all t ∈ ∂B.

Proof. For each t = t′ + it′′ ∈ B, let

At = (id + Jt′Jt)(id− Jt′Jt)−1 = 2(id− Jt′Jt)−1 − id ∈ HomJt′
(H1(X̃,R)−).

Throughout these computations, I represents the (3g−3)×(3g−3) identity matrix.

When quotients appear, their values (as matrices) are well-defined because the

denominator is invertible and the expressions involved commute; we write them as

quotients to save horizontal space and for ease of reading.

Jt′Jt′+it′′ =  − sec Θ(t′′) − tan Θ(t′′)(M>M)−
1
2
− t′

log λM>

−M(M>M)−
1
2

+ t′
log λ tan Θ(t′′) −M sec Θ(t′′)M−1


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2(id− Jt′Jt′it′′)
−1 = I − sin Θ(t′′)

I + cos Θ(t′′)
(M>M)−

1
2
− t′

log λM>

−M(M>M)−
1
2

+ t′
log λ

sin Θ(t′′)

I + cos Θ(t′′)
I


We can find the value of δ on for |Im t| = π/2 by computing the dimension of the

kernel of id− At when t′′ = ±π/2. By the previous calculation and the definition

of At, we have immediately

id− At′±π/2 = I
sin Θ(±π/2)

I + cos Θ(±π/2)
(M>M)−

1
2
− t′

log λM>

M(M>M)−
1
2

+ t′
log λ

sin Θ(±π/2)

I + cos Θ(±π/2)
I

 .
This matrix is row equivalent to I

sin Θ(±π/2)

I + cos Θ(π/2)
(M>M)−

1
2
− t′

log λM>

0 I −M sin2 Θ(π/2)

I + cos Θ(π/2))2
M−1



=

 I
sin Θ(±π/2)

I + cos Θ(π/2)
(M>M)−

1
2
− t′

log λM>

0 I −M
(
I − I − cos2 Θ(π/2)

(I + cos Θ(π/2))2

)
M−1



=

 I
sin Θ(π/2)

I + cos Θ(π/2)
(M>M)−

1
2
− t′

log λM>

0 2M
cos Θ(π/2)

I + cos Θ(π/2)
M−1

 .
The nullity of this last matrix equals the nullity of the (2, 2)-block, which in turn

equals the nullity of cos Θ(π/2). Because M>M is Perron–Frobenius, its largest

eigenvalue is strictly greater in absolute value than its remaining eigenvalues, which

means the same is true of Θ(t′′) for all t′′ > 0. Thus cos Θ(π/2) vanishes on the

eigenspace of Θ(π/2) corresponding to the eigenvalue π/2, and this is the entire

kernel. Therefore the nullity is 1.
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An important feature of this family is that, for all real t, Jt coincides with the

Hodge complex structure on the subspace spanned by ωt. That is,

Lemma 7.5. For all t ∈ R, Jt Reωt = Imωt.

Proof. Direct computation.

Theorem 7.6. Jt is a maximal disk in H that does not arise from a Teichmüller

disk.

We will lean on the following observation from [23]: given two directions on a

flat surface that are affinely equivalent, if one is periodic, then both are, and they

have the same number of cylinders, with the same height and width data, up to

scaling.

Proof. Suppose Jt : B → H were the image of a Teichmüller disk. Then, because

its action along the subspace spanned by Reωt and Imωt coincides with the Te-

ichmüller flow along this curve, Jt must be the Teichmüller disk generated by ωt.

By the Thurston–Veech construction, the affine group of (X̃t, qt) includes many

pseudo-Anosov elements, none of which stabilize the horizontal or vertical direc-

tions of qt. Let θ1 and θ2 be the images of the horizontal and vertical directions

by any of these elements.

Because θ1 and θ2 are affinely equivalent to the horizontal and vertical direc-

tions, they have systems of curves A ′ and B′ with the same intersection properties

as those used to construct qt. We could therefore begin with this system of binding

curves to construct the same disk Jt. The directions on the boundary of B corre-

sponding to θ1 and θ2 should then have the same degeneracy properties (i.e., they

should land in the same stratum of ∂H) as the horizontal and vertical directions.
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However, as calculated above, δ(±∞) > 1, while δ is constantly 1 on the boundary

of B. This is a contradiction, and we conclude that the family {Jt} does not arise

from a Teichmüller disk.

Remark 7.7. When the characteristic polynomial of M>M is irreducible, the vari-

ous roots (all of which are real) determine various cohomology classes on X̃. These

are the “Galois conjugates” of Reωt and Imωt. It is with respect to the basis of

H1(X̃,R)− formed by these classes that Jt takes the form
(

0 −I
I 0

)
. This may be

seen in one of two ways. First, the result of Lemma 7.5 is purely algebraic, and

so it applies also to these Galois conjugate classes. Second, as observed at the

beginning of this section and by an application of Theorem 6.8, the eigenspaces of

M>M dictate the behavior of Jt.
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Part III

Examples
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CHAPTER 8

SAMPLE ISO-DELAUNAY TESSELLATIONS

In this chapter, we provide some examples of iso-Delaunay tessellations, pri-

marily for surfaces known to have lattice Veech groups.

8.1 Genus 2 surfaces from L-shaped tables

K. Calta and C. McMullen provided the classification of non-arithmetic genus 2

surfaces with lattice Veech groups in [9] and [30, 32, 31, 34], respectively. McMullen

mentions in particular surfaces that arise from the Katok–Zemljakov billiard con-

struction [53] applied to “L-shaped tables”, i.e., rectangles from which a rectangle

has been removed from one corner. M. Bainbridge has computed the Euler charac-

teristics of the resulting Teichmüller curves [3]. Here we show the tessellations from

a particular case of this series, that of a square with side length a = (1 +
√
d)/2,

from which a corner square has been cut, leaving two sides of length 1.

Figure 8.1: d = 3
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Figure 8.2: d = 5

Figure 8.3: d = 13

Figure 8.4: d = 17

Figure 8.5: d = 37
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8.2 Surfaces from rational triangles

We use the notation T (p, q, r) to mean the triangle with angles π(p/n), π(r/n), and

π(q/n), where n = p+ q+ r, S(p, q, r) to mean the surface obtained from applying

the billiard construction to T (p, q, r), and Σ(p, q, r) to mean the corresponding

iso-Delaunay tessellation.

In [48], Veech computed the iso-Delaunay tessellation for the surface that arises

from billiards in a regular n-gon, and called these the “bicuspid surfaces”, because

they (and their covers) are precisely the surfaces for which the tessellations consist

exclusively of tiles having two ideal vertices. (See for example the case d = 5 in

the previous section, the so-called “golden table” which is affinely equivalent to

the surface consisting of a pair of polygons, cf. [30].)

To date, four “exceptional” triangles have been discovered, not belonging to

any general family. Three are acute, and by a theorem of Kenyon and Smillie [25]

(modulo a number-theoretic conjucture, proved by Puchta [37]) they and Veech’s

examples are the only acute triangles whose surfaces have a lattice Veech group.

These three have been related to the exceptional Coxeter–Dynkin diagrams E6,

E7, and E8 by C. Leininger [27]. The fourth is discussed in P. Hooper’s thesis (the

relevant section is available separately as a preprint [19]).
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(Note: the foregoing images are not all presented at the same scale; in several

cases the point i, corresponding to the original surface, is not even included, but its

location may be discerned by finding a reflection symmetry in a circle orthogonal

to the central axis and taking the intersection of this circle with the axis.)
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CHAPTER 9

AN EXCEPTIONAL SET OF EXAMPLES: THE

ARNOUX–YOCCOZ SURFACES

Introduction: from the golden ratio to the geometric series

From our calculus courses, we know that the infinite geometric series 1
2
+ 1

4
+ 1

8
+ · · ·

converges to 1. Indeed, using the summation formula
∑∞

k=1 x
k = x/(1 − x), we

find that 1
2

is the unique solution to the equation
∑∞

k=1 x
k = 1. From even earlier

in our lives, perhaps, we recall that the equation x+ x2 = 1 has a unique positive

solution, whose inverse is the golden ratio. The expression x + x2 may be viewed

as a partial geometric series, which can be extended to n terms: x+ · · ·+ xn.

The positive solutions to the equations x + · · · + xn = 1 for n ≥ 3 are instru-

mental in creating a certain family of measured foliations on surfaces, which were

introduced by P. Arnoux and J.-C. Yoccoz in 1981 [2]. It was shown in 2005 by

P. Hubert and E. Lanneau [22] that the Arnoux–Yoccoz examples do not arise from

the Thurston–Veech construction (see chapter 7). In this chapter we will present

the surfaces constructed by Arnoux and Yoccoz and give explicit triangulations,

then use these to prove certain properties common to all these surfaces. We will

also see that the family can be extended to include the cases n = 2 and n = ∞.

These extreme cases will turn out to be exceptional in their construction—the first

corresponds to a singular surface and the second to a surface of infinite type—but

we hope that the self-similarity property that the golden ratio and the geometric

series share with all of the other examples (see §9.1 and §9.4) will illuminate the

entire sequence of surfaces for the reader.
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9.1 Interval exchange maps

In this section we review the algebraic numbers and interval exchange maps in-

volved in the construction of the Arnoux–Yoccoz translation surfaces. Given any

g ≥ 2, the polynomial

xg + xg−1 + · · ·+ x− 1 (9.1)

has a unique positive root, since its values at 0 and 1 are −1 and g−1, respectively,

and its derivative is positive for all positive x. We denote the positive root of (9.1)

simply as α, suppressing its dependence on g. Arnoux and Yoccoz showed that

the inverse of α is a Pisot number, which means that α is in fact the only root of

(9.1) that lies within the unit disk. Hubert and Lanneau showed that, if g is even,

then (9.1) has one negative root, and if g is odd, then α is the only real root. We

add to these properties the following:

Lemma 9.1. For each g ≥ 2, the positive root α of (9.1) satisfies

1

2g+2
< α− 1

2
<

1

2g+1
(9.2)

and therefore it converges to 1/2 exponentially fast as g →∞.

We will make use of this convergence in §9.4.

Proof. To obtain the lower bound, we will show that, when r = 1/2 + 1/2g+2, the

polynomial (9.1) evaluated at r is negative. This is equivalent to

1− rg+1

1− r
< 2, or

(
1 +

1

2g+1

)g+1

> 1,

which is true for all g ≥ 2. The upper bound is obtained similarly.

Arnoux and Yoccoz [2] introduced an interval exchange map—i.e, a piece-

wise isometry of an interval that is bijective and has only finitely many points
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of discontinuity—based on the geometric properties of α. First, the unit interval

is subdivided into g intervals of lengths α, α2, . . . , αg. Each of these subintervals

is divided in half, and the halves are exchanged within each subinterval. Finally

the entire unit interval is divided into half, and these two halves are exchanged.

We denote the total process fg (see Figure 9.1). We will occasionally be interested

in the behavior of fg and its iterates on the endpoints of the subintervals, so for

specificity we restrict the map to [0, 1) and assume that the left endpoint of each

piece is carried along. The key feature of fg is its self-similarity:

Proposition 9.2 (Arnoux–Yoccoz). Let f̃g be the interval exchange map induced

on [0, α) by the first return map of fg. Then fg is conjugate to f̃g.

The proof uses an explicit piecewise affine map hg : [0, 1) → [1, α), defined as

follows:

hg(x) =


αx+ α+αg+1

2
, x ∈

[
0, 1−αg

2

)
αx− α−αg+1

2
, x ∈

[
1−αg

2
, 1
)

which satisfies fg = h−1
g ◦ f̃g ◦ hg. In §9.4, we will show similar kinds of results for

certain exchanges on infinitely many subintervals.

In their original paper, citing work of G. Levitt, Arnoux and Yoccoz state that,

for a given interval exchange map:

. . . on peut construire une suspension canonique, et l’on sait que toute

suspension possédant les mêmes singularités (en type et en nombre) que

cette suspension canonique lui est homéomorphe par un homéomorph-

isme préservant la mesure transverse du feuilletage.

(The “canonical suspension” is a closed surface with a measured foliation along

with a closed curve transverse to the foliation on which the first return map of
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Figure 9.1: The interval exchange fg as a composition of two involutions.

the foliation induces the given interval exchange map.) They then use this re-

sult and the self-similarity of fg to demonstrate the existence of a pseudo-Anosov

homeomorphism ψg on a surface of genus g such that the expansion constant of

ψg is 1/α. Fortunately, in a separate article [1], Arnoux gives an explicit descrip-

tion of the canonical suspension of f3 and illustrates ψ3. In this chapter we will

present the generalization of Arnoux’s construction to all genera and exploit these

presentations to make further conclusions about the Arnoux–Yoccoz surfaces.

9.2 Steps and slits

Fix g ≥ 3. In this section, we will present the genus g Arnoux–Yoccoz surface

(Xg, ωg) by generalizing Arnoux’s presentation of (X3, ω3). Starting with a unit

square, we carve out a “staircase” in the upper right-hand corner, with the widths

of the steps, from left to right, given by α, α2, . . . , αg, and the distances between

the steps, going down, given by αg, αg−1, . . . , α. We further slit this square along
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several vertical segments σ1, σ2, . . . , σg. The slits are made starting along the

bottom edge of the square at points whose x-coordinates are images by fg of 0 and

the left-hand endpoints of the intervals [αi, αi+1) (1 ≤ i ≤ g − 1).

α

α2

α3

α4

α4

α3

α2

ασ1

σ2

σ3
σ4

Figure 9.2: The steps and slits for the genus 4 Arnoux–Yoccoz surface

Now we wish to provide appropriate gluings for the surface to have an affine

self-map. These identifications are as follows:

• The tops of the steps are glued to the bottom of the unit square according

to the interval exchange fg.

• The vertical edge of the bottommost step, having length α, is identified with

the bottom portion of the leftmost vertical edge.

• The remaining top portion of the leftmost edge of the square, having length

1− α, is identified with the bottom portion to the left of σ1.

• The vertical edge of the step having height αi (2 ≤ i ≤ g) is identified with

the bottom portion to the right of the segment σi−1.
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• The remaining top portion to the right of each segment σi (1 ≤ i ≤ g− 1) is

identified with the left of the segment σi+1.

• The right-hand side of σg is identified with the left-hand side of the top of

σ1.

There is a one real-parameter family of surfaces that satisfy the gluings given

above; the easiest parameter to vary is |σg|. We want to single out a value for this

parameter so that the surface admits a pseudo-Anosov affine map. The required

condition is described by the equation α(1 + |σg|) = (1−α) + |σg|, which says that

the length of σ1 is α times the sum of the length of σg and the length of the left

edge of the square (i.e., 1). Solving this equation, we find |σg| = (2α− 1)/(1− α),

which determines the lengths of the remaining slits.

The pseudo-Anosov homeomorphism ψg : Xg → Xg expands the horizontal

foliation of ωg by a factor of 1/α and contracts the vertical foliation by a factor of

α. It permutes the vertical segments in a predictable manner: for each i from 1 to

g − 1, ψg sends σi to σi+1, and also sends the union of σg with the left-hand edge

of the initial square to σ1. The step of height αi is also sent to the step of height

αi+1 (1 ≤ i ≤ g − 1).

9.3 Triangulations

Again fix g ≥ 3. In this section we construct the surface (Xg, ωg) from 4g tri-

angles. Begin with the points P0, . . . , Pg, Q0, . . . , Qg in R2, chosen as follows (see
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Figure 9.3):

P0 =

(
1− αg

2
,
α2

1− α

)
, Q0 =

(
−α

g

2
, α

)
,

P1 =

(
−α

g−1 + αg

2
,
α− α2 + α3

1− α

)
, Pg =

(
1 +

α− αg

2
,
3α− 1− α2

1− α

)
,

Pi =

(
α− αi

1− α
,

α

1− α

)
for i = 2, . . . , g − 1,

Qi =

(
2α− αi − αi+1

2(1− α)
,
α− αg−i+2

1− α

)
for i = 1, . . . , g.

P0

P1

P2 P3

P4

Q0

Q1

Q2

Q3

Q4

Figure 9.3: The points P0, . . . , P4, Q0, . . . , Q4 relative to (X4, ω4)’s staircase

For i = 1, . . . , g, set Ti = P0QiQi−1 and Tg+i = PiQi−1Qi. For i = 1, . . . , 2g,

let T ′i be the reflection of Ti in the horizontal axis. Glue the Tis along their

common boundaries, and likewise for the T ′i s. Then each remaining “free” edge is

a translation of another; we glue each such pair of edges:

• P0Q0 is paired with P ′0Q
′
g, and P ′0Q

′
0 is paired with P0Qg.

• P1Q1 is paired with P ′gQ
′
g−1, and P ′1Q

′
1 is paired with PgQg−1.
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• P1Q0 is paired with Pg−1Qg−1, and P ′1Q
′
0 is paired with P ′g−1Q

′
g−1.

• PgQg is paired with Q1P2, and P ′gQ
′
g is paired with Q′1P

′
2.

• For i = 2, . . . , g − 2, PiQi is paired with Q′iP
′
i+1 and P ′iQ

′
i is paired with

QiPi+1.

T1

T2

T3

T4

T5

T6

T7

T8

T ′
1

T ′
2

T ′
3

T ′
4

T ′
5

T ′
6

T ′
7

T ′
8

Figure 9.4: The triangles comprising (X4, ω4)

(See Figure 9.4.) All of the Pis and Q′is are identified to become a cone point, and

likewise for all of the Qis and P ′i s. An Euler characteristic computation shows that

the resulting surface has genus g, and because the two cone points are symmetric,

they each have a cone angle of 2gπ. One can verify the following result directly

by checking that the surface we have constructed from triangles is isometric to the

staircase presentation.

Proposition 9.3. The Tis and T ′i s induce a triangulation of (Xg, ωg).

Corollary 9.4. Aff(Xg, ωg) contains a fixed-point free, orientation-reversing in-

volution ρg, which commutes with ψg, and whose derivative is reflection in the

x-axis.
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The existence of this symmetry occurs for a completely general reason: fg is

conjugate to its inverse by the following “rotation” of the unit interval:

r(x) =


x+ 1

2
, x ∈ [0, 1

2
)

x− 1
2
, x ∈ [1

2
, 1)

By the reasoning invoked in §9.1, the surface obtained from (Xg, ωg) by applying

complex conjugation to the charts of ωg (which is a suspension of f−1
g , and therefore

of fg) is translation equivalent to (Xg, ωg) itself, which yields the existence of ρg.

Corollary 9.5. The compact non-orientable surface of Euler characteristic 1 −

g admits a pseudo-Anosov homeomorphism whose invariant foliations have one

singular point and whose expansion constant has degree g.

This corollary generalizes a result from the original paper by Arnoux and Yoc-

coz, in which the surface (X3, ω3) is constructed by two separate methods: first

by a lifting a pseudo-Anosov homeomorphism of RP2 to the non-orientable sur-

face of Euler characteristic −2 and then to genus 3, and second by the method of

suspending an interval exchange map.

Corollary 9.6. If g ≥ 4, then Xg is not hyperelliptic.

Proof. Every abelian differential on a hyperelliptic surface is odd with respect

to the hyperelliptic involution. If, for some g ≥ 4, Xg were hyperelliptic, then

there would have to be an isometry of (Xg, ωg) with derivative −id. Such an

isometry would have to preserve the Delaunay triangulation of (Xg, ωg). But no

other triangle is isometric to T1, so such an isometry does not exist.
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9.4 A limit surface: (X∞, ω∞)

Lemma 9.1 implies that each triangle that appears in the construction of some

(Xg, ωg) has a “limiting position”; from these we can construct a “limit surface”

of infinite genus. To be precise, we obtain a non-compact translation surface

(X∞, ω∞), where X∞ has infinite genus, whose metric completion is the one-point

compactification of X∞. In a sense, the two cone points of the (Xg, ωg), g < ∞,

have “collapsed” into each other, leaving an essential singularity at which all of

the “curvature” of the space (X∞, ω∞) is concentrated. We shall briefly address

in §9.5 the nature of singularities on this surface. See Figure 9.5 for the definition

of this surface; ω∞ is, as usual, the 1-form induced on the quotient by dz in the

plane. A critical trajectory of (X∞, ω∞) is a geodesic trajectory that leaves every

compact subset of X∞. A saddle connection of (X∞, ω∞) is a geodesic trajectory

(of finite length) that leaves every compact subset of X∞ in both directions.

Theorem 9.7. X∞ is a Riemann surface of infinite genus with one end, and ω∞

is an abelian differential of finite area on X∞ without zeroes on X∞. Aff(X∞, ω∞)

includes an orientation-reversing isometric involution ρ∞ without fixed points on

X∞ and a pseudo-Anosov homeomorphism ψ∞ with expansion constant 2. These

two elements commute.

Proof. (In this paragraph, we follow the method of proof used by R. Chamanara

in [12].) That X∞ is a Riemann surface is evident, as are the claims about ω∞.

The fact that X∞ has infinite genus can be deduced from the existence of a set of

pairwise non-homotopic simple closed curves {γ′n, γ′′n}n∈N, where γ′n (respectively,

γ′′n) connects the midpoints of the edges labelled C ′n (respectively, C ′′n), and each

γ′n intersects only γ′′n (and vice versa). To show that X∞ has only one topological

end, we construct a sequence of compact subsurfaces with boundary. Let Kg be
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C ′′
1 C ′

1 C ′′
2 C ′

2 C ′′
3 C ′

3

C ′
1 C ′′

1 C ′
2 C ′′

2 C ′
3 C ′′

3

A1

A2

A3

A4

B1

B2

B3

B4

A1

A2

A3

A4

B1

B2

B3

B4

Figure 9.5: The surface (X∞, ω∞). Each pair of edges with the same label is

identified by translation. The length of each An, Bn, C ′n, or C ′′n

is 1/2n+1.

the complement of the union of the open squares having side length 1/2g+1 and

centered at the endpoints of the segments An, Bn, C ′n, C ′′n. These Kg satisfy

Kg ⊂ Kg+1 and
⋃
Kg = X∞, and the complement of each Kg has one component.

Therefore by definition X∞ has one topological end.

The orientation-reversing affine map ρ∞ is visible in Figure 9.5 as a glide-

reflection in a horizontal axis with translation length 1/2. It sends the interior of

the upper rectangle to the interior of the lower rectangle, each edge labeled An to

an edge labeled Bn, and each edge labeled C ′n to an edge labeled C ′′n. Therefore it

has no fixed points.

Now we demonstrate the pseudo-Anosov affine map ψ∞. Let R be the central
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rectangle in Figure 9.5, and let S1 and S2 be the squares in the lower left and

upper right, respectively. Expand R horizontally by a factor of 2, and contract R

vertically by a factor of 1/2 to obtain ψ∞(R). Do the same with the rectangle R′

which is the union of S1 and S2 (the top edge of S1 is glued to the bottom edge

of S2) to obtain ψ∞(R′). Take ψ∞(R) and lay it over S1 and the lower half of R,

and lay ψ∞(R′) over S2 and the top half of R. This affine map is compatible with

all identifications. That ψ∞ and ρ∞ commute may be checked directly.

The pseudo-Anosov map ψ∞ : X∞ → X∞ is a variant of the well-studied baker

map, and thus (X∞, ω∞) is an alternate infinite-genus realization of this map,

which was demonstrated on a “hyperelliptic” infinite-genus surface by Chamanara–

Gardiner–Lakic [13]. The topological type of X∞ is that of a “Loch Ness monster”

and is therefore related to the surfaces described in [36], although the flat structure

of ω∞ does not fall into the class of surfaces studied there.

Let us make precise the notion of (X∞, ω∞) as a “limit” of (Xg, ωg). We

establish canonical piecewise-affine embeddings ιg : Kg → Xg, where the Kg are

the subsurfaces defined in the proof of Theorem 9.7, in such a way that ι∗g |ωg|

converges to |ω∞| on compact subsets of X∞ as g → ∞. (Here |ωn| indicates the

metric induced on Xn by ωn, 3 ≤ n ≤ ∞.) In fact, each ιg will be defined on an

open set Ug containing Kg and dense in X∞.

For each 3 ≤ g <∞, let Ug be the surface obtained from Figure 9.5 by making

all identifications up through index bg/2c for the Ais and Bis, and all identifications

up through index b(g−1)/2c for the C ′is and the C ′′i s. (Here and elsewhere x 7→ bxc

denotes the “floor” function.) Retract the union of the triangles{(
1

2
,
1

2

)
,

(
1,

2bg/2c − 1

2bg/2c

)
, (1, 1)

}
and

{(
1

2
,
1

2

)
, (1, 1),

(
2b(g−1)/2c − 1

2b(g−1)/2c , 1

)}
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onto the triangle {(1/2, 1/2), (1, 1−1/2bg/2c), (1−1/2b(g−1)/2c, 1)} by a homeomor-

phism, affine on each of the original triangles. Now a surface of genus g with two

punctures can be created directly by identifying the “free” edge of this triangle

with one of the “free” segments on the leftmost edges of the polygon.

Figure 9.6 shows the outlines of the first few surfaces in the sequence (Xg, ωg).

By adjusting the positions of the triangles in the upper right and upper left corners

(e.g., removing the triangles labelled T2g−bg/2c through T2g, in addition to their

mirror images, and regluing them along their longest edges in the appropriate

location), one finds that there is a piecewise-affine map ιg carrying Ug to Xg.

Moreover, because Ug−1 ⊂ Ug, ιg restricts to an embedding of Ug−1, as well.

Figure 9.6: Outlines of the surfaces (Xg, ωg) for g = 3, 4, 5, 6
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Theorem 9.8. The metrics ι∗g |ωg| converge to |ω∞| uniformly on compact subsets

of X∞.

Proof. Any compact K ⊂ X∞ is contained in some Un. For any pair of points

P ′, P ′′ ∈ K, the ratio of the distance from P ′ to P ′′ in each of the metrics ι∗g|ωg| and

|ω∞| is bounded by the quasi-conformal constants and the Jacobian determinants

of the maps ιg, which are uniformly bounded over all of K. As these constants

approach 1, so do the ratios of lengths over K, uniformly.

9.5 The affine group of (X∞, ω∞)

In this section we will explore some of the geometry and dynamics of (X∞, ω∞),

culminating in a proof of the following:

Theorem 9.9. Aff(X∞, ω∞) ∼= Z× Z/2Z is generated by ψ∞ and ρ∞.

Let us revise our definition of “interval exchange map” to include injective

maps from an interval to itself that are upper semicontinuous piecewise isometries.

(This keeps with the “continuous at left endpoints” convention, although we may

lose the property of bijectivity, as we shall see.) Then the vertical foliation of

(X∞, ω∞) induces an interval exchange map f∞ : [1, 0)→ [1, 0), which can also be

defined as follows: first, swap the two halves of each interval [2n−1
2n

, 2n+1−1
2n+1 ), then

swap [1, 1/2) with [1/2, 1).

We can encode f∞ symbolically as follows: if we do not allow the binary expan-

sion of a number to terminate with only 1s, then each number in [0, 1) has a unique

binary expansion. Use these to identify [0, 1) with the set B ⊂ (F2)N consisting of
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sequences that do not terminate with only 1s. Given a sequence a = a0a1a2 · · · ,

we obtain f∞(a) as follows:

1. find the first i ∈ N such that ai = 0, and replace ai+1 with ai+1 + 1;

2. replace a0 with a0 + 1.

The inverse map f−1
∞ simply reverses these two steps. Both f∞ and f−1

∞ are bijec-

tions. We remark that the first return map of f∞ on either [0, 1/2) or [1/2, 1) is

simply the restriction of f 2
∞ to the respective interval.

To aid our study at this point, we use the map r defined in §9.3 along with the

following:

h′(x) =
x

2
, h′′(x) = (r ◦ h′)(x) =

x

2
+

1

2
,

h∞(x) = (h′ ◦ r)(x) =


1
2

(
x+ 1

2

)
, x ∈ [0, 1

2
)

1
2

(
x− 1

2

)
, x ∈ [1

2
, 1)

In terms of binary expansions, we can describe the effects of these functions on a

sequence a ∈ B as follows:

• r replaces a0 with a0 + 1;

• h′ appends a 0 to the beginning of the sequence;

• h′′ appends a 1 to the beginning of the sequence;

• h∞ replaces a0 with a0 +1 and appends a 0 to the beginning of the sequence.

The formalism of encoding these maps to act on infinite binary sequences makes

immediate the following result.

Lemma 9.10. Let f∞, r, h′, h′′, and h∞ act on B as above. Then:
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• r conjugates f∞ to f−1
∞ .

• h′ conjugates f 2
∞|[0, 1/2) to f−1

∞ .

• h′′ conjugates f 2
∞|[1/2, 1) to f∞.

• h∞ conjugates f 2
∞|[0, 1/2) to f∞.

Proof. We will prove the second claim. It is equivalent to show that f 2
∞h
′f∞ =

h′. Let a = a0a1a2 · · · be a sequence in B, and let i0 ≥ 0 be the first value

for which ai0 = 0. Then (h′f∞(a))0 = 0, (h′f∞(a))1 = a0 + 1, (h′f∞(a))i0+2 =

ai0+1 + 1, and (h′f∞(a))i+1 = ai for all other i. Applying f∞ to h′f∞(a) results

in (1, a0, . . . , ai0−1, 0, ai0+1 + 1, ai0+2, . . . ). Now i0 + 1 is the first index i such that

(f∞h
′f∞a)i = 0. Applying f∞ again replaces (f∞h

′f∞a)i0+2 with ai+1 and changes

the leading 1 to a 0, so that f 2
∞h
′f∞(a) = h′(a).

The proofs of the other claims are similar; in fact, the first claim is trivial,

while the latter two claims follow from the first two.

As a caveat regarding exchanges of infinitely many intervals, we describe the

interval exchange F∞ induced on a vertical segment by the horizontal foliation.

We use the horizontal flow in the positive x-direction, in which case F∞ has the

following effect on B: for each sequence a,

1. find the least i > 0 such that ai 6= a0;

2. replace ai−1−2j with ai−1−2j + 1 for all 0 ≤ j ≤ bi/2c.

Note that this algorithm fails to define F∞ on the zero sequence 0̄; we will see

momentarily that 1/3 does not have a preimage by F∞, and so we can define
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F∞(0) = 1/3 without compromising the injectivity or semicontinuity of F∞. The

inverse F−1
∞ acts on B as follows: for each sequence a,

1. find the least i > 0 such that ai = ai−1;

2. replace ai−1−2j with ai−1−2j + 1 for all 0 ≤ j ≤ bi/2c.

This algorithm fails for two points in B, namely 01 = 1/3 and 10 = 2/3; these

have no pre-images by F∞. Hence we can “fix” F∞ by defining F∞(0) to be either

1/3 or 2/3, but the choice is arbitrary. In either case, F∞ will still not have all

of B as its image. The points 1/3 and 2/3 do form an attracting cycle for F−1
∞ ,

however. The special role of 1/3 and 2/3 will be useful to keep in mind.

Let D ⊂ [0, 1) denote the set of dyadic rationals in [0, 1)—that is, the set of

rational numbers of the form n/2m for some n,m ∈ Z. D sits inside B as the set

of sequences that are eventually 0. For each x ∈ [0, 1), let O±(x) be the orbit of x

under f±1
∞ .

Lemma 9.11. D = O±(0) t O±(1/2).

Another way to state this result is that the union of the forward and backward

orbits of a sequence a ∈ D is entirely determined by the parity of the number of

1s in the sequence a. We call TM(a) =
∑
ai ∈ F2 the Thue–Morse function: for

any particular a ∈ D, this sum is finite, and TM(a) is invariant under f∞ because

two digits are changed from a to f∞(a). We also define the index of a to be the

smallest natural number Ind(a) ∈ N such that ai = 0 for all i > Ind(a). (Recall

that our sequences in B start with a0, and so Ind(0̄) = Ind(10̄) = 0.) We will show
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that the following table determines which orbit contains a ∈ D− {0̄, 10̄}:

TM(a)

0 1

even O−(0) O+(1/2)

Ind(a)
odd O+(0) O−(1/2)

(9.3)

One consequence of the proof will be a quick algorithm for computing the exact

value of n ∈ Z so that fn∞(0) = a or fn∞(1/2) = a.

Proof of Lemma 9.11. Let H be the semigroup of functions B → B consist-

ing of words in h′ and h′′. The map from H to B defined by w 7→ w(0̄) in-

duces a set-theoretic bijection between D and the quotient of H by the relation

w ∼ wh′. Throughout the proof, we will use the equivalence D↔ H/∼, by which

(a0, a1, . . . , aInd(a), 0, . . . ) corresponds to the equivalence class of η0η1 · · · ηInd(a),

with

ηi =


h′ if ai = 0

h′′ if ai = 1

.

In particular, ηInd(a) = h′′ if Ind(a) ≥ 1.

Let a ∈ D. We proceed by induction on Ind(a). Direct computation shows

that

h′′h′′(0̄) = f∞h
′(0̄) = f∞(0̄) and h′h′′(0̄) = f−1

∞ h′′(0̄) = f−1
∞ (10̄),

and therefore if Ind(a) = 1, a is in the union of the orbits of 0̄ and 10̄. Now suppose

Ind(a) ≥ 2, and let w = η0η1 · · · ηInd(a)−1h
′′ be the corresponding word in H. Using

the above computations, we can rewrite the effect of w on 0̄ in the following way:

w(0̄) =


η0η1 · · · ηInd(a)−2f∞h

′(0̄) if ηInd(a)−1 = h′′

η0η1 · · · ηInd(a)−2f
−1
∞ h′′(0̄) if ηInd(a)−1 = h′

.
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From Lemma 9.10, we have

f 2
∞h
′ = h′f−1

∞ and f 2
∞h
′′ = h′′f∞.

These relations allow us to move f∞ to the far left of the word, each time exchanging

a power of f∞ for a power whose absolute value is twice as great, which means we

have expressed a as fn∞(b), where Ind(b) < Ind(a). Here |n| = 2Ind(a)−1, and the

sign of n is determined by the number of 0s among a0, . . . , aInd(a)−1. By induction,

we have shown that every point of D lies in the union of the orbits of 0̄ and 10̄.

Because TM(a) is invariant under f∞, 0̄ and 10̄ are not in the same orbit, and

therefore D is a disjoint union of these two orbits.

Remark 9.12. We will need a bit more information about the points of discontinuity

of f∞. These correspond precisely to sequences of the form 11 · · · 110̄ or 11 · · · 11010̄

(the initial number of 1s may be zero). From the information in (9.3), we see that

the forward and backward orbits of both 0 and 1/2 each contain infinitely many

such points.

Lemma 9.13. Saddle connections are dense in the vertical foliation of (X∞, ω∞).

Every vertical critical trajectory is a saddle connection.

Proof. Let x ∈ D, and consider the point (x, 0) on the boundary of the unit

square. If x is not already a point of discontinuity of f∞, then by Lemma 9.11

and Remark 9.12, there exist m,n > 0 such that f−m∞ (x) and fn∞(x) are points of

discontinuity of f∞. Because f∞ is determined by the vertical flow, this means there

is a vertical saddle connection passing through (x, 0) and connecting (f−m∞ (x), 0)

to (fn∞(x), 0). If x is a point of discontinuity of f∞, then so is f∞(x), and there is

a vertical saddle connection from (x, 0) to (f∞(x), 1).
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The proof shows, moreover, that the union of the vertical critical trajectories

contains precisely those points that have representatives in Figure 9.5 with a dyadic

rational x-coordinate.

For clarity in the proof of the next lemma, we introduce the notion of a germ

of a singularity on a locally Euclidean surface M . This is a sequence g of open

sets U0 ⊃ U1 ⊃ U1 ⊃ · · · such that
⋂
Ui = ∅, and, for each i, ∂Ui ⊂ M is

a connected 1-manifold (i.e., homeomorphic to either S1 or R) and either Ui is

simply connected, or Ui is conformally equivalent to a punctured disk, or π1(Ui) is

infinitely generated. In addition, we require that if any Ui ∈ g is simply connected,

then for every ` > 0, there exists ε > 0 such that Ui contains an embedded curve

of constant curvature 1/ε and length `; we say in this case that g is the germ of an

infinite-angle singularity. In the case that each Ui is a punctured disk, we say that

g is the germ of a cone-type singularity. In the remaining case, we call g the germ

of an essential, or end-type, singularity. A germ of a singularity is regular if either

it is of cone-type or, for some Ui ∈ g and some ε, there is isometric embedding

of R into Ui as a curve with constant curvature 1/ε. (In [36], the authors call a

flat surface tame if all of its singularities are regular.) An infinite-angle singularity

that is not regular is a spire. If γ : (0, T )→M (for some 0 < T ≤ ∞) is a critical

trajectory on M (i.e., γ(t) leaves every compact subset of M as t → 0), then γ

emanates from a germ of a singularity g if, for every i and every δ < T , Ui ∈ g

contains points of γ((0, δ)).

A great deal of theory about germs of singularities remains to be established,

but for our purposes here we only need the following observation:

Proposition 9.14. An affine homeomorphism of a locally Euclidean surface M

sends a germ of a singularity to a germ of a singularity of the same type.
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Lemma 9.15. The vertical direction of (X∞, ω∞) is not affinely equivalent to any

other direction on (X∞, ω∞).

Proof. Let Fv be the vertical foliation of (X∞, ω∞), and let Fθ be the foliation in

some other direction θ. Assume there exists some ϕ ∈ Aff(X∞, ω∞) that sends θ

to the vertical direction. Let L be the critical leaf of Fθ emanating from (0, 2/3)

in Figure 9.5. Then ϕ(L) must be a critical trajectory in the vertical direction,

which means it must be a saddle connection. By composing ϕ with some power of

ψ∞ and ρ∞, if necessary, we may assume ϕ(L) is the saddle connection L0 from

(0, 0) to (0, 1/2).

Let g be the germ of a spire singularity from which L0 emanates (e.g., take

each Ui ∈ g to be the union of open semi-circles of decreasing radius centered at

the right endpoints of the segments C ′n). By the previous proposition, ϕ−1 must

send g to the germ of a spire singularity from which L emanates. However, no

such germ exists: in order to permit arbitrarily long curves of constant non-zero

curvature to intersect L arbitrarily close to (0, 2/3), the open sets needed must

have infinitely generated fundamental group. This gives us a contradiction, from

which we conclude the desired result.

Now we are ready to prove the main theorem of this section.

Proof of Theorem 9.9. By Lemma 9.15, any affine homeomorphism ϕ of (X∞, ω∞)

must preserve the vertical direction. Because it must preserve the set of saddle

connections, and the lengths of the vertical saddle connections are all powers of

2, the derivative of ϕ must act on the vertical direction by multiplication by ±2n

for some n ∈ Z. By composing ϕ with a power of ψ∞ and ρ∞, if necessary, we

may assume that ϕ is orientation-preserving and the derivative of ϕ is the identity
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in the vertical direction. Note that, because the area of (X∞, ω∞) is finite, the

derivative of ϕ must lie in SL2(R), which implies that its only eigenvalue is 1.

Thus ϕ is either a translation automorphism or a parabolic map. The latter is

impossible because (X∞, ω∞) does not have any cylinders in the vertical direction.

The existence of non-trivial translation automorphisms is ruled out directly, for

example by observing that each vertical saddle connection has only one other of

the same length (its image by ρ∞), and no translation automorphism can carry

one to the other. Therefore the original map ϕ was a product of a power of ψ∞

and ρ∞, and the result is proved.
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APPENDIX A

FROM THE TOP: G = 1, G = 2

We have already extended the family of Arnoux–Yoccoz surfaces (Xg, ωg) to

the index g = ∞. In this appendix we indicate what happens we when extend

the construction to create (X1, ω1) and (X2, ω2) so that the sequence (Xg, ωg) is

defined for all indices 1 ≤ g ≤ ∞.

The defining equation for α in the case g = 1 is α = 1. The corresponding

surface is a torus, formed from the unit square by the usual top-bottom and left-

right identifications. Hence (X1, ω1) = (C/(Z ⊕ iZ), dz) and ψ1 is the identity

map.

In the case g = 2, we get the equation α + α2 = 1, which means that α =

(
√

5 − 1)/2 is the inverse of the golden ratio. Beginning with the unit square, a

single square of side length 1 − α = α2 is removed from the upper right corner.

Two slits are made, one from (α/2, 0) to (α/2, 1) and the other from ((1 +α)/2, 0)

to ((1 + α)/2, α), thereby cutting the square into three separate pieces. After

the usual identifications are made, following the procedure of §9.2, the result is

a disconnected pair of tori. This is to be expected: the corresponding interval

exchange map f2 is reducible. Viewed on the circle [0, 1]/{0 ∼ 1}, it splits into

two interval exchanges, each of which swaps a pair of segments whose lengths

are in the golden ratio. The pair of tori taken together admits a pseudo-Anosov

homeomorphism ψ2 with expansion constant 1/α = (1 +
√

5)/2, which in the

process exchanges the components.

Genus 2 is not entirely absent in this picture, however. If we shorten the

height of the first slit to 1 − ε and that of the second slit to α − ε, then the
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same identifications are possible, and we obtain a connected sum of the two tori,

resulting in two cone points of angle 4π. As ε → 0, the two cone points collapse

into a single point, which becomes a marked point on each of the two tori. Thus

we can think of (X2, ω2) as a degenerate genus 2 surface.

Because (X2, ω2) is not connected, we adopt the convention that the affine

group Aff(X2, ω2) only consists of affine self-maps whose derivative is constant.

The orientation-reversing map ρ2 ∈ Aff(X2, ω2) exchanges the components. By

composing any ϕ ∈ Aff(X2, ω2) with ρ2 or ψ2, if necessary, we may assume that ϕ

is orientation-preserving and also preserves the components of X2. The orientation-

preserving affine group of a torus with a marked point is SL2(Z); in this special

case, the derivative homomorphism is an isomorphism. Thus, to compute the

remainder of Aff(X2, ω2), we wish to find the intersection of the affine groups of

the two components. Let

M1 =

1 −α

α 1

 and M2 =

α −1

1 α

 .

Following a certain normalization, the two components of X2 have the columns of

M1 and M2 for their respective homology bases. Then we want to determine

(M1 · SL2(Z) ·M−1
1 ) ∩ (M2 · SL2(Z) ·M−1

2 )

or, equivalently, (M−1
2 M1 · SL2(Z) ·M−1

1 M2) ∩ SL2(Z). We have

M−1
1 M2 = (M−1

2 M1)> =
α

2− α

2 −1

1 2


and we want to find the quadruples of integers (X, Y, Z,W ) with XW − Y Z = 1

such that the following is in SL2(Z):

M−1
2 M1

X Y

Z W

M−1
1 M2 =

1

5

4X + 2(Y + Z) +W 4Y + 2(W −X)− Z

4Z + 2(W −X)− Y 4W − 2(Y + Z) +X

 .
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That is, each of the entries in the final product must be congruent to 0 modulo

5. This is a necessary and sufficient condition. All four entries yield the same

linear condition X + 3Y + 3Z + 4W ≡ 0 mod 5, which is satisfied in particular if

X ≡ W ≡ 1 and Y ≡ Z ≡ 0 mod 5. Thus the Veech group of (X2, ω2) contains a

copy of the principle 5-congruence subgroup of SL2(Z); therefore it is a lattice in

SL2(R).

Figure A.1: Iso-Delaunay tessellation for (X2, ω2), the “genus 2 Arnoux–

Yoccoz surface”; note that this is actually a superposition of

two Farey tessellations, one corresponding to each component of

X2. (See Example 4.17.)
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APPENDIX B

EQUATIONS FOR THE G = 3 SURFACE AND RELATED

SURFACES

The contents of this appendix are to appear as an article [6] in the proceedings

of the 2008 Ahlfors–Bers Colloquium. To avoid conflicts of notation within this

appendix, we will refer to what has been denoted (X3, ω3) simply as (XAY, ωAY).

The Veech group and SL2(R)-orbit closure of this surface were studied by Hubert–

Lanneau–Möller in [23].

B.1 Delaunay polygons of the genus 3 Arnoux–Yoccoz sur-

face

Let α ≈ 0.543689 be the real root of the polynomial x3 + x2 + x − 1. Let S0 be

the square with vertex set {(0, 0), (α2, α), (α2 − α, α2 + α), (−α, α2)}, and let T0

be the trapezoid with vertex set {(0, 0), (1 − α, 1 − α), (1 − α − α2, 1), (−α, α2)}.

We form a flat surface (XAY, ωAY) from two copies of S0 and four copies of T0:

reflecting S0 across either a horizontal or vertical axis yields the same square S1

(up to translation); we denote by T1,0, T0,1, and T1,1 the reflections of T0 across a

vertical axis, across a horizontal axis, and across both, respectively. (In fact, T1,0,

T0,1, and T1,1 are all rotations of T0 by multiples of π/2, but this description via

reflections will be invariant under horizontal and vertical scaling, i.e., the Teich-

müller geodesic flow.) Identify the long base of T0 with the long base of T1,1, as

well as their short bases; do the same with T1,0 and T0,1. Each remaining side of a

trapezoid is parallel to exactly one side of S0 or S1; identify by translations those

sides which are parallel. (See Figure B.1.)
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S0

S1

T0

T1,0

T0,1

T1,1

a

a

b
b

c

c

d

d
e

e

f

f

g

g

Figure B.1: The decomposition of (XAY, ωAY) into its Delaunay polygons.

Edges with the same label are identified by translation.

The resulting flat surface (XAY, ωAY) has genus 3 and two singularities each

with cone angle 6π. The images of S0 and T0 are the Delaunay polygons of ωAY.

XAY is hyperelliptic; the hyperelliptic involution τ : XAY → XAY is evident in

Figure B.1 as rotation by π around the centers of the squares and the midpoints of

the edges joining two trapezoids; these six points together with the cone points are

therefore the Weierstrass points of the surface. (See Figure B.3 for the quotient of

XAY by τ .) Moreover, ωAY is odd with respect to τ , i.e., τ ∗ωAY = −ωAY.

The pseudo-Anosov diffeomorphism ψAY constructed by Arnoux–Yoccoz scales

the surface by a factor of 1/α in the horizontal direction and by α in the vertical

direction. In Figure B.2 we show the result of applying this affine map to Fig-

ure B.1, along with the new Delaunay edges. Two of the trapezoids—having the

orientations of T1,1 and T1,0—are clearly visible; the squares and the other two

trapezoids are constructed from the remaining triangles.

114



a

a

b
b

c

c

d

d
e

e

f

f

g

g

Figure B.2: The result of applying the Arnoux–Yoccoz pseudo-Anosov dif-

feomorphism to ωAY. The original shapes of S0 and T0 and their

copies can be reconstructed by matching edges.

B.2 XAY as a cover of RP2

The reflections applied to S0 and T0 in §B.1 induce a pair of orientation-reversing

involutions without fixed points on XAY. These can be visualized (as in Figure B.1)

as “glide-reflections”, one along a horizontal axis and the other along a vertical

axis. Both exchange S0 and S1. Let σ1 be the involution that exchanges T0 and T1,0;

i.e., its derivative is reflection across the horizontal axis. Let σ2 be the involution

that exchanges T0 and T0,1; i.e., its derivative is reflection across the vertical axis.

The product of σ1 and σ2 is the hyperelliptic involution τ , and neither sends any

point of XAY to its image by τ . They therefore descend to a single involution σ on

CP1 without fixed points. The quotient of CP1 by σ is homeomorphic to RP2.

In fact, the presence of σ1 and σ2 is implicit in the work of Arnoux–Yoccoz.

The original paper [2] begins with a measured foliation of RP2 with one “tripod” (a

singular point of valence three) and three “thorns” (singular points of valence 1),

which is then lifted to the genus 3 example we have described. In Figure B.3, right,

we illustrate RP2 as the quotient of XAY by the group generated by σ1 and σ2. In

Figure B.3, left, we see CP1, on which σ acts again by a “glide-reflection”, which
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Figure B.3: Quotient surfaces of XAY. left: CP1 as the quotient of XAY by

〈τ〉. The edges marked b are identified by translation. right:

RP2 as the quotient of XAY by the group 〈σ1, σ2〉. Edges with

the same label are identified by a glide reflection along either

a horizontal or a vertical axis. Dashed lines in the left picture

indicate preimages of the segments labeled B on the right.

is the sheet exchange for the cover CP1 → RP2. In both pictures we have drawn

vertices that become tripods as open circles, and the vertices that become thorns

as filled-in circles. The vertical foliation of the surface on the right of Figure B.3

is the starting point of [2].

In §B.3 we will show that both (XAY, ωAY) and another affinely equivalent

surface have real structures (orientation-reversing involutions whose fixed-point

set is 1-dimensional) that are not evident in the original construction. These

additional structures will allow us to write equations for the surfaces and fit them

into families of flat surfaces with a common group of isometries. In §B.4 we will

transfer these results to genus 2 quadratic differentials. In §B.5 we will conclude

by showing that we have found all the surfaces that are obtained by applying the

geodesic flow to (XAY, ωAY) and have real structures.
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B.3 Two families of surfaces

B.3.1 Labeling the Weierstrass points of XAY

As before, we denote the hyperelliptic involution of XAY by τ , and we let σ1 and σ2

be the involutions described in §B.2, with σ : CP1 → CP1 the involution covered

by both σ1 and σ2.

The purpose of this section is to show the following.

Theorem B.1. The surface (XAY, ωAY) belongs to a family (Xt,u, ωt,u), with t > 1

and u > 0, such that Xt,u has the equation

y2 = x(x− 1)(x− t)(x+ u)(x+ tu)(x2 + tu), (B.1)

and ωt,u is a multiple of x dx/y on Xt,u.

Each of the surfaces in Theorem B.1 has a pair of real structures ρ1 and ρ2

whose product is again τ , and which therefore descend to a single real structure

ρ on CP1. Any product of the form ρiσj (i, j ∈ {1, 2}) is a square root of τ , and

therefore the group generated by {σ1, σ2, ρ1, ρ2} is the dihedral group of the square.

We will exhibit these isometries in our presentation of (XAY, ωAY). In §B.3.3 we

will look at surfaces in this family that have additional symmetries.

Let $ : XAY → CP1 be the degree 2 map induced by τ , i.e., $ ◦ τ = $. We

can normalize $ so that the zeroes of ωAY are sent to 0 and ∞, and the midpoint

of the short edge between T0 and T1,1 is sent to 1. We wish to find the images

of the remaining Weierstrass points, so that we can write an affine equation for

XAY in the form y2 = P (x), where P is a degree 7 polynomial with roots at 0
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and 1. Hereafter we assume that $ is the restriction to XAY of the coordinate

projection (x, y) 7→ x. Consequently, we may consider each Weierstrass point as

either a point (w, 0) that solves y2 = P (x) or simply as a point w on the x-axis.

Each of the real structures ρ1 and ρ2 has a fixed-point set with three compo-

nents: in one case, say ρ1, the real components are the line of symmetry shared by

T0 and T1,1, and the two bases of T1,0 and T0,1. The fixed-point set of ρ2 is then

the union of the corresponding lines in the orthogonal direction. Because ρ1 and

ρ2 fix the points 0, 1, and ∞, ρ fixes the real axis; therefore ρ is simply complex

conjugation.

With this normalization, the involution σ on CP1 exchanges 0 and ∞ and

preserves the real axis; therefore σ has the form x 7→ −r/x for some real r > 0.

Let s = (s, 0) be the center of S0. Then ρ1(s) = ρ2(s) = σ1(s) = σ2(s) is

the center of S1, which implies ρ(s) = σ(s), i.e., s = −r/s. The solutions to this

equation are ±i
√
r. By considering the location of the fixed-point sets of ρ1 and ρ2,

we see that the image of S0 by $ lies in the upper half-plane; therefore s = i
√
r,

and −i
√
r is the center of S1.

Let t be the midpoint of the long edge of T0. Applying σ1 or σ2 shows that the

midpoint of the long edge of T1,0 is at −r/t.

We already know that 1 is the center of the short edge of T0. Since the short

edge of T0,1 is the image of this edge by σ1 or σ2, the midpoint of this edge must

be at −r.

To simplify notation, let us make the substitution u = r/t, so that r = tu

(hence σ has the form σ(x) = −tu/x). Thus XAY has the equation (B.1) for some
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Figure B.4: The Weierstrass points of XAY, following normalization (t > 1,

u > 0). The real structures ρ1 and ρ2 appear as reflections in

the lines of slope ±1.

(t, u) = (tAY, uAY). Furthermore, ωAY is the square root of a quadratic differential

on CP1 with simple zeroes at 0 and ∞ and simple poles at 1, t, −u, −tu, and

±i
√
tu. There is therefore some complex constant c such that

ωAY
2 = $∗

(
cx

(x− 1)(x− t)(x+ u)(x+ tu)(x2 + tu)
dx2

)
,

i.e., ωAY = ±
√
c x dx/y. This establishes Theorem B.1.

B.3.2 Integral equations

To find tAY and uAY requires solving a system of equations involving hyperelliptic

integrals, which we establish in this section using relative periods of ωAY. Choose

a square root of

ft,u(x) =
x

(x− 1)(x− t)(x+ u)(x+ tu)(x2 + tu)

in the open first quadrant such that its extension
√
ft,u(x) to the complement of

{1, t, i
√
tu} in the closed first quadrant is positive on the open interval (0, 1). Let
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η0 be the Delaunay edge between S0 and T0; $(η0) is then a curve from 0 to ∞ in

the first quadrant. Integrating
√
cft,u(x) dx on the portion of the first quadrant

below $(η0) will then give a conformal map to half of T0. We will be interested in

integrals along the real axis.

The vector from 0 to 1 along the short side of T0 is 1
2
(1− α)(1 + i), while the

the line of symmetry of T0 from 1 to t gives the vector 1
2
(α+α2)(−1 + i). Observe

that

i · (1− α)(1 + i) = α · (α + α2)(−1 + i),

and therefore

i

∫ 1

0

√
cft,u(x) dx = α

∫ t

1

√
cft,u(x) dx. (B.2)

Similarly, the vector from t to ∞ along the long side of T0 is
1

2
(1 − α2)(−1 − i),

and because 1− α2 = (1 + α)(1− α), we have

−(1 + α)

∫ 1

0

√
cft,u(x) dx =

∫ ∞
t

√
cft,u(x) dx. (B.3)

In both equations we can cancel out the c, which was ever only a global (complex)

scaling factor anyway. Now bring i under the square root on the right-hand side

of (B.2) in order to make the radicand positive. We thus obtain from (B.2) and

(B.3) the system of (real) integral equations
∫ 1

0

√
ft,u(x) dx = α

∫ t

1

√
−ft,u(x) dx

(1 + α)

∫ 1

0

√
ft,u(x) dx = −

∫ ∞
t

√
ft,u(x) dx

(B.4)

whose solution is the desired pair (tAY, uAY). Using numeric methods, we find

tAY ≈ 1.91709843377 and uAY ≈ 2.07067976690.

We conjecture that tAY and uAY lie in some field of small degree over Q(α).
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B.3.3 Other exceptional surfaces in this family

An examination of the geometric arguments in §B.3.1 and an application of the

principle of continuity to t and u show the following:

Theorem B.2. Every (Xt,u, ωt,u) as in Theorem B.1 can be formed by replacing

T0 in the description from §B.1 with an isosceles trapezoid T , S0 with the square

built on a leg of T , and the copies of T0 with the rotations of T by π/2.

The placement of t and u on R determines the shape of the trapezoid T , and

any isosceles trapezoid may be obtained by an appropriate choice of t and u. In

this section, we examine certain shapes that give (Xt,u, ωt,u) extra symmetries and

determine the corresponding values of t and u. We continue to use τ to denote the

hyperelliptic involution of Xt,u.

Suppose that T is a rectangle. Then there are two orthogonal closed trajecto-

ries, running parallel to the sides of T and connecting the centers ±i
√
tu of the

squares, and either of these can be made into the fixed-point set of a real structure

on Xt,u. The product of these two real structures is again τ , so they descend to

a single real structure on CP1. This real structure exchanges 0 with ∞ and fixes

±i
√
tu, so it must be inversion in the circle |x|2 = tu. It also exchanges 1 with t,

which implies 1 · t = tu, i.e., u = 1. The remaining parameter t is determined by

solving the single integral equation∫ 1

0

√
x

(x2 − 1)(x2 − t2)(x2 + t)
dx = µ

∫ t

1

√
−x

(x2 − 1)(x2 − t2)(x2 + t)
dx

where 2µ is the ratio of the width of T to its height. Recall that an origami, also

called a square-tiled surface, is a flat surface that covers the square torus with at

most one branch point (cf. [40, 16, 54]). By looking at rational values of µ, we

have the following result:
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Figure B.5: Another surface in the GL2(R)-orbit of ωAY with additional real

structures. Edges with the same label are identified.

Corollary B.3. The family (Xt,1, ωt,1) contains a dense set of origamis.

These are not the only (Xt,u, ωt,u) that are origamis, however. If T is a trapezoid

whose legs are orthogonal to each other, then (Xt,u, ωt,u) is again an origami.

B.3.4 Second family of surfaces

Conjugating ρ1 by the pseudo-Anosov element ψAY guarantees the existence of

another orientation-reversing involution in the affine group of ωAY. This element

fixes a point “half-way” (in the Teichmüller metric, for instance) between ωAY and

its image by ψAY, lying in the Teichmüller disk of (XAY, ωAY). This surface can be

found either by scaling the vertical direction by
√
α and the horizontal direction by

1/
√
α or, to keep our coordinates in the field Q(α), just by scaling the horizontal

by 1/α. This surface, which we will denote (X ′AY, ω
′
AY), is shown in Figure B.5,

along with its Delaunay polygons.

Theorem B.4. The surface (X ′AY, ω
′
AY) belongs to a family (Xs, ωs), with Im s > 0
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and s 6= i, such that Xs has the equation

y2 = x(x2 + 1)(x− s)(x− s)(x+ 1/s)(x+ 1/s), (B.5)

and ωs is a multiple of x dx/y on Xs.

Again, we have two real structures ρ′1 and ρ′2 whose product is the hyperelliptic

involution τ . Each of these only has one real component, however: the union

of the sides of the parallelograms running parallel to the axis of reflection. The

only Weierstrass points that lie on these components are 0 and ∞; the remaining

Weierstrass points are the centers of the squares and of the parallelograms. We

again let ρ′ be the induced real structure on CP1 and assume that it fixes the real

axis (this we can do because we have only fixed the positions of two points on P1),

so that the remaining Weierstrass points come in conjugate pairs.

The fixed-point free involutions σ1 and σ2 from §B.2 again preserve the union of

the real loci of ρ′1 and ρ′2, and therefore they descend to a fixed-point free involution

σ of the form x 7→ −r/x, with r real and positive. We have one more free real

parameter for normalization, so we can assume r = 1. This implies that the centers

of the squares are at ±i. Let s be the center of one of the parallelograms; then

applying ρ′1 and σ1 shows that the remaining Weierstrass points are s, 1/s, and

1/s. Using developing vectors again, we can find equations that define s, in a

manner analogous to finding (B.4).

As an analogue to Theorem B.2, we have:

Theorem B.5. Every (Xs, ωs) as in Theorem B.4 can be formed from a parallelo-

gram P , a square built on one side of P , the rotation of P by π/2, and the images

of P and its rotation by reflection across their remaining sides.
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The shape of P is determined by the value of s. If s = 1
2
(
√

3 + i), then P

becomes a square, and we obtain one of the “escalator” surfaces in [28]. More

generally, if s is any point of the unit circle, then P is a rectangle, and inversion in

the unit circle corresponds to another pair of real structures on X, which are the

reflections across the axes of symmetry of P . By considering those rectangular P

whose side lengths are rationally related, we have as before:

Corollary B.6. The family (Xeiθ , ωeiθ) (with 0 < θ < π/2) contains a dense set

of origamis.

Another origami appears when P is composed of a pair of right isosceles trian-

gles so that s lies not on the hypotenuse, but on a leg of each.

B.4 Quadratic differentials and periods on genus 2 surfaces

We do not know how to compute the rest of the periods for Xt,u or Xs, apart from

those of ωt,u or ωs, respectively. In this section, however, we consider the periods

of certain related genus 2 surfaces, which demonstrate remarkable relations.

Let X be any hyperelliptic genus 3 surface with an abelian differential ω that

is odd with respect to the hyperelliptic involution and has two double zeroes.

The pair (X,ω) has a corresponding pair (Ξ, q), where Ξ is a genus 2 surface

and q is a quadratic differential on Ξ with four simple zeroes. Geometrically,

the correspondence may be described as follows: two of the zeroes of ω are at

Weierstrass points of X, hence (X,ω2) covers a flat surface (CP1, q̃) where q̃ has

six poles and two simple zeroes (Figure B.3). Then (Ξ, q) is the double cover of

(CP1, q̃) branched at the poles of q̃. In our cases, the genus 2 surface may be
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obtained by cutting along opposite sides of one of the squares in Figure B.1 or B.5,

then regluing each of these via a rotation by π to the free edge provided by cutting

along the other (cf. [26, 47]).

First we consider the family (Xt,u, ωt,u) and the related genus 2 flat surfaces

(Ξt,u, qt,u). To be explicit, the defining expressions of both types of surfaces are:

Xt,u : y2 = x(x− 1)(x− t)(x+ u)(x+ tu)(x2 + tu), ωt,u =
x dx

y
;

Ξt,u : y2 = (x− 1)(x− t)(x+ u)(x+ tu)(x2 + tu), qt,u =
x dx2

y2
.

The order 4 rotation ρ1σ1 of Xt,u persists on Ξt,u. Following R. Silhol [42], we find

a new parameter a, depending on t and u, so that the Riemann surface

Ξa : y2 = x(x2 − 1)(x− a)(x− 1/a)

is isomorphic to Ξt,u. Doing so simply requires a change of coordinates in x, namely

Φ(x) = i
√
tu

(x− 1)

(x+ tu)
.

Then Φ(1) = 0, Φ(−tu) = ∞, and Φ(±i
√
tu) = ∓1. The images of t and u by Φ

are

a = i

√
u

t

(t− 1)

(u+ 1)
and

1

a
= i

√
t

u

(1 + u)

(1− t)
.

Because t > 1 and u > 0, a lies on the positive imaginary axis and 1/a lies on the

negative imaginary axis. The involution ρ becomes reflection across the imaginary

axis. The images of 0 and ∞ by Φ are

Φ(0) =
i√
tu

and Φ(∞) =

√
tu

i
,

so the image of qt,u on Ξa is a scalar multiple of(
x− i√

tu

)(
x−
√
tu

i

)
dx2

y2
=

(
x2 + i

(
tu− 1√
tu

)
x+ 1

)
dx2

y2
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These calculations imply that, for each pair (t0, u0), there is a one-parameter family

of surfaces (Ξt,u, qt,u) such that Ξt,u is isomorphic to Ξt0,u0 while qt,u and qt0,u0

represent different differentials on the abstract Riemann surface.

Now we apply the same analysis to the second family. This time we are moving

from (Xs, ωs) to (Σs, qs), as defined below:

Xs : y2 = x(x2 + 1)(x− s)(x− s)(x+ 1/s)(x+ 1/s), ωs =
x dx

y
;

Σs : y2 = (x2 + 1)(x− s)(x− s)(x+ 1/s)(x+ 1/s), qs =
x dx2

y2
.

We change coordinates in x using

Ψ(x) = i

(
x− s
sx+ 1

)
so that Ψ(s) = 0, Ψ(−1/s) = ∞, and Ψ(±i) = ∓1. This time we get the curve

y2 = x(x2 − 1)(x− a)(x− 1/a), where

a = Φ(s) =
2 Im s

1 + |s|2
and

1

a
= Φ

(
−1

s

)
=

1 + |s|2

2 Im s
.

Here we have 0 < a < 1 and 1/a > 1; ρ′ becomes inversion in the unit circle. The

points 0 and ∞ on Σs become Φ(0) = −is and Φ(∞) = i/s. Again, we find just a

one-parameter family of genus 2 Riemann surfaces, each carrying a one-parameter

family of quadratic differentials corresponding to distinct surfaces Xs.

In [42], it is shown that the full period matrix for any of the surfaces Ξa can

be expressed in terms of a single parameter, thanks to the fourfold symmetry of

the surface. This parameter is the ratio of
∫ 0

−1
ϕ and

∫ 1/a

0
ϕ, where ϕ = dx

y
− xdx

y
.

This ratio is real precisely when a lies on the positive imaginary axis, as in our

first family, and in these cases the period matrix of Ξa is purely imaginary.
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B.5 Final remarks

The involutions we have exhibited also act on the Teichmüller disk generated by

(XAY, ωAY), and their effects can be seen via the iso-Delaunay tessellation shown

in Figure B.6. Each element of Γ acts on H by an isometry, preserving or reversing

orientation according to the sign of its determinant. Figure B.6 is symmetric with

respect to the central axis (the imaginary axis in C); both σ1 and σ2 yield elements

of Γ that reflect H across this axis. The hyperbolic element of Γ corresponding

to ψAY fixes the points 0 and ∞ in ∂H and translates points along the imaginary

axis by z 7→ z/α2. A sequence of concentric circles is visible in the tessellation;

these are related by ψAY, and one is the unit circle, so their radii are all powers of

1/α2 ≈ 3.38.

There are two kinds of distinguished points on the central axis: ones where two

geodesics meet and ones where three geodesics meet. The latter are those whose

corresponding surface is isometric to (XAY, ωAY), while the former correspond to

(X ′AY, ω
′
AY). The real structures ρ1 and ρ2 (resp. ρ′1 and ρ′2) yield an element of Γ

that reflects H across the unit circle (resp. across the circle |z| = 1/α). The order

4 rotations of (XAY, ωAY) and (X ′AY, ω
′
AY) are thus visible as the order 2 rotations

of H around these distinguished points.

If any other flat surface on the central axis had real structures, then its sym-

metries, too, would have to induce a reflection of H that preserves the tessellation.

No such point exists; therefore we have described all the surfaces within the orbit

of (XAY, ωAY) under the geodesic flow that demonstrate additional symmetries.
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diagrams on piecewise flat surfaces and an application to biological growth.
Theoret. Comput. Sci., 263(1-2):263–274, 2001. Combinatorics and computer
science (Palaiseau, 1997).

[25] Richard Kenyon and John Smillie. Billiards in rational-angled triangles. Com-
ment. Math. Helv., 75:65–108, 2000.

130



[26] Erwan Lanneau. Hyperelliptic components of the moduli spaces of quadratic
differentials with prescribed singularities. Comm. Math. Helv., 79:471–501,
2004.

[27] Christopher J. Leininger. On groups generated by two positive multi-twists:
Teichmüller curves and Lehmer’s number. Geom. and Top., 8:1301–1359,
2004.

[28] Samuel Lelièvre and Robert Silhol. Multi-geodesic tessellations, fractional
Dehn twists and uniformization of algebraic curves. arXiv:math/0702374v1.

[29] Howard Masur and John Smillie. Hausdorff dimension of sets of nonergodic
measured foliations. Ann. Math., 134:455–543, 1991.

[30] Curtis T. McMullen. Billiards and Teichmüller curves on Hilbert modular
surfaces. J. Amer. Math. Soc., 16:857–885, 2003.

[31] Curtis T. McMullen. Teichmüller curves in genus two: Discriminant and spin.
Math. Ann., 333:87–130, 2005.

[32] Curtis T. McMullen. Teichmüller curves in genus two: The decagon and
beyond. J. reine angew. Math., 582:173–200, 2005.

[33] Curtis T. McMullen. Prym varieties and Teichmüller curves. Duke Math. J.,
133:569–590, 2006.

[34] Curtis T. McMullen. Teichmüller curves in genus two: Torsion divisors and
ratios of sines. Inv. math., 165:651–672, 2006.

[35] Robert C. Penner. The decorated Teichmüller space of punctured surfaces.
Comm. Math. Phys., 113(2):299–339, 1987.

[36] Piotr Przytycki, Gabriela Schmithüsen, and Ferran Valdez. Veech groups of
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