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ABSTRACT

A MODEL FOR THE FAILURE PROCESS
OF
SEMI-CRYSTALLINE POLYMER MATERIALS
UNDER

STATIC FATIGUE

A semi-crystalline polymer fiber is a composite material
consisting of difficult to deform crystals joined by more easily
deformed and more easily broken amorphous materials. The failure
process begins at the atoﬁic level in the amorphous regions where
random thermal fluctuations cause, at some time, a molecule to
slip relative to other molecules or to rupture at one of its
atomic bonds. The frequency of such random events in greatly
enhanced by small increases in stress. As molecules slip of
rupture, neighboring molecules become overloaded, thus increasing
their failure rates. Such molecule failures accumulate locally
and give rise to growing microcracks, although the exact kinetic
mechanisms are not well understood. These growing minute cracks
are the irreversible changes in the microstructure of the
material that ultimately lead to macroscopic failure of the fiber

We model this material as being partitioned into a weakest
link series of independent short sections, called bundles, along
the axis of the tensile force. Each bundle has discrete elements
érranged in a geometrical network. The tensile stress on the

system causes initial element failures to begin to occur at



random throughout the bundle. When an element fails, its load is
shifted to neighboring nonfailed elements, increasing their
failure rates. Soon some neighbors to the initial failures begin
to fail, forming microcracks of two adjacent failed elements.
Elements adjacent to some of the microcracks begin to fail, and
the microcracks grow stochastically. Ultimately all elements in
the bundle fail.

The simple model that we propose has two phases. Cracks are
initiated throughout the bundle in accordance with a Poisson
process whose intensity is jointly proportional to the number of
elements in the bundle and the initial failure rate of a single
element. Each crack initiation begins a crack growth process, a
pure birth Markov process whose birth rates are jointly
proportional to the number of most highly stressed elements
adjacent to a crack, and the failure rate of each of these
elements. These cracks are assumed to grow independently of one
another. They grow to infinite size in finite time. The bundle
fails at the earliest of the crack initiation plus crack growth
to infinite size times.

The model is compared numerically with a classic model that
allows smaller cracks to join and form larger ones. The
excellent agreement tells us something about how such materials
behave: Initial failures occur throughout the material. While
these initial failures may be large in absolute number, they are
small relative to the material size. The initial failures become
growing microcracks, but the material effectively fails before

the microcracks form any significant volume of material.



Additional mathematical aspects of the model are pursued.
An explicit lower tail formula for the distribution function of
failure time is given. The concept of a critical crack size is
explored, and the distribution function for the failure time when
there are failures present in the material at time zero is

derived. A variety of load sharing assumptions are examined.



A MODEL FOR THE FAILURE PROCESS
OF
SEMI-CRYSTALLINE POLYMER MATERIALS
UNDER

STATIC FATIGUE

1. Introduction and summary. If a Kevlar fiber is suspended
under a constant weight, it will eventually fail, an example of
what is commonly called static fatigue or stress rupture. The
stress induced in the fiber by the suspended weight causes
irreversible changes in the microstructure of the fiber that
ultimately lead to macroscopic fracture.

A single semi-crystalline polymer fiber is itself a compos-
ite of crystal and amorphous materials [Young (1983), p. 279].
The typical polymer molecule might have a length to diameter
ratio of 10,000 to 1 [ibid., p. 151]. With this length of
molecule, it is impossible for the amount of organization
required to form a 100 percent crystalline polymer to take place
dufing crystallization from a solution or melt. A semi-crystal-
line polymer is comprised of, typically, 40%-80% of material in
the crystalline state, and the remainder, in a glassy or amor-
phous state. Individual molecules have the probability of
being incorporated into more than one crystal, giving rise to
intercrystalline links. The Newel-Rosenstock model [Gotlib, et
al (1973)] views the polymer as a three dimensional network of
sites representing the difficult-to-deform crystalline parts of

the polymer, which are joined by elastic bonds representing the



2
more easily deformable and more easily broken amorphous material
[Dobrodumov and El'yashevich (1973)]. A tensile force is applied
in one direction, and the network is viewed as a series system of
planar subsystenms.

The failure process begins at the atomic level in the
amorphous regions, where the molecules undergo a process of
random thermal vibrations over time. The random fluctuations
will cause, at some time, sufficient thermal energy to exist in a
molecule to overcome certain local energy barriers, and the
molecule may slip relative to other molecules or rupture at one
of its atomic bonds. The frequency of such random events is
greatly enhanced by small increases in temperature or stress, or
by the presence of certain chemical agents (such as moisture on
glass fibers) [Phoenix and Tierney (1983)].

As molecules slip or rupture, neighboring molecules become
overloaded, thus increasing their failure rates. Such molecule
failures accumulate locally and give rise to growing microcracks,
although the exact kinetic mechanisms are not well understood
[Phoenix and Tierney (1983)]. These growing minute cracks are
the irreversible changes in the microstructure of the material

that ultimately lead to macroscopic failure of the fiber.

2. The chain-of-bundles model. We model the material as being
partitioned into a series - of m short sections, called bundles,
along the axis of the tensile force, as depicted in Figure 1.

The bundles are assumed to be statistically independent, and the



3
series arrangement implies a weakest link formulation where-in
the material or system fails when the first bundle fails. Since
the number of bundles in the material is on the order of Avaga-
dro's number, we are interested in extremely small bundle failure
probabilities.

ILet n be the number of elements in a bundle and let m be
the number of bundles in the system. Let Hm,n(t) be the
cunulative distribution function for the random time of system
failure, and let Gp(t) be the cumulative distribution function
for the time of bundle failure. Because the bundles are assumed
to be statistically independent and identical, and in a weakest
link series arrangement, the system survival function 1 -

Hp, n(t) is related to the bundle survival function 1 - Gp(t) by
1-H, . (t) =[1-¢6 (t)1" (2.1)
m,n n - *

Each bundle has discrete elements arranged in a geometrical
network. The tensile force on the system causes initial element
failures to begin to occur at random throughout the bundle. When
an element fails, its load is shifted to neighboring nonfailed
elements in the network, and these overloads on nonfailed
neighbors increase their failure rates. Soon some neighbors to
the initial failures begin to fail, forming microcracks consist-
ing of two adjacent failed elements, and further increasing the

stress on elements near the microcracks. Elements adjacent to
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éome of the microcracks fail, and the microcracks grow stochas-
tically in time. Ultimately all elements in the bundle fail.

We call this the chain-of-bundles model. It is a series
arrangement of bundles, where each bundle has elements in
parallel. Two criteria have been studied in the past, the static
strength model in which each element has a randbm strength and
the focus is on determining the probability distribution of the
tensile strength of the material, and the static fatigue model
where one wants to determine the probability distribution of the
time of material failure under constant load. In this paper, we

consider only the time to failure problem.

3. Element failure behavior. We make assumptions about the
failure behavior of the individual elements, and about how the
failure of some elements affects the failure rates of others, and
then try to deduce the behavior of the material as a whole. 1In
this paper we allow an element to exist in only two states,
failed or nonfailed. (In the study of certain types of creep
behavior a larger state space is required. Each "element" in
such a model is itself a system of more basic particles that
describe the slippage of molecules and the breaking of bonds
between them.) Each element begins in the nonfailed state and
then fails at some random time. The hazard or failure rate of
the element is determined by the time history of load that that
element supported. Let ¢ be the failure time of a single

element that carries the stress or load o(t) up to the time of
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its failure. In this paper we assume that the instantaneous
failure rate of an element depends only on its current load and

not on its previous load history in the sense that
P(t < & < t+tdt t < &, o(u) for 0 < u < t) = K(o(t))dt, (3.1)

where K(o) 1is an increasing convex function of the load o,
called the breakdown rule. With this assumption, a fiber that is
given a constant load of o will have a failure time that is
exponentially distributed with mean 1/K(c). The survival
probability for an element subject to the time varying load o(u)

for u > 0 |is
P(z > t) = exp{-IOtK(c(u))du}. (3.2)
Two cases are of special interest, power law breakdown in which
K(c) = aop, for ¢ > 0, (3.3)
and exponential law breakdown in which
K(o) = o exp{Bc}, for o > 0.
Under power law breakdown, the log mean time to element failure

will plot linearly with log load, while under exponential

breakdown, the log mean time to element failure plots linearly
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with load. The exponential breakdown law is attributed to
Zhurkov (1965) in the form

K(o) = Tg" exp(-Uy/KT) exp{yo/kT}, (3.4)

where Ty is a constant related to the period of bond vibration,
Uy is the activation energy of the fracture process in the
absence of load, k is Boltzmann's constant, T is absolute
temperature, and <y is called the activation volume. Phoenix
(1983) summérizes the arguments leading to (3.4), and points out
some serious drawbacks to the exponential breakdown rule. He
also derives the power law breakdown rule from basic assumptions
in a manner analogous to fhat of Zhurkov, and he lists some of
its advantages. As an example, under the power law breakdown
rule the time to failure of a system under the nominal load per
element L has the same distribution as L™P times the time to
failure of the system under unit load [Tierney (1984)]. This is
readily verified from (3.2) and (3.3) for a single element under
a load that is constant in time. For this reason, much of the
derivation under power law breakdown can be carried out assuming
L = 1. With properly chosen parameters, both rules give
qualitatively similar results. Where power law breakdown is
assumed for element behavior, the same behavior will be main-
tained at the bundle and system level. This is not the case with
exponential breakdown. Because of its advantages, we will

emphasize power law breakdown in this article.



7
4. Load sharing among elements. Having described the single
element behavior under load, we turn to describing the sharing of
bundle load among the nonfailed elements. The load sharing rule
prescribes the load carried by each nonfailed element in the
bundle for each possible configuration of failed and nonfailed
elements. If there is to be any hope of analyzing the model,
the load sharing rule must be history independent. That is, the
load carried by an element should depend only on which elements
have failed and not on the sequence in which those failures
occurred. A load sharing rule should also be monotone in that
the load carried by any nonfailed element should never decrease
upon the failure of an additional element. There are real
systems which do not have monotone load sharing, for instance,
where one element carries load from one part of the system to
another so that upon its failure the load is no longer trans-
ferred and is correspondingly reduced in part of the system. For
such systems the difficulty of the analysis is greatly in-
creased. Fortunately, monotone load sharing is a reasonable
assumption for the materials that we model.

A number of approaches have been taken to determine the load
supported by a nonfailed element in studies of similar network
configurations of failed and operational elements. Early work on
the chain-of-bundles model assumed equal load sharing among the
nonfailed elements in each bundle [Daniels (1945), Borges (1983),
Gucer and Gurland (1962), Rosen (1964), and Smithﬂ(l982)].

Coleman (1957) introduced unequal load sharing in what he called
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a tight bundle, but only rigorously developed results under
equal load sharing. A more realistic assumption is that the
stress concentrations are confined in the near vicinity of failed
elements. In the study of fiber-matrix composites, a number of
authors tried to characterize such stress concentrations [Argon
(1972, 1974), Rosen (1964), Scop and Argon (1969), Zweben (1968)
and Zweben and Rosen (1970)], but lacked rigor because their
models were not completely or precisely defined. As a result, it
is impossible to assess the correctness of their approximations.
It should be emphasized that if the model is to be complete, then
the model must specify the load carried by every nonfailed
element in every possible configuration of failed and nonfailed
elements. In a simulation study of a chain-of-bundles type model
for polymer materials, Dobrodumov and El'yashevich (1973)
attempted to do this by recalculating, after each simulated node
failure, the stresses at every node of a network "spring" model
attributed té Newel and Rosenstock (1953) . A similar approach
was taken by Termonia, Meakin and Smith (1985).

To properly describe the failure process, the load sharing
rule must focus stress cohcentrations in the near vicinity of
failed elements. On the other hand, if one is to hope for
success in an analytical study of the model, it appears necessary
to consider only load sharing rules in which the microcrack is
constrained to grow linearly. This simplification was made by
Gotlib, Dobrodumov, El'yashevich and Swetlov (1973) in their

analytical study of the simulation model of Dobrodumov and
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El'yashevich (1973). In any local configuration of failed and
nonfailed elements, they allowed only the most stressed element
to fail. A different approach was taken by Harlow (1977) and
subsequently developed by Harlow and Phoenix (1978a, 1978b, 1979,
1981a, 1981b, 1982). Instead of trying to calculate the stress
concentrations exactly, they worked with an idealized model,
called local load sharing, which captures the esséntial features
of failure, but is simple enough to allow exact calculations.
Harlow postulated that the elements are arranged in a circle so
that each element has precisely two neighbors. The load on any
nonfailed element depends on how many failed elements are
adjacent to it. Specifically, if the nominal load per element is
o, then the load on a nonfailed element that is adjacent to j
failed elements is P40 where 5 the stress concentration

factor, is given by

< n-1,
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P
+
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0
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]

(4.1)

where n 1is the number of elements in the bundle. Local load
sharing concentrates all of a failed element's load onto the two
nearest nonfailed neighbors in a circular configuration. This
stress concentration is more intense than that yielded by more
realistic approaches. Therefore, one would conjecture that local

load sharing would be a conservative assumption in that it would
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predict times that are earlier than would actually occur. Unfor-
tunately, a proof of this’conjecture has not yet been found.

It may be possible to more closely simulate more diffuse
and realistic load sharing rules and, at the same time, retain
the analytical tractibility of local load sharing, by introducing
a constant &, with 0 < & < 1, and setting Ky, =1 + 8r/2 for
r=0,1, ..., n-1l. Observe that this modification does not
conserve load in that the sum of the loads on all nonfailed
system elements does not equal the original bundle load. Tierney
(1984) discusses this modification and Pitt and Phoenix (1982)
have done some calculations in a static strength model that
support this approximation.

Gotlib, Dobrodumov, El'yashevich and Svetlov (1973) study
three distinct load sharing setups. Their model is incomplete in
the sense that they do not prescribe the load on every nonfailed
element in every configuration of failed and nonfailed elements
in the bundle. Instead, they assume that the stress concen-
tration factors in the vicinity of a microcrack depend only on
the size of the microcrack and not on its individual configur-
ation. They consider only single microcracks, and do not compute
stress concentration factors for two microcracks near each
other. Considering a microcrack of arbitrary shape in a general
planar bundle, they assume that the most highly stressed non-
failed element adjacent to the microcrack is the one to fail
next, and thus they need to determine the stress concentration

factor for this element alone. Their rate for the growth of a
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microcrack of size 3j into one of size 3j+1 depends on both
the number ny of adjacent elements carrying the maximal stress
on the boundary of the microcrack, and on the corresponding
stress concentration factor P The first case, based on
Gotlib, El'yashevich and Svetlov (1973), is determined from a
linear microcrack growing in a planar lattice (and then assumed
to hold for microcracks of all shapes). The maximum stress
occurs at each end of the microcrack, so that ny = 2, and the
stress concentration factors are

1/2

mj = c(l + j) , for j =1,2,... (4.2)

The constant ¢ depends on the elastic moduli assumed for the
system, and is an approximation to a nearly constant function of
j.

The second case is derived assuming a symmetric microcrack
growing in a planar lattice. The symmetry implies that all
nonfailed elements bounding the microcrack carry equal stress,
and they estimate the number of elements adjacent to a microcrack
of area j by ny = 4(1 + j)l/z. They use the stress concen-

tration factor

¢y = o(l + N4, for 3 =1,2,... . (4.3)

Finally they introduce a third and weaker form of load sharing

in which
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n, = 4(1 + j)+/2

j and mj = c(l + j)l/s, 3 =1,2,... .(4.4)

5. The simple model. Here we set forth a simple model which
assumes that microcracks grow independently of one another, two
smaller microcracks never coalescing to form a single larger
one. We assume that isolated initial failures appear throughout
the bundle according to a Poisson process whose rate v =

nK(L) is jointly proportional to the bundle size and the
breakdown rate of a single element under the nominal load per
element L. From each such initial failure, a microcrack grows
according to a pure birth process in which the rate at which a
microcrack of size j extends to size J+1 is the birth

parameter

»y = nyK(eyL), for Jo=1,2,00. . ) (5.1)
Figure 2 illustrates the crack initiation-crack growth pro-

cess. Let X(t) be the random process describing the size

of a single microcrack as a function of time t as shown in

Figure 3. The pure birth parameters given in (5.1) are inter-

preted as the infinitesimal transition rates of the process X(t)

according to

P(X(t + 8t) = J + 1 X(t) = J) =2(3%) + o(st) (5.2)



13

where o(d8t) 1is a remainder term of order less than &t as
&t -+ 0 [See Taylor and Karlin (1984), p. 211].

The pure birth process X(t) begins in state 1 and
sojourns there for a random time §S; which is exponentially
distributed with parameter Xj, and then moves to state 2, where
it sojourns for a random time S, which is exponentially
distributed with parameter X,, and so on [ibid, p. 213]. The
sum Y = Sy + Sy + ... is the time it takes the initial failure
to grow to a crack of infinite size, called the ekplosion time of
the birth process. Let T3, Ty,... denote the successive times
of appearance of the initial failures in the bundle, and let Y.,
Y5,... denote the respective explosion times of the birth
processes that these failures initiate. The bundle failure time
Z is the smallest of T; + ¥;, Ty + ¥3,... . It is not
necessarily the case that the first crack to begin will cause
bundle failure since a later crack may grow faster. If we plot
the successive (T, Yx) pairs in the (t,y) plane, as in
Figure 2, the points form a spatial Poisson point process whose
intensity is g(t,y) = vf(y), where £(y) is the common
probability density function of the explosion times [ibid,
pp. 205-207]. The event {(Z > 2z} 1is the event {min{Ty + Yy} >
z} and it corresponds in the (t,y) plane to the event that no
points fall in the triangle A = {(t,y): t +y <z, £t >0, vy >
0}. The number of points N(A) falling in the triangle A has

a Poisson distribution with mean p(A) given by
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h(a) = [[,w dat £(y)dy = nK(L) [ *F(y)dy, (5.3)
where F(y) is the cumulative distribution function of the

explosion time. From this we easily obtain the the system

survival time distribution:

1 -Gp(z) =1 - P(Z > 2z) = P(N(A) = 0) (5.4)

exp{-nK(L) ] ,*F(y)dy}.

Define the characteristic distribution function W(z) by

1 - W(z) = exp{-K(L)[,*F(y)dy). (5.5)

Note that in this model we have the exact reverse weakest link

relationship

1 - W(z) = [1 - Gn(z)]l/n .

The characteristic function W(z), as given in (5.5), is
readily computed. As mentioned earlier, the explosion time Y

is the sum of the sojourn times §S;, Sy, ... which are indepen-
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dent random variables, and S4 has an exponential distribution

with parameter Xj. Let

gy = sl+sz+...+sj = ‘j-l + sj ,
and

F.(t) = P(&. < = . .+ S. <t

j(8) = P(&y <€) = P(g4_+ S5 < t)
where
-xlt
Fl(t) =1-e , for t > 0.
Defining
Wil (z) = 1 - exp(-R(1) ] *F,_; (v)dy), A (5.7)

then the time <y of the first appearance in the bundle of a
microcrack of k adjacent failed elements has the cumulative

distribution function G[k](z) = P(tx < z) given by

ng](z) =1 - (1 -wkl(z)n
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= 1 - exp(-nK(L)[*F, _, (v)dy}. (5.8)

Letting k-, since

Fk(Y) = P(Sl+...+sk < y) = P(Sl+sz+"' <vy) = F(y),

it is clear that W[k](z) as given in (5.7) converges to W(z).
Figure 4 plots W[k](t) versus time t under the power law
breakdown of (3.3) with K(L) =1, p = 10 and for k =1,...,9.
The coordinates are such that a Weibull distribution plots

as a straight line (log log 1/[1 - W(Kl(t)] vs. log t). Note
the evident convergence of W[k](t) to the characteristic
distribution function W(t). The manner of convergence is such
that in any portion of the graph, there is an integer k such
that the first appearance of a microcrack of size k is tanta-
mount to bundle failure. From the graph we can infer that

nozon - wl®lg (5.9)

1 - Gp(t) = [1 - W(t)]
for values of k > 9 and for values of n up to about 1016
and thus we can begin to predict the behavior of systems of
realistic size. Using (2.1) we deduce the survival function for

the system of m bundles in series to be
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Nz oy - wlKl gy ™, (5.10)

1~ Hm,n(t) = [1 - G,(t)]
Let us use (5.10) and Figure 4 to point out one of the

difficulties faced in trying to understand these materials via
simulation. The maximum number of elements that have been in any
simulation study to date is on the order of thousands. Dobro-
dumov and El'yashevich (1973) used nm = 4000, while Termonia,
Meakin and Smith (1985) used nm = 36x103. On the other hand, an
actual fiber would have a number of elements that is many orders
of magnitude times this. For the sake of discussion, we will
compare nm = 4000 with nm = 1010, and look at the median time
to failure under unit load L = 1 for both systems using Figure

2. For the median failure probability of 1/2, we have

N
I

1 - Hy (%),

or

1
log log[l - Hm,n(t)]

log log 2

1 ..
1 - w1 (x)

[}

log mn + log log{

Using Figure 2, log log 2 - log 4000 = -8.66 which corresponds to
a median log time to failure of 1log t - -6.1, where-as
log log 2 - log 1010 = -23.39 which gives a log median time to

failure of 1log t = =10.25. The point is that under the same



18
load, the simulation gives times to failure that are many orders
of magnitude greater than would be observed with a larger,
more realistic, number of elements. In order that a simulation
study be useful, there must be some means of extrapolating the
simulation results to systems of realistic size, taking into
account the size effect that always exists whenever element
failures exhibit random variation.

We now derive some auxiliary formulas that are useful in

both computation and analysis. Firstly,

Fk_l(Y) =1-[1 - Fk-l(Y)]
= 1 - P(y < e;k_l) (5.11)

=1 - gk71 =
= 1 zj=l P(aj__l <y < aj), where o = 0.

Secondly,

t t

ELfo 164y S ¥ < &5y + S53dy]

. +
E(min{Sy, (t=45_;) }]

+
s (E=2s_1)
~— E[1-e 3-17
]
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- _%;_ j‘ot(l - e—x.(t-Z))faj_l(z)dz
= —%;— Fy(t). (5.12)
Thus we can write (5.7) in the form
wi¥l(z) = 1 - exp(-x(L) [z - z}j‘;i == F5(2) ). (5.13)

J

Then, in computing (5.7) as reformulated in (5.13), we use the

explicit formula, derived inductively from (5.6),

k
£ z, N - - » .
Py = =58 411 - exp(xg2)] (5.14)
where
by b pN A
1 J=1 J+1 k

A . = (—"":"—-) . oo( . )( . )on . (.'_-':—-) . (5.15)
X, 3 N1y o .

6. Power law breakdown. A number of simplifications take place

under power law breakdown that more clearly show the effects of
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the model parameters on the system behavior. Observe that under

power law breakdown the birth parameters 2 factor in the form

== N . = . .p—"- 1 .
»5 = nyK(psL) = K(L)ny (95) R(L)6y (6.1)

where

o, = nj(mj)p for 9§ = 1,2,... . (6.2)

As a consequence of this factorization, each sojourn time in a
birth process at an arbitrary load L has the same probability
distribution as 1/K(L) times the same sojourn time in a process
for which X(L) = 1. Similarly, the explosion time Y(L) at an
arbitrary load L has the same probability distribution as
1/K(L) times the the explosion time Y when K(L) = 1. To
exploit this factorization, let us now reserve W(t) for the
characteristic distribution under K(L) = 1, let Zn be the
buﬁdle failure time under XK(L) =1, and let Z,(L) be the

bundle failure time under an arbitrary load. Then

P(2 (L) < t) = 1 - exp(-nK(L)[,“P(¥(L) < y)ay)

1- exp{-nK(L)!OtP(Y < K(L)y)dy}

K(L)t

1 - exp{-—n_l'o P(Y < u)du}
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=1 - [1- WEK(MDt)I" (6.3)

Under power law breakdown, then, the load sharing rule affects
the characteristic distribution function through the parameters
81,89,..., the system load per element L appears as a scale
parameter K(L), and the bundle size appears as a weakest link
exponent. |

Let us write out explicitly how the load sharing assumptions
determine the parameters ©,,8,,... of the characteristic

distribution function W. Under local load sharing, we have

o
Il

i,
2(1 + 3

217P (2 + §)P, for 3§ =1,2,... . (6.4)

Under the load sharing of (4.2), we have

6y = 2P (1 + 9)P72, for 3 =1,2,... . (6.5)

Finally, under (4.3) and (4.4), we have, respectively,

05 = acP (1 + LA+ R/T 0 for 4 = 1,2,... .(6.6)
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and,

o; = aP (1 + HLA/2IHPR/8)]  eor 4 = 1,2,... . (6.7)

Using (5.6), it is easily worked out by induction that

elezI LN

3!

o _ o
t 1z 3 4 o(td). (6.8)

Fy_y(Y)dy =

Also, for any k =1,2,...,

F(y) = P(Y 2¥) = Fp_1(y) = [F;(¥) - F(¥)]
=Fp_1(¥) = [P(&_; £¥) - P(Y £¥)] (6.9)
= Fk—l(Y) - P(‘:k-—l Sy <Y)
and
P(gp_y S Y <Y) = z?=kp(¢j-1 S Y <& (6.10)

pPutting (5.12), (6.9) and (6.10) together, for any value k =

1,2,..., we obtain

© 1
Fk_l(y)dy - zj=k —gg Fj(z). (6.11)

[,2F(y)ay = [,*
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We will use Equations (6.8)-(6.11) to derive an asymptotic
result that describes the characteristic distribution W(t) and
tells us something about the failure process. This result is
motivated by an equivalent result in a far more complex model
that is due to Tierney (1980). Define r(l) = 0, and for Jj =
1,2,..., let

r(3) %log s , | (6.12)
where ej is any of (6.4) to (6.7). Observe that x(3j)
increases with 3j, and that while =r(j) varies with p, it is
asymptotically constant as p-® when 64 is given by one of
(6.4) to (6.7). Let us consider letting n- and p-x, with

p being proportional to 1log n, say C = (log n)/p, and pick out

the unique value k for which

» 10 n :
< =g n <1 k+1). .
llmpqm r(k) < = Cc 1mp4m r( ) (6.13)

Fixing this value for k, define

1/k
|
k!

[ ] . (6.14)
n nelez L 3 .. ek—l

Theorem 1. With X(L) = 1, let n-»® and p-», with C = p/log n

satisfying (6.13). Under these circumstances
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< ant) =1 = exp{—tk}. (6.15)

Proof. In view of (5.4) with XK(L) = 1, it suffices to show that

a_t

n k

n Io F(y)dy » t, (6.16)

and using (6.11), we need to show that both

a_t

n k

n IO Fk_l(y)dy -+ £/ , (6.17)

and

n .
~_§; Fj(ant) - 0 for 3 > k. (6.18)

To establish (6.17), observe that apt - 0, and use (6.8) and

(6.14) to get

ant ©4+¢+6p 4

Fp_,(Y)dy = n == (a £)" +o((a t)¥)

n IO

k k

= 5 o((ant)k) - X,

To obtain (6.18), because Fj(t) > Fj+1(t) and ©5 < 8441,

we need only consider the case j = k. Then
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a_t -ek(ant-'Y)

n _ n
—§£ Fk(ant) = n Io Fk_l(y) e dy

B....8 a t -8, (a_t-y)
1 k-1 k-1 k'"'n
= n DT IO n Yy e ’dy + o(ant)
-g,a_t(1-z)

_ _k 1 k-1 kx%n
= ” )k IO (antz) e ant dz + o(ant)

n

_ -8, a t(l-z)

= ktk I lzk 1le k'n dz.

0

We see now that (6.18) will hold provided that exap + @ as
n + o, But log n 1is proportional to p, with proportionality

constant ¢, and by (6.13), C < r(k+l), which implies that

n = eCp< er(k+1)p

and

1 = % eCp < % er(k+l)p - e[r(k+l) - Clp ®,

so that by (6.12) and (6.14),

X X
1 rxrn)p _ %% _ (8yay)
n

!
no,...8 k!
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whence ©yrap -+ @ as it was to be shown. L
In practical terms, the result asserts that, when n is
large, and p 1is moderate, and k 1is chosen so that (6.13) is

satisfied, then we have the approximation

Gn(z) -1 - exp{—(z/an)k}. (6.19)

The integer k is termed the critical crack size. Under
the asymptotic conditions of the theorem, the appearance of
a microcrack comprised of k adjacent failed elements is tant-
amount to bundle failure. This leads to (6.19) which asserts
that the system failure time has a distribution which is approxi-
mately Weibull with shape parameter k.

From (6.19) we see that when Xk 1is the critical crack size,
then

1/k

_ - k!
8h = ®n,x T [nel...ek_l ]

(6.20)

is approximately the median in that GL(2z) 1is close to one for
2 > ap, ks, and Gp(z) 1is close to zero for z < ap k.

Figure 5 plots the approximation of (6.19) on the same
graph with a plot of W[®] as computed earlier. We see that the
straight lines given by the right side of the approximation
(6.19) form an envelope about the W[g](z) - W(z) curve.
Equating (z/an,k)k to (z/an,k+1)k+1 shows that the change in

critical crack size occurs at z = (k+1)/6x. That is, (6.19)
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may be rewritten

1.9 7 x k+1 X

W(z) - 1 - exp{- =T 2z} for === < z <

Finally, if we let 2,(L) be the failure time of a system under
the nominal load per element L, and let 2, = Zp(l), then

according to our earlier remarks,

P(Z, (L) < t) p(L‘pzn <t) =Pz, < Ft)

=1 -1 - WPty (6.21)
©....6
Z 1 - exp{-n —= k!k'l XPeky

for (k+1) /8 < Pt < kK/8x-1-

From (6.21) we deduce that the median time to failure t,

and the critical crack size k are determined by jointly solving

e ...e
1°°°%%-1 %o X
k1 L (ty,) } (6.22)

1—- -
5 = exp{-n

or, using the same reasoning that justifies a, as given in

(6.20) as an approximate median,

1/k

- k!

t - LP[extt—m—1 (6.23)
m N8 .. 6.1
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and
ke+ 1 < Pt < -51-5-——-. (6.24)
X k-1

7. A deterministic analysis. Gotlib, Dobrodumov, El'yashevich
and Svetlov (1973) give a deterministic argument that leads to a
critical crack size that is close to that derived in the previous
section. Again we assume that L =1 and let nj(t) be the
number of microcracks of size j at time t. They arqgue,
essentially, that for small values of 3Jj, the populations of
j-size microcracks should be large, and thus nj(t) can be well

approximated by its mean value. This leads to the differential

equations

dnl(t) :

—”-a’_-t'-'— =n - elnl(t), (7.1)
and

dn +l(t) )

--13E—-- = ejnj(t) - ej+1nj+l(t)' for j =1,2,...

(7.2)

Next, they claim that ny+1(t) is small relative to ny(t) so

that (7.1) and (7.2) are approximately
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dnl(t)
S=— = n (7.3)
and
dnj+1(t) .
3E = ejnj(t) for j = 1,2,... . (7.4)

The solution is

nl(t) = nt . (7.5)

and,

ee ..‘e' L]
nj(t) = n 1 zj' 1z +J, for § =2,3,... . (7.6)

The large population argument breaks down at a certain crack
size. Consider the crack size k such that, at the time t,
that the first crack of size k appears, so that nx(ty) = 1,
the rate 8)x at which this single crack grows to size k+1,
exceeds the rate ©yx_jnk-j(ty) at which a second crack of size

k will appear. When this happens, the single crack of size k
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will race ahead and cause bundle failure. Putting these two

conditions together gives

8.9,...8
172 k-1 k
- ()" (7.7)

1=n.(t) =n

whose solution agrees exactly with the approximate median given

in (6.23), and

6192...6k_l k-1

n

k 2 Ox-1"k-1(tp)

From (7.8), the critical crack size k must satisfy

k k -1
—— & & —————— (7.9)
Gk m ek_l

The criterion for the critical crack size of the deterministic
analysis given in (7.9) differs by the factor (k + 1)/k from
that derived in the stochastic analysis and given in (6.24). 1In
the stochastic analysis, k 1is such that the random time <y at
which a microcrack of size Xk first appears has virtually the
same probability distribution as that of the first appearance of

an infinite crack. That is, T is virtually identical with the
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time of bundle failure. In the deterministic analysis, k is
such that the first microcrack to reach size %k 1is the micro-

crack that grows to ultimately cause bundle failure.

8. Validation of the simple model. In the model of Section 3, it
was assumed that two smaller microcracks never coalesce to form a
single larger one. We will now compare the results of that model
with those of a more complete model that does allow microcracks
to join. If we are to allow such interactions between micro-
cracks, then we must specify the stress concentration factors for
nonfailed elements in the vicinity of two or more microcracks.

To date, the only analytically tractable load sharing rule that
completely specifies the stress concentration factors for all
nonfailed elements, in every possible configuration of failed and
nonfailed elements, is the local load sharing of Harlow (1977)
and Harlow and Phoenix (1978a,1978b,1979,1981a,1981b,1982).
Recall that under local load sharing, the elements are assumed to
be arranged in a circle, and the stress concentration factor for
any nonfailed element is Py =1+ j/2, where Jj 1is the number of
failed elements adjacent to it. The failure process begins with
all elements in the circle intact, and then one-by-one, elements
fail until all have failed. Obviously the individual failed
elements and microcracks are joining in the bundle failure
process. If fact, intuitively it seems that there would be more
joining in the essentially one dimensional circular arrangement

than there would be in a two dimensional rectanquiar or hexagonal
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arrangement of elements.

Because of the relatively simple geometry of the circle,
Kelley (1978) was able to define a Markov process whose state at
any time is the exact geometrical configuration of all failed and
nonfailed elements, and to give an algorithm that computed the
probability distribution of the bundle failure time exactly.

[See also Taylor and Karlin (1984), pp. 264-273.] Using this
algorithm, we have computed the probability distribution of
bundle failure time for bundles of size n=1,2,...,9. We make

the reverse weakest link transformation, defined by

- - 1/n
1 - Wn(t).- [1 -G ()] (8.1)

Figure 6 plots Wh(t) versus time t under the power law
breakdown of (2.3) with K(L) = 1 and p = 10. The coordinates
are such that a Weibull distribution plots as a straight line
(log log 1/[1 - Wh(t)] vs. log t). Note the evident convergence
of Wp(t) to a limiting characteristic distribution function
W(t). We see that Wg(t) coincides with W(t) over the range of
the graph. Table 1 compares Wg(t) in this model, where
microcracks are allowed to join, with W[2] from the simple
model ,where microcracks grow independently. For all practical
purposes, the results are the same in both models, verifying that
the interaction and joining of growing microcracks is a negli-

gible phenonemon in the failure process.
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9. An asymptotic formula for the lower tail of the distribution.
In a study of the breakdown phenomenon in thin film insulators,
Yashchin (1981),[See also Feigin and Yashchin (1982).], derives
an asymptotic expansion for the lower tail of the distribution
function of an infinite sum of independent exponentially distri-
buted random variables. The techﬁique used was to invert the
Laplace transform of the distribution function with the "saddle
point method". [See, e.g. Marsden (1973), Sec. 7.2.] In one
problem, the exponential random variables had parameters
a(j + 1)P for j =0,1,..., for a positive constant a and p >
1. They obtained the following approximation for the lower tail

of the distribution function D(t) of the infinite sum:

D(t) = at~1/2 exp{-(p-l)zot"l/(p'l) }, (9.1)

where,
n = p/(p-1), (9.2)
A= [nnP a2, (9.3)

and,
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z = a 1/ (P"1) [ _R/lp M,

0 sin(r/p) (9.4)

(We have corrected a minor error in their initial constant A.)
Under local load sharing and power law breakdown, as given in
(6.4), we have a = 21“9, and we have j = 2,3,..., since

the parameters then are

05 = 2(1 + %)p =21P2 + )P for 3 =1,2,... .

In addition, we are interested in the lower tail of the integral

1(t) = I, F(y)ay, (9.5)

and not in the lower tail of the distribution itself. These
changes are so minor that we can follow their method very
closely. The Laplace transform for our problem differs from

theirs by having the additional factor

1 S S
S(L+ 31+ - ). (9.6)

The effect of this is to add the corresponding factor to the

approximation, with
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s = z.t ", where z. = 2]

n/e___.n
0 0 sIn(n/p)d ’ (9.7)

and
resulting in

A = [n(am)P™H1/2, (9.8)

and

n 1 - — -
I(t) = %5(1 # 2Pz e (1 4 2z tT)arml/2

9.9
X exp{—(p—l)zct-l/(p—l)}. 99

The approximations
W(t) = 1 - exp{-I(t)},

W (), and wl?l(t),

with I(t) as given in (9.9), are given in Table 1.
Table 2 gives a similar comparison for p =5 and p = 20.

It is seen that the approximation is extremely accurate. The
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discrepency at p =5 and log t = -8 is due to the lack of
convergence of Wg(t) to W(t) in this region, so that the

approximation provided by I(t) is the more accurate figure.

10. The effect of load sharing. Encouraged by the accuracy of
the I(t) approximation in the case of local load sharing, we
give the corresponding formulas for the load sharing rules of
(6.5) to (6.7). In these cases, it is necessary to distinguish
between p as it appears in the power law breakdown rate, and
the exponent, which we will call p, which appears in the birth
process rates 84 .

(1) The linear crack in a planar network. The stress concentra-

tion factors in (6.5) give the birth process rates

o5 = 2P (1 + $\P/2, for §=1,2,...,

whence

a

I
%

and p = p/2.

This leads to

n =p/(p-1), (10.1)
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a = 0P la1t/?, (10.2)

and,
z, = a~1/(p-1) [55’111(%75-)-]“. (10.3)

Then

n _ _ 1 /(5
I(t) = 'g-(l + zt™/a)at 1/2 exp(-(p-1)zt 1/7(=1)y  (10.4)
0

(2) The symmetric planar crack. When the stress concentration

factors are given by (6.6), the birth process rates are

ej = 4cp(1 + j)[(l/z) + (p/4)], for 3 =1,2,...,

whence,

a

NI

aP and p = (35 + %),

and then I(t) is given by (10.1) to (10.4).

(3) Diffuse load sharing. When the stress concentration factors

are given by (6.7), then the birth process rates are

.ej = 4cp(1 + j)[(l/z) + (p/S)], for j = 1,2,

e e 2y
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whence

and I(t) is given by (10.1) to (10.4).

These three load sharing rules differ in two ways. Firstly,
they become more diffuse in that lower peak stress concentrations
are spread over more elements as we go from (1) to (3).
Secondly, they differ in the total amount of load that they
redistribute. A load sharing rule is said to be conservative if
the total load summed over all nonfailed elements in the bundle
equals the total bundle load nL. The local load sharing of
(6.4) is conservative. The load sharing rules of (6.5) to (6.7)
are not since they ignore the load carried by all but the most
highly stressed elements. The fraction of load redistributed by

the rules (6.5) to (6.7) is

-1)

n-(@ﬁ
j r (10.5)

]

which in the three cases becomes

_ 2re+ Y2 - 13
1 3 !

_ e 2reaenYt - 1y
2 J
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and

_ 2+ Y2 e t/8 - 1
3 3 .

The choice of ¢ =1 1in case (1), ¢ = .90 in case (2), and c¢ =
1.05 in case (3) all lead to an average fraction of load
redistributed by the system of about 68% for j =1,...,5, and
these values will be used in later computations. The effects of
the load sharing assumptions on the stress concentration factors
¢35 and birth process rates 64 are shown in Figure 7.

In discussing the effect of the different load sharing
assumptions, let us first emphasize that the exponent in the
scale factor XK(L) that is used to translate failure times under
K(L) = 1 to failure times under arbitrary loads remains unchanged
by the load sharing assumptions. What does change is the
exponent in the characteristic distribution W(t), from p to
p. This can be a significant reduction in value of an extremely
important parameter. The effect of lowering the exponent in the
characteristic distribution is to increase the critical crack
size, and correspondingly, to slow the convergence of Wq(t)
and W[k](t) to W(t). Because the convergence is slowed, the
asymptotic formulas of (6.21) and (10.1) to (10.4) become the
preferred means of analysis. |

We have computed the characteristic distribution under local

load sharing and the three load sharing assumptions of cases (1)
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to (3) and the results are plotted in Figure 8. Since the load
sharing rules are not conservative, in order to keep the share of
the load that is not assigned about the same for each of the
three rules, the constant ¢ was chosen to be 1, .90, 1.05,
respectively, in the three cases. We used p = 10. As can be
seen, as the load sharing becomes more diffuse, the characteris-
tic distribution is lowered and the median correspondingly

increases.

11. The effect of initial failures. Suppose that at time t = 0
there are distributed randomly throughout the bundle N initial
failures, where N has a Poisson distribution with mean &n, so
that & measures the mean fraction of initial failures. Such
initial failures might represent defects scattered throughout the
system, or molecule ends where no load can be carried [Bauer
(1982), Smith (1980)]. As before, all initial failures generate
cracks that grow independently to an explosion time Y. Thus,
given that N = i, the probability that no initial failure has

caused system failure by time 2z is

[P(Y > 2z)]T = [1 - F(z)1%. (11.1)

We multiply this by the probability that N = i and sum to
obtain the unconditional probability that no initial failure has

caused system failure by time z:



B((1 - F(z))M] = 5,2, &—80° 1 - F(2)t (11.2)

il
M

exp{-ndF(z)}.

Finally, the probability that the bundle survives to time =z is
the probability that no initial failure present at time 0 has
caused system failure, and none of the microcracks initiated
after time 0 has caused system failure. Since all microcracks

are assumed to grow independently, this probability is

v
N
~
i

exp(-nsF(z) Jexp(-n(1-3) [ *F(y)dy) (11.3)

exp(-nsF(z) - n(1-3)J “F(y)dy).

The characteristic function of the system has changed to

W(z) = 1 - exp(-8F(z) - (1-8)[ “F(y)dy}. (11.4)

12. Summary and conclusions. We have set forth a model that
describes the failure process of a system having many discrete
elements that fail individually, shifting load onto nearby
neighbors and thereby increasing their failure rates. The model
is explicit and tractable. While some modern methods were used,

they are at a relatively introductory level and, the development
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of the model does not require a deep and advanced background in
probability theory. The model captures many of the essential
features of the simulation models of Dobrodumov and El'yashevich
(1973), and Termonia, Meakin and Smith (1985). The major
difference is that stress concentration factors calculated from a
spring model were used in the simulations, while explicit, but
approximate, stress concentration formulas were used by us. One
ﬁust remember, however, that the spring models themselves are
idealizations, so that what is exact in the spring model is still
an approximation of reality.

Many things are gained by having a model that is simple
enough to be amenable to analysis. First, we demonstrate the
difficulties‘of extending the results of a simulation, where the
system size is on the order of thousands, to systems of realistic
size. Secondly, we are able to develop the useful notion of a
critical crack size in a precise manner, and to study its complex
behavior as a function of material size and load. Thirdly, the
equivalence of the model that allows microcrack interaction with
the model that precludes such interaction tells us something
about how these materials behave: Initial failures occur
throughout the system, that, while they may be large in absolute
number, are small in number relative to the material size. Then,
these initial failures grow into microcracks which extend, but
the system effectively fails before the microcracks consume any
significant volume of the material.

These three qualitative conclusions would seem to hold under
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quite general conditions. Further conclusions await the assign-
ment of numbers to the model parameters, and the comparison of

model predictions with known material behavior.
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Figure 1: The chain-of-bundles model. The material or

system is partitioned into m short sections, called, bundles,
arranged in series along the axis of the tensile force. The
bundles are assumed to be statistically independent. However,
the elements within a bundle share the total load, and
therefore the failure of each element in the bundle affects

the rate of failure of the remeining elements in that same
bundle.
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Figure 2: The crack initiation-crack growth process.
The time of the Jjth initial element failure is Wj, and Yj
is the additional time that it takes for this Jjth initial
failure to grow to a crack of infinite size. The bundle
failure time is Z = min W1+Yl’ W2+Y2,.... , the earliest

of the crack initiation plus crack growth times.
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Figure 3: The size X(t) of a crack as a function of time t.

The crack is assumed to grow from size Jj to size Jj+1 at
a probabilistic rate Aj = an(¢jL), where I is the nominal
load per element, ¢j is the maximal stress concentration

factor for nonfailed elements neighboring the crack, and nj

is

the number of elements carrying this maximal stress. The break-

down rule is K{(o).
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Figure 4: The cumulative distribution function of failure

time in the simple model. The right ordinate is labeled
W[k](t), the left ordinate
is log log 1/[1 - W[k](t)], and the abcissa is 1log t.

with the probabilities of failure

These coordinates are such that a Weibull distribution plots

as a straight line.
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Figure 5: The approximation to the cumulative distribution
of failure time that is associated with the concept of
critical crack size. The upper curve is the approximation.
Tt is a series of straight line segments, each segment

corresponding to a different critical crack size.
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Figure 6: The cumulative distribution function of failure time
in the Coleman model under local load sharing. The coordinates
are the same as those in Figure 4. The Coleman model has
smaller cracks coalescing to form larger ones, while the

simple model assumes that all cracks grow independently.



Stress
N Concentration
Factor

O 1 2 3 456 7 8 9 10 j=Size of Microcrack

O | 23 4 56 7 8 9 10 j= Size of Microcrack

Figure 7: The stress concentration factors and crack growth
rates under a variety of load sharine assumptions. Here, LLS
denotes local load sharing, (1) is the load sharing under
a linear crack in a planar network, (2) is the load sharing
under a symmetric planar crack, and (3) is a diffuse load

sharing rule.
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Figure 8: The distribution function of failure time under
a variety of load sharing rules. The notation is the same as

that in Figure 7.




log t

1
log I(t) 1log log m

-0.897

-1.873

-3.019

-6.195

-8.341

-10.93

-14.01

-17.64

-21.88

-26.81

-32.52

-39.08

TABLE 1

-1.026

-2.071

-3.205

-4.584

-6.330

-8.456

-11.026

-14.093

-17.709

-21.939

-26.846

-32.485

-38.87

log log I_:—;TgT?;)
-1.025
-2.071
-3.204
-4.584
-6.336
~-8.466
-11.04
-14.10
-17.72
-21.96
-26.87
-32.54

-39.03



TABLE 2

log t log I(t) log log T—:;L-ﬁ—z-t-)- log log 1[9]
9 1 -W (t)

p =5

-2 -2.73 -2.84 -2.86

-4 ~-8.60 -8.45 -8.61

-6 -20.44 -19.10 -19.57

-8 -42.22 -33.93 -35.37
p = 20

-5 -4.64 -5.02 - -5.02

-10 -~11.83 -12.01 -12.01

-15 -23.51 -23.64 -23.64

=20 -41.05 -41.14 -41.14



