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Classical continuum mechanics often neglects the contribution of interfaces to the deformation of 

solids. This is usually reasonable for stiff (e.g. crystalline) materials, whose elastic energy of the 

bulk almost always overwhelms contributions from the surface except for very small objects that 

are hardly measurable. However, for compliant materials such as elastomers and hydrogels, solid 

surface tension can play an important role in either driving or resisting their deformation at 

relatively large length scale that is well within the continuum description. With applications 

ranging from MEMS (Micro-Electro-Mechanical System) to drug delivery, from soft robotics to 

biomimetic systems, it is of great technological significance to understand the underlying 

mechanisms of the deformation in these compliant elastomers and gels in a quantitative manner. 

It is for this reason, we attempt to develop theoretical and numerical models to capture the coupled 

effect of surface tension and elasticity in deformation of compliant solids. 

In this dissertation, I present our theoretical and experimental understanding of the effect of surface 

tension as it applies to a variety of phenomena involving deformation of compliant solids. Chapter 

1 constructs a deformation map in which shape change of an elastic solid is captured by two 

dimensionless material parameters with a simple scaling argument. To enable accurate predictions, 

a finite element modelling technique, which incorporates surface tension effect, is used to quantify 

the shape change of a free standing elastic solid circular cylinder driven by both gravity and surface 

tension. 



 

Chapter 2 and 3 outline two independent approaches of measuring surface tension of a solid by 

monitoring its deformation. Chapter 2 describes a method that is applicable to materials with a low 

moduli (less than 100 kPa). We mould gelatine against patterned master surfaces. The sharp 

features on gel surface are rounded compared to the master and can be significantly flattened upon 

demoulding. We model this phenomenon using finite element technique as an elastic deformation 

driven by surface stress, and thus estimate the values of the solid-air surface tension of these gels. 

It is however limited when apply this method to stiffer materials, for the bulk elasticity in these 

materials often dominates the deformation. An alternative technique of surface tension 

measurement described in Chapter 3 is specifically designed for not-so-compliant materials with 

moduli larger than 100 kPa. A thin solid film is deflected with a rigid indenter and its deflection 

can be modelled using a version of nonlinear von Karman plate theory incorporating surface 

tension. We apply this method to polydimethylsiloxane (PDMS) and obtained a value of its surface 

tension consistent with that reported in the literature. 

Chapter 4，5 and 6 study the mechanics of contact and adhesion between solids, in which classical 

theories are extended to include surface tension of the solid surfaces outside the contact region. 

Chapter 4 models the adhesive contact between an elastic half-space and a rigid sphere in the 

absence of external load. We present a finite element solution of such a problem, which shows the 

transition between classical Johnson-Kendall-Roberts (JKR) deformation and surface-tension-

dominant deformation. Chapter 5 extends the problem to include non-zero external load as well as 

non-adhesive contact. Besides the contact configuration of a rigid sphere and elastic half space, 

we also simulate contact between an elastic sphere and rigid plates. Both frictionless and no slip 

contacts are modelled and the results are compared to provide some insights on the effect of 

interface conditions. We also assess the validity of Hui et al.’s (2015) small-strain theory on 



 

contact of soft solids, which includes surface tension effect, in large deformation regime. Chapter 

6 focuses on modelling the surface displacement of the elastic substrate when being indented by a 

rigid sphere. Using the same FEM model from the previous two chapters, we compare the 

modelled surface profile of the substrate to an experiment performed by Jensen et al. (2015). 

Chapter 7 lists some suggestions for future work.
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CHAPTER 1 

GRAVITY AND SURFACE TENSION EFFECTS ON SHAPE 

CHANGE OF SOFT MATERIALS* 

 Abstract 

Surface tension and gravity, whose influence on deformation of conventional engineering 

materials is negligible, become important for soft materials that are typically used in micro-

fabrication of devices such as micro-fluidic channels. Although for soft materials the shape change 

due to these forces can be large, it is often neglected in the design processes. To capture conditions 

under which the influence of these forces is important, we propose a deformation map in which 

shape change is captured by two dimensionless material parameters. Our idea is demonstrated by 

simulating the large deformation of a short circular cylinder made of a neo-Hookean material in 

frictionless contact with a rigid substrate. These simulations are carried out using a finite element 

model which accounts for surface tension and gravity. Our model integrates the two different 

approaches typically used to determine the shape change of solids and liquid drops in contact with 

a substrate. 
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 1.1 Introduction 

Soft materials such as elastomers and hydrogels can support very large deformation and play an 

increasingly important role in engineering applications. Polydimethylsiloxane (PDMS), for 

example, is often used for stamps in micro- and nano-printing for its low surface energy, 

transparency and elasticity 1. It can also be used as a mold to transfer or replicate surface patterns 

from hard substrates. Such pattern transfer is important for many applications such as microfluidic 

devices 2 and bio-inspired adhesives 3. A different class of soft materials are hydrogels, which are 

essentially polymer networks swollen in water. The biocompatibility of many hydrogels and their 

ability to respond to environmental stimuli make them attractive candidates for many biological 

and engineering applications such as bio-separation, drug delivery and tissue scaffolding 4.  

The Young’s modulus of most elastomers is on the order of megapascals. For hydrogels, this 

number ranges from hundreds to thousands of pascals. Most notably, recent development in 

synthetic hydrogels has led to the creation of a highly stretchable DNA hydrogel (‘metagel’) with 

a modulus on the order of only a few pascals 5. Traditionally, engineering analysis of the 

deformation of solids neglects the influence of surface tension and gravity a. In his article on 

surface tension, Gibbs 6 in 1876 stated that ‘the rigidity of solids is in general so great, that any 

tendency of the surfaces of discontinuity to variation in area or form may be neglected in 

comparison with the forces which are produced in the interior of solids by any sensible strains, so 

                                                 

a Gravity loading is important for very large structures such as buildings and dams.   
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that it is not necessary to take account of the surface of discontinuity in determining the state of 

strain of solid masses’. However, for very soft materials, surface tension can be the dominant 

driving force of shape change. Fig. 1.1a shows the image of a DNA meta-hydrogel in water after 

being released from its cylindrical mold. Since the gel consists mostly of water, the loading due to 

gravity and surface tension is relatively small when the gel is submerged in water and therefore it 

retains its (cylindrical) shape. However, when water is drained from the container, it immediately 

deforms to a pancake shape by the dual action of gravity and surface tension - its original shape is 

unrecognizable (Fig. 1.1b). Remarkably, because of its elasticity, it recovers to its original shape 

in Fig. 1.1c-1.1f when water is reintroduced. This “memory effect” is due to elasticity and not to 

changes in microstructure. A less dramatic example of surface induced shape change can be found 

in micro-fabrication of PDMS stamps. The corners of PDMS stamps release from silicon molds 

are never as sharp as the molds, suggesting that surface tension has caused the rounding of these 

corners 1. Recently, Jagota et al. 7 have shown that a gel-replica of a rippled PDMS master has 

much reduced amplitude (about 60% reduction). The influence of liquid surface tension on the 

deformation of solids has been studied extensively in recent years 8. An important example is the 

deformation of a substrate due to forces at the triple line of a drop on a substrate 9, where the 

additional role of solid-fluid surface tension has recently been established 10. Clearly, the role of 

surface tension and gravity on the shape of structures will become more significant as the modulus 

decreases 11 12. 

Perhaps the most familiar phenomenon that demonstrates surface tension in liquids is the shape of 

a pendant drop 13, which the theory of capillary allows us to compute in terms of two forces: gravity 
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and surface tension. As a solid becomes increasingly compliant, a natural question arises: how do 

gravity and surface tension control the shape of soft materials? That is the subject of this chapter.  

 

Figure 1.1 Shape Change of a DNA Meta-Hydrogel Cylinder. (a), Side- and top-views of a 

cylindrical shape hydrogel placed in a glass container submerged in water; (b), side- and top-views 

of the cylindrical shape hydrogel deformation after water has been extracted within seconds; (c) – 

(f), time sequence of images of the hydrogel in (b), as water is reintroduced to the glass container 

at t=0, the hydrogel recovers to its original cylindrical shape in less than 20 seconds. The 

characteristic time for swelling of the gel sample is on the order of hours; hence the shape recovery 

is due to elasticity of the hydrogel network. 

1cm 

DNA Metagel 
DNA Metagel 
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1.2 Deformation Map 

Because a liquid has no natural configuration, the shape of a liquid drop in contact with a solid 

substrate is determined by its volume and the energies of the three interfaces, liquid-vapor, solid-

liquid, and solid-vapor. The equilibrium shape is the one that minimizes free energy, which has 

contributions only from surface energy terms. For a solid, however compliant, one must 

additionally specify a reference unstressed configuration for the body as well as the elastic 

properties of the solid. In this chapter, we assume that our soft solid is incompressible, isotropic 

and hyperelastic. The assumption of hyperelasticity implies the existence of a strain energy density 

function W and allows for arbitrary large deformation. The strain energy density W of an isotropic 

incompressible material has the form 14: 

 1 2,W I I                                                                                                                         (1.1)  

where  is a dimensionless function of its dimensionless arguments I1 and I2, which are scalar 

invariants of the deformation gradient tensor, and µ is the small strain shear modulus. Specifically,  

3
2 2 2 2 2 2 2

1 2 1 2 1 3 2 3

1

,         i

i

I I      


             (1.2)  

where i ‘s are the principal stretch ratios. The simplest example is an ideal rubber or a neo-

Hookean solid, where 

 1 2 1( , ) 3 / 2I I I                                                                                                                    (1.3) 

In the following, for simplicity, we shall assume that the dimension of our soft material is 

characterized by d. For example, the solid can be a sphere of radius d, or a cube with sides d or a 
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long slab with height d etc. Let γ denote the surface tension of the soft solid and ρ denote its mass 

density. Imagine that the solid is formed by pouring a liquid into a mold followed by its gelation 

or cross-linking into a solid. The reference configuration of the soft material is determined by the 

geometry of the solid in the mold. For the sake of argument, let us consider a cube with sides d. In 

applications, it is important to determine its shape after release from the mold. If d is very small, 

the deformation is expected to be predominantly driven by the surface tension, since the average 

strain of the cube due to surface tension is on the order of  

d





                                                                                                                                         (1.4) 

On the other hand, if the cube is sufficiently large, then gravity will dominate, in which case the 

average strain will be on the order of  

gd



                                                                                                                                        (1.5) 

where g is the acceleration of gravity.  

The dominant force(s) that drive(s) the deformation can be determined by comparing the 

magnitude of the two dimensionless strain parameters α and β to each other and to unity. The 

influence of gravity and surface tension is about the same when the cube has sides of the 

characteristic length scale dc determined by the condition 

c

c

gd

d

 

 
                                                                                                                                 (1.6)  
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Equation (1.6) can expressed in terms of the Bond or Eötvös number 2 /ob gd  , 

 
2

1c
o c

gd
b d




                                                                                                              (1.7) 

That is, gravity dominates deformation for large Bond number and surface tension drives 

deformation for small Bond number.     

Equation (1.7) shows that dc is independent of modulus. For materials such as hydrogels with 

surface energy and density similar to those of water, the characteristic length scale dc is on the 

order of 3 mm. In this regime, a rough estimate of the magnitude of average strain in a meta-gel 

cube, using µ = 6 Pa, shows that γ/µdc = 4, which corresponds to an average strain of 400%. On 

the other hand, if the same cube was made of PDMS, the average strain will be smaller by a factor 

of 106 since the shear modulus of PDMS is about 1 MPa and its surface tension is about 20 mJ/m2. 

The fact that deformation depends on two dimensionless ‘average strain’ parameters α and β 

suggests the use of a 2D deformation map (Fig. 1.2) in the space spanned by these variables, which 

shows how shape changes depend on them. Specifically, we introduce a strain space with 

coordinates (α, β). Each point in this space corresponds to a shape of a given (initially stress-free) 

elastic body deformed by a combination of gravity and surface tension. The origin (0, 0) 

corresponds to the initial shape. It is convenient in this strain space to use a polar system of 

coordinates (R, θ) related to the strain parameters by  

/ sin

/ cos

d R

gd R

   

   

 

 
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where 

   

2

2 22 2

1
tan  

 

1
/

ogd b

R d gd






   



 




    


                                                                  (1.8) 

Circular arcs in the deformation map correspond to changing Bond Number bo with constant elastic 

modulus, whereas the elastic modulus decreases with increasing distance along a radial line. Thus, 

R is a measure of strains due to surface tension and gravity; a point at a distance far away from the 

origin corresponds to very large shape change.  

 

Figure 1.2 The Deformation Map. We describe five regions according to the relative importance 

of the roles of elasticity, surface tension and gravity in defining the shape of a soft material: 1. 

Small Strain Regime (E); 2. Gravity Dominant Regime (G); 3, Surface Tension Dominant Regime 

(S); 4. Gravity and Surface Tension Dual Action Regime (G/S); 5. Gravity, Surface Tension and 
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Elasticity Triple Action Regime (G/S/E). Analysis has been carried out for each regime along the 

red paths. 

Dashed and dotted lines in Fig. 1.2 divide the deformation map into five regimes. The grey regime 

(E) occupies the interior of a small quartered circle of radius R0 << 1
 
centered at the origin, where 

R0 
is some value small enough compared to unity for strain to be regarded as negligible. In this 

region, the deformation due to gravity and surface tension is negligibly small. This is the typical 

situation for structures made of stiff materials such as ceramics, metals and inorganic glasses for 

any value of d greater than a few atomic spacing. The other extreme of R → ∞ is clearly impossible, 

since no solid can support infinite deformation, so there must exist a circle of radius Rf, outside 

which the solid fails. We need only to consider points inside this circle. If we pick some suitably 

small value of θ0 << 1, the circular sector bounded by 0 ≤ θ ≤ θ0 
and R < Rf represents the green 

regime (G), where gravity is the dominant force that drives deformation. Similarly, the yellow 

regime (S) is the circular sector bounded by θm ≤ θ ≤ π/2 and R < Rf, where a value of θm suitably 

close to π/2 is chosen such that surface tension dominates. The region in between regimes E, G 

and S can further be separated into two regimes. One of them, the blue regime (G/S/E), is bounded 

by 0 < θ < π/2 and R ≤ ωRf, where ω < 1 is a positive number that characterizes the maximum 

deformation allowed by which this regime is defined. Inside this region the deformed shape is 

driven by both gravity and surface tension and shape change is resisted by the restoring forces of 

elasticity. Finally, in the orange regime (G/S), 0 < θ < π/2 and R > ωRf, the modulus is sufficiently 

small that the material behaves almost like a liquid. As a result, the final deformed shape bears 

little resemblance to the original shape. For example, a cube and a long cylindrical bar of the same 

volume can be deformed into a sphere of the same radius. It is clear that these regimes do not have 

clear-cut boundaries, for example, we can set ω = 3/4. 
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Such a deformation map would apply to freely-suspended and roughly equiaxial stress-free shapes 

(cubes, spheres etc.). Specifically, the deformation map does not account for the effect of boundary 

conditions imposed on the deformation of the elastic body. The analogous situation for liquid 

capillarity is the difference between shapes of a pendant drop and a drop of the same liquid in 

contact with a solid surface. As expected, here too, shape change will be affected by the contact 

condition, which is determined by friction, adhesion and the affinity (or lack thereof) of the 

surfaces in contact. This will be discussed in more detail below.   

 

1.3 Example of a Deformation Map 

As a concrete example, in the following we will determine the shape change of an initially stress-

free circular cylinder with equal height and diameter d as shown schematically in Fig. 1.3, where 

Z and r denote the vertical and radial positions of a material point in the referential undeformed 

configuration respectively. After the cylinder is released from the mold in which it was cast, it is 

placed on a flat frictionless rigid surface and is deformed by gravity and surface tension.  

 

Figure 1.3 Referential Undeformed Configuration. We use a short circular cylinder with equal 

height and diameter in all the simulations. 

Z 

r

d 

d 
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Determining the shape change of three dimensional elastic bodies with arbitrary initial shape due 

to surface tension and gravity is a non-trivial problem. In this work we consider only axisymmetric 

deformation. Consistent with this assumption, surfaces in this study are assumed to be 

homogeneous and isotropic, so that surface stress is an isotropic tensor with magnitude equal to 

the surface tension. We avoid elastic instabilities such as buckling by restricting our attention to a 

short cylinder (see the discussion section). However, the governing equations of elasticity are still 

nonlinear due to the nonlinear kinematics caused by large deformation as well as nonlinear material 

behavior. Additional nonlinearity is also introduced by the shape changes and the contact 

condition. Specifically, the location of the contact line, which in our case is a circle, is unknown 

and dependent on boundary or contact conditions. As in most contact mechanics approaches, we 

assume frictionless contact. For hydrogels, it is also reasonable to assume the interfacial tension 

of gel (g) / air (v) interface, γgv to be the surface tension of water. Since a solid (e.g. gel) can resist 

shear, the contact angle ϕ between the solid and the substrate is determined numerically by solving 

the full set of elasticity equations and in general does not satisfy Young’s equation 15: 

cos
sv sg

gv

 





                                                                                                                            (1.9) 

where γsv and γsg are the interfacial energies between the substrate (s) / air (v) and substrate (s) / 

gel (g) respectively. There is but one exception for the examples in this work: ϕ = π/2 if γsv = γsg; 

this is because the substrate is rigid and the undeformed cylinder’s lateral surface is perpendicular 

to the substrate. In general, even though the contact angle may not be given by equation (1.9), it is 

expected that the contact angle will be more than π/2 if γsv − γsg < 0 and less than π/2 if γsv − γsg > 

0. In this chapter, we neglect adhesion – the position of the contact line is determined by the (Hertz) 
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condition- it lies where the normal interfacial traction between the cylinder and the substrate turns 

purely compressive. The role of adhesion will be discussed in the last section of this chapter. 

Although there is no difficulty using more sophisticated models to quantify material behavior, we 

use the neo-Hookean model so as to capture large deformation while retaining the simplicity of a 

single parameter (µ) to represent elasticity. A finite element method (FEM) is used to solve for the 

deformation and stresses caused by gravity and surface tension. The commercial software, 

ABAQUS® is used in all our numerical simulations. Loading due to surface tension is simulated 

via a user-defined surface element 1 16. Details of our finite element method are given in Appendix 

1.2. In the following we will present the numerical results. Approximated analytical solutions are 

possible in regimes 2, 3 and 4, and we will compare these solutions to our FEM results. 

 

1.4 Results 

Regime E: Small Strain Regime α << 1 and β << 1. In this regime, the stress-strain relation of an 

isotropic hyperelastic material in the infinitesimal strain limit reduces to isotropic linear elasticity. 

Surface tension and gravity effects can be neglected.   

Regime G: Gravity Dominant Regime α << β and α <<1. Gravity dominantly drives the 

deformations of solids in this regime, whereas surface tension only acts locally to round off sharp 

edges. Hence the deformation in this regime is controlled solely by the strain parameter β ≡ ρgd/µ.  
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We carried out our analysis along the red line in regime G of the deformation map shown in Fig. 

1.2. An approximate analytical large strain solution can be obtained by assuming all the 

components of the 1st Piola-Kirchhoff stress vanish except the one that is parallel to the direction 

of gravity (i.e. Z direction in the referential configuration shown in Fig. 1.3). A straightforward 

analysis shows that the stretch ratio in vertical direction λz ≡ λ
 
is related to Z in the reference 

configuration by 
 

 2

1
1z 


   , where ,  

gd Z
z

d





                                                                               (1.10)     

Equation (1.10) has only one positive real root of λ, whose value depends on the discriminant

3 34 (1 ) 27z    : 

     

   

 

2/3

3 33 33 3

33

1

33

0,  2

1 1 1
0,  2 1 27 27 2 1 27 27

3 2 2

1 27 2 12 (1 )
0,  cos( ) ,  where 0, 2, 4,  cos

3 3 3 2 1

z z z

z zz n m
m n

z



    

  








  

  
                 

  

    
       

  

  .                                                             

(1.11) 

The vertical displacement δ of the top free surface normalized by the initial height of cylinder d, 

can be obtained using  

 
1

0
/ 1 ,d z dz                                                             (1.12) 
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Another quantity of interest is the minimum stretch ratio λmin (λmin < 1 indicates that material 

element is compressed), which occurs at the bottom surface, i.e. z = 0. Since the approximated 

analytical solution assumes the deformation of a point being independent of its lateral position, we 

compare the results from equation (1.11) and (1.12) with numerical results by taking the average 

of top surface (bottom surface) vertical displacements (stretch ratios) from the FEM simulation. 

Fig. 1.4a plots the (average) vertical displacement at the top surface against the strain parameter 

β. Fig. 1.4b shows the variation in λmin with β. The analytical solution is found to be in good 

agreement with FEM result. The deformed shape is compared to the initial shape in Fig. 1.4c and 

1.4d for β = 80 and β = 20. Due to symmetry, only half of the cylinder is shown with contours 

representing surfaces of constant vertical displacement U2.  

The DNA hydrogel sample in Fig. 1.1 lies approximately in this regime. A rough estimate of the 

magnitude of average strains in the gel sample, using µ = 5 kPa, gives α ~ 2 and β ~ 15. Fig. 1.1 

shows that gravity force compressed the sample to less than half of its initial height. It agrees 

qualitatively with our numerical results.  
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Figure 1.4 Results for Gravity Dominant Regime Using a Neo-Hookean Model. (a), (average) 

vertical displacement at the top surface δ/d against β; (b), minimum stretch ratio λmin (average 

vertical stretch ratio at the bottom surface) against β; (c), initial and deformed shapes at β = 80; 

(d), initial and deformed shapes at β = 20. Contours represent surfaces of constant vertical 

displacement U2. 
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Regime S: Surface Tension Dominant Regime α >> β and β <<1. The average strain due to 

gravity is small for solids in this regime so we can characterize the deformation based solely on 

the strain parameter α ≡ γ/µd. The effect of surface tension becomes increasingly prominent as 

one moves along the red line in the direction of increasing   on the deformation map (regime S) 

in Fig. 1.2. When α >> 1 (i.e. structures of very small size or materials with negligible modulus) 

is reached, surface tension deforms solids into spherical caps, regardless of their initial shape.  

In the following, we characterize the deformed shapes using the deformed height h and the contact 

base radius rc as defined in Fig. 1.5a, and all length scales are normalized by the initial height d of 

the cylinder. First, we consider the special case where the contact angle ϕ = π/2. Results from FEM 

simulations for increasing values of α are plotted in Fig. 1.5b for this case. As expected, the 

deformed height h and the contact base radius rc converge to the same value as α increases, 

implying that the deformed shape is a hemisphere. Fig. 1.5c and 1.5d compare the deformed shapes 

with the initial shape for α = 1 and α = 100 respectively with prescribed contact angle ϕ = π/2. For 

α = 1 (Fig. 1.5c), surface tension effect is confined to the corner (i.e. the top edge of the cylinder), 

while the rest of the original shape is mostly unchanged due to resistance by elasticity. In contrast, 

for α = 100 (Fig. 1.5d), surface tension dominates elasticity and the deformed shape is 

approximately a hemisphere.  

To further validate our FEM results, we note that an analytical solution can be obtained for the 

special case of α >> 1. In this regime, the final deformed shape is a spherical cap and is 

approximately independent of the initial shape. Since the material is incompressible, the 

dimensions of the spherical cap are completely determined by the initial volume of the solid V0 
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and the equilibrium contact angle ϕ. Specifically, the height of the cap h and the radius of its base 

rc is obtained by solving equations (1.13) and (1.14), 

2 2

2 2
cos c

c

r h

r h






                                                                                                                          (1.13)

2 2

0 (3 )
6

cV h r h


                                                                                                                 (1.14) 

Fig. 1.5b, shows that the spherical cap solution given by (1.13) and (1.14) is a good approximation 

when α is greater than 10. Hence in Fig. 1.5e, we compare the FEM results for α = 100 to the 

analytical results for the full range of contact angles. In this figure, the volume of the cylinder V0 

= πd3/4 is fixed. The results show good agreement between the approximated theory and FEM 

simulations.   
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Figure 1.5 Results for Surface Tension Dominant Regime. (a), deformed configuration; (b), 

plots of normalized contact radius rc and deformed height h against strain parameter α for contact 

angle ϕ = π/2; (c), comparison of deformed shape with initial shape for α = 1, ϕ = π/2; (d), 

comparison of deformed shape with initial shape for α = 100, ϕ = π/2; (e), plots of rc and h against 

contact angle ϕ when α >> 1, FEM results are obtained at α = 100.  
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Regime G/S: Gravity and Surface Tension Dual Action Regime α >> 1 and β >> 1. Solids in this 

regime deforms like a liquid with no apparent resistance to shape change because gravity, surface 

tension or both overwhelm the elastic restoring forces. In this regime, the deformed shape is 

dependent only on the initial volume V0 (which remains constant due to incompressibility), 

boundary conditions (we assume frictionless contact and prescribe the contact angle ϕ) and the 

Bond number bo; it is approximately independent of the initial shape. Hence the deformed shape 

is governed by the standard theory of liquid capillarity but, as demonstrated in Fig. 1.1, the solid 

can still retain its ability to recover its original shape if gravity and surface tension are removed. 

For an axisymmetric liquid drop in a gravity field 17, the final deformed shape can be determined 

by solving a boundary value problem involving three ordinary differential equations. Since the 

theory is well known, we include the relevant details in Appendix 1.3; here we present the results 

of these calculations. 

 The deformed coordinates in these calculations are defined in Fig. 1.6a. It is convenient to 

normalize all length scales by r0, the radius of a sphere with the same volume V0 as the undeformed 

solid. We start by prescribing the contact angle to be π/2 and vary the Bond number so that these 

deformations lie on the circular arc in regime 4 of the deformation map in Fig. 1.2. When Bond 

number is small (bo = 0.1), surface tension outweighs gravity, the deformed shape can be 

approximated by a hemisphere, i.e. rc ≈ h as shown in Fig. 1.6b. As the gravity becomes more 

significant with increasing bo, the contact radius and deformed height diverge from each other, 

indicating that the solid is crushed into the shape of a pancake (similar to the situation in Fig. 1.1).  
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For a given contact angle, the contact radius and deformed height as well as the deformed shape 

can be completely determined for a given Bond number as illustrated in Fig. 1.6c. Results for 

different Bond numbers, 0.1, 1 and 10 are shown in three plots. Each plot shows the deformed 

shapes of contact angle ϕ prescribed to be 0.1 π, 0.5 π and π.  

 

Figure 1.6 Results for Gravity and Surface Tension Dual Action Regime. All lengths are 

normalized by r0: (a), deformed configuration; (b), plots of contact radius rc and deformed height 

h against Bond number with contact angle of π/2; (c), deformed shapes plotted for contact angle 

of π/10, π/2 and π, at given Bond numbers of 0.1, 1 and 10. 

Regime G/S/E: Gravity, Surface Tension and Elasticity Triple Action Regime. Finally in the last 

regime, where elastic modulus of the solid is no longer negligible and the gravity and surface 

tension effects are comparable to each other, we carry out two series of finite element simulations: 
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h 
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one is along the radial line labeled θ = 45o (or bo = 1, where surface tension and gravity effects are 

comparable) and the other is along the arc labeled R = 1 in the deformation map (where the average 

strain is 100%). All simulations are based on a contact angle of ϕ = π/2 and we normalize all 

lengths by the initial height of the cylinder d. 

For the first series of simulations along θ = 45o, the radial distance R on the deformation map 

increases with decreasing shear modulus µ while the Bond number is fixed at 1. The contact radius 

rc and deformed height h are plotted against the average strain R in Fig. 1.7a. As expected, the 

deformed height decreases and the contact radius increases with increasing average strain R. 

Deformed shapes for the cases of R = 0.1, 1 and 10 (indicated by arrows in Fig. 1.7a) are compared 

to the initial shape in Fig. 1.7c.  

Fig. 1.7b plots results from the second series of simulations where the average strain R is fixed to 

be 1 while the Bond number changes. An increase in Bond number (i.e. a decrease in θ on the 

deformation map) indicates increasing importance of gravity compared to that of surface tension. 

Fig. 1.7b shows that the contact radius and deformed height are quite insensitive to the Bond 

number for a given average deformation R. Selected deformed shapes of the cases tan θ = 0.1, 1 

and 10 are also compared to the reference configuration in Fig. 1.7d corresponding to points 

labeled in Fig. 1.7b. Colors in these figures denote contours of constant vertical displacement U2. 
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Figure 1.7 Results for Gravity, Surface Tension and Elasticity Triple Action Regime. All 

lengths are normalized by initial height of the cylinder d: (a), plots of contact radius rc and 
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deformed height h along the radial line on the deformation map of θ = 45o; (b), plots of rc and h 

along the arc of R = 1 on the deformation map; (c), deformed shapes corresponding to points 

labeled in (a) are compared with the initial shape; (d), deformed shapes corresponding to points 

labeled in (b) are compared with the initial shape. Colors denote contours of constant vertical 

displacement U2. 

 

1.5 Conclusion and Discussion 

A deformation map is proposed to characterize the shape change of soft materials subjected to 

gravity and surface tension forces. The deformation map can be partitioned into five regimes, and 

the characteristic of each regime is described in some detail using a specific example of a short 

circular elastic cylinder placed on a flat smooth rigid substrate. A circular cylinder is chosen in 

this work but there is no difficulty simulating other geometries. It has long been known that a long 

elastic column will buckle under its own weight when its length exceeds Lmax = (7.84 w/D)1/3, 

where w is weight per unit length and D is the flexural rigidity of the column 18. Hence we study 

the deformation of a short cylinder to avoid non-unique solutions caused by buckling. 

Experimental data of the cylindrical DNA hydrogel sample in Fig. 1.1 is also compared 

qualitatively to our numerical results in the gravity dominant regime.     

 In our analysis, we assume the soft material is incompressible, isotropic and neo-Hookean. This 

is the simplest material model that captures many important features of elastic materials composed 

of polymer networks. It is well known that the neo-Hookean model underestimates the amount of 

strain hardening, especially in the large deformation regime when chains between cross-links are 

fully extended. Hence our solution tends to overestimate the amount of deformation. The 

calculations and simulations in this work can be readily extended to other strain-energy functions 
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that model these strain-hardening effects, as well as anisotropy and compressibility. Since these 

models are material-specific, we leave these applications to future works.  

Accurate representation of contact requires quantitative description of surface interactions. 

Modeling realistic surface interaction is still an unresolved problem. There is no universal accepted 

model which accounts for both friction and adhesion, not to mention hydrophobic and hydrophilic 

interactions. In all our simulations, frictionless boundary condition is enforced – this is an 

assumption that is consistent with most contact mechanics approach. Undoubtedly, there are 

situations where the frictionless boundary condition is inappropriate. However, there is no 

difficulty enforcing the opposite limit where no slip is allowed in our simulations.   

A final word regarding the use of frictionless boundary condition: on a frictionless interface the 

contact line is free to move laterally, so that the quantities γsv and γsg in Young’s equation (1.9) 

should be interpreted as interfacial energies and not as interfacial tensions. However, if no slip is 

allowed, these quantities should be regarded as interfacial tensions. This distinction is important 

since the surface energy of a solid can be different from its surface tension.  

We emphasize that there are two distinct approaches to the contact mechanics of liquid drops and 

elastic bodies. In the literature, the equilibrium shape of a liquid drop on a frictionless rigid 

substrate is determined by Young’s equation and the Laplace capillary equation. On the other hand, 

the shape of an elastic solid in contact with a rigid substrate is determined by solving the full 

elasticity equations subjected to displacement and traction continuity in the contact region without 

regard to interfacial energies and surface tension. The location of the contact line is determined by 

enforcing the Hertz condition for non-adhesive contact (that is, only compression is allowed inside 
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the contact region and it is traction free outside). Adhesion can be accounted for using cohesive 

zone models which specifies how interfacial traction varies with the interfacial displacements 19. 

These two approaches are distinct and cannot be reconciled without additional physics since they 

are based on different sets of equations. Our formulation unifies these two approaches since the 

surface of our elastic solid is endowed with surface tension elements so that our results will 

approach the capillary limit when the shear modulus of our elastic solid approaches zero. In our 

simulations, we assume non-adhesive contact to reduce the number of material parameters. 

Adhesion is clearly important when structural dimensions or moduli are small, that is, in the 

surface tension dominated regime. The effect of adhesion can be modelled by incorporating 

surface interaction potentials and will be addressed in future works.   
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Appendix 1.1 Analytical Calculations in Gravity Regime 

Consider a circular disk of radius a, and height d, as shown in Fig. A.1.1.1. For isotropic and 

incompressible material,  
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Tp  
  


P F

F
                                                                                                             (A.1.1.1) 

where p is the hydrostatic pressure that enforces the incompressibility. Assuming all the 

components of 1st Piola Kirchhoff stresses Pij are zero except the normal component P33, where by 

equilibrium, 
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                                                                                                        (A.1.1.2) 

This assumption is most valid when a>>d. In the case of axisymmetric model, the principal 

stretches are normal stretch ratio 3  , and lateral stretch ratios
1 2 1/    , due to 

incompressibility. Thus, 
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 .                                                                    (A.1.1.3) 

Substituting the strain energy function of a neo-Hookean material into equation (A.1.1.3), a 

relationship between the normal stretch ratio λ and vertical position Z is obtained, 

2 2 2

1 1 2 3( 3) ( 3)
2 2

I
 

                                                                                        (A.1.1.4) 
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 


                                                                            (A.1.1.5) 
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Figure A.1.1.1. Referential undeformed configuration of a soft solid placed on a rigid substrate. 

 

We are interested in finding λ (β, z). The right hand side of equation (A.1.1.5) is monotonically 

increasing in (0, ∞). Hence there is only one real root to the equation, which is presented in the 

chapter. Fig. A.1.1.2 shows the variation of stretch ratio with normalized vertical coordinate z in 

the case of β = 80. The finite element (FE) results are shown as stars, using 2a = d. One thing to 

note is that it is easier to plot z with given value of λ in the domain of [0,1]z .  

 

Figure A.1.1.2. Plot of normal stretch ratio λ against normalized vertical coordinate z. 

 

Another interested parameter is the vertical displacement δ of the top surface, which is normalized 

by the initial height d, 
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 
1

0
/ 1 ,d z dz                                                                                                               (A.1.1.6) 

From equation (A.1.1.5), at given constant value of β 
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where λmin is the minimum stretch ratio occurred at the bottom surface of z = 0.  

 

Appendix 1.2 Finite Element Simulation of Surface Tension Effect 

In ABAQUS®/Standard, loads are applied in small increments, the incremental displacements are 

found by iterations. Specifically, ABAQUS®/Standard used the Newton-Raphson (N-R) method: 

for any iteration n, the equation to be solved is  

 1 0n n n R u c                                                                                                                  (A.1.2.1) 

where n
R  is the residual force as a function of n

u , the displacement approximation from the 

previous iteration (or the initial guess of displacement if n = 1), and 1n
c , the difference between

n
u  and the exact displacement solution. Linearization of equation (A.1.2.1) using Taylor 

expansion and neglecting higher order terms for small magnitude of 1n
c gives 
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  1 0n n n R u K c                                                                                                              (A.1.2.2) 

where    n n n



R
K u u

u
 is the Jacobian matrix to be assembled and solved in the nth iteration. 

Then for the (n+1)th iteration, the approximated displacement is 1 1n n n  u u c . Incompressibility 

is handled by using a hybrid u-p element formulation.  

In our model, 4-node bilinear axisymmetric quadrilateral hybrid element CAX4H is used for the 

circular cylindrical reference configuration. A simple convergence test (Fig. A.1.2.1a) is carried 

out in the case without applying surface tension effect to select the desirable mesh-size. Fig. 

A.1.2.1b shows the mesh we used in all simulations.  

 

Figure A.1.2.1 Mesh selection of the FE model: (a), convergence test by plotting the normal 

displacements of nodes on the top edge at different mesh sizes; (b), reference configuration drawn 

with the selected mesh. 

 

The crosses on the external edges in Fig. A.1.2.1b indicate 2-node linear axisymmetric surface 

elements that are used to simulate surface tension, which is applied incrementally, through a user-

(a) Convergence test: vertical displacement 

of the top surface. 

(b) Mesh used for all cases: mesh 

size=0.02. 
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subroutine in ABAQUS®. Fig. A.1.2.2 schematically shows the assignment of surface elements. 

Two 4-node quadrilateral bulk elements a and b are on the external edge of the model with nodes 

1, 2 and 3 lying on the outer surface, which is discretized naturally to form two 2-node 

axisymmetric surface elements 1-2 and 2-3. 

 

Figure A.1.2.2 A schematic diagram of two 2-node surface elements. 

 

As mentioned above, ABAQUS® solves the overall system of equation (A.1.2.2) iteratively. 

During iterations we need to define the surface element’s contribution to the residual R via nodal 

forces and the element’s contribution to the Jacobian matrix K. Considering a single surface 

element 1-2, we attach this element to the bulk element via the shared nodes 1 and 2, hence if 

physically the bulk element experiences a surface tension γ, the surface element is under a force 

of same magnitude but opposite direction, i.e. -γ. Hence the potential energy of this element due 

to the constant surface tension increment is 

     
2 2

1 2 2 1 2 1,e e eA A r r r r z z                                                                       (A.1.2.3) 

where Ae is the area of the ring represented by this axisymmetric line element. For the calculations 

presented in this work, we assume that γ is a constant that does not change with deformation. 
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Consistent with the convention in ABAQUS®, we define nodal force and deformed position 

vectors of the surface element 1-2 as 

   1 1 2 2 1 1 2 2, , , ;  = , , ,
T T

r z r zf f f f r z r zf x                                                                              (A.1.2.4) 

Taking the differentiation of potential energy with respect to nodal positions to get work-

equivalent nodal forces on the bulk element  

( ) ,  where 1, 2,3, 4
e e

i

i i

f i
x x

 
    

 
                                                                           (A.1.2.5) 

The element’s contribution to the Jacobian matrix K supplied for iterative solution is hence, 

    , 1, 2,3,4e i i
ij

j j

R f
K i j

u x

 
  
 

                                                                                        (A.1.2.6) 

This formulation can be readily extended for other nonlinear finite element codes. 

Boundary conditions include the axisymmetry on the left edge (the axis of symmetry) and 

frictionless contact between the cylinder and rigid surface. 

In the regime where surface tension dominates and elasticity is negligibly small, we carried out 

simulations for different contact angles. In general, Young’s equation  

cos
sv sg

gv

 





                                                                                                                      (A.1.2.7) 
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is not satisfied at the contact line. However when elasticity is neglected, that is when the solid 

behaves like a liquid, equation (A.1.2.7) needs to be enforced. We treat sv sg      as a 

parameter and vary it in our simulation.  is implemented differently for hydrophobic (contact 

angle ϕ > π/2) and hydrophilic cases (ϕ < π/2).  

For hydrophobic cases (Fig. A.1.2.3a),  < 0.   is implemented by assigning smaller surface 

tension to surface elements in contact with the rigid surface. Since Young’s equation only balances 

the forces in radial direction at the point of gel, solid and air triple contact, in order to ensure that 

forces are also balanced in the vertical direction, the normal component of nodal force contribution, 

fz, applied through the surface element is hence made zero.  

For hydrophilic cases (Fig. A.1.2.3b),  > 0. Since the value of surface tension assigned to our 

surface elements contributes to the overall Jacobian, assigning a negative surface tension to the 

surface elements in contact with the rigid surface may results in a negative Jacobian. We notice 

that the point of gel, solid and air triple contact always lies on the same node (i.e. at the bottom 

right corner), throughout all loading steps.   is hence implemented by applying a point force on 

the bottom right corner node in the radial direction, so that the Young’s equation is satisfied at that 

node when elasticity is neglected. Fig. A.1.2.3 below shows the deformations of a soft solid resting 

on different surfaces with negligible gravity and elasticity.  
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Figure A.1.2.3 Deformation of a soft solid in surface tension dominant regime on (a), a 

hydrophobic surface; (b), a hydrophilic surface. Colors are contours of vertical displacement U2. 

 

Appendix 1.3 Calculations in Gravity and Surface Tension Dual Action 

Regime 

The classical Laplace equation of capillarity relates the pressure gradient across a surface to its 

curvature, 

1 2

1 1
oP p gZ

R R
 
 

     
 

                                                                                             (A.1.3.1) 

where R1 and R2 are the principal radii of curvature, γ the surface tension, po the pressure difference 

across the interface at the apex O, ρ the density, g the gravitational acceleration and Z the vertical 

distance of any point on the surface from the apex. Fig. A.1.3.1 shows the current configuration of 

a soft solid in this regime placing on a rigid substrate, with s is the arc length along the surface of 

an axisymmetric cut of the body and θ the azimuthal tangent angle of the surface.   

Referential  

Configuration 

Referential  

Configuration 

Deformed  

Configuration 

Deformed  

Configuration 

(a) Hydrophobic: ϕ = 3π/4   (b) Hydrophilic: ϕ = π/4     
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Figure A.1.3.1 Current deformed configuration of a soft solid under gravity and surface tension. 

 

Hence, equation (A.1.3.1) can be rewritten as, 

sin op gZd

ds r

 




                                                                                                           (A.1.3.2) 

Also, cos , sin
dr dZ

ds ds
                                                                                                             (A.1.3.3) 

subject to boundary conditions  

0 00,  0 and s s Z hr                                                                                                    (A.1.3.4) 

where α is the contact angle that satisfies Young’s equation (A.1.2.7). 

Since p0 is also unknown, we need an additional constraint on volume. For incompressible solids, 

the volume is conserved, i.e. 

2

0
0

h

r dZ V                                                                                                                        (A.1.3.5) 

where V0 is the initial volume. In this work, the initial value problems of equations (A.1.3.2) and 

(A.1.3.3) are solved numerically using p0 as a shooting parameter to satisfy equation (A.1.3.4). A 

r 
O 

θ 

s 

Rigid      Substrate 
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Z 
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4th-order Runge-Kutta method is implemented. Once r and θ are found, constraint (A.1.3.5) is used 

to determine the unknown h. 
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CHAPTER 2 

FLATTENING OF A PATTERNED COMPLIANT SOLID BY 

SURFACE STRESS* 

Abstract 

We measured the shape change of periodic ridge surface profiles in gelatin organogels resulting 

from deformation driven by their solid–vapor surface stress. A gelatin organogel was molded onto 

poly-dimethylsiloxane (PDMS) masters having ridge heights of 1.7 and 2.7 μm and several 

periodicities. Gel replicas were found to have a shape deformed significantly compared to their 

PDMS master. Systematically larger deformations in gels were measured for lower elastic moduli. 

Measuring the elastic modulus independently, we estimate a surface stress of 107 ± 7 mN m−1 for 

the organogels in solvent composed of 70 wt% glycerol and 30 wt% water. Shape changes are in 

agreement with a small strain linear elastic theory. We also measured the deformation of deeper 

ridges (with height 13 μm), and analysed the resulting large surface strains using finite element 

analysis. 
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2.1 Introduction 

Compliant amorphous solids such as elastomers and gels occupy an important place in current 

materials research. For sufficiently compliant materials, their surface stress can exert a significant 

influence on material behaviour by driving or resisting deformation. The surface stress of many 

elastomers and gels is isotropic and can be represented by a single number, σ 1–3. How the shape 

of compliant solids is influenced by the surface stress of the solid–fluid interface has been 

examined in several recent studies 4–9. Often, surface stress plays a significant role when the 

characteristic material length scale, σ/E, exceeds some characteristic geometrical feature size, 

where E is the small strain Young's modulus 1, 10. For stiff solids such as metals and ceramics this 

characteristic material length scale is generally smaller than a nanometre and so the resulting 

deformations are very small and difficult to measure 10, 11. For compliant solids such as elastomers 

and gels, however, surface stress driven deformations can be macroscopic (tens to hundreds of μm) 

and can be readily measured. Mora et al. have observed an elastic Rayleigh–Plateau instability in 

a thin filament of solid hydrogel 6. Similarly, when a thin elastomeric wire was immersed into a 

liquid a substantial elastic compression due to the solid capillary pressure was reported 8. 

Deformation of thin elastomeric films due to liquid drops placed on their surface has been shown 

to be influenced strongly by surface stress 12, 13. We have previously shown that surface stress 

causes deformation of a ripple surface pattern in a hydrogel 9. 

Here we present a study of the surface deformation of a compliant gelatine organo-gel patterned 

into a periodic ridge-channel shape. The advantage of working with organo-gels is that any drying 
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effects are substantially minimized 15. When the gel is released from the geometric constraint 

imposed by a PDMS mould consisting of periodic ridges (see Fig. 2.1a), the surface stress of the 

exposed gel–air interface causes the gel to deform. We measure the shapes of the master and the 

deformed gel, in particular, the reduction in the peak-to-valley distances (h) of the gel's surface 

features upon exposure to air. We systematically change the elastic modulus of the gels to effect a 

change in the amount of deformation caused by the surface stress. The elastic modulus of the gels 

is determined independently using beam bending and punch tests (see Appendix 2). The surface 

stress of the gels is determined by comparing the measured deformation to the prediction of models 

for surface-stress-driven elastic deformation. Our results suggest that the shape change for nearly 

flat surfaces in the case of simple geometries such as periodic ridges can be used for determination 

of the surface stress of compliant solids.   

 

Figure 2.1 (a) SEM image of a typical PDMS master periodic ridge geometry. (b) Schematic of 

the periodic ridge geometry.  

 

          

(a)                                                              (b) 

100 µm

h, Height

w , Width

λ, Period

s , Spacing
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2.2 Experimental  

Fabrication of periodic ridge samples. Polydimethylsiloxane (PDMS) surfaces structured with a 

periodic ridge geometry were used to replica-mold gelatin gels (Fig. 2.1). Three sets of ridge 

geometries, one with a height (h) of 13 μm and two others with lower heights of 1.7 and 2.7 μm, 

were used in this work. For the lower height ridge geometries the width (w) of the ridge was kept 

the same as the spacing (s) between the ridges, whereas for the high ridge geometry three different 

periods λ (λ = w + s) were fabricated. Height, h, is taken as the initial peak-to-valley distance for 

the gel sample i.e. prior to its demoulding (having previously confirmed that the gel fills the PDMS 

master without any air cavities 9). 

Table 2.1 lists the details of the periodic ridge geometry. The fabrication details for surface 

structuring of PDMS with ripple geometries are described in detail elsewhere 14. 

Table 2.1 Dimensions (with standard deviations) of periodic ridge geometry. For the case 

of lower height ridges (h ~1.7 and 2.7 µm) the width was not measured separately but was 

estimated in the model as half of the mean period. 

Ridge/channel h[µm] Period λ1 [µm] Period λ2 [µm] Period λ3 [µm] Width w [µm] 

1.68±0.03 - 39.68±0.52 49.39±0.39 λ/2 

2.66±0.05 24.82±0.49 39.77±0.37 49.54±0.29 λ/2 

13.16±0.15 34.55±1.12 49.42±0.64 64.90±0.87 10.91±0.21 

 

High temperatures and continuous stirring were employed to obtain homogenous pre-gel mixtures 

following Baumberger et al.15. Organo-gels were prepared by dissolving 7.5, 10, 12.5 and 15 wt% 
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gelatin powder (type A from porcine skin, Sigma Aldrich) in mixtures of 70 wt% glycerol–30 wt% 

deionized water, followed by continuous stirring at 85 °C for 4 hours. This was followed by an 

additional hour of heating without stirring to allow the air bubbles to escape the pre-gel mixture. 

The pre-gel mixture was poured into a Petri dish containing the structured PDMS mould placed 

with its structured side facing up. The liquid gel filled the PDMS mould and rose to a thickness of 

about 2 mm above the PDMS surface. The liquid wets the PDMS surface completely and upon 

cross-linking it takes the shape of the PDMS surface (see Appendix 2 and Ref. 9). The pre-gel 

mixture was allowed to cool and cross-link at room temperature for about 10–15 min after pouring. 

Subsequently, the mould was placed in a refrigerator at 4 °C for 16.5 hours to complete the gelation 

process. The gel was then removed and allowed to equilibrate to room temperature for 1 hour prior 

to demoulding and gel characterization. 

The gel and PDMS surface profiles were measured using an optical profilometer (Zemetrics 

ZeGage, Zygo Corp. CT USA). 

Measurement of elastic modulus. Elastic moduli of the gel samples were measured independently 

by beam-bending and a contact compliance method. In the contact compliance method, a polished 

steel cylindrical flat probe is indented on the flat surface of a block of gelatine gel (30 × 30 mm 

and 4–5 mm thick) at a constant speed of 1 μm s−1 to a pre-defined indentation depth (∼50–150 

μm) and retracted at the same speed to the starting position. The indenter radius (∼1 mm) is small 

in comparison to the lateral dimensions of the gel block. The contact was monitored using a 

microscope. The force and the indentation depth during indentation/retraction were recorded using 
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a load cell (Honeywell Ltd.) and a capacitive displacement sensor, respectively. The compliance 

of the sample was determined from the slope of the force versus indentation depth curve and the 

Young's modulus was computed following Rong et al.16, (details in the Appendix 2). Beam 

bending tests were additionally performed as an independent modulus measurement (see Appendix 

2 for a detailed description). The Young's moduli of the gels range from 14–50 kPa. We also 

studied the effect of the loading rate by conducting indentations at different rates (0.01–10 μm s−1) 

and found no significant difference in the measured Young's modulus. 

 

2.3 Results 

(a) Periodic ridge geometry h ~ 2.7 and 1.7 μm. Fig. 2.2a shows a 3D surface profile of a PDMS 

mould with a periodic ridge-channel geometry against which a gel with Young's modulus E = 32.5 

kPa was moulded. The measured surface profile of the demoulded gel sample is shown alongside. 
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Figure 2.2 (a) Measured 3D surface profile of periodic ridge geometry showing PDMS master and 

its gel replica for E = 32.5 kPa, λ ~ 25 µm and initial height h ~ 2.7 µm. The black lines over the 

surface profiles represent the position of the line scan in (b); (b) Line scans of the PDMS and gel 

surface profiles (circle symbols) and the theoretically predicted PDMS and gel profiles (continuous 

lines) using eq. (2.9) and a single fitting parameter of σ = 100.0 mN/m for the deformed shape. 

(PDMS and gel profiles have been shifted with respect to the y-axis such that their mean lies 

around zero); (c) Final gel height (hd) (symbols circles, triangles and inverted triangles represent, 

respectively, spacings λ ~ 25, 40 and 49 µm) compared to (initial) PDMS (square symbols) with 

ridge height h ~ 2.7 µm (d) h ~ 1.7 µm as a function of several elastic moduli (E) and periodic 

separations (λ). Least Square fits using eq. (2.9) (solid black lines in (c) and (d)) estimate the 

surface stress to be 100.0±9.4 mN/m and 114.2±11.5 mN/m (95% confidence) for h ~ 2.7 and 1.7 

µm respectively. 
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We observe that the gel profile is significantly rounded compared to the sharply edged periodic 

ridges of the PDMS master into which it was moulded. The deformed height (hd) and the rounding 

of the edges create a sinuous profile, which can be seen from the line scans (Fig. 2.2b) of the 

surfaces of the gel sample and the PDMS master. Using small strain theory the entire surface 

profiles (eq. (2.9) below, continuous lines, Fig. 2.2b) for the PDMS (which is the same as the 

undeformed gel for σ = 0 mN m−1) and the deformed gel (σ = 100 mN m−1) were evaluated and 

plotted alongside experimental data. For the shallow profiles, the theory based on small strain 

elasticity fits the data well. 

Fig. 2.2c and d show the measured ridge height of PDMS master (h) (square symbols) and its gel 

replica (hd) after demoulding. The maximum height (peak to valley) of the deformed sample (hd) 

is plotted against the product of periodic spacing (λ) and elastic modulus (E) of the gels (symbols: 

circles, triangles and inverted triangles represent, respectively, spacings λ ∼ 25, 40 and 49 μm). A 

systematic reduction in the gel height h with reduction in the gel modulus was observed. Least 

square fits to the experimental data using the small strain theory (eq. (2.9)) are plotted for the two 

initial heights, h ∼ 2.7 μm (Fig. 2.2c) and h ∼ 1.7 μm (Fig. 2.2d). The fits are generated using a 

single fitting parameter, the mean surface stress, of σ = 100.0 and σ = 114.2 mN m−1 for h ∼ 2.7 

and 1.7 μm, respectively. We further determined the accuracy of the fitted surface stress17 and 

found, with a confidence of 95%, that σ = 100.0 ± 9.4 mN m−1. 

(b) Analysis of deformation driven by surface stress. To analyse the shape change we assume that 

deformation is driven by the surface stress. Further, we have assumed that the boundaries are 
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traction free and the material is elastic. There is little change observed experimentally in the 

dimension parallel to the ridges, hence we use a plane strain condition. 

When the ridges are shallow, the deformation is small, and a closed form approximate solution can 

be obtained based on a scheme used by Hertz to compute the deformation of elastic spheres in 

contact 18. Specifically, instead of applying the Laplace pressure on the deformed surface, which 

is not flat, we determine the deformation caused by the Laplace pressure by imposing it on a flat 

elastic half space. This procedure is valid provided that the curvature of the deformed surface is 

small. Since periodic ridge surface profiles can be represented by a Fourier series, the undeformed 

surface profile y0 is 
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where  0

0 , nc a  are Fourier coefficients. The deformed surface profile, after peeling the gel off the 

PDMS master is given by 
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The Laplace pressure p that causes the surface flattening is equal to the product of surface stress 

and curvature which we assume to be small. Using (2.2), 
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The Laplace pressure is calculated based on the unknown final shape (eq. (2.2)), not the initial 

shape. For this reason, although the kinematics and elasticity is linear, the final result relating the 

shape change to the surface stress that drives it is nonlinear. As mentioned earlier, the vertical 

displacement u caused by the Laplace pressure (eq. (2.3)) was computed based on the elastic 

solution of a periodic normal traction acting on the surface of a flat elastic half space.19 Using 

superposition, u is found to be: 
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The final and the initial shapes of the surface are related to each other by 

0y y u                                                                                                                                           (2.5) 

 The relationship between the Fourier coefficients of y0 and y can be found using (2.1), (2.2), (2.4) 

and (2.5), which results in 
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Eq. (2.6) shows that the higher Fourier modes (larger n) are attenuated by surface stress to a greater 

extent than are modes with smaller n. The Fourier coefficients of the undeformed profiles are 
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The shape of the deformed profile can be found using (2.6), (2.7) and (2.2), resulting in 
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The peak to valley height of the deformed profile is 
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Fig. 2.3 shows the shape change of a gel replica with increasing surface stress predicted using eq. 

(2.8) (500 terms were included in the calculation). As seen already in Fig. 2.2b, compared to the 

initial sharp edges present in the periodic ridge profile, the deformed shape of the gel has 

significantly rounded edges. 
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Figure 2.3 Prediction of final shape of the gel profile based on eq. (2.8) for a low height (h ~ 2.7 

µm) periodic ridge geometry with Young’s modulus E = 33 kPa and λ ~ 25 µm. Surface stress σ 

increases from 50 -200 mN/m.  

Eq. (2.8) and (2.9) were used to fit the data shown in Fig. 2.2. 

(c) Deformation of deeper ridge geometry h ~ 13 μm. Compliant materials are often structured 

by moulding into a master made of much stiffer material and it is common for feature height to be 

about the same size as other dimensions such as width or spacing. For such cases, deformation can 

be significantly larger and its analysis requires numerical methods. Here we demonstrate that a 

finite element analysis of larger deformations can be used to model this more general situation of 

surface-stress-driven deformation. 

A straightforward dimensional analysis shows that 

, ,dh w h
f

h E



  

 
  

 
                                                                                                                      (2.10) 
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where hd is the deformed height for a ridge geometry with initial height h. In the case of shallow 

ridge, h/λ << 1, for the small-strain solution in eq. (2.9), the ratio ,dh h
f

h E



 

 
  

 
 is independent 

of h/λ. However, when h/λ is large, the Hertz approximation is no longer valid, hence eq. (2.9) is 

not applicable. For these high ridge geometries, we carried out FEM analysis with a two 

dimensional plane strain model using ABAQUS®/Standard 6.8 to simulate the surface deformation. 

Since the length of the ridges is very long in comparison with its lateral dimensions, a plane strain 

model is used. The predicted deformed surface profile was fitted to that obtained by experiment 

using surface stress as a fitting parameter. 

In all our simulations, the gel was modelled as an incompressible neo-Hookean material 20 with a 

strain energy density function 

  2 2 2

1 1 1 2 33 ,       
2

W I I


                                                                                               (2.11) 

where I1 is the first invariant of the left Cauchy–Green deformation tensor, λi's are the principal 

stretch ratios and μ = E/3 is the small strain shear modulus. 

The surface stress σ, is assumed to be a material constant independent of deformation and 

composition 3. Surface tension was modelled by augmenting the finite element model by a set of 

user-defined 2-node linear surface elements, which discretize the exposed gel surface 21. Since the 

deformed surface is a long cylinder, one of the principal curvatures is zero; let the other be denoted 
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by κ. The tractions T on the deformed solid body are related to the rate of change of tangent t to 

the surface, i.e., the surface curvature, by the Young–Laplace equation 

 
d

ds




t
T                                                                                                                                    (2.12) 

where s is the arc length of the deformed cross-section curve. Hence the net nodal force applied 

on the body due to a small patch of surface spanning two surface elements is 

  
2

2 1

1

ds   F T t t                                                                                                                (2.13) 

where t is the tangent vector of the surface elements, 1 and 2 refer to the surface elements before 

and after the node 21. 

Fig. 2.4 shows the deformed shape of a typical demoulded gel sample (E = 44 kPa, σ = 200 mN 

m−1) predicted by FEM simulation. 

 

Figure 2.4 Deformed configuration of a typical demoulded gel sample predicted by FEM 

simulation for E = 44 kPa, σ = 200 mN/m. Contours represents the vertical displacement U (µm).  
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Fig. 2.5 shows the deformed surface profile calculated by FEM for a high ridge geometry (h = 13 

μm, λ = 34.15 μm, w = 11 μm, E = 44 kPa) in the experiment with increasing surface stress. As 

expected, a larger value of surface stress causes more rounding at the edges and lower deformed 

height. 

 

Figure 2.5 Simulation results for the shape deformation of the high periodic ridge geometry (h = 

13 µm) with a Young’s modulus E = 44 kPa and λ =34.15 µm as a function of increasing surface 

stress. 

 

Fig. 2.6 shows the line scans (circle symbols) across the measured surface profile of a PDMS 

master and its gel replica (E = 35 kPa, λ ∼ 35 μm) for the case of ridge height h ∼ 13 μm. The least 

square fit results using FEM analysis are also presented alongside. The ratio of the deformed gel 

height hd to the initial height h of the PDMS master (square symbols) is plotted in Fig. 2.6b for 

three different periodic spacings λ (symbols: circles, triangles and inverted triangles represent, 

respectively, spacings of λ ∼ 35, 50 and 65 μm, see Table 2.1) and five different moduli (E). Using 

least square fits based on the FEM model a surface stress value of 130.0 ± 21.5 mN m−1 was 
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estimated (lines in Fig. 2.6b). The surface profile predicted by FEM simulation closely matches 

the experimental result as shown in Fig. 2.6a. As previously stated, the precision of the fitted 

surface stress represents a 95% confidence interval 17. The data showing the deformed gel heights 

hd in comparison to their starting ridge height are given in Appendix 2. The values of surface stress 

obtained in this case are similar to those estimated for shallow ridge geometry. 

 

Figure 2.6 (a) Line scans across measured surface profile of periodic ridge geometry for PDMS 

master and its gel replica (circle symbols) with E = 35 kPa, λ ~ 35 µm and initial height h ~ 13 µm. 

Predicted shape for the PDMS and gel profile (continuous lines) using FEM analysis. (b) Measured 

reduction in gel height (ratio of deformed to initial height, hd/h) as a function of several elastic 

moduli (E) and periodic separations (λ); symbols circles, triangles and inverted triangles represent, 

respectively, spacing 35, 50 and 65 µm. Least square fit of FEM results to experimental data yields 

an estimate of the surface stress as 130.0±21.5 mN/m. 

 

FEM analysis for the case of h ∼ 2.7 μm (see Appendix 2) yielded a value of 105.0 ± 17.6 mN m−1 

for surface stress, in good agreement with that obtained using small strain theory, 100.0 ± 9.4 mN 
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m−1. The difference in surface stress needed (130 mN m−1) for the higher profile samples could be 

due to departure from the neo-Hookean model used – our purpose here is mainly to demonstrate 

that larger surface-stress deformations can be modelled numerically. 

 

2.4 Discussion and Conclusions 

We measured and characterized surface deformations in patterned organo-gels due to their surface 

stress. When a gel moulded into a patterned (PDMS) master is subsequently separated from it, a 

new gel–air interface is created. This interface has a surface stress, in response to which the gel 

deforms, setting up internal stresses that balance the surface stress. We show that the surface stress 

is able to drive significant deformation owing to the relatively low elastic moduli of the gels. 

The characteristic strains encountered for samples with a shallow profile are of the order of 2π(h 

− hd)/λ, which is small compared to unity, indicating that strains in the sample are generally small 

except at the corners, where strains are very large (if the corner is perfectly sharp, the strain is 

theoretically infinite). For shallow-profile samples, since h/λ << 1 and the average strain is small, 

we employed an analytical model based on periodic loading of a flat surface. The periodic surface 

is represented by a Fourier series and the higher Fourier modes of the surface profile suffer greater 

deformation (eq. (2.3) and (2.9)) 9, 22. The predicted gel profiles using small strain theory for 

shallow geometry as well as the FEM analysis in the high ridge geometry case match the 

experimentally measured profiles quite well (Fig. 2.2b and 2.3a). We estimated surface stress σ = 
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100.0 ± 9.4 and 114.2 ± 11.5 mN m−1, respectively for h ∼ 2.7 and 1.7 μm (with an average of the 

two estimates of surface stress σ = 107 ± 7 mN m−1). 

For the case of high ridges (h ~ 13 μm), the characteristic strains are moderately large, of the order 

of 2π(h − hd)/h > 100%. Using a FEM model in which the gel was assumed to be incompressible 

with neo-Hookean elasticity, we showed how such deformations can be modelled. We have 

assumed a single surface tension value for a given set of samples independent of their solid content 

and its surrogate, the elastic modulus. The quality of the resulting fits generally supports this 

hypothesis. Because the gel composition is dominated by the solvent, which constitutes roughly 

90% of the solid gel, it would appear that surface stress should be determined primarily by surface 

tension of the water–glycerol mixture. However, the overall surface stress of 107 ± 7 mN m−1 is 

significantly higher than that expected from the surface tension values of the glycerol–water 

mixture (for aqueous glycerol with ∼60 wt% glycerol, surface tension σ = 68.5 mN m−1 (ref. 23)). 

One possibility is that the ternary system (solid component and the two liquids that constitute the 

gel) forms significantly different structures. We hypothesize the formation of a new surface 

structure to explain the high overall stress. Water–glycerol mixtures with high concentrations of 

glycerol (>60 wt%) have been known to show enhancement of structured water 24. Timasheff 25 

found that a perturbation in the chemical potential of glycerol in the presence of the polypeptide 

protein gelatine results in the formation of new ternary phases consisting of water–gelatine–

glycerol. Sanwlani et al. have shown, using Raman analysis, that for such a ternary system glycerol 

enhances structuring of water molecules (ice-like structure) causing gelatine molecules to 

compartmentalize to regions where glycerol-free water is available 24. We point to the plausibility 
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that a new structure of the water–glycerol–gel–solid mixture could result in surface stress that 

differs from what one would expect from a rule of mixtures. 

The confidence in the estimated surface stress values also depends on the accuracy and the 

precision of independently measured Young's moduli of the gels. Two methods, beam bending and 

load-displacement measurements with a flat punch, were employed to determine the modulus. The 

possible inaccuracy in the independent measurement of the modulus limits the accuracy of the 

presented surface tension data. 

The periodic ridge geometry is relatively easy to fabricate and may serve as a model for 

determination of the surface stress of compliant solids. For cases where patterned surfaces are 

shallow (h << λ) the application of small strain elasticity theory successfully estimates the surface 

stress if the elastic properties of the gel are independently known. For the more general case, we 

have shown how finite element analysis can be used to analyse arbitrary deformation driven by 

surface tension. 

Arrays of parallel channels are routinely fabricated in applications such as microfluidics using 

replica moulding. Our work shows that when soft elastomers or gels are used in the fabrication, 

the shape of replica can be significantly different from the original mould. The analysis in the work 

presents a methodology to characterize the final shape of these replicas. 
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Appendix 2 Supplementary Information 

Determination of Young’s modulus 

a) Cylindrical Punch Indentation Experiment 

The purpose of this brief note is to put down the relations needed to extract Young’s modulus 

from a compliance measurement made by indenting a sample using a rigid cylindrical punch.  

In the schematic Fig. A.2.1, a circular cylindrical punch with radius a indents an elastic 

foundation that is very large in the plane of the contact, i.e., L>>a. However, its thickness, h, 

may or may not be large compared to a. 
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Figure A.2.1 Schematic of flat cylindrical punch with diameter 2a used to indent a gel block 

of height h and diameter L. 

In the limit when h>>a, we have indentation by a rigid circular punch of an elastic half space. 

In this case 16, 24, 

/

1

2 *h a

d
C

dP E a






                                                                                     (A.2.1) 

where δ is the displacement of the indenter, P is the measured load, C∞ is the compliance in 

the limit h>>a or h/a→∞ ,  * 2/ 1E E    is the plane strain Young’s modulus, and ν is 

Poisson’s ratio. If the material is incompressible, then ν = 1/2, and equation (A.2.1) becomes 
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                                                                        (A.2.2) 

where we have used the relation   / 2 1G E   . This is the same result as given in Long et 

al.16 (equations 24 a, b) who have additionally shown that for finite h, the compliance C, can 

be written in terms of C∞ in the following way: 
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So, since C is the measured quantity, our expression for Young’s modulus is 
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                                                                     (A.2.4) 

A typical load-displacement plot is shown in Fig. A.2.2. 

 

Figure A.2.2 Load measured as a function of indentation depth (Distance) in a typical contact 

compliance test. The compliance C is the inverse of the slope. 

 

b) Beam bending  

The modulus was measured using the linear elastic moment-curvature relationship of beam theory 
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M EI                                                                                                                                      (A.2.5) 

where M is the moment on the beam fixed at one end, I is the moment of inertia of the rectangular 

cross-section of the beam and κ is the curvature of the bent beam. 

Equation (A.2.5) can be re-written in terms of the distance s along the neutral axis of the beam  

 M s d

EI ds


                                                                                                                                (A.2.6) 

Integrating (A.2.6), 

 M s ds EI d                                                                                                                      (A.2.7) 

That is, the integral of the moment is linearly related to change in angle, and the slope is EI. The 

integral of the moment is plotted as a function of the angle and from the slope the modulus is 

obtained (Fig. A.2.3). 
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Figure A.2.3 (a) Picture of a gel beam fixed at one end and freely hanging on the other (scale bar 

~ 1cm). The profile of the beam is read using MATLAB code for determination of the curvature. 

(b) Integral of moment versus angle plot. 

 

Confirmation that gel fills the patterned PDMS  

We re-confirmed the assumption that the liquid gel wets the PDMS master completely. A section 

of the PDMS master was cut and laid flush on the bottom of the petri-dish such that the ridges 

were orientated perpendicular to it. After filling and gelation images were taken through the 

transparent base of the petri-dish. Fig. A.2.4 shows the optical micrographs of gel filled PDMS 

master. 
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Figure A.2.4 Optical micrographs (scale bar 100 µm) of gel (E ~ 23 kPa) filled PDMS master 

prior to moulding for periodic ridge geometry (a) h ~ 13 µm, λ ~ 35 µm and (b) h ~ 2.7 µm, λ ~ 25 

µm . 

 

High ridge geometry height reduction 

In the experimental results part of the main text we noted the variation of the ratio of deformed to 

initial height for the high ridge geometry. Fig. A.2.5 shows the absolute heights of the PDMS and 

the deformed gel samples for the ridge geometry with h ~ 13 µm. A lower deformed height (hd) 

was measured for a gel with lower modulus (E).  

 

Figure A.2.5 Measured initial height of ridge/channel in PDMS h ~ 13 µm (square symbols) and 

the corresponding gel height (hd) for three different periodic spacing λ (symbols circles, triangles 

and inverted triangles represent, respectively, spacing of λ ~ 35, 50 and 65 µm, see Table 2.1 ( λ = 

s+w) and five different moduli (E). 

    

   (a)       (b) 

Gel Gel
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FEM analysis for low height (h~ 2.7 µm) 

To test the validity of the small strain theory, we applied also applied the FEM analysis to the case 

of shallow ridges for which small strain theory satisfactorily predicted the full deformed profile of 

the gel after demoulding. Fig. A.2.6 shows that the least square fitting results of FEM analysis to 

experimental data yield a surface tension σ of 105.0±17.6 mN/m which quite similar to that 

obtained from the small strain theory (σ = 100.0±9.4 mN/m).  

 

Figure A.2.6 Measured reduction in gel height (ratio of final to initial height ) and FEM analysis 

based least square fits (continuous ℎ/ℎ0 lines) for the height reduction as a function of varying 

elastic moduli 𝐸 and three different periods 𝜆 (symbols circles, triangles and inverted triangles 

represent, respectively, spacing of 𝜆 ~ 25, 40 and 49 µm). 

        

FEM analysis: Validity of neo-Hookean model 

We applied an alternate model to the neo-Hookean to ascertain its validity. The linear elastic model 

was used to estimate the deformed heights. (Fig. A.2.6). We observe that for the surface tension 
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of approximately 110 mN/m, which is close to estimated surface stress for low strain case, the two 

models deviate by less than 8% (Fig. A.2.7). 

 

Figure A.2.7 Comparison of deformed heights for a given surface tension for the neo-Hookean 

versus linear elastic material models.        
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CHAPTER 3 

SURFACE TENSION MEASUREMENT FROM INDENTATION 

OF CLAMPED THIN FILMS * 

 Abstract 

We developed an indentation technique to measure the surface tension of relatively stiff solids. In 

the proposed method, a suspended thin solid film is indented by a rigid sphere and its deflection is 

measured by optical interferometry. The film deflection is jointly resisted by surface tension, 

elasticity and residual stress. Using a version of nonlinear von Karman plate theory that includes 

surface tension, we are able to separate the contribution of elasticity to the total tension in the film. 

Surface tension is determined by extrapolating the sum of surface tension and residual stress to 

zero film thickness. We measured surface tension of polydimethylsiloxane (PDMS) using this 

technique and obtained a value of 19.5 mN/m, consistent with the surface energy of PDMS 

reported in the literature.
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3.1 Introduction 

It has been known for a long time that surface stresses exist in solids 1-4. While the effects of 

surface stresses on the mechanical behaviour of stiff materials are typically negligible, these 

stresses can dominate the behaviour in soft materials. For example, surface stress can flatten soft 

patterned surfaces 5, causes large local deformation at the contact line of a liquid drop resting on a 

soft substrate 6-10 and drives instabilities in very soft gels 11, 12. In other situations, surface tension 

can resist deformation, for example, in the studies of liquid droplets on a thin film 13-16, nucleation 

of creases in soft solid surface 17 and surface instability of a strained soft solid 18.  

Surface stresses and surface energies in solids are different in two important ways. First, surface 

energy is a scalar while surface stress sσ  is a 2D tensor 19. Even when surface stress is isotropic, 

that is s sσ I , where sI  is the 2D isotropic surface tensor (  is commonly called the surface 

tension), surface energy need not be numerically equal to surface tension. The range of length 

scales, over which surface tension dominates bulk elasticity, can be characterized by an elasto-

capillary length σ / E, where E is the Young’s modulus 20. For compliant solids (E < 100 kPa), this 

length is usually larger than micrometre scale. Their surface tensions can be measured by 

monitoring the deformed solid surface in regions where surface tension is dominant 5-6. However 

for stiff solids, the elasto-capillary length is on the order of nanometres or smaller, and hence the 

effect of surface tension can be neglected in typical engineering structures. Nevertheless, even in 

stiff solids, its effect can be amplified using slender geometries. Examples include bending of a 

micro-cantilever with different surface tensions on each of its sides 4, 21, deformation of a thin film 
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induced by liquid droplets 13-16, bulging of thin polymer films 22-24 as well as bending of metallic 

nanowires and polymer nanotubes 25-26. Therefore, the surface tension of a stiff material could be 

indirectly determined by monitoring its deformation using a slender sample geometry. Most 

existing methods 21-22, 26-27 using this approach require nanoscale samples and are hence limited by 

sample fabrication and measurement resolution.  

In this work, we propose a method to determine the surface tension of a relatively stiff 

polydimethylsiloxane (PDMS) material by monitoring the deflection of clamped circular thin film 

samples by a rigid indenter. The idea behind this proposed technique is similar to the key finding 

of a previous work 13, 14, in which we showed that the deflection driven by the capillary forces of 

a liquid drop on a thin PDMS film is resisted by a combination of elasticity and surface tension in 

the film. In this present work, elasticity and surface tension (along with other possible bulk residual 

stresses resulting from film preparation) both act to resist the film deflection by the rigid indenter. 

The pre-tension in the film, consisting of surface tension and residual stresses, is extracted by 

analysing the deflected film profile using a model that accounts for both bending and stretching of 

the film. Since the portion of the pretension (N/m) due to residual stresses increases linearly with 

thickness while the part due to surface tension does not, linear extrapolation of total tension to zero 

film thickness provides an estimate of the surface tension.  

There are two principal differences in the work presented here compared to our previous work 13, 

14: (a) a rigid indenter (rather than capillary forces) is used to drive the deformation, and (b) the 
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mechanical response of the film is analysed to separately account for the contributions of elasticity, 

surface tension and residual stress to the deformation of the film. 

3.2 Experiments 

(a) Suspended circular thin film. The sample comprised a thin PDMS film bonded on top of an 

annulus made of the same material. A side view of our experimental setup is shown in Fig. 3.1(a). 

Preparation of samples was similar to that described by Nadermann et al. 13, with a few key 

differences. PDMS liquid thin films were spun onto polystyrene-coated glass slides and pre-cured 

for 16 hours before the solid PDMS substrates were placed onto the thin films. Together, the 

samples were cured for over 48 hours. The curing of PDMS (substrates and films) was conducted 

at room temperature (25 ˚C) to minimize thermal and shrinkage-induced residual stresses. Five 

films of thicknesses in the range of 7-20 µm were used in the experiment. 
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Figure 3.1 (a) A schematic of the side view of the experimental setup. (b) Profile of the top surface 

of a film (~12 µm thick) deflected by a spherical glass indenter, showing the contact (yellowish 

circle) in the centre between the film and indenter. (c) Deflections at points of equal distance from 

the sphere centre are averaged and plotted versus the distance. The azimuthally averaged radial 

deflection profile corresponds to the portion of the film inside the dashed box in (a). 

(b) Indentation of the film. A glass indenter with spherical end of radius 200 µm (or 0.95 mm for 

the two thicker films) was centred and then brought into contact with a clamped thin circular 

PDMS film. A motion controller (3 Axis Motion Controller/Driver, Newport) was used to move 

the indenter in small steps to achieve different contact radii and deflections of the film.  

(c) Young’s modulus and thickness measurements. Leftover PDMS liquid from the spin coating 

of thin films were poured into weighing dishes and went through the same curing cycle as the film 

samples to form thick slabs of PDMS bulk solids (>5 mm thick). We then measured the Young’s 

modulus of these PDMS bulk solids using indentation tests. The Johnson-Kendall-Roberts (JKR) 

(a) 

(c) 

8mm 

Glass 

indenter 

PDMS 

thin 

film 

400µm  

or 1.9mm 

(b) 

Annular 

PDMS bulk 

support 
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model 28 was used to extract Young’s modulus from the load versus contact radius curve. Our film 

samples have Young’s moduli of approximately 770 kPa with the exception of the 12 µm film of 

630 kPa due to shorter aging time. Film thicknesses were measured by a white light interferometer 

(Zegage; Zygo Corporation) with a resolution of about 2 nm. The five film thicknesses measured 

are 7.5 µm, 9.5 µm, 12 µm, 17.5 µm and 20 µm. See Appendix 3.1 for details on the indentation 

test and thickness measurements. 

(d) Deformation measurements. Deflections of the films were monitored from above by a white-

light interferometer (Zegage; Zygo Corporation) with a resolution of about 2 nm. Fig. 3.1(b) shows 

a deflected profile of the top surface of the PDMS film (~12 µm thick). Deflections along radial 

lines were extracted using ZMAP functions in MatLab®, and the azimuthally averaged radial 

deflection profiles (as plotted in Fig. 3.1(c)) were used to fit against the results obtained from the 

numerical model. On initial contact, the surface profile was usually axisymmetric. However as the 

indenter moved to obtain different deflections, axisymmetry could be lost due to imperfect 

alignment. In such cases, data were not used in fitting. 

3.3 Numerical Model 

For many isotropic materials, the surface stresses are expected to be approximately isotropic 4, 29. 

We assume that the surface of PDMS film is isotropic and homogeneous, hence the surface stress 

of the PDMS film is an isotropic surface tensor characterized by its surface tension σsv. Since the 

maximum deflections in our experiments were no more than several times of the film thicknesses, 

we used a modified von Karman plate model 30 to capture both the bending and stretching of the 
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deflected films. The part of film outside the contact is modelled as a pre-stressed thin annular plate. 

Specifically, the undeformed film is assumed to be under a pre-biaxial tension T0, which includes 

the contribution of surface tension and any bulk residual stresses in the film. Fig. 3.2 shows the 

deformed configuration of the plate (grey) and the spherical indenter in a cylindrical coordinate 

system (r, θ, z) with the origin placed at the centre of the film. 

 

Figure 3.2 The axisymmetric von Karman thin plate theory is used to model the film outside 

contact (right). Geometric parameters at the contact line are defined on the left. Cylindrical 

coordinates (r, θ, z) are convenient for this problem. Here z is positive downwards and is the 

distance of a point from the mid-plane of the plate 

 

Although the maximum deflection is on the order of several film thicknesses, the strains in the 

film were small, so a small strain constitutive model can be used to relate radial and hoop line 

forces Nr, Nθ to radial and hoop strains εr, εθ. Subscripts r and θ indicate components in radial and 

hoop directions respectively. 
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Here, u and w are displacements in r and z directions, h the initial thickness of the film, E the 

Young’s modulus and ν the Poisson’s ratio. Since PDMS is practically incompressible, we set ν = 

1/2. In (3.2), the prime denotes differentiation with respect to r. 

Equations of equilibrium are 30 

0r rN N rN
                                                                                                                     (3.3) 
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 is flexural rigidity of the film and P the indentation force (positive 

downwards). Substituting the constitutive relations (3.1) and (3.2) into equilibrium equations (3.3) 

and (3.4), we obtain 
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                                      (3.5a, b) 

The outer edge of the film at r = a was bonded to the annular PDMS bulk support, and hence was 

modelled as a clamped edge with zero displacements and zero slope. The vertical displacement 

w(c) and slope w’(c) at the inner edge were determined by the contact radius c and the position of 

the indenter with respect to the clamped edge of the film. Hence, we solved (3.5a, b) subject to the 

following boundary conditions, 
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where uc and wc are the displacements at the contact line in radial and vertical directions, 

respectively (see Fig. 3.2 left). Experimentally, we can measure the vertical position of the indenter 

with resolution of about 10nm while the contact radius can only be measured to an accuracy of ±5 

µm. Hence the contact radius c is used as a fitting parameter along with T0 and uc when the 

numerical solution of w(r) is fitted against the experimental deflection profile. Details of the 

numerical solution and fitting procedures are included in Appendix 3.1. Fig. 3.3(a) shows a typical 

fitted profile of the deflected thinnest film (~7.5 µm). 

For each sample, we fit at least 5 experimental profiles at different indentation depth. Fig. 3.3(b) 

shows the deflected profiles of the thinnest film with corresponding values of T0. The extracted 

value of T0 is substantially independent of indentation depth, consistent with the supposition that 

T0 is the constant pre-tension of the undeformed film.  
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Figure 3.3 Fitting the deflections of the thinnest film (~7.5 µm thick) for different indentation 

depths. (a) Fitted profile in red for one value of deflection is plotted together with the experimental 

profile in blue and the indenter surface in black. (b) Fitted profiles for different deflections and the 

corresponding extracted values of T0. 

(a) 

(b) 
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3.4 Results and Discussion 

The tension T0 arises due to (i) bulk residual stresses; (ii) surface tension of both the top and bottom 

surfaces of the film. The former, which we denote by Tresidual is most likely caused by the shrinkage 

31 accompanying curing of PDMS liquid film (since thermal stresses were minimized by curing at 

room temperature), and can be expressed as 

 / 1residual residualT Eh                                                                                                (3.7) 

where the residual strain εresidual is expected to vary little among films of different thickness. Due 

to the clamped boundary condition, the surface tension contribution to T0 is twice the solid-air 

surface tension of PDMS σsv, counting both the top and bottom surfaces of the film. Therefore, 

 0 / 1residual svT Eh                                                                                                 (3.8) 

 To separate the bulk residual stress from the surface tension, we plot the fitted values of T0 against 

Eh in Fig. 3.4. The linearly extrapolated value of tension at Eh = 0 is hence interpreted as the 

surface tension contribution that equals twice the solid-air surface tension of PDMS. The residual 

strain εresidual obtained by fitting is 0.21% as shown in Fig. 3.4, which is consistent with an 

independent study on shrinkage of PDMS (see Appendix 3.1). The value we obtained for surface 

tension of PDMS, with a 95% confidence interval, is 19.5±3.63 mN/m, which is comparable to its 

surface energy in the range of 15-24 mN/m 32-35. Our result is also consistent with a recent work 

by Mondal et al. 27 using a different experimental method.  
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Figure 3.4 Extrapolation of film pre-tension to zero Eh value yields twice the surface tension of 

PDMS. The error bar represents 95% confidence intervals for each film sample. 

  

In our previous attempt at measuring surface tension by suspending a liquid droplet under a PDMS 

film 13, 14, we estimated the total tensions in the film based on force balance but did not separate 

out the contribution due to elasticity. This, we supposed, would be handled automatically by linear 

extrapolation to zero thickness. We previously found surface tension for the PDMS film to be 

much higher than its surface energy. The source of the discrepancy lies in the assumption that both 

the residual tension and the tension due to stretching are directly proportional to h. Whereas this 

is true for the residual tension in equation (3.7), this assumption is incorrect for the tension due to 

stretching, which has a different dependence on h. The von-Karman plate model used in this work 

explicitly accounts for the pretension in the film and for its elasticity, and hence, we believe, yields 

a more robust and accurate estimate of the surface tension. 
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The deflections observed in the experiments are small in comparison with the film radii but are 

not small in comparison with the thicknesses. In the process of fitting the numerical solution to 

experimental data, we have found that fitted value of T0 was quite sensitive to the profile close to 

the contact line, where bending is dominant. Neglecting bending near the contact line would result 

in a higher estimate of the tension. The von Karman plate model used in this work can capture 

both bending and stretching in the film provided that the deflection is limited to several times the 

film thickness. This offers an advantage to use thicker samples especially when the material has a 

low breaking stress. However there are no difficulties in using a pure bending plate model for 

deflections much smaller than the thickness or in using a membrane model for much larger 

deflections.   

Our experimental method is limited by the ability to fabricate the sample which may be quite 

fragile, drying if the system has a liquid phase (such as a hydrogel) as well as the resolution of 

measurement system. The version of the method we have presented here works well with stable 

elastic polymeric films. With some further development it could be used to investigate predictions 

such as the theory proposed by Weijs et al. 36, which states that surface tension will be different 

from surface energy for compressible elastic materials. It could also be extended to study surface 

stresses coupled to more complex bulk behaviour such as viscoelasticity and poroelasticity, 

although this will additionally require extension of the theoretical model.   

Despite these limitations, our method offers several advantages over the existing techniques 5, 6, 12, 

13, 21, 23, 24, 26 in the literature. The compliant geometry of film samples makes it applicable to 
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relative stiff materials (E > 100kPa), of which the surface tension is difficult to measure using 

methods based on contact line deformation 5, 6, 12, 13. Several studies 21, 23, 24, 26, 37 have captured the 

effect of surface tension using the bulge test technique 38-41 on stiff polymer or metal films. The 

inclusion of bending in our model permits the use of thicker samples and smaller deflections than 

these studies. Compared to the ultrathin samples used in these studies, the film samples in our 

experiments are three orders of magnitude thicker and larger. In this regard, sample handling is 

easier in this present method, and more importantly the deformation measurement has a higher 

level of accuracy. In addition, the key benefits of using a solid indenter (as opposed to a liquid 

droplet 13) to deflect the film include more stable systems (i.e. less film fluctuation), better control 

of the deflection, longer measurement time and no transient contact line motion.  
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Appendix 3.1 Supplementary Information 

Thickness measurement. After the sample was cut out and peeled from the glass slide, white light 

interferometer was used to locate the newly exposed glass surface and the free surface of remaining 
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film on the glass slide. Thickness measurements were taken at various points on one slide and 

mean thickness of each sample was calculated. The range of film thickness is 7-20 µm. 

Young’s Modulus measurement. Young’s modulus of the PDMS was measured by an indentation 

test. A spherical glass indenter was brought into contact with thicker slabs (>5mm) of PDMS made 

from the same liquid PDMS mixture and undergoing the same curing cycle as the films. During 

one measurement, the indenter slowly indented into the sample with uniform speed and was then 

slowly lifted up until detaching from the sample. The contact area was captured by a microscope 

and the indenting force P was measured using a load cell. The Young’s modulus E and work of 

adhesion Wad can be obtained by fitting the experimental data using JKR theory 15,  

2
* 3 2

* 3

*

4 1 1 3
8 ,  where 

3 4
ad

E a
P W E a

R E E E




  
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 
                                               (A.3.1.1) 

Solving von Karman plate equations. Normalize equations (3.5a, b) in this chapter using the 

following scheme, 

2 2 3
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,  , ,   ,c c c
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w Ehw Ehw
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c c c
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Hence equations (3.5a, b) in this chapter become 
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From equation (A.3.1.4), the importance of bending depends on the square of the ratio of film 

thickness to imposed displacement at the inner edge. 

Normalized boundary conditions are, 
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                                                           (A.3.1.5) 

Equations (A.3.1.3a, b) need to be solved using an iterative numerical scheme for boundary value 

problems with MatLab®. The key idea is to increase wc in small steps over a number of iterations. 

An analytical solution can be obtained, when a sufficiently small wc is used, so that bending is 

dominant and nonlinear terms in equation (A.3.1.3a) can be neglected, 
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Subject to boundary conditions, 
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where a superscript 0 denotes the value used in the first iteration. 

Let 
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Solution to equation (A.3.1.3b) is  

 
0 0

20 1

1 2

0 0

1 1
( ) / 2 ( ') ' 2 ' ( ') '

r r

r r

u r b r b r r F r dr r r F r dr
T T


 

    
 
 

                                     (A.3.1.11) 

where 

 

     
       

 
0 0

2

1 0 1 0

1 1 2 1

2
2 0 0 0

1 2 2 2 2

2 0
2 1 0 0 2

1 ( )
( ) ( ) ( )

2

2

2
2 ( ') ' ' ( ') ' / 1

r r

c

cr r

c

c

v d r
F r r r

r dr

K r I r I r K r
r a K r a I r P

r cT T u r
b F r dr r F r dr

r w r r

cT T
b b r r u

w







 

  

 
   


   

   
      

   

  

 
                                   (A.3.1.12) 

In our iteration scheme, equations (A.3.1.8) and (A.3.1.11) were used as the initial guess to solve 

equations (A.3.1.3a, b) with the ‘bvp4c’ function in MatLab® in the first iteration. At the following 

iterations of increasing wc, equations (A.3.1.3a, b) were solved numerically using the solution 

obtained from the previous iteration as the initial guess. 

Fitting experimental profile. Fitting the numerical solution to experimental film profile was 

performed through a least square fitting scheme using {T0, uc, c} as fitting parameters. While T0 

and uc were free to vary, the contact radius c was constrained based on the approximated 

measurement in a range of ±5 µm. Fitting was performed on each film sample at 5-11 different 

indentation depths where deflections showed good axisymmetry. 
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Approximate measurement of residual strain in cured PDMS. A thin layer of PDMS (~200 µm) 

was moulded into a silicon master patterned with parallel microchannel structures of width 10 µm 

and centre-to-centre spacing 20 µm. After the PDMS layer was cured in the same manner as the 

film samples, it was peeled off from the silicon master. We then aligned and re-attached the PDMS 

layer to its silicon master. Misalignment induced by shrinkage was monitored using a microscope, 

and the residual strain was computed to be approximately (0.2 ± 0.001) %. 

 

Appendix 3.2 Energy Release Rate of the Indented Circular Film 

We consider the problem in this Chapter with geometry shown in Fig. A.3.2.1 below. Let us treat 

contact as an external ring crack and allow the crack grows along the surface of the sphere for a 

length dl. Then the external energy needed to bring back the initial configuration is calculated. Fig. 

A.3.2.1b shows a close-up at the crack tip, where solid line shows initial configuration, dashed line 

shows configuration after crack growth of dl. Note that Fig. A.3.2.1b is drawn locally, due to the 

non-zero bending rigidity, the film is always tangential to the surface of sphere at the contact line. 
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Figure A.3.2.1 Schematic figure of a pre-stretched thin elastic solid film deflected by a rigid 

indenter. (a), deformed configuration; (b) close-up of the ring crack tip formed between the film 

and the indenter. 

At the end of r = a, displacement is prescribed. We assume c << a such that the curvature goes to 

zero at far end. There is no work done at this end. At the end of r = c, the energy supplied include 

work done by shear force Q(c), two bending moments Mr(c), Mt(c) and in-plane radial tension Tr  

all defined per unit length. The work done by the moments is 

          1 1 2 '' M ' /r t r r rU W cdl M c w c c w c c T                           (A.3.2.1) 

where r
  and r

  are the two radial strains outside and inside contact line respectively. The work 

done by the shear force is neglected at this end because local slope is zero so that  2w O dl  . 

Hoop stretch is continuous at the contact line, hence the contribution from hoop stretch is also zero. 

The strain energy change from part 2’to part 2 is 

         
2

'' M '
2

2 2 2

r r r rr t
T TM c w c c w c

U cdl
c

 
 

    
   
 
 

              (A.3.2.2) 

The surface energy change due to the contact is (assuming rigid sphere surface) 

 

(a) (b) 
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0 02STU T A cT dl                         (A.3.2.3) 

Therefore the total change in potential energy is 

       
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   
     

 

               (A.3.2.4) 

 The elemental area is 2A cdl   . Hence the energy release rate, 
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      

 
             (A.3.2.5) 

where under the assumption of small deflection, 

1
'' '     ' ''r tM D w w M D w w

r r




   
        

   
                             (A.3.2.6) 

Since we are only look at the local picture in Fig. A.3.2.1b, slope at contact line is 0, 
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                    (A.3.2.8) 

where E is the Young’s modulus, 
 

3

212 1

Eh
D





 is the bending stiffness. 

 

Appendix 3.3 Deflection of a Pre-Tension Circular Film due to a Liquid 

Drop 

Here we consider a liquid drop (blue) suspended under a thin circular plate (red) of radius L that 

is clamped at the far ends as shown in Fig. A.3.3.1.  
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Figure A.3.3.1 Schematic figure of a liquid drop hanging underneath a pre-stretched thin elastic 

solid film. (a), referential configuration; (b) deformed configuration. 

Membrane limit. Assume the thickness of the film h is so small that the mechanical behaviour of 

the plate approaches to ‘membrane’ limit. Upon deformation, the part of membrane in contact with 

the liquid drop (referred as the inner part) bulges upwards due to the pressure induced by liquid 

surface tension, and the other part of membrane (referred as the outer part) is stretched accordingly. 

A material point at (ρ, θ, 0) in the referential configuration (Fig. A.3.3.1a) displaces to (r, θ, z) in 

the deformed configuration (Fig. A.3.3.1b). Solid membrane, liquid drop and vapour are assumed 

to meet at a material line (i.e. the contact line) (ρc, θ, 0) in the referential configuration (Fig. 

A.3.3.1a) and (a, θ, 0) in the deformed configuration (Fig. A.3.3.1b). The contact line is assumed 

to be pinned to the material point in membrane. Angles formed by the membrane with lower liquid 
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drop surface and the horizontal axis at the contact line are θ0 and ϕ0 respectively as shown in Fig. 

A.3.3.1b. Furthermore, all surface tensions/energies are assumed to be uniform. Hence in the 

referential state, the pre-stretch due to surface energies in the membrane shown in Fig. A.3.3.1a 

are 

0 0     2in out

sl sv svT T                            (A.3.3.1) 

We first carry out force balance analysis on the whole configuration (Fig. A.3.3.2a), lower section 

of the liquid drop (Fig. A.3.3.2b), triple-phase contact point (Fig. A.3.3.2c) and the outer part of 

membrane (Fig. A3.3.2d). Fig. A.3.3.2a shows the vertical forces on the whole structure, 

2
z

G
R

L
                      (A.3.3.2) 

From Fig. A.3.3.2b, 

 2 2 sinc L lv c cP a G a                           (A.3.3.3) 

where GL is the weight of lower section of the liquid drop, Pc is the pressure at the level of triple-

phase contact point. In Fig. A.3.3.2c, forces are balanced at the triple-phase contact point, 

     

     

sin sin sin

cos cos cos

in out

c c s c c lv c c

in out

c c lv c c s c c

T T

T T





      

      

  

  
                                  (A.3.3.4a,b) 

Finally in Fig. A.3.3.2d, force is balanced in vertical direction, 
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   sin sinin

c c z lv c cT R                             (A.3.3.5) 

Hence if gravity is neglected in the case of small drop, Rz is zero, tension in the inner part balances 

liquid surface tension in the vertical direction, and angle ω is zero, i.e. the outer part is flat. 

 

Figure A.3.3.2. Figures of force balance: (a) on the whole structure; (b) on the lower section of 

the drop; (c) at the contact line; (d) on the outer part of membrane. 

From a mechanics point of view, we assume all the surface tensions/energies are known together 

with the volume (weight) of the liquid drop V (G) and initial radius and thickness of the membrane 

L and h0. Deformed configuration is then determined from analytical calculation. Fig. A.3.3.1a 

shows schematically the referential undeformed configuration of the problem, in which, the 
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membrane is subjected to two different surface tensions on the inner and outer parts. The position 

of contact line ρc can be determined from the drop volume and its equilibrium contact angle αc on 

the solid as defined by the fundamental Young’s law 

2 ( )
cos sv sl sv

c

lv

  




 
                                                                                          (A.3.3.6) 

From the well-established pendant drop method, three ODEs are derived from hydro-mechanical 

equilibrium and geometry 
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  

 
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
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
  











                     (A.3.3.7) 

where R0 is radius of curvature at the apex and s is the arc length measured from the lowest point 

of the drop . The boundary conditions are  

     

   

00 0     0    0 0

0    c c c

s z s z s

z s s s s

 

 

     

   
                  (A.3.3.8) 

The unknowns are {α, z, ρ, R0, sc, z0} and we need one more constrain on volume 

0

0
2

z
dz V                       (A.3.3.9) 
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Once solving equation (A.3.3.6), we can determine the location of contact line  c cs s   . 

Note that our assumption of pinned contact line implies that its location in undeformed 

configuration is fixed for a given drop. 

In the case of small liquid drop, gravity is neglected. The shape of lower surface is a spherical cap. 

Then ρc can be approximated from geometry. For a spherical cap, volume and contact radius are 

related 

  
  

1/33
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3

3
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3 sin 2 cos 1 cos

c
c c c c

c c c
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   

  
             

   (A.3.3.10) 

Small strain limit. In small strain analysis, the material has elastic modulus E and Poisson’s ratio 

ν. Due to surface tension, total stress in the membrane relates to strains are 
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             (A.3.3.11) 

where 0 0

(1 )
T

E





 . Consider the outer part, in small strain theory, the equilibrium equation for 

polar coordinates, 

0
out outout

rr
T TdT

dr r


                              (A.3.3.12) 

The strain-displacement relations are, 
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                     (A.3.3.13) 

where 
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                (A.3.3.14) 

Substitute equation (A.3.3.13) and (A.3.3.14) into (A.3.3.12), 
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2
12 2

1
0r r r

r

d u du u A
u A r

dr r dr r r
                       (A.3.3.15) 

The membrane is clamped at far ends, assuming that the membrane is infinitely large, then A1 = 0. 

At the contact line, we have the second boundary condition 
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                 (A.3.3.16) 

Substitute it back into equation (A.3.3.14), 
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                  (A.3.3.17) 
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Note that the out

rT is tension along the membrane direction only in the case where gravity is 

neglected, when ω ≠ 0, tension along the membrane direction  

     / cosout out

s rT T                      (A.3.3.18) 

When gravity is neglected, cos ω = 1  

    01
1

out out outc
s c r c

E
T T T

a


 



  
    

  
                 (A.3.3.19) 

In addition, hoop stress  

  021

out outc
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
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                  (A.3.3.20) 

Hoop stress is always positive for sufficiently large r. However the hoop stress can be compressive 

unless 0 1
1

out

c

E a
T

 

 
  

  
. In this study, we assume 0

outT  is large, so that no wrinkling can occur. 

For the inner part, we assume that the slope angle at contact line ϕc is close to zero. Since the inner 

part has very small deformation, it is reasonable to assume the Laplace pressure applied to the 

inner membrane is uniform. If we assume no gravity, lower section of the liquid drop is part of a 

sphere. In addition, inner part of the membrane is approximated as a spherical cap of unknown 

radius Rm.  
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Under this assumption, pressure inside the drop is uniformed and the membrane is under biaxial 

tension Tin. From the force balance equation (A.3.3.3), 

 2 sin /c lv c cP a                       (A.3.3.21) 

By equilibrium, 2 /in

c mP T R . 

From the geometry assumption of the membrane, / sinm cR a  . Therefore, 

   sin sinin

c lv c cT                         (A.3.3.22) 

Equation (A.3.3.22) is essentially the vertical force balance at the contact line in Fig.A.3.3.2c. In 

the radial direction, force balance from equation (A.3.3.4b) gives 

 cos cosin out

c lv c c sT T                       (A.3.3.23) 

Volume should be constrained, 
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             (A.3.3.24) 

Now we are trying to solve for the deformed configuration, i.e.  , ,c c ca    . Substitute 

(A.3.3.22) and (A.3.3.20) into (A.3.3.23), 
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The next equation comes from matching in hoop strain in out
   ,  

 
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0 0

sin1 1
1 1
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lv c cin in in
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              (A.3.3.26) 

Note that in equation (30), (31) and (32), the only unknowns are  0 0 0, ,a    . An analytical 

solution can be obtained. 
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CHAPTER 4 

EFFECT OF SURFACE TENSION ON THE ADHESIVE 

CONTACT OF A RIGID SPHERE TO A COMPLIANT 

SUBSTRATE* 

Abstract 

In problems of indentation of an elastic half-space by a rigid sphere, the effect of surface tension 

outside the contact zone is not accounted by classical theories of contact mechanics. However 

surface tension plays a dominant role in determining the mechanics of this adhesive contact when 

the half-space becomes very compliant and the sphere is very small. Using a finite element method 

(FEM), we present a numerical solution of such a problem showing the transition between classical 

Johnson-Kendall-Roberts (JKR) deformation and liquid-like deformation in the absence of 

external load and gravity. The numerical model is in good agreement with experiments, [R.W. 

Style et al., Nature communications 4 (2013)].
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4.1 Introduction 

A canonical problem of central importance in the study of adhesion and contact mechanics is the 

mechanics of interaction between solid spheres 1. Consider a rigid sphere of radius R brought into 

contact with an elastic half-space as shown in Fig. 4.1(a). (As is well-known in contact mechanics, 

the general problem of two smooth ellipsoidal surfaces can be mapped onto this problem by 

substituting for R an effective radius 1.) The sphere attains an equilibrium contact area A with the 

half-space even in the absence of external load due to the adhesion between the solid surfaces. The 

standard model for this process balances marginal adhesion energy that drives the increase of 

contact area, with marginal increase in strain energy that resists the increase of contact area. As 

long as the deformation is small, specifically, when the indentation depth δ and contact radius a 

are small in comparison with R, the solution is usually well described by the Johnson, Kendall and 

Roberts (JKR) 2 theory for soft materials. JKR theory predicts that the equilibrium contact radius 

a and indentation depth δ in the absence of external load are given by 1, 3: 

1/3
6 adWa

R KR

 
  
 

                                                                                                                   (4.1) 

2/3
2

3

adW

R KR

  
  
 

                                                                                                                   (4.2) 
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where Wad is the work of adhesion, 
2

4

3 1

E
K





 , E is the Young’s modulus and ν is the Poisson 

ratio of the elastic half-space. For incompressible materials, K = 16µ/3, where µ is the small strain 

shear modulus of the half-space. For Wad = 0, the JKR theory reduces to Hertz theory 1. 

Johnson (1998) 1 has pointed out that the adhesive forces between the solid surfaces become 

relatively more important with reduction in the product of contact size and elastic modulus. Muller 

et al. (1980) 4 presented a numerical calculation that indicated the JKR theory applies for soft 

solids, large radius of curvature and large energy of adhesion. For the sphere-plane geometry 

specifically, the JKR model is found to be valid in the domain of large sphere radius and a 

compliant half-space. In addition, even though JKR theory is based on small strain theory, a 

numerical study by Lin et al. 5 using large deformation elasticity theory has shown that the JKR 

model is accurate even for moderately large contact radius (half of the radius of the sphere). There 

are few studies that account for the effect of surface tension, although in simulations of the time-

dependent growth of contacts, it has been shown that work of adhesion and surface tension can 

both play a role 6, 7. 

It is therefore interesting to note that recently observed deformations of the soft substrates, such as 

plasticized polystyrene 8, hydrogels 9 and silicone gels 10 caused by adhesion of hard microparticles 

or nanoparticles deviate greatly from the JKR theory. For example, Chaudhury et al. 9 and Style 

et al. 10 have both reported that the exponent of power-law relationship in equations (3.1) and (3.2) 

between the contact radius (indentation depth) and the radius of sphere changes from 2/3 (or 1/3) 

to 1 as the sphere reduces in size or the substrates becomes softer. A similar result was also 
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obtained by Carrillo and Dobrynin 11 using molecular dynamics simulations. In these simulations, 

nanoparticles of different sizes are brought into contact with a rigid half-space and for soft small 

particles the reduction in their height is found to be proportional to their radii. It has been proposed 

that the departure from JKR scaling represents the increasing influence and contribution of solid 

surface stress in resisting deformation 10, 11. Salez et al. (2013) 12 included surface tension in their 

analytical model of a similar problem where an spherical elastic particle is placed on a rigid 

substrate. Using a thermodynamic approach, they demonstrated a continuous change of the 

deformation mechanics from JKR adhesion to wetting with increasing contribution of surface 

tension. We therefore expect a transition in the contact mechanics of particles on an elastic 

foundation from a limit in which deformation is resisted principally by elasticity to a second limit 

in which resistance to deformation is provided mainly by surface tension.  

JKR theory can be derived by minimizing the total potential energy of the system. In the absence 

of external loads, the theory considers two energy terms: the stored elastic energy UE of the half-

space and the surface energy of the interface, US. Specifically, the JKR model does not account 

for the role of surface tensions of the solid surfaces in resisting deformation. That is, the work done 

by the surface tensions upon change in surface area is neglected in the equation of energy balance. 

In addition, because surface tension changes the deformation field, the elastic energy itself is 

different from that given by JKR theory. For a very soft elastic half-space indented by small 

spheres, the contribution of surface tension to the energy balance becomes more significant, 

resulting in the breakdown of JKR theory. In the limit where the half-space is so soft that it behaves 
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like a liquid, neglecting gravity, the surface of the half-space outside the contact will remain flat 

and the sphere will move until the Young’s equation is satisfied at the line of contact, where 

cossg sa                                                                                                                        (4.3) 

where γ’s are the surface energies, the subscripts s, g, a stand for rigid sphere, compliant substrate 

(gel) and air respectively, σ is the surface tension on the exposed gel surface and θ is the contact 

angle as indicated in Fig. 4.1(b), which shows the deformed configuration in this limit. Equation 

(4.3) can be rewritten in a more revealing form:  

  01 cos adW                                                                                                                      (4.4) 

The left hand side of equation (4.4) is the energy release rate due to a peeling of a thin membrane 

at (π - θ) degree 13, 14 and the right hand side is the work of adhesion of the sphere/solid interface, 

where the superscript zero denotes the particular case where the half-space has vanishing modulus. 

We have assumed that there is no sliding in the contact region, i.e., the surface tension of the region 

in contact is trapped in the same state as the region outside the contact.  
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Figure 4.1 (a) A rigid sphere is brought into contact with an elastic half-space. A finite contact 

area is attained in the absence of external loads. (b) The deformed configuration when the modulus 

of the half-space is vanishingly small. 

 

In this work we simulate contact between a rigid sphere and an elastic half-space from the 

elasticity-dominated to surface-tension-dominated limit using large deformation Finite Element 

Model (FEM) which incorporates surface tension in addition to elasticity. Specifically, we study 

the significant departure from JKR that occurs when the dimensionless parameter σ/µR is large. In 

the surface-tension-dominated regime, elastic deformation is very large and the use of small strain 

theory is difficult to justify. This means that the nonlinear theory of elasticity, which accounts for 

(a) 

(b) 
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geometrical and material nonlinearity, is needed to determine the deformation. Consistent with 

Style et al. 10, we assume the surface tension is constant and isotropic. We show that our numerical 

results accurately capture recent experiments reported by Style et al. 10. In addition, we compare 

our numerical result with an approximate analytical expression derived by Style et al. 10 and show 

that this expression is an excellent approximation to describe the new theory. 

 

4.2 Dimensional Analysis and the Two Limits 

In the following, we shall assume that the elastic half-space is incompressible, isotropic and 

homogeneous. For simplicity, the nonlinear elastic behaviour is given by the classical neo-

Hookean model 15 with small strain shear modulus µ.  

 Dimensional analysis shows that the normalized indentation depth δ/R and contact radius a/R (see 

Fig. 4.1(a)) can be expressed as functions of two dimensionless parameters (Wad/µR, Wad/σ), 

1 ,ad adW W
f

R R



 

 
  

 
                                                                                                                   (4.5) 

2 ,ad ada W W
f

R R 

 
  

 
                                                                                                                  (4.6) 

Note that the surface tension of the sphere does not enter in the analysis since the sphere is rigid.   
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In the elasticity-dominated regime, surface tension is negligibly small, σ/µR→0, and the 

deformation is completely determined by Wad/µR. In this regime, for small contacts, equations 

(4.5) and (4.6) reduce to JKR theory given by (4.1) and (4.2).  

In the other limit where the half-space becomes liquid-like, its shear modulus vanishes and 

σ/µR→∞. Using the geometric relation δ/R = cosθ+1 and equation (4.4), the condition of contact 

line equilibrium results in 

adW

R




                                                                                                                                (4.7) 

2

1 1ada W

R 

 
   

 
                                                                                                                  (4.8) 

i.e. the deformation depends only on Wad/σ. Thus, the behaviours of functions f1 and f2 in the 

surface-tension-dominated limit are completely determined. Notably, for equation (4.8) to apply, 

the work of adhesion cannot be more than twice of the surface tension. In this limit, both the 

contact radius and the indentation depth are directly proportional to the radius of the sphere, 

consistent with recent experimental findings 10.  

In the intermediate regime, where both Wad/σ and Wad/µR are important, f1 and f2 cannot be 

determined in closed form. To study the transition from JKR to the surface-tension-dominated 

limit, we carry out finite element analysis using ABAQUS®.  
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4.3 Finite Element Model 

In our FEM model, the sphere is analytically rigid and the elastic half-space is modelled using 

axisymmetric quadratic elements with a neo-Hookean strain energy density function 

 1 3
2

W I


                                                                                                                     (4.9) 

where 2 2 2

1 1 2 3I       is the first invariant of the left Cauchy-Green deformation tensor and the 

λi’s are the principal stretch ratios. A set of user-defined axisymmetric surface tension elements 16 

are attached to the half-space surface, transmitting surface tractions caused by the curvature of the 

deformed surface to the material.  

We employ a similar loading scheme to the original JKR model in our FEM simulation. The system 

consisting of the rigid sphere and the elastic half-space is loaded in three steps (Fig. 4.2(a)): (1) 

surface tension is applied incrementally to the surface elements and stays at the final value σ in the 

following two steps. No deformation occurs in this step and it is performed first as a matter of 

convenience; (2) a vertical point force P is applied incrementally on the north pole of the rigid 

sphere, pushing it into the half-space, which results in a finite contact radius a; (3) the point force 

P is reduced to zero incrementally with the contact radius a held fixed, i.e. no separation of 

previously contacting regions is allowed in this step. The elastic energy is calculated as the net 

work done in the last two steps. The loading cycle is then repeated with different contact radii.  
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We assume no-slip boundary condition at the contact. The two surfaces in contact are not allowed 

to slide with respect to each other. Under this boundary condition, we only need to specify the 

surface tension on the substrate surface outside the contact. (Without no-slip boundary conditions 

we would need to introduce a new parameter into the model – the interfacial surface tension in the 

contacting region – and the surface-tension-dominated limit would be different.) 

 

Figure 4.2 (a) Deformation of the half-space near the contact region after each loading step in a 

simulation with 2/ 1,   / 10R P R    . Only a trace of the axisymmetric system in the r-z plane 

is shown. The thin red layer on the surface after step 1 symbolizes non-zero surface stress. (b) The 

loading curve corresponding to steps 2 and 3. The elastic energy stored in the system is the area 

between the blue and red lines. 
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The last two steps allow us to calculate the energy release rate 17. In step 2, the work done by the 

applied force on the half-space to make an indentation P  is  
0

' '
P

loadP d


  . Upon unloading, 

the total strain energy is 

   
0

' ' ' '
P

p
load unloadP d P d

 


                                                                                    (4.10) 

where  'loadP   and  'unloadP   denote the loading and unloading curves (Fig. 4.2(b)) in step 2 

and 3 respectively. The energy release rate G with respect to contact area is calculated by 

numerically evaluating  

G
A


 


                                                                                                                             (4.11) 

using the central difference method.  2 22A R R R a    is the area in contact (for small 

deformation, 2A a ). Since the surface tension is present throughout the loading and unloading 

steps, the surface and elastic energy induced by surface tension is accounted for in the computation 

of energy release rate. The equilibrium contact radius a and indentation depth δ is determined by 

the energy balance condition Wad = G.  

It is useful to consider the results as shown in equations (4.5) and (4.6), with a/R and δ/R as 

functions of (Wad/µR, Wad/σ), because in the elasticity-dominated limit the behaviour depends only 

on Wad/µR whereas in the surface-tension-dominated limit it depends only on Wad/σ. However, in 

our numerical procedure, we control σ/µR and a/R, each FE simulation yields a value for Wad/µR. 
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These three numbers are then used to create triads of (a/R, Wad/µR, Wad/σ) and (δ/R, Wad/µR, Wad/σ), 

which create the two numerically-defined surfaces we desire. 

 

4.4 Finite Element Results 

A. Elasticity-Dominated and Surface-Tension-Dominated Limits 

The FEM results at σ/µR = 0 (Fig. 4.3(a)) are in good agreement with the JKR model, except for 

large contacts where the small strain assumptions of JKR theory are no longer valid. Fig. 4.3(b) 

also shows that at σ/µR = 50, the FEM results are very close to the analytical solutions in surface-

tension-dominated limit of equations (4.7) and (4.8). 
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Figure 4.3 (a) σ/µR = 0. Plots of indentation depth (left) and contact radius (right) against the 

work of adhesion. (b) σ/µR = 50. Plots of indentation depth (left) and contact radius (right) against 

the ratio of work of adhesion to surface tension.  

 

(a) 

(b) 
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B. Transition from Elasticity-Dominated to Surface-Tension-Dominated Limit 

The transition from the elasticity-dominated limit to surface-tension-dominated limit occurs with 

increasing σ/µR. Fig. 4.4(a) plots the transition by varying σ/µR from 0 to 50 in the simulation at 

constant Wad/σ = 1. In the elasticity-dominated limit, σ/µR →0, the FEM result approaches to the 

JKR theory in blue. As σ/µR increases, δ/R increases asymptotically to the surface-tension-

dominated limit in green. 

The deformed surface profile near the contact line at different surface tension can be used to picture 

the transition. Fig. 4.4(b-d) shows the same sphere making contacts of same area with three half-

spaces at increasing σ/µR. From left to right, the peak at the contact line gets smoothed out as σ/µR 

increases. At σ/µR = 50, where surface tension dominates, the surface outside the contact becomes 

almost flat, and the half-space behaves like a liquid in the absence of gravity. 
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Figure 4.4 (a) Indentation depth δ/R is plotted against Wad/µR at Wad/σ = 1. (b) Deformed surface 

profiles in simulations of the same contact area at: σ/µR = 0; (c) σ/µR = 1; (d) σ/µR = 50.  

 

 

(b)   (c)   (d)   

(a) 
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C. Comparison with Experiments 

Style et al. 10 recently studied contact between glass spheres and compliant silicone substrates with 

Young’s moduli ranging from 3 to 500 kPa. They observed significant deviation of the substrate’s 

deformation from the prediction of JKR theory for their softer gels. Because the glass spheres in 

their study are at the micron scale, gravity loading can be neglected. We fitted their experimental 

results using our FEM models and estimated the values of work of adhesion and surface tension 

for four silicone gels of known values of Young’s moduli. Details of our fitting procedure are 

provided in Appendix 4. The fitted results are shown in Fig. 4.5.  

For the stiffest substrate (green), where E = 500 kPa, σ/µR is relatively small and the deformation 

is in the elasticity-dominated limit. The softest substrate (blue) deforms like a liquid as the plot of 

a versus R is almost linear. Our fitting estimates that the work of adhesion is 52-64 mN/m and 

surface tensions is 32-43 mN/m, both slightly lower than the values suggested by Style et al. 10 

(the work of adhesion of 71 mN/m and surface tension of 45 mN/m). Note that there is a 

discrepancy between the experimental results and its numerical fit in the plot of δ against R for the 

softest gel (blue). The translation in log scale suggests that the numerical fit differs from the 

experimental results by a constant factor. 
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Figure 4.5 Experimental results (scattered points) of Style et al. 10 are fitted by interpolating the 

results of FEM simulations (solid lines). The corresponding fitted values of work of adhesion and 

surface tension are provided in the legends. Note that the blue line in the right figure should be 

linear by theory; the nonlinearity is due to the limitations of interpolation. 

 

4.5 Approximate Formula for Deformation 

Style et al. 10 proposed the following approximate relationship between the normalized indentation 

depth, work of adhesion and surface tension: 

3/2
16

2 2 0
3

adW

R R R R

  
 
 

 
   

 
                                                                                         (4.12) 
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Equation (4.12) reproduces the JKR result at σ/µR = 0 and yields the result in surface tension-

dominated limit as σ/µR→∞. In Fig. 4.6 (left) we verified equation (4.12) (solid lines) against our 

FEM results (stars). It shows that equation (4.12) is very accurate even at intermediate values of 

σ/µR. 

We propose the following phenomenological interpolated relationship between the normalized 

indentation depth and contact radius, 

   
2 2

2

1
2

2 / 1/
a

R
 

    
  

 
                                                                             (4.13) 

where /a a R  and / R  . Equation (4.13) reduces to the JKR theory as σ/µR→0, and it also 

gives the correct geometric relationship in the surface-tension-dominated limit as σ/µR→∞. Using 

equations (4.12) and (4.13), a  is plotted against Wad/µR (solid lines) and compared to the FEM 

results (stars) in Fig. 4.6 (right). As mentioned earlier, the JKR theory breaks down when the 

contact radius is large (Fig. 4.3(a)). The discrepancy between the FEM results (stars) and this 

approximation (solid lines) of equations (4.12) and (4.13) is also relatively large at small values of  

σ/µR when a/R is large. However, for the cases where surface tension is important, the proposed 

approximation gives very close estimates even at large scale contact.  
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Figure 4.6 Normalized indentation depth (left) and contact radius (right) are plotted against 

normalized work of adhesion and it shows good agreements between FEM results (stars) and 

Equation (4.12-4.13) (solid lines). 

 

4.6 Conclusion 

For sufficiently compliant materials and small particles, surface tension can play a dominant role 

in determining the mechanics of adhesive contact between two surfaces. We present a numerical 

study of the transition between classical JKR deformation and surface-tension-dominated 

deformation of a compliant elastic half-space indented by a rigid sphere in the absence of external 
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load and gravity. Using a newly developed surface tension element, we are able to simulate very 

large contact, which is usually observed when very small spheres (micron scale) and very soft (less 

than 100kPa) substrates are brought into contact. The indentation depth and contact radius due to 

adhesive contact without applied external load are characterized completely by two dimensionless 

parameters (Wad/µR, Wad/σ).  

There are two theories for deformable solid surfaces in adhesive contact, the JKR theory and the 

one presented by Derjaguin, Müller and Toporov 18 (the DMT theory). The validity of these two 

theories for specific cases can be examined by calculating the Tabor parameter 

1/3
2

*2 3

0

ad
Tabor

RW

E z


 
  
 

, where  * 2/ 1 4E E      is the effective elastic modulus and z0 is the range of interactions 

between molecules. In the experiments of Style et al. 10, the value of Tabor parameter is in the 

order of (104) 21, and hence we replace explicit adhesive interaction with energy balance method 

as in the JKR theory. However, our FEM can be extended to include explicit adhesive interactions, 

e.g. to investigate contacts of spheres with stiffer substrates 6, 7. We further note that the difference 

between DMT and JKR is relatively minor compared to the qualitative change when surface 

tension replaces elasticity as the dominant term resisting adhesive contact.  

Although in the JKR analysis, there are no specified boundary conditions at the contact, we employ 

a no-slip boundary condition during the loading and unloading process in our FEM simulations. 

This is consistent with our analysis at the surface-tension-dominated limit analogous to Kendall’s 

peel test. An extra parameter that would potentially affect the phenomenon, namely interfacial 
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tension, is also rendered irrelevant by this no-slip condition. In our FEM model, surface elements 

are applied on the entire surface of the half-space. However due to the no-slip boundary condition 

in the contact zone, surface traction applied to surface elements within the contact is balanced by 

the boundary constraint. Therefore surface tension is only applied effectively at the exposed 

surface of the half-space. No doubt that this no-slip boundary condition is not appropriate for all 

situations. However, it is also easy to incorporate frictionless boundary condition in our FEM 

model.  

The largest deformation achieved in our FEM simulations is at a/R = 1. The deformation limit is 

imposed by the meshing of the FEM model. However larger deformations (i.e. passing the point 

of a/R = 1), can be achieved with some adaptive finite element re-meshing techniques.  

We presume that in the experiments of Style et al. 10, the contact area increases monotonically and 

the work of adhesion is the work released upon contact growth. However, this remains an 

assumption as it is possible that in the process of depositing particles onto the substrate, contact 

area may decrease following an initial increase. In which case, the work of adhesion may not be a 

unique quantity and the effect of contact angle hysteresis becomes important 22.  

Lastly, we neglect gravity in our study because the sphere is very small and the indentation is 

mainly a result of the action of adhesive forces between the two solid surfaces. In the surface-

tension-dominated limit, because there is no external force, the net component of the surface 

tension for any sections outside the contact must not have a vertical component, and the surface is 

flat. However if the sphere is sufficiently large, gravity also plays a part in causing the deformation. 
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Especially in the surface-tension-dominated limit, the surface outside the contact is no longer flat, 

because gravity induces a gradient in pressure difference as one move away from the contact line. 

According to Young-Laplace equation, this will result in a changing surface curvature.   

 

Acknowledgements 

We thank Robert W. Style and Eric R. Dufresne for providing their experimental data and helpful 

discussions and comments. This work was supported by the U.S. Department of Energy, Office of 

Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-

07ER46463. 

 

Appendix 4 Supplementary Information 

From the FEM results, we generate surfaces of normalized indentation depth δ/R and contact radius 

a/R in terms of (Wad/µR, Wad/σ). A spline interpolation method using Green function approach b is 

employed to interpolate the scattered FEM results. Physically this corresponds to forcing a thin 

elastic plate to pass through the known data points with a shape that minimizes its strain energy.  

                                                 
b Sandwell, D.T., Biharmonic spline interpolation of GEOS‐3 and SEASAT altimeter data. . Geophysical research 

letters, 1987. 14(2): p. 139-142. 
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Note that in the attempt of extrapolating a/R, the result may be greater than 1, which is incorrect. 

Here we assume that the surface is symmetric about a/R = 1, so if the extrapolated value for

   /  1,   ) /   2 /( extrapolated extrapolated
a R a R a R   . Figure A.4.1 below shows the generated 

surface plotted with the FEM results in black dots.  

 

Figure A.4.1 The surfaces of indentation depth (left) and contact radius (right) are interpolated 

over a grid of (Wad/µR, Wad/σ). The colour maps indicate values of δ/R and a/R. The scattered black 

dots are results from FEM simulations.     

 

When conducting least-square fit of the experimental results reported by Style et al. c using the 

surfaces interpolated from FEM results, we use (Wad/µR, Wad/σ) as the fitting parameters. The 

fitted results shown in Fig. 4.6a and 4.6b in the manuscript are obtained from two fitting methods. 

In Fig. 4.6a, (Wad/µR, Wad/σ) are chosen such that sum of squares of errors in both the contact 

radius and the indentation depth is minimized. We noticed that experimental measurements of the 

                                                 

c Style, R.W., Hyland, C., Boltyanskiy, R., Wettlaufer, J. S., & Dufresne, E. R., Surface tension and contact with soft 

elastic solids. arXiv preprint, 2013. arXiv:1308(1934). 
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contact radius were less scattered than those of the indentation depth. Hence in Fig. 4.6b, (Wad/µR, 

Wad/σ) used only minimizes the sum of squares of errors in the contact radius. We then plotted the 

resulting indentation depths to compare with the measurements in experiments.  

 

The pair of (Wad/µR, Wad/σ) is not unique to result in a specific deformation. Hence some physical 

ground is required in attempts to interpreting experimental results correctly using the surfaces of 

deformation constructed by FEM simulations. For example if the contact scale is small and the 

material is relatively stiff, JKR theory should be used first to get a reasonable value of Wad/µR. 

Then a fitting against the FEM results can be done in the proximity of that value to obtain more 

accurate values of (Wad/µR, Wad/σ). This approach is used in the fittings of the cases where Young’s 

moduli are 500 kPa (green in Fig. 4.6) and 250 kPa (black in Fig. 4.6). Similarly if the material is 

so soft that it behaves like a liquid (the red and blue cases in Fig. 4.6), the equations of surface 

tension dominated limit should be used to obtain a rough estimate of Wad/σ, before fitting the FEM 

results to experimental data.  
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CHAPTER 5 

EFFECTS OF SURFACE TENSION AND LARGE 

DEFORMATION ON CONTACT OF SOFT SOLIDS*  

Abstract 

We study the coupled effect of surface tension and large deformation on contact behaviour of 

solids for two geometries. One is a rigid sphere indenting on an elastic half space. The other is an 

elastic sphere contacting with rigid plates. We develop finite element models for these two 

geometries and simulate both non-adhesive and adhesive contacts in large deformation regime. 

Surface tension is included in our model through a set of user-defined surface elements on the free 

surface of the elastic body. We also explore the difference between frictionless and no slip contacts. 

Our results of no slip contact are used to assess the applicability of the small strain theory proposed 

by Hui et al. (2015), which extends the classic Hertz and JKR theory to include surface tension.   
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5.1 Introduction 

Understanding the mechanics of contact between non-conforming solid surfaces is of great 

importance in many circumstances 1, 2. Examples include recent studies on colloidal dispersion 3, 

latex particles 4, biological cells 5 and micro-patterned substrates 6. Also, microscopic indentation 

method 7 and atomic force microscopy (AFM) are frequently used to characterize the mechanical 

behaviour of biological materials. For example, the moduli of biological gels are often determined 

by measuring the amount of indentation due to the weight of a rigid sphere placed on the surface 

of substrate. To determine elastic modulus from these measurements, the biologists often used 

classical Hertz theory, which describes the small contact behaviour of solids in the absence of 

surface interactions (i.e. without considering adhesion and surface tension). Even though Hertz 

theory has been successful in deriving Young’s modulus of many soft materials when adhesion is 

not significant 7, 9-11, its application to model soft contacts is still limited by its disregard of 

substrate surface stress and material nonlinearity. 

In problems where adhesion forces are important, the standard theory is given by Johnson, Kendall 

and Roberts (JKR) 12. The JKR theory treats the air gap between the sphere and the substrate as an 

external crack, and accounts for adhesion by computing the energy release rate G of this crack. 

The amount of contact is determined using Griffith’s criterion of energy balance, that is G = Wad, 

where Wad is the effective work of adhesion. For ideal surfaces without hysteresis and governed 

by dispersive interaction, Wad can be considered as the Dupré’s work of adhesion. Although the 

JKR theory was successful at its inception, contact behaviours that deviated from the theory have 
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been reported in many recent experimental and theoretical studies on soft materials at small scales 

13-15.  

To understand the discrepancies between experimental results and Hertz or JKR predictions, it is 

necessary to highlight the major assumptions in these two theories. Both theories are based on 

small strain linear elasticity theory and hence are restricted to small contacts where the ratio of 

contact radius a to sphere radius R is much less than 1. As a result, the deformation of solid surfaces 

can be calculated as if they were half spaces. Also, because of small deformation, a linear 

constitutive relation between strain and stress is used. However, the small strain assumption breaks 

down for many problems of practical interest. For instance, many biological or polymeric materials 

typically have moduli on the order of kPa, so even relatively weak forces can cause very large 

shape change and hence these materials no longer obey a linear stress-strain relation. Furthermore, 

a clear distinction between the undeformed and deformed configurations has to be made in a large 

deformation setting. Lin and Chen (2006) 16 have studied the effect of material and geometry 

nonlinearities in the absence of surface tension on both the Hertz and JKR theories using finite 

element models (FEM). To be consistent with the theories, their finite element model assumed a 

frictionless contact condition.  

Another assumption that is often challenged in recent studies 13, 17-23 is the neglect of surface stress 

outside the contact. Physically, one expects that surface stress resists indentation. Hence the 

amount of indentation will be less for a given external load, if surface stress is accounted for. The 

effect of surface stress is often characterized by the elasto-capillary number α = σ /µR, where σ is 
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a measure of the surface stress and µ is the shear modulus of the elastic body. It has been noted 

that in the limit of infinitely large elasto-capillary number α→∞, the mechanics of contact should 

be similar to wetting, which is governed by Young’s equation 13. By including the contribution of 

surface tension σ outside the contact in their finite element models, Xu et al. 18 successfully 

captured the transition from JKR adhesion to wetting for the contact between a rigid sphere and 

an elastic half space in the absence of external or gravitational load. Cao et al. 19 also reported the 

crossover between adhesion and wetting using molecular dynamics simulations for the same 

contact configuration. The case of spherical contact under finite external load has also been studied 

by Hui et al. 21, who proposed analytical modifications of Hertz and JKR theories to incorporate 

effect of surface tension outside the contact. Similar results are also obtained by a more recent 

work by Long et al. 23. The problem of an elastic sphere placed on a rigid substrate was considered 

by Carriloo & Dobrynin 22 using molecular dynamics and Salez et al. 20 using an approximate 

energy approach. Notably, both the theoretical framework proposed by Salez et al. 20 and Hui et 

al. 21 are based on the linear elasticity theory, in which the difference between current and 

undeformed states is infinitesimally small. However the effect of surface tension is intrinsically 

non-linear, because the Laplace pressure is induced by deformation in the current state. This 

additional source of nonlinearity also adds uncertainties to the contact behaviour of soft solids in 

large deformation regime.  

There is little discussion in the literature on the contact condition, particularly on the role of 

interfacial shear stresses. In the original small strain Hertz and JKR theories as well as Lin and 

Chen’s 16 finite element studies, contacts are assumed to be frictionless. In Hui et al.’s 21 small 
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strain theory (SST), a no-slip contact condition is prescribed. Under the small strain assumption, 

the no-slip condition also gives zero shear interfacial stress when one of the contacting bodies is 

rigid and the other an incompressible elastic half space 24. Hence both frictionless and no-slip 

conditions give the same results. However this need not be the case for large deformation. To 

further complicate matters, when contact is frictionless one needs to specify the portion of the 

interfacial surface stress that acts on the elastic body, which is difficult to do since the rigid body 

can in principal support any stress.    

The objectives of this paper are therefore three-fold. First, to assess the coupled effect of 

nonlinearities (arising from geometry, material and surface tension) in non-adhesive and adhesive 

contacts. Second, to assess the applicability of the small strain theory proposed by Hui et al. 21 in 

the large deformation regime. Finally, the third objective is to study the difference between 

frictionless and no-slip contact conditions when the contact is large. Specifically, we use finite 

element method to study two contact systems: (1) a rigid sphere with an elastic half space and (2) 

an elastic sphere with a rigid substrate. In both systems, we explore the effect of surface tension 

by varying the elasto-capillary number α.  

 

5.2.1 Finite Element Model  

There are two contact geometries studied in the literature, a rigid sphere indenting on an elastic 

half space and an elastic sphere contacting with a rigid substrate. Modelling the former is straight 

forward as shown in Fig. 5.1a. However applying external load to the latter geometry requires 
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more careful consideration because of large deformation. Here we choose a symmetric loading 

system as shown in Fig. 5.1b, where equal and opposite vertical loads are applied to two rigid 

plates compressing the elastic sphere. This loading set-up is also easy to implement in experiments. 

To compare results with Lin and Chen 16, the elastic parts (half space in Fig. 5.1a and sphere in 

Fig. 5.1b) are modelled as incompressible neo-Hookean materials. The strain energy density W of 

these materials are 

 1 3
2

W I


                                                                                                                                    (5.1) 

where I1 is the trace of Cauchy-Green strain tensor.  

 

Figure 5.1. Geometries of finite element models: (a) a rigid sphere (solid black line) is brought 

into contact with an elastic half space; (b) an elastic sphere is sandwiched in between two rigid 

plates (solid black lines). 

Surface tension is introduced to the system by augmenting the finite element model with a set of 

user-defined axisymmetric 2-node linear surface elements 18, which discretize the free surfaces of 
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the elastic bodies. These user defined surface elements transmit surface tractions caused by the 

curvature of the deformed surface to the bulk. In this study, we assume the solid-air surface stress 

is an isotropic tensor, with magnitude being the surface tension σ. Although not necessary 25, we 

assume σ is a material constant independent of surface deformation since so far all the contact 

analyses 13, 17-23 have employed this assumption.  

We consider both frictionless and no-slip contacts. As far as computation is concerned, the contact 

problem is much easier to solve if no-slip condition is adopt. Indeed, even though the surface of 

elastic body could have different surface stresses before and after contact, these stress does not 

affect the solution because the continuity of displacement and no-slip condition fully determine 

the elastic solution. The frictionless contact condition however imposes difficulties in modelling. 

Prescribing a solid-solid interfacial stress generally assumes perfect bounding between the two 

surfaces. This is in contrary to frictionless condition, which allows the surfaces to slip. Furthermore, 

it is difficult to determine the portion of surface stress acting on the elastic surface when it is in 

contact with a rigid surface, because the rigid surface can in theory support any stress. In our 

simulations, we assume a constant surface stress σ for all surface elements inside and outside the 

contact. 

To simulate contact, we employed similar loading schemes with adjustments to different 

geometries and interfacial conditions. All simulations are performed in steps: (step 1) surface 

tension is applied incrementally to the surface elements and held at the final value σ in the 

subsequent steps. Since the elastic body is a half space in Fig. 5.1a and an incompressible sphere 
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in Fig. 5.1b, no deformation occurs in this step for both geometries and it is performed first as a 

matter of convenience; (step 2) the vertical load is applied to the system incrementally to a final 

value of PH, bringing the rigid and elastic parts closer and a finite contact radius aH is achieved at 

the end of this step. Here we use a subscript H to indicate that the contact made during this loading 

step is non-adhesive; (step 3 only for adhesive contacts) the vertical load is reduced incrementally 

to a final value of P (negative value of P indicates a pulling force) while no separation from the 

rigid surface of previously contacting nodes is allowed. The contact radius at the end of the 

unloading step is a. Fig. 5.2 shows typical deformations of each geometry at the end of each step. 

Notice for no-slip contact, the two surfaces in contact are not allowed to slide with respect to each 

other; as a result, the contact radius remains unchanged during unloading step, i.e. a = aH. However 

if frictionless boundary condition is applied, the contacting nodes can slide freely along the rigid 

surface (but not separate), hence a < aH.  
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Figure 5.2. Deformation of the elastic parts after each loading step in a simulation with α = 

1: (a) a rigid sphere (black line) is brought into contact with an elastic half space; (b) an elastic 

sphere is placed in between 2 rigid plates (black lines). The thin red layers on the free surface after 

step 1 symbolizes non-zero surface stress. Step 3 is performed only for adhesive contact. 

To compute energy release rate G in the current configuration, we calculate the change in potential 

energy Π of the system, which is the sum of the elastic strain energy UE, the surface energy US and 

the potential energy of the applied load -Pδ, with a virtual elemental decrease of the current contact 

area A, i.e. 

     , ,E sP P
G U U P

A A
 


 

     
 

                                                                                    (5.2) 
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Here, we compute the surface energy US as the multiple of constant surface tension σ and the total 

surface area of the substrate. 

Specifically, we evaluate G by carrying out two FEM simulations. In the first, we load the system 

with PH in step 2 and unload the system to P in step 3. At the end of this simulation, the contact 

area is A and the indentation depth is δ. In the second simulation, the system is loaded with (PH – 

dPH) in step 2 and unloaded to the same value of P. At the end of the second simulation, the contact 

area is (A – dA), the indentation is (δ – dδ). The information from these two simulations hence 

allows us to numerically compute the energy release rate with respect to current configuration 

using equation (5.2).    

 

5.2.2 FEM Results: Non-Adhesive Contact  

FEM results for the non-adhesive contact of two geometries are given in this section. We compare 

(1) FEM results with different contact conditions, frictionless (x) and no-slip (o); (2) frictionless 

FEM results in the absence of surface tension with Lin and Chen’s prediction in frictionless non-

adhesive contact; (3) no-slip FEM results with SST prediction in no-slip non-adhesive contact by 

Hui et al., which is given by equations (A.5.3) and (A.5.4) in the Appendix 5. The results are 

presented by normalizing the load PH and the indentation depth δH by the small strain Hertz load 

 216 / 3Ha R  and the small strain Hertz displacement 2 /Ha R  respectively. We define indentation 

depth δH as the vertical position of the bottom of rigid sphere with respect to the far-field free 
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surface of the elastic half space in Fig. 5.1a and the change in distance between the sphere centre 

to the plates in Fig. 5.1b.   

Fig. 5.3a, b plot the normalized load against aH/R for both geometries at various values of the 

elasto-capillary number α. In the absence of surface tension, our frictionless (x) FEM results are 

in excellent agreement with Lin and Chen’s results (dashed red line) 16. In general, the load versus 

contact radius relation is hardly affected by making the contact frictionless or no-slip, at least when 

aH/R < 0.5. For larger contacts, the no-slip contact requires a slightly larger load compared to 

frictionless contact for a given contact area. Fig. 5.3a shows that SST underestimates the load in 

non-adhesive contact of a rigid sphere and an elastic half space at all values of α when aH/R > 0.5. 

For non-adhesive contact of an elastic sphere and rigid plates (Fig. 5.3b), the SST underestimates 

the load for large values of α (surface-tension-dominant), but overestimates the load when α is 

approaching zero (elasticity-dominant). Furthermore, when α is small (blue and green), the SST 

seems to be more accurate for the non-adhesive contact of an elastic sphere and rigid plates at 

aH/R > 0.5in Fig. 5.3a than that in Fig. 5.3b. A plausible reason is that for contact of a rigid sphere 

and an elastic half space, the SST’s approximation of the rigid sphere surface profile as a parabola 

breaks down at large contact. 
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(a) 



138 

 

 

Figure 5.3. Results of non-adhesive contact: normalized load is plotted against aH/R with 

varied elasto-capillary number α subject to frictionless (x) or no-slip (o) conditions. (a) A 

rigid sphere and an elastic half space; (b) an elastic sphere and two rigid plates. Predictions made 

by the SST (equation (A.5.3.3) in Appendix 5) are plotted in solid lines. Lin and Chen’s results 

are plotted in dashed red line.  

Fig. 5.4a, b plots the indentation depth versus contact radius. There is little difference between the 

FEM results in Fig. 5.4a, b for the frictionless and no-slip contacts, except when contact between 

a rigid sphere and an elastic half space (Fig. 5.4a) is large and α is small. In contrast to load versus 

contact radius relation (Fig. 5.3a, b), the SST performs poorly in predicting indentation depth for 

a given contact radius, especially for the contact between an elastic sphere and rigid plates (Fig. 

5.4b). For contacts between a rigid sphere and an elastic half space, Fig. 5.4a shows that an increase 

in α exaggerates the error between FEM results and the SST. 

(b) 
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(a) 
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Figure 5.4. Results of non-adhesive contact: normalized indentation depth is plotted against 

/Ha R with varied elasto-capillary number α subject to frictionless (x) or no-slip (o) 

conditions. (a) A rigid sphere and an elastic half space; (b) an elastic sphere and two rigid 

plates.Predictions made by the SST (equation (4) in SI) are plotted in solid lines. Lin and Chen’s 

results are plotted in dashed red line.  

In the SST 21, the normalized load and indentation depth for non-adhesive contact are functions of 

a single parameter 
2 Ha





 , see equation (A.5.3 – A.5.4) in Appendix 5. Fig. 5a, b show that 

equation (A.5.3) in Appendix 5 holds very well for both geometries with either contact condition. 

Its accuracy is also enhanced by increasing value of α. Consistent with Fig. 5.3a, b, FEM results 

only start to deviate from the red analytical curve of equation (A.5.3) in Appendix 5 when 

/ 0.5Ha R  (labelled in different colours for different values of α in Fig. 5.5a, b).  

(b) 
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aH /R>0.5 

aH /R>0.5 

aH /R>0.5 

aH /R>0.5 

(a) 
(A.5.3) 
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Figure 5.5. Results of non-adhesive contact: normalized load is plotted against β subject to 

frictionless (x) or no-slip (o) conditions. (a) A rigid sphere and an elastic half space; (b) an elastic 

sphere and two rigid plates. Predictions made by the SST (equation (3) in SI) are plotted in solid 

red line.  

On the other hand, equation (A.5.4) in SST (see Appendix 5) did poorly in predicting indentation 

depth for a given value of β, as shown in Fig. 5.6. This is particular so in Fig. 5.6b for contact 

between an elastic sphere and rigid plates, equation (A.5.4) overestimates the normalized 

indentation depth in the whole range of β, possibly due to the finite size of the elastic sphere. 

aH /R>0.5 

aH /R>0.5 

aH /R>0.5 
(b) 

(A.5.3) 
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(a) 
(A.5.4) 
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Figure 5.6. Results of non-adhesive contact: normalized indentation depth is plotted against 

β subject to frictionless (x) or no-slip (o) conditions. (a) A rigid sphere and an elastic half space; 

(b) an elastic sphere and two rigid plates. Prediction made by the SST (equation (A.5.4) in 

Appendix 5) are plotted in solid red line.  

 

5.2.3 FEM Results: Adhesive Contact  

In the previous section, we show that the SST predicts load much more accurately than indentation 

depth for non-adhesive contacts. Hence in this section, we only compare FEM results with the SST 

on relation between load and contact radius in adhesive contacts. 

(b) (A.5.4) 
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Lin and Chen 16 solved the adhesion problem without considering surface tension by implementing 

a cohesive zone model to describe the adhesive interaction. Here we follow the philosophy of JKR 

theory by including adhesion indirectly in our finite element model – adhesion is realized by not 

allowing surface separation in the contact region during unloading. Thus we are able to compute 

the energy release rate G with respect to the current configuration at a given load P and a contact 

area A via equation (5.2). A drawback of this approach is that it is difficult to enforce a fixed value 

of energy release rate (i.e., G = Wad) in our simulation. To do this, we have to carry out a large 

number of simulations, interpolate the results to find a particular set of load and contact radius 

such that G is constant. 

We first compare our FEM results in the absence of surface tension to JKR theory and Lin and 

Chen’s results of frictionless adhesive contacts 16 in Fig. 5.7a, b. Here we employ the same 

normalization scheme as Lin and Chen 16. Fig. 5.7a, b show that our results are consistent with 

theirs, thus validating our finite element method. Notice that the simulations subjected to different 

contact conditions (frictionless (x) or no-slip (o)) are very similar in load versus contact radius 

relation with this normalization scheme. 
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Figure 5.7. FEM results of adhesive contact are compared to JKR theory as well as Lin and 

Chen 16: normalized load is plotted against normalized contact radius subject to frictionless 

(a) 

(b) 
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(x) or no-slip (o) conditions. (a) A rigid sphere and an elastic half space; (b) an elastic sphere and 

two rigid plates.  

To further explore the coupled effect of surface tension and large deformation, we exam the 

relation between G/µR and a/R at different values of 2/P R  and α in Fig. 5.8 - 5.10.  

Fig. 5.8a, b present FEM results at α = 1, which falls in the range of elasto-capillary numbers that 

are typically seen in experimental studies 13, 15 of soft gels. Three normalized external loads

2/P R are considered, including a pushing force of 2/ 1P R  , zero external load 2/ 0P R 

(consistent with experiments reported in 13) and a large pulling force of 2/ 1P R   (consistent 

with experiments reported in ref. 15). It shows in Fig. 5.8a, b that whether the contact is frictionless 

or no-slip has significant influence on the relation between the energy release rate and contact 

radius - at a given load, a much higher energy release rate is needed to maintain the same contact 

radius for frictionless contact. This phenomenon is due to slipping of contacting surface. One has 

to substantial increase the applied compressive load in step 2 so that at the end of the step 3, the 

contact radius (after slip) is the same as the no slip contact case. This phenomenon is not reflected 

in Fig. 5.7a, b, because the normalized variables on both axes involves the energy release rate. Fig. 

5.8a, b also compare the prediction of Hui et al.’s small strain theory (SST) 21.   

Fig. 5.8a shows that the SST adhesion theory for no slip contact is accurate as long as the contact 

radius is less than half of the sphere radius. On the other hand, Fig. 5.8b shows that the SST is 

surprisingly good at describing the no-slip contact of an elastic sphere and rigid plates - its 

prediction agrees with no-slip FEM results to a much larger contact radius (a/R~1), even though it 

was initially derived for a rigid sphere contacting with an elastic half space. Details of computing 
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energy release rate based on the SST are given in the SI. Here we noted that contact area is 

computed as A = πa2 in the SST, which is valid for contact of an elastic sphere between rigid plates. 

For large contact of a rigid sphere and an elastic half space, this approximation underestimates 

contact area for a given contact radius, and will lead to an underestimation of the energy release 

rate. 

 

(a) 
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Figure 5.8. Results of adhesive contact at α=1: normalized energy release rate is plotted 

against normalized contact radius subject to frictionless (x) or no-slip (o) conditions. (a) A 

rigid sphere and an elastic half space; (b) an elastic sphere and two rigid plates. Predictions made 

by the SST are plotted in solid lines.  

In Fig. 5.9 and 5.10, we varied the value of α while keeping the external loading condition constant 

- zero load in Fig. 5.9 and 2/ 1P R    in Fig. 5.10. Consistent with Fig. 5.8, higher energy 

release rate is required to maintain the same contact radius if the interface is frictionless. In 

particular, when α=10 (in Fig. 5.9a and 5.10a), the compressive force required to produce the same 

contact radius as the no slip contact case, resulting in deformation so large that it exceeds the 

capability of our finite element model. Hence the results of frictionless contact at α=10 are missing 

from Fig. 5.9a and 5.10a. The SST is again accurate to much larger contacts for the geometry in 

Fig. 5.9b and 5.10b. In addition, for the geometry in Fig. 5.9b and 5.10b (elastic sphere between 

(b) 
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rigid plates), the SST tends to overestimate the energy release rate at a given contact radius for no-

slip contact when α < 1. In all other cases (also see Fig. 5.9a and 5.10a), the SST underestimates 

the energy release rate. 

 

(a) 
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Figure 5.9. Results of adhesive contact at zero load: normalized energy release rate is plotted 

against normalized contact radius subject to frictionless (x) or no-slip (o) conditions. (a) A 

rigid sphere and an elastic half space; (b) an elastic sphere and two rigid plates. Predictions made 

by the SST are plotted in solid lines.  

(b) 
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(a) 
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Figure 5.10. Results of adhesive contact at normalized load of -1: normalized energy release 

rate is plotted against normalized contact radius subject to frictionless (x) or no-slip (o) 

conditions. (a) A rigid sphere and an elastic half space; (b) an elastic sphere and two rigid plates. 

Predictions made by the SST are plotted in solid lines.  

An important aspect of the SST proposed by Hui et al. 21 is that if the load P and contact radius a 

are normalized by the pull-off load ˆ
(3 / 2) ad

P
P

W R
 and the pull-off contact radius 

 
1/3 2/3

2
ˆ

9 / 4ad

a
a

W R 
  in the elasticity dominant limit respectively, then the relationship between 

them depends only on the single parameter 
 

1/3

/

9 / 4ad

R

W R

 


 
 . To check if this result (equation 

(A.5.1) in Appendix 5) holds in large contact, we interpolated FEM results for three different 

(b) 
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values of ω (0.1, 1 and 5) and plot â  versus P̂  in Fig. 5.11. The interpolated FEM no slip contact 

results agree well with the stable branch of equation (A.5.1) in Appendix, which is derived based 

on no slip contact. In particular, this agreement improves with increasing ω, where surface tension 

is expected to dominate. Consistent with results of non-adhesive contact in Fig. 5.3a, b, SST tends 

to underestimate load for a given contact radius expect for the case of an elastic sphere between 

rigid plates (Fig. 5.11b) and ω is small.  

 

(a) 
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Figure 5.11. Results of adhesive contact: normalized contact radius is plotted against 

normalized load in systems with varied ω subject to frictionless (x) or no-slip (o) conditions. 
(a) A rigid sphere and an elastic half space; (b) an elastic sphere and two rigid plates. FEM results 

are interpolated and predictions made by the SST (equation (1) in SI) are plotted in solid lines.   

 

5.3.  Conclusions and Discussion  

We study contact mechanics between (a) a rigid sphere and an elastic half space and (b) an elastic 

sphere and rigid plates. Using the finite element method, we are able to simulate contacts with 

either frictionless or no-slip contact condition beyond the small strain limit. The effect of surface 

tension is incorporated in our model using a set of user-defined surface elements on the free surface 

of the elastic body. We assume a constant surface tension on elastic surfaces both inside and 

(b) 
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outside the contact. We study both the non-adhesive and adhesive contacts in this work and 

compare our finite element results to (1) the classic Hertz and JKR theories; (2) Lin and Chen’s 16 

finite element study on frictionless contacts without considering surface tension outside the contact; 

(3) Hui et al.’s 21 small strain theory (SST) on no-slip contacts incorporating the effect of surface 

tension. The key findings of our study are listed below: 

For non-adhesive contact problems: 

1. Our results of frictionless contact in the absence of surface tension agree well with Lin and 

Chen 16.  

2. The two contact conditions lead to similar results up to very large contact.  

3. As far as the load versus contact radius is concerned, our results show that the SST is an 

excellent approximation for no-slip contact, at least when / 0.5Ha R  . The normalized 

load  33 / 16H HP R a  can be determined by a single parameter / 2   Ha  as described 

in equation (A.5.3) when / 0.5Ha R  .  

4. The SST gives reasonable predictions of indentation depth only for the non-adhesive 

contact between a rigid sphere and an elastic half space when / 0.5Ha R   at smaller values 

of the elasto-capillary number, e.g. 1  . The indentation depth versus contact radius 

relation deviates considerably from the SST for the contact between an elastic sphere and 

two rigid plates. This is because the finite-size elastic sphere can be represented as an 

elastic half space (an assumption of SST) only when / 1Ha R  . The breakdown of this 

assumption leads to overestimation of indentation depths since the sphere becomes stiffer 
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with increasing contact area. Noticeably, the computation of indentation depth in the SST 

is much more sensitive to the breakdown of this assumption than the load calculation.  

For adhesive contact problems: 

1. In the absence of surface tension and frictionless contact, we show that our FEM result of 

load versus contact radius relation agrees with Lin and Chen 16.  

2. At a given external load, the SST’s prediction of the energy release rate versus contact 

radius relation is consistent with our FEM results of no-slip contact when / 0.5Ha R  .  

3. Even though SST is originally derived for the contact between a rigid sphere and an elastic 

half space, it works surprisingly well for the contact between an elastic sphere and two 

rigid plates. Especially at 1  , SST’s prediction of no-slip contact agrees well with our 

FEM results up to a contact radius of / ~ 1a R , much better than the case of a rigid sphere 

in adhesive contact with an elastic half space.   

4. In contrast to non-adhesive contact, frictionless contact leads to substantially smaller 

contact radius for a given energy release rate and external load.   

 

There are several limitations in this work. In our finite element model, the work of adhesion cannot 

be prescribed directly. Instead, we calculate the energy release rate of the contact configuration. 

Therefore the computational cost is very high because a very large number of simulations are 

required to interpolate the results accurately. We account for material nonlinearity using a neo-

Hookean constitutive model, which tends to underestimate strain hardening at very large 
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deformation. In practice, there is no difficulty extending our numerical study to more realistic 

elastic model which correctly captures strain hardening behavior. In our finite element analysis, 

surface stress is assumed to be isotropic and independent of stretch, which may not be true in real 

surfaces. Although our user-defined surface elements can be modified to capture the dependence 

of surface stress on surface strain, there are very limited experimental data on this dependence. 

Furthermore, frictionless and no-slip conditions considered in this work are two idealized 

situations, in practice, partial slip can occur on the surface. The interrelation between friction, 

adhesion and surface stress remains an unsolved problem.   
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Appendix 5 Review of Hui et al.’s Small Strain Theory (SST) 

In this section we outline the theoretical approach proposed by Hui et al. 21 to incorporate surface 

tension effect into JKR theory in small deformation regime. For detailed derivation of their result, 

consult 21. 
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In the spirit of JKR theory, Hui et al.’s treatment of adhesive interactions is also based on an energy 

balance. The air gap outside the contact region is viewed as an external crack. The indentation load 

to contact radius relation is determined at equilibrium by equating the energy release rate G of the 

external crack to the interfacial work of adhesion Wad. Specifically, they considered a situation 

where a rigid sphere of radius R was brought into contact with an elastic half space of shear 

modulus µ and surface tension σ under the action of a vertical load P. For simplicity, they assumed 

a no-slip boundary condition that allows one to consider only the surface tension of the half space 

surface outside the contact.  

Using the formulation of non-adhesive contact of a rigid sphere to an elastic half space given by 

Long et al. 26 as a starting point, a surface tension dependent ‘Hertz-like’ relation between load HP , 

indentation depth H  and contact radius a was obtained. The subscript ‘H’ refers to non-adhesive 

‘Hertz-like’ contact. This relation leads to an expression of contact compliance   /H HC a d dP  , 

which determines the change of potential energy of the system per unit change in contact area, i.e. 

the energy release rate  
21

4
H

dC
G P P

a da
    27. 

Notably, Hui et al. 21 introduced a new normalization scheme, in which the indentation load P and 

contact radius a are normalized by the magnitude of pull-off load and pull-off contact radius in the 

limit of zero surface tension.  

   
1/3 2/32/3 1/3

2 12ˆˆ ˆ;  ; ;
(3 / 2) 29 / 4 9 / 4ad ad ad

P a
P a

W R aW R W R

 
 

    
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With this normalization, the relation between indentation force and contact radius is found to 

depend on a single dimensionless parameter â  . Equation (A.5.1) and (A.5.2) are the key 

results obtained in 21. 

 
 

3
3 ˆˆ ˆ 2H

a
P P a


 


                                            (A.5.1) 

   
 

2 ˆˆ ˆ3 4H

a
a    


 


                              (A.5.2) 

where  

 
2

3 2

3 3 0.6016 0.0171
1

16 4 0.3705 0.0063

H
H

P R
P

a

  


  

  
    
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                        (A.5.3) 

  2 3
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   

                         (A.5.5) 

Equations (A.5.3) and (A.5.4) depict a non-adhesive contact behaviour assuming no-slip boundary 

condition inside the contacting region. As in JKR theory, Hui et al.’s analysis was based on small 

strain linear elastic theory, which requires /adW R  to be much less than max{1, / R  }.  
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CHAPTER 6 

SURFACE DEFORMATION OF AN ELASTIC SUBSTRATE IN 

CONTACT WITH A RIGID SPHERE: EFFECT OF SURFACE 

TENSION AND LARGE DEFORMATION*  

Abstract 

We study the profile of the substrate surface when a rigid sphere is pulled away from a thick 

compliant substrate. A finite element model is used to estimate surface deformation for given 

contact radius and indentation depth. Surface tension effect is implemented by a set of user-defined 

surface elements attached to the free surface of the substrate. An incompressible neo-Hookean 

material is used to account for material nonlinearity in large deformation setting. The finite element 

results are also used to fit the data collected from an experiment, where a glass sphere is pulled 

from a compliant PDMS gel.
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6.1 Introduction 

The study of solid adhesion is of numerous practical implications, from the design of adhesives to 

understanding the interactions between cells or tissues in biological systems 1-4. A common 

approach of modelling adhesive solid contact is to use the classical Johnson-Kendall-Roberts (JKR) 

theory 5. However, recent experimental studies on some very compliant materials (with moduli on 

the order of kPa) such as hydrogels 6 and silicone gels 2, 7 showed considerable deviations from the 

JKR prediction. Theoretical analyses argue that such discrepancy can be attributed to the omission 

of the solid-air surface tension σ from the original JKR theory 8-12. For a rigid sphere of radius R 

in contact with an elastic substrate of shear modulus µ, the importance of solid-air surface tension 

outside the contact can be characterized by the elastocapillary number α = σ/(µR). Small α favours 

elasticity and the contact behaviour approaches to that described by the JKR theory. Whereas large 

α favours surface tension, and the JKR theory fails to capture the correct contact mechanics.  

Style et al. 2 have performed adhesive contact experiments by indenting rigid glass spheres onto 

thick silicone gel substrates. In the absence of external load, they reported a transition from an 

elasticity-dominant regime where the adhesion-driven deformation is primarily resisted by bulk 

elasticity to a surface-tension-dominant regime where the adhesion-driven deformation is 

primarily resisted by the substrate-air surface tension. This transition has also been captured by 

several numerical studies 9, 13. In particular, Xu et al. 13 have created finite element models (FEM) 

to simulate Style et al.’s indentation test 2. Their FEM models incorporated both the substrate-air 

surface tension and nonlinear-large deformation elasticity. They computed the energy release rate 

for the problem at zero external load and obtained approximate relations between contact radius 



166 

 

and sphere radius. Their numerical results are in good agreement with those reported in Style et 

al.’s experiment. Cao et al. 9 also reported a similar relation between a and R using molecular 

dynamics simulation. 

This work is stimulated by a follow-up experiment to Style et al.’s performed by Jensen et al., 

where a rigid glass sphere of radius R was brought into contact to a soft PDMS substrate with 

thickness much larger than R. The sphere was then retracted to reach different equilibrium 

positions and the surface profiles of the substrate were imaged (see Fig. 6.1a). A same experiment 

set-up was reported in Ref. 7. Here we use a sphere radius R = 17.4 µm, a shear modulus of the 

substrate µ = 1.9 kPa, a Poisson’s ratio υ = ½ and the surface tension σ = 20 mN/m, consistent with 

the values reported in Ref. 7. Therefore the elasto-capillary number is α ~ 0.6. Jensen et al. 

observed phase separation 7 of the PDMS gel in the vicinity of contact line, as illustrated 

schematically in Fig. 6.1b. Interestingly, the phase separation ceased to exist as the sphere was 

pulled to a higher extent, presumably due to retraction of liquid PDMS back into the solid network. 

The contact radius (measured at the liquid-sphere contact line if phase separation existed, see Fig. 

6.1b) also decreased slightly as the sphere was pulled up. In this work, we attempt to model this 

experiment with finite element method (FEM) and predict the displacement profile of the substrate 

surface outside the contact region. The experiment details will be reported in a separate paper. 

While most of the studies on the contact between a rigid sphere and an elastic substrate focus on 

the relation between contact radius a, indentation load P, and indentation displacement δ, very few 

studies focus on the displacement profile of the soft substrate outside the contact. In the original 

JKR theory, where substrate-air surface tension is neglected, one can compute the displacements 
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of the substrate surface outside the contact region by superimposing the Hertz displacement, the 

displacement due to a flat rigid punch and that under a tensile force 14. The result is given in 

equation (6.1), 

     
22

21 12 1 sin / 1 2 sin ,   1 
 

 
         

                           

JKR H
z

P P a a r a r
u r r a

a r R a r a
  

(6.1)where 
316

3


H

a
P

R
 is the Hertzian load and   the Poisson’s ratio of the substrate. Hajji 15 and 

Gao et al. 16 extended the Boussinesq solution with the effect of surface stress on the elastic half 

space. However, their results cannot be expressed in closed form, such as that given by (6.1). In 

addition, the displacements in Jensen et al.’s experiments are comparable to the radius of the 

sphere, which brings into doubt the validity of using a small strain theory. As will be shown below, 

the small strain assumption limits their application to describe displacement profiles of the soft 

substrate surface. Here we use finite element method to accommodate the large deformation 

observed in Jensen et al.’s experiments. Our FEM set-up is similar to that used by Xu et al. 13. 
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Figure 6.1. (a) Schematics of Jensen et al.’s experiments, where a rigid sphere is in contact of a 

soft PDMS gel. (b) A close-up view of the contact line, where phase separation of the substrate 

occurred. 

 

6.2 Finite Element Model 

To capture the nonlinear large deformation, we model the thick elastic substrate as an 

incompressible neo-Hookean half space, whose strain energy density W is given by 

 1 3
2

W I


                                                                                                                                   (6.2) 

where 1I  is the trace of Cauchy-Green strain tensor.  

The substrate-air surface tension is introduced to the system by augmenting the finite element 

model with a set of user-defined axisymmetric 2-node linear surface elements 13, which discretize 

the free surfaces of the elastic half space. These user defined surface elements transmit surface 

tractions caused by the curvature of the deformed surface to the elastic bulk. In this study, we 
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assume isotropic and homogeneous substrate surface, in which surface stress can be represented 

by a single constant surface tension σ independent of surface deformation and composition. Since 

the contact radius in the experiment only varied slightly as the sphere is pulled up, we assume a 

no-slip contact condition.  

To simulate adhesive contact, we employed the following loading scheme: (step 1) surface tension 

is applied incrementally to the surface elements and held at the final value σ in the subsequent 

steps. No deformation occurs in this step as the substrate is a half space, and it is performed first 

as a matter of convenience; (step 2) a vertical load is applied incrementally on the north pole of 

the rigid sphere, pushing it into the elastic half space until a finite contact radius a is obtained; 

(step 3) the vertical load in the system is reduced incrementally to a final value of P (negative 

value of P indicates pulling force) while no separation of previously contacting nodes from the 

rigid surface is allowed. The no-slip boundary condition prohibits sliding of the contacting surfaces 

over each other. As a result the contact radius remains constant at a during the last step. Fig. 6.2 

shows some typical deformations at the end of each step.  

 
Figure 6.2. Deformation of the elastic parts after each loading step in a simulation with α = 0.6. 

The thin red layers on the free surface after step 1 symbolizes non-zero surface stress.  

|P| 

a a 

Step 1 Step 2 Loading Step 3 Unloading 
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The effect of substrate-air surface tension on deformation profile of the substrate surface outside 

the contact can be illustrated in Fig. 6.3, where we plot the deformed substrate surfaces at different 

elasto-capillary number /   R . In Fig. 6.3, the normalized contact radius is fixed at a/R = 

0.75 and the normalized indentation displacement is δ/R = 0.31 (to be consistent with the 

experiment, we take δ>0 upwards even though an upward force is negative in FEM simulation).   

Fig. 6.3 shows that increasing α results in a more gradual decrease in vertical displacement as it 

moves away from the contact line, suggesting a stiffer interface between the soft substrate and air. 

This is to be expected, since increasing surface tension adds resistance.   

 

Figure 6.3. FEM results of the deformed substrate surface profiles at various values of the elasto-

capillary number α at a/R = 0.75 and δ/R = 0.31.  

In addition to the elasto-capillary number α, the deformed surface profile outside the contact is 

also sensitive to the contact radius and indentation displacement. Experimentally, it is challenging 

to precisely determine the position of contact line. This is particularly true if phase separation 
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occurs, where two different contact lines present (liquid PDMS-sphere contact line and solid 

PDMS-sphere contact line). From a computational perspective, our model assumes a homogeneous 

elastic substrate and hence cannot model the phase separation at the contact line observed in Jensen 

et al.’s experiment. It is therefore important to understand the sensitivity of the FEM deformed 

profile to variations of contact radius and indentation displacement. Results are shown in Fig. 6.4 

and 6.5 for α=0.6. Fig. 6.4 shows the change in surface displacement when the contact radius is 

varied by ±5%. This corresponds to an error of approximately ±0.5 µm in contact radius in Jensen 

et al.’s experiment. Similarly, Fig. 6.5 shows the change in surface displacement when the 

indentation displacement is varied by ±5%, corresponding to about ±0.2 µm in indentation 

displacement in the experiment. The surface of the sphere is indicated by black lines in the figures. 

The solid magenta lines in both figures correspond to no variations where a/R = 0.75 and δ/R = 

0.31 (Fig. 6.4a, 5) and δ/R = 1 in Fig. 6.4b. A comparison between Fig. 6.4 and 6.5 shows that the 

FEM displacement profile is much more sensitive to the contact radius (Fig. 6.4) than indentation 

displacement (Fig. 6.5). In both cases, these variations only affect the surface profiles close to the 

contact line.  
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Figure 6.4. FEM deformed substrate surface profiles at α = 0.6. The normalized contact radius 

is varied at ±5% of a/R = 0.75 and the indentation displacements are (a) δ/R = 0.31; (b) δ/R = 1. 

(a) 

(b) 
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The rigid sphere surface is indicated by the black line and the solid magenta line corresponds to 

no variations in a/R = 0.75. The inset is a close-up view of the local surface displacement profiles.   

 

Figure 6.5. FEM results of the deformed substrate surface profiles at α = 0.6 and a/R = 0.75. 
The normalized sphere displacement is varied ±5% of δ/R = 0.31. The rigid sphere surfaces are 

indicated by the black lines and the solid magenta line corresponds to no variations in δ/R = 0.31.  

The inset is a close-up view of the local surface displacement profiles.   

Since the effect of contact radius and indentation displacement is confined to the vicinity of the 

contact line, our FEM should give accurate predictions on the surface displacement at distances 

more than one spherical radius away from the contact line. In Jensen et al.’s experiment, as the 

sphere was pulled up, phase separation at the contact line ceased to exist and the contact radius 

slowly decreased. Hence in our FEM, we use the minimum measured contact radius amin ~ 0.75R 

(measured at the highest pulling force) for all sphere displacements, assuming the solid PDMS-
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sphere contact line stays at a/R = amin/R during pulling. We attribute the discrepancies between the 

actual measured contact radius and amin to phase separation. This assumption is consistent with the 

no slip boundary condition used in our simulation.  

 

6.3 Results  

Fig. 6.6 shows the predicted surface profiles at twelve different positions to which the sphere is 

pulled. We carry out the FEM simulations with two elasto-capillary numbers α = 0 and α = 0.6, 

representing the substrate to have zero surface tension or the same surface tension as its liquid 

phase respectively. Together with FEM results, we also plot the predictions made by the original 

JKR theory without surface tension (equation 6.1) as well as the numerically computed 

displacement profile based on the small strain theory (SST) proposed by Hui et al. 8, which extends 

JKR theory to include surface stress outside the contact.  
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Figure 6.6 Comparison of the deformed surface profiles predicted by JKR theory without 

surface tension (red solid line), Hui et al.’s small strain modified JKR theory with surface 

tension (SST, blue solid line), FEM with neo-Hookean material at α = 0 (red dash-dot line),  

FEM with neo-Hookean material at α = 0.6 (blue dotted line) as well as FEM with Ogden 

material at α = 0.6 (blue dashed line). The contact radius is fixed at a/R = amin/R = 0.75 in all 

calculations, where amin is the minimum contact radius observed in the experiment at the highest 

sphere position. The sphere is pulled up from left to right, top to bottom. 



176 

 

In Jensen et al.’s experiment 7, the substrate surface showed a necking surface profile close to the 

contact line, where two material points on the deformed surface occupy the same radial position. 

The necking region is not predicted by the original JKR theory nor by Hui et al.’s small strain 

modified JKR theory. The surface profiles predicted using a neo-Hookean material model at α = 

0.6 in FEM exhibit necking only when δ/R > 0.6. However in Jensen et al.’s experiments 7, necking 

was observed even at small δ/R, suggesting that the neo Hookean material model is stiffer than the 

PDMS gel, i.e. some sort of local strain softening is needed to produce the neck region observed 

in experiments. In other words, increasing the strain hardening behaviour of the substrate or using 

surface tension which increases with surface stretch will exaggerate the difference between 

simulations and experiments. Kim et al. 17 have shown that the second-order Ogden model is 

preferable for analysing the PDMS structure. Hence we repeat our FEM simulations using an 

incompressible second-order Ogden material model (see Appendix 6) which is strain softening. 

The strain energy density of this Ogden material is  

   2 2 2

1 2 3 1 2 33 3
4

OgdenW


                             (6.3) 

At α = 0.6, both materials gives similar surface profiles (Fig. 6.6) at lower pulling positions δ/R < 

0.5. However as the sphere is pulled to higher positions, the strain softening Ogden material model 

predicts larger necking regions close to the contact line and hence may produce surface profiles 

closer to the experimental results. 
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6.4 Discussion 

In this work, we use finite element method to predict surface displacement outside the contact 

between a rigid sphere and a soft substrate. We also attempt to qualitatively compare the FEM 

results to the results of an experiment performed by Jensen et al.7, in which a glass sphere is lifted 

from a very compliant PDMS gel. The JKR theory and Hui et al.’s small strain theory 8 are also 

assessed to predict the profile and results are compared with the FEM results. In general, based on 

the deformation predicted close to the contact line, the FEM results seems to qualitatively fit the 

experimental data better than small strain theories, especially when a strain softening 2nd order 

Ogden material is used.  

The comparison with experiments is not without difficulties. The Ogden material model used in 

our FEM simulation is only a conjecture. More mechanical tests on the gel are required to fit the 

material parameters in a more appropriate Ogden model. Our FEM shows that surface deformation 

outside the contact is very sensitive to contact radius, which can be difficult to measure with a high 

degree of accuracy. In addition, phase separation was observed at the contact line, hence it is 

difficult to determine the exact location of solid-solid contact, notwithstanding that our model do 

not account for phase separation. Finally, it is likely that a small amount of slip can take place near 

the contact line and again it is difficult to be accounted for in our FEM model.    
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Appendix 6 Supplementary Information 

The incompressible 2nd order Ogden model. We used an incompressible second order Ogden 

material model for the elastic substrate. The strain energy density of such material is  

   2 2 2

1 2 3 1 2 33 3
4

W


                               (A.6.2) 

where λi’s are the stretch ratios and µ the initial shear modulus.  

Considering a uniaxial test on this material, incompressibility gives 

1 2 3

1
,       


                                         (A.6.3) 

First Piola Kirchhoff stress P is 

T W
p  

  


P F
F

                           (A.6.4) 
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where F is the deformation gradient. 

Assuming all the other components of ijP  are zero except 11P , where by equilibrium, 

11 22 33, 0, 0P P P P           (A.6.5) 

Thus   

2

2 2 2

2

3/2

2 2

0

1

p W W
p

W W W W
P


  



     

 
    
 

    
    

   

       (A.6.6) 

Substituting equation (A.6.2) into (A.6.6), we obtain the relation between pressure P and stretch 

ratio λ in equation (A.6.7) and plot it in Fig. A.6.1. 

2 3/2

1 1
1

2 2
P




 

 
     

 
                      (A.6.7) 

 

Figure A.6.1. Plot of normalized stress against stretch ratio in a uniaxial tensile test of the 2nd 

order Ogden model. 
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Mean curvature (H) of the deformed surface outside contact. The mean curvatures of lower 

pulling cases in Jensen et al.’s 7 experiments exhibit some plateaus close to the contact line. We 

compute the mean curvature of the surface profiles at a/R = 0.75 and δ/R = 0.31 predicted by FEM 

using a neo-Hookean material model with different values of α (in Fig. A.6.2). To do so, we first 

fit the profile with an 8th order polynomial zfit(r). Then we compute the local mean curvature H(s) 

of the fitted profile, where s is the arc length calculated from the contact line. Clearly, there is no 

sign of a possible plateau feature in the FEM (neo-Hookean) results. 

 

Figure A.6.2. Normalized mean curvatures as a function of normalized arc length of the FEM 

results at a/R = 0.75 and δ/R = 0.31 
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CHAPTER 7 

RECOMMENDATION FOR FUTURE WORK 

The work described in this dissertation has been concerned with the effect of surface tension, 

especially the solid-air surface tension, on deformation of soft solids. Although the results 

presented here have demonstrated that the role of surface tension becomes significant when the 

solid is compliant and the length scale is small, it could be further studied in a number of ways: 

Using the current finite element model to study solid contact angle. This is an on-going project, 

which studies the relations between elasto-capillary number and the solid contact angle. We use 

finite element models to simulate a spherical soft solid placed on a rigid plate and deformed by 

both gravitational load and the adhesion between the sphere and the plate surfaces. Experimentally, 

a very soft hydro-gel sphere is placed on glass slides with surfaces chemically treated to exhibit 

different hydrophobicity.  

Extending the finite element model to include strain-dependent surface stress. All the finite 

element results present in this work are under the assumption that the surface stress is constant and 

isotropic, independent of the deformation. This may not be true in general (see Hui & Jagota, 

Langmuir 2013). By incorporating a strain-dependent surface stress in the user-defined surface 

elements, we could obtain some interesting results. 
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Extending thin film indentation test to compressible materials. A correct treatment of elasto-

capillarity requires distinguishing between the surface energy and the surface stress. It has been 

pointed out that the compressibility of the interfacial region, through the Poisson ratio near the 

interface, determines the difference between surface stress and surface energy. If we could extend 

the indentation test and analysis to thin films of compressible solids, it may help to experimentally 

verify the statement. 

Improving the mesh density of our finite element model to study the stress field close to a contact 

line. We are interested in the effect of surface tension on the stress field in proximity to a contact 

line. By refining the existing finite element model of the contact geometry, we could get some 

more reliable results. 

 

 


