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This thesis consists of three investigations into the electronic structure of solid

state materials. In each case a semi-empirical method, extended Hückel (eH) or µ2-

Hückel (µ2) is used for qualitative insight, with LDA-DFT being used to calibrate

the semi-empirical calculations.

The first part accounts for two empircal rules of the Nowotny Chimney Lad-

der phases (NCLs, intermetallic compounds of the form TtEm, T: groups 4-9, E:

groups 13-15). The first rule is that for late transition metal NCLs there are 14

valence electrons per T atom. The second is a pseudo-periodicity with a spacing

of cpseudo=c/(2t-m), for the stoichiometry TtEm. Both rules accounted are for

by viewing the NCLs as constructed from blocks of the RuGa2 structure of thick-

ness cpseudo/2, with successive layers rotated 90o relative to each other. Sterically

encumbered E atoms are then deleted at the interfaces between layers, followed

by relaxation. eH calculations explain the special stability of RuGa2, the parent

NCL structure, at 14 electrons per T atom. A gap between filled and unfilled

bands arises from the occupation of two Ga-Ga bonding/Ru-Ga nonbonding or-

bitals plus all five Ru d levels per RuGa2 (7 filled bands for 14 electrons/Ru). We

discuss the connections between this 14 electron rule and the 18 electron rule of



organometallic complexes.

Second part of this thesis reports the synthesis, crystal structures, and elec-

tronic band structures of (pyrene)10-(I
−

3 )4(I2)10, 1, and of [1,3,6,8-tetrakis(methyl-

thio)pyrene]3(I3)
−

3 (I2)7, 2. In both structures, the organic molecules form face-to-

face cationic stacks which are separated from one another by a polyiodide network.

eH Band calculations suggest that the stacks of pyrene molecules in 1 have un-

dergone a Peierls distortion appropriate to a 3/4 filling of the HOMO bands of

the stacked pyrene molecules. Band calculations on 2 suggest that it is a Mott

insulator. The intermolecular contacts within both the polyiodide networks and

the face-to-face stacks of organic cations are rationalized within the frontier orbital

framework.

In the final part studies a two-dimensional structure map for AB3 binary tran-

sition metal compounds with variables appropriate for direct quantum-mechanical

energy calculations: electron count and ∆Hii, the difference in d-orbital Coulombic

integrals. The experimental structure map differentiates between the six known

AB3 transition metal structure types: Cr3Si, AuCu3, SnNi3, TiAl3, TiCu3 and

TiNi3. The theoretical map (based on µ2 calculations) gives good agreement with

the experimental map. Further analysis of the µ2 results indicates that the ma-

jor energetic differences stem from the varying number of three- and four-member

rings of bonded atoms.
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Chapter 1

The Nowotny Chimney Ladder Phases:

Following the cpseudo Clue Toward an

Explanation of the 14 Electron Rulea

We account for two empircal rules of the Nowotny Chimney Ladder phases (NCLs,

intermetallic compounds of the form TtEm, T: groups 4-9, E: groups 13-15). The

first rule is that for late transition metal NCLs the total number of valence elec-

trons per T atom is 14. The second is the appearance of a pseudo-periodicity

with a spacing, cpseudo, which is directly related to the stoichiometry, TtEm, by

(2t-m)cpseudo=c. Both rules are accounted for by viewing the NCLs as twinned

structures constructed from blocks of the parent compound, RuGa2 of thickness

cpseudo/2, with the successive layers rotated relative to each other by 90o. Sterically

encumbered E atoms are then deleted at the interfaces between layers, followed by

relaxation.

1.1 The Nowotny Chimney Ladders

The Nowotny Chimney Ladder phases (NCLs)1 are a series of intermetallic struc-

tures formed between transition metal elements (T, groups 4, 5, 6, 7, 8, and 9)

and main group elements (E, groups 13, 14, with recent examples of group 152,3).

Behind their relatively simple stoichiometries, TtEm, is an exquisite blend of struc-

aReproduced with permission from [Fredrickson, D. C.; Lee, S.; Hoffmann, R.;
Lin, J. Inorg. Chem. 2004, 43, 6151-6158.] Copyright [2004] American Chemical
Society.
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tural complexity with simple experimental and theoretical stability rules. In this

paper, setting out from the structures of these phases, we begin to construct the-

oretical explanations for the rules governing their structures and electron counts.

We commence with the traditional view of these structures, taking Ru2Sn3 as

an example.4 One unit cell of this compound is shown in Figure 1.1a. In this

figure, the T atoms are shown as red spheres, and the E atoms are shown as blue

spheres.

The T atoms form a tetragonal sublattice. In the projection shown in Figure

1.1a, this tetragonal sublattice resembles a square net. Viewed perpendicular to

Figure 1.1a, i.e. along the a or b axis, each square unfolds to a four-fold helix, as

shown in Figure 1.1b. We denote the period of this helix as ct. One of these helices

is emphasized in Figure 1.1a, with the heights of the T atoms indicated for one

period. The helix segment shown begins at height 0 and twists counterclockwise

through atoms at heights 1/4 ct, 1/2 ct, 3/4 ct, and finally back to 1 ct. Neighbor-

ing helices are interconnected, with each T atom shared among four helices. This

arrangement of atoms is also seen in the β-Sn structure. It is conserved throughout

the NCL series.

A second structural component is comprised of the E atoms. These atoms are

shown as blue spheres for the Ru2Sn3 structure4 in Figure 1.1a. Viewed down the

c axis, the E atoms appear as discrete triangular units, embedded in the channels

formed by the interiors of the T atom helices. In Figure 1.1b, we show that along

c these triangular units stretch out into three-fold helices. The distance along c

between neighboring atoms in the helix is denoted as cm. Thus, the repeat vector

for the helix is 3cm. The heights (along c) for one helix are given in Figure 1.1a;

here the heights are given with respect to the underlying T atom sublattice. The
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repeating E3 unit begins at height 0.50ct, progresses counterclockwise through

heights 1.16ct and 1.84ct, and finishes at height 2.50ct. The rise of over one period

is then 2.0ct. This is equal to two periods of the T atom sublattice.

We now see a beautiful structural feature of the NCL structures. Both the

structural components form regularly spaced structures along c. However, the

spacings of these two components are different. The repeat distance of E atom

sublattice (3cm, one turn of the E atom helix) is twice the repeat distance of the

T atom sublattice (ct).

A similar situation occurs in the other NCL structures. As two further struc-

tural examples, we take the Ir3Ga5
5 and RuGa2

6,7 structures. Ir3Ga5 is illustrated

in Figure 1.1c. Here, the E atoms appear to trace out a five-pointed star over one

period. As shown in Figure 1.1d, it is actually a helix, containing five E atoms,

with a repeat equal to three times the repeat distance of the T sublattice.

The RuGa2 structure is shown in Figure 1.1e and 1.1f. The E atoms form two-

fold helices, which are, of course, zigzag chains. In this structure, the periods of

the T and E sublattices coincide: the repeat distance of the E sublattice is equal

to the repeat distance of the T sublattice. In this sense and in many others, as we

shall see, RuGa2 is a parent structure for the Nowotny Chimney Ladders.

The aesthetic appeal of helices (even before the α-helix and DNA) is so strong

that one is seduced to seek structural and electronic rationales in these incredibly

beautiful helices within helices. As we will soon see, a productive structural and

electronic analysis points elsewhere.
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1.2 Two Empirical Rules for the NCL Phases

There are two rules that have been empirically observed for these phases. The

first is an electron counting rule. The stability of a phase seems to be intimately

related to the total number of valence electrons per transition metal atom. For

transition metal groups 7, 8 and 9, there is a preponderance of structures with 14

valence electrons per transition metal.8,9 We give examples of this in Table 1.1.

The first example is Ru2Sn3 (Figure 1.1a), in which each Ru atom contributes

eight electrons (the atoms being counted as neutral), and each Sn atom brings

four electrons. The total number in each formula unit is then 2×8 + 3×4 =

28 electrons. As there are two Ru atoms in the structure, this makes 28/2, or 14

electrons per Ru atom. Two further examples of 14 electron compounds are Ir3Ga5

and RuGa2 (respectively in Figures 1.1c and e). Lu et al. has prepared a virtually

continuous series of structures with 14 electrons of the form RuGawSnv, with 8

+ 3w + 4v = 14.10 Theoretical studies, ranging from empirical tight-binding to

LDA-DFT calculations, associate this magic electron count with a minimum or

gap in the density of states at this band filling.11–17 However, no explanation has

been proffered for why this minimum or gap occurs consistently at 14 electrons

per T atom and does not shift with changes in the stoichiometry. In this series of

papers, we will forge a chemical explanation for the 14 electron rule.

A second rule is discernible in the electron diffraction of the NCLs. In the

course of studies on the electron diffraction patterns of Mn-Si NCLs, Amelinckx

and coworkers found that in addition to main reflections from the T substructure,

there were regularly spaced satellites arising from the mismatch of the T and E

atom components.34,35 We’ll call the spacing between the satellite peaks c∗pseudo.

These satellites were particularly clear in images down the [110] direction of the



6

Table 1.1: Binary Nowotny Chimney Ladder Phases (T from group 7 or higher)

Compound Structure Type e−/T Reference
Ru2Sn3 Ru2Sn3 14 Schwomma et al.4

Ru2Ge3
a 14 Poutcharovsky et al.18

Ir3Ga5 Ir3Ga5 14 Völlenkle et al.5,19

RuGa2 TiSi2 14 Jeitschko et al.,6 Evers et al.7

RuAl2 TiSi2 14 Edshammar20

Ru2Ge3 Ru2Ge3 14 Poutcharovsky and Parthé,21 Völlenkle22

Ru2Sn3
b 14 Poutcharovsky et al.18

Ru2Si3 Ru2Ge3 14 Poutcharovsky and Parthé,21 Völlenkle22

Ru2Sn3
b 14 Poutcharovsky et al.18

Os2Ge3 Ru2Ge3 14 Poutcharovsky and Parthé,21 Völlenkle22

Os2Si3 Ru2Ge3 14 Poutcharovsky and Parthé,21 Völlenkle22

Rh10Ga17 Rh10Ga17 14.1 Völlenkle et al.5,19

Rh17Ge22 Rh17Ge22 14.18 Jeitschko and Parthé8

Mn4Si7 Mn4Si7 14 Karpinskii and Evseev23

Tc4Si7 Mn4Si7 14 Wittmann and Nowotny24

Re4Ge7 Mn4Si7
d 14 Larchev and Popova25

Mn11Si19 Mn11Si19 13.96 Schwomma et al.,26 Knott et al.27

Mn15Si26 Mn15Si26 13.93 Flieher et al.28

Mn27Si47 Mn27Si47 13.90 Zwilling and Nowotny29

Mn26Si45 Mn26Si45 13.92 Flieher et al.28

Mn3Ge5 Mn11Si19
c 13.67 Takizawa et al.30

Ir4Ge5 Ir4Ge5 14 Panday et al.,31 Flieher et al.32

Co2Si3 Ru2Sn3
d 15 Larchev and Popova25

OsGa2 TiSi2
d 14 Popova and Fomicheva33

aLow-temperature phase
bHigh-temperature phase
cHigh-pressure phase
dHigh-temperature, high-pressure phase
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samples. They also found a relationship between c∗pseudo and the stoichiometry of

the NCL phase, MntSim. In reciprocal space, this relationship states that c∗pseudo

is a multiple of c∗, with the relation

c∗pseudo = (2t − m)c∗ (1.1)

where again, t and m are respectively the number of T (Mn) and E (Si) atoms

in the stoichiometric formula of the compound.35 This relationship between the

reflection positions and the stoichiometry is consistent with a reflection condition

derived by Boller based on the helical nature of the NCLs.36 The division of these

reflections into main and satellite reflections has been elegantly used to simplify the

structure solution of the NCL phases, through the modulated composite crystal

approach.37,38 As we show below, this division is deeply rooted in the electron

counting rule for these phases.

In real space, cpseudo corresponds to a modulation in the structure, due to the

mismatch between the T atom and E atom components of the structure. There

are an integer number of repeats of cpseudo in the unit cell for the phase, with this

number being 2t - m, i.e.

(2t − m)cpseudo = c (1.2)

Lu et al. found cpseudo satellites in the electron diffraction patterns of NCLs of

the form RuGawSnv, and established that the 2t-m rule held for these structures

as well. Through inspection of a number of other NCL structures, they concluded

that the existence of cpseudo is a general phenomenon in the NCLs.10

As examples of this second experimental rule, we can again take the NCLs

shown in Figure 1.1. For Ru2Sn3 (Figure 1.1a), 2t - m = 2×2 - 3 = 1, and there

cpseudo coincides with c. For Ir3Ga5 (Figure 1.1c), 2t - m = 2×3 - 5 = 1, and
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again cpseudo is equal to c. For RuGa2 (Figure 1.1e), 2t - m = 2×1 - 2 = 0, and

there is no cpseudo. The absence of cpseudo is another sense in which RuGa2 is a

parent structure to the NCLs.

1.3 The Structural Origin of cpseudo

cpseudo is the key to unlocking the mystery of the 14 electron rule and the intriguing

structures of the NCL phases. In seeking out its structural origins, we essay an

alternative way to view the NCL structures, which deepens our understanding of

these phases as defect RuGa2 structures. In this paper we will explain the cpseudo

rule, and show its connections to the 14 electron rule.

The structural origin of cpseudo was investigated by Lu et al. by viewing the

structures down their [110] direction.10 In Figure 1.2, we show such views for three

NCL phases (Ru2Sn3, Mo13Ge23
39 and V17Ge31

39). For each structure, a succes-

sion of layers is visible: there is an alternation of layers that appear dense in the

projection shown with layers that appear sparse in the projection. The alternation

of these layers gives rise to a pseudo-periodicity, with the apparent repeat unit

consisting of one dense-looking layer and one sparse-looking layer (Near the bor-

der between layers, the distinction becomes a little fuzzy. We’ll turn our attention

to this later in this paper). The length of this pseudo-repeat unit corresponds to

cpseudo, while the true repeat distance of the structure is given by the crystallo-

graphic c. Following the rule noted above, there are 2t - m of these cpseudo repeats

per c. The transition metal component of these structures, formed of four-fold

helices, passes unchanged through these layers; the appearance of these alternating

layers reflects the positions of the main group atoms.

Now, let’s look more closely at what these layers are. In Figure 1.3a, we show
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Figure 1.2: Views along [110] of three NCL phases (taking 3 unit cells along a and
b): (a) Ru2Sn3, (b) Mo13Ge23, and (c) V17Ge31. For each structure c and cpseudo

= c/(2t-m) are indicated. Transition metals in red, main group atoms in blue.

a [110] view of V17Ge31. Again, the alternation of slabs which appear dense and

sparse in projection is clearly seen. In this case there are 2t - m = 2 (17) - 31 =

3 repeats of cpseudo in the unit cell. When we rotate the structure about the c

axis by 90o, we find the structure shown in Figure 1.3b. The same alternation of

layers is seen in this rotated structure. However, the layers which appeared dense

in Figure 1.3a appear sparse in Figure 1.3b, and vice versa. V17Ge31 can then be

thought of as being derived from the stacking of these layers (some of different

lengths than others), with each layer being rotated 90o relative to the layer above

and below it. The layer appears sparse when, from our viewpoint, the atoms lie

on top of each other in columns; the layer appears dense when we rotate it by 90o,

and the atoms no longer hide each other.

To identify this layer, we turn to the simple RuGa2 structure, where 2t - m

= 0, and no cpseudo should be present. We show this structure in Figures 1.4a-
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Figure 1.3: cpseudo in V17Ge31. (a) View V17Ge31 of along [110]. An alternation
of layers which appear dense in projection and layers which appear sparse in pro-
jection gives rise to an apparent periodicity. The average length along c of these
repeats is cpseudo. (b) Upon rotating the structure by 90o about c, the layers which
appeared sparse become dense in projection and vice versa. V: red, Ge: blue.

c, with views A (Figure 1.4b) and B (Figure 1.4c) corresponding to the views

of V17Ge31 in respectively Figure 1.3a and Figure 1.3b. In accordance with the

expectation that RuGa2 should have no cpseudo, these views show no alternation

of layers. The entirety of the structure in View A resembles the layers that are

sparse in projection. View B closely resembles the layers of V17Ge31 that are dense

in projection. The resemblance is very strong near the centers of the layers, and

fades a little near the edges of the layers.

The connection between the complex NCL phases and the parent TE2 (RuGa2)

structure now comes into focus. The complex NCL phases consist of TE2 slabs,
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Figure 1.4: The RuGa2 structure type. (a) Definitions of two views, View A and
View B, of the structure. (b) View A of 3x3x1 unit cells of RuGa2, resembling
the sparse view of the layers in (a) and (b) of Figure 1.3. (c) View B of RuGa2,
resembling the dense view. Ru: red, Ga: blue.
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with neighboring slabs rotated with respect to each other by 90o. To complete this

structural connection, we focus on the region between the TE2 layers of a NCL

phase. To see what happens here, let’s take a simple case: T2E3 (Ru2Sn3). In

Figure 1.5, we illustrate a hypothetical construction of this structure from layers

TE2. We start in Figure 1.5a with one unit cell of TE2, running from height 0 to 1

cTE2
, with the E atoms shown in blue. In Figure 1.5b, we show another unit cell

of TE2, running from height 1 to 2 cTE2
, with the E atoms shown in green. The

structure in Figure 1.5b is rotated by 90o with respect to that in Figure 1.5a in such

a direction that the T atom substructure (four-fold helix) can run uninterrupted

from the structure in Figure 1.5a to the structure in Figure 1.5b. Now we fuse

these two structures together to make a doubled TE2 cell. The fused structure is

shown in 5c. In this structure the upper and lower layers are related by a 4 axis,

with the inversion occurring about the T atom at height 1cTE2
.

The fused structure has a number of unphysically small close E-E contacts of

1.7 Å between the atoms of the upper and lower TE2 layers. These are shown by

yellow connecting bars in Figure 1.5c. They exist between atoms of one slab at the

interface (those at height 1 cTE2
) and the atoms of the other slab 0.25 cTE2

above

or below the interface. To alleviate this “steric” problem, all of the E sites at the

interface (at 1 cTE2
in Figure 1.5) are vacated. Upon introducing these vacancies

at the interfaces, the structure in Figure 1.5d, with stoichiometry T2E3 results. At

each interface, there is a net loss of two E atoms.

Now we have everything we need to explain the 2t - m rule for cpseudo. For

a phase TtEm, we can derive the expected value of cpseudo. First we take t cells

of TE2 structure along c to obtain a supercell with the contents T4tE8t. Next

we count the number of interfaces that are necessary to produce the stoichiome-
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Figure 1.5: Construction of T2E3 (Ru2Sn3) from TE2 (RuGa2) layers. (a) One
unit cell of TE2 spanning heights 0-1cTE2

, with E atoms in blue (T atoms in
red). (b) Another cell of RuGa2 spanning heights 1-2cTE2

, with the Ga sublattice
orientation changed by a 90o about c, with E atoms in green. (c) The structure
formed from the overlay of these two TE2 to from a structure which spans heights
0-2 cTE2

(here 2cTE2
= c). The T atom component runs uninterrupted at the

junction of the parts (a) and (b). The E atom component is reoriented by 90o at
this junction, the actual relation between the blue and green parts being a 4 axis.
The E atoms at the junction have unphysically close contacts to other E atoms
(1.63 Å). (d) Structure derived from removing all of the E atoms at the junction,
thus relieving the close contacts, creates at structure of stoichiometry T2E3. (e)
The experimentally observed Ru2Sn3 structure type.
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try 4(TtEm) = T4tE4m, remembering that at each interface two E atoms are lost.

Taking n as the number of interfaces this gives us

T4tE8t−2n = T4tE4m (1.3)

Solving for the number of interfaces, we find

n = 4t − 2m (1.4)

Two interfaces are necessary for each cpseudo repeat. The average thickness of

each repeat will then be the length of the c axis, divided by half the number of

interfaces, thus

cpseudo = c/(n/2) = c/(2t − m) (1.5)

and

c = (2t − m)cpseudo (1.6)

The 2t - m rule for cpseudo is then easily recovered with the observation that at

the interfaces between TE2 layers, two E atoms per unit cell are lost.

In looking at the structures resulting from this idealized stacking of TE2 slabs

as shown for T2E3 in Figure 1.5, one sees clear differences from the experimental

structures. What ensues may be viewed as analogous to the relaxation seen at

the surfaces of solids,40 with the main effects being in the E substructure. This is

illustrated in a comparison of our idealized T2E3 structure in Figure 1.5d, with the

experimental T2E3 (Ru2Sn3) structure in Figure 1.5e. Comparison of Figures 1.5d

and 1.5e shows that it is in the process of this relaxation that the beautiful main

group atom helix appears in this scheme. In our calculations below, and in those
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of a future paper, we will assess the importance of this relaxation in determining

the optimal electron counts for the NCL structures.

This explanation for the 2t - m rule for cpseudo suggests that a NCL phase

can be regarded as a stack of TE2 slabs with E atom vacancies at the interfaces

between the slabs.

This twinned TE2 model has been hinted at in the observations of a number of

earlier workers. The interpretation of complex solid state structures through chem-

ical twinning is deeply ingrained in solid state chemistry.41 Knott et al. provided

an interpretation of the Mn15Si26 structure in terms of “pseudo-hexagonal sheets”

of alternating orientation along c.27 These sheets arise from the TE2 stacking we

describe here. Grin showed that the structures and space group symmetries of the

NCLs can be accounted for by taking linear combinations of T2E4, T2E2, and T3E4

layers along c.42 Our Aufbau is different, but parallels can be drawn: the first of

Grin’s layers corresponds to center portions of planes of the TE2 structure in our

picture. The others represent variations of the regions surrounding interfaces we

describe here. Our discussion above traces these layers to the TE2 structure and

links this view to the cpseudo rule.

An NCL can reduce the ratio of E to T atoms in the stoichiometry by creating

more interfaces. This is motivated by the 14 electron rule. Consider for example a

RuxSny compound. It can’t be RuSn2 in the RuGa2 structure, because that would

have sixteen electrons per Ru atom. But if one follows our Aufbau, rotating RuSn2

blocks with respect to each other and eliminating some interface atoms, one gets

to (RuSn2)(RuSn2)-Sn = Ru2Sn3, a 14 electron compound. This will be heralded

by the appearance of cpseudo at twice the distance between interfaces. We will

trace this phenomenon in detail in the next sections.
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1.4 The 14 Electron Rule: RuGa2

From exploring the structural origins of cpseudo, we have found that the Nowotny

Chimney Ladder phases may be seen as layers of TE2 separated by interface re-

gions. This provides a vital clue into how we can approach the electron counting

rules for these phases: we begin by looking at the electronic structure of TE2, and

then turn to the effect of introducing the interfaces (and the relaxation which cre-

ates the E atom helices). First, let’s look at why the 14 electron count is preferred

for these phases.

The natural structure to start with is RuGa2, the simplest structure in the

Nowotny Chimney Ladder series, and a prototypical example of the 14 electron

rule at work for these phases. Experimentally, it has been found to be a narrow-

gap semiconductor with a band-gap of about 0.42 eV.7 A number of calculations

on this structure type have shown band gaps at this electron count.15–17

As a first step toward a qualitative understanding of the 14 electron rule, we

performed LDA-DFT band structure calculations on the experimental structure

using the VASP package.43–46 We must mention that in our calculations we are

using an unconventional unit cell. RuGa2 crystallizes in the TiSi2 structure type.47

Its space group is Fddd; the conventional unit cell, shown in Figure 1.6a, is face-

centered. This unit cell is outlined with black, dotted lines. While conventional,

it does not make the connection between this structure and the other Nowotny

Chimney Ladders. To make this link, it is convenient to change unit cells. In Figure

1.6a, our new, NCL-type unit cell is outlined in green, and is shown individually

in Figure 1.6b.

The LDA-DFT band structure is shown in Figure 1.7a. The Fermi Energy

(EF ) is at -7.31 eV in a narrow band opening, with an indirect band gap of about
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Figure 1.7: Band structures of the RuGa2 structure type. (a) The band structure
calculated for the experimental unit cell, as shown in Figure 1.2b, with LDA-DFT.
(b) The band structure calculated for the idealized structure, as shown in Figure
1.2c, with the extended Hückel method. The dotted lines give the Fermi Energy
(EF ) at 14 e−/Ru.

0.33 eV. The smallest direct gap is about 0.39 eV and is at Γ. At other k-points,

we see larger energy gaps between filled and unfilled states, typically of about 1

eV. The 14 electron rule is then associated with this band gap, in accord with

classical molecular experience which correlates a gap with thermodynamic (and

kinetic) stability.

For additional insight, we moved to extended Hückel (eH) calculations. These

calculations have a history of providing qualitative explanations through a variety

of perturbation theory based analytical tools associated with them.48 As we will

see in the accompanying publication,49 this methodology will allow us construct a

chemical explanation for the occurrence of a band gap at 14 e−/Ru. We began by

calculating the eH band structure of this phase using the Ru and Sn (for Ga, in

preparation for studying other NCL structures, in particular Ru2Sn3) parameters
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traditionally employed in the study of molecules.50 The resulting band structure

(not shown here) gave noticeable differences from the LDA-DFT one, in particular

no gap or opening in the band structure for the 14 electron count. Some modifica-

tion of the Ru and Sn eH parameters is evidently necessary for studying transition

metal-main group bonding in this intermetallic compound.

For each orbital type, there are several parameters which allow the tuning of an

eH calculation. First, there is the ionization energy (Hii) of each atomic orbital.

Second, there are the exponents measuring the tightness or diffuseness of each

atomic orbital (ζ ’s).

The eH Ru d band with standard parameters (for Ru and Sn) was substantially

narrower than the DFT-calculated one. This suggested making the Ru d orbital

more diffuse; we changed the long range coefficient, ζ2 from 2.3 Å−1 to 1.8 Å−1 to

obtain a closer match between the dispersion of the d bands at the two levels of

theory.

The eH calculations also underestimated initially the energy spacing between

the Ru d- and Sn s- type levels. This was remedied by shifting the Sn s and p Hii’s

down to -18.16 eV, and the Sn p from -8.32 to -11.32 eV, respectively. With these

adjustments, the band structure in Figure 1.7b results. While some discrepancies

between the LDA-DFT and this eH band structure remain, the overall qualitative

agreement is excellent. These parameters are used in the remaining eH calculations

in this paper. The entire set of eH parameters used in the sequel is listed in Table

1.2.

In the eH band structure for RuGa2 structure is shown in Figure 1.7b. We

used a slightly idealized structure (Figure 1.6c) in anticipation of comparing our

theoretical results on RuGa2 to the other NCL phases. The following analysis
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refers consistently to this idealized structure. The EF for this band structure is at

-11.99 eV. This lies in an indirect band gap of 1.22 eV, compared to the LDA-DFT

gap of 0.33 eV, and experimental gap of 0.42 eV. The tendencies of eH theory to

overestimate and for LDA-DFT to underestimate band gaps are well-known.

Below EF , the gross features of the LDA-DFT and eH band structures are quite

similar. Immediately below EF , we find a series of rather narrow bands. There

are in fact twenty of these bands. These arise from the d orbitals of the Ru atoms:

four Ru atoms with five d orbitals each. Below this series of bands, there is a

collection of bands with energy dispersions of several eVs. There are eight of these

bands, coming from the s orbitals on the Ga atoms: eight Ga atoms in the unit

cell, with one s orbital each. Altogether this makes 28 occupied bands, harboring

56 electrons per unit cell. With four Ru atoms in the unit cell, we recover 14

electrons per Ru atom.

1.5 The 14 Electron Rule: Ru2Sn3 and Ir3Ga5

From our LDA-DFT and eH calculations on RuGa2 above, it is clear that the

stability of this compound at 14 electrons arises from a large opening or a gap in

the band structure at that electron count. Why this is so, in orbital and reciprocal

space detail, will be explained in the accompanying paper, where we will also point

to the connection between that magic electron count and the 18-electron rule for

discrete organometallics.49

Here we want to see how the gap at 14 electrons/T is preserved for the other

NCLs. Calculations on T2E3 NCLs indicate that a similar opening in the band

structure accounts for the stability of 14 electrons per T atom in these compounds

as well. Let’s tie this in with the clue cpseudo gives us, that the complex NCL phases
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are composed of rotated slabs of the TE2 structure, with deletions enforced, by

unreasonably close contacts, at the layer interfaces. To this end, we can compare

the band structures of NCL phases with those constructed of TE2 layers as in

Figures 1.5a-d, without any reconstruction. As specific examples we will take

T2E3 (Ru2Sn3 type, Figure 1.1a) and T3E5 (Ir3Ga5 type, Figure 1.1b).

The eH band structure of the known Ru2Sn3 structure type is shown in Figure

1.8a. The EF lies in the center of a small band gap at -11.24 eV. This gap is

consistent with the stability of these phases at 14 electrons per T atom. We

should note however, that our eH calculation exaggerates this gap. Ru2Sn3 is

known to be metallic, rather than semiconducting as our eH calculations suggest.

An investigation of this phase with LDA-DFT calculations (not shown here) gives

an opening in the density of states around the EF , but it is not a true gap: the

highest occupied state at Γ in eH penetrates through the opening in LDA-DFT.

Despite this discrepancy, eH still illustrates clearly the propensity of this phase for

14 electrons per T atom.

Now let’s consider the idealized T2E3 structure shown in Figure 1.5d (with

vacancies at the interfaces, before relaxation). The resulting band structure is

illustrated in Figure 1.8b, alongside the bands calculated for the observed geometry

of the phase. In comparing the two band structures, we see some differences, but

the overall forms of the bands are quite similar. The important comparison to make

here is the region around the EF . The EF lies in a band gap in both structures. The

band gap of the idealized structure (rotated blocks with deletions at the interfaces)

is a little larger compared to the gap calculated for the observed structure (0.37 eV

compared to 0.26 eV). The occurrence of the gap in the idealized structure (before

the E3 helices are formed) suggests strongly that the impetus for the 14 electron
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Figure 1.8: eH Band structures of (a) the observed T2E3 structure, and (b) an
idealized structure of T2E3 formed from rotated slabs of TE2 with deletions at the
interfaces. The EF shown corresponds to a band filling of 14 electrons per T atom.
In both the observed and idealized structures, the EF falls in an opening in the
band structure.

rule has its sources in the idealized model we forward, and not in the helicity of

the E sublattice. The details of the interface relaxation will be given in a separate

paper.

The same thing is found for the Ir3Ga5 structure type. We calculated band

structures for the experimental structure and an idealized stacking of TE2 layers

(constructed in the same manner as for T2E3 in Figures 1.5a-d). The results for

the experimental and idealized structures are given in respectively Figures 1.9a

and 1.9b. EF lies in a band gap in both band structures. Again, the gap for the

idealized case is a little larger than for the observed structure (0.89 eV compared

to 0.73 eV).
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Figure 1.9: eH Band structures of the (a) observed T3E5 structure, and (b) an
idealized structure of T3E5 formed from rotated slabs of TE2 with deletions at the
interfaces. The EF shown corresponds to a band filling of 14 electrons per T atom.
In both the observed and idealized structures, the EF falls in an opening in the
band structure.

1.6 Onward and Upward with the 14 Electron Rule

From these examples we see that the band gap at 14 electrons per T atom in

the TE2 structure is obtained following the construction algorithm: (a) take TE2

blocks of varying thickness; (b) rotate every other layer by 90o at the interfaces; (c)

fuse the blocks, removing unphysically close atoms. Further relaxation, forming E

sublattice helices, follows. From this observation, we can sketch how the 14 electron

rule works for the NCLs, taking as an example the hypothetical construction of

Ru2Sn3 from RuGa2.

First, we consider the RuGa2 structure with 14 electrons per Ru atom (we use

Ru and Ga rather than T and E to keep track of how many valence electrons each

atom brings to the structure). The stability of this structure is accounted for by

the presence of a band gap at this electron count, the source of which we will
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explain in detail in a separate paper.49 Each unit cell contains four formula units,

so the actual cell contents are 4(RuGa2)=Ru4Ga8. We’ll insert interfaces following

the pattern given in Figure 1.5: one interface at the bottom of each unit cell. In

preparation for doing this, which will rotate every other unit cell by 90o, we double

the unit cell along c, leaving us with the cell contents (Ru4Ga8)(Ru4Ga8).

We now make the interfaces. Our doubled unit cell contains two interfaces, and

two Ga atoms are lost at each interface. In order to keep the 14 electron count, the

number of electrons must not change as we form the interfaces; when taking out a

Ga atom, we must leave all of its electrons behind. This means that actually we are

removing two Ga3+ ions at each interface, four in all. The remaining structure is

then (Ru4Ga8−2)
2(3−)(Ru4Ga8−2)

2(3−) = (Ru4Ga6)
6−(Ru4Ga6)

6−, or Ru2Ga3−
3 . We

can make a charge-neutral structure from this by noting that Ga− is isoelectronic

with Sn. This gets us to Ru2Sn3, another 14 electron compound. The electrons

left behind by the vacancies have been accommodated by the structure with the

interfaces.

The same approach can be used for conceptually making Ir3Ga5 from RuGa2.

Briefly, the structure resulting from the insertion of interfaces has the composition

Ru3Ga3−
5 . We can regain charge neutrality by replacing three Ga− anions with Sn,

or by replacing three Ru− anions with isoelectronic Ir atoms. Making the latter

substitution gives us Ir3Ga5.

The construction algorithm we present here accounts not only for the cpseudo

regularity, but also gives us an electronic justification for the 14 electron rule for

the more complex structures (once we understand the reason for the 14 electron

magic count for the parent RuGa2 system).
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Table 1.2: Extended Hückel parameters used for
transition metal (T) and main group (E) atom
types

Orbital Hii (eV) c1 ζ1 c2 ζ2

T 5s -10.40 2.08
T 5p -6.87 2.04
T 4d -14.90 .5340 5.38 .6365 1.80a

E 5s -18.16b 2.12
E 5p -12.00c 1.82

a2.30 in the standard Ru parameters
b-16.16 eV in the standard Sn parameters
c-8.32 eV in the standard Sn parameters



Chapter 2

The Nowotny Chinmey Ladders:

Whence the 14 electron rule?a

2.1 Introduction

The Nowotny Chimney Ladders (NCLs) are a series of intermetallic compounds

formed from transition (T) and main group (E) metals, named for an intriguing

structural feature: the T atoms create four-fold helices (in the shape of chimneys),

inside of which the E atoms form separate helices.1 Figure 2.1 shows two views

(“top” and “side”) of one of these phases, Ru2Sn3.
4 Note the chimney of the

transition metal atoms and within it the three-fold helix of the main group atoms.

A helix within a helix, what could be more beautiful? With a touch of sad-

ness, a series of contributions will show that this perspective does not capture the

electronic and structural richness of these phases.

Experimental work on the NCLs has led to a number of experimental rules. The

first of these is a special stability associated with a total valence electron count of 14

electrons per T atom.8,9 The second rule concerns the observation that the intensity

of diffraction spots for an NCL TtEm follows the law that the main reflections are

at intervals of 4tc∗ and that there are satellite spots at 2(t-m)c∗=cpseudo around

these main diffraction spots.10,34,35

The second rule was explained in the first contribution of this series.51 In this

paper, we concentrate on the origin of first rule, the 14 electron rule. As a specific

aReproduced with permission from [Fredrickson, D. C.; Lee, S.; Hoffmann, R.
Inorg. Chem. 2004, 43, 6159-6167.] Copyright [2004] American Chemical Society.

27
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Figure 2.1: The Ru2Sn3 structure type, an example of the Nowotny Chimney
Ladder series. (a) A view down the c axis. (b) A perpendicular view illustrating
the Ru and Sn helices. The Ru atoms are shown as red balls, while the Sn atoms
are shown as blue balls. Heights are given in units of ct.

example we take the parent structure of the NCLs, TE2, exemplified by RuGa2. To

anticipate our conclusion, we will find that throughout the Brillouin zone there are

two Ga-Ga bonding levels whose shape leads to poor interaction with the transition

metal d levels. The bands arising from these 2 orbitals are filled, along with the 5

d bands from the late transition metal, for a total of 7 bands or 14 electrons.

2.2 The RuGa2 structure

The structure of the archetypal Nowotny Chimney Ladder, RuGa2, itself yields

our first clues to the 14 electron rule. RuGa2 crystallizes in the TiSi2 structure

type.6,7,47 We show this structure in Figure 2.2, where we isolate the unit cell that

makes most clear the connection to the other NCL structures (Figure 2.2c).52,53

As in the other NCLs, we are drawn to the helices. The four-fold Ru (red) helices

of RuGa2, shaped like chimneys, are seen in Figure 2.3a as squares. Their helicity

becomes apparent when we look at the heights: one turn of the helix emphasized in
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Figure 2.2: RuGa2 in the TiSi2 structure type. (a) The conventional face-centered
unit cell for this structure. One choice of primitive cell vectors is indicated in
purple (with one vector perpendicular to the plane of the page). (b) The unit cell
analogous to the NCL structures. (c) The idealization of the RuGa2 structure to
be studied here. See Notes 11 and 12 for a more detailed discussion.
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Figure 2.3a passes through heights 0, 1/4, 3/4 and 1 c, rotating counterclockwise.

The Ga atoms (blue) lie in the channels of the Ru network. They simply make

zigzag chains, but in the other NCLs they are more intricate helices.� � � � � �

� � � �
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Figure 2.3: The RuGa2 structure viewed as (a) a NCL, helix within a helix, and
(b) in another way, emphasizing the closest Ga-Ga contacts in the structure. Ru:
red, Ga: blue.

How important are these helices in terms of bonding? The Ru-Ru distance

along the Ru helix is 3.29 Å, quite large compared to the average Ru-Ru distance

in hcp Ru, 2.68 Å.54 The distance between Ga atoms along the two-fold helix is 2.89

Å. Comparing this to the typical Ga-Ga single bond length of 2.5 Å, one expects

that there is a substantial Ga-Ga interaction along the helix. Indeed there is, but

for an understanding of the 14 electron rule, we must go further: the seductive

helix description glosses over a rich set of Ga-Ga and Ru-Ga bonds.

A closer look at the distances reveals much more extensive Ga-Ga bonding.

Each Ga atom has a severely distorted trigonal bipyramidal coordination by other

Ga atoms (Figure 2.4). The two “axial” bonds are at 2.57 Å (blue), while the
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three “equatorial” bonds are longer: one at 2.82 Å (yellow) and two at 2.89 Å

(green). The axial bonds join the Ga atoms into zigzag chains (Figure 2.3b). The

equatorial bonds connect the Ga atoms into honeycomb nets (Figure 2.5). Within

the honeycomb nets, the 2.82 Å contacts form Ga pairs. The 2.89 Å ones form Ga

zigzag chains along c, the “Ga helices” of Figure 2.3a.

(a)

x

y

z

(b)

z

x
y

118o
2.89 

o

A
2.82 
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2.57 
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A

2.89 
o

A

2.57 
o

A

2.82 
o

A

75o

75o

121
11121 o

Figure 2.4: The Ga coordination by other Ga atoms. This coordination forms a
severely distorted trigonal bipyramid. (a) This trigonal bipyramid viewed roughly
perpendicular to the axis of the trigonal bipyramid. (b) Viewed down the axis.
The colors of the bonds, blue, yellow, and green, refer respectively to the three
bond lengths of 2.57, 2.82, and 2.89 Å. Ru: red, Ga: blue.

Let’s focus on the Ga honeycomb nets; they will make transparent important

features of the RuGa2 structure (and the orbitals coming later). We illustrate how

they stack9 in Figure 2.6, abbreviating the honeycomb layers as single hexagons.

We start with a single layer (Figure 2.6a). Next we add new layers from above so

that the hexagons are parallel, but offset so that an edge of the upper layer lies

over the hexagonal center of the lower (Figures 2.6b-c). This stacking creates the

periodicity of the RuGa2 structure (Figure 2.7). The primitive unit cell vectors

aprim and cprim arise from the 2-dimensional periodicity of the honeycomb nets

(Figure 2.7c). The third cell vector, bprim, gives the repeat along the stack (Figures

2.7b and 2.7d).55
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Figure 2.5: Contacts between the Ga chains. The closest Ga-Ga contacts between
chains are contained within (220) layers in RuGa2. (a) The RuGa2 structure
(rotated 45o) with one of these planes emphasized. (b) A [220] view of this layer,
with the contacts between chains indicated with yellow and green bars.

The shortest Ga-Ga contacts (the “axial” ones of the Ga trigonal bipyramids)

link together the honeycomb nets along the stack. These contacts are shown in

Figure 2.6c with black dotted lines between honeycombs. In Figure 2.6d we em-

phasize the duality of the Ga honeycombs and chains, drawing the Ga-Ga chains

bonded between the nets with blue bars, and tracing out the honeycombs with

black dotted lines. Both depictions of the Ga-Ga contacts will play a role as we

delve into the electronic structure of this phase.

Now the Ru-Ga bonds: one Ru atom lies at the center of each hexagon of the

Ga honeycombs, and this creates six Ru-Ga contacts, two at 2.90 Å, and four at

2.85 Å (Figure 2.8a). Two more Ga neighbors lie both above and below the Ru

atom from the edges of the adjacent honeycomb layers of the stack (Figure 2.8b).

These form the shortest of Ru-Ga contacts at 2.59 Å. These ten Ga atoms create

a Ru coordination environment of D2 symmetry. The coordination environment

of the Ga atoms is shown in Figure 2.8c, and is quite similar in shape. What now

remains is to connect these Ga-Ga and Ru-Ga bonds to the 14 electron rule for
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Figure 2.6: Stacking of Ga honeycomb nets in RuGa2. (a) A Ga honeycomb net
abbreviated as a single hexagon. (b) The stacking mode between adjacent Ga
honeycombs, with the hexagons parallel, and the edge of upper layer over the
central void of the lower. (c) The stacking of three layers found in RuGa2. The
shortest Ga-Ga distances in the structure, at 2.57 Å, created by this stacking, are
drawn in with black dotted lines. (d) The chains created from these contacts (those
shown earlier in Figures 2.1 and 2.2b); the Ga-Ga contacts in the honeycomb nets
are indicated with dotted lines. The colors of the Ga-Ga bonds are blue (d), yellow
or green (a-c) for respectively the 2.57, 2.82, and 2.89 Å bonds. See Figure 2.4.
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Figure 2.7: Building up RuGa2 from the stacking of Ga honeycomb nets. (a)
The RuGa2 structure, with the Ga-Ga closest contacts indicated. (b) The RuGa2

structure with the stacking of Ga honeycomb planes emphasized. bprim gives the
smallest crystallographic repeat vector for the stacking. (c) A single hexagon of a
Ga honeycomb, showing the RuGa2 primitive cell axes aprim and cprim. (d) The
bprim axis connecting Ga honeycomb nets in the RuGa2 structure. See Figure 2.4
for the significance of the blue, yellow, and green Ga-Ga bonds. Ru: red, Ga: blue.
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Figure 2.8: The coordination environments in RuGa2. (a) The Ru-Ga contacts
(black dotted lines) within the plane of a Ga honeycomb net. (b) The Ru-Ga
contacts (red dotted lines) arising from the stacking of Ga honeycomb nets. (c) The
full coordination environment of the Ga atoms. See Figure 2.4 for the significance
of the blue, yellow, and green Ga-Ga bonds.

RuGa2.

2.3 The band structure of RuGa2

In an earlier paper, we traced the NCL 14 electron rule to a band gap in the parent

structure, RuGa2, at 14 electrons per Ru.51 We found this gap in both LDA-

DFT43–46 and extended Hückel (eH)48,50 band structures, in accord with earlier

experimental results7 and better calculations on this structure type.15–17 These

band structures are repeated in Figure 2.9 where the requisite band gap at 14

electrons per Ru can be clearly seen in both. We now turn to why this gap occurs,

taking advantage of the simplicity and flexibility of the eH method. The parameters

used in these calculations are given in Table 2.1.
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Figure 2.9: Band structures of the RuGa2 structure type. (a) The band structure
calculated for the experimental unit cell, as shown in Figure 2.2b, with LDA-DFT.
(b) The band structure calculated for the idealized structure, as shown in Figure
2.2c, with the extended Hückel method. The dotted lines give the Fermi Energy
(EF ) at 14 e−/Ru.

Table 2.1: Extended Hückel parameters used for
transition metal (T) and main group (E) atom
types

Orbital Hii (eV) c1 ζ1 c2 ζ2

T 5s -10.40 2.08
T 5p -6.87 2.04
T 4d -14.90 .5340 5.38 .6365 1.80a

E 5s -18.16b 2.12
E 5p -12.00c 1.82

a2.30 in the standard Ru parameters
b-16.16 eV in the standard Sn parameters
c-8.32 eV in the standard Sn parameters
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To orient ourselves in this problem, it’s convenient to start with the eH density

of states (DOS), shown in Figure 2.10a. The gap at 14 electrons per Ru appears

here as a deep hole in the DOS about the EF . Below this is a dense set of states

ranging from about -12 to -17 eV. The high DOS values in this region suggest

a rather localized set of orbitals, typical of transition metal d bands.56 This is

confirmed with a look at the Ru d portion of the DOS, shown as the shaded region

in Figure 2.10a. The Ru d fills the majority of the curve in the -12 to -17 eV region

and dominates the DOS near the EF . The remainder of the DOS in this curve

comes almost entirely from the Ga s and p, suggesting Ru-Ga bonding in this

region. This is what is observed in the Ru-Ga crystal orbital overlap population

(COOP), shown in Figure 2.10b. It can also be seen in the Ru-Ga COOP that the

gap about the EF separates Ru-Ga bonding and Ru-Ga antibonding states. Below

the Ru d states, there is a tail in the DOS, running from about -17 to -26 eV. This

derives from the Ga s and p. A look at the Ru-Ga COOP reveals that these states

are largely Ru-Ga nonbonding (the small negative COOP values near the bottom

in this range are the result of counterintuitive orbital mixing57).

Let’s trim down our eH calculations by taking out orbitals that are unnecessary

for the presence of the gap. To do this, we monitor how the eH DOS changes

as atomic orbitals are deleted. Our starting point, the total DOS for the full

calculation, was shown in Figure 2.10a. In Figure 2.10c, we remove the Ru sp levels.

The resulting DOS shows some minor changes, for instance the band gap about

EF has closed slightly from the bottom of the gap to become a deep pseudogap.

Overall, however, the correspondence between the calculations with and without

the Ru sp is strong. The EF still lies in a deep hole, implying that the special

stability of the 14 electron count remains. For now, we will then leave the Ru sp
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Figure 2.10: Numerical experiments with eH electronic structure of RuGa2. (a)
eH DOS for the RuGa2 structure. (b) The Ru-Ga COOP for RuGa2. (c) eH DOS
for RuGa2 excluding the Ru s and p orbitals. (d) eH DOS for the Ru substructure
of RuGa2, excluding both the Ru and Ga sp orbitals. In all DOS curves, the
shaded region gives the Ru d projected DOS, with the dashed curves showing the
integration of this region. The dotted horizontal lines indicate the eH EF of RuGa2

for calibration of the energy scale.
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levels out of our analysis.

In Figure 2.10d, we remove not only the Ru sp orbitals but also all of the Ga

orbitals. We are left with just the Ru d, which occur as a block spread out from

about -13 eV to -17 eV. The RuGa2 EF (dotted line) lies just above this block.

This set corresponds to the set of Ru d-rich states in the range of -12 to -17 eV

mentioned earlier for the full calculation (Figure 2.10a). In RuGa2, this Ru d block

is filled, and this is a part of the rationale of the 14 electron count.

2.4 A schematic interaction diagram

The results of the last section can be summarized with the schematic interaction

diagram in Figure 2.11. We consider two formula units of RuGa2, the contents of

the primitive unit cell. The two Ru atoms per unit cell bring 10 d orbitals, while

the 2(Ga2) portion brings 16 Ga sp orbitals. Strong interactions occur within the

2(Ga2) portion, as indicated by the multiple Ga-Ga contacts noted in the structure.

From this, we anticipate much dispersion in the Ga levels. In the scheme here

we simplify this situation by grouping the Ga levels as follows: low-lying Ga-Ga

bonding levels (black box), and high-lying Ga-Ga antibonding levels (gray box).

There are 4+x low-lying Ga levels, 4 being the minimum number of Ga levels

needed to make the 14 occupied orbitals per unit cell.

Here’s what happens when we turn on Ru-Ga bonding, which we’ve seen is

important. Of the 4+x low-lying Ga levels, x get involved in Ru-Ga interactions.

These combine with the 10 Ru d orbitals to create a 10 below x splitting: x Ru-

Ga bonding plus 10-x Ru nonbonding orbitals below a high-lying set of x Ru-Ga

antibonding orbitals. The antibonding signature of the last set is found in the

Ru-Ga COOP (Figure 2.10b) above the EF ; the Ru-Ga antibonding levels are
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Figure 2.11: A scheme setting up the problem of the 14 electron rule in RuGa2. For
each RuGa2 primitive unit cell, ten Ru d orbitals interact with 4+x orbitals on the
Ga atoms. x is the number of Ga orbitals which form strong interactions with the
Ru and, in principle, could depend on the k-point examined. These x interacting
Ga levels create bonding and antibonding interactions with x Ru d levels. This
leads to 4 Ga, x Ru-Ga, and 10-x Ru levels being filled for 14 occupied orbitals
(black, bold boxes), and x unfilled Ru-Ga antibonding orbitals (gray box).

unoccupied. Altogether, we are left then with 14 occupied levels per 2(RuGa2):

10 Ru d (and Ru-Ga bonding) plus 4 Ga-Ga bonding, Ru-Ga nonbonding levels.

From this, we recover the 14 electrons per Ru atom.

2.5 Toward the 14 electron rule: limiting k-points

From the interaction diagram of Figure 2.11, it is evident that the gap at 14

electrons per Ru rests on the existence of four Ga-Ga bonding/Ru-Ga nonbonding

levels per unit cell. How do these arise from the structure of RuGa2? Let’s look

at the problem k-point by k-point, hoping to find a simple argument that holds

across the Brillouin zone.

Which k-points are important? We begin by comparing the DOS of the first
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Figure 2.12: Sampling k-space. (a) The DOS of RuGa2 averaged from a mesh of k-
points extending over whole first Brillouin zone. (b) The DOS of RuGa2 averaged
from a mesh of k-points lying in the plane shared by the high-symmetry k-points
Γ, X, Y, and XY.

Brillouin zone (FBZ) with the DOS of the (kx, ky, 0) plane (Figure 2.12). Clearly

the latter models the FBZ well. In Figure 2.13, we show the band structure in

this plane. We then focus further on the high symmetry points in this plane: Γ

for k=(0,0,0), X for k=(0.5,0,0), Y for k=(0.0, 0.5,0), and XY for k=(0.5,0.5,0),

using the reciprocal lattice for the primitive unit cell of RuGa2 described earlier.

At these k-points, the crystal orbitals are real and easy to draw out.

The pivotal four Ga-Ga bonding, Ru-Ga nonbonding levels arise from the Ga

portion of the structure, so that’s where we begin our analysis at each k-point.

First we must identify the 4+x low-lying set (outlined in black on the right side

of Figure 2.11). We do this through the band structure (Figure 2.14) of the Ga

sublattice, assigning the Ga levels below the RuGa2 EF as belonging to the 4+x

set. As can be seen by counting the number of bands below the EF , x is not a
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Figure 2.13: Band structure of the RuGa2 primitive cell between the high-
symmetry k-points Γ, X, XY, and Y. For the Ru atoms, only d orbitals are included,
following the results shown in Figure 2.10. (a) All of the occupied bands. (b) A
close-up of the Ru d region. See Figures 2.15, 2.16, 2.19, and 2.20 for descriptions
of the band labels.

constant. It varies from k-point to k-point, varying from seven low-lying levels at

Γ, to six at X, XY and Y (three doubly degenerate bands). To see the distinction

between the Ru-Ga nonbonding and the Ru-Ga bonding orbitals, let’s now draw

out these 4+x Ga orbitals. We will do this at Γ and X, the results being similar

at Y and XY, respectively.

2.6 14 electrons per Ru at Γ

As we noted above in Figure 2.14, the isolated Ga sublattice has seven low-lying

crystal orbitals at Γ. Somehow four of them fail to interact effectively with the Ru

d levels; we want to understand this in orbital detail. For orientation, we start with

a view of the RuGa2 structure (left side of Figure 2.15a): blue bars indicate the

2.57 Å Ga-Ga contacts, and black dotted lines the 2.82 Å and 2.89 Å ones. Then,

in Figures 2.15b-e, we overlay the four Ru-Ga nonbonding Ga orbitals onto this
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Figure 2.14: Bands for just the Ga part of the RuGa2 structure, in the plane of
the high-symmetry k-points, with reference to the electron counting scheme shown
in Figure 2.11.

framework, assigning labels for the orbitals, which we will refer to when we return

to the RuGa2 band structure. Focusing on lobes connected by blue bars, we see

why these orbitals are low-lying: all are Ga-Ga bonding along the shortest Ga-Ga

contacts. This arises primarily from Ga s-Ga s interactions in σs1,s2 and through

Ga p-Ga p interactions (involving mainly the Ga py) in σy1,y2. There are four of

these shortest Ga-Ga contacts per unit cell, creating the Ga chains we described

above. The four levels shown in Figure 2.15 provide the Ga-Ga σ bonding set for

these contacts at Γ.

But why are these levels Ru-Ga nonbonding? To answer this, we focus on the

Ga hexagon on the right side of Figure 2.15a and the Ru atom in its center. On

the right side panels of Figures 2.15b-e, we draw the Ga lobes in the hexagon,

abstracted from the full Ga set at left. Let’s see how these lobes overlap with the

d orbitals of the central Ru atom. The lowest energy Ga orbital, σs1, has no nodes
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Figure 2.15: The four Ga-Ga bonding, Ru-Ga nonbonding orbitals at Γ (See Figure
2.11). Note these four orbitals are phased in such a way so that they do not
interact well with the d orbitals of the Ru. (a) A view of the RuGa2 structure
for orientation, showing the Ga chains formed from the shortest Ga-Ga contacts
in the structure (left) and one hexagon of the honeycomb nets formed from the
contacts between chains (right). In the next panels, the orbitals are overlaid on
these frames. (b) The orbital we label σs2, formed from Ga s orbitals bonding
along the Ga-Ga contacts along the chain. (c) The σy2 orbital, formed from Ga py

bonding along the chain. (d) The σy1 orbital. (e) The σs1 orbital. These orbitals
are identified in the band structure of Figure 2.13.
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passing through the Ga hexagon. It would overlap well with a Ru s, but not a d

orbital. The next lowest level, σy1, has one node in the plane of the Ga hexagon;

this level has zero overlap with all of the Ru d orbitals. The remaining orbitals,

σy2 and σs2, have no counterpart in the Ru s, p or d orbitals. All of these orbitals

are Ru-Ga nonbonding due to their phasing.

Not so for the remaining low-lying Ga levels at Γ. We show these orbitals in

Figure 2.16, in the fashion of Figure 2.15. Like the previous set of Ga orbitals,

these exhibit Ga-Ga bonding, this time along the green contacts, at 2.89 Å. This

bonding occurs between Ga pz orbitals in Figures 2.16a and 16b, and through

hybrids of Ga s and Ga px in Figure 2.16c. But now the overlap with Ru d orbitals

is obviously good: for both z1 and z2 orbitals (Figures 2.16a-b) there is strong

overlap with a Ru dxz orbital, with one lobe of the dxz orbital pointing into one of

the 2.89 Å Ga-Ga contacts. The result is three-center Ga-Ga-Ru bonding overlap.

In the hy combination (Figure 2.16c), the dominant interaction occurs through a

σ overlap between the Ga hybrid orbital with a Ru d orbital combining Ru dz2 and

dx2
−y2 character.

In the band structure of RuGa2 in Figure 2.13, we locate the descendants of

these Ga orbitals with the labels given to the orbitals in Figures 2.15 and 2.16.

The σs1, σs2, σy1, and σy2 labels indicate the nonbonding Ga levels at Γ, while the

hy + d, z1+d and z2+d labels mark Ru-Ga bonding orbitals. There is significant

overlap in energy between the nonbonding Ga levels, Ru-Ga bonding levels, and

Ru nonbonding levels. For this reason, it is very difficult to discern these levels in

average properties calculations, i.e. COOP or projected DOS analyses, involving

the full Brillouin zone.

In summary, here’s how the rule of 14 electrons per Ru atom arises at Γ. The
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Figure 2.16: The x Ga orbitals (x=3 at Γ) which form Ru-Ga bonds at Γ (see
Figure 2.11). (a) The z2 orbital, formed from Ga pz orbitals bonding along the
Ga-Ga contacts shown in green. (b) The pz orbital, formed from Ga pz bonding
along the Ga-Ga contacts. (c) The hy orbital, formed from hybrid lobes of Ga s
and Ga px bonding along the contacts shown in green. These orbitals are identified
in the band structure of Figure 2.13. (d), (e) and (f) The Ru d-Ga overlap for the
Ga orbitals of respectively (a), (b) and (c).
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Figure 2.17: Classical valence structures for Ga+ in RuGa2. At all four special k-
points, Ga-Ga bonding occurs along Ga chains. (a) At Γ and Y, the chain bonding
occurs along the 2.57 Å contacts. (b) At X and XY, the chain bonding occurs
along the 2.89 Å contacts.

Ga-Ga bonding levels (reasonably localized in the chains with the shortest Ga-

Ga distances) interact poorly with the Ru d orbitals. As there are four of these

contacts per unit cell, four Ga-Ga bonding levels remain at relatively low energy.

All of the other low-lying Ga levels interact with the Ru, so a gap occurs after

filling the four Ga-Ga levels and the ten Ru d levels (including Ru-Ga bonding,

and Ru nonbonding), at 14 electrons per Ru atom.

In terms of classical valence structures at Γ, each atom in the Ga chain forms

two two-electron single bonds. Since this uses two electrons, the Ga can be formally

written as Ga+. This classical valence structure is depicted in Figure 2.17a.

In Figure 2.18, we anticipate how this scheme will change as we move away from

Γ. At X and XY, some of the 2.57 Å Ga-Ga bonding orbitals produce high-energy

Ru-Ga antibonding orbitals. In the next section we see that at X and XY, this

is counterbalanced by the appearance of a different set of Ga-Ga bonding, Ru-Ga

nonbonding orbitals.
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Figure 2.18: Translational symmetry of the Ga py and pz orbitals, and the Ru-Ga
bonding responsible for the shift in Ga-Ga bonding from the 2.57 Å contacts at Γ
and Y, to the 2.89 Å contacts at X and XY. At Γ and Y, the orbitals are symmetric
with respect to translations along aprim and cprim. This the makes the (a) Ga py

and (b) Ga pz of respectively the wrong and right phasing for overlap with Ru d
orbitals. At X and XY, the orbitals are now antisymmetric with respect to aprim

translations. (c) The Ga py-Ru d overlap is now favorable, while (d) Ga pz-Ru d
overlap is diminished.
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2.7 14 electrons per Ru at X, Y and XY

At X, the origin of the 14 electron count has both similarities and differences to

that at Γ. There are six low-lying Ga orbitals, compared to seven at Γ. But, as

at Γ, there are four Ga-Ga bonding/Ru-Ga nonbonding orbitals with the wrong

pseudosymmetries for interacting efficiently with Ru d orbitals. These are shown

in Figure 2.19. The σz1 and σz2 (Figure 2.19a) are well-suited for a Ru pz orbital,

not a d orbital. Likewise, σs1 and σs2 (Figure 2.19b) would be expected to overlap

strongly with a Ru px orbital. The two remaining Ga levels are predisposed to

Ru-Ga bonding, and are shown in Figure 2.20. This set is bonding between Ga-Ga

nearest-neighbors through the Ga py orbitals, and has a moderate π overlap with

a Ru dxy orbital.

The result of this is that the Ga-Ga overlap in the Ru-Ga nonbonding orbitals

is no longer between the shortest Ga-Ga contacts. Instead, the pz orientation

directs the Ga-Ga bonding along the longer 2.89 Å contacts, those represented

by green bars in Figure 2.5b, and which form the “Ga helices.” The other Ga-

Ga bonding/Ru-Ga nonbonding levels (Figure 2.19b), are also bonding along this

contact, through Ga s-Ga s overlap. As in the Ga-Ga bonding at Γ, there are four

of these contacts per unit cell, and four bonding levels, one for each 2.89 Å Ga-Ga

bond. The Ga-Ga bonding falls along Ga chains, again suggesting Ga+ (Figure

2.17b).

In Figure 2.13, we locate these levels at X in the band diagram of RuGa2, as

well as the corresponding levels at Y and XY. At each of these k-points, the 14

electrons per Ru count arises from the filling of four Ga-Ga bonding levels, and

ten Ru d (and Ru-Ga bonding) levels. At Γ and Y, the four Ga-Ga bond levels

are due to the four 2.57 Å contacts per unit cell. At X and XY, they come from
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Figure 2.19: The four Ga-Ga bonding, Ru-Ga nonbonding orbitals at X (See Figure
2.11). As in the Ru-Ga nonbonding orbitals at Γ, these four orbitals are phased so
that they interact poorly with the d orbitals of the Ru. The Ga-Ga bonding here
is along the 2.89 Å contacts, not along the shorter 2.57 Å contacts as at Γ. (a) The
orbitals labeled σz1 and σz2, formed from Ga pz orbitals bonding along the 2.89 Å
Ga-Ga contacts (green). (b) The σs1 and σs2 orbitals, formed from Ga s bonding
2.89 Å contacts. These orbitals are identified in the band structure of Figure 2.13.

y1, y2
−12.6 eV

Ru

(a) (b)

Figure 2.20: The x Ga orbitals (x=2 at X) which form Ru-Ga bonds at X (see
Figure 2.11). (a) The y1 and y2 orbitals, formed from Ga py orbitals bonding along
the Ga-Ga contacts shown in blue. (b) The Ru d-Ga overlap for this orbital.
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the four 2.89 Å contacts per cell.

2.8 Perspectives on the 14 electron rule

We found that the 14 electron count in RuGa2 stems from 5+2 sets of orbitals

per formula unit: five Ru d (and Ru d-Ga bonding) orbitals, plus two Ga orbitals

non-interacting with the Ru d. When we looked at different k-points, it became

clear that the nature of these Ga orbitals shifts between k-points. For those k-

points where translations along aprim are symmetric (i.e. Γ and Y), the Ga levels

consist of bonds along the first nearest-neighbor Ga-Ga contacts. For those k-

points where such translations are antisymmetric (i.e. X and XY), the Ga levels

consist of bonds along the third nearest-neighbor Ga-Ga contacts. The essential

feature for the 14 electron count is that while the type of Ga-Ga bond varies from

k-point to k-point, the number of filled Ga-Ga bonding but Ru-Ga nonbonding

orbitals remains unchanged.

We may compare the 14 electron rule in RuGa2 with the more familiar 18

electron rule for organometallic transition metal complexes. In Figure 2.21a we

illustrate schematically the origin of the 18 electron rule for a hypothetical transi-

tion metal complex TLn, where T is a transition metal and Ln is a complement of

n ligands with m donor orbitals (m ≥ n). The T atom brings nine orbitals: five d,

three p, and one s. As we turn on T-L interactions, the m L orbitals combine with

m of the nine T orbitals (the assumption is m ≤ 9). This creates m T-L bonding

levels, 9-m T nonbonding orbitals, and m T-L antibonding orbitals. Assuming

that all the bonding and nonbonding levels are occupied, there are a total of nine

filled levels: m T-L bonding plus 9-m T nonbonding.58

A similar scheme arises for the Ru-Ga bonding in RuGa2, as is shown in Fig-
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Figure 2.21: A comparison of the 18 electron rule of transition metal complexes
with the 14 electron rule for RuGa2. (a) A schematic interaction diagram for a
hypothetical 18 electron complex TLn, (b) for RuGa2, and (c) for a hypothetical
complex TLn′ exceeding 18 electrons. The two Ru-Ga nonbonding Ga levels of
RuGa2 are analogous to the y T-L nonbonding L orbitals of the TLn′ complex.

ure 2.21b, this time for one formula unit of RuGa2. The Ru atom brings five d

orbitals to the bonding. The Ga2 portion brings m levels that interact with these

Ru d orbitals, and two levels that are primarily limited to Ga-Ga bonding. The

persistence of these two levels throughout the whole Brillouin zone (even though,

as we saw, that they may be involved in different Ga-Ga bonds) gives rise to a

band gap at 14 electrons per Ru.

The orbital situation of filled ligand orbitals without transition metal char-

acter is well-known in other branches of inorganic chemistry–most notably in

organometallic chemistry. In organometallic chemistry, this situation leads to ap-

parent violations of the 18 electron rule. Examples include the formally 20 electron

W(PhCCPh)3CO,59–61 and the formally 24 electron Zr(BH4)4.
62 For these com-

pounds (Figure 2.21c), 18 electrons reside in m T-L bonding and 9-m T nonbonding

levels as in normal 18 electron complexes. But most importantly, there is also a

group of y orbitals on the ligands which do not overlap (by symmetry) with the

metal orbitals. They remain nonbonding and accommodate the remaining elec-
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trons. The extra y ligand orbitals in these “18 electron rule violators” play the

same role as the two nonbonding Ga levels in RuGa2 we examined in detail in

this paper. But while in organometallic chemistry such violators are rare, we see

in the Nowotny Chimney Ladder phases that such behavior is the norm. These

results suggest that deviations from the 18 electron rule become more prevalent

as main group-main group interactions become more complex. This is the case

for transition metal-main group extended solids where the main group atom is the

majority component.

2.9 Conclusions

In this paper, we have continued our study of the 14 electron rule in the Nowotny

Chimney Ladder phases (NCLs), focusing on why there is a band gap at 14 elec-

trons per Ru atom in the parent structure, RuGa2. We found that 10 of the 14

electrons fill the Ru d block, while the remaining 4 occupy Ga orbitals. 14 elec-

trons per Ru atom then corresponds to the electron configuration Ru2−(Ga+)2.

The (Ga2+)2 component of the structure contains a k-point-dependent balance

between bonding along two different sets of Ga chains.

We find a more general counting scheme is needed to reconcile the 14 and 18

electron rules. In 18 electron compounds, we typically focus on the metal (and

metal-ligand bonding) orbitals alone. The remaining ligand orbitals are registered

only peripherally, in the ligand Lewis structures. On moving from transition metal

complexes to extended solids, we must widen our vision to include these nonbond-

ing orbitals. Only then can we understand the resulting magic electron counts.

One might object “Why should we worry about arcane electron counting rules

of organo-metallic chemistry in intermetallic extended compounds?” Well, it’s all
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one chemistry, and it’s salutary (and satisfying) to look for connections. Which

are there.

How does this electron counting scheme for RuGa2 apply to the other NCL

phases? As we showed in the first paper of this series8, RuGa2 can be used to

construct all the other NCLs. In this Aufbau, the RuGa2 structure is cut into

2-dimensional slabs. These slabs are then rotated relative to each other by 90o

and then fused back together. At the slab interfaces, steric factors force main

group atom vacancies. This breaks the Ga-Ga chains–the chains creating the

Ga-Ga bonding/Ru-Ga nonbonding orbitals key to our counting scheme (Figure

2.11). But where Ga-Ga bonds are broken by vacancies, Ga lone pairs appear, and

the total number of Ru d-Ga nonbonding Ga orbitals is conserved. Through this

mechanism, the stability of the 14 electron count remains. The details of this will

be described in a future publication.

As we look beyond the NCL phases themselves, to intermetallic species in-

volving both transition metal and main group atoms, it is clear that high site

pseudosymmetry plays an important role. Not only are the transition metal atoms

of RuGa2 in a D2 environment, but hexagons of main group atoms can be perceived

around them. With such hexagons of atoms it is possible to prepare fragment or-

bitals which will interact with a transition metal orbital of s, p or even f symmetry.

And it is of interest to see if such “wrong symmetry” main group orbitals prove a

key point in other transition metal main group extended solids.



Chapter 3

Crystal Structures of (Pyrene)10

(I−3 )4(I2)10 and [1,3,6,8-Tetrakis

(methylthio)pyrene]3(I
−
3 )3(I2)7:

Structural Trends in Fused Aromatic

Polyiodidesa

3.1 Introduction

The current interest in molecular organic metals is tied to interest in high criti-

cal temperature (Tc) superconductors. All high Tc superconductors contain light

elements, whether they are the boron atoms in MgB2 (Tc = 39 K),63 the carbon

atoms of fullerenes in CsxRbyC60 (Tc = 33 K),64 or the oxygen atoms in copper

oxides (Tc = 164 K).65 It is therefore organic chemistry, with its incomparable

richness in light-atoms, which one would expect to rise to the forefront of the high

Tc field. However, to date, this expectation has been largely unfulfilled. Leav-

ing aside the fullerides, the highest organic Tc is 12.5 K at 0.3 kbar, found for

κ-(BEDT-TTF)2Cu[N(CN)2]Cl, a derivative of tetrathiafulvalene (TTF).66

It is now well accepted that substantial increases in critical temperatures will

require greater control of molecular packing.67–73 Indeed, it is crystal packing which

determines whether a partially filled organic π-system is a Mott insulator,74–79 a

aReproduced with permission from [Lee, S.; Chen, B.; Fredrickson, D. C.; DiS-
alvo, F. J.; Lobkovsky, E.; Adams, J. A. Chem. Mater. 2003, 15, 1420-1433.]
Copyright [2003] American Chemical Society.

55



56

one-dimensional metal which Peierls distorts at low temperature,80–82 or a bonafide

multi-dimensional metal which upon cooling can enter the desired superconduct-

ing state.83–86 Understanding the factors which control crystal structures is thus

essential.

In this paper, we study the packing principles which govern one class of organic

molecular metals, fused aromatic polyiodides. Fused aromatic polyhalides have a

long history. The first discovered conducting organic compound was a perylene-

bromine salt (σ = ca. 1 S cm−1),87 a member of this family. Even though this

compound was prepared almost fifty years ago, to date only a handful of fused aro-

matic polyiodides have been structurally well characterized.88–94 Thus the factors

which control crystal packing in these systems have still not been fully enumerated.

We report here two new crystal structures of aromatic polyiodides, (pyrene)10

(I−3 )4(I2)10 (1) and [1,3,6,8-tetrakis(methylthio)pyrene]3(I
−

3 )3(I2)7 (2). We consider

the role of aromatic-aromatic, I-I· · ·I and C-H· · ·I interactions in these crystal

structures and in fused aromatic polyiodides in general. We also consider the im-

portance of the interface between the iodide and aromatic portions of the crystal

structure. We find such intermolecular forces impose strong constraints on crystal

packing. Taken together, one can rationalize the observed crystal structures, struc-

tures which generally consist of face-to-face stacks of aromatic rings separated from

one another by iodide sheets. For systems with a high iodide content, the aromatic

stacks are isolated from one another and the systems are at most one-dimensional

organic metals. Such one-dimensional metals are not likely to exhibit supercon-

ductivity. We report both LDA-DFT43–46,95–97 and extended Hückel (eH)48,58,98–100

band calculations on these systems. We use these calculations to rationalize the

stacking patterns in 1.
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3.2 Results

3.2.1 The structure of (pyrene)10(I
−
3 )4(I2)10, 1

The crystal structure of 1 is shown in Figure 3.1a. In this structure there are two

groups of pyrene molecules. The first group, shown in gray in this figure, consist

of pyrene molecules not in π-contact with any other pyrene molecules. There are

two such pyrene molecules per unit cell. The second group, shown in green, form

face-to-face stacks running in the a direction. There are two stacks in a unit cell,

one running through the corner of the unit cell, and other running through the

center of the bc face. Although the two stacks are crystallographically inequivalent,

they are almost identical with one another: corresponding intermolecular contacts

within the stacks differ by a few hundredths of an Ångstrom. Per unit cell there are

eight face-to-face stacked pyrene molecules. Strikingly similar structures have been

found in perylene, pyrene and other fused aromatic radical cation salts.80,101–103

The overall topology of crystal structure 1 is apparently stable both to variations

in the fused aromatic system as well as the counterion.

In Figure 3.1a, for the sake of clarity, we represent each of these stacks by just

a pair of neighboring pyrene molecules. One full stack is however illustrated at the

very center of the figure. A clearer view of the stacked pyrene molecules is given in

Figure 3.2a. In these stacks, three of the pyrene molecules are oriented the same

way, followed by a pyrene molecule which is rotated 60o with respect to the other

three pyrene molecules. The translational repeat thus spans four pyrene molecules.

In Figures 3.2b-c we illustrate explicitly the face-to-face arrangement of neighbor-

ing pyrene molecules: in 3.2b we show two similarly oriented pyrene molecules,

while in 3.2c we show two pyrene molecules which are rotated 60o with respect
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to one another. The two stacking arrangements share some common features. In

both cases, every other carbon atom is directly above or below a carbon atom in

the neighboring molecule, and in both cases there are seven such contact distances

per neighboring pair of pyrene molecules. These C· · ·C contact distances range

from 3.18 to 3.49 Å; many of these distances are shorter than twice the standard

carbon van der Waals radius (3.40 = 2 × 1.70 Å).104 The two observed stacking

orientations have been observed in other radical cation pyrene salts.80,102,103 We

explain the molecular orbital basis for the two orientations in a later section of this

paper.

As can be seen in Figure 3.1a, there are also numerous iodine-iodine contacts

in this crystal structure. Of particular interest are the iodine-iodine interatomic

distances which are less than 4.00 Å (4.00 being roughly twice 1.98 Å, the standard

van der Waals radius of the iodine atom). Many of these contacts lie in slabs

normal to the c direction. In Figure 3.1b we illustrate one of these planar slabs.

In making this picture we distinguish two different types of iodine contacts. The

shorter iodine contacts are illustrated as solid blue and green lines (blue and green

correspond to respectively in- and out-of-plane bonds); the longer iodine-iodine

contacts are represented as dashed red lines. We have chosen the distance of 3.20

Å as the dividing line between the two bond types. Thus, the dashed red lines are

drawn between iodine atoms whose interatomic distances range from 3.20 to 4.00

Å. This cut-off distance of 3.20 Å was chosen with some care.

An examination of the Cambridge Structural Database (CSD) shows that there

is great variance among authors as to what distance constitutes the upper limit of

an iodine-iodine bond. Distances as long as 3.63 Å have been considered as bonds

105 , while distances as short as 3.09 Å106 have been taken to be intermolecular con-
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Figure 3.1: The crystal structure of (pyrene)10(I
−

3 )4(I2)12, 1 (in stereoview). (a)
The complete structure. Two types of pyrene rings are evident: pyrene rings which
form face-to-face stacks (in green), and pyrene rings isolated at the periphery of
the stacks (in gray). For clarity, we have removed pyrene rings from each of the
stacks, except for the stack at the center of the figure. The ordering in these
stacks is shown in detail in Figure 3.2. The iodine atoms are shown in blue.
(b) The network formed from these iodine atoms. Here, the iodine atoms in the
plane of the paper are blue, while those out of the plane are green. Solid lines
denote intramolecular bonds (bonds shorter than 3.20 Å). Dotted red lines denote
intermolecular contacts between 3.20 Å and 4.00 Å.
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Figure 3.2: Face-to-face stacking of pyrene molecules in 1. (a) A single stack.
Within this stack, pyrene molecules have either (b) a similar orientation or are (c)
rotated 60o with respect to each other.
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tacts. This variance can be understood if we plot as a histogram all iodine-iodine

interatomic distances in the CSD. As shown in Figure 3.3, there is a continuum

of iodine-iodine distances and hence no well defined cut-off. This is a well-known

phenomenon:107–110 while light main group atoms have substantial differences in

the distances of covalently bonded and van der Waals bonded atoms, heavier main

group atoms such as iodine do not. Nonetheless as Figure 3.3 shows, the distribu-

tion of iodine-iodine bonds is bimodal: with two maxima at 2.88 and 3.96 Å. By

choosing a cut-off at 3.20 Å, the value at which the distribution of iodine-iodine

bonds passes through a local minimum, we distinguish most clearly between these

two bond types. As Figures 3.1a-b show, the shorter contacts (the solid lines)

join the iodine atoms into well known I2 and I−3 units. The longer contacts (the

dashed red lines) create a much more complex polyiodide network. For the sake

of simplicity, in this paper we will refer to these shorter and longer contacts as

respectively intramolecular bonds and intermolecular contacts.

Intra- and intermolecular iodine-iodine distances and angles are listed in re-

spectively Tables 3.1 and 3.2. The intramolecular bonds for I2 molecules and I3
−

ions range from respectively 2.73 to 2.76 Å and 2.78 to 3.17 Å, distances compa-

rable to those in other polyiodides. Within the asymmetric unit there are two I−3

ions. Both are essentially linear (with bond angles of 175.9o and 176.1o). In both

I−3 ions, there is one short bond (2.78 and 2.84 Å) and one long bond (3.17 and

2.98 Å). Such asymmetry in I−3 bond lengths is well known.111

Of greater interest are the intermolecular contacts. All intermolecular contacts

less than 3.50 Å are between I2 and I−3 units. These intermolecular contacts are all

collinear with the I2 molecule (angles range from 175 to 178o) and are very approx-

imately perpendicular to the I−3 anion (angles range from 84 to 125o). Between
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Figure 3.3: Combined distribution of I-I and I· · ·I distances retrieved from the
CSD.



63

3.50 and 4.00 Å, there are again I2· · ·I−3 contacts, and even some I2· · ·I2 contacts.

These longer contacts are approximately collinear with one I2 or I−3 fragment and

are approximately perpendicular to the other I2 or I−3 fragment. Deviations from

collinearity are greater for the longer intermolecular contacts. For the longest con-

tacts (those at 3.8-3.9 Å), the intermolecular contact is approximately collinear

with the I−3 bond and is not collinear with the I2 molecule.

In a subsequent section of this paper, we view the shorter intermolecular con-

tacts as Lewis acid-Lewis base interactions,112 where the fragment which is collinear

with the intermolecular contact serves locally as the Lewis acid, and the perpen-

dicular fragment acts as a Lewis base.113 In this viewpoint, for the strongest in-

termolecular contacts, i.e., those ranging from 3.3 to 3.5 Å, it is the I2 molecules

which are the Lewis acids and the I−3 which are the Lewis bases. This is reasonable

as the former group is neutral, while the later group is negatively charged.

Table 3.1: Intramolecular Iodine-Iodine bond distances (Å) and angles
(deg) for polyiodide network in compound 1

I2 molecules

I4-I5 2.742(1)Å
I6-I7 2.762(1)
I8-I9 2.729(1)
I10-I11 2.743(1)
I14-I14 2.764(1)
I15-I15 2.764(1)

I−3 ions

(I1-I2-I3)−: I1-I2 2.840(1)Å I2-I3 2.983(1)Å
I1-I2-I3 176.1(1)o

(I12-I13-I16)−: I12-I13 2.776(1)Å I13-I16 3.167(1) Å
I12-I13-I16 175.9(1)o
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Table 3.2: Intermolecular Iodine-Iodine bond distances (Å) and angles
(deg) for polyiodide network in compound 1

I2···I−3 interactions

I4-I5···(I16-I13-I12)−: I5···I16 3.249 Å I4-I5···I16 174.5o

I5···I16-I13 111.2
I6-I7···(I16-I13-I12)−: I7···I16 3.293 I6-I7···I16 176.5

I7···I16-I13 125.1
I10-I11···(I3-I2-I1)−: I11···I3 3.365 I10-I11···I3 176.9

I11···I3-I2 84.6
I14-I14···(I3-I2-I1)−: I14···I3 3.387 I14-I14···I3 178.3

I14···I3-I2 118.1
I8-I9···(I1-I2-I3)−: I9···I1 3.395 I8-I9···I1 177.4

I9···I1-I2 84.1
I15-I15···(I16-I13-I12)−: I15···I16 3.424 I15-I15···I16 176.8

I15···I16-I13 101.2
I7-I6···(I3-I2-I1)−: I6···I3 3.506 I7-I6···I3 176.9

I6···I3-I2 124.5
I11-I10···(I12-I13-I16)−: I10···I12 3.611 I11-I10···I12 176.6

I10···I12-I13 101.3
I5-I4···(I3-I2-I1)− I4···I3 3.799 I3···I4-I5 153.7

I5-I4···I3 129.6
I7-I6···(I12-I13-I16)− I6···I12 3.862 I6···I12-I13 156.8

I7-I6···I12 110.9

I2···I2 interactions
I9-I8···I13-I12 I8···I13 3.588 I8-I9···I13 169.9

I8···I13-I12 100.5
I5-I4···I6-I7 I4···I6 3.975 I5-I4···I6 168.7

I4···I6-I7 118.4
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3.2.2 The structure of [1,3,6,8-tetrakis(methylthio)pyrene]3

(I−3 )3(I2)7, 2

The molecule 1,3,6,8-tetrakis(methylthio)pyrene, abbreviated here as TMT-pyrene,

has been previously synthesized.114,115 The triiodide salt of this compound has

been prepared, and its crystal structure has been determined. This salt has a

high electrical conductivity. We report here 2, a more iodine rich compound than

the previously reported triiodide salt. Its crystal structure is shown in Figure 3.4.

The TMT-pyrene molecules form face-to-face stacks running in the a-direction. In

Figure 3.5 we illustrate these stacks. As may be seen in this figure, all the pyrene

molecules are similarly oriented, but there is a jog in the stack between groups

of three pyrene molecules. This jog has an effect on the π − π contacts between

adjacent organic molecules. For molecules separated by a jog there are four C-S

contacts at 3.63 Å and two C-C contacts of 3.58 Å. For molecules not separated

by the jog there are seven C-C contacts ranging from 3.37 to 3.51 Å. The former

contacts are all more than 0.1 Å longer than the respective sums of the van der

Waals radii, while some of the latter contacts are shorter than the respective sums

(carbon and sulfur have van der Waals radii of respectively 1.70 and 1.80 Å).

In Figure 3.4a we also illustrate the polyiodide network in these structures.

Intra- and intermolecular iodine-iodine distances and angles are listed in respec-

tively Table 3.3 and Table 3.4. The polyiodide network ensheaths the face-to-face

stacks of organic molecules. Running through the ac face of the unit cell one may

see a corrugated plane of iodine atoms. This corrugated plane is reillustrated in

Figure 3.4b. We take here the conventions developed in the preceding section: I-I

distances less than 3.20 Å are considered intramolecular bonds, while distances be-

tween 3.20 and 4.00 Å are considered intermolecular contacts. With this definition,
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Figure 3.4: The crystal structure of [TMT-pyrene]3(I
−

3 )3(I2)7, 2 (in stereoview).
(a) Both the organic and inorganic components of the structure are shown. The
TMT-pyrene molecules are found in stacks along a. For these molecules, the sp2

carbon atoms are in green, with the S atoms in yellow, and the methyl groups in
gray. For clarity, we show only one of the three TMT-pyrene rings in the stack on
the left. The iodine atoms are shown in blue and form a polyiodide network around
in the TMT-pyrene stacks. (b) The polyiodide network, where the conventions in
the caption to Figure 3.1 are used in defining intra- and intermolecular contacts.
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Figure 3.5: Face-to-face stacking of TMT-pyrene molecules in 2. (a) A single stack.
The stack forms three-molecule groups separated by jogs. (b) Stacking of adjacent
TMT-pyrene molecules within a group and (c) molecules between jogs.
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the polyiodide network is made up solely of I2 molecules and I−3 ions which in turn

are interconnected through I· · ·I intermolecular contacts. All interatomic contacts

less than 3.50 Å are between I2 molecules and I−3 ions. These interatomic contacts

are collinear with the I2 bond and are perpendicular to the I−3 ions. Between 3.50

and 3.70 Å, in addition to I2· · ·I−3 contacts, there are also I2· · ·I2 contacts. At the

rather long distance of 3.93 Å, there is also an I−3 · · ·I−3 contact. All these contacts

obey the general rule that on one side of the contact they are perpendicular to an

I-I bond, while on the other side of the contact they are collinear to an I-I bond.

This rule is obeyed less well for the longest contacts. As discussed in the previous

section, these contacts can be viewed profitably as Lewis acid-Lewis base interac-

tions. In this picture, for I2· · ·I−3 contacts, the I2 molecules act as the Lewis acid

and the I−3 as the Lewis base. Finally, all strong interatomic polyiodide contacts

are contained within the corrugated sheet described above. Between sheets, the

closest I· · ·I distance is 4.40 Å.

Based on the stoichiometry of 2, for every organic molecule there is one I−3 ion:

each organic molecule is therefore a monocation. The HOMO of the TMT-pyrene

molecule is therefore only half-filled. With three organic molecules per primitive

unit cell and with each of the three HOMO’s containing only a single electron, it

is not possible to completely fill all the occupied bands (a fully occupied band has

two electrons). The system is therefore either a metal or a Mott insulator.
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Table 3.3: Intramolecular Iodine-Iodine bond distances (Å) and angles (deg) for
polyiodide network in compound 2

I2 molecules

I6-I7 2.740(2)Å
I8-I9 2.779(2)
I10-I11 2.752(2)
I12-I12 2.738(2)

I−3 ions

(I2-I1-I2)−: I1-I2 2.935(1)Å - - I2-I1-I2 180.0o

(I3-I4-I5)−: I3-I4 2.857(2)(1) I4-I5 2.997(2)Å I3-I4-I5 179.6(1)

Table 3.4: Intermolecular Iodine-Iodine bond distances (Å) and
angles (deg) for polyiodide network in compound 2

I2···I−3 interactions

I7-I6···(I2-I1-I2)−: I6···I2 3.231Å I7-I6···I2 177.0o

I6···I2-I1 83.2o

I11-I10···(I5-I4-I3)−: I10···I5 3.239 I11-I10···I5 175.1
I10···I5-I4 90.1

I9-I8···(I3-I4-I5)−: I8···I3 3.241 I9-I8···I3 175.4
I8···I3-I4 87.5

I8-I9···(I5-I4-I3)−: I9···I5 3.619 I8-I9···I5 177.8
I9···I5-I4 84.7

I2···I2 interactions
I8-I9···I12-I2: I9···I12 3.516 I12-I12···I9 171.1

I12···I9-I8 89.7
I6-I7···I9-I8: I7···I9 3.696 I6-I7···I9 179.4

I7···I9-I8 77.4

I−3 ···I−3 interactions
(I2-I1-I2)−···(I3-I4-I5)−: I2···I3 3.929 I4-I3···I2 157.6

I3···I2-I1 72.0
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3.2.3 Transport measurements

For both compounds 1 and 2, it proved difficult to attach reliable contacts for

conductivity measurements. This difficulty is perhaps related to the volatile na-

ture of the iodine in these samples. We were only able to prepare compound 2

in trace amounts and therefore could not carry out bulk magnetic susceptibility

measurements on this phase. We were able to prepare compound 1 as the majority

phase. However, powder analyses (see supplementary material) show significant

amounts of a second component in this sample.

We measured the magnetic susceptibilty of the impure samples of 1. χg versus

1/T plot is shown in Figure 3.6. These magnetic susceptibility data fit well to

the Curie law χg = C/T + χdia, with C = 1.40 × 10−5 emu K g−1 and χdia =

−4.93×10−7 emu g−1. This value is consistent with an average of the diamagnetic

susceptibilties of iodine (−3.51×10−7 emu g−1) and pyrene (−7.22×10−7 emu g−1).

Indeed, compound 1 has a calculated diamagnetic suscepibility of (−4.79 × 10−7

emu g−1).116 The close agreement between this last number and the measured

susceptibilty suggest that the second component may have a composition similar

to that of compound 1. With this assumption, the Curie term is consistent with

0.023 spins (g = 2, S = 1/2) per pyrene molecule. Since this value is small, it

could be that the Curie contribution is actually due to defects, impurities, or low

levels of other phases. As we discuss below, based on our band calculations, we

expect 1 to be a semi-conductor and to therefore show no Pauli paramagnetism.

The magnetic susceptibility data is consistent with the band calculations.
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Figure 3.6: Measurements of the magnetic susceptibility of 1 as a function of T.
The fit corresponds the Curie Law, χg = C/T + χdia, with C = 1.40 × 10−5 emu
K g−1 and χdia = −4.93 × 10−7 emu g−1.

3.2.4 Band structure of 1

While the band structure of compound 2 could be calculated at both ab-initio and

semi-empirical levels, the band structure of compound 1 could only be calculated

with semi-empirical theory: the large number of atoms in the unit cell of 1 (292

atoms) precluded higher level calculations. We report here extended Hückel (eH)

calculations50 on 1 using the standard parameters117 for C and H, and slightly

modified parameters for I (the modification of the standard I parameters118 will

be discussed below). Near the Fermi energy (EF), the eH band structure of 1 is

essentially one-dimensional. Significant band dispersion is found only in the a∗

direction, the direction in which the face-to-face pyrene stacks run. The EF was

calculated to be -11.56 eV. A small band gap of 0.10 eV is present at the eH level.

The band diagram near the EF is illustrated in Figure 3.7a.

As can be seen in Figure 3.7a, there are a great number of bands located within
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Figure 3.7: The eH band structure of 1 near EF. (a) The band diagram of the
complete structure containing both the organic and inorganic components. (b)
The diagram calculated for the isolated organic component.

one eV of the EF. While most of these bands are fairly flat, a few show significant

dispersion. The dispersed bands are based on pyrene molecular orbitals while most

of the flat bands are derived from the iodine network. The pyrene and iodine bands

are quite independent of one another. This can be verified by comparing Figures

3.7a and 3.7b. In Figure 3.7a, we show the eH band structure of the full organic and

inorganic structure, while in Figure 3.7b we performed a band structure calculation

on only the organic component. It can be seen that each of the bands in Figure

3.7b has a corresponding band in Figure 3.7a. In Figure 3.7b, we see ten bands

located between -12.2 eV and -11.4 eV, eight of them beneath EF and two higher.

Examination of these ten bands show that they are all composed almost entirely

of the highest occupied molecular orbitals (HOMO) of neutral pyrene molecules.

As there are ten pyrene molecules per unit cell, these ten bands correspond to the
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full set of crystal orbitals formed from the pyrene HOMOs.

The chemical formula of 1 is (pyrene)10(I
−

3 )4(I2)10. With four I−3 anions per ten

pyrene molecule, we expect the ten pyrene molecules to have an overall charge of

+4. This is borne out by Figure 3.7. Of the ten bands illustrated in this figure,

the two at -11.4 eV are completely empty. As each band can accomodate a pair

of electrons, having two completely empty bands corresponds to a net charge of

+4. The crystal orbitals of the two empty bands at -11.4 eV are almost purely

based on the face-to-face stacked pyrene molecules, the green pyrene molecules

of Figure 3.1a. The pyrene molecules which are rotated 60o relative to the other

pyrene molecules, as Figure 3.2c, contribute the most of all. By contrast, the

contribution of the isolated pyrene molecules, shown in gray in Figure 3.1a, is

negligible. Therefore, the pyrene molecules which are rotated 60o have the least

number of electrons and are the most oxidized, while the isolated pyrene molecules

have the greatest number of electrons and are essentially unoxidized.119

A more detailed analysis of Figure 3.7 proves informative. In particular, such

an analysis will explain why one out of four stacked pyrene molecules is rotated

60o. It can also account for finer details in the stacking sequence. We turn first to

the pair of relatively flat bands running between -11.8 and -11.9 eV. Examination

of the crystal orbitals shows that these two filled orbitals are almost completely

based on the HOMO of the two isolated (gray) pyrene molecules of Figure 3.1a.

It is their geometric isolation which is directly responsible for the flatness of these

bands.

We now turn to the remaining eight bands found between -12.2 and -11.4 eV.

It can be seen that these eight bands run in pairs. The first lowest energy pair has

a positive slope between Γ, ~k = (0, 0, 0), and X, ~k = (0.5, 0, 0). The next pair has
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a negative slope, the third a positive slope and the fourth a negative slope. The

overall appearance is of a pair of W’s seen on their side (note the two sides of both

W’s are not quite connected to the central portion of the letters). The presence of

two W’s in the band diagram is due to the two face-to-face stacks per unit cell.

In Figure 3.8, we show the band structure for a single idealized stack of pyrene

molecules, similar to the stacking sequences found in 1. The orbitals in this dia-

gram correspond to the crystal orbitals at Γ and X. It can be seen that the band

diagram of this single stack has the requisite distorted W shape. The first three

legs of the W are filled; the fourth is unfilled. The energy gap between the filled

and unfilled bands is responsible for the semiconducting nature of 1. In Figure

3.9, we illustrate the HOMO of the neutral pyrene molecule. A comparison of

Figures 3.8 and 3.9 show that the HOMO orbital of the pyrene molecule is the

chief constituent of the crystal orbitals shown in Figure 3.8.

We now wish to make the connection between the structure of the face-to-

face pyrene stacks and the band gap between filled and empty orbitals. As noted

previously, three of the four pyrene molecules in each stack are oriented in the

same way, while the fourth is rotated 60o with respect to the others. The rotated

pyrene molecule is closer to its neighbors than are the other pyrene molecules.

In the former case, contact distances range from 3.18 to 3.30 Å while, in the

later case, they range from 3.32 to 3.49 Å. This can be summarized as follows:

the intermolecular spacing along the stack follows a ...-long-short-short-long-...

sequence. Furthermore the molecules are not exactly coplanar. One end of the

rotated pyrene molecule tips down to form a C-C contact as short as 3.18 Å. By

symmetry, this same short contact distance is found between the rotated pyrene

molecule and the pyrene molecule stacked above it.
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Figure 3.8: Orbital analysis of the band structure near EF of an idealized 1D chain
of cationic pyrene molecules showing the prominent structural features the stacks
found in 1. Crystal orbitals are for Γ and X, (1

2
,0,0).

Figure 3.9: The HOMO of pyrene. The largest orbital coefficients are at the 1, 3,
6 and 8 positions.
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In Figures 3.10a-d we separate the rotation of the central pyrene molecule and

the intermolecular spacing distortion from one another. In Figure 3.10a, we show

the band structure of a uniform stack of pyrene molecules (with four molecules in

the unit cell, and where the uniform stacking follows the pattern shown in Fig-

ure 3.2b). In this case, there is no band gap between filled and unfilled orbitals.

In Figure 3.10b, we illustrate the band diagram where the pyrene molecules are

no longer uniformly spaced, but instead follow the spacing pattern: ...-long-short-

short-long-... . In Figure 3.10c we consider the alternate distortion: one pyrene

molecule is rotated 60o with respect to the other pyrene molecules, but the inter-

molecular spacing is kept uniform. In Figure 3.10d, the two distortions discussed

above are combined together as found in 1 (with the short spacings around the

rotated pyrene molecules). The band splittings in Figures 3.10b–d are respectively

0.04 eV, 0.07 eV and 0.12 eV. As this last number is almost exactly the sum of the

previous two values, the energy gap present in structure 1 is a linear combination

of the ...-long-short-short-long-... spacing and the rotation of one of the pyrene

molecules.

These overall findings can be simply explained. In Figure 3.9 we illustrated the

HOMO orbital of a pyrene molecule. The largest four atomic orbital coefficients

are at the 1, 3, 6 and 8 positions of the pyrene molecule. In Figure 3.11a we show

the HOMO’s of two pyrene molecules which have similar orientations. In this ar-

rangement, the largest atomic coefficients are not in contact with one another and

hence the intermolecular π−π interaction is comparatively weak. In Figure 3.11b,

we show the HOMO’s for two pyrene molecules where one pyrene molecule is ro-

tated 60o with respect to the other pyrene molecule. In this picture we see that the

orbitals shown in red are among the orbitals with the largest coefficients and that
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Figure 3.10: Band structures for a progression of pyrene stack geometries. (a) A
uniform equally spaced stack of pyrene molecules with four molecules in the unit
cell, all oriented the same way. (b) All pyrene molecules oriented the same way
but spacing between molecules follows the sequence long-short-short-long. (c) All
molecules equally spaced apart, but one out of four is rotated 60o with respect to
the others. (d) A long-short-short-long stacking sequence, and also a 60o rotation
of one out of four pyrene molecules (the one with short stacking distances on both
sides).

these red orbitals have the largest overlap with the neighboring pyrene molecules.

The strongest overlap is at the intermolecular contact which has red orbitals on

top and bottom. The overlap between these red orbitals is enhanced if one tilts the

molecules to bring the red orbitals into closer contact. This corresponds to what

is found in the experimental crystal structure of 1. The closest C· · ·C distances

are between the red orbital atoms, distances which are as short as 3.18 Å.

The pyrene molecule which is rotated 60o with respect to its neighbors thus has

strong intermolecular contact with its neighbors; pyrene molecules which are not

rotated with respect to one another have weaker overlap. As may be seen in Figure

3.2, the primitive stacking sequence involves two non-rotated pyrene molecules fol-

lowed by a third, rotated, molecule, and finally a non-rotated molecule. The over-

all sequence of intermolecular contacts is therefore ...-weak-strong-strong-weak-...
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Figure 3.11: The overlap of pyrene HOMOs between adjacent molecules in the
pyrene stacks of 1. (a) Pyrene molecules with similar orientation. (b) pyrene
molecules rotated 60o with respect to each other. Two atomic orbitals have been
colored red to aid the eye in viewing the rotated geometry. HOMO-HOMO overlap
is strongest in (b).
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Figure 3.12: The opening of a band gap by distorting a uniform chain of s orbitals.
(a) The band structure for a chain of s-orbitals with four equally spaced atoms
in the unit cell. (b) The band structure resulting form a long-short-short-long
distortion in this chain. Compare (a) and (b) with respectively Figures 3.10(a)
and (d).

. In Figure 3.12, we illustrate the band diagram of a one-dimensional chain of

s-orbitals with the same sequence of strong and weak bonds. It may be seen that

this sequence of s-orbitals has a band diagram very similar to the band diagram

illustrated in Figure 3.8.

The crystal has undergone a Peierls distortion. Previous workers studying fused

aromatic radical cation salts80,101–103,119–122 have used predominantly a combina-

tion of transport measurements and X-ray crystallography to demonstrate that

such Peierls distortions are commonplace in these systems. Here we have further

corroborated their findings through an analysis of the relevant molecular orbitals.

One point of interest is that, while in most typical Peierls distortions one has a se-

quence of ...-weak-strong-weak-strong-... contacts and a band gap at the half-filled
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band,48,58 for fused aromatic radical cation salts Peierls distortions at bandfillings

at a 3/4 or a 5/8 filled band are quite common. Although we have not carried

out band calculations on these literature systems, they appear to exhibit the same

structural patterns as we found for 1. In 1, two prominent geometrical distortions

have taken place (a pyrene molecule is rotated 60o and a ...-long-short-short-long-...

sequence) and as a consequence the sequence of intermolecular contacts is ...-weak-

strong-strong-weak-... . This alternation in bond strength opens up a band gap

between the bottom three-fourths of the bands and the top fourth. The bottom

three-fourths are occupied bands, and the top fourth is empty. 1 is therefore not

a metal.

3.2.5 Band structure of 2

The smaller size of 2 allowed for electronic structure calculations at both ab-

initio and extended Hückel levels. As in 1, the bands of 2 are essentially one-

dimensional and show the greatest dispersion along the a∗ direction, corresponding

to the stacking direction of the 1,3,6,8-tetrakis(methylthio)pyrene (abbreviated

here as TMT-pyrene) molecules. The band diagrams at the LDA-DFT and eH

levels are shown respectively in Figures 3.13a and d. At both levels of theory, the

Fermi energy (EF) bisects a trio of bands shaped like an N turned on its side (in

both 3.13a and d, these trios are the lowest three bands highlighted in red).

These trios are based on linear combinations of the HOMO orbitals of the TMT-

pyrene molecules. They are trios as there are three TMT-pyrene molecules per unit

cell. Each TMT-pyrene molecule is in the +1 oxidation state, and therefore the

HOMO bands are half-filled. Filling from the bottom up, the lowest bands in the

trios are fully occupied, the central bands are half occupied, and the top bands are
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Figure 3.13: Band diagrams near EF calculated for 2 at the ab-initio and eH
levels of theory. The ab-initio calculations for the complete structure comprised of
the organic and inorganic components and for the isolated inorganic component
are shown in respectively (a) and (b). The comparable eH bands are given in
respectively (d) and (c). Highlighted in red are the HOMO, LUMO, LUMO+1
and LUMO+2 bands on TMT-pyrene.

empty.

The total number of electrons in the unit cell is odd, the system is therefore

either a conductor or a Mott insulator. As the central band of the HOMO orbitals

at the LDA-DFT level and eH levels have band widths of respectively 0.16 and

0.09 eV, it is plausible that 2 is a Mott insulator.

While the ab initio and eH band structures shown in respectively Figures 3.13a

and 3.13d are quite different, there are, nevertheless, points of similarity. We high-

light in red twelve bands in the ab-initio band structure and their corresponding

bands in the eH calculation. These are the twelve bands derived from the HOMO,

LUMO, LUMO+1 and LUMO+2 orbitals of TMT-pyrene. For both calculations,

these bands separate into three sets: the LUMO+1 and LUMO+2 bands are clus-

tered together. Although, for these three sets, the correspondence between the eH

and DFT calculations is clear, the dispersion in the DFT bands is significantly



82

greater than for the eH bands. Such differences in dispersion have been noted

before. The standard eH carbon parameters are optimized for nearest neighbor

interactions. Double-ζ STOs123 are needed for a more correct treatment of π-π

face-to-face interactions.

The situation is reverse for the iodine orbitals. To illustrate this we have

performed calculations on only the iodine sublattice of 2 at both the ab-initio

(using neutral iodine atoms) and eH levels. The band structures obtained are

shown in respectively Figures 3.13b and 3.13c. In both calculations there is a large

gap about the EF between occupied and unoccupied iodine states. The unfilled

levels consist of iodine σ∗ orbitals, and the filled levels consist of iodine π∗ orbitals.

Relative to the ab-initio calculations, the eH calculations have an exaggerated gap.

This large gap can be traced to an overestimation of the dispersion of the iodine

bands: the standard eH iodine parameters make the iodine p orbitals too radially

diffuse. We can correct this by contracting the orbital, i.e., by increasing the eH

STO exponential coefficient, ζ . Indeed in our calculations on 1 we have set ζ

at 2.462 Å−1 instead of the standard value of 2.322 Å−1. (It should be noted

that LDA-DFT calculations also have difficulty in correctly estimating the π∗ – σ∗

energy gap.)

As the band at the EF is half-full, we are left with the problem of how the

electrons occupy it. Either the system is metallic (with electrons occupying the

lower portion of the band) or it is Mott insulating (with electrons more evenly

dispersed throughout the band). The key energies which need to be compared

are U, the on-site electron repulsion energy and the band widths. For reasonably

sized organic molecules U is on the order of 0.5 to 1 eV,76,124,125 values significantly

greater than the calculated band widths of 0.16 and 0.09 eV. In the region of high
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U, one expects Mott insulators, and therefore it is likely 2 is such an insulator.

3.3 Discussion

3.3.1 I· · ·I intermolecular interactions

The strongest intermolecular contacts in fused aromatic polyiodides are between

the polyiodides themselves. As we noted above, in both (pyrene)10(I
−

3 )4(I2)10 and

[TMT-pyrene]3(I
−

3 )3-(I2)7, these intermolecular iodine-iodine contacts are not sym-

metrical. On one side of the intermolecular iodine-iodine contact, the intermolec-

ular iodine-iodine contact is collinear with an intramolecular iodine-iodine bond,

while on the opposing side, the intermolecular contact is perpendicular to the

intramolecular bond.

This is a well established bonding motif for interhalogen contacts. We examined

the CSD to confirm the validity of these earlier findings for polyiodide intermolec-

ular contacts. In our examination, the search fragment was I-I· · ·I-I, where · · ·

was an intermolecular contact between 3.2 and 4.0 Å long. We also required an

R-factor of less than 7.5%, a purely organic system, no disorder and that atomic

coordinates had been determined. The results of this search are shown as a scat-

tergram in Figure 3.14a. The axes of the scattergram are φ1 and φ2, angles which

are illustrated in the figure. As one can see in this figure, for many of the data

φ1 ≈ 90o and φ2 ≈ 180o or vice versa. These data show the same structural trends

as those found in the two structures in this paper.

A number of models have been profferred to account for the geometrical prefer-

ences of such intermolecular bonds. One approach to understanding the halogen-

halogen bonds is to consider the interactions as being charge-transfer interactions.



84

Figure 3.14: Scattergram of the orientations of I· · ·I intermolecular contacts re-
trieved from the CSD.

This has been called equivalently a donor-acceptor, HOMO-LUMO and incipient

electrophile-nucleophile interactions.126–129 In these models, one side of the I· · ·I

contact serves as the Lewis acid while the other serves as the Lewis base. Recent

detailed quantum mechanical studies on Cl· · ·Cl interactions by Price and Stone

have shown however that for chlorine such charge-transfer terms are negligible.130

No further detailed quantum mechanical studies have been carried out for Br· · ·Br

or I· · ·I bonds, and therefore, some workers have naturally inferred that in Br· · ·Br

and I· · ·I contacts, charge-transfer terms must also be negligible.131 We believe this

is still an open question. An examination of the CSD shows short intermolecular

I· · ·I contacts are significantly stronger than their Cl· · ·Cl counterparts. Indeed,

elementary molecular orbital theory can be used to explain these contacts.112 In

this viewpoint one concentrates on the HOMO orbitals of the Lewis base and the

LUMO orbitals of the Lewis acid. For both I2 and I−3 , the LUMO orbitals are of

σ∗ type. The same is true for more complicated polyiodide clusters. The HOMO
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orbitals are however of π∗ type. In most Lewis acid-Lewis base interactions it is

the HOMO orbital which proves best at electron donation and the LUMO orbital

which is best at electron acceptance. Therefore the strongest Lewis acid-Lewis

base interaction is found when the overlap between the HOMO of the Lewis base

and the LUMO of the Lewis acid is largest. We show in Figure 3.15 the configura-

tion for the maximum overlap between I2 and I−3 groups. For both cases, overlap is

largest when φ1 = 90o and φ2 = 180o or vice versa. These are exactly the geome-

tries observed in the structures of 1, 2, and in our CSD searches. The observed

I· · ·I contacts are therefore fully compatible with a Lewis acid-Lewis base picture.

It should be noted that the rules cited above are readily generalized. Other

elements besides iodine display similar hypervalent bonding which similarly can

be rationalized as Lewis acid-Lewis base interactions. Chief among these are tel-

lurium, bismuth, selenium and bromine. In these systems, the LUMO bands are

generally based on σ∗-orbitals and the HOMO bands are π∗ type. Therefore such

hypervalent bonds are at one end generally collinear with one of the ordinary

covalent bonds and on the other end are perpendicular to an ordinary covalent

bond. The simplest examples of this phenomenon can be found in the elemental

structures of iodine, bromine, tellurium, selenium, antimony and bismuth.54

In judging the utility of such HOMO-LUMO ideas, it is worthwhile to recall

the structure of ALn3Q8 (A = alkali metal, Ln = rare earth, and Q = chalco-

genide atom), a structure rich in Q· · ·Q intermolecular contacts. Initially only

the substructure of the crystal type was known. However, 6 x 103 possible chalco-

gen superstructures, each with a different pattern of intermolecular contacts, were

compatible with this substructure. Based on HOMO-LUMO interactions, it proved

possible to examine the possible superstructures and determine which of these su-
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Figure 3.15: Optimal HOMO-LUMO interactions between (a) two I2 molecules
and (b) between I2 and I−3 .
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perstructure models had the most optimal HOMO-LUMO interactions.113 Later

work showed that this best HOMO-LUMO superstructure corresponded to the

true superstructure of the system.132

3.3.2 The polyiodide - fused aromatic interface

In the previous two sections, we have discussed at some length two of the strongest

intermolecular contacts in aromatic polyiodides. On the one hand, there are the

aromatic-aromatic contacts which were here best studied with band theory and

which (at least for the structures reported here) are dominated by π − π interac-

tions. These π−π contacts lead to face-to-face stacks of fused aromatic molecules.

On the other hand, there are the I-I· · ·I contacts which somewhat rigidly make 90o

and 180o bond angles. These bond angles lead to the formation of either planar

sheets or of fragments with sharp 90o corners. We now turn to the interaction

between the aromatic and polyiodide portions.

As the fused aromatic molecules routinely form face-to-face stacks, it is the

C-H bonds on the periphery of these stacks which have the closest approach to

the polyiodide network. In Figure 3.16 we show a scattergram for the C-H· · ·I

search fragment, where the axes of the figure are d, the H· · ·I distance and φ, the

C-H· · ·I bond angle. The ability of the C-H bond to make weak hydrogen bonds

has recently been extensively studied.133–135 The results of Figure 3.16 are most

readily understood in these terms. While strong hydrogen bonds have a bond angle

of 180o, weaker hydrogen bonds have significantly smaller angles. Thus we see in

Figure 3.16 that at short H· · ·I distances of 3.0 Å bond angles are 140-160o, while

at distances of 3.6 Å, angles vary between 100-130o.

In 1 and 2 the shortest H· · ·I contact distances are between 3.1 and 3.3 Å.
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Figure 3.16: Scattergram of C-H· · ·I geometries obtained from the CSD.

The corresponding H· · ·I bond angles are all between 120 and 160o, with the large

majority between 130-140o, in keeping with the findings of the CSD search. For

1 the shortest contact is at 3.14 Å, a distance roughly equal to the sums of the

respective van der Waals radii (H and I have standard van der Waals radius of

respectively 1.20 and 1.98 Å). This distance corresponds to 98% of the sum of the

van der Waals radii, compared to 94% for the shortest C· · ·C contact and 82% for

the shortest I· · ·I contact. These results suggest a hierarchy between the various

intermolecular contacts. The I· · ·I contacts are indisputably the strongest, followed

by the strongest C· · ·C contacts and finally the H· · ·I contacts are the weakest.

In this paper, the polyiodide networks are multi-dimensional, and they isolate

the stacks of organic molecules from one another. As we mentioned in the introduc-

tion of this paper, one general goal is the preparation of multi-dimensional organic

systems.136–138 Lowering the iodine content in the crystal could well be important.

We examined the CSD to see if there was a critical iodine content, below which
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Figure 3.17: The two CSD search fragments used to find related organic-polyiodide
structures.

multi-dimensional organic systems would emerge. We therefore searched the CSD

for related polyiodide structures using the search fragments described in Figure

3.17. We considered only purely organic crystals whose atomic coordinates were

determined and which were not disordered.

This search uncovered seven structures: (bis(ethylenedithio)tetrathiafulvalene)2

(I3), cilhio12;139 (bis(cyclopentylenedithio)tetrathiafulvalene)(I3), vuhsia;140 (bis-

(ethylenedithio)-tetrathiafulvalene)2(I3)2-(I2)0.5, datriz01;141 5,6,11,12-tetraphenyl

naphthacene)I9, kebfus;88 bis(oxapropylenedithiotetrathiafulvalene)I5 , hexjez;142

bis(ethylenedithio)tetrathiafulvalene)2- (I3)2(I2)2, fentex;143 and 8,9-bis(methyl-

sulfanyl)acenaphtho[1,2-b][1,4]dithiineI3(I2)2, feqrau.144 For one of these, kebfus,

the molecular geometry precludes the formation of face-to-face stacks. The struc-

tures of cilhio12, vuhsia, datriz01, hexjez, fentex and feqrau are illustrated in

Figure 3.18. Included in these figures are the ratios of the volume of the polyio-

dide networks to the volume of all the atoms in the structure.137,145 In calculating

these volumes, we used the van der Waals radii of the constituent atoms. A clear

distinction can be seen in the crystal structures of these systems. For cilhio12

and vuhsia, where the volume ratio is below 25%, the polyiodide atoms form one

dimensional chains, and the organic stacks can approach one another. By contrast
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c i l h i o 1 2 , 1 5 % v u h s i a , 2 5 % d a t r i z 0 1 , 3 0 %
h e x j e z , 3 6 % f e n t e x . 4 3 % f e q r a u , 5 0 %

Figure 3.18: The structures of organic-polyiodides retrieved from the CSD with
volume ratios of the polyiodide component to the total volume. Iodine: blue,
sulfur: yellow, carbon: green, and oxygen: red. As the volume ratio increases, the
dimensionallity of the organic component is reduced.

in datriz01, hexjez, fentex and feqrau, with volume ratios ranging from 30-50%,

the polyiodide networks are multi-dimensional, and substantially isolate the or-

ganic stacks from one another. For 1 and 2, with volume ratios of respectively

34% and 44%, one should expect a multi-dimensional polyiodide network. As we

have discussed above, this is indeed what is observed.

If one is to prepare a multi-dimensional organic system, it is preferable to

have one-dimensional polyiodide networks or even zero-dimensional isolated io-

dide ions. The findings above suggest that such low dimensional polyiodide net-

works are found for iodide contents below 30% of the total unit cell content. In

preparing superconducting systems one may wish to limit oneself to low iodine

volume ratios. It can be noted that of all the compounds discussed above, only

(bis(ethylenedithio)tetrathiafulvalene)2(I3) (in a different polymorph, cilhio13),
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with the low volume ratio of 15% is actually superconducting.

3.4 Conclusions

The observed crystal packings of fused aromatic polyiodides are due to the inter-

play of many interactions: chief among these are the I· · ·I, C· · ·C, and C-H· · ·I

intermolecular contacts. In the iodide rich structures studied in this paper, the

I· · ·I interactions lead to the formation of two- and three-dimensional polyiodide

networks. These networks allow for the formation of face-to-face stacks of aro-

matic molecules, but isolate these stacks from one another. Even fused aromatic

ring systems such as are found in TTF and its derivatives are thus shielded from

one another. The results are at most one-dimensional systems which can undergo

a Peierls distortion or become Mott insulators.

3.5 Experimental Section

General methods. Unless otherwise indicated, all starting materials were pur-

chased from Aldrich, and used without further purification. Analytical grade sol-

vents were obtained from commercial suppliers (Aldrich and Fisher Scientific).

All atmosphere sensitive reactions were conducted under nitrogen using a Schlenk

vacuum line. 1,3,6,8-Tetrakis(methylthio)pyrene was synthesized according to an

established procedure.115 For the crystallization experiments, Teflon-lined screw-

caps were used to seal the vials. No additional precautions were employed to

exclude oxygen or moisture during crystallization. For X-ray powder analysis, the

crystalline samples were sealed in special 0.5 mm glass capillary tubes with small

amounts of the mother liquid to prevent degradation of crystallinity.
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Single crystal X-ray data were collected on a Bruker SMART diffractometer

equipped with a CCD area detector using Mo Kα radiation. Single crystal diffrac-

tion data were collected at 173 K. All structure solutions were obtained by direct

methods and refined using full-matrix least squares with Shelxl 97. The hydrogen

atoms were included in the last stage of refinement at their geometrically con-

strained positions. Iodine site occupation factors were released as a final test of

our structural models. As no site changed its occupation factor by more than 4%,

we report all iodine sites as being fully occupied. A summary of crystallographic

data for the complexes is listed in Table 3.5. Tables of bond distances, bond angles

and anisotropic thermal factors appear in the Supporting Information.

The molar magnetic susceptibility, χM , of an impure (see below) polycrystalline

sample of compound 1 (41.1 mg), sealed in a shortened NMR tube, was measured

on a SQUID magnetometer (Quantum Design) in the temperature range of 4-300

K at a field strength of 2000 Oe.

Powder X-ray diffraction data were recorded on an INEL MPD diffractometer

(XRG 3000, CPS 120 detector) at 25 mA and 35 KV for CuKα1; λ=1.54056 Å,

with external silver behenate and elemental silicon as standards. Lattice constants

were fitted and powder data were indexed with a least squares method. These

data are shown in the supplementary material.

(Pyrene)10(I
−

3 )4(I2)10 (1). A solution of pyrene (0.1 g, 0.49 mmol) in chloro-

form (5 mL) was added to a solution of I2 (0.2 g, 0.79 mmol) in chloroform (10 mL)

in a beaker (50 mL). A loose cover was then placed on the beaker. Four days later,

very dark red needles of 1 had formed on the wall of the beaker. The crystals

were immediately covered with polybutene and a crystal was selected for single

crystal X-ray diffraction studies. Crystals of 1 lose iodine immediately in the open
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Table 3.5: Crystal Data and Structure Refinements
for Compounds 1 and 2

1 2
formula C80H50I16 C30H27I11.5S6

mol wt 3041.60 2039.23
crystal color dark red black
T 173(2) K 173(2) K
wavelength 0.71073 Å 0.71073 Å
system Triclinic Triclinic
space group P-1 P-1

a 13.526(2) Å 10.845(2) Å
b 13.661(2) Å 12.758(2) Å
c 22.886(2) Å 17.660(3) Å
α 79.649(2)o 107.217(6)o

β 82.653(2)o 95.966(6)o

γ 76.305(2)o 94.088(6)o

V 4025.7(6) Å3 2307.9(7) Å3

Z 2 2
ρcalc (g/cm3) 2.509 2.934
absp coeff (mm−1) 6.192 8.012
θ range 0.91-26.37o 2.12-26.37o

limiting indices -15 ≤ h ≤ 16 -13 ≤ h ≤ 112
-17 ≤ k ≤ 17 -15 ≤ k ≤ 15
-28 ≤ l ≤ 27 -21 ≤ l ≤ 22

data/restraints 15974/0/865 9232/0/430
/parameters
measd reflns 28514 18671
unique reflns 15974 9232
absp correction SADABS SADABS
GOF on F2 0.960 1.040
Rint 0.0396 0.0487
R1 (I > 2σ(I)) 0.0380 0.0595
wR2 (I > 2σ(I)) 0.0698 0.1308

R1=
∑ ||Fc |-|Fo ||/

∑ |Fo |
wR2= [

∑

[w(F2
o-F

2
c)]

2/
∑

[w(F2
o)

2]]1/2
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atmosphere. Based on our powder diffraction studies, compound 1 is the major

product of the above procedure. However, sizable amounts of a second unknown

phase were also detected.

[1,3,6,8-Tetrakis(methylthio)pyrene]3(I
−

3 )3(I2)7 (2). A solution of 1,3,6,8-

tetrakis-(methylthio)pyrene (3 mg, 0.0078 mmol) in 1,2,4-trichlorobenzene (9 mL)

in a vial (10 mL) was put into a bottle (100 mL) containing I2 (0.25 g, 0.99 mmol).

The bottle was then capped. Twenty days later, a few larger needle-shaped crystals

had formed on the wall of the vial together with much more numerous small thin

black platelets. These crystals were immediately covered with polybutene and

one of the needle-shaped crystals was selected for single crystal X-ray diffraction

studies. Based on powder X-ray diffraction data, the small black platelets are

another phase. Thus 2 was only the minor product. Attempts to find a crystal

of the majority phase suitable for single crystal X-ray diffraction studies failed.

Crystals of 2 only gradually lose iodine in the open atmosphere.

Electronic Structure Calculations. The electronic structures of both 1

and 2 were calculated with the extended Hückel method, using the YAeHMOP

package.50 In this program, the s and p atomic orbitals are approximated as Slater

Type orbitals (STOs). The parameters used for these STOs are given in Table 3.6.

For all atomic orbitals, except for the iodine p, these are the standard parameters

for molecules. The iodine p parameters were modified as described in Section 2.5.

The electronic structure of 2 and the charge neutral iodine sublattice of 2 were

calculated also using ab initio theory. Here, an LDA-DFT band structure along a*

was calculated using the VASP package .43–46 The charge density and the potential

were calculated using a 3x3x3 k-point mesh generated with the Monkhorst-Pack

scheme.146 Using this charge density and potential, the band structure along a*
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was then calculated k-point by k-point. Ultra-soft Vanderbilt pseudopotentials147

which came with the package were used throughout. Plane wave basis sets were

used in the low precision mode. This corresponds to an energy cut-off of 214.9 eV

and 91.6 eV for respectively 2 and the iodine sublattice of 2.

Acknowledgment. This work was supported by the National Science Foun-

dation (Grants DMR-9812351, DMR-0104267 and the Collaborative Research Pro-

gram of NSF-CHE).

Table 3.6: Extended Hückel parameters used
in calculations of 1 and 2

Orbital Hii
a (eV) ζa

C 2s -21.4 1.625
C 2p -11.4 1.625

H 1s -13.6 1.300

S 3s -20.0 2.122
S 3p -11.0 1.827

I 5s -18.0 2.679
I 5p -12.7 2.462b (for 1)

2.322 (for 2)

aParameters used in Ref. 61 unless noted.
bStandard ζ for I 5p is 2.322

Supporting Information Available: Tables of crystal refinement data, bond

distances, bond angles, anisotropic thermal factors for compounds 1 and 2. See any

current masthead page for ordering and Internet access instructions. The crystal

structures of 1 and 2 have been deposited to the Cambridge Crystallographic

Datacentre. The deposition numbers are CCDC 185476 and CCDC 185477.



Chapter 4

Transition Metal AB3 Intermetallics:

Structure Maps Based on Quantum

Mechanical Stabilitya

4.1 Introduction

Structure maps have become one of the essential tools of solid state chemists for

understanding the structures of stoichiometrically homologous compounds.148–163

In ordinary usage, the chemist considers a few atomic variables (often two) and

then explores how these variables can be used to sort out, rationalize and in some

cases even predict the crystal structure type of a particular phase.164–170 In this

endeavor, great attention must be paid to the variables chosen. Of course they need

to make intuitive chemical sense. But to understand the exact energetic role of

each variable, it is also especially useful if the variables in question can be directly

incorporated into an energy calculation. For such energy calculations explicit use

of quantum mechanics and of a Hamiltonian is often required.

The search for variables which the practicing chemist can find in standard ta-

bles and for which the theorist can discern a direct role in the Hamiltonian is

a surprisingly complex one. That this is so, can be seen by the structure maps

which have been created on the basis of quantum calculations alone. For the most

part, quantum mechanically based structure maps are maps in which the variables

considered are derived from quantum mechanics, but no algorithm is given as to

aReproduced with permission from [Clark, P. M.; S. Lee; Fredrickson, D. C. J.

Solid State Chem. 2005, 178, 1269-1283.] Copyright [2005] Elsevier Inc.

96
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(a) (b)

(c)

(d)

(e) (f)

AuCu3

TiAl3

TiNi3 SnNi3

TiCu3 Cr3Si

Figure 4.1: The common AB3 structure types discussed in this paper: the (a)
AuCu3, (b) TiAl3, (c)TiNi3, (d) SnNi3, (e) TiCu3, and (f) Cr3Si structure types.
A atoms: white spheres, B atoms: black spheres.

how these same variables can be used to calculate an exact quantum mechanical

energy.171–177 Those theorists who have produced maps based on electronic ener-

gies have often relied on just a single variable, often the total number of valence

electrons or the volume of the system, and, thus, either achieve only a partial

separation between known structure types or must limit the range of compounds

considered.178–180

Even fewer are those structure maps which plot the difference in energy as

a function of two quantum mechanical variables. Among these is the landmark

study by Pettifor and Podloucky181 on binary AB transition metal-main group

compounds. In this work, Pettifor and Podloucky produced a sorting of AB struc-



98

tures based on the differences of their tight-binding band energy. But as an exam-

ination of their work shows, the resultant quantum mechanical map can be used

only qualitatively to understand the experimental structure map (they are shown

side by side with different variables in their paper).

The difficulty here is that in ab initio quantum theory, the theory most often

used in examining the differences in energy between structures, electronic energies

are produced as a function of an exact chemical system. It is therefore hard to

discern two variables which capture the complexity of the full chemical system.

Far easier is it to find a small number of determinate variables in the context of

model or semi-empirical methods. Here, by definition the model has simplified the

number of variables which need be considered. It is not an accident that in the

Pettifor and Podloucky work previously discussed, a semi-empirical tight-binding

Hamiltonian was applied.

In this paper we develop a two-dimensional structure map for AB3 binary

transition metal solids (where A and B are both transition elements). Unlike

previous maps for AB3 structure maps, the map variables can be directly input

into standard semi-empirical band calculations. The variables considered are the

average number of valence electrons per atom (electrons/atom) and the difference

in d-orbital energy between the two atoms (∆Hii = Hii(A) − Hii(B)), where Hii

refers to the atomic d-orbital energy). Based on these two variables, we calculate

the difference in energy between the six commonly observed transition metal AB3

solids (Figure 4.1): Cr3Si, AuCu3, SnNi3, TiAl3, TiCu3 and TiNi3.

The first of these compounds is the simplest of all icosahedral phases while the

remaining five are all variants of a closest packing. We determine which of these

six structure types is preferred for a given value of electrons/atom and ∆Hii. We
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then directly compare this structure map with the structure type of the known

atomically ordered (but magnetically unordered) AB3 solids. There are 35 such

experimentally observed phases, and as we show, there is good agreement between

the quantum mechanical energy map and the structure type which is actually

observed.

We further study the structural features which cause the differences between the

icosahedral Cr3Si and closest packed AuCu3 phases. Using the moment method,

we show that within the context of tight-binding band theory, the key structural

features are the different numbers of triangles and four-member rings of bonded

atoms in the different structures.182,183 This result may help account for the elec-

tron counting rules which in general differentiate closest packing from icosahedral

phases.

4.2 Technical Procedures

4.2.1 Tight-binding band calculations

In the tight-binding method used in this paper, the total energy ET is expressed

by:

ET = U(r) − V (r) (4.1)

where U(r) is a hard-core interatomic repulsion energy, V (r) is an attractive bond-

ing energy, and r is a parameter dependent on the size of the system. The total

energy ET can also be given as:

ET = γ
∫

∞

−∞

(E − Eave)
2ρ(E, r)dE +

∫ EF

−∞

Eρ(E, r)dE (4.2)

where the above integrals represent the repulsive and the attractive energies re-

spectively. Here ρ(E, r) is the electronic density of the valence bands, EF is the
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Fermi energy, Eave is the average energy of the electronic density of states, and γ is

a proportionality constant. The density ρ(E, r) is found from the diagonalization

of the Hamilton matrix.

Rather than explicitly calculating γ, we use the second moment scaling approx-

imation. As has been shown elsewhere,56,156 the difference in energy between two

structures C and D is approximately

ET (C) − ET (D) =
∫ EF

−∞

EρC(E, rexpt)dE −
∫ EF

−∞

EρD(E, rscaled)dE (4.3)

where the size of the D system has been scaled so that,

∫

∞

−∞

(E − Eave)
2ρC(E, rexpt)dE =

∫

∞

−∞

(E − Eave)
2ρD(E, rscaled)dE (4.4)

As equations (4.2) and (4.3) imply, under such scaling conditions, the repulsive

energy cancels and the difference in energy between the two structures is the dif-

ference in the attractive energies.

Diagonal elements, Hii, are set equal to prescribed Coulombic integral values,

while off-diagonal elements are based on the Wolfsberg-Helmholz approximation,

Hij = 1
2
KSij(Hii + Hjj). The parameter K is set to 1.75 and orbitals are assumed to

be single and double ζ expansion Slater type orbitals. For AB3 binary transition

metal systems, parameters are needed for both the A and B elements. We used

the same ζ Slater type coefficients for both the A and B atoms. We assumed the

difference in Coulombic integrals of the A and B s, p, and d are the same. We

therefore reduce the difference between the A and B atoms into a single parameter

∆Hii = Hii(A) − Hii(B) where Hii(A) and Hii(B) refer to the Coulumbic integrals

for the A and B atoms. The atomic parameters are the same ones used effectively

in previous work on transition metal alloys.184 These parameters were initially

developed for extended Hückel calculations involving Fe. The parameters include
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Hii(4s) = −9.10 eV, Hii(4p) = −5.32 eV, Hii(3d) = −12.60 eV; ζ(4s) = ζ(4p) =

1.9, ζ1(3d) = 5.35 (0.5505), and ζ2(3d) = 2.00 (0.6260). In all cases the rexpt was

based on the value for the Ti-Ni system, a system that crystallizes in the TiNi3

structure type.

4.2.2 Literature Survey of AB3 phases

The tight-binding calculations reported in this paper are for AB3 binary transition

metals. Such calculations assume complete atomic ordering between the two binary

elements. Energies and not free energies are calculated. No spin terms are included

in the Hamiltonian. These calculational requirements place strong constraints

on the type of experimental systems considered. The above conditions suggest

that we should consider only perfectly atomically ordered, magnetically unordered

binary transition metal systems stable at absolute zero temperature. However, few

phase diagrams extend to temperatures below a few hundred degrees Celsius. We

therefore considered all systems found at the low temperature regime of existing

phase diagrams. We examined all binary phase diagrams involving pairs of d-

block transition metal elements. Transition metal atoms are taken here to belong

to elements between group 4 and group 10 of the periodic table. We consider

only atomically ordered phases where the stoichiometry was of AB3 type (A and

B being the two transition metal atoms).

In this paper we are interested in phases with no known magnetic ordering

i.e., in phases which are not ferromagnetic, ferrimagnetic, antiferromagnetic or

contain spin-waves. We therefore reviewed the data in the Landolt-Börnstein com-

pendium of magnetic data and ruled out all phases which are known to exhibit

any of the above cooperative magnetic phenomena.185 Such considerations exclude
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Table 4.1: Stable Transition Metal AB3 Compounds
AuCu3 SiCr3 SnNi3 TiAl3 TiCu3 TiNi3
CoPt3 CoV3 MoIr3 NbPd3 MoNi3 HfPt3

HfIr3 IrCr3 WIr3 TaPd3 NbNi3 TiNi3
HfPd3 IrMo3 VNi3 TiPd3

HfPt3 IrTi3 VPt3 TiPt3

HfRh3 IrV3 ZrPd3

NbIr3 NiV3

NbRh3 OsMo3

NbRu3 OsNb3

TaIr3 PdV3

TiIr3 PtV3

TaRh3 RhNb3

TiRh3 RhV3

VIr3

ZrIr3

ZrPt3

many phases and especially those containing the later first row transition metal

elements: Cr, Mn, Fe, Co, and Ni. Indeed, only 35 AB3 low temperature transition

metal phases proved to be atomically ordered but at the same time magnetically

disordered. These are listed according to structure type in Table 4.1.

4.2.3 Tabulation of Tight-binding Coulombic Integrals

In order to directly compare known AB3 phases with the band calculation results

we need to determine, first, the average number of valence electrons per atom in

the AB3 system and, second, the value for ∆Hii. The former may be directly

determined from the atomic number of the elements. For the latter we turned

to standard compendiums of extended Hückel parameters for transition metal el-

ements. These in turn are based on tabulated numerical fits to Hartree-Fock and

relativistic Hartree-Fock calculations. Unfortunately, we could find few complete

tabulations which included all the transition metal elements; some adjustments to
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Table 4.2: d orbital Hii values for the d-block elements.
Element d Hii Element d Hii Element d Hii

Sc -6.35 eV Y -6.80 eV Lu -6.62 eV
Ti -8.04 eV Zr -8.46 eV Hf -8.14 eV
V -9.55 eV Nb -10.00 eV Ta -9.57 eV
Cr -10.91 eV Mo -11.54 eV W -10.96 eV
Mn -12.27 eV Tc -13.08 eV Re -12.35 eV
Fe -13.54 eV Ru -14.62 eV Os -13.74 eV
Co -14.77 eV Rh -16.16 eV Ir -15.14 eV
Ni -15.97 eV Pd -17.70 eV Pt -16.53 eV
Cu -17.19 eV Ag -19.24 eV Au -17.92 eV
Zn -18.29 eV Cd -20.78 eV Hg -19.43 eV

tabulated lists were therefore required. In this paper, we adopt the d-orbital Hii

parameters used in the extended Hückel program YAeHMOP.50

The YAeHMOP list of parameters is complete and within individual rows of

the periodic table follows chemical intuition. For instance the first row Hii(d) range

from -11.04 eV for Ti, to -15.27 eV for Mn, and to -20.19 eV for Cu. There is a

similar trend in Hii(d) values for the second and third row: -8.46 and -8.14 eV for

respectively Zr and Hf; -13.08 and -12.35 eV for Fe and Os; and -19.24 and -17.92

eV for Ag and Au. However the values between rows appear not to follow chemical

intuition. As these values show, the Cu d-orbital is lower in energy than the Ag

or Au d-orbital. Yet the d-orbital in copper is valence-like (Cu(II) is a common

oxidation state) while the d-orbital in Ag has more core character (it is difficult to

further oxidize the silver atom past Ag(I)).

After checking other references for other common extended Hückel parameters,

we therefore corrected the first row transition metal values by adding 3 eV across

the series. This correction is only an approximation. Further improvements can be

envisaged. For example, with this correction the d-orbital energies of Cr, Mo and

W are all approximately the same. Our intuition is that as higher oxidation states
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of Mo and W are more common, that their d-orbital energies should be higher.

Table 4.2 gives the final if somewhat unsatisfying tabulated values for the various

elements.

4.2.4 Equations used in Method of Moments

It is possible to ascertain many of the energetic features of the valence electronic

density through study of the moments, µn, where µn =
∫

∞

−∞
Enρ(E)dE and ρ(E)

is the valence electronic density of states. As some earlier publications contain a

number of typographical errors, it is useful to review the equations used in the

current article. In this regard, please note that all equations below assume the

ρ(E) function has a total area of one i.e., µ0 = 1.

One can reconstruct ρ(E) from knowledge of the full µn sequence.183,186 The

µn where n is a small integer prove most important to this reconstruction. In the

scaled tight-binding band calculations used in this paper, µ0, µ1, and µ2 are invari-

ant. It is most convenient to therefore consider only density of states which are

in standard normal form, i.e., where µ0, µ1, and µ2 are respectively one, zero and

one. The moments of such standard normal densities of states can be established

by appropriate choice of the energy unit and a judicious choice for the zero energy,

see Appendix A.

As µ0, µ1, and µ2 are invariant, the most important moments controlling the

full density of states are µ3 and µ4. Experience shows the values of the third and

fourth moments are particularly informative when using the above defined standard

normal ρ(E) functions. The third moment gives a measure of the skewness or

asymmetry in the ρ(E) function while the fourth moment gives some measure of

the “peakedness” of ρ(r). (Later though in both this section and Appendix B, we
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Figure 4.2: The role of µ3 and µ4 in the relative stability of two hypothetical
structures, I and II, as a function of fractional band filling.

will discuss an even better measure of the peakedness, the kurtosis.)

With two normalized density of states, ρI(E) and ρII(E), if ρI(E) has the

more negative µ3 value, then, for low valence electron band fillings, the ρI(E)

distribution has lower total energies. Under these same conditions, the ρII(E)

distribution has lower electronic energy for higher band fillings. Similarly if µ4 of

ρI(E) is greater than the µ4 of ρII(E) but where in addition the third moments of

ρI(E) and ρII(E) are equal, then the I geometry has lower total energies at very

low and very high electron band fillings while the II geometry is energetically more

stable near the half filled band. These findings are summarized in Figure 4.2. In

this figure we plot the difference in electronic energies between ρI(E) and ρII(E)

as a function of electron band filling.

When both µ3 and µ4 play a role in the difference in energy, the energy difference

curve is a composite of the two separate curves given in Figure 4.2. Unfortunately

though, one can not just look at the differences of µ3 and µ4 for the I and II

geometries and then take a linear combination of the curves in Figure 4.2a and

4.2b. We can however take such a linear combination if we define a new variable,

the kurtosis, κ, which for a densities of state in standard normal form, is:

κ = µ4 − µ2
3 − 1 (4.5)
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As discussed in Appendix B, the kurtosis is a better measure of the “peaked-

ness” of ρ(r) than µ4.

Here we note that if the I and II geometries have the same third moment, then

the difference in κ equals the difference in the fourth moment. The curve shown

in Figure 4.2a, is therefore not just a curve plotting the difference in energy due

to a difference in the fourth moments, it is also the difference in energy due to a

difference in κ values.

Furthermore, unlike in the case of µ3 and µ4, one can take a linear combination

of differences in µ3 and kurtosis, the two separate curves of Figure 4.2, and arrive at

an approximate difference in energy. This linear combination is shown pictorially

in Figure 4.3. In this figure we consider the case where µ3(I) > µ3(II). In Figures

4.3a-b κ(I) is respectively > and < than κ(II).

For this paper, which deals with transition metal compounds with roughly one-

quarter to a one-half of the s-p-d valence bands filled, we are particularly interested

in the crossing between the I and II energies near the half filled band. Where there

is no difference in kurtosis, this crossing is at roughly a 0.4 filled band, an average

of 7 valence electrons/atom. For systems where κ(I) > or < κ(II), this crossing

shifts to respectively higher and lower electron counts.

The functions on which Figures 4.2 and 4.3 are based are as follows. We

consider four terms in deriving these functions: µ3 and κ, the upper valence band

limit, Eu, and lower valence band limit, El. From these four values we generate an

approximate expression for the electronic density of states. This definition requires

determination of three terms c, d, and f where:

Eu = −c + 2
√

d (4.6)

El = −c − 2
√

d (4.7)
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Figure 4.3: The role of kurtosis in the relative stability of two hypothetical struc-
tures, I and II, as a function of fractional band filling. Notice that in (a) structure
II is most stable for most low band-fillings. The kurtosis affects the width and
position of this region of structure II stability. For κ(I) < κ(II), this region is
made narrower and shifted to lower electron counts. For κ(I) > κ(II), it is broader
and shifted to higher electron counts.

f =
E + c +

√

(E + c)2 − 4d

2
(4.8)

We find an approximate density of states ρapprox(E),

ρapprox(E) = Im{ 1

E − 1
E−µ3−

κ
E+c−f

}. (4.9)

4.2.5 3-rings, 4-rings and bond angles

The moment µ3 and κ are important, not just because they determine the ener-

getics of the system, but also because it is possible to relate these terms to specific

bonding patterns in the given structures. This is so as:

µn = Tr(Hn) =
∑

i1,...,in

Hi1i2Hi2i3 ...Hin−1inHini1 (4.10)

where Tr is the trace and Hij refers to a Hamiltonian matrix element. The above

equation tells us that terms composed of three and four Hamiltonian matrix ele-

ments directly affect µ3 and µ4. Triangles and squares of bonded atoms (which we

call 3- and 4-rings) are affect important in these two moments. Also important in

the fourth moment are bond angles.56,187 Recalling equation (4.5), 3- and 4-rings

also prove important in the value of κ.
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In this paper, we will use this connection to explain the differences in energy

between the icosahedral Cr3Si phase and the other closest packed phases. Through

the intermediary of curves such as those shown in Figures 4.2-3, we will be able

to account for the difference in energy between icosahedral and closest-packed

structures just by counting the number and types of 3- and 4-rings.

4.2.6 LDA-DFT Calculations

For comparison with our tight-binding calculations with the µ2-method, the elec-

tronic energies AB3 were calculated also using ab initio theory. Here, the TaIr3 was

optimized in each of the AB3 structure types discussed in this paper using LDA-

DFT via the VASP package .43–46 The cell volumes, were first optimized using

the conjugate-gradient algorithm available in the package, followed by relaxation

of the atomic positions. All calculations were carried out using 15x15x15 k-point

meshes generated with the Monkhorst-Pack scheme.146 The ultra-soft Vanderbilt

pseudopotentials147 which came with the package were used through out. Plane

wave basis sets were used in the high precision mode with an energy cut-off of

250.0 eV.

4.3 Results

4.3.1 Experimentally Observed Structure Map

Following the procedures outlined in the technical section, we found 35 experi-

mentally observed, low temperature, atomically ordered, magnetically unordered

AB3 transition metal phases. Fifteen formed in the AuCu3 structure type and 12

in Cr3Si type. In addition there were 11 phases which formed in one of the four
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remaining structure types: SnNi3, TiAl3, TiCu3, and TiNi3.

Five of the six structure types mentioned above correspond to closest packing

arrangements of the atoms. AuCu3 and TiAl3 are ordered versions of the face-

centered cubic (fcc) closest packing. Their structures are illustrated in Figure 4.1.

AuCu3 is the simplest possible ordered fcc structure. Atoms on the cubic cell

corner are of one atom type (A), while atoms on the cubic cell faces are of the

other atom type (B). The TiAl3 structure is double the cell size of the AuCu3

structure and is of tetragonal symmetry.

The SnNi3 and TiCu3 structures are ordered variants of the hexagonal clos-

est packing (hcp) structure (Figure 4.1). SnNi3 is of hexagonal symmetry while

TiCu3 is orthorhombic. Finally the TiNi3 structure is yet another variant of the

closest packing structure, the double hexagonal closest packing structure (dhcp).

Textbooks188 refer to fcc and hcp as respectively containing ABCABC (each letter

different from the two preceding letters) and ABABAB (each letter the same as

the letters two places away) packing. In this notation, dhcp is an ABACABAC

packing. As reflection on these latter letters shows, the dhcp packing is interme-

diate between the fcc and hcp packings. The TiNi3 variant of the dhcp packing is

also illustrated in Figure 4.1.

Unlike the other structures, Cr3Si is not an ordered variant of a closest packing.

It has a body-centered cubic cell. The minority atomic compound, A (or Si), sits

on the cubic cell corners and body centers, while the majority component, B (or

Cr) sits in pairs along each face. Its structure is illustrated in Figure 4.1. As

Figure 4.1 shows, the majority atom, B, forms an icosahedron around the minority

A atom.

A number of cubic structures based on icosahedral packings are known.189 In
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all these cases a crystallographic point group of T symmetry (T is a subgroup of

both the icosahedral Ih and octahedral Oh groups) can be found. This T point

group aligns the three cubic unit cell axes with the icosahedra. As a result the

unit cell axes become 3-fold rotation axes of icosahedra. The Cr3Si structure is

the simplest member of this family.

Two questions arise from the above structural description. First, why some-

times are closest packed structures adopted, while in other cases icosahedral pack-

ing (as found in Cr3Si) are adopted? Second, what factors cause one closest packed

ordered structure to be adopted for one phase and another structure type to be

adopted for another phase? The use of two-dimensional structure maps helps an-

swer these questions. In such a structure map, we reduce the AB3 composition

to two quantifiable parameters and then plot the structure types as a function of

these parameters. In this paper we seek parameters which not only cluster phases

with equivalent structure types together on the structure map, but also we look

for parameters which can be directly applied in electronic structure calculations.

The two parameters we choose here are the average number of valence electrons

per atom (electrons/atom) and the difference in energy of the respective atomic

d-orbitals (∆Hii).

We apply these parameters to the known 35 phases. The results are shown in

Figure 4.4. As can be seen in this figure, the icosahedral Cr3Si structure is adopted

for systems which are markedly chemically different than the closest packing struc-

tures. The Cr3Si structure is adopted for systems with 5-7 electrons/atom where

the minority component, A, is significantly more electronegative than the majority

component, B (−8 < ∆Hii < −2 eV). By contrast the closest packing structures

are found for systems with 7 to 10 electrons/atom and where the A component is
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more electropositive than the B component (2 < ∆Hii < 10 eV).
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Figure 4.4: Structure map for the known 35 atomically ordered, magnetically
unordered AB3 compounds. Good separation between the close-packed structures
(AuCu3, SnNi3, TiAl3, TiCu3, TiNi3) from the icosahedral Cr3Si type is found for
the parameters valences electrons/atom and ∆Hii.

As Figure 4.4 shows, these two parameters also allow us to differentiate between

the different closest packing structures. The AuCu3 structure is adopted in two

regions: the first region is where ∆Hii has a value near zero; the second region is

where 4 < ∆Hii < 9 eV and there are 8.5 or less electrons/atom. In the latter

region, as the number of valence electrons increases beyond eight electrons/atom,

first the SnNi3, then the TiNi3, and, finally, at 8.75 electrons/atom, the TiAl3 and

TiCu3 structures are adopted.

As the above shows, the two parameters, electrons/atom and ∆Hii may be used

to differentiate between the six structure types. But such review of experimental

data by itself does not allow one to delineate the actual factors responsible for the

stability of a given phase. To identify such factors one must turn to the energies

of different structures.
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4.3.2 Theoretically Derived Structure Map

We center our theoretical analysis on semi-empirical band calculations. Such cal-

culations, unlike more complex ab initio ones, allow the reduction of a full band

calculation to just a few simple parameters. In the semi-empirical tight-binding

calculations used in this paper, the most pertinent such parameters are the differ-

ence in energy of the constituent atomic orbitals (∆Hii) and the total number of

valence electrons. The first corresponds to the difference in electronegativity be-

tween the atoms, while the second leads to the average number of valence electrons

per atom (electrons/atom).

In Figure 4.5 we show the results of tight-binding calculations as a function

of these parameters. Figure 4.5a-c plots the difference in energy between the six

structure types as a function of electrons/atom for respectively ∆Hii = −10, 0,

and 10 eV. Recalling the definition of ∆Hii we note that for AB3 compounds when

∆Hii is negative, the A atom is more electronegative.

The differences in energy curves plotted in Figure 4.5 are given as a function of

electrons/atom. Plotted is the difference in energy, ∆E, between a given structure

and the AuCu3 structure type for given values of ∆Hii and electrons/atom. The

convention is that when ∆E is negative, the AuCu3 structure type is energetically

preferred. The differences of energy of all six structures are plotted using the same

convention. This allows for a simple interpretation of the graphs. At a given

electron count, the most energetically preferred structure is the structure whose

∆E curve is most positive.

As Figure 4.5a shows, for ∆Hii = −10 eV, the AuCu3 curve is most positive

between approximately 1.5 and 3.5 electrons/atom. This structure is therefore

most favored for this range of electrons/atom. In the same way, the Cr3Si structure
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Figure 4.5: Relative tight-binding energies for the AuCu3, Cr3Si, TiAl3, TiCu3,
SnNi3, TiNi3 structure types as a function of valence electron count per atom
at (a) ∆Hii=-10 eV, (b) ∆Hii=0 eV, and (c) ∆Hii = +10 eV. The graphs read
such that the highest curve at a given electron count is the most stable structure.
The calculations include for all atomic contacts within 10 Å. All AB3 compounds
discussed in this paper fall within the 5.25 to 9.75 on the electrons/atom axis.
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Figure 4.6: Tight-binding regions of stability with respect to band filling and ∆Hii

for the (a) AuCu3. (b) TiAl3, (c) TiNi3, (d) TiCu3, (e) SnNi3, and (f) Cr3Si.
The shaded regions correspond to electron counts and ∆Hii values for which the
respective structure type is most stable or within 0.05 eV of the most stable one.
The experimentally observed occurrences of each structure type are plotted as dots
for comparison.
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is favored from four to 9.5 electrons/atom. We can compare these results with

experiment. Experimentally, the only observed compounds with a negative value

of ∆Hii are compounds with electrons/atom values ranging from five to seven (see

Figure 4.4). According to the results of Figure 4.4a, we therefore anticipate that

the observed structures with ∆Hii < 0 should all have the Cr3Si structure type;

this is indeed observed.

By contrast, as Figure 4.5c shows, for ∆Hii = +10 eV, the Cr3Si structure

is preferred from 1 to 6.5 electrons/atom (with the exception of a small zone of

stability for the TiCu3 structure near three electrons/atom), while a mixture of

closest packed structures are preferred between 7.5 to 10 electrons/atoms. This

latter region is quite complex. In particular, the AuCu3 structure is preferred

from 7.5 to 8.6, TiAl3 from 8.7 to 9.1 and TiCu3 from 9.1 to 10 electrons/atom.

Also, the TiNi3 structure is close in energy to the most preferred structure at 8.5

electrons/atom.

Again we can compare these theoretical results with the experimental structure

map. As Figure 4.4 shows, for ∆Hii > 4 eV, AuCu3 is found from 7.75 to 8.5 elec-

trons/atom, TiNi3 at 8.5 electrons/atom, TiAl3 at 8.75 electrons/atom and TiCu3

at 8.75 and 9.0 electrons/atom. These experimental zones of stability correspond

to the results of the band calculations cited in the paragraph above.

The indication is therefore that that there may be good agreement between

theory and experiment. In order to test this hypothesis we therefore calculated

differences of energies between the six structures for ∆Hii values of 10, 8, 6,... -8,

and -10 eVs. We then interpolated between these results to deduce which of the

six structures was lowest in energy for given values of ∆Hii and electrons/atom.

We plot the results of these calculations in Figure 4.6. To allow the ready
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comparison of theory to experiment, we plot Figure 4.5 on the same scale as that

used in our experimental structure maps. We plot, at given values of both ∆Hii

and electrons/atom, which of the six structures structures are either most stable

or within 0.05 eV/atom of the most stable structure. For ease of comparison, also

placed in Figure 4.6 are the actual phases observed. As this figure shows, there is

a good correlation between observed structure types and the structure predicted

by our tight-binding band calculations. In all cases the observed structures are

found within the zone predicted by the quantum mechanical calculations or are

just outside the predicted stability zone.

Some stability zones are of particular interest. Among these is the thin TiNi3

stability zone, found at 6 < ∆Hii < 10 eV for 8.5 electrons/atom (Figure 4.6c).

This region is between broader regions for, on the one hand, the fcc structure

AuCu3 (found from 7.5 to 8.5 electrons/atom) and, on the other hand, the hcp

TiCu3 structure (found from 8.6 to 9.5 electrons/atom). As mentioned earlier, the

TiNi3 is a dhcp closest packed structure, a structure intermediate between the fcc

and hcp types. The energetic results therefore follow the structural systematics.

A second area of interest is those regions on Figures 4.5 and 4.6 where ∆Hii ≈ 0.

As Figure 4.6 shows, in this region, the TiAl3 and AuCu3 stability zones closely

resemble one another. This is so as both TiAl3 and AuCu3 are different ordered

arrangements of the same fcc closest packing. At ∆Hii = 0 there is no difference

between A and B atoms and therefore there is no difference in energy between

these two structures. Similarly, as TiCu3 and SnNi3 are both ordered hcp types,

their energies are also both the same when ∆Hii ≈ 0.

Away from ∆Hii=0, the differences between AuCu3 and TiAl3 or TiCu3 and

SnNi3 becomes more evident. For high ∆Hii values, both AuCu3 and TiCu3 have



117

larger regions of stability than respectively TiAl3 or SnNi3. This finding is con-

firmed experimentally. AuCu3 is much more prevalent for ∆Hii > 8 eV. Similarly

TiCu3 is observed for ∆Hii values for 4.4-6.0 eV while SnNi3 is observed at lower

values ranging from 3.6 to 4.2 eV.

4.3.3 Stability calculations for TaIr3 using ab initio theory

To calibrate the accuracy of the above tight-binding calculations, we compare them

to those from a higher level ab initio theory, LDA-DFT. As such DFT calculations,

unlike tight-binding calculations, are applied to actual chemical rather than model

systems, we choose an actual compound on which to perform the calculations. We

consider here TaIr3. We choose this compound as the two elements involved have

a reasonably large difference in electronegativity, and as both elements are from

the same row in the periodic table, the elements are related to one another in the

size of their atomic orbitals. TaIr3 therefore tests the electronic variables which

are the principal concern of this paper, electron count and ∆Hii, rather than steric

variables such as orbital size.

In Table 4.3, we compare the relative energies of the TaIr3 compound between

the six different structure types: AuCu3, SnNi3, TiNi3, TiAl3, TiCu3, and Cr3Si.

Also listed in Table 4.3 are the relative tight-binding energies for an average of

eight valence electrons/atom and with ∆Hii = 6 eV (the electron count and the

∆Hii value of TaIr3). As this table shows, the µ2-Hückel and LDA-DFT calcula-

tions give qualitatively similar results. Both types of calculation place the energies

of the six structures in the same order: AuCu3 is lowest in energy, followed sequen-

tially by SnNi3, TiNi3, TiAl3, TiCu3, and finally at the highest energy, Cr3Si. (In

agreement with these calculations, TaIr3 is found in the AuCu3 structure type).
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Table 4.3: Calculated energies of TaIr3 in common AB3 structure types
AuCu3 SnNi3 TiNi3 TiAl3 TiCu3 Cr3Si

LDA-DFT a 0.00 eV 0.006 0.008 0.155 0.182 0.630
µ2-Hückela 0.00 eV 0.032 0.079 0.184 0.324 0.869

aper atom, relative to TaIr3 in the AuCu3 structure type.

The calculational results suggest that µ2-Hückel theory correctly assesses not just

the lowest energy structure (as we inferred from the previous reported compar-

isons between theory and experiment) but differences in energy between higher

energy geometries as well. Numerically though, µ2-Hückel energies suffer from a

scaling error. Energy differences are overestimated, and this overestimation ap-

pears to vary as a function of the absolute difference in energy to the ground state

structure.

These results lend further credence to the qualitative accuracy of the µ2 tight-

binding calculation. This is important. The numerical agreement between µ2-

Hückel and LDA-DFT energies allow us to more readily believe the structure-

energy relation derived from µ2-Hückel theory. In particular, it will support the

arguments based on the importance of three- and four-member rings of bonded

atoms.

4.3.4 Cr3Si vs. AuCu3

In this section, we use tight-binding theory to delve deeper into the structural

reasons behind the features observed in the structure maps, specifically why the

Cr3Si structure is preferred for some electron counts and closest packed structures

for other electron counts. In this analysis, we choose just one closest packed

structure, that of AuCu3, but as our discussion will show, many of the same effects

discussed here for the AuCu3 structure will prove pertinent to all closest packed
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structures.

Although the final picture is much simpler, the analysis is rather involved. We

include this section for specially readers who have an interest in how the structure

and energy are bridged via the moments method. Readers whose interests in

tight-binding calculations are more cursory may go directly to the summary of

this analysis (Section 4.4.4.2) without missing the thrust of our arguments.

In essence, we will follow the difference in energy curve between the AuCu3

and Cr3Si structures as we turn sequentially from the full band calculation, to

a band calculation involving first nearest neighbor bonds only, then to the third

and fourth moments of the nearest neighbor band calculation, and finally to the

number of triangles and squares of bonded atoms in the two structure types. We

will follow this chain of calculations for a range of ∆Hii values. When the analysis

is finished, we will have defined a set structural factors responsible for the energy

differences between the icosahedral Cr3Si and closest packed AuCu3 structures.

We begin with the full band calculations. Earlier, we showed the difference in

energy between the AuCu3 vs. the Cr3Si structure for ∆Hii = 10, 0, and -10 eV

(∆Hii =Hii(A)-Hii(B), where A and B refer to the two elemental components of

the AB3 compound) as the dash-dotted lines in Figure 4.5. For ∆Hii = 10 eV

there were two broad peaks in which the Cr3Si structure is preferred (centered

roughly at two and five electrons/atom), while from seven to ten electrons/atom

the AuCu3 structure is energetically favored.

The ∆Hii = 0 eV curve bears similarities to the preceding one. One notable

difference is that the first peak favoring the Cr3Si structure centered at two elec-

trons/atom has disappeared. For ∆Hii = 0, neither structure type is particularly

favored from one to four electrons/atom. A second difference is that the amount by
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Figure 4.7: Relative tight-binding energies for the AuCu3 and Cr3Si structure types
as a function of valence electron count per atom at ∆Hii=-10 eV, ∆Hii=0 eV, and
∆Hii = +10 eV. The calculations exclude interactions for all atomic contacts longer
than 3.00 Å. See caption to Figure 4.5 for a description of the graph conventions.

which the AuCu3 structure is favored from seven to ten electrons is roughly halved.

For example, the maximum amount by which the AuCu3 structure is favored has

reduced from about 0.87 eV/atom to only 0.39 eV/atom.

The trends observed in going from ∆Hii = 10 to 0 eV continues in going from 0

to -10 eV. At -10 eV, between one and four electrons/atom, the AuCu3 structure

is now the preferred structure, while from seven to ten electrons/atom the region

of AuCu3 stability has disappeared and now slightly favors the Cr3Si structure.

However, the peak of Cr3Si stability centered at five electrons/atom remains at

approximately the same height.

The above results include all atomic interactions between atoms less than 10 Å

apart. These results therefore combine the energetic effects due to atoms which are

bonded to one another, and those atoms which are too far from one another to be

bonded in a classical manner. As we now seek the origin of energetic preferences,

we differentiate between bonding and non-bonding contacts. We recalculate the
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difference in energies between the AuCu3 and Cr3Si structure types setting all off-

diagonal Hamiltonian matrix elements between atoms greater than 3.0 Å apart to

be formally zero. The results of these calculations are shown in Figure 4.7

There are marked similarities between the AuCu3 - Cr3Si energy curves of

Figures 4.5 and 4.7. In both cases, for ∆Hii = 10 eV, the Cr3Si structure is

preferred from zero to roughly seven electrons, but the AuCu3 structure is favored

from seven to ten electrons. The initial zone of Cr3Si stability centered at two

electrons/atom is largely lost in going from ∆Hii = 10 to 0 eV. Furthermore,

in going from 10 to 0 eV, the zone of AuCu3 stability between seven and ten

electrons/atom is approximately halved. Finally, for ∆Hii = −10 eV, AuCu3 is

the more stable between one and four electrons/atom, while Cr3Si is the more

stable between seven and ten electrons/atom. The curves of Figures 4.5 and 4.7

are sufficiently similar that we conclude it is near neighbor interactions which are

primarily responsible for the main energetic differences between the two structure

types.

We now consider the moments of the AuCu3 and Cr3Si densities of state, see the

technical section and Appendix A. Our interest here is the energetic role the dif-

ferent moments play in the densities of states. For those unfamiliar with moments

analyses, we note that as the zeroth, first and second moments are formally equal

in our tight-binding calculation, the leading moments describing the differences in

the densities of states are the third and fourth moments.

In Figure 4.8 we use equations 4.6-4.9 and calculate the difference in energy

between the AuCu3 and Cr3Si structures using only the third and fourth moments,

and the lower and upper limits of the valence energy bands, El and Eu (we continue

to set off-diagonal interactions between atoms further than 3.0 Å apart to be
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Figure 4.8: Relative energies of AuCu3 and Cr3Si structures (a) based solely on
µ3, κ, El, Eu and near-neighbor atomic contacts (≤ 3.0 Å). Plots are given for
∆Hii=+10, 0 eV, and −10 eV; (b) with µ3(AuCu3) > µ3(Cr3Si) and κ(AuCu3)
> κ(Cr3Si); (c) with µ3(AuCu3) > µ3(Cr3Si) but κ(AuCu3) < κ(Cr3Si). Note
the similarity between the curves for (a) ∆Hii = −10 eV and (b). Note also the
similarities between (a) ∆Hii= +10 or 0 eV and (c). In (b) and (c) the same
difference in µ3 was used.

formally zero). This is a major approximation. Comparing the results of Figures

4.7 and 4.8, we find the latter are highly simplified.

However, the main trends previously discussed for Figure 4.7 are preserved in

Figure 4.8. In particular for ∆Hii = 10, at low electron counts (from zero to six

electrons/atom), the Cr3Si structure is preferred, while AuCu3 is favored at higher

electron counts. The stability of the Cr3Si structure at low electron counts (from

zero to four electrons/atom) is roughly halved in going from ∆Hii = 10 eV to 0 eV.

These trends continue in the -10 eV case. Here, at the lowest electron counts, the

AuCu3 structure is preferred, while from seven to ten electrons/atom the Cr3Si

structure is preferred. We conclude the main differences of energy between the

AuCu3 and Cr3Si structures can be understood in terms of four variables: µ3, µ4,

El and Eu. Of these four, the first two prove to be of greatest importance.

In Table 4.4, we list the third moment, fourth moment and the kurtosis for the

AuCu3 and Cr3Si structures for ∆Hii = 10, 0 and -10 eV in standard normal form.

In each case the Cr3Si structure has a more negative third moment. But for -10
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Table 4.4: Adjusted Moments of ρCr3Si and ρAuCu3

a

∆Hii =+10 eV ∆Hii = 0 eV ∆Hii =−10 eV
AuCu3 Cr3Si AuCu3 Cr3Si AuCu3 Cr3Si

µ0 1.00 1.00 1.00 1.00 1.00 1.00
µ1 0.00 0.00 0.00 0.00 0.00 0.00
µ2 1.00 1.00 1.00 1.00 1.00 1.00
µ3 −0.718 −0.896 −0.544 −0.689 −0.518 −0.546
µ4 3.70 4.04 3.73 3.97 2.89 2.80
κ 2.19 2.24 2.43 2.49 1.62 1.50

aScaled such that µ0=1.00, µ1=0 and µ2=1.00

eV the Cr3Si fourth moment (as well as kurtosis) is smaller than that of AuCu3

while the fourth moment is larger for 10 and 0 eV. This is precisely the case we

discussed in Figure 4.4. The third moment of one structure is more negative but

there is variation in which structure has the lower fourth moment and the lower

kurtosis.

As we noted in our earlier discussion, the effect of alternation in the fourth

moment is to shift the crossings from one structure type to the other structure

type. In the absence of any fourth moment contribution, there is a crossing at

the 0.4 band filled level (i.e., 7 electrons/atom) This crossing shifts to a lower or

higher electron count depending on the differences in the kurtosis. In Figure 4.8b-

c, we redraw the results of Figure 4.4, where we normalize the band filling to the

s-p-d valence band. As we are interested in only transition elements, we consider

electron counts ranging from completely empty to slightly more than half-filled

(i.e., with 10 d-electrons or 10/18 of the band filled.)

A comparison of Figures 4.8a-c shows that the evolution in the difference if

energy between AuCu3 and Cr3Si can be attributed to changes in the third and

fourth moments of these two structures. For ∆Hii = 10 and 0 eV, the Cr3Si

structure has a more negative third moment and a more positive kurtosis. For
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∆Hii = −10 eV, Cr3Si has the more negative third moment, but AuCu3 has the

more positive kurtosis. It is the tension between the third moment and the kurtosis

which is responsible for the shifts in structural stability.

Structure dependent energy differences for Cr3Si and AuCu3

In the previous section, we saw that the principal terms controlling the differences

in energy between the Cr3Si and AuCu3 structure types were µ3 and µ4. We found

for all values of ∆Hii that Cr3Si has the greater µ3 value, but while at ∆Hii = 10

or 0 eV, Cr3Si has the greater µ4 (and κ) value, that at ∆Hii = −10 eV, AuCu3

structure has the greater µ4 (and κ) value.

We now examine the specific bonding motifs responsible for these differences.

We turn first to µ3. In Table 4.5, we show the value of µ3 for the two structure

types for the two limiting values of ∆Hii, -10 and +10 eV. We further decompose

the µ3 term into four parts, those paths of length 3 involving 1,2 or 3 different

atoms and those terms which come about from normalization (see equation 4.15

of Appendix A). As this Table shows, only for paths which involve three different

atoms, does the value of µ3 differ much between the two structure types. Important

paths involving three different atoms are the 3-rings in the system, i.e., triangles of

atoms which are all bonded to one another. To account for the difference in µ3 we

must therefore account for the different number of 3-rings in the two structures.

For high-coordination intermetallic systems such as Cr3Si and AuCu3, enumer-

ation of 3-rings is most efficiently carried out by considering the different coor-

dination polyhedra. The coordination polyhedra of both the AuCu3 and Cr3Si

structures are shown in Figure 4.9. In AuCu3, there are two different polyhedra,

one centered on the Au atom and the second centered on a Cu atom. As Figure



125

Table 4.5: Decomposition of the normalized, standardized µ3 of
ρCr3Si and ρAuCu3

into walks

∆Hii =+10 eV ∆Hii =−10 eV
AuCu3 Cr3Si AuCu3 Cr3Si

3-atom paths −0.95 −1.13 −0.37 −0.40
2-atom paths −2.13 −2.13 −1.54 −1.54
1-atom paths −1.24 −1.24 −1.79 −1.79
Other terms in µ3

a +3.60 +3.60 +3.18 +3.18
total µ3 −0.72 −0.90 −0.52 −0.55

aLast and penultimate terms in Equation 4.15.

Table 4.6: Decomposition of the normalized, standardized µ4 of
ρCr3Si and ρAuCu3

into walks

∆Hii =+10 eV ∆Hii =−10 eV
AuCu3 Cr3Si AuCu3 Cr3Si

4-rings 1.03 1.39 0.43 0.38
Angles 2.16 2.16 1.22 1.19
Other terms in µ4 0.51 0.49 1.24 1.22
total µ4 3.71 4.04 2.89 2.80

4.9 shows, both these polyhedra are 12-coordinate cubooctahedra. In the case of

Cr3Si, the Si atoms lie in the center of 12-coordinate icosahedra while the Cr atoms

lie in the center of 14-coordinate Frank-Kasper polyhedra (this last polyhedron is

a hexagonal antiprism with both its hexagonal faces capped).

To enumerate the 3-rings, we count all 3-rings which pass through the central

atom of the polyhedra. These numbers are tabulated in Figure 4.9, adjacent to

each of the coordination polyhedra. In the case of the 14-coordinate Frank-Kasper

polyhedron, we further normalize this value to take into account the higher coor-

dination number of the system. (As the goal here is to compare the 14-coordinate

polyhedra to 12-coordinate polyhedra, second moment scaling gives in this case a

normalization factor of (12/14)
3

2 , see Appendix A.) As shown in Figure 4.9, the

two AuCu3 coordination polyhedra have 24 3-rings, while the Cr3Si polyhedra
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(a) (b)

(c) (d)

AuCu3
Cr3Si

c

a
b    3−rings 

    around A24

    3−rings
    around B24

    3−rings 
    around A30

    3−rings 
    around B29

Figure 4.9: Near-neighbor coordination polyhedra for the AB3 structure types
AuCu3 and Cr3Si. (a) Au-centered coordination polyhedra in the AuCu3 structure.
(b) Si-centered polyhedra in the Cr3Si structure. (c) Cu-centered polyhedra in
AuCu3 structure. (d) Cr-centered polyhedra in the Cr3Si structure. Au and Si
atoms: white spheres, Cu and Cr atoms: black spheres. The numbers of 3-rings
passing through the polyhedral center are given. In (a) one of these 3-rings has
been highlighted. In (d) this number has been normalized, see text.

have 30 and 29 3-rings. There are therefore roughly 25% more 3-rings in the Cr3Si

structure than the AuCu3 structure. It is therefore not surprising that the 3-ring

contribution to µ3 is roughly 10-20% larger in the former geometry, see Table 4.5.

We now turn to the geometrical factors responsible for differences in µ4. In

Table 4.6, we show the fourth moment for ∆Hii = +10 and -10 eV. As noted

previously, while for ∆Hii = +10 eV the Cr3Si structure has the largest fourth

moment, at ∆Hii = -10 eV, the AuCu3 structure has the greatest µ4. It is this

change in the fourth moment which is responsible for the different differences of

energy curve seen in Figure 4.8.
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(c) (d)

AuCu3
Cr3Si

   ABBB
    rings192

   ABAB
    rings72

   ABBB
    rings240

   ABAB
    rings48

(a) (b)

Figure 4.10: Second coordination shells around the Au and Si atoms in respectively
the AuCu3 and Cr3Si structures. (a) Au-, (b) Si-, (c) Cu-, (d) Cr-atoms of the
second coordination shell that bridge atoms of the first coordination polyhedra.
Au and Si atoms: white, Cu and Cr atoms: black. The numbers of 4-rings passing
through the central atom are given. As all first coordination polyhedra are 12-
coordinate, no normalization is needed.

To understand the evolution in the fourth moment, we decompose it into three

parts, those involving respectively 4-rings of atoms, bond angles and finally all

other terms involving three or fewer different atoms. As Table 4.6 shows, while

all three of the above terms play a significant role in the fourth moment, it is the

change in the contributions from the 4-rings which play the most significant role

in going from ∆Hii = +10 to -10 eV. Thus for +10 eV the difference in µ4 between

the two structures is 0.33, while the difference in 4-rings is 0.36, while at -10 eV,

the difference in µ4 is -0.09, while the difference in 4-rings is -0.05.

We can account for the changes in 4-rings if we decompose all 4-rings into the
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AuCu3:    1.29x103          20.11x103            3.32x103

 Cr3Si :    0.74x103          28.38x103            4.33x103

A

B A

B A

B B

B B

B B

B
 ∆Hii=+10 eV

AuCu3:    1.30x103           0.96x103             0.02x103

 Cr3Si :    0.74x103           1.26x103             0.03x103

 ∆Hii=−10 eV

Contributions to Fourth Moment

Figure 4.11: Contributions to the fourth moment from 4-rings in AB3 compounds
in the AuCu3 and Cr3Si structure types. Contributions given in eV4/atom (9×µo

4),
see Appendix A.

three principal types, those involving alternating ABAB atoms, those involving

only one A but three B atoms, and those involving only B atoms (there are only

these three types as there are no A-A bonds in either AuCu3 or Cr3Si). In Figure

4.10, we show the first coordination polyhedron centered on an A atom together

with either A or B atoms from the second coordination polyhedra. From these

pictures we can directly enumerate all alternating ABAB and ABBB 4-rings pass-

ing through the central A atom. As this Figure shows, there are 72 and 48 ABAB

4-rings for respectively AuCu3 and Cr3Si. But, as this Figure also shows there

are 192 and 240 ABBB 4-rings for respectively these same two structures. Thus

AuCu3 has 50 % more ABAB 4-rings but 20 % fewer ABBB 4-rings than Cr3Si.

This difference in 4-rings is seen in the actual contributions of each type of 4-

ring to the overall fourth moment. In Figure 4.11, we show the contribution to the

total fourth moment from separately the ABAB, ABBB and BBBB 4-ring motifs

for ∆Hii = +10 to -10 eV. As this Table shows, the contributions of the ABAB

and ABBB parts follows the different numbers of rings in the two structure types.

Thus for both ±10 eV the AuCu3 ABAB and ABBB terms are respectively 50 %
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greater and 25-50 % smaller than the Cr3Si values.

Figure 4.11 shows that the evolution in the fourth moment is caused by the

relative importance of ABAB and ABBB 4-rings to the total 4-ring contribution

of the fourth moment.190 In particular for ∆Hii = +10 eV, the ABBB 4-ring term

dominates, while for -10 eV, the ABAB term plays a slightly greater role. To

account for the evolution in the fourth moment in going from +10 to -10 eV, we

must explain why ABBB 4-rings are most important at +10 eV but they are not

as important at -10 eV

The explanation for this effect lies in the Wolfsberg-Helmholz approximation:

Hij =
K

2
(Hii + Hjj)Sij (4.11)

where Hij, Hii, and Sij are respectively the off-diagonal Hamiltonian matrix ele-

ment, the on-site Coulombic integral and the overlap integral between the i and j

atomic orbitals. For ∆Hii = +10 eV, the A and B atom d-orbitals have an Hii val-

ues of respectively -6 and -16 eV, while for -10 eV they have values of respectively

-16 and -6 eV. Thus in going from ∆Hii = +10 to -10 eV, while Hii+Hjj (and

consequently Hij) is constant for A-B bonds, the Hii+Hjj terms for B-B bonds

become roughly three times weaker. It is this change in relative A-B and B-B Hij

terms which is responsible for the changes in the ABBB vs. ABAB 4-ring contri-

butions, and consequently it is this change which is responsible for the different

fourth moment effects at ∆Hii = ±10 eV.

Icosahedral Cr3Si vs. closest packed AuCu3

In the previous sections, we have told an involved story. Within the context of

tight-binding theory, we have found the factors responsible for the stability of

the Cr3Si and AuCu3 structure types. The former structure is the simplest of
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all icosahedral phases, a family which extends to many remarkable intermetallic

crystalline and quasi-crystalline structures, while the former is a fine example of

an ordered closest packing. In view of the importance of both icosahedral and

closest-packed structures, it may be useful to recapitulate the arguments previously

presented, but in a form which seeks to emphasize chemical bonding principles.

As Figure 4.4 and Table 4.1 show, the icosahedral Cr3Si structure is stable for

systems with negative ∆Hii values and an average of 5-7 valence electron/atom.

The closest-packed AuCu3 structure is stable for positive ∆Hii values and 7-10

electrons/atom. As Figure 4.8 shows, these trends can be understood by consid-

ering the third and fourth moments for these two structures. The third moment

term is responsible for the stability of the Cr3Si structure from 5-7 electrons/atom

for all values of ∆Hii; the fourth moment term causes the stability region of the

Cr3Si structure to shift from 1-10 electrons/atom for ∆Hii = −10 eV to 0-6 elec-

trons/atom for ∆Hii = +10 eV.

Thus the stability of the Cr3Si structure from 5-7 electrons atom is due primar-

ily to the third moment. The icosahedral Cr3Si structure has more 3-rings, i.e.,

more triangles of bonded atoms and thus has a more negative third moment for all

values of ∆Hii. This larger number of triangles of bonded atoms is insufficient to

account for the stability of the closest packed structures from 7-10 electrons/atom.

Equally important here is the fourth moment contribution. In particular, for pos-

itive values of ∆Hii, B-B bonds are particularly strong. As in the Cr3Si structure

there are a greater number of ABBB 4-rings involving such B-B bonds, the fourth

moment of the Cr3Si structure becomes particularly large. The Cr3Si structure

is therefore destabilized near the half filled band. Thus from 7-10 electrons per

atom, values near the half-filled band (recall that the valence band has s, p, and
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d components and therefore can accommodate a total of 18 electrons/atom) the

AuCu3 structure is favored.

4.4 Conclusion

This has been a story with a number of parts. We have suggested that it is the

electron count and the difference in electronegativity which are most responsible for

the differences in structure for AB3 binary transition metal alloys. We have shown

that tight-binding theory with second moment scaling can be used to account

for these differences in energy, and that this theory can be used to discern the

factors responsible for the structures. Not surprisingly, we have found that triangles

of bonded atoms plays a role in differentiating icosahedral phases from closest

packed structures. Perhaps more surprisingly, in certain cases, the larger number

of icosahedral structure 4-rings also plays a role.

We can compare these results to earlier calculations performed on Frank-Kasper

vs. closest packed elemental and alloy structures.191 In this earlier work, it was

found that the Frank-Kasper phases, the χ- and σ-phases, were more stable at 6-7

valence electrons/atom, but that closest packings, fcc and hcp, were stable from

7-10 electrons/atom. These results are comparable with the Cr3Si vs. AuCu3 re-

sults presented in this paper. Taken together, they suggest Frank-Kasper phases

and closest packings are stable at respectively 5-7 electrons/atom and 7-10 elec-

trons/atom. Within this context it would be interesting to study the stability of

transition metal Frank-Kasper AB2 Laves compounds and the known comparative

absence of transition metal AB2 closest packed structures.
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4.5 Appendix A: Normalized Moments

It proves useful to transform a density of states, as derived from a tight-binding

calculation, into one which is in in standard normal form, i.e., one where the zeroth,

first and second moments are respectively one, zero, and one. This transformation

is straightforward but as the equations are somewhat cumbersome it is useful to

explicitly state them here. The transformation takes place in three steps. In the

first step we normalize the density of states, i.e., we set the zeroth moment equal

to zero. We do so by dividing all moments by the initial value of the first moment.

We call this set of normalized (but not standardized) moments, µo
n.

In the second step, we redefine the zero energy so that the first moment is

explicitly zero itself. For the first few moments we find:

µ′

0 = 1 (4.12)

µ′

1 = 0 (4.13)

µ′

2 = µo
2 − (µo

1)
2 (4.14)

µ′

3 = µo
3 − 3µo

2µ
o
1 + 2(µo

1)
3 (4.15)

µ′

4 = µo
4 − 4µo

3µ
o
1 + 6µo

2(µ
o
1)

2 − 3(µo
1)

4 (4.16)

In the third and final step, we redefine the energy scale so that the second

moment is explicitly zero:

µn = µ′

n(µ′

2)
−n/2 (4.17)

The values µn so defined are in standard normal form, with µ0, µ1, and µ2 respec-

tively equal to one, zero, and one.
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4.6 Appendix B: Kurtosis

Kurtosis is a quantity which comes in importance just after the variance as a

measure of a density of states. Its definition is understood by first considering the

simplest of all density of states functions, those composed of a single delta function.

For such a density of states, the variance is necessarily zero, where variance, σ2, is

defined:

σ2 =
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= µ2µ0 − µ2
1 (4.18)

We now turn to a density of states which consists of a double delta function.

This distribution is illustrated in Figure 4.12. Here the two delta functions are at

positions x1 and x2 with areas of respectively α and β. In this example, µn = αx1
n

+ βx2
n. For such a double delta function we find the quantity, κ is exactly zero,

where κ is:

κ =

∣
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(4.19)

We summarize our above findings. For a density of states comprised of a single

delta function, the variance, σ2, is zero. For a density of states comprised of two

delta functions κ = 0. Thus the variance is a measure of our ability to describe a

density of states by a single energy value; κ is a measure of our ability to describe

a density of states by a pair of values. This latter κ value is termed the kurtosis

(though some people further multiply the kurtosis by additional functions of the

the zeroth, first and second moment). The kurtosis is sometimes referred to as

the peakedness of a density of states. In the case of a standard normal density of
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states, the kurtosis reduces to an especially simple form:

κ = µ4 − µ2
3 − 1. (4.20)

x

ρ(x)

x1 x2

Figure 4.12: A function with zero kurtosis: two delta functions, one at x1, the
other at x2 with areas of respectively α and β. This construction is used in the
text in determining an expression for kurtosis in terms of µ0 through µ4.
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Chapter 5

Giant cubic unit cells: How electrons

guide structural choices in complex

intermetallics.

5.1 Introduction

Why do intermetallics sometimes have simple structures, and sometimes immensely

complicated ones? Take for example the Al-Mg binary system. This system indeed

includes simple structures, such as fcc and hcp alloys, and an ordered variant of

moderate complexity, the α-Mn structure, Mg17Al12. It also includes a phase

referred to optimistically as Mg2Al3; it’s reported to have 1832 atoms in its cubic

unit cell!

Phases of like complexity have been found over the past 50 years or so by Sam-

son, Pauling, Shoemaker, and others (A selection is given in Table 5.1).192–199 Some

of these have been recognized as quasicrystal approximants. For all of them, the

community has struggled impressively to make sense of their structures, discern-

ing in these phases a congeries of concentric, interpenetrating or fused polyhedra.

Beautiful clusters of clusters of icosahedral and tetrahedral polyhedra emerge from

these analyses. We show one example in Figure 5.1, the NaCd2 structure, another

structure solved by Samson.200 It contains the same structural building units as

the Mg2Al3 phase referred to above, but is less troubled by disorder. In Figure

5.1 we show the way Samson described these structures: he started out with a

pentagonal complex of Friauf polyhedra (more on these below; Figure 5.1a), and

135
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Table 5.1: Examples of phases based on Laves phase fragments
Compound a-axis sp. grp. electrons/atom

NaCd2
200 30.56 Å 227 1.67

K17In41
201 24.24 Å 227 2.41

Na28In14Sn15
202 22.99 Å 216 2.28

Na17In12Ga29
203 21.79 Å 227 2.41

Sm11Cd45
204 21.70 Å 216 2.20

Na35Cd24Ga56
205 21.29 Å 216 2.18

Li18Cu5In4Ga31
206 19.93 Å 227 2.21

FeNiZn13
197 18.08 Å 216 1.60

CaNa10Sn12
207 11.22 Å 216 2.61

Mg17Al12
208 10.54 Å 227 2.41

then joined the pentagonal complexes together to form a larger octahedral cluster

(Figure 5.1b). The full structure can then comprehended in terms of this 234-atom

unit.

(a)

(b)

(c)

oa
b

c

Figure 5.1: The structural building block of the Mg3Al2 and NaCd2 structures.
(a) Pentagon complex of five face-sharing Friauf polyhedra. Each Friauf polyhe-
dron is abbreviated here as a truncated polyhedron (Figure 5.3 will provide a full
description of the Friauf polyhedron). (b) The octahedral unit built from six of
these pentagonal complexes joined in a edge-sharing fashion. (c) This unit in the
context of the full unit cell of the NaCd2 structure.

The Friauf polyhedron is a recurring feature in efforts to describe other com-

plex intermetallic structures as well. In an insightful study, Sten Andersson saw

components of simpler intermetallic structure types in the Cu3Cd4 structure. He
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found that the Friauf polyhedra were fused to form blocks of the MgCu2 structure,

intergrown with fragments of the pyrochlore and fcc structures.209 In a companion

paper, Andersson showed that the MgCu2-type blocks present in the Cu3Cd4 struc-

ture also occur in the giant structures of NaCd2 and Mg3Al2, which we illustrated

in Figure 5.1.

The geometry of nature never ceases to astound, as does the ingenuity of human

beings, cited only in part above, in discerning patterns. Still, it remains an open

question how relevant these geometrical schemes, beautiful as they are, might be

to the bonding in these phases. We believe geometrical and electronic structure

must be correlated. The Hume-Rothery rules,210–212 and their electronic justifi-

cation, are an attempt to introduce electronic reasoning in these compounds.191

In another approach, Lin and Corbett have applied modified Wade-Mingos poly-

hedral bonding schemes to make sense of the electron counts in the K17In41-type

compounds.213

In this paper, we will take a fresh view of these complex intermetallic structures,

growing out of quantum mechanical calculations. An analysis of a measure of

electron distribution, or charging, the Mulliken electron populations, will reveal

large blocks of a simple structure, the MgCu2 type, in phases such as NaCd2. We

will see that the complex phases of Table 5.1 can be understood both geometrically

and electronically as chemical twinnings of the MgCu2 structure. Geometrically,

we will arrived at a scheme similar to that proposed by Andersson. A look at

the electron density of the MgCu2 blocks will show a change in the nature of

the chemical bonding at the block surfaces—this will provide us with hints as

to why this twinning occurs. We aim to provide the electronic underpinnings of

Andersson’s fertile vision of intricate structures constructed from simpler ones.41,209
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As we explore this electronic origin Aufbau, the structural relationships be-

tween these phases will emerge. Rather than monstrous isolated incidences of

complexity, these structures form a series based upon increasingly larger MgCu2

fragments. This series is distinct from the series of quasicrystal approximants usu-

ally associated with large cubic intermetallic structures—although some members

of the series are genuine quasicrystal approximants.

None of these phases is a comfortable haven for lovers of simplicity.

5.2 Intermetallic structures derived from the Laves phases

Key to our analysis are two quite common intermetallic structure types, those of

the Laves phases MgCu2 and MgZn2. The MgCu2-type alone is adopted by more

than 400 compounds.214 In addition to these phases, a number of long-unit cell

intergrowths of the MgCu2- and MgZn2-types have been observed, the simplest of

these being the well-known MgNi2 structure.189

Let’s begin by gaining familiarity with the MgCu2- and MgZn2 structure types;

these are illustrated in Figure 5.2. In describing them, we will not look at them

as layerings of kagomé nets, one beautiful feature of these structures. Instead,

we’ll focus on the Mg-Mg, Cu-Cu and Zn-Zn contacts, as the frameworks they

form make connections to other structures most vivid. The MgCu2 type is shown

in Figures 5.2a-c. The Cu atoms are shown in blue; their interconnections (the

Cu-Cu distance is 2.49 Å for MgCu2) trace out 12-atom truncated tetrahedra. In

the Cu substructure of MgCu2 all hexagonal faces are shared between neighbor-

ing truncated tetrahedra, as shown in Figure 5.2b. Together with shared smaller

tetrahedra, the Cu sublattice is constructed.

The Mg atoms of MgCu2 are shown in red. As can be seen in Figure 5.2c,
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(d)(a)

(b)

(c) (f)

MgCu2 MgZn2

(e)

b
a

c

O

c

a b
O

Figure 5.2: The MgCu2 and MgZn2 structure types. (a)-(c) The MgCu2 struc-
ture type. In (a) One unit cell of the Cu substructure is shown, but many Cu-Cu
contacts occur between unit cells. In (b) more of this Cu substructure is shown;
it forms a network of face-sharing twelve-vertex truncated tetrahedra (See Figure
5.3a). One of these polyhedra is emphasized in green. (c) The Mg atoms atoms lie
at the centers of these Cu polyhedra, connecting to each other across the hexago-
nal faces of the Cu polyhedra. These Mg-Mg contacts generate a cubic diamond
network. (d)-(f) The MgZn2 structure type. (e) The Zn atoms form a face-sharing
network of truncated tetrahedra, which are again (f) centered by Mg atoms that
connect across the shared hexagonal faces. In MgZn2 the Mg-Mg contacts generate
a hexagonal diamond network.
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they lie at the centers of the Cu truncated tetrahedra. The Mg atoms have rather

close contacts to each other (for MgCu2 itself: 3.05 Å) across the shared hexagonal

faces of the Cu polyhedra. In Figure 5.2c, we draw connections between these

neighboring Mg atoms. The result is a cubic diamond network.

In the course of this paper, we will see that the truncated tetrahedron, with

additional atoms capping the hexagonal faces of the truncated tetrahedron, plays

a prominent role in the structural chemistry of complex intermetallic phases. This

12+4 coordination environment is known as the Friauf polyhedron. We will call

the whole structure unit, the Friauf polyhedron plus the centering atom, the Friauf

cluster (Figure 5.3b) .

(a) (b)

Truncated tetrahedron Friauf cluster

Figure 5.3: The Friauf cluster: a 17-atom unit consisting of a truncated tetrahedron
(blue, 12 atoms) and a centering atom with additional neighbors in tetrahedral
coordination (red, 5 atoms).

The MgZn2 structure is also built up from interpenetrating Friauf clusters (Fig-

ure 5.2d-f). The Zn atoms connect together to make truncated tetrahedra (Zn-Zn:

2.57-2.66 Å). These polyhedra share all of their hexagonal faces; the Mg atoms

again, with the Mg-Mg contacts (Mg-Mg: 3.20-3.21 Å) threading through the

shared hexagonal faces of neighboring truncated tetrahedra. This creates, just as

in MgCu2, a network of Mg(Mg)4 tetrahedra. The difference between the MgCu2

and MgZn2 structures can perhaps be seen most immediately by looking at the
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networks formed by these Mg(Mg)4 tetrahedra. In MgCu2 the Mg framework takes

on the cubic diamond structure, while in MgZn2 it takes on the hexagonal diamond

structure.

In contrast to the MgCu2 and MgZn2 types, where the Friauf clusters share all

of their hexagonal faces, is the α-Mn type. An example of a phase taking on this

structure type, Mg17Al12,
208 is shown in Figure 5.4. Drawing connections between

the close Al-Al contacts (blue) reveals truncated tetrahedra (the distances here are

less uniform than in MgCu2 or MgZn2, ranging from 2.64 to 2.85 Å).

Unlike MgCu2 and MgZn2, the truncated tetrahedra in Mg17Al12 exhibit no

face-sharing. Instead, they pack together as separate clusters in a body-centered

cubic fashion. The Mg atom at the center and Mg atoms capping the hexagonal

faces of the Al truncated tetrahedron completes the Friauf cluster (red). The cap-

ping atoms are themselves tetrahedrally coordinated by the remaining Mg atoms

in the unit cell. This is shown in Figure 5.4b, where it is seen that the Mg atoms

form a small tetrahedral framework, similar to the Mg networks in the MgCu2 and

MgZn2 structure. While in the MgCu2 and MgZn2 structures the Mg sublattice

forms full cubic or hexagonal diamond networks, in Mg17Al12 the Mg substruc-

ture is reminiscent of the carbon framework of (t-butyl)4C. Further close Mg-Mg

contacts interconnect the units shown in Figure 5.4b (we’ll discuss these in detail

later).

Real structural complexity arises when we start to mix the two extremes rep-

resented by all-hexagonal-faces-shared situation in the Laves structures and no-

hexagonal-faces-shared situation in the α-Mn structure. The structures that result

are some of the most complex of crystalline phases known. 189,209 Two cubic ex-

amples are shown in Figure 5.5: the NaCd2
200 and Mg2Al3 structures,215 each with
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(a) c (b)

D3
D2

D1

TT

α−Mn type (Mg17Al12)

Oa b

Figure 5.4: The α-Mn structure type, exemplified by the structure of Mg17Al12.
(a) The Friauf clusters in this structure. (b) The wider network of Mg-Mg con-
tacts creates a framework based on Mg(Mg)4 tetrahedra, similar to the extended
diamondoid networks seen in the MgCu2 and MgZn2 structures. Site labels used
in Table 5.2 are also given: D1, D2, and D3 for the diamondoid-type sites, TT for
the sites on the truncated tetrahedra.

more than 1000 atoms/unit cell. For each of these structures, one of the large

blocks formed from face-sharing Friauf clusters is shown separately. Further cubic

examples of these phases are given in Table 5.1. Additional complexity can be

added, when as in Cu3Cd4, these blocks of Friauf clusters are isolated from each

other by fragments of other simple structure types. We’ll discuss these structures

in more detail and why they form later in this paper. But first let’s take a closer

look at the relationship between the simpler Friauf cluster phases, this time on the

level of electronic structure.

5.3 Site preferences in the α-Mn structure

In comparing the Mg17Al12 and the MgCu2 Laves phase structures (Figures 5.2 and

5.4) above, we found that both could be understood in terms of the same structural

unit, the Friauf cluster. In addition to this geometrical similarity, there is also a

similarity in the occupation of the networks by the two elements in each phase. In

both structures, the centering atomic sites and capping atoms of the Friauf clusters
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Mg2Al3

NaCd2(a)

(b)

Figure 5.5: Structures based on Friauf clusters. (a) NaCd2. (b) Mg2Al3 (idealized,

see below).

(connecting to each other into a diamondoid networks) are occupied by the more

electropositive Mg atoms, while the truncated tetrahedral sites are occupied by

the more electronegative Al or Cu atoms.

This drive for ordering can be analyzed by starting out with a hypothetical alloy

with random Mg/Al or Mg/Cu occupation of all of the sites.216–218 For a given

average electron count, there is a natural (origin to be determined) differential

in the electron population of atoms residing in sites that are distinct. In a line

of reasoning that goes back a long way in chemistry, it is then argued that in

the process of ordering, the more electronegative atoms in a real compound will

choose the sites with the highest electron population in the alloy. In this way the

similarity in site ordering between the Mg17Al12 and the MgCu2 structures reflects

similarity in their electronic structures.
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To implement this way of thinking, we calculated the band structures for both

the Mg17Al12 and MgCu2 structure types, using the extended Hückel (eH) method

(we also did LDA-DFT calculations to calibrate our eH parameters, see Appendix),

modeling the disordered alloy by putting Al atoms on all the sites and adjusting

the overall charge per unit cell to match the average electron count of Mg17Al12

(17×2+12×3
29

= 70/29 = 2.41 electrons/atom). The site electron densities were then

computed by a Mulliken electron population analysis.û ü ý û þ ý û ÿ ý
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Figure 5.6: Relative Mulliken electron populations in the (a)-(c) α-Mn (Mg17Al12)
and (d)-(f) MgCu2 structure types. In (a) and (d) the populations are written out
numerically; for instance, in (a) the central atom of the cluster has 0.45 electrons
less than the average electron count (70/29 electons per atom) for all the sites
in the structure. (b) and (e) a graphical representation of the relative Mulliken
populations. The populations are plotted as spheres on each site; the volume of
a sphere gives the absolute value of the relative Mulliken population on that site,
while the color of the sphere gives the sign of the population. White: electron
rich compared to the average electron count, black: electron poor. (c) and (f) the
networks formed from the electron rich and electron poor sites shown separately.

The resulting electron populations are shown in Figure 5.6. In Figures 5.6a

and 5.6d, the two structures are given with the relative Mulliken population (the

deviation from the average number of electrons per atom) written in for each site.216
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For both structures, the diamondoid sites (drawn in red) carry less-than-average

electron density; they are electron poor. The sites on truncated tetrahedra (blue)

are consistently electron rich.

These results are illustrated in another, perhaps more graphic, way in Figures

5.6b and 5.6e; here the relative Mulliken populations are given by spheres. The

signs of the relative Mulliken populations are indicated by the color of the spheres.

The spheres are black for atoms that are relatively electron poor, and white for

atoms that are electron rich compared to the average. Thus the diamondoid net-

works of both the Mg17Al12 and MgCu2 structures are seen in these pictures as

black beads connected via red lines. The truncated tetrahedral atoms appear as

white spheres connected by blue lines. The underlinevolumes of the spheres give

the magnitudes of their relative Mulliken populations. These conventions will be

used through out this paper.

The experimental site orderings of α-Mn (Mg17Al12) and MgCu2 are consistent

with the computed average electron densities. The electron rich sites, marked by

white spheres, coincide with, respectively, the Al or Cu atoms of these structures,

while the electron poor sites match the Mg sites. Indeed, these trends are also in

agreement with general experience with compounds adopting the α-Mn and MgCu2

structure types. It is well-known that for compounds crystallizing in the MgCu2

type, the electropositive atoms and electronegative atoms segregate preferentially

to, respectively, the Mg and Cu sites. Of the more than 228 AB2 binary compounds

in the MgCu2-type, there are only nine exceptions to this rule.214

In Table 5.2 we show the binary compounds crystallizing in the α-Mn type with

observed site-orderings (many α-Mn type compounds are alloys, no site-orderings

detected). This list has been recently compiled by Fässler and coworkers, in the
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course of their investigations of site-ordering in their compound K5Pb24.
219 We la-

bel the four symmetry-distinct sites in these structures as D1, D2, D3 (for the three

sites of the diamondoid framework) and TT (for the single truncated tetrahedral

site), as was shown in Figure 5.4. In all these cases, the TT positions are occupied

by the more electronegative element. However, the stoichiometries in most of these

compounds do not allow for a clean separation of elements between the sites on the

truncated tetrahedra and the diamondoid fragment. The remaining atoms of the

more electronegative element are accommodated by the D3 site (the most electron

rich of the diamondoid sites).

Table 5.2: Site orderings in binary compounds adopting the α-Mn structure
type
Compound D1 a D2 D3 TT
Er5Mg24

220 1 Er 4 Er 12 Mg 12 Mg
Mg17Al12

208 1 Mg 4 Mg 12 Mg 12 Al
K5Pb24

219 1 K 4 K 12 Pb 12 Pb
NbRe3

221 1 Nb 4 Nb 2.26 Nb/ 9.74 Re 12 Re
Sc5Re24

222 1 Sc 4 Sc 12 Re 12 Re
Ti5Re24

223 1 Ti 4 Ti 12 Re 12 Re
Tm5Mg24

220 1 Tm 4 Tm 12 Mg 12 Mg
YMg6.8

224 1 Y 2.72 Y/ 1.28 Mg 12 Mg 12 Mg
Y5Mg24

225 0.25 Y/0.75 Mg 4 Y 12 Mg 12 Mg

aSee Figure 5.4 for site labels.

In this section, we have seen that for two relatively simple structures based on

Friauf clusters, the truncated tetrahedra substructures are electron rich (and are

occupied by more electronegative atoms), and the diamondoid nets are electron

poor (and are occupied by more electropositive atoms). This feature also holds for

more complex phases built from Friauf clusters. As complicated as these phases

become, this “coloring” pattern is conserved.
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5.4 Between the MgCu2- and α-Mn-type extremes

We saw above that both the α-Mn and MgCu2 structures can be understood in

terms of truncated tetrahedra built around diamond-like nets. The combination

of these two structural units create the unit we’re calling Friauf clusters. In the

α-Mn structure, these Friauf clusters are isolated from each other (Figure 5.4),

while in the MgCu2 structure they are heavily fused together—each Friauf clus-

ter sharing every hexagonal face of its truncated tetrahedron with another Friauf

cluster (Figure 5.2b).

Having established this connection between the MgCu2 and α-Mn structures,

we can define in a new way the interrelationship between these structures. From

one viewpoint, we can see the MgCu2 structure as the result of fusing the isolated

Friauf polyhedra of the α-Mn structure together. Conversely, we can view the α-

Mn structure as the result of breaking the MgCu2 structure into small fragments.

Note that in breaking up the MgCu2 structure, we eventually converge on the

isolated Friauf clusters of α-Mn. But the reverse process (”cluster fusion”) is rich

with possibilities: not only can you ”make” the MgCu2 structure this way, but also

the MgZn2-, and MgNi2-types, and the infinite number of other structures that can

be generated by fusing isolated Friauf clusters together. These correspond to the

many ways truncated tetrahedra and small tetrahedra can combine to fill space.

As we look at more complex phases, we will find that the conglomerations of

Friauf clusters follow patterns. If we look for them (using quantum mechanical

calculations as our sensors), we can find large domains of Friauf clusters fused to

make fragments of the MgCu2 structure.
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5.5 MgCu2 fragments in the NaCd2 structure

Let’s look at two of the most complex phases in the intermetallic literature: the

NaCd2 and Mg2Al3 structures. Both structures were solved in the 1960’s, and

as truly heroic as these are as crystallographic achievements, the quality of the

structure solutions suffer from the limitations of the technology of the time. The

Mg2Al3 structure exhibits partial occupancies and disorder that mars any attempt

at quantum mechanical calculations or structural description of the phase. The

NaCd2 structure is much less troubled by disorder, with just some sites showing

mixed occupancy by Na and Cd, so we’ll start with it. In a later section, we will

see that our results for the NaCd2 structure provide a cipher for understanding

the source of disorder in the Mg2Al3 structure.

We have already shown Samson’s ingenious original description of the NaCd2

structure in Figure 5.1. This is based on pentagonal blocks of Friauf polyhedra,

which we traced out with blue bars and solid faces. There are alternatives to this

impressive description, which derive from the underlying bonding, and offer con-

nections to other intermetallic structure types. Let’s take a new look at the NaCd2

structure, this time taking clues from our calculations on the simpler structural

types based on Friauf polyhedra: the α-Mn and MgCu2 structures. In both of

structures we saw a segregation of electropositive and electronegative atoms be-

tween diamondoid nets and truncated tetrahedra. Now we’ll look for these themes

in the NaCd2 structure.

In Figure 5.7, we show two fragments that come into focus upon inspection

of the NaCd2 structure. The two fragments are of different sizes. The larger or

“major” cluster (Figure 5.8) consists of ten Friauf clusters joined through sharing

hexagonal faces of their truncated tetrahedra (blue). In the act of sharing faces,
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NaCd2 Major cluster

Minor cluster

ob a

c

Figure 5.7: Fragments of MgCu2-type in the NaCd2 structure. For detailed views
of the major and minor clusters see, respectively, Figures 5.8 and 5.9.

small tetrahedra are created, just as in the MgCu2 structure. This is shown in Fig-

ure 5.8b, where it may be seen that the small tetrahedra share vertices to create

a tetrahedron of these smaller tetrahedra. In the fusion of these Friauf clusters,

the atoms shown in red interconnect. The innermost atoms of the resulting frag-

ment trace out an adamantane frame, a hallmark of the cubic diamond structure.

Further atoms are added to complete the tetrahedral coordination of each atom

of the adamantane piece. In short, the fusion of Friauf cluster to make the major

cluster produces a truncated version of the Mg and Cu networks in MgCu2; the

major cluster can be simply understood as a fragment of the MgCu2 structure.N a C d 2 : M a j o r c l u s t e r C d
N a0 8 C d / 0 . 2 N a

( a ) ( b ) ( c )

Figure 5.8: Site occupancies in the major cluster of NaCd2.

The smaller one, which we call the ”minor” cluster, also is derived from the
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MgCu2 structure (Figure 5.9). It consists of a single Friauf cluster, with addi-

tional atoms building up the cluster. Some of the additional atoms extend the

diamondoid network branching from the center of the cluster (in the process, four

adamantane-type pieces, sharing edges, are made), mimicking the Mg-substructure

of the MgCu2 structure . The others cap the triangular faces of the truncated tetra-

hedron extending the Cu-network of the MgCu2 structure.

NaCd2:  Minor cluster

0.5 Cd / 0.5 Na

0.6 Cd / 0.4 Na

0.2 Cd / 0.8 Na

1.0 Cd

0.7 Cd / 0.3 Na

0.4 Cd / 0.6 Na

Figure 5.9: Site occupancies in the minor cluster of NaCd2.

Both the minor and the major clusters are of tetrahedral symmetry, being

centered on tetrahedral Wyckoff positions in the face-centered cubic unit cell. We

will see below that all of the atoms in the NaCd2 unit cell either lie on one of these

two types of clusters, or on the thin interfaces between these clusters.

As in the other structures we’ve looked at in this paper, we again see a segrega-
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tion of atoms into nets based on the diamond structure and truncated tetrahedra.

In the structures considered earlier, this was accompanied by a separation into, re-

spectively, electron-poor and electron-rich sites. How does this observation transfer

to the NaCd2 structure? One way to answer this question is to look at the site-

occupancies: we should see a predominant occupation of the diamondoid sites by

the electropositive Na atoms, and occupation of the truncated tetrahedral sites by

the relatively electronegative Cd atoms. For the major cluster, this is indeed what

we see (Figure 5.8). All of the truncated tetrahedral sites (blue) are exclusively

occupied by Cd. All but one of the diamondoid sites are occupied by Na. The

exception is a site displaying mixed occupancy (0.8 Cd, 0.2 Na) near the outskirts

of the cluster.

The Na-Cd ordering in the minor cluster is not nearly so clean. A look at

Figure 5.9 shows that mixed occupancies are a common feature. It is not clear

to us whether this reflects limitations in the X-ray data or true Na/Cd mixed

occupancies on these sites.

Another approach to looking at the separation of electron-poor and electron-

rich sites is through electronic structure calculations. Just as we did for the α-Mn

and MgCu2 structures above, we can look at the relative Mulliken populations

for a hypothetical non-ordered Na-Cd alloy taking on the NaCd2 structure type.

In Figure 5.10, we show results of an extended Hückel (eH) calculation on this

structure, putting Cd atoms on all of the sites (see Appendix for details) and setting

the electron count to match that of NaCd2 (1+2×2
3

= 5/3 = 1.67 electrons/atom).

The Mulliken populations are plotted as spheres for all the atoms in both the minor

and major clusters according to our earlier conventions. The volume of the sphere

gives the magnitude of the relative Mulliken population, while the color gives the
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sign. The spheres are black for electron poor sites, white for electron rich sites.

In the upper part of Figure 5.10a we show the calculated Mulliken populations

for the minor cluster. A clear separation of electron rich and poor sites occurs: all

the electron rich spheres lie on the truncated tetrahedral net, while all the electron

poor sites are in the diamondoid net. This is not what we would expect from

the experimental site orderings, in which the Na/Cd ratio on each site appears

uncorrelated with which network the site belongs to.

D E F G HI J K L M N H
D O P G HI J K L M N H

Q E R Q S R Q I R
N T H O I UN T V G G H

Figure 5.10: Fragments of Laves phase structures in the NaCd2. (a) The ma-
jor and minor clusters drawn separately with their relative Mulliken populations
plotted (see caption to Figure 5.6). (b) The electron rich sites form nets based
on truncated tetrahedra and smaller tetrahedra, as in the Cu substructure of the
MgCu2 structure. (c) The electron poor sites trace out tetrahedral frameworks,
reminiscent of the Mg diamondoid nets in the MgCu2 structure.

For the major cluster on the other hand, the correspondence between the cal-

culated Mulliken populations and the site occupancies is strong. The Na-Cd segre-

gation between the two substructures is reflected by the Mulliken populations: the

Cd-occupied truncated tetrahedral nets appear electron rich, while the predomi-
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nently Na-occupied diamondoid net is mainly electron poor. The site occupancies

and Mulliken populations also agree in their exception to the rule: the one site

occupied mainly by Cd atoms on the diamondoid net appears marginally electron

rich (the sphere for this site in the relative Mulliken population plot is just barely

visible here).

The close agreement between semi-quantitative theory and experiment for the

major cluster makes one wonder about the blatant discrepancies seen for the minor

cluster. One possibility is that the ratio of diamondoid to truncated tetrahedral

sites in the NaCd2 structure cannot adequately accommodate the 1 Na: 2 Cd ratio.

544 of the 1192 atoms in the unit cell lie on the truncated tetrahedral portions of

the major and minor clusters, 536 on the diamondoid sites, 112 in interstices. With

the truncated tetrahedral sites only comprising half of the sites, but two-thirds of

the atoms being Cd, we should expect to see some of the Cd atoms spilling over

into the diamondoid-sites.

The full NaCd2 structure is built from a packing of the major and minor clusters

together. It’s easiest to visualize this process by first looking at the arrangement of

the two clusters in the unit cell separately, then combining them. This is shown in

Figure 5.11, where we start with the packing of the minor cluster (Figure 5.11a).

In this figure, we ”abbreviate” for the sake of clarity, the minor cluster by showing

just its truncated tetrahedral sites (this time colored red). At the bottom of Figure

5.11a, we show how these are arranged in the NaCd2 unit cell. We trace out the

pattern made in this packing process by using thick pink bars to connect the centers

of the clusters. A look at the arrangement of the pink bars shows that each minor

cluster is surrounded tetrahedrally by four other minor clusters. Indeed, the pink

bars trace out a diamond network. The minor clusters pack together in diamondoid
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fashion.( a ) ( c )( b )

Figure 5.11: Packing of the minor and major clusters in the NaCd2 structures. (a)
The packing of the minor clusters together to form a diamond net. (b) The packing
of the major clusters to create another diamondoid net. (c) The interpenetration
of these two diamond nets to make a double diamond structure of Laves phase
fragments.

In Figure 5.11b, we show the corresponding packing for the major cluster.

Hew, we abbreviate the major cluster by just indicating its outer most truncated

tetrahedral sites (blue). At the bottom of Figure 11b is shown the arrangement of

major clusters in the unit cells, with their centers connected by light blue lines. As

with the minor clusters, the major clusters pack to create a diamondoid net. The

diamond network of the major cluster has a different origin however: it is shifted

by a translation of 0.5c (or equivalently: 0.5a or 0.5b) from the minor cluster

network.

The NaCd2 structure results (aside from some interstitial atoms, see next sec-

tion) from the superposition of these two diamond networks (Figure 5.11c). It

consists of two interpenetrating diamond networks, an arrangement known as the

double diamond. A familiar example of the double diamond structure is seen in the

NaTl structure, in which the Na and Tl form separate, interpenetrating diamond

networks. The NaCd2 is a variant on this theme: in place of the Na and Tl atoms

in the NaTl-type, it has two MgCu2-type fragments of different size, the major
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and minor clusters.

5.6 Interfaces in the NaCd2 structure

We found, with the help of electronic structure calculations, an aufbau for the

NaCd2 structure. Beginning with the MgCu2 structure, we break it up into smaller

fragments, the “major” and “minor” clusters we showed earlier. Then, we fuse

these MgCu2 fragments back together into a new arrangement, and insert some

atoms at the interstices.

How does this process impart stability to NaCd2? Why break up the MgCu2

framework so prevalent in intermetallic compounds? To answer this question we

must shift our focus from the MgCu2-type fragments to the interfaces between

them. We will find that the MgCu2-type fragments come together to make inter-

cluster linkages which resemble other simple structure types, an important clue in

understanding why the NaCd2 structure is observed.

An easy way to visualize these interfaces is to look at the positions of the

interstitial atoms of the structure (112 of the 1192 atoms per unit cell). They

consist of two symmetry-distinct sites. The first, Cd3, are shown overlaid on the

NaCd2 unit cell in Figure 5.12a. They trace out truncated octahedra (TO). These

share faces to fill space, dividing it into large cavities. Each cavity is then occupied

by a MgCu2 fragment (Figure 5.12b). The faces shared by the TO delineate the

interfaces between the MgCu2 fragments. Four types of interfaces arise from this

face-sharing: major cluster-major cluster (MaC-MaC), minor cluster-minor-cluster

(MiC-MiC), and two types of minor cluster-major cluster (MiC-MaC) interfaces.

The MiC-MiC interfaces are comparatively small—reflecting the clusters’ small

size. We’ll focus, for now, on the interfaces involving at least one major cluster.



156

(a) (b)
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c

Figure 5.12: Interfacial planes between MgCu2-type fragments in the NaCd2 struc-
ture. (a) One of the interstitial sites, Cd3, traces out truncated octahedra (TO)
joined by face sharing (gray). (b) The cavities of the truncated polyhedra are
occupied by MgCu2-type fragments. Blue stick model: the major cluster (an ab-
breviated depiction, see Figure 5.11). Red: the minor cluster. The faces of the
truncated octahedra lie on the interfacial planes separating the MgCu2-type frag-
ments.

We show these interfaces in Figure 5.13, where we construct the nearest neigh-

bor clusters around a single major cluster. There are four near-neighbor major

clusters, joining the central cluster at every other hexagonal face. This creates

a tetrahedron of major clusters around the central cluster (Figure 5.13a). The

remaining hexagonal faces of the OT are capped with minor clusters, to create a

tetrahedron of minor clusters. Together the tetrahedra of major and minor clusters

comprise a ”cube” of MgCu2 fragments around the central minor cluster. Addi-

tional minor clusters also may be found occur across the rectangular faces of the

OT, making up an octahedron. Altogether, each major cluster is neighbored by

a 4+4+6 arrangement of clusters. Each minor cluster is similarly adorned with

neighbors: a tetrahedron and octahedron of major clusters plus a tetrahedron of

minor clusters.

A closer look at the contacts between these clusters reveals a regularity in their

packing. Take the MaC-MaC contact (Figure 5.14). As we saw before, they are

separated by a hexagonal face of interstitial atoms from the OT net (gray balls).
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(a)

(b)

(c)

face−to−face

face−to−face

edge−to−edge

Figure 5.13: A schematic view of the neighboring clusters surrounding each major
cluster in the NaCd2 structure. (a) The neighbor major clusters (green) are arrayed
in a tetrahedral fashion about the central major cluster (blue). (b) One set of
neighboring minor clusters (red) arranged in tetrahedron around the major cluster.
(c) A second set of neighboring minor clusters (red), arranged around the central
major cluster to form an octahedron. At the right of (a)-(c), we show how each
type of neighbor is joined to the major cluster. In (a) and (b), the inter-cluster
interfaces occur between faces of the clusters. In (c), the interface is smaller,
occurring between edges of the clusters. In this figure, abbreviated depictions for
the major and minor clusters are carried over from Figure 5.11. More detailed
views of (a), (b) and (c) will be given in, respectively, Figures 5.14, 5.15, and 5.16.
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In addition, an interstitial atom is present at the center of the hexagon. Across

this hexagon, the two major clusters face each other via the larger of their two

types of faces.

In Figures 5.14b-c, we show how the two major clusters are connected with

each other across the interface. At the top, we focus on the linkages between

the truncated tetrahedral networks of the major clusters. These are bridged via

the interstitial atoms, as indicated with dotted lines. In Figure 5.13c, we redraw

these will dark rods. They continue the labyrinth of hexagons and triangles of

the original truncated tetrahedral frameworks. Indeed, a close inspection of these

new contacts in Figure 5.14c reveals that these new contacts trace out additional

truncated tetrahedra.

Something similar happens between the diamondoid nets (bottom of Figures

5.14b-c). The terminal atoms of the two diamondoid fragments meet so as to

mutually complete their tetrahedral coordination. In this way the diamondoid

network is continued across the interface. Note that these new linkages create

six-membered rings in the boat conformation, while in the MgCu2 structure the

diamondoid net is built exclusively of chairs. The presence of boats is indicative

of the hexagonal diamond structure. Indeed, the interface forms the center of a

large fragment of the hexagonal diamond; we highlight this fragment in green at

the bottom of Figure 5.14c.

The two major clusters thus join to form truncated tetrahedra and a fragment of

the hexagonal diamond structure. These are highlighted with green in Figure 5.13c.

These two frameworks interpenetrate each other as in the MgCu2 structure, the

cubic Laves phase. However, the hexagonal diamond topology of the diamondoid

net indicates that this is a fragment of the hexagonal Laves phase, the MgZn2
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structure type. This MgZn2 type linkage occurs at each of the four large faces of

a major cluster. Thus the major clusters pack together in the NaCd2 structure so

as to form MgZn2-type fragments at the interfaces. The major clusters link so as

to form infinite diamondoid and truncated tetrahedral nets.\ ] ^ _ ` a b c d ef g b e h i j k e

f g b e h i j k e

l j m l n m l k m
\ ] ^ _ ` a b c d e
\ ] ^ _ ` a b c d e
\ ] ^ _ ` a b c d e
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Figure 5.14: The major cluster-major cluster interface in the NaCd2 structure.
(a) Two major clusters facing each other across an interface layer of interstitial
atoms (gray balls). (b) The truncated tetrahedral (top) and diamondoid (bottom)
frameworks of the two major clusters drawn separately. Dotted lines show the
continuation of these connectivity patterns across the interface. (c) The truncated
tetrahedral (top) and diamondoid (bottom) networks incorporating these inter-
cluster connections. In green are highlighted the portions of these two networks
which match, respectively, Zn and Mg sites of the MgZn2 structure.

In Figure 5.13b, we show what happens at the remaining hexagonal OT faces

around the major clusters. At these faces, the major cluster (blue) is linked to
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four minor clusters. At each of these major cluster-minor cluster interfaces, the

smaller faces of the major cluster meet one of the triangular faces of a minor

cluster to make a very large trigonal prism (right in Figure 5.13b). If we zoom

in on this interface, we can see that a simple structure type is also being formed

here. We illustrate this in Figure 5.15 (note that the clusters have been reoriented

from Figure 5.13b to Figure 5.15). First, in Figure 5.15a, we show the two clusters

separately, the major cluster on top, the minor cluster on bottom. Then in Figures

5.15b-c we trace how the atoms of the clusters come together at the interface. In

particular, we emphasize ten key atoms on the diamondoid networks of the two

clusters, drawing them as yellow and purple balls. These form two tetrahedra

which point into the interface with a triangular bases (purple balls).

� � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �
� � � � � �

� � � � � �� � � � �� � � � � � �
� � � � �� � � � � � �

co ba
Figure 5.15: The face-to-face contact between major and minor clusters in the
NaCd2 structure. (a) The major and minor clusters viewed separately, then (b)
viewed together. (c) The interface atoms between these two clusters form a dis-
torted fragment of the Al3Zr4 structure type. (d) The Al3Zr4 structure type, Al
atoms: blue cylinders, Zr atoms: yellow and purple balls. In panels (a)-(b) we
trace the source of the Zr-sites at the face-to-face interface in (c) from the major
and minor clusters by overlaying yellow and purple balls on the corresponding sites
in the major and minor clusters.

As we bring the clusters together (Figure 5.15b), these triangular atoms inter-
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digitate to form a hexagon. This is traced out in Figure 5.15c. In the process, the

atoms drawn in yellow join to make a linear chain passing through this hexagon

and through the hexagonal faces of the truncated tetrahedral nets of the major

and minor clusters. The result: a distorted hexagon (purple) sandwiched by two

Kagomé net fragments (blue) and skewered by a linear chain (yellow).

These features are also seen in a simple, but rather rare, intermetallic struc-

ture type, the Al3Zr4 type. In this structure (Figure 5.15d), Kagomé nets of Al

atoms alternate with graphitic layers of Zr atoms to make hexagonal channels.

These channels are then occupied by linear Zr chains. The Al3Zr4 framework at

this interface actually extends further than the small segment we’ve shown in Fig-

ure 5.16c, incorporating atoms both from the OT net and more atoms from the

diamondoid nets.

Remnants of the Al3Zr4 structure are also seen at the other type of major

cluster-minor cluster interfaces, across the rectangular faces of the OT net (Figure

5.16). This time, in addition to the two clusters married at the interface, contri-

butions are needed from two further neighboring major clusters (Figure 5.16a). In

Figure 5.16b, we show all four clusters together, and emphasize the atoms intercon-

necting to form the Al3Zr4 substructure with balls. The atoms forming fragments

of the Al3Zr4-type graphitic sheet, kagomé net and linear chain are drawn with,

respectively, purple, blue and yellow balls. In Figure 5.16c, we excise these atoms,

and show two views of this Al3Zr4-type fragment. It consists of three layers, two

graphite-like (quite distorted), one Kagomé-like. These make a small hexagonal

cavity occupied by two atoms.

We have seen in this section that the major clusters are joined to their neighbors

so as to create fragments of simple (if rare in the case of Al3Zr4) structure types.
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(b)

  major 
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minor
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  Al3Zr4 fragment

(c)

Figure 5.16: The edge-to-edge interface between major and minor clusters in the
NaCd2 structure. At this interface a fragment of the Al3Zr4 structure is formed just
as in the face-to-face interface shown in Figure 5.15. In this case, two additional
major clusters also contribute atoms to the fragment. (a) The edge-to-edge contact
with the additional major clusters shown separately. The atoms contributing to the
Al3Zr4-type fragment are emphasized with balls. (b) All four clusters contributing
to the fragment shown together. The Al3Zr4 fragment is circled. (c) Two close-up
views of the Al3Zr4-type fragment. Al sites: blue, Zr sites: yellow and purple.
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Each major cluster links with four other major clusters through a piece of the

MgZn2 structure. Each major cluster also links with ten minor clusters through

small units of the Al3Zr4 structure. In next section we will examine the role of

these interfacial fragments in stabilizing the NaCd2 structure type.

5.7 Ionicity in the NaCd2 structure

What is happening at the Al3Zr4-type interfaces which we just found in the NaCd2

structure? Let’s start with a look at the Mulliken populations at these interfaces,

which has proven so helpful in discerning the MgCu2-type fragments in this struc-

ture. In Figure 5.17, we show the distribution of the Mulliken electron populations

among the atoms in NaCd2 structure, using the results from the extended Hückel

calculation we discussed above in section 5. Here, we plot the electron popula-

tions as a histogram, tallying the number of atoms at each electron count. If all

the atoms shared the electrons equally, we would see a single peak at the average

electron count for this structure, 1.67 electrons/atom. Instead, we see a spread

running over the range 1.50-1.80 electrons. To get a sense of how big of a spread

this is, we mark with gray lines the Mulliken populations for the Mg and Cu sites

in the MgCu2-type structure (at the same electron count, calculated assuming all

sites were occupied with Cd atoms).

The gray lines divide the histograms into three parts: (1) a region to the left

of the Mg line, (2) a region between the Mg and Cu lines, and (3) region to the

right of the Cu line. The three intervals correspond to atomic sites that are,

respectively, more electron poor that the electropositive Mg sites in the MgCu2

structure, intermediate between the Mg and Cu sites, and more electron rich than

the Cu sites.
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Figure 5.17: Histogram of the distribution of the Mulliken electron density over
the atoms of the NaCd2 structure. Vertical gray lines give the calculated electron
density on the Mg and Cu sites of the MgCu2 structure for comparison. Black
bars: sites intermediate between the Mg and Cu electron densities. These consist
almost exclusively of sites occupying the Zr-positions in the Al3Zr4-type interfaces.
White bars: the remaining sites.

These three regions in the histogram isolate three different structural compo-

nents of the NaCd2 structure. The electron-rich region to the right of the Cu line

(the white bars) consists of the atoms on the truncated tetrahedral networks of the

major and minor clusters. The electron-poor region to the left of the Mg line (also

white bars) consists mainly of the diamondoid sites encased by the tetrahedral

tetrahedral networks of these clusters. The remainder of the sites in this region

are sites at the MaC-MaC interfaces which generate MgZn2-type fragments. From

this, we see a clear dichotomy between electron-poor and electron-rich sites in the

interiors of the major and minor clusters. The polarity between electron-poor and

electron-rich sites is a little greater than that found in the MgCu2 structure type.

The region between the Mg and Cu lines (black bars) in Figure 5.17 consists

of the remaining sites, all of which participate in the Al3Zr4-type interfaces at Zr

positions, with the exception of the small bar just under the Cu line. As they lie
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between the Mg and Cu lines, these interface sites have electron populations inter-

mediate between the electron-poor and electron-rich sites of the MgCu2 clusters.

The bonding at these sites, is evidently less polar, or more covalent, than in the

interior of the major or minor clusters.

In Figure 5.18, we show a more visual way of seeing this division between

relatively ionic and covalent regions of the structure. We take the structures of the

major and minor clusters and overlay on these structures spheres which indicate

the positions of the atoms in the histogram in Figure 5.17. The color gives the

region of the histogram that atom is in. White spheres indicate that the site is

in one of the white-bar regions of the histogram. These are sites of high ionicity.

The atoms with black spheres lie in the black-bar region intermediate between

the Mg and Cu lines, in the region of low ionicity. The volumes of the spheres are

proportional to the distance an atom from either the Mg or Cu line, the Mg line for

the diamondoid sites of the MgCu2-type fragments, the Cu line for the truncated

tetrahedral sites.

Qualitatively, the spheres give us a sense of how much excess charge is being

piled up on each site. Sites with extremely large white spheres very closely ap-

proximate the cations and anions of normal ionic salt structures. Sites with large

black spheres approximate atoms participating in non-polar, covalent bonding. To

simplify our discussion, let’s call the values represented by a sphere on any given

site as the ionicity of that site. As the white spheres correspond to sites that

are more ionic that the corresponding sites in MgCu2, we’ll say those sights have

positive ionicity with respect to the MgCu2 structure. Likewise, the black spheres

correspond to negative ionicity with respect to MgCu2 structure.

A look at Figure 5.18 shows clearly that the internal portions of the clusters
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Figure 5.18: Ionicities of the sites in the (a) major and (b) minor clusters of the
NaCd2 structure. The spheres plot the positions of the atoms of the clusters in
the histogram of Figure 5.17. White spheres correspond to the white-bar regions
of Figure 5.17, i.e. to sites more cationic than the Mg sites or sites more anionic
than the Cu sites in the MgCu2-type. The volume of each sphere gives the site’s
distance in the histogram from the Mg line (for diamondoid sites) or the Cu line
(for truncated tetrahedral sites). We’ll call this measure the ionicity of each site
(see text).

have positive ionicities (white spheres). Regions of negative ionicity appear at the

small faces of the major cluster, on the diamondoid substructure. The portion of

the minor cluster with negative ionicity is greater: the small truncrated tetrahedral

substructure (blue in Figure 5.18b), is completely enveloped by a shell of black

spheres. These black spheres also lie exclusively on the diamondoid sites of the

substructure. Significantly, all of these negative ionicity sites are involved in the

Al3Zr4-type interfaces we described in the previous section, as can be confirmed

by a look at Figures 5.15 and 5.16.

In Figures 5.19 and 5.20 we redraw these Al3Zr4 type interfaces, this time

plotting their ionicities. In Figure 5.19, we focus on the face-to-face MaC-MiC

interface. First (Figure 5.19a), we show the major and minor clusters coming

together at the interface, with their diamondoid nets interdigitating. In the process

of interdigitating, the two clusters create a slab of black spheres. As we pass across
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Figure 5.19: Ionicity at the face-to-face MaC-MiC interface. (a) The major and
minor clusters joining at the face-to-face interface. (b) A close-up of the Al3Zr4-
type face-to-face interface (Al sites: blue, Zr sites: yellow and purple). Note that
all the Zr sites between the two kagomé layers shown in blue all have low ionicity.
See caption to Figure 5.18 for conventions on the plotting of the site ionicity.
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the interface from the major cluster to the minor cluster, we pass through a several

atom-thick layer of black spheres. In Figure 5.19b, we zoom in on this interfacial

region, and redraw the connections between the atoms to emphasize the similarity

to the Al3Zr4-type. The atoms colored blue in Figure 5.19b correspond to the Al

sites in the Al3Zr4-type, the purple and yellow to two distinct types of Zr atoms. It

is on these Zr-type sites between the Al-type kagomé layers that the black spheres

are located.

less ionic 

more ionic than the corresponding 
site in the MgCu2−type

(a) (b)

Figure 5.20: Ionicity at the edge-to-edge MaC-MiC interface. (a) A close up of
the Al3Zr4-type interface region for orientation (Al sites: blue, Zr sites: yellow
and purple; see Figure 5.16 for more detail). (b) The ionicities of the sites at the
interface.

In Figure 5.20, we move to the Al3Zr4 fragment at the edge-to-edge MaC-

MiC interface (how the Al3Zr4 fragment arises from the MgCu2-type clusters was

already shown in Figure 5.16). Again, we see an accumulation of black spheres in

this interfacial region. In this case, however, the segregation of the black spheres

to the Zr-type sites (purple and yellow) is not nearly so clean. Two of the largest

black spheres lie on the central Al-type kagomé fragment.

From this analysis of the Mulliken populations, we see clearly a redistribution of

the electron density at the interfaces between MgCu2-type clusters, particularly the
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interfaces at which Al3Zr4-type geometries are formed. The atoms at the interface

are more average in their electron populations that the interiors of the clusters.

For sites on the diamondoid networks of the MgCu2-type clusters, this means an

increase in the electron population at the interface. For the truncrated tetrahedral

networks, it means a decrease. If these two networks contributed an equal number

of atoms to the interfaces, we would expect that interfaces, as a whole, would have

average electron concentration roughly equal to that of the bulk. However, we

see from Figure 5.18 that the sites conferring negative ionicity to the interfaces

are predominantly the diamondoid networks (the interstitial sites contribute some

atoms as well, see Figure 5.16). Thus we see a net migration of electrons into the

Al3Zr4-type interfaces. In the next section, we will analyze the consequences of

this migration, using an orbital overlap population analysis.
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