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Abstract

We observe a curious property of dual versus primal-dual path-following interior-point
methods when applied to unbounded linear or conic programming problems in dual form.
While primal-dual methods can be viewed as implicitly following a central path to detect
primal infeasibility and dual unboundedness, dual methods can sometimes implicitly move
away from the analytic center of the set of infeasibility /unboundedness detectors.
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1 Introduction

Path-following interior-point methods have been shown to be very successful algorithms
for linear and conic programming problems: see, for instance, Gonzaga [4], Wright [12],
and Ye [13]. These algorithms aim to follow the so-called central path towards optimal
solutions. This path only exists when both primal and dual problems have strictly fea-
sible solutions, but the methods are surprisingly successful in detecting infeasibility and
unboundedness in case they are present. Recently, the author [10] provided some ratio-
nale for this success when using primal-dual algorithms: roughly, the methods could be
viewed as implicitly following another well-defined central path towards optimal solutions
of auxiliary problems that demonstrated the infeasibility and unboundedness of the origi-
nal problems. Here we investigate dual path-following algorithms from this viewpoint, and
find that their theoretical behavior can be radically different. One conclusion is that the
barrier parameter must be carefully controlled in dual algorithms if we wish to efficiently
detect infeasibility /unboundedness.
Suppose we wish to solve the linear programming problem in dual form

(D) maximize b7y,
ATy+s:c, s>0.

Here A, an m x n matrix, b € R™, and ¢ € R" form the data; y € R™ and s € R"
constitute the variables of the problem. We will assume without real loss of generality
that A has full row rank. We call (D) the dual problem although we consider it of primary
importance, because it is the dual of the standard form problem (called the primal)

(P) minimize !z,

Ar=b, x>0,

which has been the focus of most treatments of interior-point methods for linear program-
ming.

We prefer to concentrate on (D) because dual (or less tautologically, non-primal-dual)
interior-point methods are typically applied to problems in this form. Examples include
the dual path-following algorithm of Renegar [8], the dual affine-scaling method of Adler,
Karmarkar, Resende, and Veiga [1], and the dual potential-reduction algorithm of Benson,
Ye, and Zhang [2] for semidefinite programming. In addition, there are more theoretical
reasons to consider (D): there may be a self-concordant barrier for Fy (D) := {y € R™ :
c — ATy > 0} whose complexity value (or parameter) is much less than n, that of the
standard logarithmic barrier function for the nonnegative orthant R’ . One example is
the universal barrier for the Lj-ball in R™ considered by Giiler [6], although it is not
effectively computable. However, for most of the paper, we consider the standard barrier
—1In(s) for R” and the corresponding barrier —In(c — ATy) for Fy (D), where In(v) for
a vector v denotes the sum of the natural logarithms of the components of v. This is for
simplicity of development and for comparison to the primal-dual method.

Path-following interior-point methods can be viewed as approximating solutions to the
dual barrier problem

(BD,) maximize bTy + uln(s)
ATy + S = ¢
(s >0),



as (v decreases towards zero. Here the final constraint is in parentheses because In(s)
approaches —oo if s approaches the boundary of the positive orthant. We can also extend
the definition of In(v) to make it —oo if v is not positive. Closely related is the primal
barrier problem
(BP,) minimize c'z — pln(x)
Ax = b,
(x > 0).

The optimality conditions for (BD,,) are the existence of Lagrange multipliers € R"
such that
ATy + 5 = ¢
Ax = b, (1.1)
x — us =0
(where s~! denotes the vector of reciprocals of the components of s), so that necessarily

z = ps~ > 0, while those for (BP,) can be written as the existence of (y,s) € R™ x R"
so that

ATy + s = ¢
Az = b x>0, (1.2)
—px~! + s = 0,

so that necessarily s = pz~! > 0. Note that these conditions are equivalent, and can also
be written in the more symmetrical form

ATy + s = ¢,  s>0,
Az = b x>0, (1.3)
XSe = e,

where X and S are the diagonal matrices containing the components of x and s respec-
tively, and e € R"™ denotes a vector of ones.

In order for solutions of (1.1)—(1.3) to exist for a particular positive ;4 we must have
strictly feasible solutions (with x > 0 and s > 0) to (P) and (D), and these conditions
turn out to be also sufficient for unique solutions (z(u), y(u), s(u)) to (1.1)—(1.3) to exist
for all positive u: see, e.g., Wright [12]. In this case, the set of such solutions is called the
(primal-dual) central path.

While the nonlinear systems above are equivalent, the corresponding Newton systems
yield different search directions (Az, Ay, As). Primal-dual path-following methods move
in the directions that solve the Newton system for (1.3) from a current iterate (x,y, s)
with # > 0 and s > 0, replacing p with os”z/n for some o € [0,1]. If the initial (and
hence all subsequent) iterates z and (y, s) are feasible in (P) and (D) respectively, this
is called a feasible-interior-point method, otherwise an infeasible-interior-point method
(ITPM). Attractive theoretical convergence results are available for both feasible- and
infeasible-interior-point methods when strictly feasible solutions exist for both (P) and
(D): see again Wright [12], e.g.

We are concerned with the case where (D) has a strictly feasible solution, but (P) is
infeasible, so that (D) is unbounded. Then solutions to (1.1)—(1.3) do not exist, and so
following the (nonexistent) central path seems an exercise in futility. Nevertheless, primal-
dual ITPMs seem very successful, in that in such a case the iterates (y, s), when scaled by



by, provide approximate certificates (7, 5) of primal infeasibility and dual unboundedness:
ATy +5~0,bTg=1, and 5> 0.

Indeed, the author [10] provided some justification for this success by showing that,
under suitable conditions, the primal-dual IIPM for (P) and (D) is implicitly applying
a similar method to the pair of dual linear programming problems below, which do have
strictly feasible solutions (and hence an associated central path) under the slightly stronger
assumption that (P) is strictly infeasible (see below), and whose solutions provide such a
primal infeasibility /dual unboundedness certificate.

The dual problem has constraints corresponding to the conditions for primal infeasi-
bility, and an objective function depending on the z-component of the initial iterate:

(D) max (Az)Ty

ATy + 5 = 0,
b’y = 1,
s > 0,
with dual _ _
(P) min ¢
Az 4+ b = Auy,
Tz > 0.

Corresponding to every iterate (z,y, s) for (P) and (D), there is a corresponding “shadow
iterate” (z,(,¥,5) for (P) and (D): we obtain (7,5) by scaling by b7y as above, while
a different scaling of = produces # and (. Interestingly, while we assume that (y,s) is
feasible for (D) while necessarily « is infeasible for (P), the reverse is true for the shadow
iterates: (7,35) is only approximately feasible for (D), while (Z,() is exactly feasible for
(P) (for example, # = zg, ¢ = 0 is the initial shadow iterate). We then compare the
sequence of original and shadow iterates. The precise form of the result can be found in
[10].

Our aim here is to investigate this situation theoretically when a dual path-following
method is used. We find that, in strong contrast to the primal-dual case, the associated
scaled iterates can sometimes move away from a central primal infeasibility /dual unbound-
edness certificate: more precisely, while they are trying to move towards satisfying the
linear equations defining an infeasibility /unboundedness certificate, they may move away
from the certificate that minimizes a natural barrier function. Hence dual methods may
be more likely to approach the boundary of the nonnegative orthant more closely and
hence run into numerical difficulties.

We note that such “anti-Newton” directions already arose in a rather different context
in dual path-following algorithms. Indeed, Roos, Terlaky, and Vial, on page 121 of [9],
show that the primal estimate corresponding to the dual step (our x4 in (3.3)) is feasible
in the primal problem exactly when a reverse step, from s to s — As, remains feasible in
the dual problem.

In Section 2 we define a natural centering problem for finding a primal infeasibil-
ity /dual unboundedness certificate, and obtain the necessary and sufficient conditions for
this problem to have a solution. The following section is devoted to comparing the dual
path-following method for (D) and the corresponding scaled iterates with the iterates of
Newton’s method for this centering problem. In Section 4, we consider the dual affine-



scaling method instead of the dual path-following method and obtain a similar result, and
then show that our results also hold for general conic programming problems.

Let us make a small parenthetical remark. In [5], Gonzaga and Todd show another
perhaps surprising difference between dual and primal-dual methods: dual potential-
reduction algorithms cannot assure an R-linear rate of convergence greater than one,
although R-quadratic convergence is possible for primal-dual potential-reduction methods.

2 The Centering Problem

We assume henceforth that (P) is strictly infeasible, i.e., that there is some (¥, §) with
ATg+5=0, by =1, 5>0.

This implies that (D) is strictly feasible, since a sufficiently large multiple of (7, S) can
be added to (0, ¢) to make its s-component positive, and unbounded, since increasing this
multiple sends the objective function to infinity. In [10] we noted that (P) is strictly
infeasible iff it is infeasible and for every b, {z : Az = bz > 0} is either empty or
bounded. Here, since our primary interest is in (D), we note that this condition holds iff
(D) is unbounded, as is max{s; : ATy + s = ¢, s > 0} for every j.

Consider the centering problem

(CD) maximize In(s)
ATy + 5 = 0,
by =1
(s > 0.

The optimal solution to this problem (if it exists) is the analytic center of the set of
primal infeasibility /dual unboundedness certificates. Necessary and sufficient conditions
for (y, 5) to solve (CD) are that there exists (z, () € R" x R such that

ATy + 5 = 5> 0,

<
I
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S
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For what follows, we do not require that (C'D) have an optimal solution, but it helps
to interpret our results, so we provide the following characterization result.

Proposition 2.1 (CD) has an optimal solution, or equivalently (2.1) has a solution, iff,
for every b sufficiently close to b, min{b"y : ATy +s = c,s > 0} has an optimal solution.

Note that the condition here is that the minimizing problem have an optimal solution;
our assumption is that the maximizing problem (with b equal to b) is unbounded, hence
has no such solution.

Proof: We can view (CD) as a barrier problem (with @ = 1) for a related problem
with the same constraints (except s > 0) and zero objective function, so a solution to
(CD) or equivalently to (2.1) exists iff there is a strictly feasible solution to

Az +b( =0, z>0.



Such a solution cannot have ¢ < 0, since if it were negative we immediately get a feasible
solution to (P), while it if were zero we could find one by adding a sufficiently large
multiple of this solution to any z satisfying Ax = b. Hence (C'D) has an optimal solution
iff there is a strictly feasible solution to

Az = —b, x> 0. (2.2)

Since A has full row rank, there are solutions to Ax = =e; for each 7, where e; is the ith
coordinate vector in R™, and hence a strictly feasible solution to (2.2) implies that there
are feasible solutions to Az = —b,z > 0 for all b sufficiently close to b. Conversely, if the
latter holds, there is a solution to Az = —b — eAe,xz > 0, for some positive €, and hence
a strictly feasible solution to (2.2).

Now (D) has a feasible solution, so we conclude that this condition is equivalent to
the existence of optimal solutions to min{l;Ty : ATy + 5 = ¢,s > 0} for all b sufficiently
close to b. O

3 The Path-Following and the “Anti-Newton” Step

Let us now compare Newton steps for (BD,) and (CD). We suppose we are given a,
strictly feasible solution (y, s) for (D), and assume that

B :=bTy >0, (3.1)
so that the “shadow iterate” )
(gv S) = B(yv 8) (32)

satisfies b7 = 1,5 > 0 and, for 3> ||c||, is approximately strictly feasible for (C'D), since
ATg+5=c/B=0.

The dual path-following or dual barrier method takes a damped Newton step for
(BD,,) from (y,s). Thus it moves in the directions (Ay, As) which, together with some
x4+ € R", solve the Newton system

ATAy + As = 0,
Az = b, (3.3)
Ty + wST2As = pus7L.

Alternatively, if we write z + Az for z, this is the Newton system for the optimality
conditions (1.1) for (BD,) from (z,y,s), for any x € R". We prefer the system (3.3)
written as above to stress that (Ay, As) is independent of the iterate x, since = appears
linearly in (1.1). Here we study the resulting directions, and the corresponding shadow
directions defined below, from a theoretical point of view. The results may or may not
apply to particular dual path-following algorithms with specific rules for choosing the
parameter p at each iteration. Further remarks along these lines are made after Theorem
3.1.
The result of taking a step of length o > 0 in these directions is

(y+78+) = (y,s) —|—04(Ay,AS) (34)
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with objective function
By =bTy, =bTy +abT Ay =: B+ aAB,

and the associated shadow iterate, if we assume that AS > 0 (we will discuss this below),
is

(§+,§+) B+aA ﬁ( + aAy,s —|—04AS)
_ 1 _aAB (A As s
= 5.5)+ 5rans (A% — G x5~ 3) (3.5)
(4,5) + a(Ay, As),
where AB A A
_ (0} _ y _ S
L AN As= 22 _ .

Our aim is to see to what extent the implicit shadow directions Ay and As defined
above satisfy the Newton system for (CD): for some (Z4,(+) € R" xR,

ATAG + A5 = —ATy—3,
T A — 1-pT5=0
) _ bTAY = 1-0 (3.7)
Ax+ + bC+ = 0,
Ty + S72A5 = 5L

Note that again we have used the “+” subscript for Z and ¢, since they appear linearly in
the optimality conditions (2.1) for (C D). We have also used Ag and AS for the Newton
directions, to distinguish them from the the implicit shadow directions Ay and As.

Theorem 3.1 Under the assumptions that 8 and AS are positive, the directions Ay and
A5 of (3.6), together with T, = (B%/uAB)xy and (4 := —B3%/uAB, satisfy the first three
equations of (3.7) along with

T +S2A5=— (1 — Aiﬁ) 571, (3.8)
Note especially the negative sign on the right-hand side of (3.8) as compared to the right-
hand side of the last equation of (3.7): if AB > [, we can think of these directions as
approximations to “anti-Newton” directions, as we discuss below.
Proof: We find
1
ATAG+ A5 =

y+As= < ﬂ(
as desired, using the first equation of (3_3) Similarly, b Az = 0 follows from the defini-
tions of 3, AB, and Ay; and ATz, + by = 0 from the definitions of Z, and {, and the
second equation of (3.3). Finally,

_ G—2A = /82 2 —2 AS S
2SS = et 57 (55 5)
2
= lﬁTﬁ(mws—?As)—ﬁs—l
2
= x5



where the first equation follows from the definitions and the third from the third equation
of (3.3). O

We now discuss the assumption that AS > 0 and the interpretation of the theorem.
We note that the solution to (3.3) yields

Ay = (AST2AT) (=t — As™1)

so that
AB = p T (AST2AT) 1 h — T (AST2AT) T As™L

Since (AS™2AT)~! is positive definite, we see that AB — +oo as p | 0, so that A3 > 0
for sufficiently small positive p. Further, for p such that Ag > 3, 1 — 3/AB =~ 1, so
that (Ay, As) approximately solves the Newton system (3.7), except with the sign of the
last right-hand side reversed. Since this equation corresponds to taking a Newton step
towards the minimizer (or maximizer!) of the centering objective function in (CD), we
can interpret the theorem as stating that the shadow search directions, while moving
towards feasibility in (C'D), may move directly away from the minimizer of a quadratic
approximation to the barrier function: we therefore think of the solutions to (3.7) with
the sign of the last right-hand side reversed as “anti-Newton” directions.

This result indicates that one should be cautious in setting the barrier parameter in
dual path-following algorithms if good performance in detecting infeasibility /unboundedness
is desired. Primal-dual algorithms often take an aggressive attitude and aim for a very
small value of p (the limit being zero, giving the primal-dual affine-scaling directions,
used in the “predictor” part of predictor-corrector methods). This may not be advisable
in dual methods.

We performed some limited testing with the code SDPT3 [11] on primal infeasible
linear programming problems. We turned off the predictor-corrector feature and used
the dual instead of primal-dual directions. To choose p, we updated x as well as (y, )
at each iteration, using the direction Az obtained from an obvious modification of (3.3),
with z replaced by = + Az. Then we used o times s”z as our value of u, with o chosen
adaptively as 1 — .9 min, with amin the smaller of the primal and the dual stepsize at the
previous iteration (o = 0.5 at the initial iteration). With these conservative choices, the
dual algorithm performed fairly well on a selection of primal infeasible LP problems from
the NETLIB collection [3], although there were a number of times it performed poorly
compared to a primal-dual algorithm with the same parameter choices (e.g., on bgprtr,
forest6, gosh, and greenbeai). In these bad cases, failure was usually due to stepsizes being
too short, with § still negative at the final iterates. In the successful cases, we typically
observed Af greater than (3, usually by several orders of magnitude, in the final iterations.
This reasonable computational behavior is therefore not predicted by the theorem above,
but it does indicate that A3 > 3 is a reasonable assumption in practice. We presume that
the large values of § and ApS lead to good infeasibility /unboundedness detectors before
any repulsive tendency of dual steps causes problems.

It might seem somewhat surprising that the theoretical behavior of the primal-dual
ITIPM as described in the introduction is somehow “good,” while that of the dual path-
following method is “bad.” After all, if the current primal-dual iterate (z,y,s) is dual
feasible and satisfies © = vs~! for some positive v (of course, this does not mean we are
on the central path, since x is infeasible), then the primal-dual IITPM’s (y, s)-directions



coincide or are collinear with those of the dual path-following method. This is not a
contradiction. Even with the feasible interior-point method, the search direction when
on the central path is the opposite of the centering direction. But the good behavior
of path-following methods (when the central path exists) is that they have a tendency
from the centering part of the step to approach the path, even if it is leading away from
a central point. On the other hand, our analysis above shows that the shadow iterates
corresponding to the dual barrier method may be moving in a sense radially away from
a central point, and hence not converging to any interior point. Thus in the primal-dual
method, the primal iterates exert a stabilizing influence on the corresponding shadow
iterates, while, as we have seen, in the dual path-following method the (y, s) iterates are
independent of the x iterates (except for possibly using them to choose appropriate values
for the parameter p).

4 Extensions

In this section, we consider the dual affine-scaling directions for (D) and also extensions
of our results to more general conic programming problems, such as second-order cone
and semidefinite programming problems.

The dual affine-scaling directions for (D) at the strictly feasible point (y,s) are the
solutions, together with 24 € R", to

AT Ay + As* = 0,
Az = b, (4.1)
g + S72As* = 0.

We can view these either as steepest ascent directions for (D), with the metric for s
defined by the Hessian of the barrier function at the current iterate, or as the limits of
(uAy, uAs), with (Ay, As) defined by (3.3), as p | 0.

By seeing the effect on the shadow iterate of taking a step in these directions, we can de-
fine the dual affine-scaling shadow directions (Ag®, As%) from these exactly as in the previ-
ous section, with (Ay?, As®) replacing (Ay, As) and AB® := bT Ays = b7 (AS~2AT)~1p >
0 replacing A in (3.5) and (3.6).

Following the proof of the previous section, we can easily establish

Theorem 4.1 Under the assumption that 3 > 0, the dual affine-scaling shadow directions
(Ay*, A3Y), together with 7% := (8%/AB%)z% and (& == —[B3?/ABY, satisfy the first three
equations of (3.7) and

%+ ST2AF = 571,

and hence are exactly the anti-Newton directions for (CD). O

For the primal-dual method, the results in [10] show immediately that the shadow
directions corresponding to the primal-dual affine-scaling directions for (D) and (P) are
exactly the primal-dual affine-scaling directions for (D) and (P); we merely set o equal
to zero.

Results of computational testing were similar to those for the dual path-following algo-
rithm. We used o = 0.1 until near-dual feasibility was attained, and then the dual affine-
scaling direction, since the latter is not easily defined when the iterate is not dual feasible.



Again the method performed reasonably well in detecting infeasibility /unboundedness,
although in a few cases it was inferior to the primal-dual method choosing ¢ = 0.1
throughout.

Finally, we show that these results extend to the dual path-following method or dual
affine-scaling method applied to any conic programming problem, as we showed for the
primal-dual ITPM in [10]. Suppose our dual problem is replaced by

(D) maximize b7y,
A'y+s=c¢c, seK*,

where K* is a closed convex solid pointed cone in a Euclidean space E with inner product
(-,-), and A* is the adjoint of a linear map A from E to R™. This is the dual of the primal
problem
(P) minimize (c,x),
Ar=b, zeK,

where K is the cone dual to K*, {x € E : (s,x) > 0 for all s € K*}. Two cases of interest
are where K* is a Cartesian product of second-order cones of the form {(7,t) € R x R?:
T > ||t]|}, leading to second-order cone programming, and where K* is the cone of positive
semidefinite matrices of some order ¢ (or possibly a product of such cones), leading to
semidefinite programming. In both these cases, the dual cone coincides with the original
cone.

We suppose we have a logarithmically homogeneous self-concordant barrier function
F, for K*; this is a strictly convex function, finite on int K* and converging to +oo as
its argument approaches a point on the boundary, that satisfies certain bounds on its
derivatives introduced by Nesterov and Nemirovski [7]. For our purposes, all that is
important is that F satisfies

Fl(rs)=1"'Fi(s), F/(rs)=1""F/(s), F/(s)s=—F.(s), (4.2)

for any s € int K* and any positive 7.

We note the corresponding changes in our problems and equation systems above. First,
in both (BD,) and (CD), the implicit constraint s > 0 becomes the implicit constraint
s € int K*, and the objective functions become b’y — uF.(s) and —F,(s) respectively;
also, AT is replaced by A*. The optimality conditions for these problems are similarly
slightly modified: again s > 0 becomes s € int K*, and A” is replaced by A*. Also, the
last equations are replaced by

T+ pFl(s) =0

for (1.1) and

T+ F.(5)=0
for (2.1). Finally, the direction-defining systems change as follows: A” is replaced by A*,
and the last equation of (3.3) becomes

24+ HFY(s)As = —uFl(s), (43)
while the last equation of (3.7) becomes

T, + F/(5)A5 = —F.(3), (4.4)
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and the last equation of (4.1) becomes
24 + F)(s)As® = 0. (4.5)

We again assume that (P) is strictly infeasible, so that there exists (g, 5) with A*y +
5=0,b"y =1, and s € int K*. Then the analog of Proposition 2.1 remains true,
with essentially the same proof. More importantly, the analogs of Theorems 3.1 and 4.1
remain true. We assume as in those results that 3, and AS in the case of the dual path-
following algorithm, are positive. For the first, establishing the first three equations is
straightforward. Also,

= "= = 52 2 Il As S
s FIEAS = e+ R (55 5)
2
= uﬁﬁﬂ (x4 + pF] (s)As) — BF)(s)s
2

_ m(_m(s)) + BF.(s)

~(1-35) ~Fo).

where we have repeatedly used (4.2) as well as (4.3). Similarly, for the second, the only
complication is the last equation, and we find

2 As?
B+ FIOAS = et BPFG) (5~ )
2
= Aﬁﬂa (2% + F(s)As®) — BF!(s)s
= [BFi(s)

= —(=Fi3)),

using (4.2) and (4.5).

Hence once again, comparing with (4.4), we find that (as long as AS > 3 in the
dual path-following case) the corresponding shadow iterates are moving in (approximate)
anti-Newton directions.
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