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Abstract

We consider the point matching problem under translation with the Lo or L,
metric. We introduce the translation square map (TSM), which provides an al-
gorithm for testing e-congruence of equal cardinality sets A and B. The TSM
can be used to form a ((26/(e+ 26))eqpt(A, B),(26/€)eopi( A, B))-approximate point
matching algorithm, where €,pt(A, B) represents the smallest € such that 4 and B
are e-congruent under the Lo, (or L;) metric. The approximate algorithm runs in

time O((¢/6)%n3); we know of no other (exact or approximate) algorithm for point
matching under translation with run time o(n*).

Keywords: Computational geometry, computer vision, point matching.

1 Introduction

An important problem in computer vision is determining whether two point sets are
equivalent. In this paper we ask whether two planar point sets of equal cardinality are
congruent under translation. We introduce a new tool, the translation square map (TSM),
to help answer this question.

In real instances, exact congruence is an elusive pursuit, because of errors in mea-
surement and computational imprecision. This limitation led Baird [Ba] and Alt, et
al. [AMWW] to introduce the concept of approzimate congruence. Two equal cardinality
point sets A and B are approximately congruent with tolerance €, or e- congruent, under a
given metric, if there exists a bijection |: B — A and an isometric mapping M such that
dist(M(b),1(b)) < € for every b € B. (An isometric mapping, or congruence, 1s a mapping
from R? to itself that preserves Euclidean distance.) The decision problem for a tolerance
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¢ asks for such a bijection [ and isometry M, or for a statement that no such pair exists.
In this paper, our introduction of the translation square map leads to efficient decision
algorithms for e-congruence for the isometry M restricted to the family of translations,
and the metric fixed as the Lo, or L; metric.

The approximate congruence problem has been studied by many researchers. In
[AMWW], algorithms for the e-congruence decision problem are given for the L, and
L., metrics, under both the general class of isometries and the class of translations. An
algorithm in [AMWW] solves the e-congruence optimization problem under translation,
which asks for e,pi(A, B), the minimum value of € such that the point sets A and B are
e-congruent under translation. In [AMZ] and [Sp], output-sensitive algorithms are given
that generalize the approach of [AMWW] by considering sets A and B of unequal cardi-
nality, and by generalizing the metric. Specifically, [AMZ] allows the “noise regions” (i.e.
the e-balls around the points of A) to be arbitrary nonconvex polygons; it also consid-
ers piecewise linear noise functions. In [AKMSW], algorithms are given for the decision
problem for numerous metrics under various classes of isometries and under similarity
(an isometry plus a change of scale), but with the assumption that the e-balls around
point set A are pairwise-disjoint or have limited overlap. In [AKMSW], [AMZ], and [Sp],
combinatorial upper and lower bounds are given on the number of distinct bijections that
can satisfy the decision problem. A problem related to e-congruence is that of finding a
translation that minimizes the Hausdorff distance between two point sets; this problem
is studied in [HuKe] and [HKS].

The high run-times of algorithms for approximate congruence motivate the search
for approximate algorithms. The word “approximate” is used twice here, with two
different purposes. For point sets A and B under a metric and a class of isometries,
define €ope(A, B) to be the smallest value of e such that A and B are e-congruent.
Schirra [Sc] calls a decision algorithm (a, 8)-approzimate if, for every e outside of the
interval [eopi( A, B) — @, €opi( A, B) + B8], the algorithm returns a correct decision (for values
of € inside this interval, the algorithm may either return a correct decision or return no
decision). Schirra [Sc] presents approximate algorithms for general metrics and isometries.
The translation square map produces an asymptotically faster algorithm for the special
case of the L., metric and the isometries restricted to translations.

For the general case of point sets A and B of size n, the TSM method solves the
e-congruence decision problem for the L., metric under translation in O(n®) time. If, for
each z € R2, the number of points a € A such that dist(z,a) < e is bounded by k, then the
algorithm runs in O(k*n®) time. A ((26/(e+26))eopi(4, B), (28/€)€opt( A, B))-approximate
algorithm runs in time O((€/6)%n®).

2 The Translation Square Map
We describe now the translation square map (TSM). We are given planar point sets A

and B of size n, and a tolerance parameter €. The decision problem asks whether there
exists a bijection | : B — A and a translation T' such that dist(T'(b),1(b)) < € for every



b € B, where dist(-,-) represents the L., distance between two points in R?. In other
words, we “grow” each point a € A to an orthogonal square of side length 2e, centered
at a. We then search for a bijection [ and a translation T such that the point T'(b) lies
in the square a = I(b), for every b € B. In the following discussion, we let A denote the
original point set and A the corresponding set of 2e-size squares.

Let b, and b, represent the points of B with the least z- and y-coordinates, respectively.
Similarly, a, and a, are the left-most and bottom-most squares of A.. Let T, be the
translation of B such that b, has the same z-coordinate as the left side of a, and b,
the same y-coordinate as the bottom of a,. Clearly any translation T' that admits e-
congruence is of the family Ty + (z/,3), for 0 < 2,y < 2e. This limits our attention
to an orthogonal square of side length 2e that represents all candidate translations; that
is, each point in this “square map” is of the form (z/,3') € [0,2¢] x [0,2¢], and therefore
represents a candidate tramslation T = Tp + (z/,y’). It is natural to call this map of
candidate translations the translation square map (TSM). The question thus amounts to
determining whether there exists a point in the TSM that admits a valid matching of A
and B. For each (a,b) € A x B, determine the region of points of the TSM representing
translations T = Tp + (', y’) that place the point b inside or on the square a. This region
is called the overlap region (or overlap rectangle) of a and b, and is denoted OR(a,b); we
say that a pair (a,b) € A. x B overlap if OR(a,b) # 0. lf a and b overlap, their overlap
region is an orthogonal rectangle touching the TSM boundary on two or three sides. In
Figure 1, it is shown that an overlap region with three sides on the TSM boundary has
one vertical (Figure 1(a)) or horizontal (1(b)) edge interior to the TSM, and a region with
two sides on the boundary has an internal vertical edge and an internal horizontal edge
(1(c))-

Suppose, for each (a,b) € Ac x B, we place OR(a,b) onto the TSM, as shown in
Figure 2. This partitions the TSM into (possibly nonconvex) orthogonal polygons (called
blocks). For the remainder of this paper, we will use TSM to denote this partition. Each
block of the TSM represents a bipartite graph G = (W1, V;; E), where the vertex sets i
and V; represent the elements of A, and B, respectively, and e = (a,b) € E if and only if
the overlap rectangle of a and b covers the block. The decision problem is thereby reduced
to asking whether there exists a block of the TSM that defines a graph with a perfect
matching. Note that every point in a block defines the same bipartite graph, and that
neighboring blocks define graphs that differ by only one edge.

While we defined the TSM in terms of the left-most and bottom-most elements of A,
and B, we could instead use the centroids ¢4 and cg of A and B. Since every translation
that allows e-congruence of two point sets maps the centroids of the sets within distance
¢ [Sc], the TSM can be defined as an orthogonal square of side length 2¢, where the
translation mapping cp to ca lies at the center of the square.

The TSM algorithm for e-congruence can now be described. First, we determine the
initial translation Tp in O(n) time (we could instead determine the translation moving
cp to ca in O(n) time). Next, for each pair (a,b) € A X B, we construct the overlap
rectangles (O(n?) time). We separately sort the horizontal and vertical edges of the
overlap rectangles to form the translation square map (O(n?*logn) time). We now walk
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Figure 1: Examples of overlapping pairs and their corresponding overlap rectangles.

through the blocks of the TSM, solving the matching problem on the bipartite graph of
each block. Neighboring blocks (blocks sharing an edge boundary) define graphs that vary
by one edge (assuming no two overlap rectangles share an internal edge). Therefore, after
solving an initial matching problem, for the lower-left block, say, we can walk through
the blocks in such a way that, when solving the matching problem for the current block,
we can use the already-computed optimal matching from a neighboring block. In this
manner, the work in each block except the first consists of updating an optimal solution
for a graph with one edge inserted or deleted.

The complexity of this procedure depends on the size of the TSM, and the number
of edges in the bipartite graphs. Let e represent the total number of overlapping pairs
(a,b) € A x B. In other words, e is the number of rectangles that form the TSM
arrangement. Therefore the numbers of vertical and horizontal segments in the TSM are
both bounded by e. This shows that the TSM consists of O(e?) blocks. Since a pair
(a,b) produces an edge in a graph G only if a and b overlap, the number of edges in the
graph G for any block is bounded by e. The total work of the TSM procedure consists
of constructing the TSM (O(n?logn) time, as shown above), solving an initial bipartite
matching problem to optimality (in O(n?*?) time [HoKa]), and then performing O(e?)
updates. Updating an optimal matching on a bipartite graph with one edge inserted or
deleted can be performed in O(e) time [HoKal, giving a O(n?® + €?) time bound for the
TSM algorithm.

If a point of A (B) does not overlap any point of B (A), then the point sets are not
e-congruent, since the corresponding node in G is incident to no edge. Since an initial
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Figure 2: Sets A and B, and the Translation Square Map.

check will reveal such a situation, we assume that every point of A (B) overlaps some
point of B (A). Therefore n < ¢, so the above time complexity can be written as O(e).

The space bound depends on our manner of traversing the TSM blocks. A simple
scheme is to extend each segment in the TSM until it touches the TSM boundary. Now
the TSM partition consists only of rectangles, which allows an easy walk through the
blocks (Figure 3), and requires that only one O(n) space maximum matching be stored
at a time. Of course, this creates more blocks, but the number is still O(e?). Note that
neighboring blocks define graphs that differ by one edge or are identical.

For the general case, e = O(n?), so the TSM algorithm runs in O(n®) time. This
matches the time bound given in [AMWW]. If every point of B overlaps no more than

TSM

Figure 3: The example of Figure 2, with extended segments providing an easy walk
through the blocks.



k squares of A, then e = O(kn), giving an O(k®n®) time algorithm. Limited overlap is
implied when the points of A are spaced somewhat apart. For example, if no point of the
plane is covered by more than k squares of A, then no point of B overlaps more than 4k
squares of A, giving an O(k®n®) algorithm. The special case of no intersections among
squares of A, is solved in O(nlogn) time in [AMWW].

3 An Approximate Algorithm

In an effort to improve run-times, we turn now to approximate algorithms for e-congruence.
We describe an algorithm which, given point sets A and B, and € and § such that €/§ € Z,
either returns a matching of A and B within tolerance e+ 28, or certifies that A and B are
not e-congruent. The algorithm runs in time O((e/ 6)®n®). We will also show how the al-
gorithm can be used in a ((26/(e+26))eop(A, B), (26/¢€)eopt( A, B))-approximate algorithm
(according to the definition of [Sc]) in the same time bound.

The original e-approximate algorithm took each point a of A, and turned ¢ into an
orthogonal square with side length 2e centered at a. The approximate algorithm lets the
square “grow” to be a square of side length 2(e + 6) in the following manner. Set A
down on graph paper with horizontal and vertical lines spaced 26 apart. Consider the
collection of squares of side length 2(e+ 6) with sides on the graph-paper lines. Assuming
nondegeneracy, each orthogonal square of side length 2€ is completely contained in exactly
one of these 2(e+ §)-size squares. “Grow” a into this square a’ (Figure 4). In other words,
for each point @ € A, a is in one of the 2é-size squares of the graph paper. Move a to
the center of this small square and then construct a’, a 2(e + 6)-size square about a. Let
Ales) (or simply A’) represent the set of these 2(e + §)-size squares.

Now use the TSM method to test for (e + 6)-congruence between A{, 5 and B. By our
clever “standardization” of the squares A’, as a point b € B is translated to the right by
2(e+6) units, it crosses vertical edges of squares of A’ at no more than 2(e+8)/26 = ¢/6+1
distinct z-coordinates. Therefore b intersects the interiors of at most 2(e/8 +1) squares of
A’ with distinct z-coordinates, as b moves through all candidate translations. Similarly,
b overlaps at most 2(€/6 + 1) squares of A’ with distinct y-coordinate, bounding the total
number of squares of A’ that overlap b at

(2(¢/8 +1))* = O((€/9)*).

This bounds e by O((e/6)*n).

Applying the TSM method to test for (€ + 6)-congruence of A{, 4 and B is different in
one respect: several squares of A’ may coincide. Having squares with multiplicity greater
than 1 requires a slightly different formulation. Any bipartite matching problem can be
formulated as a max-flow problem; for our approximate algorithm we will formulate, for
each block of the TSM, a max-flow problem that looks similar to a bipartite matching
problem. Given a block, we create a source and sink node, a set V; of n nodes corre-
sponding to the points of B, and a set V; of < n nodes, each corresponding to a distinct
square of A’. Draw an arc of capacity 1 from the source node to each node of V;, and an
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Figure 4: Square a “growing” into square a’.

arc (b, a') of capacity 1 for each pair (b,a’) € V3 x V; such that OR(a’,d) covers the block.
For each node of Vi, draw an arc to the sink whose capacity equals the multiplicity of the
corresponding square a’ € A’. We first solve the max-flow problem for the lower-left block
of the TSM (in O(n3) time [MKM)]), and then walk through the blocks of the TSM. Be-
cause at most one edge is inserted or deleted in each step, each update can be performed
in O(e) time (this is the complexity of an iteration of the Ford and Fulkerson max-flow
algorithm [FF), as analyzed in [Ch]). Therefore the TSM method runs in O((e/§)%n3)
time for the approximate algorithm.

Since we use the squares A{, s, instead of A., this method is approximate for the
original sets A and B. A square a’ € A’ of size 2(e+ 6) contains the corresponding 2e-size
square a € A, that generated it; therefore if A and B are e-congruent, A’ and B are (e-+9)-
congruent, and the procedure returns a matching of A’ and B. If an (e + é)-congruent
matching of A’ and B is returned, then for each pair (a’,b) in the matching, b lies within
distance € + 28 of the corresponding point a € A, as shown in Figure 5.

Let €opt(A, B) be the minimum value € such that A and B are e-congruent. Schirra [Sc]
provides the following definition: a decision algorithm for e-congruence of A and B is
(, B)-approximate if, for € ¢ [eopt(A, B) — a, €op(A, B) + B, the algorithm returns a
correct answer. That is, for € > €pu(A, B) + (3, the algorithm returns an e-congruent
matching, and for € < €u(A, B) — o, it answers that A and B are not e-congruent.
For € in the interval [eopi(A, B) — &, (A, B) 4 8], the algorithm may provide a correct
answer (i.e. provide an e-congruent matching or state that one does not exist), or may
give no answer. Schirra [Sc] gives a ((1/2)eopt(A, B), €opt( A, B))-approximate algorithm
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Figure 5: dist(a,b) < €+ 26.

for the general metric and the general class of isometries, with time complexity O(n*),
and a (7,7)-approximate algorithm with run-time O((e/~)*n*). Our algorithm for the
special case of the L, metric and the class of translations reduces the exponent of n; it
is ((26/(e + 26))eopt(A, B), (26/€)eopi( A, B))-approximate and runs in time O((e/§)®n3).

Theorem 1 The following algorithm is ((26/(e+26))eopi(A, B), (26/€)eopi( A, B))-approz-
imate for e-congruence of A and B:

Test A{, 5 and B for (e + 6)-congruence.
If not (e + 6)-congruent, answer A and B are not e-congruent.

Test Al,/,,5/) 2nd B for (1/7)(€ 4 §)-congruence, where v = (e+268)/e> 1.
If a (1/7)(e + 6)-congruent matching of Af,,, 5/, and B is returned, it
corresponds to an e-congruent matching of A and B.

Proof. The algorithm returns a “not e-congruent” answer only if A and B are not
(€ + §)-congruent; however, this condition implies that A and B are not e-congruent.
If a (1/7)(e + 8)-congruent matching of Af.., /) and B is returned, it corresponds to
a (1/7)(e + 26)-congruent matching of A and B. Since 1/y = €/(e + 26), this is an €
congruent matching of A and B. Thus, if the algorithm returns an answer, the answer is
correct.

Suppose € < (1/7)eopt(A, B). If we find an (e+6)-congruent matching of A{ g and B, it
corresponds to an (€+26)-congruent matching for A and B. But e+26 = ve < eon( A, B),



a contradiction. Therefore we find no (e + 6)-congruent matching of A{_ 5 and B, and
answer that there exists no e-congruent matching for A and B.

Suppose € > Yeop(A, B). If we determine that Af,,, s/, and B are not (1/7)(e+ 6)-
congruent, then 4 and B are not (¢/7)-congruent. But €/ > eopt( A, B), a contradiction.
Therefore we do find a (1/7)(e + 6)-congruent matching of Af,/, 5., and B, which corre-

sponds to a (1/7)(e + 26)-congruent matching, i.e. an e-congruent matching, of A and B.
|

The time complexity of the algorithm is clearly O((e/6)%n?).

If 6 is chosen to equal €/2, use of the TSM can be avoided. The following lemma is a
modification of a lemma given in [Sc|:

Lemma 2 If A and B are e-congruent, then there ezists a 2e-congruent matching of A
and B that uses the translation T.,., (which is the translation that moves the centroid o f
B, cg, to the centroid of A, ca).

By fixing our translation to be Teye,, the TSM shrinks to a single point. Evaluating
a single bipartite matching problem tells us whether A and B are 2¢-congruent under
the translation T.,c,. This gives the following O(n*®)-time, ((1/2)€opt(A; B), €opt( A, B))-
approximate algorithm:

Test A and B for 2e-congruence under translation Tepec,-
If not 2e-congruent under T¢yc,, then answer A and B
are not e-congruent.
Test A and B for e-congruence under translation Tepec,-
If an e-congruent matching is returned for A and B under T,,.,,
then it is an e-congruent matching for A and B.

We have so far restricted our discussion to the Lo, metric, because it produces e-balls
around points of A that are orthogonal squares. The L, metric gives e-balls that are
diamonds: squares with edges with slopes of 1 and —1. Since every translation that
allows e-congruence of A and B maps the centroids ¢4 and cp within distance € of each
other, we can create a diamond-shaped TSM of side length /2¢, with diamond-shaped
overlap regions forming the partition. The TSM method, therefore, works as well for the
L, metric as it does for L.

The translation square map can be extended to higher dimensions. For point sets
A and B in R4, the d-dimensional translation hypercube map for metric Lo, consists of
O(e%) regions, each corresponding to a bipartite graph with O(e) edges. This results in an
O(e*1) time algorithm for testing e-congruence of A and B. The approximate algorithm
exhibits an O((e/8)*4+1)nd+!) time bound.

An open question arises from the updating stage of the algorithms. Currently, O(e?)
updates of a maximum bipartite matching or maximum-flow on a graph G are performed.
Since G has O(e) edges, these updates are performed in O(e) time each by known methods,
which use an optimal solution for a neighboring block. In fact, the TSM problem exhibits
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more structure: in Figure 3, horizontal rows of blocks are shown updated in succession. If
we process each row from left to right, then the sequence of edge insertions and deletions
encountered is almost the same for each row. When updating a row, we have at our
disposal optimal solutions for the row below. Perhaps we can perform bipartite matching
and max-flow updates in better than O(e) amortized time when performing a large number
of updates with the structure of the TSM.

Acknowledgement: The author thanks Joseph S.B. Mitchell for introducing him to this
topic.
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