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Abstract 

The evolution of influenza type A virus is linked to a non-fixed 
evolutionary landscape driven by tight co-evolutionary interactions 
between hosts and influenza strains. Cross-immunity, host isolation, 
and age-structure are three factors responsible for the coexistence of 
multiple strains of influenza. Here we show that cross-immunity and 
host isolation alone may support multi-strain epidemics. Further, we 
show it is possible to produce sustained oscillations with realistic pe­
riods. We establish these predictions via Hopf-bifurcation theory, and 
illustrate our results with numerical simulations. Period lengths agree 
with reported data. 
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1 Introduction 

Early recordings of influenza pandemics indicate that the virus antigent vari­
ability is responsable for recurrent epidemics. Surface antigens haemagglu­
tinin, and neuraminidase undergo two types of antigenic variation. Antigenic 
shift involves major changes that result in new subtypes, that later contribute 
to major epidemics. The lifespan of a subtype is determined by the time it 
takes until a new subtype appears(pandemic). For example, a virus having 
H3 antigents is said to be responsible for the 1918 pandemics. On the other 
hand, antigenic drift involves relative minor, but frequent changes( variants) 
that take place every one to three years. There are several theories that 
contribute to the origin of new viruses. Unfortunately, it is the combina­
tion of various factors that determine the complexity of influenza type A 
virus. Studies show that influenza strains crossbreed stronger than other 
virus, therefore, we investigate epidemic recurrence via interacting strains. 
As a matter of fact, interaction of multiple strains for influenza type A virus 
has been analyzed under distinct frameworks[2][5][6][11]. It has been shown 
that cross-immunity, age-structure, and quarantine are contributing forces 
to sustained oscillations[1)[3][5]. In particular, due to the long-lasting cross­
immunity between related strains, serious consideration of cross-immunity 
has been presented[3] [5]. In this paper we demonstrate that for a two-strain 
model with quarentine and cross-immunity, sustained oscillations persist. 
For strongly couple strains(a = 0.2), the system goes through cycles with a 
period of 3 years, where each cycle contains multiple outbreaks. As cross­
immunity is weaken, the two strains become antigenically unrelated, resulting 
in damped oscillations. 

2 Epidemiology of Influenza type A 

Type A virus particles contain at least four antigenic components. Only the 
surface antigens, haemagglutinin and neuraminidase are responsible for the 
virus variability. Specifically, haemagglutinin is responsible for the attach­
ment of the virus particle to the receptor sites on the surfaces of the host 
cells. Even though anti-neuraminidase antibodies fail to neutralize the virus 
infectivity, it determines the virus subtypes and variants. Type A influenza 
virus has been isolated and classified into three subtypes: H1N1, N2H2, and 
N3H3. Interaction among the strains of a subtype give rise to new strains as 
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the haemagglutinin protein changes its antigenic structure( antigenic drift). 
Recent studies show that for influenza type A virus, strains belonging to 
similar subtypes share a level of cross-immunity. Through cross-immunity, 
the presence of one strain of the virus can reduce the pool of susceptible 
individuals for co-circulationg strains[3]. Furthermore, it has been shown 
that cross-immunity among related strains may determine possible survival 
of related strains. On the other hand, antigenic shifts results in new subtypes 
that give rise to major pandemics. Factors that contribute to the complex­
ity of influenza virus have been explored in the last years. Age-structure, 
proportionate mixing, and cross-immunity, are among some of the mecha­
nisms responsible for recurrent epidemics[5] [7]. Reports show that during 
cold months the virus is significally more infective, therefore causing serious 
illness[15]. During the appearance of Asian and Hong Kong subtypes, it was 
observed that a change in transmission, as well as seasonal effects, perpet­
uated the slow development of the pandemic experienced in U.S.A. during 
1957 and 1968 [14]. Preparation of influenza vaccine is based on the strains 
in circulation at the time of production. It is likely that an unpredicted new 
strain will appear after the vaccine has been manufactured and distributed. 
As a result of new strains, individuals with antibodies stimulated either by 
previous infection, or vaccination, may no longer be protected from new 
strains. 
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3 The Model 

We study the following two-strain influenza model. The population is di­
vided into ten different classes: S is the susceptible class, Ii denotes those 
infected by strain i, Qi denotes the isolated individuals from strain i, R are 
individuals recovered from strain i, Wi are individuals recovered from strain 
i, but still susceptible to strain j. Lastly, W describes individuals who have 
recovered from strains i, and j. 
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Figure 1 describes the interactions among the classes of the two-strain 
model. A is the rate at which individuals are born into the population, f3i 
denotes the per-capita infection rate for strain i, JL is the per-capita mortality 
rate, 8i is the quarantine per-capita rate, 'Yi denotes the per-capita recovery 
rate from strain i, ai is the per-capita rate at which individuals leave the 
isolated class, and a denotes the cross-immunity among strains. We assume 
that individuals are born into the population at a constant rate. Individuals 
have a life expectancy of 70 years. For influenza, the infectious period lasts 
from 2 to 7 days, therefore the per-capita recovery rate is based on a two day 
recovery period[15]. We assume that individuals in isolation do not infect 
anybody. Individuals that go to isolation do so after having been infected for 
a period of 2 to 3 days. Since the incubation period last from 1 to 3 days, and 
duration of infectiousness last from 3 to 6 days, we assume that individuals 
stay home until they recover. We refer to total cross-immunity by a = 0, 
whereas, a= 1 denotes no cross-immunity. For 0 :=:;a < 0.3, cross-immunity 
is strong, and 0. 7 :=:; a :=:; 0.9 describes weak cross-immunity. 
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Our assumptions lead to the following model: 

dS A - (31S (11 :WI) - f32S (12 : W2) - J-LS, (1) 
dt 
d1i (11 + W1) 

i = 1, 2 (2) - fJ1S A - (J-L + '"Yl + 81)11, 
dt 

dQi 
8111 - (J-L + al)Q1, i = 1,2 (3) 

dt 
dRt (h + W2) 

i = 1,2 (4) 
dt 

'Y1h + a1 Q1 - J-LR1 - fJ2aR1 A ' 

dWi (11 +WI) 
i = 1,2 (5) - (31aR2 A - (J-L + 'Y1)W1, 

dt 
dW 

'Y1 w1 + 'Y2 w2 - ~-" w, (6) 
dt 

4 Stability of Equilibria 

Adding the differential equations (1-6) we find for the population size N = 
A+ Qi = s + 1i + Qi + Rt + wi, where i = 1, 2. Further we observe that 
A= N- Qi. The stability analysis of the system at the disease-free state is 
simplified by the absence of the infected classes. Note that since no infectives 
are considered then recovered classes do not exist, were A = J-LN*. 

dS 
dt =A- J-LS 

At disease-free we obtain S = N*. Therefore, disease free-equilibrium is 
described by the following: 

E 0 = (N*,O,O,O,O,O,O,O,O,O,) 

Since stability at disease-free is determined by the corresponding eigenvalues, 
we find conditions that depend on Ro to assure stability. The BasicReproductiveNumber, 
Ro describes the number of secondary infections caused by infected individ-
uals in a population of susceptibles. For interacting strains we find that 

R - (31 
I-

/-L + 'Yl + 81 ' 

and 
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If 

and 

R2 < 1 

the disease-free equilibria is locally asymptotically stable. Let 

Ro = max(R~, R 2 ) 

where Ro < 1. To study our model at the endemic state, we analyze the 
endemic equilibria for strain 1, E 1 . We partitioned the original 10 by 10 
state matrix into four submatrices Au, A12 , A21 , and A22 (Appendix). Recall 
that at the endemic state, R 1 and R 2 are greater than 1. 
Hence 

1 1 fJ2aR1 
Trace= {32(R1 - R 2 ) + A - (JL + /2) < 0 

and 

where 

R1 _ D-(1- ~) 

A ll+JL 

1 (JL + ')'2 + 82)at1(1 - i 1 ) 

R2 < -R - ( )(ll ) = f(RI) 
1 fL + /2 + fL 

Therefore, endemic stability is determined by the region where both, trace 
and determinant conditions are satisfied. To complete the stability analysis 
for the system, we explore the conditions of stability for the Au matrix . 

.\3 +a1.\2 +a2.\+a3 = 0 (7) 
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{31/1 
2J.L+ai +A 
J.Lf3IJI f3Ia1l1 f3I81l1 f3f/I 2 

~ + A + RoA + RoA + J.L + J.La1 

J.Lf3181I1 J.Lf3fll a1f3f/1 
ARo + ARo + ARo 

Using Routh-Hurwitz criteria we show that the necessary inequalities are 
a1 > 0, a3 > 0, and a2a3 > a1. Referring back to equation (7), and using a 
Taylor expansion on E, we obtain. 

AI = ).2 = 0 + bE + CE2 + dE3 + ... 

where 

E =Vii 
To simplify the leading coefficients of the characteristic polynomial, we let 

II ~(1- ~) 
A ~+J.L 

W = WIE + W2E2 + W3E3 

Substitute in J.L = E2 in (8) to obtain. 

(8) 

Now the leading coefficients of (7) are in terms of Ro. We show that Routh­
Hurwitz inequalities are satisfied. First, since J.L = E2 and Ro > 1, this 
implies that a1 > 0. For the endemic state, Ro > 1, therefore, condition 
a3 > 0 is satisfied. Lastly, for parameters that pertain to influenza virus, the 
conditions a1a2 > a3 are met. 
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5 Hopf-Bifurcation 

The stability our system is determined by the conditions obtained from the 
submatrices, A22 , Au. In particular, for the Au submatrix, we showed that 
the Routh-Hurwitz criteria is satisfied. Ignoring higher order terms of (8), 
we find conditions that lead to a Hopf-Bifurcation. For our case, if the r7 

is varied the trace corresponding to the Taylor expansion changes in sign. 
Specifically, the trace changes from negative to positive, whereas, the deter­
minant remains positive. A bifurcation may transform a stable equilibrium 
into a stable or unstable periodic solution. To determine the sign of w, we 
look at the corresponding E terms and determine conditions under which a 
Hopf-bifurcation appears. Analyzing E3 terms leads to the condition that 
originates the change in stability. 

c 81 !31 
a 1 = Ro - 81 - Ro + !31 

Furthermore, solving for the condition where the determinant equals to zero, 
we obtain a function w2 that depends on the isolation period. 

w2(a1) = -Ro- ~(Ro- 1) + {31 ( 1 - Ro) 
a1 a1 Ro 

We can conclude that for certain condition that depend on the isolation 
period, our system loses stability. For w2 (a1) > 0, if a 1 < a~, endemic 
equilibrium, E 1 is stable. For w2(al) < 0, if a 1 > aL then E 1 is unstable. 
For the case when the determinant is equal to zero, that is, w2 (a1) = 0, a 
Hopf-Bifurcation occurs takes place at ac. 

6 Numerical Solutions 

In this section we use Runge-Kutta Method to analyze the model equations 
numerically. In particular, we study influenza dynamics by considering pa­
rameters that are pertinent to the type A virus. We assume that the acute 
phase ranges from 3 to 5 days, therefore, infectious period lasts 3 days. For 
influenza, we assume a life expectancy of 70 years. Since influenza virus is 
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particularly infectious, individuals that stay home, remain there from 5-7 
days. We analyze the interaction of both strains with symmetric as well as 
asymmetric contact rates. We study the change in behavior as we vary cross­
immunity and transmission coefficient. For all illustrations, we assume an 
isolation period of 7 days, and mention that ignoring quarantine always re­
sults in damped oscillations. For isolation periods of 60 days, periodic cycles 
coexist similar to the cases where isolation period is 7 days. By explor­
ing total cross-immunity, we obtain sustained oscillations for the one-strain 
case[l]. Further, as cross-immunity increases, periodic cycles get shorter, 
and multiple outbreaks occur. For our two-strain model, we show that for 
small symmetric contact rates, and quarantine oscillations with multiple out­
breaks take place. As the contact rates increase, oscillations become damped 
for many cross-immunity rates and isolation periods. For asymmetric contact 
rates, isolation and cross-immunity introduce 9 month periodic cycles with 
multiple outbreaks. We refer to strong cross-immunity for a=O.l, medium 
for a= 0.4, and large for a= 0.8. 
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6.1 Simulations 
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Figure 2: Describes individuals infected from strain 1. For CJ = 0.1, 4 
year period cycles appear. As CJ increases, periodic cycles shortened to 6 
months(weak cross-immunity). Simulations agree with previous results in [1] 
and [5], where quarantine was responsible for sustained oscillations. 
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Figure 3: Depicts the behavior of two interacting strains without isolation. 
As expected, even in the case of co-interacting strains, damped oscillations 
result. In the following simulations, we will illustrate the impact of isolation 
under strong and weak cross-immunity. 
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Figure 4: a = 0.2 {31 > {32 Isolation = 7 days 
Oscillations for strain appear with a year frequency, but after 30 years, mul­
tiple outbreaks show every 3 years. Strain 2 oscillations, although shorter in 
amplitude, have similar period, but not recurrent outbreaks. 
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Figure 5: CJ = 0.5 /31 > /32 Isolation = 7 days 
Note that for strain 1, weaker cross-immunity has shorten the period cycle to 
a year, and the amplitud of the oscillations has decreased dramatically. On 
the other hand, strain 2 amplitud of oscillations has increase, eventhough 
period cycles have shorten to a year. It is worth noting that even weaker 
cross-immunity, CJ = 0.8, shorter period oscillations persist. 
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Figure 6: a = a 1 = a2 and /31 = /32 = small. 
For the remaining simulations we assume a 7 day quarentine period and ob­
serve the effects of infection as we consider strong, medium and weak cross­
immunity correspondingly. For strong cross-immunity the disease eventually 
dampens. For medium cross-immunity, cycles of period two and small ampli­
tude appear. As cross-immunity becomes weak, cycles of multiple outbreaks 
with period of 6 months to one year persist. 
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Figure 7: a = a 1 = a2 and /31 = k/32 
For strong cross-immunity we observe 6 month to 4 year periodic cycle. As 
immunity weakens, 8 month cycles with multiple outbreaks can be observed 
for the strain with highest transmission coefficient. For very weak cross­
immunity, 7 month periodic cycle occur with multiple outbreaks. The rates 
of infection for each strain are different, here k = 2. 
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Figure 8: a = a1 = a2 and I fJ1 - fJ2 I = small 
As the difference of {31 and {32 becomes small. For strong and weak cross­
immunity, sustained oscillations do not appear. For medium values of cross­
immunity, as I {31 - {32 I becomes small, the amplitude of oscillations and 
period cycles are reduced. Sufficiently small difference, and medium cross­
immunity result in damped oscillations. Damped oscillations later become 
excited as fJ1 = fJ2· 
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7 Discussion 

Since the isolation of the various strains and subtypes of influenza type 
A virus began, researches have focused in the factors that contribute to 
recurrent epidemics. Statistics indicate that newsubtypes responsable for 
the major pandemics cannot be predicted. On the other hand, new rising 
strains may be explained by considering factors such as, cross-immunity, age­
structure, and isolation, and other enviromental factors[1][3][4][5][6][7][8]. We 
have analyzed a two-strain model with quarentine and cross-immunity. Our 
results rehabilitate sustained oscillations previously shown as a quarentine 
class is considered for a single-strain case. In section 4 we give conditions 
for which disease-free, as well as the endemic state equilibria eixst. For the 
disease-free equilibria, we give conditions under which Ro provides disease 
eradication. We showed stability of boundary endemic equilibria by using 
Routh-Hurwitz criteria. We show that conditions for stability are met. Fur­
thermore, we show that for conditions that depend on the period of isola­
tion, sustained oscillations persist. Such oscillations change periodicity, as 
well as amplitud as we vary cross-immunity. Our numerical explorations 
seem to indicate that after 30 years, multiple outbreaks occur for strong 
cross-immunity( a= 0.2), and 7 days periods of isolation. As cross-immunity 
becomes weaker, a = 0.8, the period of recurrent eidemics lenghtens, and 
oscillations eventually dampen out. As a result of periodic solutions of our 
model, we predict the occurrence of a Hopf-bifurcation. We found a bifur­
cation point that depends on the isolation period, and hope to prove the 
existence of limit cycles via central manifold theory. As a explanation to 
the recurrent epidemics caused by antigenic variation of the influenza type A 
virus, we hope that considering the factors that give rise to the virus unique 
entity can provide some solutions for the virus eradication. In particular, 
targeting key periods of isolation, as well as cross-immunity levels that per­
petuate the recurrence of multiple outbreaks may allow for diasese control. 
As previously explored in [5][8], age-structured must also be considered since 
significant portion of the virus spreading takes place among children. 
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8 Appendix 

One strain endemic equilibrium analysis: 
The following illustration describes the partitioning of the 10 by 10 Jacobian 
matrix analyzed for single strain endemic equilibria. 

Analysis of 10 by 10 matrix 

Au describes the interactions with Strain 1 

A 22 describes the interactions with Strain 2 

A 12 and A 21 describe the interactions driven by a- = 0 

Note that our initial 10 by 10 matrix can be easily simplified by noting 
a negative real part eigenvalue along the diagonal. The remaining 9 by 9 
matrix is partitioned into the following two matrices. Since we are interested 
in exploring the cases where strains range from closely related, to distinct 
subtypes. We ignore matrices A12 , and A21 . 

P1r1 -P~S 
0 PIS II 

--jl 
A A A 
£ f!l_(Jl+r +~) 0 

-P1Sl1 

All= A A I I Al 

0 r~ -Jl al 

0 01 0 -(Jl+aJ 

This 4 by 4 matrix describes strain 1 endemic equilibrium. Conditions 
needed to establish stability are simplified by the eigenvalues along the diag­
onal. 
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Similarly, this 5 by 5 matrix describes strain 2 endemic equilibrium. In 
section 4 conditions that guarantee stability of endemic equilibria are pro­
vided. 

P1-&+r +6.) 0 0 0 Pl. 
A 1 1 

plu(II+WJ 
A 

r~ -p- a, 0 0 

A22= 
A 

61 0 -&+a1) 0 0 

0 A~+wJ 0 -~+rl) 0 
A 

P/JB.l 0 0 0 ~-~+r.) 
A A l 
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