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This thesis focuses on optimization techniques for multi-reservoir hydropower 

systems operation, with a particular concern with the representation and impact of 

uncertainty.  The thesis reports on three research investigations: 1) examination of the 

impact of uncertainty representations, 2) efficient solution methods for multi-reservoir 

stochastic dynamic programming (SDP) models, and 3) diagnostic analyses for 

hydropower system operation. 

The first investigation explores the value of sophistication in the representation 

of forecast and inflow uncertainty in stochastic hydropower optimization models using 

a sampling SDP (SSDP) model framework.  SSDP models with different uncertainty 

representation ranging in sophistication from simple deterministic to complex dynamic 

stochastic models are employed when optimize a single reservoir systems [similar to 

Faber and Stedinger, 2001].  The effect of uncertainty representation on simulated 

system performance is examined with varying storage and powerhouse capacity, and 

with random or mean energy prices. In many cases very simple uncertainty models 

perform as well as more complex ones, but not always. 

The second investigation develops a new and efficient algorithm for solving 

multi-reservoir SDP models: Corridor SDP.  Rather than employing a uniform grid 

across the entire state space, Corridor SDP efficiently concentrates points in where the 



system is likely to visit, as determined by historical operations or simulation.  Radial 

basis functions (RBFs) are used for interpolation. A greedy algorithm places points 

where they are needed to achieve a good approximation.  In a four-reservoir test case, 

Corridor DP achieves the same accuracy as spline-DP and linear-DP with 

approximately 1/10 and 1/1100 the number of discrete points, respectively.  When 

local curvature is more pronounced (due to minimum-flow constraints), Corridor DP 

achieves the same accuracy as spline-DP and linear-DP with approximately 1/30 and 

1/215 the number of points,  respectively.  

The third investigation explores three diagnostic approaches for analyzing 

hydropower system operation.  First, several simple diagnostic statistics describe 

reservoir volume and powerhouse capacity in units of time, allowing scale-invariant 

comparisons and classification of different reservoir systems and their operation.  

Second, a regression analysis using optimal storage/release sequences identifies the 

most useful hydrologic state variables .  Finally spectral density estimation identifies 

critical time scales for operation for several single-reservoir systems considering mean 

and random energy prices. 

Deregulation of energy markets has made optimization of hydropower 

operations an active concern. Another development is publication of Extended 

Streamflow Forecasts (ESP) by the National Weather Service (NWS) and others to 

describe flow forecasts and their precision;  the multivariate Sampling SDP models 

employed here are appropriately structured to incorporate such information in 

operational hydropower decisions. This research contributes to our ability to structure 

and build effective hydropower optimization models.  
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CHAPTER 1  

 

INTRODUCTION 

 

The objective in reservoir operations optimization is to select an operating 

policy which maximizes some objective over a planning horizon.  This is a sequential 

decision problem: the operator must make a decision every month, week, day, or even 

hour.  It is also a stochastic problem: at the time the operator must make a decision 

there are uncertainties that could affect the consequences of that decision.  It can be a 

consequential problem: environmental and public safety, not to mention profit and 

recreational benefits could be affected.  In some cases it might even be a what Rittel 

and Webber [1973] call a ‗wicked‘ problem, one which the operator has no right to get 

wrong: in flooding situations people might die. 

In light of these realizations the prospect of designing any optimization tool for 

planning or managing real-world reservoir systems can seem a daunting task.  

However, water resources systems engineers have a long and successful history of 

applying optimization techniques to real-world decision making [Yeh, 1985; Labadie, 

2004,2005].  The research presented in this thesis builds on the body of past work 

reservoir operations optimization modeling.  My thesis has two primary focuses: the 

representation of streamflow uncertainty in reservoir optimization models, and the 

reduction of the computational burden of multi-reservoir dynamic programming 

models. 

A fundamental challenge in reservoir operations optimization is that reservoir 

system is often incentivized to operate in a risky way.  The more water that is in 



storage the higher the head, and the more energy which is produced per unit volume of 

water released.  Running the reservoir at or near full can be very risky as a sudden 

inflow could cause a spill, wherein water is not passed through the turbines and 

generates no energy.  Thus the dilemma of the reservoir operator is when and how far 

to drawdown.  To avoid any spill the reservoir might be kept low, but this is inefficient 

with respect to energy generation.  In arid regions like California a large multi-use 

reservoir might draw down in anticipation of a large storm, but then be unable to refill 

and meet its irrigation demands later in the summer growing season.  Failing to 

drawdown enough and being forced to spill can be dangerous (particularly at Folsom 

Dam which is just 15 miles upstream of Sacramento, CA). 

One approach to aiding reservoir operators is through the use of dynamic 

programming (DP) models.  Discrete DP (just denoted DP) is an optimization 

technique which, at each decision point weighs the immediate benefit of a decision 

immediately taken with the future benefits of a decision made in the future.  In 

reservoir operation DP weighs the benefit of an immediate release with the benefit of a 

future release.  If the benefits of the immediate release are greater than the benefits of 

waiting the release is made now, and vice versa.  Such models have long been 

successfully applied to the reservoir optimization problem [Young, 1967; Hall et al., 

1968; Roeffs and Bodin, 1970; Yakowitz, 1982].  Such models can inform operating 

rules for reservoirs, which give an operator an optimal release based on current 

reservoir storage.  However such models do not take into account the stochasticity of 

inflows and will not hedge against uncertainty because they implicitly assume that 

inflows are known with certainty. 



Stochastic DP (SDP) is an extension of DP to consider uncertainty in forcings, 

typically uncertainty in inflow.  Remarkably the application of SDP to the reservoir 

optimization problem pre-dates the simpler deterministic DP, seeing its first use in 

1946 by Masse, followed in 1955 by Little.  SDP models select optimal releases 

considering a range of future (and in some cases current) reservoir inflows.  Because 

the future is now uncertain, at each decision point SDP weighs the benefits of an 

immediate release with the expected benefits of a future release.  Typically the 

distribution of future inflows is modeled as a Markov process where, for example the 

distribution of flows tomorrow is conditional on the flow today, or the distribution 

flows today might be modeled as conditional on the flow yesterday [see Yakowitz, 

1982 and Loucks et al., 1981].  How the uncertainty in inflows is modeled is a widely 

studied topic, and is a primary focus of Chapter 4 of this thesis. 

How the uncertainty is modeled is important for at least two reasons.  First, if 

the SDP model is to adequately weigh the benefits of future releases, then the 

representation of uncertainty must reflect the ability of the decision maker to resolve 

uncertainty when making future releases.  Second, the way in which uncertainty is 

modeled affects the representation of streamflow, and realistic representation of 

streamflow persistence is critical if SDP is to properly assess the expected benefits of 

future releases. 

Addressing the first point, Stedinger et al. [1984] shows that improved SDP 

performance can be achieved be conditioning the distribution of future inflows on a 

flow forecast.  Using this method in an SDP model better reflects the skill of the 

reservoir operator when making a decision.  Using forecasts also potentially improves 



the representation of the persistence of flow, which can also improve the performance 

of SDP models. 

Sampling SDP (SSDP) is a variation on SDP that rose largely to address the 

concern about the representation of inflows in SDP models.  In SDP inflows are 

represented by intact streamflow scenarios which might be historical flows [Kelman et 

al., 1990; Cote et al, 2011], ensemble forecasts [Faber and Stedinger, 2001; Kim et al., 

2007], or they might be climate projections [Vicuna et al., 2010].  In any case the 

persistence of flow is doubtlessly better represented by time series than Markov 

Processes, allowing SSDP to better assess the value of future releases, as demonstrated 

by Cote at al. [2011]. 

Like SDP, SSDP considers a range of potential scenarios when selecting a 

current decision, but unlike SDP, SSDP evaluates the benefits of that decision on an 

intact scenario.  How the uncertainty is represented when SSDP selects an optimal 

release can have a large impact on the value of the resulting optimal operating policy, 

as demonstrated by Faber and Stedinger [2001] for a reservoir in Colorado, and later 

by Kim et al. [2007] for a reservoir in Korea. 

Chapter 4 of this thesis extends that work in four ways. 

1) It considers much shorter time steps: most previous SSDP studies use 

weekly time steps, whereas Chapter 4 considers time steps as short as 6-

hours.  This tests the SSDP methodology for sub-daily operation, a relevant 

research topic as short-term ensemble forecasts become available. 

 

2) It considers a wide range of systems by fixing the hydrology and 

drastically changing the storage and turbine capacity.  Unlike previous 

studies which focus on a single system, the analysis in Chapter 4 is able to 

draw more general conclusions across different categories of reservoirs.   

 



3) It compares operation of the different reservoir systems with different 

economic models, allowing us to isolate the effects of hydrologic 

uncertainty and price variability on operations. 

 

4) Finally it utilizes synthetically generated inflow forecasts which have a 

desired precision which allows the examination of the value of forecast 

precision on SSDP model performance. 

 

In support of the study in Chapter 4, Chapter 5 of this thesis introduces a 

number of non-parametric statistics which allow for the classification of reservoir 

types (i.e. run-of-river, storage only, generating reservoir) regardless of the scale of 

the reservoir in question.  Chapter 4 reports results comparing some of the largest 

hydropower reservoirs in North America with small reservoirs in Northern Maine, 

demonstrating that the magnitude of the project alone is not a good indicator of how 

the project operates or should be modeled.  A regression procedure and a spectral 

analysis procedure which help a modeler determine the critical time scales of 

operation for a reservoir which can answer the question: do we operate at an hourly, 

daily, weekly, monthly cycle (or perhaps decadal cycle for Hoover Dam on the 

Colorado River).  The Spectral analysis approach is novel for water resources systems 

analysis, and shows great potential as a diagnostic technique. 

Dynamic programming models become very computationally difficult to solve 

in high dimensions, or for the reservoir operations case, for multiple reservoirs.  This 

is a well-documented problem, dating back to Richard Bellman who coined the term 

the ‗curse of dimensionality‘ in 1961 [Bellman, 1961].  Chapter 2 of this thesis 

explains in detail who high dimensional problems are difficult in dynamic 

programming, and some of the techniques which are commonly used to diminish the 

‗curse.‘  Chapter 5 presents a new approach called Corridor DP, which achieves 



computational savings by focusing on storage combinations which a multi-reservoir 

system is most likely to visit.  It is shown that the Corridor DP algorithm is more 

computationally efficient than other traditional DP methods. 

Finally Chapter 7 provides some concluding remarks and discussion of 

planned extensions for the methods presented in this thesis. 
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CHAPTER 2  

 

A REVIEW OF DYNAMIC PROGRAMMING MODELS FOR HYDROPOWER 

OPTIMIZATION 

 

This chapter provides a brief introduction to dynamic programming techniques 

commonly applied to reservoir operations optimization problems, along with a short 

history and literature review on the topic.  Dynamic programming algorithms have 

found widespread application across a variety of fields including natural resource 

economics [Insley and Rollins, 2005; Dixit, 1990; Conrad and Clark, 1987], product 

distribution networks [Topaloglu and Kunnumkal, 2006], power system control [Yu et 

al., 2014], and of course water resources systems analysis to name a few.  This chapter 

will focus on application to reservoir operations problems and will primarily focus on 

the issues of uncertainty representation and efficient high-dimensional dynamic 

programming for reservoir problems.  For a broader discussion of reservoir 

optimization and dynamic programming applied to water resources see Labadie [2004, 

2005], Yeh [1985], and Yakowitz [1982].  For a more in-depth discussion of the 

dynamic programming more broadly Powell [2007] and Bertsekas [2011] are excellent 

reference sources.  Section 2.1 introduces dynamic programming and stochastic 

dynamic programming for reservoir operations problems.  Section 2.2 introduces and 

describes the use of sampling stochastic dynamic programming algorithms.  Section 

2.3 is a brief narrative describing the evolution of DP and SDP methods in water 

resources systems analysis since the mid-1950s.  Section 2.4 provides particular 

discussion on the areas of DP and SDP which addressed in Chapters 4 and 5, and 

finally Section 2.5 includes some concluding remarks. 



Section 2.1 Dynamic Programming and Stochastic Dynamic Programming 

Operation of a reservoir system requires the operator to select a series of 

releases which satisfy a host of constraints and hopefully maximize the value of some 

objective or set of objectives.  This is a challenging problem because system forcing, 

both hydrologic and economic, are uncertain at the time a decision must be made.  As 

the system responds to forcings and to actions taken by the operator, its state will 

evolve and present new optimization problem each time an action must be taken.  

Further complicating the problem, objectives and constraints are often non-linear in 

reservoir systems, rending many mathematical solution techniques inadequate. 

Dynamic Programming (DP) and Stochastic DP (SDP) are well suited to this 

type of problem.  They impose virtually no restriction on the functional form of the 

objective and constraints of a problem, and they provide a dynamic operating rule that 

accounts for the evolution of the system in response to an operator‘s control and in the 

case of SDP to realizations of random forcing variables. 

The DP framework assumes a simple additive model of reservoir system 

benefits over a planning horizon (equation (2-1)).  In each discrete time a decision (a 

release for reservoirs),   , must be made.  The incremental benefit of   ,   , also 

depends on the current reservoir storage,   , and the current inflow   .  It is assumed 

that at the end of the planning period (index  ) storage reaming in the reservoir has 

some terminal value,  (    ). 

  ∑  (        )

 

   

   (    ) (2-1) 

The evolution of the reservoir system in response to the operator‘s decision    is given 

by 



                (       ) 
 

(2-2) 

where    is an evaporation/seepage loss term.  The challenge of the operator is to pick 

the best series of releases or equivalently the best sequence of reservoir storages over 

the planning period        . 

Because of the assumption of sequential evolution of the system state and the 

additive benefit function  DP can be used to solve this planning problem.  The DP 

solution to the planning problem posed by equations (2-1) and (2-2) is given by: 

  (  )       
*  (        )       (    )                    *    + 

                (       ) 
(2-3) 

where   and       (    ).  The traditional solution technique for the DP model is 

start with   (  ), and to solve equation (2-3) recursively backwards in time until one 

arrives at present time and has   (  ) [Bellman, 1957].  The result of the DP solution 

process is a decision rule which specifies an optimal    for any    and future value 

function of water in storage   (  ) for each time step in the   in the planning period.  

In the DP formulation in equation (2-3) the current storage    is the state-variable, 

meaning that the state of the reservoir system is fully described by   .  In multiple 

reservoir DP models it is common to assign a storage state to each reservoir, so    

would become a  -dimensional vector. 

 SDP is a natural extension of the DP framework to consider the stochastic 

nature of the forcings such as the inflows   .  Given a description of the stochastic 

forcings, one must compute the expected benefits associated with each decision   .  

To describe the hydrologic state of the basin, it is common to add a hydrologic state 

variable.  A simple hydrologic state variable might be the previous or current period‘s 



inflow,   .  If one then assumes that the    is known in time   [as in Loucks et al., 

1981 and Tejada et al., 1995] one obtains the model. 

  (     )     
  

{  (        )    
       

,    (         )-} 

         *     + 

(2-4) 

 

Here the expected future benefits are computed with the probability 

  ,       -, which is the probability of the next period‘s flow given the flow in the 

current period.  Many papers have explored alternative hydrologic states including 

snow-water equivalent or antecedent soil moisture [Cote et al., 2011] or an inflow 

forecast [Stedinger et al., 1984, Kelman et al., 1990; Maceira and Kelman, 1991; 

Karamouz and Vasiliadis, 1992; Tejada et al., 1995; Kim and Palmer, 1997; and Kim 

et al., 2007].  Computing correct transition probabilities based on flow forecasts is 

described at length in Chapter 4 of this thesis.  An SDP model which uses a generic    

is given by equations (2-5) and (2-6): 

  (     )     
  

 
 

     

,  (        )       (         )- 

        and   *     + 

(2-5) 

      {   *  
       +  (            (       ))} (2-6) 

 

where      is the maximum reservoir storage level and   
  is the optimal target 

release in time  .  The distinction between   
  and    is necessary because   

  may not 

be feasible because    is no longer known.  Equation (2-6) ensures that the final 

selected    is feasible.  It should be noted that multiple hydrologic states might be 

employed.  For example Karamouz and Vasiliadis [1992] assign a state variable to the 

current inflows and a state variable to the next period‘s inflows.  Tejada [1993] 

experiment with three hydrologic state variables, and Turgeon [2005] shows how 



information from several previous days‘ flows can be leveraged into a single 

hydrologic state variable.  Chapter 4 describes in great detail how one might generate 

the needed probabilities to compute  
     

if    is a vector of hydrologic (or economic) 

states. 

The backwards recursive DP and SDP procedure described above provides an 

optimal policy for each system state at discrete time steps over the planning period.  

To develop these policies numerically the storage state space is often discretized, and 

the ―optimal‖ policy is computed for each discrete state at each time. 

When implementing the numerically derived policy, the reservoir is unlikely to 

reside only in the discrete points which happened to have been sampled, and will more 

likely fall between the discrete points.  One solution to this problem is to interpolate 

within the policy table, or to fit some simple function to that table.  Another approach 

is re-optimization which selects an optimal release given the current state by 

performing a one-step SDP optimization with the current reservoir conditions (Tejada 

et al., 1993).  Equation (2-7) describes the re-optimization step. 

   
  

{  (        )    
       

,    (      )-} 
(2-7) 

where    is the current hydrologic information.  Tejada et al. [1993] compared the 

performance of models which interpolate in the policy table to select an optimal 

release and models which use re-optimization.  They found that re-optimization 

generally results in better operation, particularly when coarse grids were used in the 

initial backwards moving that derived the future value function.  Furthermore they 

found that use of re-optimization improved the reliability of meeting both energy and 



water targets.  Re-optimization is used when implementing optimal policies derived 

from sampling SDP models in Chapter 4. 

Section 2.2 Sampling Stochastic Dynamic Programming 

SDP models often overestimate the benefits actually attainable with particular 

release decisions because decisions are evaluated with the same simplified streamflow 

description used in developing the SDP policy [Tejada et al., 1993].  This has led to 

the develop of sampling SDP models. SSDP represents future streamflow with an 

ensemble of scenarios, which are time series of reservoir inflow and other variables 

(like energy price).  This provides a discrete description of streamflow that implicitly 

captures the joint distribution of streamflow, forecasts, and other variables across time 

and space, without requiring an explicit probability distribution [Kelman et al., 1990; 

Faber and Stedinger, 2001; Kim et al., 2007; Vicuna et al., 2011;Eum et al., 2011;Cote 

et al., 2011]. 

Kelman et al. [1990] present a SSDP model for optimizing hydropower 

operation for a system in California.  Their model (equations (2-8) and (2-9)) takes 

reservoir storage,   , inflow forecast,   , and the current scenario trace as state 

variables (i.e. the hydrologic state,   , is described by both a forecast and a scenario).  

Their SSDP formulation is given by: 
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           *     + 
where   ( ) is the reservoir inflow in time   and scenario  , and    is a flow 

forecast in time  . 

Equation (2-8) is the Decision Model which is used to select an optimal    and 

equation (2-9) is the Simulation Model which is used to assess the benefits of the 

optimal release.  This the key difference between SSDP and SDP: SDP uses the same 

model to select an optimal release and assess its benefit (for example equation (2-5)).  

The Decision Model considers possible transitions between scenario traces, whereas 

the Simulation Model simulates the operational benefits on a single intact scenario, 

thus preserving the persistence of hydrologic inflows.  To numerically solve this 

SSDP model, equations (2-8) and (2-9) must be solved for each discrete pair of 

(     ), for each trace  , for every time step in the planning period. 

The double expectation in equation (2-8) captures both the probability of a 

future forecast given the current forecast and an inflow, and the transition probability 

of a future scenario given the current forecast.  Faber and Stedinger [2001] avoid the 

need for a double expectation and a forecast state variable by utilizing the historical 

forecast series associated with each trace.  Thus the forecast state variable is 

embedded in the scenario state variable, and the scenario state variable becomes the 

sole hydrologic state variable. This allows a very large reduction in the computational 

demands of the solution algorithm by reducing the dimension of the implicit 

hydrologic state variable (going from   and    to just use of   which has an    with it).  

A reasonable concern is if all combinations of   and    were reasonable, or likely.  In 

many cases the answer is that some were not likely, and thus the modeling process 



was not efficient. For single reservoir systems such as that considered by Kelman et al. 

[1990], this is not particularly important. However, as we strive to model multiple 

reservoir systems, economy in the computational algorithm becomes much more 

important.  The corridor model explored in Chapter 5 addresses this issue.  The Faber 

and Stedinger [2001] SSDP formulation is: 
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where equation (2-10) is the SSDP Decision Model and equation (2-11) is the SSDP 

Simulation Model.  This is the SSDP formulation which is adopted in this study.  To 

compute  
   

, the probability   ,   - is needed.  The computation of these probabilities 

is discussed in great detail in Chapter 4.  Faber and Stedinger [2001] and Kim et al. 

[2007] used ESP forecasts and historical inflows as SSDP traces, whereas Kelman et 

al. [1990] and Cote et al. [2011] use only historical flows.  Vicuna et al. [2011] used 

climate scenarios from different GCM results with different greenhouse gas scenarios 

as SSDP traces. 

Section 2.3 The Evolution of SDP Algorithms for Reservoir Optimization 

The name ‗Dynamic Programming‖ is somewhat of a misnomer in that it is not 

programming in the same way that linear programming is a solution method for a 

subset of optimization models.  Rather, DP is a theory of multi-stage decision 

processes: it is a way of modeling a decision process, which might be solved by any 

number of programming methods, including linear programming models (see Loucks, 



1968 for just one example).  Richard Bellman, the father of DP, later regretted the 

name ―Dynamic Programming,‖ but explained the choice was influenced by a desire 

to make the new theory sound interesting to funding agencies in a time when great 

advances in linear programming were taking place [Bellman, 1989]. 

Yakowitz [1982] and Esogbue [1989] see the solution of water resources 

problems as a major impetus for the early development of DP methods.  In fact, 

Bellman‘s foundational book on DP [Bellman, 1957] prominently features a water 

resources problem.  Yakowitz [1982] sees water resources as an ideal laboratory for 

the development of DP methods.  Yakowitz [1982] and Esogbue [1989] are concerned 

with DP applied to water resources problems in general, whereas this section will 

focus on DP for reservoir problems. 

The first application of an SDP model to reservoir operations was 

demonstrated by Masse [1946].  The earliest example in the English literature is Little 

[1955].  That work considers the optimal operation of a single reservoir for 

hydropower, and provided the prototypical SDP formulation for much of the later 

work in SDP for reservoirs [Yakowitz, 1982].  Little‘s model used a Markov 

description of reservoir inflow wherein the distribution of the current inflow is 

conditioned on the value of the previous period‘s inflow.  Thus, the state of the single 

reservoir system is described by a storage state and a hydrologic state (previous 

period‘s inflow).  Little applied his SDP model to the operation of Grand Coulee Dam 

on the Columbia River.  Interestingly, he found that simulated operation using a policy 

derived by the SDP model resulted in only a 1% performance over existing rule curve 



policies.  The study described in Chapter 4 of this thesis experienced similar gains, 

and develops appropriate metrics for comparison of algorithms. 

Gessford and Karlin [1958] considered and SDP model for a single reservoir 

wherein the inflows are independent, so a hydrologic state variable is not required.  

This analysis allowed them to derive more general optimal operating strategies using 

inventory theory.  Russell [1972] extended this work to include penalties on releases.  

The value of this work is that it allows one to draw general conclusions about optimal 

reservoir operating behavior.  Whether the assumption of independently distributed 

inflows is valid depends on the time step of the model and the hydrology of the 

system.  Buras et al. [1963] adopt such an approach in a study of the joint operation of 

a reservoir and aquifer with a monthly time step.  Other early examples include Askew 

[1974a,b, 1975] and Rossman[1977]. 

Loucks [1968] presents steady-state SDP models, along with equivalent linear 

programming (LP) formulations.  Those models used either the current inflow or the 

previous period‘s inflow as hydrologic states.  Similarly, Loucks and Faulkson [1970] 

and Butcher [1971] present SDP models which derive a steady state optimal policy, 

with a hydrologic state variable.  Loucks and Gablinger [1970] provide an SDP and 

equivalent LP formulation to solve for the optimal policy in the transient case with 

discounting. 

Su and Deininger [1974] apply an SDP model the operation of Lake Superior, 

using a hydrologic state variable of the previous period‘s inflow, which is represented 

as a Markov process.  To reflect seasonal variations in hydrologic conditions the 



transition probabilities of the Markov process in that formulation are transient, 

whereas most previous applications considered stationary Markov models of inflow. 

Subsequent improvements in SDP models resulted from the use of better 

hydrologic information as a state variable.  Bras et al. [1983] showed that 

incorporation of current hydrologic forecast information in an SDP model can lead to 

more efficient operations in a study of the High Aswan Dam. Revisiting the High 

Aswan Dam problem, Stedinger et al. [1984] incorporated available hydrologic 

information into the SDP decision model by using the inflow forecast as the 

hydrologic state variable.  The resultant steady-state operating policy allowed 

decisions to depend on current forecasts without the need to re-formulate and re-solve 

a new SDP at each time step.  Tejada et al. [1995] illustrated the use of forecasts in an 

SDP model of reservoirs in the Central Valley of California. Turgeon [2005] illustrates 

the advantages of a comparable algorithm.  Similarly Krzystofowicz  and Watada 

[1986], Krzystofowicz and Reese [1991], and Krzystofowicz [1999] develop a 

description of forecast-streamflow uncertainty that employs Bayesian decision theory.  

Karamouz and Vasiliadis [1992] and Kim and Palmer [1997] explored the use of such 

Bayesian SDP models.  Kelman et al. [1989, 1990], Faber [2000], Faber and Stedinger 

[2001], Kim et al. [2007], Cote et al. [2011], and Eum et al. [2011] focus on better 

descriptions of the joint distribution of flows and forecasts using sampling SDP 

(SSDP). 

Kelman et al. [1989;1990] introduced sampling SDP to optimize water systems 

operations on the Feather River in California, using multiple historical time-series as 

scenarios to capture by example the variability of streamflow processes.  A scenario is 



defined here as a streamflow hydrograph and the associated volume forecast time-

series and energy market parameters and loads.  In this case the hydrologic state 

variable is the set of streamflow scenarios. 

If the probabilities assigned to historical streamflow series are appropriately 

conditioned on historical volume forecasts as described by Kelman et al. [1990] and 

Faber and Stedinger [2001], many historical streamflow series may be extremely 

unlikely, in effect reducing the number of relevant streamflow scenarios available to 

compute the expected future value of water in storage.  This is identified by Labadie 

[2004] as a primary drawback of SSDP. 

It would seem then to be better to use sets of streamflow series that are 

consistent with anticipated basin flows.  The National Weather Service‘s Ensemble 

Streamflow Prediction (NWS ESP) procedure produces streamflow forecasts in the 

form of multiple hydrographs, each a possible realization of seasonal streamflow 

[Day, 1985; Schaake and Larson, 1998].  Because such hydrographs are often derived 

from historical weather sequences, historical (or modified historical) energy market 

signals could very easily be embedded in the ESP forecasts.  Such sets of hydrographs 

(and other embedded signals) capture by example the temporal and spatial correlation 

structure of the streamflow series.  One advantage of using SSDP algorithms with ESP 

for multiple reservoir optimization is that the ESP captures the interrelationships 

among streamflows in those basins by utilizing historical weather patterns for different 

years [ Faber, 2000; Faber and Stedinger, 2001].  Faber and Stedinger [2001] 

demonstrate the use of NWS ESPs for operation of  a reservoir in Colorado, and more 



recently Kim et al. [2007] and Eum et al. [2011] demonstrate the use of ESP forecasts 

for basins in Korea. 

Askew [1974a, b, 1975] introduced chance-constrained SDP in which 

probability of failure to meet some constraint must be less than a prescribed level,   .  

Yakowitz [1982] points out that Askew‘s approach satisfies the chance constraint, but 

is not guaranteed to be the optimal policy satisfying that constraint.  Sneidovich and 

Davis [1975] propose adding    as a state variable for the chance constrained SDP 

model, with added conditions for the chance constraint.  Askew [1974b] proposes a 

variation on chance constraints in which the expected number of constraint violations 

is bounded.  Rossman [1977] presents an approach for solving such a model based in 

Lagrangian duality theory.  If a state variable is added for the number of failures, then 

Rossman‘s expectation constraints are equivalent to probabilistic constraints 

[Sneidovich,1979]. 

The previous discussion in this section has focused nearly exclusively on 

single-reservoir applications of SDP.  Solution of multi-reservoir SDP and DP models 

is more difficult, and was somewhat more limited in early applications of SDP for 

reservoir optimization. Section 2.4.2 discusses solution techniques for reducing the 

burden of multi-reservoir optimization and Chapter 5 of this thesis presents new 

developments in this area.  The first SDP model for multiple reservoirs was presented 

by Schweig and Cole [1968], who consider a two reservoir system.  Yakowitz [1982] 

points out that their model is essentially the same as the joint reservoir-aquifer model 

developed by Buras [1963].  Roefs and Bodin [1970] and Heidari et al. [1971] provide 

early examples of multi-reservoir deterministic DP models.  Because deterministic DP 



models do not include a hydrologic state variable, the number of reservoirs included in 

early studies was generally greater for deterministic DP models compared to stochastic 

DP models.  In fact a four reservoir deterministic DP model is presented as early as 

Larson [1968], and a 10-reservoir deterministic DP model is solved using ‗constrained 

differential dynamic programming‘ by Murray and Yakowitz [1979].  Pereira and 

Pinto [1985] solve a 39 reservoir problem using stochastic dual dynamic 

programming.  This and other methods for solving DP and SDP models for large 

systems are described in more detail in Section 2.4.2. 

Section 2.4 Special Concerns addressed in this Thesis 

Chapter 4 of this thesis is concerned with the representation of uncertainty in 

reservoir optimization models and the value of forecasts to hydropower operation.  

Section 2.4.1 provides an overview of previous work in this area.  Chapter 5 of this 

thesis develops a new method to cope with the curse of dimensionality.  Section 2.4.2 

provides a brief overview of previous efforts to address the curse of dimensionality for 

multi-reservoir dynamic programming models. 

Section 2.4.1 Representations of Uncertainty 

How uncertainty is represented in a reservoir optimization model can have a 

major impact on the quality of the resulting ‗optimal decision‘ [Tejada-Guibert et al., 

1995].  One might intuitively guess that the more complex the model, the more 

hydrologic information included, the better the resulting decisions, but Klemes [1977] 

reminds us that this often is not so.  Precisely how uncertainty should be modeled in 

SDP models for reservoirs has remained an active area of research since SDP models 

were first applied to the reservoir optimization problem. 



Many studies have focused on the application of a single model, with a single 

uncertainty representation, to a specific reservoir system.  These studies are important 

in that they add valuable experience to the literature, but they necessarily draw 

narrower insight into how uncertainty ought to be represented than the analysis 

presented in Chapter 4 of this thesis.  This section focuses on past works which seek to 

draw broader conclusions by comparing the application of different uncertainty 

models to the same system, or different systems. 

An early example of such a study is Klemes [1977], who builds a very simple 

model of a single reservoir and concludes that simple deterministic DP models 

perform no better than more complex SDP models.  This study is particularly 

interesting because it considers 1) the value of considering uncertainty in optimization 

models for reservoirs with a wide range of storage sizes, 2) the effect of reduced 

hydrologic and economic uncertainty on the value of the derived ‗optimal‘ policy, and 

3) a framework for quantitatively comparing the effects of hydrologic and economic 

uncertainties on the ‗optimal‘ policy.  Stedinger [1978] objects to the generality of the 

results claimed by Klemes [1977] contending that the example simplified to the point 

of being unrealistic.  Stedinger [1978] claims that the loss of realistic representation of 

hydrology and reservoir operations leave Klemes [1977]‘s results interestring, but 

ultimately of limited practical value, an opinion supported by this author. 

This early exchange highlights a central difficulty in studies which seek 

generality: the more realistic the system model, often the more specific the findings.  

This line is tread carefully by all studies which seek general findings, and great care 



was taken in Chapter 4 of this thesis to make the various hypothetical hydropower 

systems credible. 

Like Klemes [1977], Karamouz and Houck [1987] examine the relative value 

of deterministic DP and SDP models, but unlike Klemes [1977], Karamouz and Houck 

use real hydrologic series as the basis of their analysis.  They select three study basins 

with different hydrology (located in Maryland, Missouri, and Utah), and imagine four 

reservoirs in each study basin, for a total of 12 hypothetical systems.  To aid in 

comparison between basins, the reservoir storages are set to specific fractions of the 

mean annual inflow.  They found that for medium and large reservoirs deterministic 

DP performed as well as SDP, but for small reservoirs SDP outperformed 

deterministic DP. 

Tejada-Guibert et al. [1995] take a somewhat different tack.  Rather than 

applying an SDP model to different systems, Tejada-Guibert et al. applies various 

formulations of an SDP model for a reservoir system in the Central Valley of 

California.  Rather than changing system physical characteristics, Tejada-Guibert et al. 

examines the relative performance of various SDP models with different objectives, 

and provide a discussion of the choice of hydrologic state depending on the objective 

of the system operator.  Kelman et al. [1990] and Faber and Stedinger [2001] extend a 

similar analysis to the SSDP framework. 

Other studies which have examined the choice of hydrologic state variable and 

the impact of different probability models for those state variables for SDP models for 

a specific system include Esmail-Beik and Yu [1984], Picardi and Soncini-Sessa 

[1991], Estralich and Buras [1991], Huang et al. [1991], Turgeon [2005], Turgeon 



[2007], and Desreumaux et al. [2014].  Picardi and Soncini-Sessa [1991] is also 

notable for providing an early demonstration of the power of parallelization in SDP 

models for reservoir optimization. 

Cote et al [2011] studies the relative of value of SSDP and SDP models with 

different hydrologic state variables, including a composite variable of snow-water-

equivalent and antecedent soil moisture (depending on season).  Faber and Stedinger 

[2001] examine the efficacy of SSDP models utilizing either ESP forecast or historical 

flows series as scenarios.  They go a step further by examining the value of different 

scenario tree structures, some of which can be solved with simple stochastic 

programming techniques rather than dynamic optimization techniques like SSDP and 

SDP.  A similar analysis is provided by Eum et al. [2011].  Faber [2000] and Kim et 

al. [2007] extend this type of analysis to multi-reservoir systems. 

Kim and Plamer [1997] provide a somewhat broader study.  Like Klemes 

[1977] and Karamouz and Houck [1987], Kim and Palmer vary the size of the single 

study reservoir.  Like Tejada-Guibert [1995] and Faber and Stedinger [2001], Kim and 

Palmer vary the objective function by varying the energy demand and price.  For a 

variety of reservoir size, demand, and price cases they examine the effectiveness of 

different uncertainty representations and the value of seasonal forecasts for stochastic 

programming models.  By providing realistic cases for a wide range of storages and 

economic conditions, Kim and Palmer present somewhat general findings about the 

value of uncertainty representations, as is provided by the analysis in Chapter 4 of this 

thesis. 



More recently Georgakakos and Graham [2008] provide an analytical 

examination of the sensitivity of optimal reservoir operation to inflow uncertainty for 

different sized reservoirs.  That work also examined when inflow forecasts are of most 

value.  That study utilized a relatively simple objective: meeting an end-of-period 

storage target.  Graham and Georgakakos [2010] expand that work to a multi-objective 

analysis and provide a numerical example.  Importantly, the later work reports its 

findings for non-dimensional time and storage units so the work is more easily 

transferred to other systems.  Both works find that forecasts are generally more 

important for smaller reservoir systems, and the latter work shows that operation of 

small systems are most sensitive to forecast uncertainty.  A problem with the analysis 

in Graham and Georgakakos [2010] is that the results are not easily comparable across 

hypothetical systems with different storages.  For instance, they report the size of the 

squared deviations from the storage targets across a wide range of reservoir storages.  

As reservoir storage increases, one would expect squared deviations to also increase: a 

more meaningful metric might be percent deviations from storage target.  Comparison 

of model performance is a major consideration in Chapter 4 of this thesis. 

Zhao et al. [2011] provides a similar analysis to Kim and Palmer [1997], but 

examine the value of incorporating various forecast products (with varying levels of 

precision) into a decision support model.  They generalize their findings by varying 1) 

reservoir size and 2) inflow variability.  They find that forecast precision is most 

important for highly variable hydrology and for small reservoirs.  An important 

contribution of Zhao et al. [2011] is a model for the evolution of forecast precision 

over the forecast horizon.  This is important because the error in the inflow forecast 



increases with time (is greater farther from the forecast point).  This point is also 

explored by Xu et al. [2014]. 

All of the studies described in this section have involved conclusions arrived at 

from building competing optimization models.   Hejazi et al. [2008] makes the point 

that much can be learned by observing historical operations using data mining 

techniques to identify relationships between hydrologic variables and system 

operation.  This represents an a-priori analysis which can inform the choice of 

hydrologic state variable.  Zhao et al. [2012] and Chapter 6 of this thesis examine 

similar issues by identifying what forecast length is most critical to system operation, 

but Hejazi et al. [2008] is unique in that it identifies critical hydrologic variables for 

79 reservoirs in California and across the Great Plains.  This allows Hejazi et al. 

[2008] to draw general conclusions about the sizes of reservoirs and seasons for which 

forecasts and SDP are most valuable.  A short coming of that analysis is that it does 

not explicitly consider operational objectives for specific reservoirs: for instance there 

is no distinction between hydropower reservoirs and irrigation reservoirs.  A further 

shortcoming is that the analysis does not explicitly consider forecast uncertainty.  Still 

by considering operation across a huge range of reservoirs Hejazi et al. provide an 

interesting discussion of how one might construct a representation of uncertainty for a 

given system. 

Section 2.4.2 Addressing the Curse of Dimensionality 

To numerically solve equation (2-5), the state space is often discretized and 

solved at   specified points, generally a grid.  If    is non-linear, then as   increases 



the precision of an approximation of    based on   points using linear interpolation 

should also increase. 

In the case that a  -reservoir system is considered,   ,   , and    become  -

dimensional vectors of reservoir storage   , releases,   , and inflows    at each of the 

  reservoirs in time  .  The state space becomes a  -dimensional cube, and if each 

dimension is divided into   discrete points in each dimension, then equation (2-5) 

must be solved at    points, resulting in an exponential growth of computational 

effort and memory required to resolve equation (2-5) with an increase in  .  An 

additional problem is that solving equation (2-5) at each point becomes more difficult 

as   increases, further adding to the computational burden of traditional DP in high 

dimension.  The following discussion describes several approaches to reducing the 

cost of high-dimensional DP models. 

Aggregation Approaches 

Perhaps the most obvious approach to reduce the computational burden of 

high-dimensional DP models is aggregation, wherein several reservoirs are 

represented by a combined state variable such as total storage or total energy 

[Arvanitidis and Rosing, 1970; Quintana and Chikhani, 1981;Gilbert and Shane, 1982; 

Duran et al., 1985; Saad and Turgeon, 1988; Turgeon and Charbonnneau, 1998].  This 

approach can be very effective, particularly in systems where the critical operation is 

well represented by a subset of the original state variables (eigenvectors for the full 

state space).  Saad et al. [1992] demonstrate such an example using principle 

component analysis to determine which state variables account for the majority of the 

variability in system performance.  For their 4-reservoir example, upwards of 90% of 



the variability was described by a single state variable, and upwards of 97% of the 

variability was described by two state variables.  This suggested that modeling the 

system with two state variables is sufficient to capture the critical aspects of system 

operation.  A potential downside of such a representation is that aggregation can often 

result in a loss of modeling resolution of constraints and system dynamics which may 

not be acceptable. 

Stochastic Dual Dynamic Programming 

A second approach to addressing the ―curse‖ is through use of Bender‘s 

Decomposition in Sampling Dual Dynamic Programming (SDDP) [Pereira and Pinto, 

1985].  That algorithm uses simulation of the system to obtain points where the future 

value function is evaluated.  The future value function is approximated by piecewise 

linear Benders cuts.  This involves iterative optimization and simulation till the desired 

precision is achieved.  The linear approximation allows evaluation of the future value 

function over the entire volume of the state space.  Remarkably, the Pereira and Pinto 

[1985] solve a 39 reservoir problem using this method.  The SDDP approach has also 

been successfully applied more recently [see Tilmant and Kelman, 2007; Goor et al., 

2011].  However, if    is non-linear, the SDDP piecewise linear approximation might 

not be sufficiently precise. 

Surrogate Approximation of Future Value Function 

A third approach is to use a surrogate surface to represent    between discrete 

   at which equation (2-5) has been solved.  This allows for a coarser grid of discrete 

points to achieve the desired precision in    (i.e. allows for smaller   to achieve the 

same accuracy).  A simple method is to use linear, or multi-linear interpolation 



between discrete   .  This can work well when    is nearly linear, but will require an 

increasingly fine mesh (i.e. larger  ) as    becomes more non-linear.  Another 

concern is that a piecewise linear representations will have discontinuous first 

derivatives at the knots,   , which make solution of equation (2-5) more difficult. 

Johnson et al. [1993] compare cubic splines, Hermite polynomials, and multi-

linear interpolation for a multi-reservoir problem.  They demonstrate that for a 4-

reservoir system, using cubic splines resulted in a 330 times speed-up compared to 

multi-linear interpolation in order to achieve a 0.5% mean relative error.  The speed up 

is both because a coarser lattice of points is sufficient, and because a faster, derivative 

based, optimizer could be used to solve equation (2-5) because cubic splines have 

continuous first derivatives. 

Sparse Sampling of the State Space 

The previous discussion has assumed that the selected discrete state-space 

points,   , are arrayed on a regular gird, or lattice of points.  This is called a full-

factorial lattice because the same discretization level is used in all dimensions, and a 

basis point is placed at every combination of discretization levels across the 

dimensions [Chen et al., 1999].  Full factorial lattices are preferable for fitting multi-

linear and cubic-spline interpolation surfaces.  However, other work has explored the 

use of irregularly placed points and partial grid designs as a means of reducing the 

required size of   . 

One example of partial grid design is the use of sparse grids [see Bungartz and 

Griebel, 2004].  Sparse grids are built using a hierarchical discretization scheme.  In 

this approach, rather than having discrete levels in each dimension, the discretization 



is divided into degrees characterized by the distance between adjacent points in a 

degree.  As the degree of discretization increases the distance between adjacent points 

in that degree is smaller.  Under certain conditions, sparse grids can be shown to 

achieve the same accuracy as full grids, with a fraction of the points.  Adaptive sparse 

grids change the degree of the discretization adaptively across the state-space in 

response to the complexity of the function being approximated [Brumm and 

Scheidegger, 2014]. 

Another example of partial grid design is provided Chen et al. [1999] who use 

orthogonal arrays to select discrete points in the state-space.  To represent    they use 

multivariate adaptive regression splines, which do not require a regular lattice of 

points.  The work presented in Chapter 5 uses irregularly placed points, with radial 

basis functions (RBFs) to approximate   .  Rather than using orthogonal arrays to 

select the points to sample in the state space, this work uses a priori knowledge of 

system behavior to select relevant points. 

The Fitted-Q-Iteration Method 

 More recently, Q-learning algorithms have been applied to solve SDP models 

for water resources problems [Castelletti et al., 2010; Castelletti et al., 2013; Pianosi et 

al., 2013].  Q-learning is a reinforced learning technique which can be applied to solve 

traditional Dynamic Programming models [Bertsekas, 2011; Ernst, 1999; Ernst et al., 

2005].  The Fitted-Q-Iteration approach proposed by Castelletti et al. [2010] solves the 

DP model by sampling and simulating state-action pairs.  The state-action pairs might 

be selected through historical operation (as suggested in Chapter 5 of this thesis), 

through standard discretization and sampling of the state-action space, or through 



efficient sampling using Latin Hypercubes or Orthoganal arrays, as suggested by Chen 

et al. [1999].  To determine the optimal policy between sampled points in the state-

space, Castelletti et al. [2010, 2013] use randomized regression trees [Geurts et al.; 

2006].  Numerical experiments by Castelletti et al. [2010] suggests their fitted Q-

iteration method can have enormous computational speed up over traditional iterative 

DP solution techniques. 

Section 2.5 Conclusion 

DP, SDP, and SSDP are powerful tools which allow an analyst to model 

complex systems and derive an optimal control rule.  Since the mid-1950s water 

resources systems engineers have employed SDP models to manage reservoir systems.  

The SDP methodology particularly lends itself to the reservoir operations problem 

because it can accommodate non-linear constraints and objectives and selects an 

optimal policy considering hydrologic uncertainty.  More recently SSDP has been 

developed and shows great promise as it provides a natural framework to 

accommodate ensemble forecasts in a management model, and ensemble forecasts are 

becoming more common in meteorology and hydrology. 

This chapter begins with a very brief introduction to DP, SDP, and SSDP as 

they have been applied to reservoir optimization problems.  This chapter primarily 

supports Chapters 4 and 5 which employ a single-reservoir SSDP model and multi-

reservoir DP model respectively.  In particular Section 2.4 highlights the relevant 

literature in the areas of research which Chapters 4 and 5 seek to advance.  The reader 

who is interested in reservoir operation more generally is referred to Labadie 



[2004,2005], and the reader who is interested in DP and SDP more generally is 

referred to Powell [2007]. 
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CHAPTER 3  

 

THE KENNEBEC RIVER AND GENERATION OF SYNTHETIC HYDROLOGY 

FOR HYDROPOWER STUDIES 

 

This section describes two hypothetical hydropower systems which are based 

on the facilities on the Kennebec River in Maine.  The original plan for this thesis was 

to obtain flow and reservoir characteristic data from the system operator, NextEra 

Energy.  Unfortunately, given legal considerations NextEra was unwilling to provide 

system information.  However, there are a number of USGS gauges in the basin and 

adjacent basins with public information, and most important plant characteristics can 

be obtained from Federal Energy Regulatory Commission (FERC) re-licensing 

documentation or other public sources.  Section 3.1 of this chapter describes the 

Kennebec River hydrology while Section 3.2 describes its installed hydroelectric 

system.  Section 3.3 describes the hypothetical systems which are used in later 

chapters of this thesis, and the procedures used to generate synthetic inflows for those 

systems.  Finally, Section 3.4 provides concluding remarks. 

Section 3.1 The Kennebec River 

The Kennebec River basin is located in north-central Maine in the eastern 

United States.  The Kennebec originates near the US/Canada border and flows 150 

miles to the Atlantic Ocean at Merrymeeting Bay.  The river has a drainage area of 

5,870 square miles and includes a wide range of topography from mountains in the 

headwaters to flat coastal plains.  The major tributaries are the Moose, Dead, 

Carrabassett, Sandy, and Sebasticook Rivers. The average gradient of the main 

channel is 8.5 feet per mile, The Dead and Sandy Rivers have channel gradients of 25 



and 22 feet per mile respectively.  The average annual discharge of the Kennebec 

River is 287.5 billion cubic feet (bcf) [Kennebec Water Power Co. (KWPC), 1997]. 

The average annual temperature in the basin is 42  F, with average monthly 

temperatures ranging from nearly 70  F in July to 10  F in January.  Temperature 

extremes in the basin have ranged from 90  F to -30  F, with rapid changes in daily 

weather a common occurrence.  The land cover is 8% agriculture, 75% wooded, 5% 

lakes and ponds, with the remaining 12% consisting of other land use, such as 

residential, urban, and industrial [KWPC, 1997].  The majority of the ‗other‘ land use 

is in the lower reaches of the basin.  The headwaters are largely undeveloped. 

The Kennebec River basin generally receives a large winter snowpack 

[Hodgkins et al., 2005], and the spring snowmelt represents the most significant 

feature of the annual hydrograph.  For example, nearly 60% of the annual inflow to 

Flagstaff Lake on the Dead River occurs between March and May.  To accommodate 

the spring freshet and any large winter storms, the large storage reservoirs in the 

headwaters of the Kennebec are typically drawn down to 30% of full rated capacity 

[KWPC] at the end of October.  The time of arrival of the spring thaw varies from 

year to year, and is often marked by the ‗ice out‘ date.  This is the earliest date in the 

year when it is possible to traverse the main body of the lake in a boat unobstructed by 

ice.  Historically, the ‗ice out‘ date is early May for the storage reservoirs in the 

headwaters, although a recent study suggests global warming is causing earlier ‗ice 

out‘ [Hodgkins et al., 2002]. 

A major hydrologic consideration during the summer months is strong and 

localized thunderstorms.  It is not uncommon for spatial variability to cause one basin 



to receive twice as much rainfall from a storm as an adjacent basin [KWPC, 1997].  

This can cause difficulty when managing a network of storage reservoirs: where the 

rain falls might be more important than how much falls.  On average, the basin 

receives between 40-50 inches of rain a year, with higher elevations often receiving 

more [US Geological Survey, 2005]  This is typical for highland in interior New 

England.  Average annual hydrographs of Brassua and Flagstaff Lake are provided in 

Section 3.3. 

With modest temperatures over most of the year, the role of evaporation and 

transpiration on the annual water balance are relatively minor.  During an average 

summer, evaporation losses for the largest reservoirs are generally on the order of 1-

1.5 feet of lake level.  Combined with transpiration, summer time losses are as high as 

81% of precipitation, however losses during the fall and winter months (when most of 

the precipitation falls), are much lower, so on an annual water balance they account 

for very small losses.  In fact, evapo-transporation losses are often neglected in 

optimization models in this region of North America [Cote, 2011]. 

Section 3.2 The Kennebec Hydropower System 

There are ten hydro-electric generation facilities as well as two storage-only reservoirs 

(Moosehead and Flagstaff Lakes) located in the basin.  The elevation change from the first 

facility to the last is 1073 vertical feet.  The total installed hydro-electric generation capacity is 

256 MW.  The available storage in the Kennebec‘s three primary reservoirs, Moosehead Lake, 

Flagstaff Lake, and Brassua Lake is 44.7 billion cubic feet, or about 15% of the average 

annual runoff.  Figure 3-1 shows a schematic of the Kennebec Hydropower system. 



Essentially the system contains three storage reservoirs (Brassua, Flagstaff, and 

Moosehead Lakes) and two generating reservoirs (Harris and Wyman Station), 

followed by seven run-of-river plants.  Run-of-river plants have virtually no storage so 

the only water available is the river flow.  Brassua Lake is primarily a storage 

reservoir, though a small single-turbine 5 MW powerhouse is in operation.  The outlet 

of Brassua Lake is the Moose River which flows 3 miles to Moosehead Lake.  

Moosehead Lake is the largest lake in Maine and one of the largest lakes in New 

England.  The natural lake level has been raised approximately 7.5 feet to provide 

storage for hydropower operations.  Artificial outlet structures on Moosehead lake pre-

date hydropower generation on the Kennebec, and were initially installed for moving 

cut timber dating back to the mid-19
th

 century [KWPC, 1997].  The active storage for 

hydropower operation only includes the artificial storage, and other operational 

constraints apply throughout the year.  Moosehead Lake has two outlet structures into 

the Kennebec River. 

Approximately 12 miles down-stream of Moosehead Lake is Harris Station.  

Harris Station‘s reservoir is known as Indian Pond.  Harris Station is the largest 

hydropower plant, by generation capacity, in Maine [Maine Department of 

Environmental Protection (DEP),  2010] with a capacity of 89.5 MW.  There is very 

little unregulated inflow to the Kennebec River between Moosehead Lake and Harris 

Station.  Below Harris Station the Kennebec is joined by the Dead River at The Forks.  

The Dead River flows from Flagstaff Lake, which is a storage-only reservoir and 

entirely manmade. 



Below The Forks the Kennebec River enters Wyman Lake, which is the 

Storage Reservoir for Wyman Station.  Wyman Station is the second largest 

hydropower plant in Maine with a total generation capacity of 83.0 MW [Maine DEP, 

2010].  After Wyman Station the Kennebec River flows through seven run-of-river 

plants, the last of which is located near Waterville. 

Harris Station and Wyman Station have large turbine capacity and appreciable 

storage and are largely used for peaking during weekdays [FERC, 1999].  The three 

storage reservoirs in the Upper Kennebec are used to supplement incremental inflow 

into the Kennebec River through the generally dry summer months [FERC, 1997]. 

Section 3.3 Hypothetical Systems and Synthetic Hydrology 

The majority of the Kennebec system is owned and/or operated by NextEra 

Energy.  At the outset of this research it seemed that hydrologic and powerplant data 

would be available for the major projects on the Kennebec.  Unfortunately, much of 

this data is proprietary, and it proved impossible to arrive at an arrangement to obtain 

the necessary data.  Because this research is largely an exploratory and illustrative 

exercise, we deemed it appropriate to study hypothetical basins resembling subsets of 

the real Kennebec System.  As long as the characteristics and hydrology of the 

hypothetical systems represent realistic systems which might exist, this was deemed to 

be a reasonable approach to describe operation of possible systems in this region of 

the United States. 

 



 
Figure 3-1: Schematic of the Kennebec Hydropower System 

Two hypothetical system configurations were created: a ―single-reservoir‖ 

system and a ―four-reservoir‖ system.  The ―single-reservoir‖ system is created by 
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imagining Harris Station with no upstream regulation (see 

 

Figure 3-2).  This is used in the SSDP study described in Chapter 4 and the 

diagnostic study in Chapter 6 of this thesis.  The ―four reservoir‖ system consists of 

Brassua, Flagstaff, an aggregation of Moosehead and Harris, and Wyman Station (see 

Figure 3-3).  This system is used in the Corridor DP work described in Chapter 5 of 

this thesis. 

As described in Chapters 4 and 6, a wide range of variations on System A are 

also considered.  These are obtained by retaining the same inflow time series, but 

assuming that the system has more or less storage and more or less powerhouse 

turbine capacity.  The System A variations considered in Chapters 5 and 6 are 

summarized in Table 3-1.  These represent a wide range of storage-powerhouse 

capacity ratios. 
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Figure 3-2: Schematic of ―single-reservoir‖ system where   is the reservoir storage 

and   is the powerhouse turbine capacity. 

 
Figure 3-3: Schematic of ―four-reservoir‖ system 
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Table 3-1: Configurations of ―single-reservoir‖ considered in Chapters 4 and 6 

System 

Name 

Storage 

Capacity 

(BCF) 

Powerhouse 

Capacity 

(MW; CFS) 

(Small, 2000) 2.0 21.6; 2000 

(Small, 3500) 2.0 37.7; 3500 

(Small, 5000) 2.0 53.9; 5000 

(Small, 8300)* 2.0 89.5; 8300 

(Mid, 2000) 10.0 21.6; 2000 

(Mid, 3500) 10.0 37.7; 3500 

(Mid, 5000) 10.0 53.9; 5000 

(Mid, 8300) 10.0 89.5; 8300 

(Big, 2000) 20.0 21.6; 2000 

(Big, 3500) 20.0 37.7; 3500 

(Big, 5000) 20.0 53.9; 5000 

(Big, 8300)** 20.0 89.5; 8300 

*Actual storage and powerhouse capacity. 

**Nearly the aggregate storage of Moosehead and Harris, with Harris powerhouse 

capacity 

Plant and reservoir storage relationships for most of the system‘s facilities are 

available in the FERC relicensing materials [FERC, 1999; FERC, 1997; FERC, 2010].  

Additionally, information on the installed units were available through Oak Ridge 

National Lab [Kao, 2011].  These data were sufficient to build fairly accurate 

representations of plant characteristics. 

Section 3.3.1 Generation of Synthetic Inflows 

When this research was started, it was hoped that natural inflow data for each 

of the storage projects on the Kennebec River would become available.  

Unfortunately, much of this data is out of the public domain and was not available.  

Thus, it was necessary to generate realistic synthetic inflow records for the each of the 

reservoirs to be studied.  This was deemed acceptable, as the objective of this research 

was to study optimization algorithms for hydropower systems like those in the 

Northeast United States, rather than a particular system.  The methodology adopted for 



generation of synthetic inflows was the proration of flows from nearby unregulated 

streams based on drainage area or mean annual flow.  The objective in this exercise is 

to select a reference river which experiences similar hydrology and exhibits similar 

responses to a target river.  

Archfield and Vogel [2010] identify the selection of an appropriate reference 

stream as the primary challenge in synthesizing daily flow data for an ungauged site 

using proration.  In a case study in southern New England, they demonstrate that 

selection of the closest unregulated gauge does not always yield the best results, but 

that it is preferable to select the gauge for which flows are most correlated with the 

ungauged site.  To determine this, they utilize a variogram based procedure and 

demonstrate that in most cases, their procedure does select the most correlated gauge 

record.  While their procedure is interesting, the motivation of their study was to 

support water resources assessments in southern New England, where replicating 

actual historic flows are important.  In this study, we are merely attempting to 

synthesize a realistic approximation of northern New England Hydrology, so the 

added sophistication in Achfield and Vogel [2010] was not deemed necessary. 

Daily hydrologic data for the hydropower projects of the Kennebec River are 

proprietary and were unavailable for this study.  However, average annual inflow 

hydrographs are available for most storage projects, in Exhibit B of the Federal 

Energy Regulatory Commission (FERC) license application.  Given this, it is possible 

to ensure that a flow record being used to synthesize daily inflows is realistically 

capturing the annual hydrologic characteristics of each reservoir. 



As is the case in much of North America, the river basins of Maine, New 

Hampshire, and the adjacent region of Quebec are highly impacted by dams and 

diversions.  The selection of unregulated records required careful consideration, as 

many available records contain both pre- and post-regulation flows since dams have 

been constructed or removed during the period of record.  A review of the unregulated 

gauging sites in southeastern Quebec revealed no record of sufficient length which 

could be used for this study.  Slack and Landwehr [1992] and Slack et al. [1993] 

conducted an assessment of the nation‘s streamflow monitoring network to identify 

records, or periods of records through water year 1988 which have not been effected 

by regulation.  Their report also gives such important statistics as mean basin 

elevation, percent lakes and pond coverage, average slope, and main channel length.  

These data were used when considering the suitability of unregulated gauged 

watersheds for proration to the storage basins of interest.  The required synthetic 

inflow data for the analyses in Chapters 4, 5, and 6 include: 

1.  Summer inflows for ―single-reservoir‖ system 

2.  Summer inflows for Brassua and Moosehead Lakes 

3.  Summer inflows for Flagstaff Lake 

4.  Summer inflows for Wyman Lake. 

Selecting Reference Streams 

Several USGS stream gauging stations are located on the main stem of the 

Kennebec River.  Streamflow at many of these stations is partially or fully regulated 

by the operation of upstream dams.  Regulation on the main stem of the Kennebec 

River began as early as the 1830s, with construction of wooden dams on Moosehead 

Lake to support the timber industry [KWPC, 1997].  Thus, regulation on the Kennebec 

River pre-dates any gauging activity, so natural flows are not available from those 



gauges.   However, some gauges on the tributaries to the Kennebec, such as the 

Carrabassett, Dead, and Sandy rivers experience little or no regulation, or have an 

extended period of pre-regulation record.  For example, USGS Gauge #0104500 

provides a daily record for the periods 1902-1906 and 1910-1979 for the Dead River 

at its junction with the Kennebec River (The Forks), while regulation of flows on the 

Dead River did not begin until 1948 with the construction of the Long Falls Dam and 

the formation of Flagstaff Lake. 

Gages lying in the adjacent Penobscot and Androscoggin River Basins as well 

as the nearby St Johns River Basin were considered for reference records.  Using the 

data base assembled by Slack et al. [1993], five potential reference gages were 

selected, as summarized in Table 3-2.  These five sites were selected as they were 

deemed geographically close enough to the Kennebec basins, hydrologically similar, 

and of comparable size.  Figure 3-4 shows the locations of the reference record basins 

and the target basins on a map of northern Maine and southern Quebec. 



 
Figure 3-4: Map showing the location of the target basins (in blue) and the reference 

record basins (in green). 

Proration involves scaling a flow record by some ratio.  Three different ratios 

were considered: drainage area ratio, average annual flow rate ratio, and average 

summer flow rate ratio.  The quality of a match between a reference record and a 

target basin involved the comparison of the mean annual hydrograph (or some 

substitute) of the target basin to the scaled average annual hydrograph of the reference 

stream.  The following section explains what scaling method and reference stream was 

used for each target basin.  That information is also summarized in Table 3-3. 

 

85 mi



Table 3-2: Candidate Reference Records and Target Basin Drainage Area, Mean 

Annual Inflow Rate, Mean Summer Inflow Rate 

Name Drainage Area 

(sq. miles) 

Mean Annual 

Inflow (cfs) 

Mean Summer 

Inflow (cfs) 

Reference Records 

Carrabassett River 

(01047000) 
353 728 381 

Mattawamkeag 

River (01030500) 
1418 2511 1187 

Piscataquis River 

(01031500) 
298 603 293 

Sandy River 

(01048000) 
516 977 453 

Allagash River 

(01011000) 
1229 1956 1418 

Target Basins 

System A 1365 * * 

Brassua Lake 710 1322 860 

Moosehead Lake 867 * * 

Flagstaff Lake 516 1393 847 

Wyman Lake 720 * * 

*Not Available 

“Single-Reservoir” System 

Because the hypothetical system does not exist, it was impossible to obtain an 

average annual inflow hydrograph from FERC license material.  On the other hand, 

Brassua Lake is nested within the system watershed (in fact composing more than ½ 

its total watershed area), so it seemed reasonable to use the shape of the Brassua Lake 

annual hydrograph as a model for the ―single-reservoir‖ inflow.  The scaled annual 

hydrographs of each of the five reference records were compared to the scaled annual 

hydrograph of Brassua Lake.  It was found that the Mattawamkeag River generally 

matched the hydrograph best (Figure 3-5).  Furthermore, the watershed size of the 

Mattawmkeag River and the ―single-reservoir‖ watershed are similar, and both basins 



are nearly entirely wooded and undeveloped.  Thus the Mattawamkeag record was 

used as the reference record for the ―single-reservoir‖ system. 

 
Figure 3-5: Scaled (by DA) Brassua mean annual inflow hydrograph and Scaled (by 

DA) mean annual inflow hydrographs for reference records. 

Brassua and Moosehead Lakes 

Exhibit E of the FERC license application contains the mean monthly inflow 

based on the years 1989-2007 [FERC, 2010].  This mean annual hydrograph was 

compared to the scaled mean annual hydrographs for the five reference rivers (Figure 

3-6).  In general, the average peak inflow, occurring in April, is less pronounced for 

Brassua Lake than most of the reference records, and the average summer flows are 

higher than the reference records.  The Moose River passes through a number of ponds 

and minor lakes before flowing into Brassua Lake.  As a result, there is more natural 

storage of snowmelt waters in the basin relative to other nearby basins, which likely 

causes a higher streamflow persistence through the dry summer months relative to 

other nearby streams (Clark, 2011). 
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The FERC license application for Moosehead Lake is only available to be 

viewed on Microfilm at the FERC headquarters in Washington DC.  As a result, I was 

unable to obtain an inflow hydrograph for Mooshead Lake, but it seems unlikely that 

inflow characteristics for the two reservoirs, separated by a mere 2 mile stretch of the 

Moose River, would experience dissimilar inflow characteristics.  Thus, a single 

candidate proration river was selected for the natural inflow into each reservoir, based 

on the Brassua inflow hydrograph. 

 
Figure 3-6: Brassua mean annual inflow hydrograph and Scaled (by DA) mean annual 

inflow hydrographs for reference records. 

The Mattawamkeag River was selected as the reference record for Moosehead 

and Brassua Lakes.  The scaling was based on relative drainage area as this resulted in 

smallest sum of squared errors in average monthly flow.  For much of the year the 

scaled hydrograph of the Mattawamkeag is virtually indistinguishable from the 

majority of the other reference records, but it matches the spring run-off characteristics 

of Brassua Lake much better than the other records considered. 
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Flagstaff Lake 

Flagstaff Lake is impounded by the Long Falls Dam on the Dead River, which 

is located 16 miles upstream of its junction with the Kennebec River and was 

constructed between 1948 and 1950.  No impoundment had previously existed at that 

site [KWPC, 1997].  The drainage area of the Dead River at the Long Falls Dam is 

516 sq mi.  The USGS operated a streamflow gauge near the site of the Long Falls 

Dam (USGS 01043500) from 1939-1982 and also operated a gage at the confluence of 

the Dead River and the Kennebec River (USGS 0104500) from 1902-1906 and 1910-

1979.  More recently, the USGS has operated a stream gauging station on a tributary 

to the Dead River, Spencer Stream (USGS 01044550), which has been in operation 

from 1999-2011.  The average annual hydrograph based on years 1985-1993 is also 

available through FERC licensing application materials [FERC, 1993; FERC 1995]. 

Comparison of the pre-regulation records from the two USGS gauging stations 

on the Dead River showed strong agreement with the annual inflow hydrograph 

published in the FERC licensing application [FERC, 1993; FERC, 1995].  

Furthermore, comparison of the concurrent record of the two Dead River records 

showed strong agreement with each other, indicating that the gage located at The 

Forks (USGS 0104500) is a reasonable candidate as a reference record.  By prorating 

the Dead River (pre-regulation) and Spencer Stream records, it is possible to generate 

unregulated daily inflows into Flagstaff Lake for the years 1902-1906, 1910-1948, and 

1999-2011.  Unfortunately, much of the USGS gauging network in Northern Maine 

was not installed until the late 1920s or early 1930s, so finding concurrent reference 



records for the other reservoirs in the system proved difficult.  Thus, reference records 

outside of the Dead River watershed were necessary. 

Table 3-3:  Summary of proration method used to generate synthetic inflows for 

Kennebec River 

Target Watershed Reference Record Proration Ratio 

“Single-Reservoir” System Mattawamkeag River 

(01030500) 

Watershed Area 

Brassua/Moosehead Lakes Mattawmkeag River 

(0103500) 

Watershed Area 

Flagstaff Lake Allagash River—April-June 

(01011000) 

Carrabassett River—July-

March 

(01047000) 

Mean Annual Inflow 

Wyman Lake Piscataquis River 

(01030500) 

Watershed Area 

Figure 3-7 plots the mean inflow hydrograph for Flagstaff Lake obtained from 

FERC documentation and the average inflow hydrographs for the five reference 

records, scaled by mean annual inflow.  Unlike most of the Maine records considered 

in this study, the inflows to Flagstaff Lake peak in May rather than April.  This is 

likely because the Dead River drains somewhat more northern areas than most of the 

reference record rivers and drains a mountainous region which retains its snowpack 

later into the spring.  However, the Allagash River, which is the northernmost 

reference river considered in this study matches the spring snowmelt hdyrograph of 

Flagstaff Lake better than other reference streams, when scaled by its mean annual 

inflow.  However, during the summer months the Flagstaff Lake hydrograph is more 

closely matched by the other reference streams.  Thus a hybrid proration approach is 

taken wherein the Allagash River is the reference record for April, May, and June, and 

the Carrabassett River is the reference record for the rest of the year.  In both cases the 

scaling is by the ratio of mean annual flow. 



 
Figure 3-7: Flagstaff mean annual inflow hydrograph and Scaled (by annual inflow) 

mean annual inflow hydrographs for reference records. 

The Carrabassett River was chosen because it is directly adjacent to the Dead 

River watershed and drains similar mountainous terrain. 

Wyman Lake 

Because Wyman Lake is not a storage reservoir and last re-licensed before 

FERC E-library records were made available, a natural inflow hydrograph is not 

available through licensing documentation.  However, the Piscataquis River is located 

directly adjacent to the Wyman Lake watershed.  Because of its proximity to the 

Wyman Lake drainage area the Piscataquis river was chosen as a reference basin for 

Wyman Lake.  As a default, the ratio of drainage areas was used for the proration. 

Section 3.4 Conclusion 

This Chapter describes the Kennebec River, the Kennebec River hydropower 

system, the hypothetical systems modeled in Chapter 4, 5, and 6, and the process used 

to obtain power plant characteristic data, and  the process used to generate realistic 

synthetic inflows for each of the reservoir systems.  It was difficult to obtain 
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powerplant characteristics and necessary to generate synthetic inflow data because the 

powerplants are privately owned and that data is considered proprietary.  Much of the 

necessary plant characteristic data was available through FERC re-licensing material 

and other publically available sources.  Synthetic inflows were generated by prorating 

inflows from nearby unregulated rivers whose annual hydrographs approximately 

matched those of reservoirs in the system.  While this does not preserve the correlation 

structure of inflows between reservoirs, this was deemed an acceptable procedure for 

generating a reasonable representation of a hydropower system like the Kennebec 

River.  For the exploratory research presented in this study this was deemed sufficient.  
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CHAPTER 4  

 

SAMPLING STOCHASTIC DYNAMIC PROGRAMMING ALGORITHMS FOR 

RESERVOIR OPTIMIZATION 

The development of the Sampling Stochastic Dynamic Programming (SSDP) 

algorithm in this chapter builds on prior work by Faber and Stedinger [2001] who 

applied SSDP to a seasonal planning problem, with weekly time steps.  That study 

focused on snow melt hydrology for a high-elevation basin in Colorado, and 

considered a wide range of SSDP models, including some which used seasonal 

snowmelt run-off forecasts to inform operation. 

This study focuses on a seasonal planning problem for a small reservoir in 

Maine, with time steps as short as 6 hours.  The end of the spring snowmelt, summer 

operations and Fall drawdown are modeled.  Synthetically generated flows for this 

basin are generally very small (with occasional storms), while energy prices fluctuate 

and can have very high peaks.  The operator must weigh the immediate benefits of 

releasing water against the cost of operating at a lower head and opportunity cost of 

being unable to sell in the future when prices might peak. 

Section 4.1 Introduction and Motivation 

Reservoir operation requires the decision maker to select a series of releases 

which maximize the benefits (or expected benefits) over a planning horizon.  In the 

case of a hydropower electric reservoir, this requires the decision maker to balance the 

present benefit of an immediate release with potential future benefits of later releases.  

This is a stochastic sequential decision problem because future hydrologic and energy 

market conditions are generally uncertain at the time a decision must be made.  



Stochastic Dynamic Programming (SDP) and Sampling SDP (SSDP) are well suited 

for such problems because they provide optimal sequential decisions under uncertainty 

and can accommodate non-linear objectives and constraints, which are common in 

hydropower. 

An important consideration when constructing a stochastic optimization model 

is how uncertainty is represented.  It is a key issue considered here.  A good 

uncertainty representation can be critical to assuring the quality of the resulting 

optimal decision, and the computational efficiency of the model.  Many authors have 

considered the value of forecasts in reservoir operation, as described in the literature 

search in Chapter 2.  As just one example, Tejada et al. [1995] used SDP models to 

illustrate the consequences and improved efficiencies of reservoir operation over 

policies which ignored uncertainty for snow-melt hydrology for the Central Valley 

Project in California. 

The work presented here builds on previous work by Faber and Stedinger 

[2001] and Kim et al. [2007] by exploring the utility of a wide range of representations 

of uncertainty in an SSDP model framework.  Faber and Stedinger [2001] found that 

relatively simple uncertainty models with a single branching point performed as well 

as much more complex models which considered hydrologic uncertainty throughout 

the planning horizon for a high altitude system in Colorado.  This chapter extends that 

work to the summer operation of a hydropower reservoir in Maine.  To more readily 

compare the operational efficiency of different models, new metrics for measuring 

operating policy performance are presented. 



When building an uncertainty model for a stochastic system it is critical to 

identify which uncertainties are most critical to system operation on the time scale of 

interest.  Most hydropower operations research has focused on incorporating 

hydrologic uncertainty (see Hejazi et al. [2008] and the sources cited therein), but it 

might be the case that economic uncertainty is more critical to efficient system 

operation.  This is particularly important in de-regulated, competitive energy markets 

like those found in New England.  In Maine where the study basin presented here is 

located, summer flows generally do not vary much day-to-day (see flow auto-

correlation plot in Chapter 6) but the price of energy might fluctuate by 3-4 times over 

a two days. 

Another important consideration is what forecast time scale is of most utility to 

efficient operation of the system.  Many previous dynamic programming studies have 

focused on longer-term operation with time steps of several days, a week, or even a 

month.  For example: Pereira and Pinto [1985], Faber et al. [2001],and Cote et al. 

[2011] consider weekly time steps and Kim et al. [2007] consider monthly time steps.  

With the increase in computational power, SSDP is a feasible tool for short-term 

hydropower operation, with sub-daily time steps.  The shorter time step presents new 

challenges to the formulation of the stochastic model.  Neither the frequency nor the 

duration of forecasts will necessarily align with the time step of the model.  

Furthermore the hydrologic time scales of interest might exceed the time step length of 

the model, but the economic time scale of operation necessitates short time steps. 



The models presented here suggest an SSDP model framework for such short-

term reservoir planning applications.  Chapter 6 explores the question of hydrologic 

time scales of interest in more detail. 

Finally, an important consideration is the value of accurate forecasts.  Rather 

than using an existing forecast product, this study uses synthetically generated 

forecasts with specified duration and precision.  This allows for the study of the value 

of forecasts with different accuracies. 

Section 4.2 SDP Algorithms for Reservoir Operation 

In reservoir operations optimization, the objective is to maximize the expected 

benefit of operating a reservoir over a planning period,  .  In practice, time is broken 

into discrete time steps in which a release decision,   , must be made.  The 

incremental benefit of   ,   , also depends on the current reservoir storage,   , the 

current inflow   , and the energy price   .  SDP models select a sequence of    which 

maximize the expected sum of    from the present time     to the end of the 

planning horizon,     plus a terminal value of storage,  (    ).  The expected 

benefit from the reservoir operation is 

   [∑  (           )

 

   

   (    )] (4-1) 

The expectation is necessary because both    and    are stochastic.  The 

stochastic nature of    is often overlooked, which may or may not be appropriate 

depending on the economic context of the system.  Variability in prices has become 

more important as the energy industry has been deregulated [Aggarwal et al., 2009]. 

Thus large power utilities need to buy energy and reserve power in volatile energy 



markets, rather than implicitly buying it from themselves. The introduction of large 

amounts of wind energy into the energy production mix makes energy markets even 

more variabile [Fernandez, et al., 2012]. Thus there are great opportunities for money 

to be made if hydropower facilities can gauge when to generate power given their 

limited reserves of stored energy, and likely future streamflow levels. 

In any time it is assumed that the state of the system is described by a state 

variable.  In reservoir optimization reservoir storage,   , is usually a state variable.  In 

SDP it is also common to add a hydrologic state variable,   , which might be the 

current period‘s inflow, snow-water equivalent or antecedent soil moisture [Cote et al., 

2011], or an inflow forecast [Stedinger et al., 1984, Kelman et al., 1990; Maceira and 

Kelman, 1991; Karamouz and Vasiliadis, 1992; Tejada et al., 1995; Kim and Palmer, 

1997; and Kim et al., 2007].  Introduction of     allows development of policies that 

use the best available information on the distribution of future streamlows.  An SDP 

formulation of the reservoir operations optimization problem is then given by 

[Stedinger et al., 1984]: 
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where, 

    is the value function in time  , 

    is the reservoir storage in time  , 

    is the hydrologic state variable in time  , 

    is the release in time  , 

   
  is the optimal target release in time  , 



    is the reservoir inflow in time  , 

      is the maximum reservoir storage, 

   is a discount factor, 

 and    is an evaporation/seepage loss term for time  . 

Here the Functional Model (equation (4-2)) provides the value for any state 

(     ) in time  ,   (     ).  The Storage Transition Equation (equation (4-3)) 

describes the change in storage state resulting from the release decision   , inflows 

  , and evaporation/seepage losses   .  Evaporation losses are assumed to be 

negligible in this study.  Equation (4-4) is necessary because in this formulation the 

immediate inflow,   , is not known when the target release,   
 , is selected and that 

target   
 
 may not be feasible. 

Numerical solution of the SDP model generally requires the discretization of 

the state space (     ), and the solution of equation (4-2) for every combination of 

discrete (     ) pairs in every period over the entire planning horizon [Powell, 2007].  

This is done through a recursive process, where equation (4-2) is solved backwards in 

time starting in time step   and ending in time step 1. 

Alternatively, if one assumes current inflow,   , is known, it allows the 

computation of    to remain outside the expectation, and eliminates the need for 

equation (4-4) [Loucks and Falkson, 1970].  Stedinger et al. [1984] makes the 

argument that reservoir operators can adapt their release over the time step to account 

from deviations in inflow, so the assumption that    is known is a reasonable 

modeling approach that is both computationally simpler and more realistic. 
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The expectation in equation (4-5) is computed using the conditional probability 

  ,       -, which is the probability of transitioning into hydrologic state      given 

the current hydrologic state   .  When    is the current reservoir inflow,   , a first-

order Markov process can be used to model future streamflow [Tejada-Guibert et al., 

1995], as discussed in Chapter 2.  In contrast SSDP represents future streamflow with 

an ensemble of scenarios, which are time series of reservoir inflow and other variables 

(like energy price).  This provides a discrete description of streamflow that implicitly 

captures the joint distribution of streamflow, forecasts, and other variables across time 

and space, without requiring an explicit probability distribution [Faber and Stedinger, 

2001]. 

Kelman et al. [1990] present a SSDP model for optimizing hydropower 

operation for a system in California.  Their model (equations (4-7) and (4-8)) takes 

reservoir storage,   , inflow forecast,   , and the current scenario trace as state 

variables (i.e. the hydrologic state,   , is described by both a forecast and a scenario).  

Their SSDP formulation is given by: 
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where   ( ) is the reservoir inflow in time   and scenario  . 
 

(4-8) 



Equation (4-7) is the Decision Model which is used to select an optimal    and 

equation (4-8) is the Simulation Model which is used to assess the benefits of the 

optimal release.  This is a key difference between SSDP and SDP is that SDP uses the 

same model to select an optimal release and assess its benefit (for example equation 

(4-5)).  The Decision Model considers possible transitions between scenario traces, 

whereas the Simulation Model simulates the operational benefits on a single intact 

scenario, thus preserving the persistence of hydrologic inflows.  To numerically solve 

this SSDP model, equations (4-7) and (4-8) must be solved for each discrete pair of 

(     ), for each trace  , for every time step in the planning period. 

The double expectation in equation (4-7) captures both the probability of a 

future forecast given the current forecast and an inflow, and the transition probability 

of a future scenario given the current forecast.  Faber and Stedinger [2001] avoid the 

need for a double expectation and a forecast state variable by utilizing the historical 

forecast series associated with each trace.  Thus the forecast state variable is 

embedded in the scenario state variable, and the scenario state variable becomes the 

sole hydrologic state variable.  This allows a very large reduction in the computational 

demands of the solution algorithm by reducing the dimension of the implicit 

hydrologic state variable (going from   and    to just use of   which has an    with it). 

A reasonable concern is if all combinations of   and    were reasonable, or 

likely.  In many cases the answer is that some were not likely, and thus the modeling 

process was not efficient. For single reservoir systems such as that considered by 

Kelman et al. [1990], this is not particularly important.  However, as we strive to 

model multiple reservoir systems, economy in the computational algorithm becomes 



much more important. The corridor model explored in Chapter 5 addresses this issue 

by seeking to focus modeling efforts on realistic regions of the state space.  The Faber 

and Stedinger [2001] SSDP formulation is: 
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             *     + 
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  (    )    (     ( )   )       (      ) 

             *     + 

(4-10) 

  

where equation (4-9) is the SSDP Decision Model and equation (4-10) is the SSDP 

Simulation Model.  This is the SSDP formulation which is adopted in this study.  Here 

 
   

 is computed using   ,   - which is the probability of transitioning into trace   in 

time     given the system is in trace   in time  .  The computation of this probability 

is described in Section 4.3.  Faber and Stedinger used ESP forecasts and historical 

inflows as SSDP scenarios, whereas this study uses only historical inflow series as 

scenario traces. 

Implementation of SDP and SSDP Policies 

The backwards recursive SDP and SSDP procedures described above provide 

an ―optimal‖ policy for each system state at discrete time steps over the planning 

period.  To develop these policies numerically the storage state space is often 

discretized, and the ―optimal‖ policy is computed for each discrete state at each time. 

In actual practice, the reservoir is unlikely to reside only in the discrete points 

which happened to have been sampled, and will more likely fall between the discrete 

points.  One solution to this problem is to interpolate within the policy table, or to fit 

some simple function to that table.  Another approach is re-optimization which selects 



an optimal release given the current state by performing a one-step SDP optimization 

with the current reservoir conditions (Tejada-Guibert et al., 1993).  Equation (4-11) 

describes the re-optimization step. 

   
  

{  (        )    
       

,    (      )-} (4-11) 

 

where    is the current hydrologic information.  Tejada-Guibert et al. [1993] 

compared the performance of models which interpolate in the policy table to select an 

optimal release and models which use re-optimization.  They found that re-

optimization generally results in better operation, particularly when coarse grids were 

used in the initial backwards moving that derived the future value function.  

Furthermore they found that use of re-optimization improved the reliability of meeting 

both energy and water targets.  It also allows for the revision of the benefit function 

for the current period to reflect special circumstances such as temporary fish flow or 

water quality requirements, or machinery that is down or inoperative due to 

maintenance or failures. 

The SSDP model described in equations (4-9) and (4-10) is used in this study 

to compute the future value function, and the re-optimization model described in 

equation (4-11) is used to select a release when simulating system operation.  The 

procedure used is described in detail in Section 4.4 

Section 4.3 Transition Probabilities and Representations of Uncertainty 

An important consideration for the SDP, SSDP, and re-optimization models 

described in the previous section is how the expectation of future benefits should be 

computed.  The SSDP model used in this study (equation (4-9) and (4-10)) describes 



possible future events with a series of potential realizations or scenarios which might 

occur with corresponding probabilities.  The resulting representation of uncertainty 

can vary greatly depending on the structure and source of the scenarios (how many are 

chosen, and when transitions between scenarios are considered), and the method used 

to assign a probability of each scenario or scenario transition.  This section discusses 

the different transition probability cases for the SSDP and re-optimization models 

described in the previous section. 

The expectation in equation (4-9) employs the probability of transitioning from 

scenario trace   in time   to scenario trace   in time    , denoted   ,   -.  If one 

considers   potential scenarios, then the   ,   - form an     transition matrix 

whose (   ) element is   ,   -.  The choice of transition matrix dictates the 

representation of uncertainty in the transitions in the optimization in equation (4-9). 

The simplest choice of transition matrix is the identity matrix, whose elements 

are 1 on the diagonal and 0 otherwise.  This means that transitions between scenarios 

are not considered, and it is equivalent to performing an independent deterministic 

optimization on each of the traces, which in our case are the historical series.  This 

will be referred to as the ―I‖ case following Faber and Stedinger, [2001]. 

Alternatively, if every element of the transition matrix is    , then every 

transition is modeled as being equally likely in the next time step.  This will be 

referred to as the ―M‖ case.  This case recognizes uncertainty, but neglects any 

hydrologic persistence, because each scenario transition is equally likely at each step, 

despite how dissimilar two scenarios might be [Faber and Stedinger, 2001]. 



However, in some instances the ―M‖ case is correct.  For example, were one to 

use ESP traces as scenarios, then each scenario is initially equally likely by 

construction.  If the ―M‖ case is used at the time a forecast is made, it will properly 

represent the persistence in flow because each ESP scenario is an intact hydrograph.  

If the ―M‖ case is used after the ESP forecast date then persistence will be 

misrepresented. 

Transition Probabilities based on Forecasts 

An attractive alternative to the ―I‖ and ―M‖ cases is to use the best available 

hydrologic or energy price forecast,   .  This will be referred to as the ―F‖ case. 

Stedinger, et al. (1984) employ the ―F‖ case by using an inflow forecast for the 

current time as a hydrologic state variable in their SDP model for the High Aswan 

Dam in Egypt (i.e.         in equation (4-5)).  The expectation in (4-5) requires two 

sets of transition probabilities: 

1.   (       ) which is the probability of a future flow given a flow forecast. 

2.   (          ) which describes the evolution of forecasts given the current 

inflow and forecast. 

 

Note that here    is the streamflow forecast of     . 

Kelman, et al. [1990] take a similar, Bayesian approach to the computation of 

the expectations in equation (4-7).  The duel expectation in equation (4-7) requires two 

probabilities: 

3.   (    ) which is the probability of sceneraio trace   given a flow forecast 

4.   (         ) which describes the evolution of the forecast given the 

current scenario and the current forecast. 

 



Faber and Stedinger [2001] avoid the need for a double expectation by 

embedding the historical forecast series in each trace as opposed to evaluating a 

forecast hydrologic variable at discrete points across each scenario trace (as in Kelman 

et al., [1990]).  Kim et al. [2007], Eum et al. [2010], Vicuna et al. [2010], and Cote et 

al. [2011] also take the same approach as Faber and Stedinger [2001].  Because each 

trace has a unique inflow and forecast series, the probability of transitioning from 

trace   to trace   is modeled as the probability of experiencing the flow volume from 

trace   (    ( )) given the forecast of     from trace  :   

  ,   -    ,    ( )   ( )- (4-12) 

 The probability of a flow volume      given forecast    can be computed using 

Bayes theorem (Faber and Stedinger,2001): 

  ,    ( )   -  
 ,       ( )- , -

∑ ( ,       ( )- , -) 
   

 (4-13) 

where  ,       ( )- is the likelihood function (i.e. the probability of a forecast given 

the actual flow volume), and  , - is the prior probability of scenario trace  , assumed 

to be      before the forecast is announced.  A different prior might be used if 

scenarios have been combined.  The likelihood function  ,       ( )- can be obtained 

by regressing   ( ) on     ( ) [perhaps employing some transformation] for each 

scenario trace   and assuming normal residual error.  Thus, 

 ,       ( )-   (   (    ( ))   
 ) (4-14) 

where    (    ) is the regression prediction    given      and   
  is the residual error 

variance.  Use of a logarithmic transformation, would yield a multivariate lognormal 

distribution.  Equations (4-12), (4-13), and (4-14) provide the needed transition 



probabilities to solve the backwards recursive SSDP model in equation (4-9).  For the 

forward-moving re-optimization step (equation (4-11)), the probability of transitioning 

into any trace based on the current hydrologic or market conditions is needed.  In this 

study, this is described by a flow volume forecast   .  The needed probability is given 

by 

  ,    -   ,  ( )   - (4-15) 

Figure 4-3 plots   ,   - for the F and M cases.  The I case would be 

zero over all the scenario   inflows, except the inflow for sceneraio   where it 

would be 1.  

 
Figure 4-1: Probability of transitioning from scenario   to scenario   for the F 

and M cases vs. the streamflow volume in scenario   
 

Stedinger and Kim [2010] develop a PDF ratio procedure which is 

designed to re-weight ESP traces given new forecast information.  That 

procedure is both simple, is applicable to multi-variate forecasts (described in 

the next section), and makes fewer assumptions.  The Appendix of that paper 
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compares the PDF ratio procedure to that proposed by Faber and Stedinger 

[2001] and adopted here, and finds the two approaches are identical for the 

normal distribution case with an informative forecast. 

Transition Probabilities based on Multiple Forecasts 

The previous discussion has considered use of a single forecast product, but it 

might be the case that multiple forecast products are available.  For example, there 

might be an 18-hour forecast and a weekly forecast.  The following discussion 

provides a Bayesian framework for incorporating multiple forecasts in the scenario 

transition probability following a procedure laid out by Faber (2001) for transition 

probabilities for multivariate ESP forecasts. 

Each scenario now consists of a single streamflow trace that has multiple 

forecast for each time period considering possible streamflow volumes for different 

forecast durations).  ⃑  and  ⃑⃑ are now   dimensional vectors, where   is the number of 

forecasts included in the analysis.  ⃑   represents the actual flows that occur over the 

specified time periods.  Let ( ⃑ ( ))  denote the     forecast (       ) of scenario   

in time  .  Likewise ( ⃑    ( ))  is the actual inflow volume for hydrologic scenario   

over the duration of ( ⃑ ( ))  (e.g. 18-hours, 7-days, etc).  For simplicity, the 

discussion will focus on the case that    .   

Equation (4-12) becomes 

  ,   -    [ ⃑    ( )| ⃑ ( )] (4-16) 

and the Bayesian liklihood in equation (4-14) becomes 

 [     ⃑    ( )]     .  ⃑⃑⃑⃑ 
 . ⃑    ( )/   / (4-17) 



where   ⃑⃑⃑⃑ 
 . ⃑    ( )/ is a 2 dimensional mean vector and   is a 2×2 covariance matrix.  

Again , some transformation may be employed. As in the univariatie case in equation 

(4-14), the parameters of the multivariate normal distribution in equation (4-17) can be 

estimated using regression.  This is done by regressing each forecast ( ⃑ ) 
 on its 

corresponding ( ⃑    ) 
.  It might be adventageous to include additional flow-durations 

as explainitory variables in the regresssion.  For instance,  one can regress ( ⃑ ) 
 or 

( ⃑ ) 
 on ( ⃑    ) 

 AND ( ⃑    ) 
. Whether or not this is advisable likely depends on the 

number of historical forecasts available, and the relative duration of the different 

forecasts. 

Krzysztofowicz and Watada [1986], Krzysztofowicz and Reese [1991], and 

Krzysztofowicz [1999] provide an elegant Bayesian alternative to the regression 

approach taken here to describe forecast-streamflow uncertianty. 

A Special Case of Using known current inflows 

As discussed in Section 4.2, the SSDP formulation used in this study assume 

inflows in the present time are known (see equations (4-9) and (4-10)).  Thus, one 

might choose to condition the transition probability on a forecast    AND the known 

current inflow   .  This can be computed as a special case of the multi-forecast 

computation discussed in this section.  Equation (4-16) now becomes 

  ,   -    ,    ( )   ( )   ( )- (4-18) 

Note that there is only a single forecast, but the probability is now also conditioned on 

the current inflow.  The Bayesian likelihood in equation (4-17) becomes 



 ,          ( )-     (  ⃑⃑⃑⃑ 
 (    ( ))  ) (4-19) 

To compute the elements of the two dimensional conditional mean vector 

  ⃑⃑⃑⃑ 
 (    ( )), regression is used.  In this case    is regressed on     ( ), and    is 

regressed on   .    is estimated from the residual errors and their correlation, as 

demonstrated below. 

Sample Computation for Multi-forecast Liklihood 

 

This section contains an example of the computation for the multi-forecast 

likelihood.  Suppose that we wish to compute   ,   - using both a forecast    and the 

current inflow   .  In order to compute the Bayesian likelihood in equation (4-19), we 

would at least regress    on      and    on     .  Let 

  [ ⃑    ⃑    ] 
 

(4-20) 

where  ⃑⃑  is an   dimensional column vector of ones, and  ⃑     is an   dimensional column 

vectors containing the flow volume for the forecast duration.  A linear model is 

assumed: 

       (4-21) 

where   is a     vector of model parameters and   is an   dimensional vector of 

errors which are assumed to be normally distributed.  The least-squares estimates of   

is 

  (   )      (4-22) 

and the associated residual error variance is 



  
  

(    ) (    )

   
 

   

   
 (4-23) 

where   is an   dimensional vector of residuals, and     in this case. 

The model parameters    and    are then defined as 

   (  
   )

    
     

and 

   (  
   )

    
  ⃑   

(4-24) 

respectively.  The associated residual vectors are    and    respectively, which have 

residual error variance    
  and    

  respectively (as computed using the formula in 

equation (4-23)).  These residual error variances are combined to form   from the 

multivariate Bayesian likelihood in equation (4-19): 

  *
   

  (     )   
   

 (     )   
   

   
 + (4-25) 

where  (     ) is the correlation of the residuals from model 1 and model 2. For a 

specific     ( ),   ⃑⃑⃑⃑ 
 (    ( )) is computed as 

  ⃑⃑⃑⃑ 
 (    ( ))  [

  ( )      ( )   ( ) 

  ( )      ( )   ( )
] (4-26) 

Section 4.4 Proposed Algorithm Structure 

Past applications of SSDP to reservoir operation have considered seasonal or 

long-term planning problems with weekly time steps (Kelman et al., 1990; Faber and 

Stedinger, 2001; Cote et al., 2011).  This work considers a seasonal planning problem 

(summer operations), but is concerned with short-term (sub-daily) planning.  To 

accommodate the short-time step length, a new SSDP approach is used, as described 

in this section.  A new approach is required because the short-time step, necessary to 



capture the dynamics of the energy market, lengths no longer necessarily correspond 

to the time scale of the hydrologic uncertainty.  This raises the question, how should 

uncertainty be modeled in a stochastic model to best capture hydrologic and market 

variability while remaining computationally efficient. 

First, we make the distinction between the uncertainty time step and 

operational time step of the model.  In SSDP, the uncertainty time step is the length of 

time between scenario transitions.  The operational time step is the temporal resolution 

of the model of system operation.  In most SSDP applications the operational and 

uncertainty time steps are the same so no distinction is needed. 

In this work, the uncertainty time step changes over the course of the planning 

period.  Specifically, a 6-hour uncertainty time step is used for the near term (the next 

week), and a weekly uncertainty time step is used for the long-term.  Let   be the 

index for the near-term 6-hour uncertainty time step and   be the index for the weekly 

uncertainty time step. 

In most SSDP applications the uncertainty and operational time steps remain 

constant over the planning horizon, whereas in this work the uncertainty time step 

changes over the planning horizon.  Thus, we make the distinction between the 

planning horizon and the uncertainty horizon.  The planning horizon is the point in 

time where the planning model terminates and assumes a terminal value function.  The 

uncertainty horizon is the point in time where the uncertainty time step changes 

length.  If the uncertainty time step is constant then no distinction is needed.  Let   be 

the index of the planning horizon and   be the index of the uncertainty horizon. 



Finally, it is necessary to define the SSDP model frequency, which is the 

frequency with which the SSDP model is re-run or updated.  This should correspond 

to the frequency with which knowledge of the system becomes available.  In the multi-

tiered models, like the one described in this section, different parts of the same model 

might have different model frequencies.  That is to say that one might re-run a short-

term planning model every day, but only re-run a long-term planning model once per 

week. 

The proposed SSDP algorithm has two parts: a long-term model and a short-

term model.  Figure 4-2 provides a diagram of the proposed SSDP model structure. 

 
Figure 4-2: Structure of the Proposed Adaptive Time Step SSDP Model 

 

The long-term model has a weekly uncertainty time step, a 6-hr operational 

time step and a 3-month planning horizon.  The frequency of the long-term model is 
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once per 3-month planning period.  Equations (4-27) and (4-28) describe the long-term 

model: 
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The short-term model has a 6-hr uncertainty time step, a 6-hr operational time 

step, and a two week planning horizon.  The frequency of the long-term model is once 

per week.  Equations (4-29), (4-30), and (4-31) describe the short-term model: 
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(4-31) 

where   is the index of   corresponding to the time    , i.e. two weeks from the 

time    .  Equation (4-31) is the link between the long-term and short-term models: 

it assures that terminal value from short-term model is provided by the future value 

function of the short-term model.  Thus the entire algorithm can be viewed as a single 

SSDP model with a constant operational time step, and an adjustable uncertainty time 

step. 

There was concern that some error might be introduced into the short-term 

model via the use    as a terminal value function because of small inconsistencies in 

how the short- and long-term models represent uncertainty.  For example, if    



undervalues water storage, then we would expect the short-term model to try to drain 

the reservoir over each planning period, resulting in a myopic ‗saw-tooth‘ storage 

time-series. These errors were expected to be small, and to predominantly affect the 

end of the short-term planning horizon.  As a simple solution, the short-term model is 

run for an extra week which is disregarded when assigning the    for the current 

week. 

When simulating system performance the re-optimization approach described 

in Section 4.2 is taken: 

   
  

{  (        )    
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A 6-hr time step is used in simulation, and the re-optimization model uses the value 

function from the short-term model as its terminal value. 

Section 4.3 discusses transition probability cases and the computation of 

transition probabilities using forecasts.  No real forecasts were available for this study, 

so a statistical procedure was developed for generating inflow volume forecasts with a 

specified precision and duration (discussed in Appendix).  It is assumed that flow in 

the next 6-hours is known, so forecasts start on hour 7 and run to end of forecast 

duration (i.e. a 6-hour forecast duration would produce a forecast for hours 7-12).  An 

important consideration is what forecast duration is used.  Chapter 6 describes some 

metrics which can be used to help an analyst determine the forecast duration which is 

important for a given system.  Through the analysis in Chapter 6 it was determined 

that a 24-hour forecast duration is appropriate for the hydrology of this study basin. 



Section 4.4.1 Comparison of Proposed Algorithm and Past Work 

Pairing a long-term and short-term models in a single planning model 

framework is not a new concept and is widely applied in practice [Yeh, 1986].  For 

example, Yeh [1992] used such an approach to optimize the hourly operation of a 

hydrothermal power system with a yearly planning horizon.  That algorithm consists 

of a monthly model with a planning horizon of one year, a daily model with a planning 

horizon of one month, and an hourly model with a planning horizon of one week.  The 

model frequencies correspond to their time step.  The shorter-term models represent 

the system in more detail than the longer-term models (Yeh, 1992).  There are many 

other examples [Bechard, 1981; Dudley, et al., 1973; Shelton, 1979; Vedula, et al., 

1996; Vedula, et al., 1992; Wunderlich, 1979; Yeh, 1979].  The approach proposed in 

this section is unique for two reasons: 

5. Because the same modeling approach is taken in the long- and short-term 

models the algorithm can be formulated as a single model. 

6. The long-term model passes a value function rather than constraints to the 

short-term model. 

 

The linking of models in a multi-tiered modeling approach is a non-trivial 

consideration.  One approach is for the longer-term models to pass explicit release 

targets (constraints) to the shorter-term models (see Approach 1 in Figure 4-3).  For 

example a monthly model might select an optimal release for each month, while a 

weekly model distributes that release within the month.  Such an approach ensures that 

the resulting optimal policy is consistent across the models and stable through the 

planning horizon (i.e. not engaging in myopic behavior at model boundaries).  Yeh 

1992 took this approach, as have others [Bechard, 1981; Dudley, et al., 1973; Shelton, 

1979; Vedula, et al., 1996; Vedula, et al., 1992; Wunderlich, 1979; Yeh, 1979].  A 



potential problem with this approach is that the longer-term policy may not be optimal 

or even feasible in the short-term because it uses a coarser representation of the system 

and uncertainty. 

 
Figure 4-3: Alternative approaches to time decomposition for reservoir operations 

models. 

A second approach is for the longer-term models to pass the terminal value of 

storage to the shorter-term models (see Approach 2 in Figure 4-3).  This approach 

frees the short-term model from meeting release constraints imposed by a long-term 

model, potentially resulting in improved policies.  This approach is closely related to 

stochastic dual dynamic programming (Goor, et al., 2011; Pereira, et al., 1985; 

Timant, et al., 2007), which relies on Bender‘s decomposition (discussed below). 

A potential problem arises if the terminal value function provided to the short-

term model is poor: the short-term model might engage in myopic behavior.  For 

example, if a monthly model consistently underestimates the terminal value of storage 

at the end of each week, a nested weekly model will attempt to draw the reservoir 

down in each week.  To avoid this it is critical that the value function of the long-term 

model is sufficiently accurate. 

The two approaches can be understood by considering similar decompositions 

in linear programming.  The Dantzig-Wolfe decomposition is a method for solving 



large linear programming problems with a special structure.  The method decomposes 

the original problem into a master program and independent subprograms.  The master 

program sets parameters for the subprograms, which in turn pass their solution back to 

the master program (Ladson, 1970 p. 144).  This is somewhat analogous to the first 

approach to multi-tiered modeling, in which the long-term models supply a total 

release volume to the short-term model.  On the other hand, Benders‘ partitioning 

algorithm divides linear (or nonlinear) programming problems into two stages 

(Ladson, 1970 p. 370).  The stage-two model can be thought of as providing a terminal 

value for the stage-one model.  This is similar to the second approach to time 

decomposition, in which the long-term model passes the terminal value of storage to 

the short-term model. 

Section 4.4.2 Representations of Uncertainty for the Proposed Algorithm 

Figure 4-1 shows an example of the transition probabilities assigned to 20 traces 

given the M and F transition matrix cases described above.  A case must be chosen for 

each step of the proposed algorithm described in this section.  A wide variety of 

representations of uncertainty can be generated by adopting different transition cases 

for each of the algorithm models (i.e. the long-term, short-term, and re-optimization 

models).  For example, one might choose the ―I‖ case for both the long- and short-

term models, then the ―M‖ case for the forwards re-optimization model.  The resulting 

algorithm would referred to as the I/I/M configuration.  Figure 4-4 provides an 

example of a few uncertainty cases. 



 
Figure 4-4: Uncertainty structures from various configurations of the time 

decomposition algorithm. 

In the I/I/F case it is assumed that uncertainty is resolved after the immediate 

decision is made.  This could be solved with a complex SSDP model, or with a 

simpler stochastic programming scheme.  The I/F/F scheme considers uncertainty 

through the end of the current week, but then assumes that uncertainty has been 

resolved at the end of the current week.  The F/F/F model considers uncertainty in the 

current week and also on a week-to-week basis. 

By comparing various model configurations we can draw general conclusions 

on the utility of different representations of uncertainty for hydropower planning in the 

variable hydrology of Northern New England. 

Section 4.5 Metrics for Measuring Algorithm Performance in Hydro Studies 

Many hydropower studies, including this chapter, compare the performance of 

different algorithms (or configurations of the same algorithm) in optimizing a study 
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system.  The idea is to simulate system operation over a number of years or seasons 

using each of the candidate algorithms and to compare the results against some ideal.  

In the case of hydropower operation it is possible to identify a ‗Perfect‘ operating rule 

by performing a deterministic DP on the simulation period.  This is equivalent to the 

I/I/I case from Section 4.4.  Thus, a natural metric of model performance is the 

performance ratio: 

  ( )  
 , ( )-

 , (       )-
 (4-33) 

where  , ( )- is the average benefits achieved using algorithm   and 

 , (       )- is the average benefits from the Perfect decision rule.     will range 

from 0 to 1; the better the algorithm performance the higher the PR will be.  As is 

shown in 0 of this Chapter, PR is often quite high, even for unsophisticated 

algorithms: in some cases in 0 deterministic models achieve a       .  The problem 

is that for many systems and in many seasons any reasonable policy will achieve a 

good performance: possible improvements will be relatively small, though not 

insignificant to the system owner.  Thus a metric is needed which accounts for the 

baseline benefits which any unsophisticated policy will achieve. 

 To estimate this baseline performance we define run-of-river (ROR) operation.  

In this case it is assumed that the reservoir is held at its maximum allowable elevation 

and can only pass the inflow in any time period.  For a reservoir with active storage 

this would be the most naïve but rational policy possible.  For a true run-of-river (see 

discussion in Chapter 6) this operation will be the only possible operating policy.  

Having defined ROR operation, we define the algorithm efficiency as: 
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 (4-34) 

 

where  , (   )- is the mean benefits of ROR operation over the simulation period.  As 

shown in 0, by considering improvements over an appropriate baseline the difference between 

competing algorithms becomes more distinct and compelling. 

Chapter 6 of this thesis describes new metrics for diagnosing reservoir 

behavior and classifying reservoir operating types.  Two metrics which are applied 

here are storage days (      ) and powerhouse days (      ) defined as: 

       
  

    
 (4-35) 

and 

       
  
   

 (4-36) 

respectively, where    is the reservoir active storage,      is the average daily inflow, 

and     is the volume of water which can be passed through the powerhouse turbines 

in a day.         is the number of days of average inflow the active storage can hold. 

       is the number of days it would take to drain the active storage through the 

powerhouse turbines. 

Section 4.6 Test Problem 

To examine the value of various representations of uncertainty and the value of 

forecast precision a single reservoir test problem based is presented.  This section 

describes the system characteristics, and the economic objective employed in the tests 

presented in Section 4.7. 



Section 4.6.1 Study Basins 

The proposed SSDP algorithm described in Section 4.4 is applied here to 

summer operation of a single hypothetical reservoir based on Harris Station on the 

Upper Kennebec River in Maine, USA.  Chapter 3 describes the Kennebec River 

system and hydrology in more detail and Figure 4-5 provides a schematic of the 

hypothetical system lay-out.  The total drainage area is 1365 square miles.  The actual 

storage of Harris Station is 2.0 billion cubic feet (BCF), the actual generation capacity 

is 89 MW, but a wide range of system configurations are considered (see Table 4-1).  

This will allow the study of a wide range of ‗types‘ of hydropower systems (for more 

discussion see Chapter 6).  Figure 4-6 plots the range of        and        for the 

systems considered in this study. 

In reality there are two large (mostly-storage) reservoirs upstream of Harris 

Station: Brassua Lake and Moosehead Lake.  These are neglected from the reservoir 

model in order to make short-term operation of this reservoir a more interesting test 

case.  It is assumed that the entire 1365 square miles basin produces unregulated 

inflow.  Additionally, many operational constraints on storage usage are relaxed.  It is 

assumed that by October 31 the system must be drawn down to meet flood storage.  

Operation is modeled from May 1 till the end of October.  This corresponds roughly 

with the summer operational period in Maine. 



 
Figure 4-5: Schematic of a Hypothetical Single Reservoir System 

 

Natural inflows were not available for any of the reservoirs on the Kennebec 

River, so flows were synthetically generated from a ‗reference‘ record using a simple 

pro-ration method.  This is discussed more in Chapter 3.  To generate a sufficient 

number of scenario traces, the 20-year historical record was ‗shifted‘ forward one 

week and back one week to generate a total of 60 ‗historical‘ traces for the SSDP 

algorithm. 

Table 4-1: Single Reservoir System Configurations 

Name Storage 

Capacity (BCF) 

Turbine 

Capacity (cfs) 

(Small, 2000) 1.97 2000 

(Mid, 2000) 9.85 2000 

(Big, 2000) 19.70 2000 

(Small, 3500) 1.97 3500 

(Mid, 3500) 9.85 3500 

(Big, 3500) 19.70 3500 

(Small, 5000) 1.97 5000 

(Mid, 5000) 9.85 5000 

(Big, 5000) 19.70 5000 

(Small, 8300) 1.97 8300 

(Mid, 8300) 9.85 8300 

(Big,8300) 19.70 8300 
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Figure 4-6:  Range of the        vs.        of the test systems considered. 

Section 4.6.2 Economic Objective 

The system operational objective is to maximize revenue: 

   
  

{∑  

 

   

} (4-37) 

where the incremental benefit in each time,     is a function of   , the current and next 

time period‘s reservoir storage,    and      respectively, and the energy price profile 

in the present time.  A time step of 6-hours is considered here.  The incremental 

benefits are computed as: 

   
   [    (  (     )   (       ))]

 
    (     ),                  

   

 
 

    ,                                                                             otherwise 
(4-38) 

 

where   is an efficeny factor,   is a unit conversion factor,    is the net head which is 

a function of storage and release, and     is the integral of the energy price profile, 

which is computed as: 

    ∫       ( )   

  

 

    (  ⁄ )    (   ) (4-39) 
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where   and   and   are parameters of the price model,    is the generation in time  , 

and        is the price profile: 

      (  )        (   ) (4-40) 

 

       varies continuously between (   ) and (   ) as a function of the power 

generated   .  Figure 4-7 plots        versus   .  This model does not imply that the 

hypothetical one reservoir system can affect price, which would be unreasonable.  

Rather, this model reflects the fact that system operators will spread generation across 

the highest price hours first and will only generate during the lowest price hour in any 

time step if it is necessary or economically beneficial to do so.  Thus, rather than 

assuming a constant release over the period, we assume the operators will start by 

generating only in the highest price hours. 

 
Figure 4-7: Price profile versus generation 

The real Kennebec hydropower system is part of the ISO New England market.  

In that market prices vary throughout the day and across days.  Two price schemes are 

considered in the following runs.  To isolate the effect of hydrologic processes on the 

system a ‗mean price‘ scheme is used.  In this case each day is divided into three ‗on-

peak‘ periods and one ‗off-peak‘ period.  Every ‗on-peak‘ period has the same price 
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parameters  ,  , and   and each ‗off-peak‘ period has the same price parameters  ,  , 

and  .  Price variability is important to the operation of the real system, so a ‗real 

price‘ scheme is also used.  In this case each time period has a unique  ,  , and   

based on real day-ahead price data from New England ISO. 

A price profile is developed for each 6-hour period over the planning period.  

Each day therefore consists of four 6-hour timesteps.  As explored in Chapter 6, there 

is a distinct diurnal cycle in the energy price signal, corresponding to ‗on-peak‘ and 

‗off-peak prices.  This cycle is reflected in both the ‗mean price‘ and ‗real price‘ 

schemes.  For the ‗mean price‘ scheme in each day there are three ‗on-peak‘ periods 

with the same price profile and one ‗off-peak‘ period with a price profile.  These 

profiles are the same each day.  In the ‗real-price‘ scheme the price profiles are 

selected based on New England ISO price data associated with each simulation period. 

Section 4.6.3 Rule Curve Operation 

This research focuses on the benefit of forecast precision and representations 

of uncertainty.  A valid question is whether uncertainty need be considered at all: 

would a deterministic optimization approach perform as well as the stochastic 

approach?  To address this questions, we define rule curve operation (RCO).  In RCO 

a deterministic DP is run on the mean of the historical traces, then an actual release is 

chosen for each stage of each trace using re-optimization (see Figure 4-8).  This 

implicitly provides a rule curve in that for each time-step and for each reservoir 

storage state, there is a deterministic rule which provides an optimal decision.  The 

RCO algorithm is a reasonable deterministic approach to compare against the 

stochastic algorithm described in Section 4.4. 



 
Figure 4-8: Structure of the RCO algorithm 

Section 4.7 Results and Discussion 

To study the utility of various representations of uncertainty to hydropower 

operations optimization, the operation of the systems described in Section 4.6.1 was 

simulated over 60 summer seasons of operation using various configurations of the 

algorithm described in Section 4.4. 

A second research question is how the precision of forecasts affects the utility 

of different model configurations.  To examine this, the system operation is simulated 

using forecasts with varying precision.  These forecasts are generated using the 

procedure described in the Appendix of this chapter. 

A third research question is how the relative size of the turbine and storage 

capacity affects the answers to the first two research questions.  This might be viewed 

as comparing different systems, or representative of the same system but with different 

seasonal hydrology. 

To address these three questions, for both the ‗mean price‘ and the ‗variable 

price‘ schemes the following runs were completed for each of the 12 hypothetical 

systems in Table 4-1. 

The I/I/I runs represent operation with ―perfect‖ foresight and will be a bench 

mark for measuring algorithm performance.  By comparing I/I/F runs with I/F/F and 
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F/F/F runs with the same forecast precision and duration we can explore how the 

representation of uncertainty resolution affects simulated system performance.  By 

comparing I/I/F models or F/F/F models with varying precision but fixed duration, we 

can explore the value of forecast precision to system operation.  Comparing the 

performance of each algorithm configuration on different system configurations will 

allow more general conclusions to be drawn about the value of forecast precision for 

different types of hydropower systems. 

Table 4-2: Proposed runs for Time Decomposition Model 

 

Forecast 

Precision Price Scheme 

I/I/I - Mean, Variable 

I/I/M - Mean, Variable 

I/I/F 75, 85, 95 Mean, Variable 

I/M/M - Mean, Variable 

I/F/F 75, 85, 95 Mean, Variable 

M/M/M - Mean, Variable 

M/F/F 75, 85, 95 Mean, Variable 

F/F/F 75, 85, 95 Mean, Variable 

RCO - Mean, Variable 

Mean Price Scheme 

Each algorithm described in Table 4-2 was run for each system model in Table 

4-1 for the mean price scheme.  A full table containing these results is provided in the 

Appendix of this chapter. Figure 4-9 plots the    of each algorithm considered for the 

(Big, 8300) system configuration for the mean price scheme.  Incredibly, ROR 

operation achieves a    of about 0.84.  This is because with large turbine capacity the 

reservoir rarely spills.  This suggests that the room for improvement in for this system 

(Big, 8300) is relatively small, and will mostly come from shifting generation into the 



‗on-peak‘ periods.  Improvements are not easily observed from    in such cases.  

Figure 4-10 plots the     for the same algorithms and system. 

 
Figure 4-9:  PR for (Big, 8300) system for various algorithms, mean price scheme. 

 

 
Figure 4-10:      for (Big, 8300) system for various algorithms, mean price scheme. 

When the ROR baseline is removed, the differences in algorithm performance 

become more apparent.  Figure 4-11 plots the     for a variety of runs, with a fixed 

storage (Big) and varying turbine capacity.  Note that as turbine capacity increases, the 

efficiency decreases.  This is because as the turbine capacity increases, the ROR 

operational run spills less and the room for improvement becomes smaller. 
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Figure 4-11:     for Big reservoirs with varying turbine capacity for various 

algorithms, mean price scheme. 

The groupings (besides RCO) in Figure 4-11 correspond to the same 

algorithm, but with increasing information about the next day‘s flow (i.e. higher 

forecast precision).  Interestingly, the efficiency of the systems with smaller turbine 

capacity (2000, 3500, 5000) are essentially unaffected by the precision of the forecast.  

In contrast the performance of system (Big, 8300) improves with increasing forecast 

precision.  When the turbines are small, the reservoir is relatively constrained and is 

limited in how much it can shift across days. 

Figure 4-12 plots the (Big, 8300) results from Figure 4-11.  Compare the I/I/M 

case to the I/I/F75 case.  By employing a poor forecast the efficiency is raised from 

0.65 to 0.72.  Furthermore as the precision of the forecast increases, so too does the 

algorithm efficiency, and a paired t-test (which is reported in Table 4-3) shows that the 

improvements are statistically significant.  These results are typical of all the 

algorithms tested on system (Big, 8300); i.e. improvement in forecast precision at any 

stage of the algorithm described in Section 4.4 precipitates a statistically significant 

improvement in system operational efficiency. 
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Figure 4-12:     for (Big, 8300) system for select algorithms, mean price scheme 

Table 4-3:  P-values of a two-sided paired t-test of the difference between the 

simulated benefits of several algorithms on the (Big, 8300) system. 

 I/I/F75 I/I/F85 I/I/F95 

I/I/M 0.004 0.002 0.000 

I/I/F75  0.000 0.000 

I/I/F85   0.000 

 

The finding that efficiency decreases with increased turbine capacity was 

shown across the range of storages considered in this study, as shown in Figure 4-13 

and Figure 4-14.  As the storage capacity becomes smaller, the efficiency of systems 

with smaller turbine capacity becomes sensitive to re-optimization forecast precision.  

For example, the efficiency in system (Small, 3500) significantly (statistically) 

improves with increased forecast precision.  However, the efficiency of system (Mid, 

3500) does not improve (statistically) with increased re-optimization forecast 

precision. 

To more clearly understand the role storage has on efficiency, Figure 4-15 

plots efficiency for various optimization model configurations for systems with 

different storages, but with a fixed turbine capacity.  Note that as storage increases, so 
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too does efficiency.  This was true across a wide range of algorithm configurations 

tested. 

 
Figure 4-13:     for Small reservoirs with varying turbine capacity for various re-

optimization forecast precision, mean price scheme. 

 

 
Figure 4-14:     for Mid reservoirs with varying turbine capacity for various re-

optimization forecast precision, mean price scheme. 

The efficiency increases with reservoir storage because larger reservoirs have 

greater operational flexibility to absorb high flows and shape releases to generate ‗on-

peak.‘  As storage becomes smaller, the system has less flexibility.  If a reservoir had 

no storage then it would be ‗run-of-river‘ and there would be no opportunity to 
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improve operations (i.e.     would be zero).  Efficiency was found to increase with 

storage in every system tested.  Plots like Figure 4-15 for other storages are available 

in the Appendix of this chapter. 

 
Figure 4-15:     for Turbine Capacity (8300 cfs) with varying storage for various 

algorithms, mean price scheme. 

Having explored how the relative size of the turbine and storage capacity can 

affect the algorithm efficiency and the effect of re-optimization forecast precision, we 

look closer at how uncertainty should be modeled.  One expects that increased 

uncertainty model sophistication should improve model efficiency.  In their single-

reservoir example in Colorado, Faber and Stedinger [2001] found that a simple two-

stage model performed as well as more sophisticated multi-stage models.  We expand 

that analysis here by considering a wide range of system configurations. 

First, we must describe more thoroughly what we mean by uncertainty model 

sophistication.  The least sophisticated model is I/I/M.  This model has only a single 

branching point, and makes no use of forecast information.  Slightly more 

sophisticated are the I/M/M and M/M/M models.  While these models do not use 

forecast precision, they do recognize uncertainty (through scenario transitions) after 
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the end of the current time step.  The I/I/F model is considered more sophisticated than 

the M models because it uses forecast information about future hydrologic conditions.  

The I/F/F model is more sophisticated because it also uses forecast information, but 

considers uncertainty (through scenario transitions) through the end of the current 

week.  Finally, the F/F/F model is the most sophisticated model considered.  One 

expects that the model efficiency should be non-decreasing with increased uncertainty 

model sophistication: 

   (   ⁄⁄ )     (   ⁄⁄ )     (   ⁄⁄ )     (   ⁄⁄ ) 

First, consider the effect of uncertainty model sophistication on the (Big, 8300) 

system which has both large storage and turbine capacity.  Figure 4-16 plots the 

efficiency of select algorithms with increasing uncertainty model sophistication.  Note 

that in this case increased uncertainty model sophistication always results in improved 

efficiency (F/F/F efficiency is greater than I/F/F efficiency using paired t-test with 

     ). 

 
Figure 4-16:      of uncertainty models with increasing sophistication, for system 

(Big, 8300) and forecast precision        , ‗mean price‘ scheme. 

This result is by no means universal across the systems considered.  As a 

counter example consider the system (Big, 3500), which has large storage capacity but 
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only moderately sized turbines.  Figure 4-17 plots the efficiency of different 

algorithms utilizing increasing levels of uncertainty model sophistication.  Note that in 

this case, increased sophistication does not always result in improved efficiency, in 

fact there is no statistical difference between the efficiency of I/I/M and F/F/F using a 

paired t-test with      . 

 
Figure 4-17:      of uncertainty models with increasing sophistication, for system 

(Big,3500) and forecast precision        , ‗mean price‘ scheme. 

These are just two examples, but 12 different systems were considered in this 

analysis.  To understand trends across different systems Figure 4-18 reports the least 

sophisticated model which matched the performance of the most sophisticated F/F/F 

model.  To generalize the results, they are plotted in terms of        and       . 

Recall that points in the upper right corner (high        and high       ) 

correspond to systems with large reservoir storage and small turbines.  We see that 

unsophisticated models which make no use of forecasts perform as well as 

sophisticated F/F/F models.   This makes intuitive sense: with large storage the system 

is able to absorb most inflows so spilling is not a great concern except in very large 

storm events.   Forecasts don‘t help in those events because it takes so long to draft 

enough for large storms with small turbines that it is actually more optimal to 
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occasionally spill than to operate at reduced head.  As the turbines get larger this is not 

true: the system is able to rapidly draft to make room, so it is no longer optimal to spill 

occasionally for large events. 

 
Figure 4-18:  Least sophisticated uncertainty model which matches the     of 

sophisticated F/F/F uncertainty model, ‗mean price‘ scheme, forecast precision 

       . 

Over a wide range of        and        the most sophisticated uncertainty 

models results in the best efficiency, but this is not the case for a few systems in the 

lower left of Figure 4-18.  Points in the lower left of the plot (low        and low 

      ) correspond to systems with small storage and large turbine capacity.  In this 

case considering uncertainty on a week-to-week basis doesn‘t help.  The storage for 

these systems is not large enough for over-week planning, and the turbines are large 

enough so that spilling is almost never a concern. 

Variable Price Scheme 

The previous discussion focused on the ‗mean price‘ scheme in which the price 

of energy varied within each day, but the price profile was identical for each day.  This 

allowed the previous section to focus on the value of hydrologic forecasts and 
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representations of uncertainty in the presence of solely hydrologic uncertainty.  In the 

‗variable price‘ scheme the price profile varies from day to day.  This variability is not 

explicitly accounted for in the computation of transition probabilities, though Section 

4.3 describes how one might do so.  However, the price uncertainty is embedded in the 

computation of the future value function: each historical scenario includes both a price 

profile series and a reservoir inflow series. 

The introduction of variable prices can potentially change how the system 

operates.  Before there was no preference between on peak generation on one day or 

another, but now it is potential beneficial to store water for days to generate on a 

future high price day.  The ability of a reservoir system to do this will depend on the 

size of storage relative to the turbine capacity.  Figure 4-19 plots the efficiency for 

various algorithm configurations and turbine capacities with fixed storage capacity 

(Big). 

 
Figure 4-19:      for Mid reservoirs with varying turbine capacity for various re-

optimization forecast precision, variable price scheme. 

The efficiency falls much more dramatically with increased turbine capacity 

than in the ‗mean price‘ case.  In fact, the ‗variable price‘ efficiency of nearly every 
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algorithm has decreased compared to ‗mean price‘ efficiency.  This is primarily 

because the ‗Perfect‘ algorithm is able to exploit the variable prices to generate 

significantly more benefit.  For every single system configuration the mean benefits 

over the simulation period increased in the ‗variable price‘ scheme compared to the 

‗mean price‘ scheme.  This causes the efficiency relative to ROR operation to decrease 

for nearly every stochastic algorithm tested.  The notable exception is the system (Big, 

2000), which has a large storage but a small turbine capacity.  The turbines in that case 

are small enough compared to the storage that the system is unable to put much more 

on peak than it was in the ‗variable price‘ scheme.  As a result the mean benefits 

increased only slightly, and the efficiencies between the two price schemes are nearly 

the same. 

Figure 4-20 plots the efficiency for various algorithms for a fixed turbine 

capacity but varying storage capacities.  As storage increases, so does the efficiency.  

This is because the greater the storage, the longer the system is able to hold flows and 

release on-peak, and during high price days. 
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Figure 4-20:     for Turbine Capacity (8300 cfs) with varying storage for various 

algorithms, variable price scheme. 

 As one would expect from Figure 4-19 and Figure 4-20, the most efficient 

operating policy is achieved by the largest reservoir with the smallest turbine capacity 

(Big, 2000).  The least efficient operating policy is achieved by the system with the 

smallest storage and the biggest turbines (Small, 8300). 

Figure 4-21 plots several algorithm configurations for the system (Big, 8300).  

Unlike in the ‗mean price‘ scheme plotted in Figure 4-12, we now find that the 

deterministic RCO algorithm outperforms the stochastic model without forecasts 

(I/I/M), so in this case a deterministic model performs better than a naïve stochastic 

model.  This is because the RCO algorithm operates under the assumption that the 

next period will be average.  At most times during summer operation this is a 

reasonable approach: if nothing else it will avoid getting into trouble.  On the other 

hand, the I/I/M algorithm assumes that any scenario in the next time period is equally 

likely: be it normal hydrology, flood, or drought.  As a result the I/I/M algorithm 

behaves too conservatively and is unable to exploit the occasional high price spikes. 

 
Figure 4-21:     for (Big, 8300) system for several algorithms, variable price scheme. 
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For every algorithm configuration applied to the (Big, 8300) system it was 

found that increasing forecast precision increased the operational efficiency.  

Furthermore, it was found that incorporating forecast information into each stage of 

the algorithm (i.e. F/F/F models) outperformed simpler models which did not consider 

uncertainty transitions past the current day or the current week.  This result is 

consistent with the finding for the ‗mean price‘ scheme. 

However, unlike the mean price scheme it was found that the use of forecasts 

and stochastic models did not always improve operation.  For example consider the 

system (Small, 2000), which has very small storage and turbine capacity.  In this case, 

there is no statistical difference between the deterministic model and the two-stage 

branching model (I/I/F) (see Figure 4-22).  Thus we are unable to determine if 

forecasts improve performance.  Furthermore, the deterministic model achieves a 

higher operational efficiency than many models which use lower precision forecasts. 

 
Figure 4-22:     for (Small, 2000) system for several algorithms, variable price 

scheme. 

To obtain a broader understanding of how uncertainty model sophistication 

affects the efficiency of system performance Figure 4-23 reports the least sophisticated 
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model which matches the performance of the sophisticated F/F/F model.  Again to be 

more general the results are reported in terms of        and       . 

 
Figure 4-23:  Least sophisticated uncertainty model which matches the     of 

sophisticated F/F/F uncertainty model, ‗variable price‘ scheme, forecast precision 

       . 

We now see that uncertainty model sophistication is most beneficial for 

systems with large turbines (points roughly to the left side of the plot in Figure 4-23.  

As the turbines become smaller relative to the storage (to the right and top of Figure 

4-23) the less model sophistication is needed to match the performance of the most 

sophisticated F/F/F model.  For a wide range of systems with mid-sized turbine 

capacities, I/I/F models match the performance of the more sophisticated F/F/F model, 

confirming the finding of Faber and Stedinger [2001]. 

Section 4.8 Summary and Conclusions 

This chapter introduced an SSDP algorithm for optimizing short-term 

hydropower operation.  This model is unique in that it makes the distinction between 

the operational time step and the uncertainty time step.  This distinction is needed 

because unlike most SSDP models, the uncertainty time step in the proposed algorithm 

changes over the planning horizon.  This allows the generalization of the SSDP model 
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to accommodate a wide array scenario trees which provide diverse representations of 

uncertainty. 

This SSDP algorithm is leveraged to answer three research questions.  First, 

what is the utility of various representations of uncertainty?  Second, what is the value 

of forecast precision to hydropower operations?  And third, how do the answers to the 

first two questions depend on the characteristics of the system understudy. 

To explore each of these questions the operation of a number of hypothetical 

reservoir systems is simulated over 60 summer operating periods.  Two economic 

models were used: one with a constant energy price profile for each day and one with 

a variable energy price profile. 

To answer the first question a number of SSDP models with varying levels of 

uncertainty sophistication were used to optimize each of the reservoir systems‘ 

operation over the simulation period.  It was found that for the ‗mean price‘ scheme 

very unsophisticated uncertainty models, which do not utilize forecasts match the 

efficiency of the most sophisticated models for systems with large storage, but small 

turbines.  For most other systems in the ‗mean price‘ scheme, increased uncertainty 

model sophistication always results in improved efficiency.  For the ‗variable price‘ 

scheme it was found that simple ‗two-stage‘ stochastic models match the performance 

of more sophisticated dynamic uncertainty models for systems with mid-sized turbines 

over a range of system storage sizes.  It was found that when turbines were large that 

increased uncertainty model sophistication always resulted in increased efficiency.  As 

in the ‗mean price‘ scheme, when storage is large and turbines are small, then very 



unsophisticated models which use no forecasts match the performance of the more 

sophisticated uncertainty models. 

It was found that improved forecast precision generally improved algorithm 

performance, though it was found that as turbine size becomes smaller the efficiency 

of the optimization algorithm is less sensitive to the precision of the forecast.  This is 

particularly true for reservoirs with large storage, and in the ‗variable price‘ case. 

Finally it was found that algorithm efficiency is generally very low for the 

‗variable price‘ case compared to the ‗mean price‘ case.  This is partially because there 

is now an added layer of uncertainty and partially because the     is distorted by an 

improvement in the ‗perfect‘ model performance.  Future studies should consider 

incorporating price forecast information into the computation of scenario probabilities, 

as described in this chapter. 
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Appendix 1: Synthetic Forecast Generation 

This research does not use an existing forecast product, but instead uses 

synthetic forecasts created using the generalized maintenance of variance extension 

procedure (GMOVE) proposed by Grygier et al. [1989] and the model of forecast 

error proposed by Stedinger & Kim [2010]. 

Let   be a vector of inflows to a reservoir and   be a vector of corresponding 

forecasts.  The Stedinger & Kim [2010] additive forecast error model is 

      
(4-41) 

where   is a vector of forecast errors.  Assuming   is uncorrelated with  , the variance 

of  ,   
  is given by 

  
    

    
  

(4-42) 

 

The covariance of   and  ,    , can be defined as 

            
(4-43) 

where     is the correlation between the forecasts and the actual flow.      can also 

be defined as 
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(4-44) 

The final step in equation (4-44) follows from the assumption that the forecasts 

are unbiased which means that  , -   , - and  , -   , and that the forecasts are 

uncorrelated to forecast error, meaning that  ,  -   .  Combining equations (4-43) 

and (4-44) yields 



    
  

 

    
 

  

    
 

(4-45) 

which yields 

  
     

   
  

(4-46) 

Substituting this expression into equation (4-42) yields 

  
  (     

 )  
  

(4-47) 

Thus given the correlation between the true flows and the forecast, equations 

(4-46) and (4-47) give expressions for the variance of the forecasts and the variance of 

the forecast error respectively.  But how should     be understood in terms of forecast 

precision?  If   is the result of a linear regression procedure, then the    of the 

regression is    
 .     is a convenient way to communicate the precision of synthetic 

forecasts. 

Given the moments of  ,  , and   the GMOVE procedure is used to generate 

  with the desired   .  The GMOVE model for generating   is given by Grygier et al. 

[1989]: 

      (   ̅)   (   ̅) (4-48) 

where    is the mean of  ,   is the previous time step‘s inflow into the reservoir,   

and   are GMOVE parameters, and  ̅ and  ̅ are the sample means of   and   

respectively.  Grygier et al. [1989] show that   is given by 

  
        

  
  

(4-49) 

 

where     is the sample covariance of   and Q, and   
  is the sample variance of  .    

can be computed by taking the root of [Grygier, et al., 1989] 



   

  
  

   
 

  
 

  
  

   
 

  
 

 
(4-50) 

where   
  is the sample variance of  .  If the sample moments of   are used in 

equations (4-46) and (4-47), equation (4-48) can be used to generate synthetic   for 

any desired   .  This allows for the examination of the benefit of forecast precision to 

hydropower operations optimization. For example, how much do reservoir operations 

improve if forecasts with         rather than         are used.  We can examine 

this by comparing the I/I/F95 and I/I/F65 model configurations, where F65 is the ―F‖ 

case with        . 

Appendix 2: “Mean Price” Model Runs 

This appendix contains the results for the ―mean price‖ scheme as figures and 

tables.  We consider the effect of forecast uncertainty by fixing the representation of 

uncertainty (i.e. I/I/* or a stochastic programming model) and changing the quality of 

the forecast.  It is observed in the chapter that as the forecast improves, the     also 

generally improves.  To examine how the storage capacity affects this assumption, 

consider the following figures, in which the turbine size is fixed but the size of the 

reservoir is varied. 



 
Figure 4-24:  The effect of forecast precision and reservoir size on     for stochastic 

programming models, with fixed turbine capacity (2000 cfs), ‗mean price‘ scheme. 

 
Figure 4-25:  The effect of forecast precision and reservoir size on     for stochastic 

programming models, with fixed turbine capacity (3500 cfs), ‗mean price‘ scheme. 

 
Figure 4-26:  The effect of forecast precision and reservoir size on     for stochastic 

programming models, with fixed turbine capacity (5000 cfs), ‗mean price‘ scheme. 
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Figure 4-27:  The effect of forecast precision and reservoir size on     for stochastic 

programming models, with fixed turbine capacity (8300 cfs), ‗mean price‘ scheme. 

The following figures consider the effect of forecast precision and turbine 

capacity by plotting efficiency for the same stochastic programming models, but with 

fixed storage capacity. 

 
Figure 4-28:  The effect of forecast precision and turbine capacity on     for 

stochastic programming models, with fixed storage capacity (Small), ‗mean price‘ 

scheme. 
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Figure 4-29:  The effect of forecast precision and turbine capacity on     for 

stochastic programming models, with fixed storage capacity (Mid), ‗mean price‘ 

scheme. 

 
Figure 4-30:  The effect of forecast precision and turbine capacity on     for 

stochastic programming models, with fixed storage capacity (Big), ‗mean price‘ 

scheme. 

The following tables report the results of all of the ‗mean price‘ scheme model 

runs. 
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Table 4-4: Benefits (   ), Performance Ratio (  ), and Efficiency (   ) for systems 

with turbine capacity 2000 and ―mean price‖ scheme. 

 (Small, 2000) (Mid, 2000) (Big, 2000) 

Model                                  
ROR 1,802,155 0.836 0 2,307,456 0.806 0 2,840,278 0.867 0 

RCO 2,001,321 0.929 0.565 2,743,162 0.958 0.784 3,197,043 0.976 0.818 

I/I/M 2,025,683 0.940 0.634 2,764,021 0.965 0.822 3,204,625 0.978 0.835 

I/I/F75 2,021,481 0.938 0.622 2,754,376 0.962 0.804 3,199,436 0.976 0.823 

I/I/F85 2,024,498 0.940 0.630 2,753,104 0.962 0.802 3,199,216 0.976 0.822 

I/I/F95 2,034,428 0.944 0.659 2,752,551 0.961 0.801 3,199,407 0.976 0.823 

I/M/M 2,026,973 0.941 0.638 2,762,042 0.965 0.818 3,203,602 0.978 0.833 

I/F75/F75 2,024,319 0.939 0.630 2,751,921 0.961 0.800 3,197,040 0.976 0.818 

I/F85/F85 2,027,306 0.941 0.638 2,750,839 0.961 0.798 3,196,914 0.976 0.817 

I/F95/F95 2,037,578 0.946 0.668 2,750,121 0.961 0.797 3,197,284 0.976 0.818 

M/M/M 2,026,098 0.940 0.635 2,757,810 0.963 0.810 3,199,926 0.977 0.824 

F75/F75/F75 2,025,188 0.940 0.632 2,744,738 0.959 0.787 3,194,010 0.975 0.811 

F85/F85/F85 2,027,890 0.941 0.640 2,742,692 0.958 0.783 3,193,645 0.975 0.810 

F95/F95/F95 2,038,759 0.946 0.671 2,741,651 0.958 0.781 3,193,641 0.975 0.810 

I/I/I 2,154,801 1 1 2,863,124 1 1 3,276,681 1 1 

 

Table 4-5:  Benefits (   ), Performance Ratio (  ), and Efficiency (   ) for systems 

with turbine capacity 3500 and ―mean price‖ scheme. 

 (Small, 3500) (Mid, 3500) (Big, 3500) 

Model                                  
ROR 2,248,821 0.848 0 2,785,954 0.806 0 3,498,139 0.806 0 

RCO 2,386,011 0.900 0.341 3,173,842 0.918 0.578 4,100,170 0.945 0.717 

I/I/M 2,439,546 0.920 0.475 3,303,465 0.956 0.771 4,181,702 0.964 0.814 

I/I/F75 2,442,231 0.921 0.481 3,302,135 0.955 0.769 4,166,172 0.960 0.795 

I/I/F85 2,451,956 0.925 0.505 3,305,493 0.956 0.774 4,167,621 0.961 0.797 

I/I/F95 2,480,813 0.936 0.577 3,320,111 0.960 0.796 4,176,700 0.963 0.808 

I/M/M 2,446,317 0.923 0.491 3,307,745 0.957 0.778 4,179,159 0.963 0.811 

I/F75/F75 2,458,148 0.927 0.521 3,314,279 0.959 0.787 4,166,549 0.960 0.796 

I/F85/F85 2,468,335 0.931 0.546 3,318,010 0.960 0.793 4,167,698 0.961 0.797 

I/F95/F95 2,493,874 0.941 0.610 3,331,415 0.964 0.813 4,177,760 0.963 0.809 

M/M/M 2,446,738 0.923 0.492 3,301,443 0.955 0.768 4,170,010 0.961 0.800 

F75/F75/F75 2,459,354 0.928 0.524 3,315,707 0.959 0.789 4,163,489 0.960 0.792 

F85/F85/F85 2,470,019 0.932 0.550 3,319,574 0.960 0.795 4,166,682 0.960 0.796 

F95/F95/F95 2,495,124 0.941 0.613 3,337,312 0.965 0.822 4,175,374 0.962 0.806 

I/I/I 2,650,685 1 1 3,456,994 1 1 4,338,286 1 1 

 

  



Table 4-6:  Benefits (   ), Performance Ratio (  ), and Efficiency (   ) for systems 

with turbine capacity 5000 and ―mean price‖ scheme. 

 (Small, 5000) (Mid, 5000) (Big, 5000) 

Model                                  
ROR 2,485,396 0.858 0 3,035,478 0.822 0 3,781,931 0.814 0 

RCO 2,596,528 0.896 0.270 3,361,104 0.910 0.494 4,307,033 0.927 0.608 

I/I/M 2,631,674 0.908 0.355 3,483,539 0.943 0.680 4,456,428 0.959 0.781 

I/I/F75 2,650,469 0.915 0.400 3,495,137 0.946 0.698 4,448,036 0.957 0.771 

I/I/F85 2,660,434 0.918 0.425 3,501,317 0.948 0.707 4,451,127 0.958 0.775 

I/I/F95 2,691,357 0.929 0.500 3,523,089 0.954 0.740 4,465,218 0.961 0.791 

I/M/M 2,641,337 0.912 0.378 3,504,156 0.949 0.711 4,472,139 0.963 0.799 

I/F75/F75 2,681,859 0.926 0.477 3,535,973 0.957 0.760 4,480,122 0.964 0.808 

I/F85/F85 2,695,129 0.930 0.509 3,542,446 0.959 0.769 4,482,866 0.965 0.812 

I/F95/F95 2,723,075 0.940 0.577 3,562,574 0.964 0.800 4,493,794 0.967 0.824 

M/M/M 2,641,310 0.912 0.378 3,511,695 0.951 0.723 4,486,319 0.966 0.816 

F75/F75/F75 2,685,683 0.927 0.486 3,549,470 0.961 0.780 4,503,772 0.969 0.836 

F85/F85/F85 2,695,825 0.930 0.510 3,559,388 0.963 0.795 4,506,625 0.970 0.839 

F95/F95/F95 2,723,942 0.940 0.579 3,578,677 0.969 0.824 4,518,724 0.973 0.853 

I/I/I 2,897,647 1 1 3,694,315 1 1 4,645,533 1 1 

 

Table 4-7:  Benefits (   ), Performance Ratio (  ), and Efficiency (   ) for systems 

with turbine capacity 8300 and ―mean price‖ scheme. 

 (Small, 8300) (Mid, 8300) (Big, 8300) 

Model                                  
ROR 2,717,186 0.874 0 3,293,404 0.851 0 4,036,113 0.840 0 

RCO 2,829,777 0.910 0.288 3,546,721 0.917 0.440 4,488,534 0.934 0.590 

I/I/M 2,813,487 0.905 0.246 3,584,269 0.927 0.506 4,536,538 0.944 0.652 

I/I/F75 2,867,287 0.922 0.384 3,628,485 0.938 0.583 4,588,156 0.955 0.719 

I/I/F85 2,880,790 0.927 0.418 3,639,263 0.941 0.601 4,600,698 0.958 0.736 

I/I/F95 2,909,816 0.936 0.492 3,671,554 0.949 0.657 4,628,170 0.964 0.772 

I/M/M 2,836,477 0.912 0.305 3,632,157 0.939 0.589 4,588,749 0.955 0.720 

I/F75/F75 2,907,238 0.935 0.486 3,680,049 0.951 0.672 4,641,805 0.966 0.789 

I/F85/F85 2,920,016 0.939 0.518 3,688,549 0.953 0.687 4,651,683 0.968 0.802 

I/F95/F95 2,939,965 0.946 0.569 3,710,781 0.959 0.726 4,672,727 0.973 0.830 

M/M/M 2,836,678 0.913 0.305 3,643,351 0.942 0.608 4,626,463 0.963 0.769 

F75/F75/F75 2,907,425 0.935 0.486 3,695,051 0.955 0.698 4,664,076 0.971 0.818 

F85/F85/F85 2,920,087 0.939 0.518 3,695,696 0.955 0.699 4,671,432 0.973 0.828 

F95/F95/F95 2,939,476 0.946 0.568 3,714,240 0.960 0.732 4,681,701 0.975 0.841 

I/I/I 3,108,583 1 1 3,868,564 1 1 4,803,474 1 1 

 

The following tables report the results of all of the ‗mean price‘ scheme model 

runs. 

 

  



Appendix 3: “Variable Price” Model Runs 

This appendix contains the results for the ―variable price‖ scheme as figures 

and tables.  We consider the effect of forecast uncertainty by fixing the representation 

of uncertainty (i.e. I/I/* or a stochastic programming model) and changing the quality 

of the forecast.  It is observed in the chapter that as the forecast improves, the     

also generally improves.  To examine how the storage capacity affects this 

assumption, consider the following figures, in which the turbine size is fixed but the 

size of the reservoir is varied. 

 
Figure 4-31:  The effect of forecast precision and reservoir size on     for stochastic 

programming models, with fixed turbine capacity (2000 cfs), ‗variable price‘ scheme. 

 
Figure 4-32:  The effect of forecast precision and reservoir size on     for stochastic 

programming models, with fixed turbine capacity (3500 cfs), ‗variable price‘ scheme. 
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Figure 4-33:  The effect of forecast precision and reservoir size on     for stochastic 

programming models, with fixed turbine capacity (5000 cfs), ‗variable price‘ scheme. 

 
Figure 4-34:  The effect of forecast precision and reservoir size on     for stochastic 

programming models, with fixed turbine capacity (8300 cfs), ‗variable price‘ scheme. 

The following figures consider the effect of forecast precision and turbine 

capacity by plotting efficiency for the same stochastic programming models, but with 

fixed storage capacity. 

 
Figure 4-35:  The effect of forecast precision and turbine capacity on     for 

stochastic programming models, with fixed storage capacity (Small), ‗mean price‘ 

scheme. 
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Figure 4-36:  The effect of forecast precision and turbine capacity on     for 

stochastic programming models, with fixed storage capacity (Mid), ‗mean price‘ 

scheme. 

 
Figure 4-37:  The effect of forecast precision and turbine capacity on     for 

stochastic programming models, with fixed storage capacity (Big), ‗mean price‘ 

scheme. 
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Table 4-8:  Benefits (   ), Performance Ratio (  ), and Efficiency (   ) for systems 

with turbine capacity 2000 and ―variable price‖ scheme. 

 (Small, 2000) (Mid, 2000) (Big, 2000) 

Model                                  
ROR 1,834,976 0.819 0 2,301,259 0.793 0 2,827,429 0.858 0 

RCO 2,069,437 0.923 0.577 2,765,227 0.953 0.774 3,211,921 0.974 0.820 

I/I/M 2,062,756 0.920 0.561 2,775,242 0.957 0.791 3,224,016 0.978 0.846 

I/I/F75 2,052,786 0.916 0.536 2,768,837 0.955 0.780 3,220,724 0.977 0.839 

I/I/F85 2,054,007 0.917 0.539 2,768,949 0.955 0.780 3,220,995 0.977 0.840 

I/I/F95 2,060,221 0.919 0.555 2,770,873 0.955 0.783 3,222,028 0.977 0.842 

I/M/M 2,055,829 0.917 0.544 2,770,419 0.955 0.783 3,222,417 0.978 0.843 

I/F75/F75 2,044,999 0.913 0.517 2,762,418 0.952 0.769 3,219,027 0.977 0.835 

I/F85/F85 2,045,758 0.913 0.519 2,762,276 0.952 0.769 3,219,113 0.977 0.836 

I/F95/F95 2,051,329 0.915 0.533 2,764,494 0.953 0.773 3,219,767 0.977 0.837 

M/M/M 2,054,196 0.917 0.540 2,764,177 0.953 0.772 3,218,601 0.976 0.834 

F75/F75/F75 2,046,473 0.913 0.521 2,753,081 0.949 0.754 3,213,990 0.975 0.825 

F85/F85/F85 2,047,201 0.913 0.523 2,752,079 0.949 0.752 3,213,435 0.975 0.823 

F95/F95/F95 2,054,530 0.917 0.541 2,752,576 0.949 0.753 3,212,837 0.975 0.822 

I/I/I 2,241,064 1 1 2,900,820 1 1 3,296,223 1 1 

 

Table 4-9:  Benefits (   ), Performance Ratio (  ), and Efficiency (   ) for systems 

with turbine capacity 3500 and ―variable price‖ scheme. 

 (Small, 3500) (Mid, 3500) (Big, 3500) 

Model                                  
ROR 2,285,134 0.822 0 2,793,600 0.774 0 3,455,863 0.778 0 

RCO 2,467,494 0.887 0.368 3,291,931 0.912 0.612 4,150,761 0.935 0.705 

I/I/M 2,477,573 0.891 0.388 3,314,584 0.919 0.640 4,212,004 0.948 0.767 

I/I/F75 2,480,080 0.892 0.394 3,318,504 0.920 0.644 4,210,780 0.948 0.766 

I/I/F85 2,487,108 0.894 0.408 3,324,252 0.921 0.652 4,214,796 0.949 0.770 

I/I/F95 2,504,522 0.901 0.443 3,338,504 0.925 0.669 4,225,823 0.952 0.781 

I/M/M 2,470,457 0.888 0.374 3,303,959 0.916 0.627 4,200,624 0.946 0.756 

I/F75/F75 2,480,779 0.892 0.395 3,308,118 0.917 0.632 4,201,491 0.946 0.757 

I/F85/F85 2,488,295 0.895 0.410 3,312,879 0.918 0.638 4,205,376 0.947 0.761 

I/F95/F95 2,502,634 0.900 0.439 3,326,635 0.922 0.654 4,215,727 0.949 0.771 

M/M/M 2,470,176 0.888 0.374 3,298,396 0.914 0.620 4,181,965 0.942 0.737 

F75/F75/F75 2,481,858 0.893 0.397 3,306,885 0.917 0.630 4,187,675 0.943 0.743 

F85/F85/F85 2,489,992 0.896 0.414 3,311,270 0.918 0.636 4,190,944 0.944 0.746 

F95/F95/F95 2,505,029 0.901 0.444 3,324,975 0.922 0.652 4,200,206 0.946 0.755 

I/I/I 2,780,521 1 1. 3,608,056 1 1 4,441,212 1 1 

 

  



Table 4-10:  Benefits (   ), Performance Ratio (  ), and Efficiency (   ) for 

systems with turbine capacity 5000 and ―variable price‖ scheme. 

 (Small, 5000) (Mid, 5000) (Big, 5000) 

Model                                  
ROR 2,522,492 0.822 0 3,053,077 0.775 0 3,746,508 0.768 0 

RCO 2,697,328 0.879 0.319 3,534,421 0.897 0.543 4,455,785 0.914 0.628 

I/I/M 2,694,138 0.878 0.314 3,526,360 0.895 0.534 4,498,150 0.922 0.665 

I/I/F75 2,712,354 0.884 0.347 3,553,971 0.902 0.565 4,524,798 0.928 0.689 

I/I/F85 2,721,513 0.887 0.364 3,563,309 0.904 0.575 4,532,550 0.930 0.696 

I/I/F95 2,740,778 0.893 0.399 3,582,120 0.909 0.597 4,552,482 0.934 0.714 

I/M/M 2,690,606 0.876 0.307 3,513,032 0.892 0.519 4,480,674 0.919 0.650 

I/F75/F75 2,724,337 0.887 0.369 3,550,031 0.901 0.560 4,514,697 0.926 0.680 

I/F85/F85 2,731,858 0.890 0.383 3,559,234 0.903 0.571 4,524,256 0.928 0.689 

I/F95/F95 2,746,661 0.895 0.410 3,575,741 0.908 0.589 4,540,896 0.931 0.703 

M/M/M 2,691,117 0.877 0.308 3,522,303 0.894 0.529 4,473,650 0.917 0.644 

F75/F75/F75 2,726,930 0.888 0.374 3,562,303 0.904 0.574 4,512,191 0.925 0.678 

F85/F85/F85 2,734,558 0.891 0.388 3,570,764 0.906 0.584 4,519,704 0.927 0.685 

F95/F95/F95 2,749,327 0.896 0.415 3,587,331 0.911 0.603 4,534,592 0.930 0.698 

I/I/I 3,069,733 1 1 3,939,799 1 1 4,876,079 1 1 

 

Table 4-11:  Benefits (   ), Performance Ratio (  ), and Efficiency (   ) for 

systems with turbine capacity 8300 and ―variable price‖ scheme. 

 (Small, 8300) (Mid, 8300) (Big, 8300) 

Model                                  
ROR 2,753,582 0.821 0 3,321,862 0.782 0 4,024,188 0.762 0 

RCO 2,950,104 0.880 0.327 3,748,722 0.883 0.462 4,754,899 0.901 0.582 

I/I/M 2,915,930 0.869 0.270 3,684,765 0.868 0.392 4,716,186 0.893 0.551 

I/I/F75 2,945,580 0.878 0.320 3,739,996 0.881 0.452 4,778,347 0.905 0.600 

I/I/F85 2,954,475 0.881 0.334 3,751,232 0.883 0.464 4,792,471 0.908 0.612 

I/I/F95 2,976,501 0.887 0.371 3,776,069 0.889 0.491 4,816,998 0.912 0.631 

I/M/M 2,932,224 0.874 0.297 3,693,998 0.870 0.402 4,712,978 0.893 0.548 

I/F75/F75 2,970,158 0.885 0.361 3,748,744 0.883 0.462 4,775,289 0.904 0.598 

I/F85/F85 2,979,061 0.888 0.375 3,760,538 0.886 0.474 4,788,574 0.907 0.609 

I/F95/F95 2,997,949 0.894 0.407 3,780,400 0.890 0.496 4,812,638 0.911 0.628 

M/M/M 2,934,253 0.875 0.301 3,711,261 0.874 0.421 4,734,233 0.897 0.565 

F75/F75/F75 2,973,227 0.886 0.366 3,769,553 0.888 0.484 4,799,014 0.909 0.617 

F85/F85/F85 2,981,525 0.889 0.379 3,781,531 0.891 0.497 4,810,009 0.911 0.626 

F95/F95/F95 3,000,174 0.894 0.411 3,800,914 0.895 0.518 4,834,123 0.916 0.645 

I/I/I 3,354,230 1 1 4,246,495 1 1 5,280,286 1 1 

  



CHAPTER 5  

 

CORRIDOR DYNAMIC PROGRAMMING FOR HIGH DIMENSIONAL 

PROBLEMS 

 

Solving high-dimensional dynamic programming (DP) problems continues to 

be a challenging problem in engineering and science.  This is because as the 

dimension of state space increases, the computational burden of solving the associated 

optimization model with traditional techniques increases exponentially.  For 

deterministic problems, on can successively solve the problem in a small corridor, 

where the corridor is adjusted as the optimization proceeds [Heidari et al., 1971]. 

However, when solving the general SDP problem, one needs to approximate the cost-

to-go value function over the range of states to which the system might evolve.  water 

resources systems analysis this has had the practical consequence of limiting water 

resources studies using traditional DP studies to 4 reservoirs [Yakowitz, 1982; Yeh, 

1985; Labadie 2004].  However there are many techniques for reducing the 

computational burden including aggregation, Benders decomposition, higher-order 

approximations of the future value function, and sparse or selective sampling of the 

state space.  Drawing on elements of these techniques, a new Corridor SDP procedure 

is proposed in this chapter.  The Corridor SDP idea is to focus the optimization efforts 

on the regions of the state space where the system is most likely to visit by developing 

a set of basis points in a ―corridor‖, and to represent the future value function with 

radial basis functions (RBFs) which are effective for scattered data approximations.  

Section 5.1 provides an introductory explanation of the well-known ‗Curse of 

Dimensionality‘ and explains the motivation of the Corridor SDP concept.   Section 



5.2 introduces DP for reservoir operations optimization, Section 5.3 describes previous 

efforts at addressing the ‗Curse‘, and Section 5.4 introduces the Corridor SDP concept. 

0 and Section 5.6 introduce regular and Hermite RBF interpolation and least-squares 

approximation, and provide a discussion of common basis functional forms and their 

parameterization.  Section 5.7 describes an objective procedure for basis selection 

when using Corridor DP. Section 5.8 provides a demonstration of the performance of 

the Corridor DP procedure, with a discussion in Section 5.8.3 and concluding remarks 

in Section 5.10.  Finally an appendix discusses two simple but effective diagnostic 

procedures for identifying when numerical solution of the Bellman equation has 

terminated prematurely, which can result in gross errors. 

Section 5.1 Introduction and motivation for Corridor Concept 

A well-documented problem in stochastic dynamic programming is that the 

computational effort required to solve the optimization problem increases 

exponentially with the dimension of the state space.  This is sometimes referred to as 

Bellman‘s ―Curse of Dimensionality,‖ though that ―Curse‖ originally referred to the 

growth in required memory allocation rather than computational effort [Bellman, 

1961].  Because the storage in each reservoir of a system is typically assigned a state 

variable, practical applications of traditional dynamic programming to reservoir 

systems has been limited to at most four-reservoir systems [Yeh, 1985; Labadie, 

2004]. 

This work introduces the Corridor SDP approach, which aims to reduce the 

computational burden of solving high dimensional SDP problems by focusing 



optimization efforts on areas of the state-space where the system is most likely to visit 

in typical operation, the so called Corridor.  

In many systems it is easy to empirically demonstrate that much of state space 

is not visited in regular operation.  More formally, Saad et al. [1992] and used 

principle component analysis to show that 97% of the variability in a four reservoir 

system was described by two eigenvalues (linear combinations of storage values).  The 

‗corridor‘ concept is exploited in stochastic dual dynamic programming (SDDP) 

[Pereira and Pinto, 1985], which builds a representation of the DP future value 

function through iterative simulation and optimization of the system.  That work uses 

Benders decomposition and linear representations of the value function, enabling 

solution of high-dimensional problems [Tilmant and Kelman, 2007; Goor et al., 2011]. 

The work presented here draws on the Corridor concept used in SDDP, but 

applies it to a traditional SDP framework and does not require a piece-wise linear 

approximation of the cost-to-go function.  This is achieved using Radial Basis 

Function (RBF) interpolating and approximating surfaces, which can represent a wide 

range of surface shapes and do not require regular, square lattices.  To select an 

efficient and well-spaced set of basis points an algorithm is developed which places 

points in the Corridor region where they are needed to achieve a good representation 

of a DP future value function.  This is similar to the idea underlying adaptive sparse 

grids [Bungartz, and Griebel, 2004], but is specifically focused on a specific Corridor 

region, and does not allow for evolution of the set of basis points over time. 



Section 5.1.1 Corridor SDP and the use of corridors in deterministic DP 

Before moving on it is important to distinguish the Corridor DP work 

presented here from previous work in deterministic DP which used a state-space 

corridor.  Discrete Differential Dynamic Programming (DDDP) is such a method 

[Heidari et al., 1971; Hall et al., 1969; Trott and Yeh, 1985].  DDDP solves a 

deterministic DP model by beginning with an initial decision-state trajectory through 

time which satisfies initial and final storage constraints.  Because it is a deterministic 

problem, a corridor can be defined about the initial decision-state trajectory, and the 

state space need not be sampled beyond that corridor.  A new, improved trajectory 

through the state space is found using optimization, and the width and location of the 

corridor evolves to encompass the new trajectory.  This iterative procedure continues 

until the change in the optimal trajectory between iterations satisfies some 

convergence criteria [Yeh, 1985]. 

Such a methodology would not work for the stochastic case because it is 

impossible to predict where the reservoir system will travel because inflows are 

random.  For this reason previous applications of corridors with deterministic DP 

problems are not appropriate for the stochastic case.  While the example presented in 

this chapter is a deterministic problem, the true advantage of the Corridor DP 

approach is for stochastic problems. 

Section 5.2 Dynamic Programming (DP) for Reservoir Operation 

Chapter 2 of this thesis introduces DP, SDP, and SSDP algorithms and 

provides a more general discussion of the topic.  Furthermore, Chapter 2 discusses the 

evolution of DP and SDP models in reservoir operations optimization.  The intent in 



this section is to provide enough background to preface the following Corridor SDP 

development. 

The objective in reservoir operation is to maximize benefits by selecting a 

sequence of releases over a planning period.  . In the case of SDP, this is a sequential 

decision problem because we will not know exactly what states will be visited in the 

future.  In practice, time is often broken into discrete time steps in which a release 

decision,   , must be made.  In each time step, the state of the system is described by a 

state variable, which is often storage in the reservoir   .  For each state   , each    

results in an incremental benefit   (     ).  For each time step  , and each potential 

initial system state   , a DP optimization selects an optimal release   
  which 

maximizes the sum of the present incremental benefits   (     ) and the future 

benefits     (  ).  This is solved numerically by recursively solving equation (5-1) 

backwards from planning horizon   to the present time    : 

  (  )     
  

(  (     )      (    )) 

          *     + 
(5-1) 

               (       ) (5-2) 

where    is the reservoir inflow in time   and  (       ) is an evaporation/seepage 

loss term.  To solve equation (5-1), the state space is often discretized and solved at   

specified points, generally on a grid.  If    is non-linear, then as   increases the 

precision of an approximation of    should also increase. 

In the case that a  -reservoir system is considered,   ,   , and    become  -

dimensional vectors of reservoir storage   , releases,   , and inflows    at each of the 



  reservoirs in time  .  The state space becomes a  -dimensional cube, and if each 

dimension is divided into   discrete points (assume that the same   is used in each 

direction though it needn‘t be), then equation (5-1) must be solved at      points, 

resulting in an exponential growth of computational effort and memory required to 

resolve equation (5-1) with an increase in  .  An additional problem is that solving 

equation (5-1) at each point becomes more difficult as   increases, further adding to 

the computational burden of traditional DP in high dimension.  In a SDP there is 

typically an extra dimension describing the hydrologic state of the system.  Moreover, 

an expectation is added to (5-1).  Both add to the computational burden of solving the 

problem. 

Section 5.3 Addressing the Curse 

There are four common approaches to reducing the burden of high-

dimensional DP problems in reservoir optimization studies: aggregation, stochastic 

dual dynamic programming, approximation of the future value function, and sparse 

sampling of the state space. 

Aggregation Approaches 

Perhaps the most obvious approach to reduce the computational burden of 

high-dimensional DP models is aggregation, wherein several reservoirs are 

represented by a combined state variable such as total storage or total energy 

[Arvanitidis and Rosing, 1970; Quintana and Chikhani, 1981;Gilbert and Shane, 1982; 

Duran et al., 1985; Saad and Turgeon, 1988; Turgeon and Charbonnneau, 1998].  This 

approach can be very effective, particularly in systems where the critical operation is 

well represented by a subset of the original state variables (eigenvectors for the full 



state space).  Saad et al. [1992] demonstrate such an example using principle 

component analysis to determine which state variables account for the majority of the 

variability in system performance.  For their 4-reservoir example, upwards of 90% of 

the variability was described by a single state variable, and upwards of 97% of the 

variability was described by two state variables.  This suggested that modeling the 

system with two state variables is sufficient to capture the critical aspects of system 

operation.  A potential downside of such a representation is that aggregation can often 

result in a loss of modeling resolution of constraints and system dynamics which may 

not be acceptable. 

Stochastic Dual Dynamic Programming 

A second approach to addressing the ―curse‖ has been through use of Bender‘s 

Decomposition in Sampling Dual Dynamic Programming (SDDP) [Pereira and Pinto, 

1985].  That algorithm uses simulation of the system to obtain points where the future 

value function is evaluated.  The future value function is approximated by piecewise 

linear Benders cuts.  This involves iterative optimization and simulation till the desired 

precision is achieved and the analysis converges.  The linear approximation allows 

evaluation of the future value function over the entire volume of the state space.  

Remarkably, the Pereira and Pinto [1985] solve a 39 reservoir problem using this 

method.  The SDDP approach has also been successfully applied more recently [see 

Tilmant and Kelman, 2007; Goor et al., 2011].  However, if    is particularly non-

linear, the SDDP piecewise linear approximation might struggle with precision. 



Surrogate Approximation of Future Value Function 

A third approach is to use a surrogate surface to represent    between discrete 

points in the state space at which equation (5-1) has been solved.  Define    as set of 

  discrete points in the state space   at which equation (5-1) has been solved.  This 

allows for a coarser grid of discrete points to achieve the desired precision in    (i.e. 

allows for smaller   to achieve the same accuracy).  A simple method is to use linear, 

or multi-linear interpolation between discrete      .  This can work well when    is 

nearly linear, but will require an increasingly fine mesh (i.e. larger  ) as    becomes 

more non-linear.  Another concern is that a piecewise linear representations will have 

discontinuous first derivatives at the discrete evaluation ponts      , which make 

solution of equation (5-1) more difficult.  This point is explored in more detail in 

Section 5.8.4. 

Johnson et al. [1993] compare cubic splines, Hermite polynomials, and multi-

linear interpolation for a multi-reservoir problem.  They demonstrate that for a 4-

reservoir system, using cubic splines resulted in a 330 times speed-up compared to 

multi-linear interpolation in order to achieve a 0.5% mean relative error.  The speed up 

is both because a coarser lattice of points is sufficient, and because a faster, derivative 

based, quasi-Newton optimizer was used to solve equation (5-1) because cubic splines 

have continuous first and second derivatives. 

Sparse Sampling of the State Space 

The previous discussion has assumed that the selected discrete state-space 

points,   , are arrayed on a regular gird, or lattice of points.  This is called a full-

factorial lattice because the same discretization level is used in all dimensions, and a 



basis point is placed at every combination of discretization levels across the 

dimensions [Chen et al., 1999].  Full factorial lattices are preferable for fitting multi-

linear and cubic-spline interpolation surfaces.  However, other work has explored the 

use of irregularly placed points and partial grid designs as a means of reducing the 

required size of   . 

One example of partial grid design is the use of sparse grids [see Bungartz and 

Griebel, 2004].  Sparse grids are built using a hierarchical discretization scheme.  In 

this approach, rather than having discrete levels in each dimension, the discretization 

is divided into degrees characterized by the distance between adjacent points in a 

degree.  As the degree of discretization increases the distance between adjacent points 

in that degree is smaller.  Under certain conditions, sparse grids can be shown to 

achieve the same accuracy as full grids, with a fraction of the points.  Adaptive sparse 

grids change the degree of the discretization adaptively across the state-space in 

response to the complexity of the function being approximated [Brumm and 

Scheidegger, 2014]. 

Another example of partial grid design is provided Chen et al. [1999] who use 

orthogonal arrays to select discrete points in the state-space.  To represent    they use 

multivariate adaptive regression splines, which do not require a regular lattice of 

points.  A potential downside of MARS is that it has discontinuous first derivatives at 

the knots, which slow an optimization algorithm.  The work presented in this chapter 

uses irregularly placed points, with radial basis functions (RBFs) to approximate   .  

Rather than using orthogonal arrays to select the points to sample in the state space, 



this work uses a priori knowledge of system behavior to select points particularly 

relevant to likely system operation. 

The corridor approach described in the next section borrows from three of the 

four common methods described in this section.  Like SDDP the Corridor DP focuses 

on a limited region of the state-space.  The Corridor DP utilizes RBF surrogate 

surfaces to approximate the future value function between discrete points where the 

Bellman equation has been solved.  Finally, like sparse grids, the Corridor DP basis 

selection criteria presented in this chapter concentrates basis points in the corridor 

region where the surface behavior is more irregular.  If the value function is linear, 

then it could easily be approximated by linear functions. 

Section 5.4 Corridor DP 

The standard discretization lattice (or full factorial lattice) is built by 

discretizing each of the   dimensions into   levels, then placing a basis point at each 

of the   
 combinations of discrete reservoir storage in each dimension.  Figure 5-1 

shows a 3-dimensional projection of a 4-dimensional lattice, with 10 discrete points in 

each dimension, resulting in           points in the state-space. 



 
Figure 5-1:  3-dimensional projection of a 4-dimensional lattice with 10 discrete points 

evaluated in each dimension. 

It is easy to demonstrate that much of the volume of the state space represents 

storage vectors which are not reasonable.  When a reservoir system is operated 

reasonably it is unlikely that one storage reservoir will be full while others are empty.  

Rather, the system state will tend to travel in a corridor, as demonstrated by Saad and 

Turgeon [1988] and Saad et al. [1992].  This can be seen by simulating a hypothetical 

reservoir system (described in Section 5.8.2).  Each point in Figure 5.1 is a storage 

vector visited when the system operation is simulated.  It is clear that the system tends 

to travel in a corridor and never visits much of the state space during 20 years of 

simulation.  Thus, a great deal of work can be avoided by developing the future value 

function approximation across a set of reasonable storages, called a Corridor. 



 
Figure 5.1: Path of a 4-reservoir system in a 4-dimensional storage state space over 

20-years of simulated operation. 

Pereira and Pinto [1985] developed their corridor for SDDP by simulating the 

system iteratively as they derived the operating policy. Here it is proposed to gather a 

compact set of reasonable system storage vectors from at least three sources: 

(1) Storage vectors that occurred during the simulation of the historical 

streamflow record. 

(2) Storage vectors obtained for the system over time as a result of simulating 

the system yesterday, or last week (which has the advantage that they should 

be very close to the values of interest when decisions are optimized today). 

(3) Storage vectors obtained by simulating the anticipated solution to the 

optimization model for today, perhaps with some perturbation of the initial 

storage volumes so as to generate a neighborhood of storage stages in the state-

space near today‘s solution. 

The first approach is taken in the example in Section 5.8.2.  One reason that 

SDP applications have not taken advantage of the corridor idea is that the 

approximation techniques often used to numerically solve equation (5-1), such as 

cubic splines or linear interpolation, work best on uniformly spaced  -dimensional 

lattices. New approximation techniques can deal with irregularly placed points in the 



state space. One such method is radial basis function (RBF) approximation [Buhman, 

2003; Wendland, 2005].  The idea in Corridor DP with RBF approximation is to 

concentrate basis points within the Corridor to achieve the desired precision in the 

important region of the state space with as few discrete points as possible. 

Section 5.5 describes regular and Hermite RBF interpolation and least-squares 

approximation methods.  Section 5.6 describes basis functional forms and their 

parameterization, and Section 5.7 details a procedure for selecting a good set of basis 

points. 

Section 5.5 RBF Interpolation and Least-Squares Approximation 

The RBF approximation of function   ( ) at point   in  -dimensional space is 

given by: 

 ̂( )  ∑   (‖ ( )   ( )‖)   ( ( ))

 

   

 (5-3) 

where where ‖ ‖ is the Euclidean norm,     ,   is the number of basis points,  ( ) 

is the basis function,  ( ) is the location vector of basis point  , and  ( ) is some 

polynomial function over the state space  . Basis functions can take several functional 

forms, as summarized in Table 5-1. 

In interpolation, the RBF approximation must match the function value at 

every basis point.  This model can be obtained by solving the system of equations 

(Regis and Shoemaker, 2007): 

(
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where 

  is an     matrix where        (‖ ( )   ( )‖) for all           , 

  is an     matrix where  (   )   ( (   )), 

 (   ) is the value of the     dimension of the     basis point, 



  is a     vector of model parameters, 

  is an     vector where  ( )    ( ), 

and    and   are zero vectors of sizes     and     respecitvly. 

 

Hermite interpolating RBF surfaces match the function value   ( ) and the 

partial derivatives of   ( ) with respect to each dimension of  .  The Hermite 

interpolating RBF approximation of function   ( ) at point   in  -dimensional space is 

given by (Ong et al., 2008): 
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where  ̃       and 
  

  ( )
 is the partial derivative of   with respect to  ( ) (the     

dimension of  ).  In order to satisfy the condition that the partial derivatives of  ̂ 

match those of    at each basis point,   must be twice differentiable.  The parameters 

of the Hermite RBF surface in equation (5-5) can be computed by solving the 

equation: 

     (5-6) 

where   is a column vector of model parameters with length  (   ) arranged as 
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and   is a vector of function values and partial derivative values with length  (   ) 
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The coefficient matrix   has size  (   )   (   ) can be written in 

terms of   submatricies as 
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The discussion thus far has focused on interpolating RBF surfaces which 

match the function value (and the partial derivatives for Hermite RBFs) at each basis 

point.  If the selected basis points are not distributed across the region of interest in a 

semi-uniform way, the resulting surface may not be smooth.  Surfaces that are not 

smooth are particularly problematic when using derivative based methods to solve 

equation (5-1) in DP problems.  ‗Wiggles‘ in the RBF surface can cause the solver to 

terminate at a suboptimal solution.  Because the numerical solution of DP models 

requires recursive solution of equation (5-1), small errors can compound over time and 

can become severe.  Good selection of basis points can help prevent this problem, as 

described in Section 5.7.  Another solution to the problem is to relax the interpolating 

conditions using a least-squares fit to the specified value of the function. 

In the interpolation approach using equations (5-4) and (5-6) to solve for the 

parameters of equations (5-3) and (5-5), a basis function is centered at every basis 

point.  In least-squares function approximation, the condition that the surface match 



the data (and the derivatives for Hermite RBF) at each of the basis points is relaxed.  

Instead the model parameters are selected to minimize the sum of squared residual 

errors.  In approximation   extra points are added for which the function value (and 

the partial derivatives for Hermite RBF) are known but at which no basis function is 

centered.  This provides degrees of freedom, resulting in a smoother surface.  Least-

squares approximation is a very reasonable alternative to interpolation in the 

numerical solution of DP problems because the true values of    are not known with 

certainty. There is error due to the tolerance of the numerical optimization and errors 

from using some function as a surrogate for the true future value function surface.  In 

SDP errors are also introduced from the discrete representation of continuous 

stochastic processes. 

The least squares approximate RBF surface is still provided by equation (5-3), 

but now the condition that  ̂( )    ( ) for all points   in the basis is relaxed.  Thus, 

 ̂( )    ( )   ( ).    additional points,  ̈, are added, but no basis functions are 

centered at the new points.  The model parameters which minimize the sum of squared 

errors are given by: 

.
 
 
/  (   )    .
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where  ̈ is a     vector where  ̈( )    ( ), and   is a (   )  (   ) matrix 
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/ 

where  

 ̈ is a     matrix where  ̈     (‖ ̈( )   ( )‖) for all         

and        , 

 ̈ is a     matrix where  ̈     . ̈(   )/ for all         and        , 

and   and   are as defined before. 



Similarly the least-squares approximate Hermite RBF surface is still provided 

by equation (5-5), but the conditions that  ̂( )    ( ) and   ̂

  ( )
( )  
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( ) at all 

points   in the basis and all dimensions   is relaxed.  Thus,  ̂( )    ( )   ( ) and 

  ̂

  ( )
( (   ))  

   

  ( )
( (   ))   ̃(   ).    additional points,  ̈, are added, but no basis 

functions are centered at the new points.  The model parameters which minimize the 

sum of squared errors are given by: 
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where  ̈ is a  (   )    vector: 
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and   is a (   )(   )   (   ) matrix: 
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where   is as previously defined and  ̈ is matrix of size  (   )   (   ) that 

can be written in terms of   submatricies as: 
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where  ̈    is a (   )  (   ) matrix having the form 
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Both interpolation and least-squares approximation methods can be used to fit 

RBF and Hermite RBF surfaces to the future value function in numerical DP 

experiments, as described in Section 5.8.2. 

Section 5.6 Basis Functional Forms and Parameterization 

The previous section described RBF interpolation and least-squares 

approximation techniques.  This section describes some common basis functional 

forms, discusses their parameterization, and provides some visualizations of fitted 

RBF surfaces.  Experience suggests that the performance of numerical DP models 

using RBFs to represent the future value function are highly dependent on the set of 

basis points and the parameterization of the basis functions.  This section focuses on 

the parameterization of basis functions, while Section 5.7 describes a greedy algorithm 

for selecting basis points that are where thy best help improve the approximation. 

Table 5-1 summarizes commonly used basis functional forms, but others are 

also commonly applied.  Each of the functions, except the tri-cube have global 

support.  Tri-cubes have compact support because they take non-zero values only at 

distances less than  , where   is the bandwidth parameter.  Gaussian functions are 

globally supported, but rapidly approach to zero at some distance from the basis point.  

The Gaussian scale parameter   is essentially like a bandwidth parameter in that it 



controls how quickly   decreases.  Similarly, inverse multiquadrics vanish to zero at 

infinite distance from the basis point, and have a scale parameter   which controls the 

shape of the function and how quickly   begins to decreases. 

Table 5-1: Basis Functional Forms and Conditions (Regis and Shoemaker, 2007) 

Name Functional Form Conditions 

Surface Splines 
 ( )     

 ( )       ( ) 
   ,   odd 

   ,   even 

Multiquadrics  ( )  (     )     ,     

Inverse 

Multiquadrics 
 ( )  (     )      

Gaussian  ( )       
     

Tri-cube  ( )     (  (  .
 

 
/
 

)
 

)     

RBF cubic splines ( ( )    ) and RBF thin-plate splines ( ( )       ( )) 

are special cases of the surface splines.    RBF cubic splines have continuous second 

derivatives over the whole surface.  RBF thin-plate splines have infinite second 

derivatives at the basis points, which is troubling in our application.  Surface splines 

take increasingly large values at increased distance from the basis point, and have no 

scale or bandwidth parameter, which makes their use simpler.  In particular, with the 

cubic polynomial, the basis functions are global polynomials, and not local, so that the 

problem of having too small a bandwidth does not arise.  On the other hand, because 

the surface splines do not approach zero at large distances, the surface spline 

approximation anywhere depends on the value of the function   everywhere. 

Section 5.6.1 RBF Function Shape and Parameterization for two-dimensional test 

cases 

To help visualize how the choice of RBF functional form and parameterization 

affect the shape of the fitted surface, consider the following 2-dimensional quadratic 

test function: 



    (     )
   (     )

  (     )(     )  (     )
 (     )     

   ,    -    ,    - 
(5-9) 

 

Figure 5-2 plots the resulting surface. 

 
Figure 5-2:  Quadratic Test Function 

For our example each dimension is discretized at three levels, and a basis point 

is placed at each combination of the levels (a full factorial grid).  Figure 5-3, Figure 

5-4, Figure 5-5, and Figure 5-6 plot an interpolating Gaussian surface fit with scale 

parameters,  , of 0.1, 0.6, and 2.1, and 4.6 respectively.  Figure 5-7 plots the RBF 

cubic spline fit. 

Note that for small   the Gaussian functions quickly fade to zero, and the 

interpolating RBF surface essentially becomes a plane, with spikes where basis points 

are located.  As   becomes larger, the Gaussian functions overlap, creating a smooth 

surface which closely resembles the real function in Figure 5-2.  The cubic function 

has no scale parameter, and the cubic functions at each basis point overlap, creating a 

smooth approximation. 



However, it should be noted that the lack of a scale parameter means that RBF 

cubic spline functions are potentially less sensitive to local features of a non-smooth 

function, and there is no parameter or adjustment to make them more sensitive.  As an 

example consider the Matlab test function ‗Peaks‘ plotted in Figure 5-8.  Each 

dimension is divided into five levels and a basis point is placed at each combination of 

level (a full factorial grid).  Figure 5-9 plots the interpolating Gaussian RBF function 

(      ), and Figure 5-10 plots the interpolating Cubic Spline RBF function.  Note 

that much of the detail is missed by both RBF surfaces due to the coarse discretization: 

there are only 9 grid points.  However, the Gaussian functions are able to resolve more 

of the irregular surface details because they are better able to represent local features. 

 
Figure 5-3: Interpolating Gaussian RBF surface (     ) with 9 grid points 



 
Figure 5-4: Interpolating Gaussian RBF surface (     ) with 9 grid points 

 
Figure 5-5: Interpolating Gaussian RBF surface (     ) with 9 grid points 

 
Figure 5-6: Interpolating Gaussian RBF surface (     ) with 9 grid points 



 
Figure 5-7: Interpolating RBF cubic Spline RBF surface with 9 grid points 

 
Figure 5-8: Matlab ‗Peaks‘ Function 

 
Figure 5-9: Interpolating Gaussian RBF (      ) surface for Matlab ‗Peaks‘ with 9 

grid points 



 
Figure 5-10: Interpolating Cubic Spline RBF surface for Matlab ‗Peaks‘ with 9 grid 

points 

As is clear from the test cases, the choice of basis function and the 

parameterization of the function can have a large impact on the shape of the fitted 

RBF surface.  The choice of function surface can be informed by a priori knowledge 

of the shape of the true surface or through experimentation with available data.  The 

latter approach was taken in this work, as described in Section 5.8. 

There is a significant body of results that describe how basis points should be 

spaced and how basis functions should be parameterized.  For an excellent reading on 

the topic, see Wendland [2005] or Buhmann [2003].  Many of those results are based 

on the separation distance and fill distance.  Separation distance is ½ the minimum 

distance between separate basis points.  This can be interpreted as the maximum 

radius of two spheres centered at different basis points that are disjoint.  For an 

extensive discussion of the effect of separation distance on RBF interpolation see Ball 

et al. [1992]. 

Fill distance is the maximum radius of a sphere contained in the state space 

which does not include a basis point: i.e. the largest gap in the data sites.  Using these 



two metrics, Wendland [2005] details several results on basis function 

parameterization, and point selection for stable and well-conditioned RBF interpolates.  

Unfortunately many of the results which rely on fill distance and separation distance 

are based on semi-uniform distributed points.  By design, the fill distance will be very 

large compared to the separation distance in Corridor DP applications.  On the other 

hand, the separation distance is an important metric, as closely spaced points can 

cause the RBF surface to ‗wiggle.‘  When applying the Corridor selection 

methodology in Section 5.7 the separation distance provides a useful diagnostic 

metric. 

Section 5.7 Selection of Corridor Points 

As described in Section 5.4, candidate corridor points might be generated from 

simulation or repeated optimization with different starting conditions.  However these 

points may not represent a good basis for RBF interpolation.  Many points might be 

redundant: they might be very close and represent essentially the same storage state.  

Furthermore, there might be holes or gaps in the Corridor coverage where the system 

could easily travel but did not happen to go during the simulation period.  Another 

concern is that the basis points might not be concentrated where they are needed to 

obtain a good approximation (i.e. where the future value function becomes very non-

linear).  Finally, the solution of the Bellman equation (equation (5-1)) requires a 

reasonable approximation of the future value function in the extremes of the state-

space even if it does not choose to go that direction, and such points will not be 

included in a record of typical system operation.  This section describes a procedure 

for selecting a set of points which address the concerns above.  This could  be justified 



with a diffusion or thermal analogy of shaking the initial set of points so that they 

moved around randomly 

Section 5.7.1 Step One: Filling 

Filling is simply the process of eliminating in any holes or gaps which might 

exist in the Corridor.  Define   as the current set of basis points in our k-dimensional 

optimization problem which have been obtained using one of the procedures described 

in Section 5.4.   ( ) is the     point in set of points  .  The simplest approach to 

filling is to add   new points for each of the current points, with a multivariate normal 

random displacement about each current point,      (   ), where   is a     

vector of zeros and   is a     covariance matrix. 

Selecting a reasonable   is not trivial, particularly in high dimensional space.  

If the elements of   become too large, then new points will be placed beyond the 

Corridor region, but if the elements of   are too small then the new points will fail to 

fill gaps in the Corridor coverage.  Furthermore, an appropriate scale for each 

dimension should be selected – should it be percentage of active storage, or cubic 

meters? 

A major consideration when selecting a reasonable    is that the density of 

points might vary widely across the Corridor region.  For this reason, it was found 

useful to define a point-specific covariance matrix,  .  In particular, a covariance 

matrix was selected so that the 95% of generated points fall within a k-sphere 

enclosing the 30 nearest points.  The choice of 30 is somewhat arbitrary, but seemed to 

produce good results. 



The selection of   is achieved by assuming that the variance in each dimension 

(i.e. the diagonal elements of  ) are equal (say  ), that there is no correlation (i.e. the 

off diagonal elements of    ) and observing that: 

.
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  (5-10) 

where   
  denotes the chi-distribution with   degrees of freedom and   is the distance 

between a newly generated point and the original point.  Let    be the inverse of the 

CDF of   
  and     be the distance to the       nearest point.     is then given by:  

   .
 

 
/
 

 (5-11) 

This ensures that the range over which the   new points are distributed reflects 

the sparsity of the Corridor coverage about point i.  Figure 5-11 plot the Corridor 

region before, and after filling. 

It should be noted that random diffusion as described above can result in basis 

points which are outside the state space.  In reservoir problems this means that the 

storage vector includes storages which are either negative or greater than the 

maximum reservoir storage.  This is a common problem for points on the boundary of 

the state space: on average 94% randomly generated new points about a vertex of a 4-

dimensional hypercube will not be valid.  An easy solution to this problem is to re-

draw when an infeasible point is generated.  A second solution is to simply set the 

dimension of the state vector which lies outside the state space to the boundary (either 

0 or the maximum allowed in that direction).  The second approach can result in many 

points concentrated along the edges of the state space.  This might be desirable if the 

future value function is very non-linear at the boundaries.  On the other hand it can 



result in many redundant points, which prevents proper filling of the Corridor region.  

For this reason the re-sample approach was adopted in this study. 

 
Figure 5-11: Corridor Basis Points before and after Filling. 

Section 5.7.2 Step Two: Inserting a Backbone 

As was noted at in the introduction to this section, the solution of equation 

(5-1) in DP problems will consider transitions into the extreme regions (or vertices) of 

the state-space.  Thus it is desirable that the fitted RBF surface have a reasonably 

accurate representation of the future value function in the extremes.  This is achieved 



by inserting ‗backbone‘ points outside of the Corridor, allowing the RBF surface to 

maintain a reasonable representation of the future value function.  Figure 5-12 plot the 

basis points after ‗backbone‘ points are added. 

Different discreitization levels of the backbone were tested it was found that 

placing points at the vertices of the state space (16 backbone points) performed as well 

as having four discrete levels in each dimension (256 backbone points), while being 

substantially less computationally expensive. 

 
Figure 5-12: Corridor Basis Points with Backbone points 

Section 5.7.3 Step Three: Corridor Thinning 

As described in the beginning of this section, two additional concerns when 

selecting a good basis are that 1) the basis does not contain redundant points, and 2) 

that the basis contain points where the surface of the future value function is highly 

non-linear.  To address both of these concerns a greedy algorithm is proposed to 

generate a well-conditioned basis for the RBF approximation.  For simplicity, the 

following discussion will focus on RBF interpolation.  While not explicitly described 

here, the procedure can also be easily be extended to RBF least-squares 



approximation, Hermite RBF interpolation, and Hermite RBF least-squares 

approximation.  The algorithm for an RBF interpolating surface has 4 steps, as 

described in Table 5-2. 

If basis functions with compact support are used, the algorithm in Table 5-2 

will be much faster than if basis functions with global support are used (Wendland, 

2005).  This is because only the coefficients of nearby points need be updated when a 

new basis point is added, rather than the coefficients of every basis point.  Brumm and 

Scheidegger [2014] utilizes the same principle to achieve quick convergence in an 

adaptive sparse grid framework.  In that work, hierarchical basis functions with 

disjoint support are used so that the coefficient of a new basis point is simply the 

residual error at that point.  In this work, globally supported basis functions are used.  

But basis point selection is an ‗off-line‘ process which is run separate from the 

Corridor DP algorithm, so the speed of the basis selection process is not a major 

concern. 

Table 5-2:  Greedy Algorithm for basis selection for Interpolating RBF Surface 

Input: Set of candidate basis points  , and corresponding function values  . Set of 

initial points   , and corresponding   . RBF functional form and 

parameterization.  Desired maximum squared error,      

Output: Set of basis points  ̂ whose fitted interpolating surface  ̂ satisfies accuracy 

criterion. 

Step 1: Iteration    .  Fit RBF surface  ̂  to basis   . 

Step 2: Iteration      .  Compute maximum squared residual error and record 

index   
     (( ̂   ( )   )

 
( ̂   ( )   )) 

             Identify index   corresponding to   
  

Step 3: IF    

    , DONE 

             ELSE Add  ( ) to basis    

Step 4: Fit RBF surface  ̂  to basis   , move to Step 2 

 



Because the algorithm is greedy, it will be somewhat sensitive to the choice of 

the initial basis points,   .  A natural choice for    are the ‗backbone‘ points.  In this 

way, one starts with a very coarse representation of the surface and progressively adds 

points to the Corridor region where they are needed.  Figure 5-13 plots the maximum 

residual error versus iteration number for a sample run of the Greedy Algorithm 

described in Table 5-2, where the ‗backbone‘ points were used as   . 

 
Figure 5-13: Maximum Residual Error (   (  )) versus Iteration of the Greedy Basis 

Selection Algorithm 

Note that    (  ) sometimes increases, which is counter-intuitive for a greedy 

algorithm.  However this occurs because when using globally supported basis 

functions an improvement in one region might result in a distortion and greater errors 

in another.  The algorithm quickly responds to this by placing additional points where 

the error in the fit is worst.  Figure 5-14 plot an example of a thinned Corridor using 

the Greedy Algorithm in Table 5-2 for the easy case in Section 5.8.2.  Figure 5-15 

plots a thinned Corridor using the Greedy Algorithm in Table 5-2 for the hard case in 

Section 5.8.3. 



 
Figure 5-14: Corridor Basis Points with Backbone after thinning using the Greedy 

Algorithm, for the easy case 

 
Figure 5-15: Corridor Basis Points with Backbone after thinning using the Greedy 

Algorithm, for the hard case 

For the run plotted in Figure 5-14, and for all runs of the Greedy Algorithm 

reported in this thesis the values of   were generated using the highest resolution 

spline from the test problem in Section 5.8.2.  The high resolution spline is paired with 

standard (full lattice) DP, and that algorithm recursively iterates three steps.  The 



resulting cubic spline approximation of     ( ) is used as   for the greedy algorithm.  

Of course the extent to which   resembles the real surface will affect the performance 

of the greedy algorithm.  Experience suggests that practitioners likely have a 

reasonable estimate of   from repeatedly solving similar optimization problems on 

their system. 

For all of the Corridor SDP results presented in this thesis,    is the 16 

backbone points.  Following the algorithm in Table 5-2, the RBF surface of choice is 

fit to   .  For the example in Figure 5-13 and Figure 5-14 cubic RBFs are used. 

Section 5.8 Results 

To demonstrate the Corridor SDP concept, a four reservoir example is 

provided in this section.  Section 5.8.1 provides a brief discussion of the hydropower 

system used as a test case, with a more extensive discussion of the hydrologic 

characteristics of that basin included in Chapter 3.  Section 5.8.2 provides a 

comparative analysis of the Corridor DP algorithm and DP algorithms using full-

factorial grids with multi-linear and cubic spline interpolants. 

Section 5.8.1 Test Basin 

The Kennebec River basin is located in north-central Maine in the eastern 

United States.  The river originates near the US/Canada border and flows 150 miles to 

the Atlantic Ocean at Merrymeeting Bay.  The river has a drainage area of 5,870 

square miles and includes a wide range of topography from mountains in the 

headwaters to flat coastal plains. 

There are ten hydro-electric generation facilities as well as two storage-only 

reservoirs (Moosehead and Flagstaff Lakes) located along the length of the river.  The 



elevation change from the first facility to the last is 1073 vertical feet.  The total 

installed hydro-electric generation capacity is 256 MW.  The available storage in the 

Kennebec‘s three primary reservoirs, Moosehead Lake, Flagstaff Lake, and Brassua 

Lake is 44.7 billion cubic feet, or about 15% of the average annual runoff.  Figure 

5-16 shows a schematic of the Kennebec Hydropower system. 

Essentially the system contains three storage reservoirs and two generating 

reservoirs, followed by seven run-of-river plants.  Run-of-river plants have virtually 

no storage so the only water available in stage   is the inflow. 

For the demonstration in this chapter a four reservoir sub-system of the 

Kennebec hydropower system is modeled, as shown in Figure 5-17.  Here the Lower 

Kennebec is not modeled, and Harris Station and Moosehead Lake are modeled as a 

composite reservoir.  There is relatively little unregulated inflow between Harris 

Station and Moosehead Lake, and Harris Station has a relatively small storage, but 

significant head effects.  Thus, the optimal operating policy of the whole system 

would include using Moosehead to keep Harris Station as full as possible, without 

spilling.  Thus modeling Harris Station and Moosehead Lake as a composite reservoir 

is appropriate. 



 
Figure 5-16: Schematic of the Kennebec Hydropower System 
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Figure 5-17:  Schematic of four-reservoir test system used in Section 5.8.2. 

Section 5.8.2 Comparison of Traditional and Corridor SDP: Easy Case 

A three-stage, four reservoir DP model of the system in Figure 5-17 was 

constructed.  This model was run using various representations of   .  Of interest is the 

error in  ̂  after several (3) DP stages associated with different representations of the 

future value function and different basis sizes.  It is expected that as the number of 

points in the basis increases, the accuracy of   ̂  should also improve.  Unfortunately, 

increasing the size of the basis also increases the burden of solving the DP problem.  

This section explores the question: given a desired accuracy of solution in the Corridor 

(accuracy of  ̂  inside the Corridor region), what basis selection and future value 

function representation method achieves the desired accuracy with the smallest basis?  
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Our examples start with what is called  the easy case because there are no penalties, 

and the value function f is very smooth and well behaved. The next sections considers 

our hard case wherein the reservoir management problems includes penalities should 

low flows fall below several thresholds. . 

Table 5-3 summarizes the DP algorithms compared in this section.  These 

utilize two basis selection methods: full-grid and Corridor with backbone as described 

in Section 5.7.  Multi-linear interpolation and cubic spline interpolation are used with 

full grids.  A variety of thinplate RBF and cubic RBF interpolation and least-squares 

approximation techniques were paired with the Corridor method for basis selection.  

Other basis functional forms were also tested, but with less success.  This last point is 

explored more in 0. 

Table 5-3: Summary of DP Schemes tested, easy case 

 Name Abbreviation Representation of    Basis Selection 

1 Multi-Linear DP (ML-Full) Multi-linear 

interpolation. 

Full grid 

2 Cubic-Spline DP (CS-Full) Cubic spline 

interpolation  

Full grid 

3 Thinplate RBF 

Interpolating Corridor 

DP  

(TI-Corr) Gaussian RBF 

interpolation  

Corridor and 

backbone 

4 Cubic RBF 

Interpolating Corridor 

DP 

(CI-Corr) Cubic RBF 

interpolation 

Corridor and 

backbone 

The test problem considered here is based on a real system, for which 

analytical solutions are not available.  Thus, it was necessary to construct a ‗perfect‘ 

surface against which to measure relative error.  Following the work by Johnson et al. 

[1993], a high-density cubic spline (CS-Full), with 15 discrete levels in each 

dimension was used as the benchmark against which all other surfaces are compared.  

Unlike Johnson et al. [1993], this work is not interested in a good fit throughout the 



entire state-space, but rather the fit inside the Corridor region.  To this end, 360 test 

points which span the empirical Corridor region were selected so as to ensure they are 

semi-uniformily distributed across the corridor region.  The measure of algorithm 

performance is the sum of the squared deviations of a test surface and the ‗perfect‘ 

surface at the 360 test points. 

Figure 5-18 plots the SSE in the Corridor region versus the size of the basis for 

the DP schemes described in Table 5-3.  Figure 5-19 plots the %  Relative RMSE in 

the Corridor region versus the size of the basis for the DP schemes described in Table 

5-3.  %  Relative RMSE  is defined as: 

                     √    (   ̅) 

where     is the mean squared error in the corridor of a DP scheme , and   ̅ is the 

average of function values at the test points. 

Cubic splines on full factorial grids (CS-Full) do significantly better than 

multi-linear interpolation on a full grid (ML-Full).  This confirms the very important 

finding reported by Johnson et al. [1993] on a realistic system, whereas Johnson et 

al.‘s tests were on a very simple test problem.  For this example, CS-Full with 625 

basis points has less error than ML-Full with 50,625 basis points.  This is remarkable.  

The improvement of CS-Full over ML-Full grows as the density of the gird increases. 



 
Figure 5-18: SSE in the Corridor Region vs. Number of Basis Points, easy case 

 
Figure 5-19: Relative RMSE in the Corridor Region vs. Number of Basis Points, easy 

case 

Both CI-Corr and TI-Corr beat CS-Full, and CI-Corr (Cubic radial basis 

functions for the corridor) seems to consistently out-perform TI-Corr (thin-plate with 

corridor).  It is not clear why this should be the case, but it was found over a wide 

range of basis sizes.  CI-Corr generally beats CS-Full by an order of magnitude: 

meaning that with about 1/10 the CI-Corr can achieve the same SSE in the Corridor 

region as CS-Full points.  Both CI-Corr and TI-Corr significantly outperform ML-
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Full.  In-fact CI-Corr with as few as 76 basis points returns smaller SSE in the 

Corridor than ML-Full with 50,625 basis points.   

Clearly, CS-Full provides a significant improvement over ML-Full, and CI-

Corr provides about an order of magnitude improvement over CS-Full in this easy 

case.  For some cases, careful manual selection of basis points showed even greater 

improvements were possible with Corridor DP and RBF interpolation.  However, this 

was a purely subjective selection, depending on the skill of the selector, and is not 

reproducible. 

Convergence Analysis 

Interpolations with piecewise linear polynomials and cubic splines is a well-

studied topic in one dimension.  Kahaner et al. (1977, p. 98) indicate that linear 

interpolation  ( ) between points in one-dimension should result in an error in 

approximating a smooth function with a continuous second derivative g(x) that 

decreases quadratically with the spacing   between points: 

     ( )   ( )  (
 

 
)          ( )  

for some point   in the interval. In our case in dimension      , the number of points 

  increases as   decreases according to N = r/h
4
 where   represents the width of the 

intervals being divided.   Putting these two relationships together yields 

     .
 

 
/
   

 

or 

  ,  -    ,   
   -       , - 



Thus on a log-log plot such as Figure 5-18, ln[eL]  should decrease linearly 

with ln[N] with a slope of -0.5.  We see in Figure 5-18 that the relative error inside the 

corridor for the linear DP (ML-Full) has a slope of -0.44, or nearly the same as one 

might expect from the theory.  The deviation from the theoretical convergence is in 

part explained by the effects of the nested optimization, which also contributes error 

and can decrease the rate of convergence for the DP approximation of the future value 

function. 

Similarly, Kahaner et al. (1977, p. 111) indicate that the error when using a 

cubic spline  ( ) with appropriate end conditions to approximate a function  ( ) that 

has a continuous fourth derivative should have the bound 

     ( )   ( )         | ( ) ( )| 

for some constant   , so that  

     ( )   ( )    .
 

 
/ 

or,  

  ,  -    ,   -    , - 

Thus on a log-log plot such as Figure 5-18,    ,  -  should decrease linearly with    , - 

with a slope of -1.  Examination of Figure 5-18 reveals the error of the spline DP (CS-

full) has a slope of -0.92, or very nearly what is suggested by the theory.  As before it 

is believed that the error convergence rate is slower than suggested by theory due to 

the errors introduced through the numerical solution of the DP. 

Assuming that these error bounds apply in our case when  ( ) may not have 

the hoped for smoothness, one can understand why the error for the cubic spline 



approximations decrease so much more rapidly with an increasing number of points. A 

slope of –1 versus –0.5 on a log-log plot makes a major difference if one is hoping to 

obtain a very small error.  

In general, if one were working in dimension  , then the coefficient of    , - 

would be –     for linear interpolation, and –     for cubic spline interpolation. Carl 

de Boor [1997] indicated that in many cases the behavior of the error in the 

multivariate case is the same as that in the univariate case, when appropriately 

reducing the mesh size in the different dimensions.  

The corridor approximation has smaller errors than splines with relative few 

points reflecting the intelligence that went into selecting the location of the corridor 

points. However, because the points are located in advantageous locations, rather than 

in a regular grid, one cannot expect the higher-order reduction in the error that is 

possible with cubic splines. The data in Figure 5-18 suggests that the rate of decrease 

in the corridor error with the number of points more closely matches that of linear 

interpolation with a log-log slope of – 0.52.  Thus it does appear that cubic splines 

though not initially as accurate as the corridor approach, do over take the corridor 

approach as   increases. 

Section 5.8.3 Comparison of Traditional and Corridor DP: Hard Case 

The future value function surface resulting from the analysis in Section 5.8.2 

was fairly well behaved in that it was relatively smooth and nearly linear over a wide 

range of the state-space.  However in real applications there can be penalties which 

could potentially add significant and potentially localized curvature to the future value 

function.  These penalties might be incurred due to a failure to provide a minimum 



generation, for violation of flow constraints (either low or high) or for violation of 

environmental quality constraints.  The Corridor SDP algorithm, paired with the 

Greedy Algorithm point selection is particularly well suited to such a problem because 

it places basis points precisely where such problematic curvature exists. 

As an example, consider the hypothetical system introduced in Section 5.8.1 

and Section 5.8.2, with the addition of minimum flow constraints from each project: 

     [

        
        
        
        

] 

where the elements of      are the minimum release constraints from Brassua, 

Moosehead/Harris, Flagstaff, and Wyman respectively.  These constraints were 

selected to ensure that in low storage states it is very difficult or impossible for the 

system to meet the constraints in some simulation periods.  If the constraints are not 

met, a linear penalty is applied: 

   ( )      
    ( )   ( )

    ( )
 if  ( )      ( ) 

   ( )    otherwise,           

The sum of the elements of     are subtracted from the benefit function in 

each time period.  As in the previous section a 3-stage DP model is solved for the 

hypothetical 4-reservoir system, but now with the introduction of the linear penalty for 

violations of the minimum release.  This will be known as the hard case. 

Three algorithms are compared, as summarized in Table 5-4.  Each algorithm 

is used to solve the 3-stage DP problem with an increasing number of basis points.  

The relative error in the estimate of the future value function after three DP stages is 



compared.  As before a spline surface constructed using 50,625 basis points is 

assumed to be perfect. 

Figure 5-20 plots the MSE inside the corridor region versus the number of 

basis points for the three algorithms tested and Figure 5-21 plots the relative RMSE 

inside the corridor region.  The difference with the easy case (Figure 5-18) is striking.  

The error rate for the Cubic-Spline DP is much closer to the error in Multi-Linear DP 

than in the easy case in the previous section.  For example in the easy case Cubic-

Spline DP with 625 points had smaller relative error than Multi-Linear DP with 

50,625 points.  In the hard case Cubic-Spline DP with 625 points does about as well 

as Multi-linear with about 4,000 points.  And the difference between cubic splines and 

thin-plate splines has all but disappeared. 

Table 5-4:  Summary of DP Schemes tested with flow penalty, hard case 

 Name Abbreviation Representation of    Basis Selection 

1 Multi-Linear DP (ML-Full) Multi-linear interpolation. Full grid 

2 Cubic-Spline DP (CS-Full) Cubic spline interpolation  Full grid 

3 Cubic RBF 

Interpolating 

Corridor DP 

(CI-Corr) Cubic RBF interpolation Corridor and 

backbone 

4 Thinplate RBF 

Interpolating 

Corridor DP 

(TI-Corr) Thinplate RBF interpolation Corridor and 

backbone 

 



 
Figure 5-20: MSE in the Corridor Region vs. Number of Basis Points, hard case 

 
Figure 5-21:  Relative RMSE in the Corridor Region vs. Number of Basis Points, hard 

case 

The most striking difference of the hard case results versus the easy case 

results is that the error convergence rate of splines (CS-Full) is now much closer to 

that of multi-linear (ML-Full).  Whereas in the easy case CS-Full with 625 points 

achieved better accuracy than ML-Full with 50,625 points, in the hard case CS-Full 

with 625 points achieves the same error as ML-Full with about 4,000 points 

(interpolating).  Thus we conclude that CS-Full achieves greater accuracy than ML-

Full, but that the improvement is not nearly as dramatic as in the easy case. 
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The improvement of the Corridor DP method over splines is even more 

dramatic in the hard case than in the easy case (see Figure 5-18).  In the easy case the 

CI-Corr achieved about the same error as CS-Full with about 1/10 the points, but in 

the hard case CI-Corr matches the error of CS-Full with about 1/30 the number of 

points.  This exciting result is largely because the Greedy Algorithm described in 

Section 5.7.3 places points where the minimum flow constraints introduce curvature to 

the future value function.  As with the linear and spline methods, it seems the error 

convergence rate for the Corridor DP RBFs is slower than in the easy case.  As can be 

seen, the relative efficiency of Splines over Multi-linear increases as the specified 

error decreases (point density increases).  Thus to do as well as CS with 4000 points, 

ML requires 30,000 points. 

Section 5.8.4 Speed-up from smooth surfaces 

An important assertion in Johnson et al. [1993] was that, for a given 

discretization level, DP with splines was actually faster than DP with linear 

interpolation because much faster, gradient based methods were able to be applied.  

Johnson et al. [1993] estimates this speedup to be about 10 times for their 4-reservoir 

system, despite the fact that spline interpolation and gradient evaluation takes roughly 

20 times more flops than in the linear case.  The analysis of errors in Section 5.8.2 and 

Section 5.8.3 are reported in terms of the number of basis points, which completely 

misses this aspect of the findings by Johnson et al. [1993]. 

As a test of the speed-up achieved by using a smooth surface to approximate 

the future value function a time trial was performed.  The three stage DP models from 



Section 5.8.2 and Section 5.8.3 were run with a fixed discretization, but with either 

spline or linear interpolation, and the run times are compared. 

Johnson et al. [1993] note that the cost of constructing a cubic spline 

interpolating surface increases with the discretization level, but also noted that this 

cost is likely small compared to the overall cost of the many optimization problems 

required to solve a DP.  To test the effect of discretization time trials are conducted at 

various discretization levels. 

In order to make the results more robust, the time trial for each discretization 

level is repeated many times, using the MATLAB function ‗testit,‘ and the median run 

time is reported [Mathworks, 2014].   The median run time and the relative RMSE in 

the corridor for different discretization levels are reported in Table 5-5 for the easy 

case (i.e. the model reported in Section 5.8.2). 

Table 5-5: Run time and relative RMSE in the Corridor for the 4-reservoir system for 

various discretization levels for DP with spline and linear interpolation for the easy 

case 

 Linear Spline 

  
Median Run 

Time (sec) 

% RMSE in 

the Corridor 

Median Run 

Time (sec) 

% RMSE in 

the Corridor 

16 13 0.729 13 0.615 

81 46 0.621 38 0.397 

256 144 0.414 131 0.246 

625 298 0.357 253 0.154 

 

Like the findings reported by Johnson et al. [1993], we find that Spline DP 

optimizes faster than Linear DP, though not by an order of magnitude.  Instead the 

speed up is somewhat minor, and there is no strong evidence that the relative speed up 

of spline over linear decreases or increases with increased discretization.  It is clear, 



however, that as the discretization level increases, the relative error in the corridor 

decreases more rapidly with splines than with linear.  Thus we can conclude that for 

the easy case using splines to interpolate improves the accuracy of the DP solution, 

while not incurring an increased computational burden from the increased difficulty of 

fitting and evaluating the spline surface. 

The same test was conducted on the hard problem (as described in Section 

5.8.3).  Table 5-6 reports the median run time, and relative RMSE for linear and spline 

DP with different discretization levels.  As before the median solution time for spline 

DP is nearly the same, or slightly less than the solution time for linear DP.  As before 

the relative error in the corridor is less for spline DP than linear DP.  As described in 

Section 5.8.3, the rate of improvement of Spline DP over Linear DP is lower than in 

the hard case.  It is, however, still the case that for the same, or slightly less 

computation time, spline DP still returns a more accurate solution than linear DP. 

Table 5-6: Run time and relative RMSE in the Corridor for various discretization 

levels for DP with spline and linear interpolation for the hard case 

 Linear Spline 

  
Median Run 

Time (sec) 

% RMSE in 

the Corridor 

Median Run 

Time (sec) 

% RMSE in 

the Corridor 

16 13 42.0 14 41.5 

81 50 25.6 37 20.6 

256 151 18.9 142 12.8 

625 295 15.1 262 9.4 

 

The results in this section agree with the findings of Johnson et al. [1993]: 

using splines instead of linear interpolation speeds up the nested optimization which 

compensates (or more than compensates) for the increased computational burden of 

evaluating the spline surface. 



However, we find the speed-up to be much less than reported by Johnson et al. 

[1993].  This is for at least two reasons.  First, the test case used by Johnson et al. had 

much more curvature than the test cases considered here, having a quadratic objective 

function.  It should be noted that even the hard case reported in Table 5-6 is relatively 

linear over a wide range of the state-space.  The second reason for the disagreement 

with Johnson et al.‘s findings is that a derivative based procedure was used in this 

section for the DP on both surfaces (linear and spline).  In contrast, Johnson et al. use 

a derivative based method for the spline DP and a non-derivative method for the linear 

DP.  Thus, it is not at all surprising that a significant speed up was achieved with 

splines: that solver was given more information about the surface (the gradient) than 

was the solver for linear DP. 

In conclusion, solution of DP problems with fixed discretization levels was 

found to go slower (and often faster) when splines are used to approximate the future 

value function rather than linear interpolation.  This finding is important, and validates 

the decision in the previous sections to report relative error for approximation surfaces 

versus the number of basis points rather than versus computation time. 

Section 5.8.5 On the Selection of Basis Functional Form 

It was stated earlier that cubic basis functions were generally found to perform 

the best of all the functional forms examined in this Chapter, with thinplate spline 

basis functions also performing well.  This conclusion was reached through testing 

with both objective and subjective basis point selection over a wide range of point 

densities applied to the easy case in Section 5.8.2.  This point is examined in more 

detail here. 



To test the accuracy achieved using different basis functional forms, the 3-

stage Corridor DP model used in Section 5.8.2 (i.e. the easy case) is run using a fixed 

number of basis points, but with different functional forms.  To make the analysis 

more robust, this test is done with two different basis sizes: 40 and 175 basis points. 

The Greedy algorithm described in this chapter is used for point selection.  

Experience suggests the Greedy algorithm for point selection is relatively stable in that 

when run multiple times, the resulting point bases return similar relative errors from 

the Corridor SDP optimization.  Thus, in the following analyses, the filling procedure 

described in Section 5.7.1 is run only once, and the resulting ‗filled‘ basis is used for 

all subsequent runs of the Greedy algorithm.  Furthermore each RBF functional form 

is tested once rather than repeatedly. 

This approach is justified by examination of Figure 5-18.  Clearly some of the 

scatter and dis-uniformity in the error rate of the RBF surfaces is due to the 

randomness of the Greedy algorithm point selection.  However the fact that the cubic 

and thinplate RBF error monotonically decreases with increased basis size, and are 

always ranked consistently across the range of basis sizes suggests the Greedy 

Algorithm returns relatively stable results. 

Figure 5-22 reports the SSE in the Corridor Region for various functional 

forms and for two basis sizes for the easy case.  Note that cubic RBFs outperform the 

other functional forms at both basis sizes, but thinplate splines return similar accuracy.  

These results are typical of the findings across a wide range of basis sizes.  Here the 

notation of (-) indicates the value of the γ parameter.  For multiquadrics two separate γ 



values are used for      and        and the notation (-,-) indicates the γ for 

those basis sizes respectively. 

 
Figure 5-22: SSE in Corridor for various RBF functional forms, for two discretization 

levels, easy case 

One great advantage (or a possible disadvantage) of cubic and thinplate spline 

RBFs is that they require no additional parameter, the way Gaussian and multiquadrics 

do (see Section 5.6).  This is an advantage because they can be easily applied to a new 

problem, without the needed tuning.  On the other hand, it is impossible to tune the 

surface parameters to a specific problem. 

The best γ for Gaussian and Quadric basis functions depends on the size of the 

basis (i.e. the density of the basis points).  If one considers Gaussian functions, for 

instance, one expects that as the basis point density decreases and points are farther 

apart, the best   should become larger.  This is because a ‗fatter‘ Gaussian function is 

needed to cover more of the state space if points are sparse.  This is precisely what we 

see in Figure 5-22: for larger   the best   is smaller. 

Figure 5-25 reports the SSE in the corridor for various RBF functional forms 

for two basis sizes for the hard case.  We see now that each of the functional forms 

achieve about the same accuracy for     , and interestingly multiquadrics (when 
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properly parameterized) provide the best fit.  However, as the basis size increases the 

cubic and thinplate spline functional forms achieve the best accuracy.  These 

functional forms require no parameterization and can be used without trial and error 

on the functional surface. 

 
Figure 5-23: SSE in Corridor for various RBF functional forms, for two discretization 

levels with gamma (N = 40/N = 175), hard case 

One reason that Gaussian basis functions perform so poorly is that they employ 

a uniform γ parameter across the entire state space.  In the easy case points were 

distributed somewhat uniformly in the corridor region, so a uniform γ is appropriate.  

However, in the hard case the basis points are concentrated in a corner of the state 

space, so a single γ parameter is very problematic:  the Gaussian functions are bound 

to be too ‗fat‘ in dense regions and too ‗thin‘ in sparse regions.  This might explain 

why the accuracy achieved with Gaussian functions actually became slightly worse 

with more basis points. 

Despite their good performance, the use of thinplate splines is not 

recommended for numerical solution of DP problems because the second derivative of 

the RBF surface is infinite at each basis point.  This is particularly a problem if one is 

using a quasi-Newton solution method to solve equation (5-1).  Cubic basis functions 
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avoid this problem, and seem to perform as well or better than thinplate splines in the 

test cases presented. 

Multiquadrics and Gaussian RBFs should be used with great care, as their 

parameterization can greatly affect the quality of the function approximation.  One is 

often forced to use ‗trial and error‘ to pick parameter values that work well for a 

problem in hand, and this might prove prohibitively expensive.  It is observed in this 

section that the optimal parameterization of multiquadric and Gaussian RBF depends 

greatly on the size of the basis (density of points).  This presents a great challenge for 

the Greedy Algorithm, which adaptively selects points based on where the 

approximation fits the function the worst.  Without extensive a priori knowledge of 

the evolution optimal parameterization of the RBF surface with change in basis size 

this it is difficult to effectively apply the Greedy Algorithm for point selection with 

Gaussian or multiquadric RBFs. 

Gaussian RBFs have the helpful feature that they can provide a local and 

limited feature to the surface which can capture localized curvature (explored in 

Section 5.6.1).  One concern when pairing the Gaussian RBFs with a quasi-Newton 

solver is that the significant curvature introduced by the Gaussian functions could 

result in an irregular second derivative.  A potential solution to this problem is to 

employ Gaussian functions which, beyond some bandwidth, become linear.  This 

would reduce the curvature of the surface and might improve the performance of 

quasi-Newton search over the surface. 

In conclusion, it seems the cubic and thinplate spline basis functions perform 

the best on the surfaces tested.  Because of concern for the behavior of the second 



derivative of RBF thinplate splines, RBF cubic splines are generally deemed better for 

this application. 

Section 5.9 Discussion 

The results in Section 5.8.2 and Section 5.8.3 show that the Corridor DP 

algorithm has the potential to reduce the computational burden of solving DP 

problems by as much as 10 times over CS-Full for the easy case and by as much as 30 

times over CS-Full for the hard case.  The great difficulty in Corridor DP is the 

selection of a good basis.  In fact a poorly selected basis can cause Corridor DP 

algorithms to perform much worse than ML-Full.  The Greedy algorithm presented in 

Section 5.7.3 provides a reliable and objective method for selecting an appropriate 

basis: in every basis generated using that algorithm, the corresponding Corridor DP 

configuration beat CS-Full. 

It was found that manual basis selection can at times outperform the Greedy 

Algorithm selection criteria.  This is an interesting result, as operational application of 

the Corridor DP algorithm would likely involve re-solving the same or similar 

problems many times, so that a practitioner will likely have a good set of basis points 

in hand. 

The choice of basis functional form seems critical to the performance of the 

Corridor DP algorithm.  It is difficult a priori to know what functional form is best 

suited to a problem in hand.  For the relatively smooth problem in this application 

cubic and thin-plate RBFs performed best as described in 0.  However, in problems 

with local, irregular features, Gaussian or tri-cube functions might perform better.  0 



describes further considerations when searching over the RBF surface using derivative 

based methods. 

Section 5.10 Conclusions 

The solution of high dimensional DP models continues to be a challenging 

problem, more than 50 years after Bellman coined the ‗Curse of Dimensionality.‘  

However increased computing power and improved numerical techniques continue to 

push the boundaries of what is possible.  New work on Q-Q iteration DP [Castelletti, 

2010] and adaptive sparse grids [Brumm and Scheidegger, 2014]as well as past work 

using cubic splines [Johnson et al., 1993] and SDDP [Pereira and Pinto, 1985] allow 

significant improvement over traditional DP solution techniques.  In this vein, 

Corridor DP seeks to reduce the computational burden of high-dimensional DP by 

focusing the optimization effort in the region of the state space where the system is 

likely to reside.  Results presented here show that with careful basis selection, 

Corridor DP paired with RBF interpolation can outperform Cubic Spline interpolation 

in that it achieves the same accuracy more than an order of magnitude less effort. 

It is anticipated that this exciting work can be improved upon further through 

use of least-squares approximation and Hermite RBF interpolation. 
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Appendix: SDP Diagnostics 

The numerical solution of DP models requires one to solve equation (5-1) 

many times in each time step.  For instance, the most extreme case considered in 0 

solved equation (5-1) more than 50,000 times in each time step.  For such problems to 

be tractable, fast solution methods must be used.  Such methods, whether they are 

derivative based or not, are prone to pre-mature termination, which returns sub-

optimal solutions.  This is particularly troubling in DP because the solution process is 

recursive: the solutions for one iteration inform the solutions for the next iteration, so 

errors can compound over time.  To address this concern two simple diagnostic 

procedures are presented. 

The first procedure depends on the fact that the future value function in many 

applications should be non-decreasing with increase in the state variables.  For 

reservoir operations optimization, without spill and storage penalties, more water in 

storage should always translate to the same or more benefits.  This fact can easily be 

leveraged into a diagnostic check.  After equation (5-1) has been solved for each point 

in the basis  , the following check is performed for each basis point  : 

  ( )    ( ) 
    ̃( ) (5-12) 

where  ̃( ) is a set of basis point indices satisfying the condition that 

 (   )   (   ) 

          

The condition in equation (5-12) ensures that the future value function at point 

 ,   ( ) is greater than or equal to the future value function at every other point with 



equal or less storage.  If this condition is violated it indicates that the maximization of 

equation (5-1) likely terminated prematurely at point  . 

The second diagnostic procedure is based on regression.  It follows from the 

observation that the k-dimensional future value function (in our case    ) is well 

approximated by a simple non-linear function when transformed to a suitable 1-

dimensional space.  It was found that the simple linear transformation in equation 

(5-13) worked well: 

     (5-13) 

where   is a row vector of weights and   is a vector of transformed storages.  The 

elements of   correspond to the fraction of system powerhouse generation which is 

downstream of each reservoir, including the power house associated with that 

reservoir: 

  ,                        - 

The following non-linear model of the future value function is fit using the 

transformed storage total  : 

  ( )        ( )    √ ( )   ( ) (5-14) 

where the parameters   ,   , and    are selected to minimize the total sum of squared 

errors: 

        

where   is a vector of residual errors whose     element is  ( ).  The significance of 

each residual is tested using the statistic:  

     ( )  
 ( )

 
 

(5-15) 



where 

   
   

   
 

 Assuming the residual errors are normal distributed yields the result that       

is distributed Student T [Draper and Smith, 1966].  Any desired significance level can 

be used when testing the residuals.  A significant residual suggests that the optimizer 

terminated pre-maturely at a sub-optimal solution when solving equation (5-1). 

 As an example of these methodologies the Corridor DP algorithm with 

interpolating RBFs which is described in 0 was run for one time step.     is plotted in 

the transformed space Figure 5-24.  Note that the    for a single basis point deviates 

significantly from trend in the rest of the   .   

 
Figure 5-24: Future Value Function of Corridor DP after one time step (green) and 

fitted polynomial (red). 

At first this deviation is ignored, and the recursive DP problem continues 

backwards another two time steps. Figure 5-25 plots the final future value function in 

transformed space. 



 
Figure 5-25: Future Value Function of Corridor DP after three time step (green) and 

fitted polynomial (red) if the sub-optimal termination in Figure 5-24 is ignored. 

The future value function now fluctuates wildly, and the condition in equation 

(5-12) is now widely violated.  Clearly the single sub-optimal termination seen in 

Figure 5-24 has caused the entire DP solution to fail.  Figure 5-26 plots the future 

value function in transformed space if the initial problematic basis point is identified, 

and equation (5-1) is solved with a more robust, and slower, optimization routine.  

Note that the wild behavior has disappeared and the condition in equation (5-12) is 

now satisfied at every basis point. 

 
Figure 5-26: Future Value Function of Corridor DP after three time step (green) and 

fitted polynomial (red) if the sub-optimal termination in Figure 5-24 is addressed. 



The two diagnostic approaches recommended in this appendix are simple, 

quick, and have proven useful in experience. 

  



CHAPTER 6  
 

When modeling any system, it is important to understand the underlying 

system dynamics and the time scales (or inversely the frequencies) at which those 

dynamics are acting.  This chapter proposes three diagnostic metrics and analyses for 

identifying the important operational time scales for hydropower systems.  First, a 

number of simple diagnostic statistics are proposed which help the analyst diagnose 

the operational time scales for a hydropower system to any advanced analysis or 

policy simulation.  The second approach is based on regression analysis on optimized 

system operations.  The third is based on spectral analysis of optimized system 

operation.  As an example, the operation of a hypothetical single-reservoir system on 

the Kennebec River in Maine is considered with all three sets of metrics. 

Section 6.1 Introduction  

When designing a system model it is critical that the dynamics which drive the 

system operation are adequately represented.  An important consideration is the time 

scale of system processes and how this influences system operation.  For instance, an 

important consideration for the model in Chapter 4 was hourly energy price 

fluctuations, so a model that assumes constant generation over the week would miss 

that critical process.  On the other hand, a system that moves large quantitites of water 

and energy between different seasons can perhaps can be represented by a model with 

a weekly or monthly time scale, with appropriate parameterized within-week or 

within-month operation. 



A related consideration is the streamflow forecast horizon which is most useful 

for system operation.  In some applications this is obvious: for instance in a fill period 

in snowmelt hydrology (like in Faber [2000], Kelman et al. [1990], and Tejada-

Guibert et al., 1995, and others), the obvious forecast is the seasonal snowmelt runoff.  

In the operational context one might be constrained by the actual forecasts which are 

available.  But in other cases, like the short-term planning model in Chapter 4, or in 

cases where multiple forecast products are available, the choice is less obvious. 

The aim of this chapter is to explore several sets of diagnostic statistics to help 

answer these questions in reservoir system modeling problems.  It should be noted that 

system operators can often identify a good modeling approach for the various system 

processes.  The diagnostics presented here do are not intended to replace valuable 

operator insight.  Rather it provides basic diagnostic metrics to confirm such insight, 

or for the case that such input is not available.  They may be particularly valuable in 

regional or climate change studies that are considering a host of systems and reservoir 

configurations that could be developed. 

Section 6.2 Literature Search 

Section 6.3 describes the use of non-dimensional metrics as diagnostic tools 

when building models of hydropower operations.  In this thesis these metrics are used 

in two ways: 1) to provide metrics by which an analyst might understand and compare 

the scale and mode of operation of different hydropower projects of different sizes 

across a wide geographical range, and 2) to provide a dimensionless presentation of 

results (or at least use of a common dimension, such as ‗days‘) in order to draw more 

generalized conclusions. 



An early example of the use of non-dimensional statistics is provided by 

Klemes [1977].  That work examines the value of hydrologic information to optimal 

reservoir management, and reports its findings in non-dimensional form in order to be 

more generalizable, in the same way the results in Chapter 4 of this thesis are 

presented.  Klemes reports the value of hydrologic information in terms of the ratio of 

reservoir storage and mean annual inflow and the ratio of annual draft (demand) to 

annual inflow.  Karamouz and Houck [1987] compare the performance of SDP and 

deterministic DP models on hypothetical reservoirs with different sizes in several 

basins in different hydrology across the United States, and use dimensionless storage 

(ratio of mean storage capacity and mean annual inflow) to compare across basins and 

hypothetical reservoirs. 

An early example of this kind of approach comes from reliability analysis for 

storage reservoirs, which is concerned with determining the likelihood that a reservoir 

will fail to deliver its annual yield [Vogel, 1985; Vogel and Stedinger, 1987; Vogel, 

1987;Vogel and Bolognese, 1995].  As part of this effort Vogel [1985] and Vogel and 

Stedinger [1987] derive the distribution of over-year storage given different 

assumptions. 

Taking dimensionless metrics of reservoir reliability, Vogel et al. [1995] 

develop regional relationships for storage reliability and resilience for the Northeast 

United States.  That analysis is extended by Vogel et al. [1999] to include the entire 

United States, and by McMahon et al. [2007] to include basins across the whole world.  

Montesari and Adeloye [1999] also provide a more limited example comparing 

reservoirs in Iran and England.  In this way the relationships first derived to generalize 



the findings of a specific analysis (in Vogel [1985]) are extended to develop regional 

storage-reliability/storage-resilience relationships for an entire region (Vogel et al. 

[1995, 1999]; McMahon et al. [2007]). 

More recent examples of the application of dimensionless statistics include 

Hejazi et al. [2008], who conducts a regional study (for the Great Plains and 

California) of what hydrologic variables are most related to reservoir operations using 

a data-mining approach.  By using dimensionless statistics, that work is able to 

compare reservoirs of vastly different scales by a common metric.  Another recent 

work is Vogel et al. [2007] who uses the dimensionless statistics derived by Vogel 

[1985] and Vogel [1987] to derive relationships between storage-yield and new 

measures of downstream ecological health.  Zhao et al. [2012] use the dimensionless 

metrics of reservoir storage capacity developed by Vogel and Stedinger [1987] to 

examine the effects of forecast and forecast horizon on optimal reservoir operation. 

The analysis by Zhao et al. [2012] is also notable because it seeks to identify 

the critical forecast length for real-time reservoir operations, similar to the objective of 

the analyses in Section 6.3.1 and Section 6.3.2.  Unlike the analysis presented in this 

chapter, that work considers the diminishing accuracy of longer forecasts. 

Section 6.3 Diagnostic Metrics 

The test case here is a single reservoir system on the Kennebec River in Maine.  

As in Chapter 4, summer operation with various system configurations (combinations 

of storage and turbine capacity) are considered.  By changing the system 

characteristics it is possible to show how the diagnostic metrics illustrate the 



differences among different systems, or the same system but with different hydrologic 

inputs. 

The summer period of operation runs from May 1 to October 31.  In each year, 

it is assumed that the system starts May 1 as full.  This is a reasonable assumption 

because the total storage on the Kennebec River hydropower system is about 1/3 the 

mean annual inflow, so that even in dry years the reservoir is able to refill.  On 

October 31 the system must be drawn down to meet flood storage.  The beginning of 

the modeled operation period marks the end of the freshet, and the reservoir inflows 

generally become smaller as the summer proceeds, with the exception of occasional 

high flows due to large storms. 

The summer-long planning period is divided into 6-hour time steps, and the 

optimal release in each time step is selected using an optimization model which 

assumes perfect foresight of hydrologic and economic conditions for the entire 

planning horizon.  That is, for each 6-hour time step a release,   , is selected as if the 

operator knew the exact hydrologic and economic condition in each 6-hour time step 

from the present time till the end of the planning horizon.  System performance is over 

20 independent years summer operation is simulated.  Three approaches for 

identifying the time scale of interests are presented: simple diagnostic metrics, a 

regression approach, and a spectral analysis approach. 

Section 6.3.1 Simple Diagnostic Metrics 

This section explores several simple diagnostic metrics which describe system 

characteristics.  These metrics have the advantage of being simple to compute, 

requiring no model simulations, and are applicable to systems of varying orders of 



magnitudes in capacity and flow.  For simplicity, the discussion here will focus on a 

hydropower system with a single reservoir. 

The most common bifurcation in hydropower project classification is ‗run-of-

river‘ projects which have no variable storage, and ‗reservoir‘ projects which have 

variable storage.  In reality many projects are somewhere in-between (see Creager and 

Justin [1950] for a discussion).  In particular Creager and Justin define two classes of 

run-of-river projects: those with ponding ability, roughly meaning they can shape 

inflows on a daily basis, and those which have no such ability.  At the opposite end of 

the spectrum a ‗storage-only‘ project is one which has no powerhouse and only stores 

water in support of some downstream use. 

In some cases the time scale of interest will dictate whether the system is 

considered a run-of-river or storage project.  The storage capacity factor,   ( ), 

considers the size of the active reservoir storage relative to the average inflow, given 

inflow variability: 

  ( )  
     

  
 

(6-1) 

where    is the volume of active reservoir storage,    and    are the mean and 

standard deviation of inflow volume over discrete time steps of length   respectively.  

Similar statistics were proposed by Vogel [1985] for reservoir reliability studies (see 

earlier discussion). Figure 6-1 plots   ( ) versus          for various   .  If one is 

concerned that serial correlation in the inflows will affect   , a correction could be 

applied (see Wilks, 2011pg. 148). 

As   ( ) becomes smaller the project is more like the ‗run-of-river‘ 

classification and as   ( ) becomes larger the project is more like the ‗reservoir‘ 



classification.  A purely run-of-river project will have no active storage (    ) so 

  ( ) will take negative values.  As    increases, so too will   ( ).  Importantly   ( ) 

decreases with increasing   : as inflow variability increases a larger reservoir is 

needed to regulate inflows and shape releases.  As   becomes larger   ( ) will 

generally become smaller, reflecting the fact that a medium sized project might be 

able to regulate inflows on an hourly basis, but would be unable to store water over 

multiple weeks.  Thus the chosen time step of a given model affects how a project 

should be modeled. 

Because   ( ) is dimensionless it can be difficult to intuitively understand its 

meaning.  Clearly the value   ( ) will change greatly depending on the chosen  .  For 

example the distribution of flows for duration          will be very different than 

those for        . of An alternative is the storage-days (      ) statistic: 

       
  

    
 

(6-2) 

where      is the mean daily inflow.         has daily units and can be understood as 

the number of days of average inflow which can be stored in the active storage.  It 

should be noted that both    and      can vary greatly across seasons, so in some 

applications it might be advantageous to define a season specific       .  A similar 

term, except with yearly average inflows is used by Hejazi et al. [2008] for a study of 

reservoir characteristics across the western United States.  Unlike   ( ),        does 

not take inflow variability into account.   



 

Figure 6-1: Storage Capacity Factor,   , versus coefficient of variation for various 

active storage volumes,   . 

Another consideration when modeling hydropower reservoirs is the size of the 

powerhouse hydraulic capacity relative to the active storage.  The storage-powerhouse 

ratio,  , is the number of days it would take to empty the reservoir active storage, 

absent of any inflow, at the peak powerhouse hydraulic capacity: 

       
  
   

 
(6-3) 

where     is the maximum volume which a project‘s powerhouse(s) can release 

during a day.  Note that a purely ‗run-of-river‘ project will have no active storage, so 

        .  As        increases, the project will become more of a ‗reservoir‘ 

project.  In the extreme, a storage only reservoir will have no powerhouse, so       

and         .  Table 6-1 reports        for some notable projects on the Upper 

Kennebec, Merrimack, and Columbia Rivers. 

Brassua Lake is primarily used as a storage reservoir, though it has recently 

been retrofitted with a small powerhouse with a single turbine.  Thus, as one might 

expect        for Brassua is very large.  Remarkably, Bonneville on the Columbia 
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has nearly the same storage, but has a very small       .  This is because Bonneville 

has very large powerhouse capacity: and is essentially operated as a run-of-river 

project at the time scale of daily and over-day operations.  This highlights the danger 

of simply comparing storage volumes in the absence of power house capacity when 

attempting to understand the operation of a facility. 

Table 6-1:   ,    , and       for projects on the Kennebec, Merrimack and 

Columbia Rivers. 

Project    

(       ) 

    

(       ) 

       

(    ) 

Brassua Lake (Kennebec) 9,000 149 60.56 

Harris Station (Kennebec) 1,970 717 2.75 

Wyman Station (Kennebec) 4,950 726 6.82 

Amoskeag Dam (Merrimack) 188 487 0.39 

Grand Coulee (Columbia) 225,876 23,328 9.68 

Chief Joseph (Columbia) 4,147 19,613 0.21 

John Day (Columbia) 28,737 33,610 0.86 

Bonneville (Columbia) 9,711 28,685 0.34 

 

One limitation of        is that it makes no consideration for complex 

operational constraints.  For example,             for Grand Coulee suggests that 

Grand Coulee could draft more than 80 ft in less than 10 days without spilling.  While 

this is hydraulically possible it is operationally infeasible because Grand Coulee has a 

maximum drawdown rate of 1.5feet per day.  On the other hand as a simple metric of a 

project‘s flexibility, the storage-powerhouse factor is effective in placing projects on 

the ‗run-of-river‘ to ‗storage‘ spectrum.  It correctly identifies that Brassua Lake has 

very limited capacity to quickly draft without spilling, while projects like Chief Joseph 

and Bonneville have large turbine capacity but limited storage and are incapable of 

long (several day), major storage drafts.  In the intermediate, Wyman, Harris, and 



Grand Coulee have appreciable storage with sufficient power-house capacity to 

significantly draft on the order of a few days. 

Considering the magnitude of the powerhouse hydraulic capacity alone leaves 

an incomplete picture: one must consider powerhouse capacity relative to average 

inflows and inflow variability.  The powerhouse flexibility capacity factor,    , is 

given by: 

    
       

 
 

(6-4) 

where   and   are the mean and standard deviation of the project inflow rate 

respectively, and       is the maximum flow rate through the powerhouse.  Figure 

6-2 displays     for various       and     
 ⁄ .  Again, one might wish to adjust 

  to account for serial correlation. 

 

Figure 6-2:  Powerhouse Flexibility Factor,    , versus coefficient of variation for 

various powerhouse hydraulic capacities,      . 

It should also be noted that   and   likely vary greatly over the year, so a 

single system likely has different     for different seasons.  During the refill season 
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for a ‗reservoir‘ project,     might very well be negative, while during the summer 

operational period it is likely to be positive. 

The four diagnostic metrics introduced in this section are applied to a variety 

of hydropower systems in the Section 6.4. 

Section 6.3.2 The Regression Approach 

The metrics in the previous section give the analyst some indication of a 

project‘s operational flexibility, but they do not indicate what time scales are 

important to system operation, or the forecast length of interest.  This section proposes 

a regression approach to determine both. 

A natural approach to determining the inflow time scale of importance is to 

consider the correlation between the optimal decision,   , and the cumulative inflow 

volume over a lead time  ,   ( ).  Here   ( ) is the cumulative inflow into the 

reservoir from time     to time       (note the use of     rather than   derives 

from the assumption in Chapter 4 that the current inflow is known).  One can then 

identify the most important inflow time scale as the   which has the maximum 

correlation with   .  This is essentially analogous to regressing    on   ( ).  Viewing 

the analysis in terms of regression allows for easy expansion of the analysis to other 

explanatory variables, and to the use of non-linear models.  In the case of 

understanding the relationship between release and inflow, an important explanatory 

variable is storage in the present time   .  The diagnostic metric of interest would then 

be the coefficient of determination (  ) for models with varying  . The   which 

results in the highest    corresponds to the critical time scale of reservoir inflows. 



The operation of the single reservoir on the Kennebec River in Chapter 4 was 

driven by energy price as much as by hydrologic conditions, one might also regress 

the optimal decision on the mean energy price over a lead   to determine the economic 

time scale of operation which is most important. 

The results section of this chapter contains examples of the regression 

approach considering hydrologic explanatory variables for a variety of hydropower 

systems. 

Before moving on, it is important to draw a distinction between this 

methodology and previous similar work which uses regression paired with 

optimization to derive an optimal policy.  An early example of this work is Houck and 

Karamouz [1982] who derive annual and monthly operating rules using this approach.  

First they use deterministic DP to derive an optimal policy, then use regression on the 

optimal policy to identify relationships between variables of interest and the optimal 

release. 

The method proposed here takes a similar but different tack.  This work uses 

first applies a deterministic DP optimization for the given system over 20 years of 

operation.  Rather than using regression to derive operating rules from this result, we 

use regression analysis to inform us of the best hydrologic state variable and forecast 

duration for subsequent stochastic optimization. 

Section 6.3.3 The Spectral Density Function Approach 

Spectral density estimation is commonly used in signal processing and fluid 

mechanics to determine the frequency content of sampled data.  This can reveal the 

frequency bands (or inversely periodicities) which contain the most variation in the 



sampled data.  In this application the sampled data are the optimal policy derived by a 

deterministic optimization over a summer season operation with perfect foresight.  

This is viewed as a continuous optimal decision rule which has been sampled with 

frequency corresponding to the time step of the model.  Spectral density estimation is 

then used to identify the important frequencies of system operation. 

The Fourier transformation transforms sampled data from the temporal domain 

to the frequency domain.  The discrete Fourier transformation is defined as 
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(6-5) 

where   is the index of the sample record in the frequency domain and   is the index 

of the sample record in the temporal domain.  Let   be a vector of    for an optimal 

release sequence.  The power spectral density function (PSDF) is defined as 

    
  

 
    

  

 
     

(6-6) 

where    is the time step length of the model and    is the complex conjugate of  .  

The cross power spectral density function (CPSDF) of   and another data series   is 

defined as 

    
  

 
    

(6-7) 

where   is a vector of the Fourier transformed data series  , and    is the complex 

conjugate of  . 

The PSDF describes the portion of the data variance which is contained in each 

frequency band.  Similarly, the CPSDF describes the portion of the covariance of two 

variables which is contained in each frequency band.  By identifying the frequency 



bands which contain significant variation in reservoir operation, we can infer the 

critical frequencies of the system‘s operation.  The resolution of the frequency band is 

dictated by the length of the data record: 

   
 

 
 

(6-8) 

where    is the frequency band. 

The PSDF can be noisy, so it is customary to repeat experiments several times, 

and to report the ensemble average PSDF, 〈   〉.  In this application optimal decision 

sequences are derived for many independent summer seasons of operation, the PSDF 

and CPSDF are computed for each, and the ensemble average is reported in the 

Results section. 

Section 6.4 Results 

This section provides examples of the diagnostic tools developed in Section 

6.3 applied to various study systems based on the single reservoir system on the 

Kennebec River described in Chapters 3 and 4. 

Section 6.4.1 Study Systems 

The diagnostic metrics described in the previous section are applied to the 

hypothetical single reservoir systems on the Kennebec described in Chapters 3 and 4.  

Twelve different systems are created by varying the turbine capacity and the reservoir 

storage, as described in Table 6-2.  The same 20 summer inflow sequences are used 

for each of the 12 system configurations.  The systems are assumed to start each 

summer operating period (May 1) with full storage.  At the end of the summer 

operating period (October 31), the system must draw down to flood storage level. 



The system operational objective is to maximize revenue from power sales: 

   
  

{∑  

 

   

} (6-9) 

where the incremental benefit in each time,     is a function of   , the current and next 

time period‘s reservoir storage,    and      respectively, and the energy price profile 

in the present time.  A time step of 6-hours is considered here.  The power generated 

by release    during period   with a given storage is: 

   
   [    (  (     )   (       ))]

 
,                                         

   

 
 

    ,                                                                             otherwise 
(6-10) 

where   is an efficeny factor,   is a unit conversion factor,    is the net head which is 

a function of storage and release, The incremental benefits resulting from   ,   , are 

computed as: 

   ∫       ( )  
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where        is the price profile for timestep  .  Over a 6-hour period, the        is a 

continuous function of the power generated during that 6-hour period, given by: 

      ( )         (   ) 
(6-12) 

where   and   are profile parameters, and   is 
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(6-13) 

where   (   ) is the maximum possible generation level given the system‘s current 

state.  For more discussion of the price profile formulation see Chapter 4. 

The real Kennebec hydropower system is part of the ISO New England market.  

In that market prices vary throughout the day and across days.  Two price schemes are 

considered in the following runs.  To isolate the effect of hydrologic processes on the 



system a ‗mean price‘ scheme is used.  In this case each day is divided into three ‗on-

peak‘ periods and one ‗off-peak‘ period.  Every ‗on-peak‘ period has the same price 

parameters   and  , and each ‗off-peak‘ period has the same price parameters   and  .  

Thus prices vary within each day but have the same values from day-to-day. 

Price variability is important to the operation of the real system, so a ‗real 

price‘ scheme is also used.  In this case each time period has a unique   and   based 

on real day-ahead price data from New England ISO.  

Table 6-2:  Turbine Capacity and Storage Capacity for each of the 12 system 

configurations. 

System Name Turbine Capacity 

(ft
3
/s) 

Storage Capacity 

(million ft
3
) 

(Small, 1000) 1000 1970 

(Mid, 1000) 1000 9850 

(Big, 1000) 1000 19700 

(Small, 2000) 2000 1970 

(Mid, 2000) 2000 9850 

(Big, 2000) 2000 19700 

(Small, 3500) 3500 1970 

(Mid, 3500) 3500 9850 

(Big, 3500) 3500 19700 

(Small, 5000) 5000 1970 

(Mid, 5000) 5000 9850 

(Big, 5000) 5000 19700 

(Small, 8300) 8300 1970 

(Mid, 8300) 8300 9850 

(Big, 8300) 8300 19700 

A deterministic model assuming perfect foresight was applied to each of the 

fifteen hypothetical systems for 20 years of summer operation, and using both the 

‗mean price‘ and ‗real price‘ economic schemes.  The ‗real price‘ scheme will allow 

evaluation of energy market variations on optimal system operations during the 

summer period that is modeled.  The following section describes the application of the 

diagnostic metrics described in Section 6.3. 



Section 6.4.2 Application of Diagnostic Metrics 

Table 6-3 reports the storage capacity factor, storage days, powerhouse days, 

and powerhouse flexibility factor for the fifteen systems described in Table 6-2.  Note 

that when           ,   (  )    indicating that the powerhouse capacity is 

smaller than the average inflow, so that the system must either fill (excess water is 

stored) or spill (there is no room to store excess water) over much of the planning 

period.  In fact, for system (Big,1000),        is greater than the planning period 

length.  This means that if the system were to start full, it would take longer than the 

planning period to reach flood storage draw-down, even if the powerhouse ran at 

capacity for the entire planning period; in this case no optimization model is needed. 

Table 6-3:  Storage Capacity Factor   (       ), Storage-days       , 

Powerhouse-days       , and the Powerhouse Flexibility Factor     for twelve 

system configurations 

System Name                      

(Small, 1000) 12.34 16.19 22.80 -0.19 

(Mid, 1000) 64.95 82.19 114.00 -0.19 

(Big, 1000) 130.70 162.14 228.01 -0.19 

(Small, 2000) 12.34 16.19 11.40 0.39 

(Mid, 2000) 64.95 82.19 57.00 0.39 

(Big, 2000) 130.70 162.14 114.00 0.39 

(Small, 3500) 12.34 16.19 6.51 1.27 

(Mid, 3500) 64.95 82.19 32.57 1.27 

(Big, 3500) 130.70 162.14 65.15 1.27 

(Small, 5000) 12.34 16.19 4.56 2.47 

(Mid, 5000) 64.95 82.19 22.80 2.47 

(Big, 5000) 130.7 162.14 45.60 2.47 

(Small, 8300) 12.34 16.19 2.75 4.08 

(Mid, 8300) 64.95 82.19 13.74 4.08 

(Big, 8300) 130.70 162.14 27.47 4.08 

 

At the opposite end of the spectrum, when           ,         , 

meaning that       is bigger than most inflows so spilling is not a concern.  Instead 



systems with            can largely shape outflows to take advantage of on-peak 

pricing.  The ability of those systems to store water to take advantage of higher prices 

on some days than others is dictated by the available storage.         varies by an 

order of magnitude between systems (Small, 8300) and (Big, 8300): 2.75 and 27.47 

respectively.  Thus one expects shorter-term planning to be more critical for system 

(Small, 8300) than for system (Big, 8300). 

„Mean Price‟ Scheme Results 

The regression approach described in Section 6.3.2 was applied to the 

optimization results for each of the twelve systems in Table 6-2 for the ‗mean price‘ 

economic scheme.  In the ‗mean price‘ scheme energy price functions vary during 

each day but not across days.  To eliminate the effect of within day peaking, daily 

cumulative releases ( ̈ ) are used in the regression analysis.  A non-linear model of    

as a function of available reservoir storage and inflow over a duration   is fit using 

non-linear ordinary least squares.  The non-linear model has the form: 

 ̈     [             ∑   

 

   

   ∑( 
 
   )

 

   

]     (6-14) 

Durations   ranging from 1 day to 10 days were considered.  The    statistic 

was computed for twelve of the systems and for each of the ten values of  . Figure 

6-3, Figure 6-4, Figure 6-5, and Figure 6-6 plot    versus duration for various       

and    combinations. 



 

Figure 6-3:    vs. Duration ( ) for various reservoir storages (in       ) for 

           (in      ). 

 

Figure 6-4:    vs. Duration ( ) for various reservoir storages (in       ) for 

           (in      ). 
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Figure 6-5:    vs. Duration ( ) for various reservoir storages (in       ) for 

           (in      ). 

 

Figure 6-6:    vs. Duration ( ) for various reservoir storages (in       ) for 

           (in      ). 

For nearly every        considered    decreases with increased reservoir 

storage, indicating that near-term hydrologic conditions (inflows and storages up to 

10-days) have a weaker relationship with the current day release as the storage 

increases.  This is expected: larger storage allows the system to hold inflows longer 

and to plan on longer time scales, and thus releases are determined less by the 

immediate inflow. 

0.70

0.75

0.80

0.85

0.90

0.95

1 2 3 4 5 6 7 8 9 10

R2

Duration (Days)

PHmax= 3500

1,970

9,850

19,700

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1 2 3 4 5 6 7 8 9 10

R2

Duration (Days)

PHmax= 8300

1,970

9,850

19,700



   generally decreases with duration, though the maximum    occurs at two 

days duration for       = 1000 and 2000.  We draw the conclusion from these results 

that the most important flow information to provide to a decision model for the twelve 

systems considered here is an estimate of the expected flow in the next day.  This is 

somewhat surprising, as the twelve systems considered represent a wide range of 

      .  On the other hand, the serial correlation of daily flows is very high (see 

Figure 6-7) so the flow for the next day includes a lot of information about the next 2-

6 days of inflow. 

 

Figure 6-7: Autocorrelation vs. Lag for daily inflow volume into hypothetical 

Kennebec reservoir. 

A more detailed discussion of the special steps taken in this regression 

procedure is expected in a forthcoming journal publication of this work. 

The spectral analysis approach described in Section 6.3.3 is applied to twelve 

of the systems described in Table 6-2.  Each of the 20 years of simulated operation is 

treated as an independent experiment, and a unique PSDF is fit to the optimal releases.  

The 20 PSDFs are then averaged to produce an ensemble averaged PSDF of      .  
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Figure 6-8 plots       versus frequency for (Big, 2000), which has           

and           . 

 
Figure 6-8:  Ensemble PSDF of optimal release   for System (Big, 2000),        

     ,           , with the ‗mean-price‘ economic scheme. 

Peaks in the ensemble PSDF indicate frequencies which contain a significant 

portion of the variability in the system operation.  The maximum peak is at frequency 

1/day.  This is caused by the diurnal price fluctuations.  The significant low frequency 

variability is the seasonal drawdown of the reservoir to meet flood storage, which 

occurs on longer time scales (thus smaller frequencies in Figure 6-8).  It is clear, 

however, that the two major time scales that drive system (Big, 2000) operation are 

daily and monthly (multiple weeks). 

Figure 6-9 plots the ensemble CPSDF for the optimal release and the inflow 

for the system (Big, 2000) with the mean economic scheme  (     ).  Peaks in the 

CPSDF indicate frequencies at which significant portions of the covariance of two 

signals is contained.  Note that unlike       in Figure 6-8, the maximum peak of 

      does not correspond to a frequency of 1/day, but instead corresponds to low 

frequencies corresponding to monthly or seasonal periods.  This is caused by the 



seasonal fluctuation in inflows which seem to dominate the covariance between   and 

  rather than the diurnal cycle of prices. 

 
Figure 6-9: Ensemble CPSDF of optimal release   and inflow   for System (Big, 

2000),             ,           , with the ‗mean-price‘ economic scheme 

Figure 6-10 plots the Ensemble PSDF of optimal release for system (Small, 

2000), which has         ,           ,            , and            .  

As in Figure 6-8 there is a peak of the ensemble PSDF occurs at the frequency 1/day 

because of the diurnal peaking cycle.  Unlike the ensemble PSDF in Figure 6-8, the 

highest peak of the PSDF is at low frequencies corresponding to seasonal fluctuations 

in reservoir operation.  This is in part attributable to the smaller storage: the system 

must act more like a ‗run of river‘ plant and is more sensitive to seasonal fluctuations 

in inflow.  



 
Figure 6-10: Ensemble PSDF of optimal release   for System (Small, 2000), 

           ,            , with the ‗mean-price‘ economic scheme. 

 
Figure 6-11: Ensemble CPSDF of optimal release   and reservoir storage   for 

System (Small, 2000),            ,            , with the ‗mean-price‘ 

economic scheme. 

Figure 6-11 plots the ensemble CPSDF of optimal release and reservoir storage 

for system (Big, 2000).  As in the plot of       in Figure 6-10 there is a notable 

peak at a frequency of 1/day, which is caused by the diurnal cycling of energy prices, 

but as before, the most notable peak in the CPSDF are located at low frequencies 

corresponding to seasonal changes in hydrology and end-of-year drawdown targets. 



Ensemble PSDF and CPSDF plots for twelve systems for the ‗mean price‘ 

scheme are available in the appendix of this chapter.  It was noted that in for some of 

those runs a small peak of the PSDF       periodicities corresponding to weekly 

cycling.  While it is not clear if those peaks are statistically significant, it is precisely 

what one expects in real systems, as examined in the next section. 

„Real Price‟ Scheme Results 

In the ‗real price‘ scheme the parameters of the price model (equation (6-12)) 

are based on real energy prices from the New England ISO.  Thus, rather than having 

a single pair of ‗on peak‘ and ‗off peak‘ prices for every day in the simulation period, 

the price function parameters vary from day to day, and week to week.  Because the 

prices add an extra element of uncertainty to system operation, it is more difficult to 

draw conclusions about the hydrologic time scales of interest than in the ‗mean price‘ 

scheme.  On the other hand, comparing the ensemble PSDF to those for the ‗mean 

price‘ is interesting.  And if hydrologic variability is not that important, then the lesson 

is that perhaps our modeling efforts should be directed elsewhere, specifically the 

impact of energy market price variability. 

Figure 6-12 plots the ensemble PSDF for system (Big, 2000) for the ‗real 

price‘ economic scheme.  As before, the peak of the PSDF is found at the 1/day 

frequency, indicating that the diurnal fluctuation in energy price is very important to 

system operation.  In fact the peak at 1/day is even more pronounced than in the ‗mean 

price‘ case, indicating that diurnal peaking is even more important now, likely because 

the variability in ‗on-peak‘ and ‗off-peak‘ prices is much greater now. Interestingly 

there is a striking peak of the PSDF at the 0.1429/day frequency, corresponding to a 



weekly cycle.  This is likely due to a weekly cycle in energy prices in which prices are 

generally lower on the weekends and higher during the week.  This weekly cycle is 

not present in the ‗mean price‘ scheme. 

 
Figure 6-12:  Ensemble PSDF of optimal release   for System (Big, 2000),        

      ,           , with the ‗real-price‘ economic scheme. 

Figure 6-13 plots the CPSDF of the optimal release,  , and inflow,  ,       

for the variable price scheme.  As in the case of mean price schemes, the maximum 

peak of       occurs at low frequencies corresponding to seasonal changes in the 

inflows.  There are small peaks at frequencies corresponding to 1/day and 1/week, but 

these are much less pronounced than in       in Figure 6-12. 



 
Figure 6-13: Ensemble CPSDF of optimal release   and inflow   for System (Big, 

2000),              ,           , with the ‗real-price‘ economic scheme. 

Figure 6-14 plots the ensemble PSDF for system (Big, 8300), which has 

         ,           ,              , and              for the ‗real 

price‘ scheme.  Like the PSDF in Figure 6-12 there is a significant peak at frequency 

0.14/day ( or 1/week), but the striking feature is that this peak is now much more 

pronounced.  This is because with bigger turbines, the system is able to take greater 

advantage of the weekly weekend/weekday pricing cycle.  There is more variation 

explained at frequencies corresponding to multi-day periodicities because the price 

now changes from day to day, and the system is willing to withhold ‗on peak‘ 

generation in some days in order to generate more on higher price days.  This is not 

seen as much in Figure 6-12 because for that system the turbines are smaller so there 

is much less potential for peaking. 



 
Figure 6-14: Ensemble PSDF of optimal release   for System (Big, 8300),        

      , and             , with the ‗real-price‘ economic scheme. 

Figure 6-15 plots the CPSDF of the optimal release,  , and inflow,  ,       

for the variable price scheme.  As in the case of mean price schemes, the maximum 

peak of       occurs at low frequencies corresponding to seasonal changes in the 

inflows.  There are small peaks at frequencies corresponding to 1/day and 1/week, but 

these are much less pronounced than in       in Figure 6-14. With a large storage 

capacity and large turbines, releases are not tied to short-term variations in inflow. 

 
Figure 6-15: Ensemble CPSDF of optimal release   for System (Big, 8300),        

      , and             , with the ‗real-price‘ economic scheme. 



Figure 6-16 plots the ensemble PSDF for   for (Small, 8300).   The shape is 

very similar to the PSDF for (Big, 8300) in Figure 6-14, but a key difference is that the 

magnitude of the variability explained in at 0.14/day frequency (1-week periodicity) is 

much less.  This is because with much smaller storage, system (Small, 8300) is fairly 

limited in its ability to hold inflows long enough take advantage of the weekly price 

cycle. 

 
Figure 6-16:  Ensemble PSDF of optimal release   for System (Small, 8300), 

            , and            , with the ‗real-price‘ economic scheme. 

Ensemble PSDF and CPSDF plots for twelve systems for the ‗real price‘ 

scheme are available in the appendix of this chapter. 

Section 6.5 The value of the Spectral Density Analysis 

A concern expressed in multi-tiered SSDP model framework Chapter 4 of this 

thesis is that the short-term SSDP model might engage in myopic behavior in the last 

few time steps of each week if the terminal value function provided by the long-term 

SSDP model has some small error.  Steps that might be taken to remedy this situation 

would add to the run time of the overall SSDP model so there was hesitancy to alter 



take precautionary measures.  Examination of the optimal operating rule didn‘t seem 

to indicate any myopic behavior, so it was assumed that all was well.  However, when 

the PSDF of the optimal release for the ‗mean price‘ scheme was examined a clear 

weekly cycle was present (see Figure 6-17).  This was odd, because there was no 

weekly signal in the inflows or the price. 

 
Figure 6-17: Ensemble PSDF of optimal release   for System (Small, 8300), ‗mean 

price‘ scheme, 1-week short-term SSDP horizon. 

This odd occurrence indicated that the model framework was adversely 

affecting the optimal decisions and introducing a weekly cycle that was otherwise 

undetectable.  When the short-term SSDP planning horizon was extended to two 

weeks the erroneous weekly signal vanished (see Figure 6-18).  Without the spectral 

density analysis performed in this chapter it is doubtful that this error in the model 

framework would have been apparent. 

 



 
Figure 6-18: Ensemble PSDF of optimal release   for System (Small, 8300), ‗mean 

price‘ scheme, 2-week short-term SSDP horizon. 

Section 6.6 Conclusion 

This chapter focuses on diagnostic tools which can be used to identify the type 

of operation one is likely to see, the important time scales of operation to a system, 

and the amount of variability in the optimal control policy which is explained in 

different frequency bands.  The simple diagnostic measurements are very easy to 

apply and can be very revealing.  Chief Joseph Dam is in the top 5 power producing 

dams in the United States, and yet it is essentially a run of river plant.  This is 

counterintuitive: Chief Joseph dam has an enormous storage and is nearly 200 ft high.  

However the operational constraints on the active storage, and the enormous flows in 

the Columbia River result in this massive project operating as a run of river project. 

The simple diagnostic tools allow this characteristic of the system to be immediately 

identified, and explained. 

The regression analysis approach to identifying potential state variables and 

important duration periods is inspired by past work that derives optimal operating 

policies by regressing on the results of deterministic optimization (see Karamouz and 



Houck [1982] for an early example).  However, in the analysis proposed here, the 

optimal policy is not derived from the regression analysis; but rather the regression 

analysis informs the structure of the stochastic optimization model.  In the examples 

provided in Chapter 6 it is shown that inflow in the next 7-24 hours is most related to 

the optimal perfect policy over a wide range of hypothetical systems.  From this 

observation it was concluded that the inflow forecast for the next 24-hours was the 

most informative for the optimization models applied in Chapter 4. 

The spectral analysis approach to diagnosing hydropower reservoir operating 

frequencies is new. Additional exploration of the results of this analysis would be 

advantageous. In our case it clearly shows that the diurnal peaking cycle in the energy 

market explains a huge amount of the variability in the system operation, though the 

largest fluctuations are due to the multi-week seasonal drawdown to meet end-of-

period flood storage targets. 
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Appendix: „Mean Price‟ Economic Scheme PSDF       

 
Figure 6-19: Ensemble PSDF of optimal release   for System (Small, 2000), 

            ,            , with the ‗mean-price‘ economic scheme. 

 
Figure 6-20: Ensemble PSDF of optimal release   for System (Mid, 2000),        

     ,             ,with the ‗mean-price‘ economic scheme. 

 
Figure 6-21: Ensemble PSDF of optimal release   for System (Big, 2000),        

      ,           , with the ‗mean-price‘ economic scheme. 



 
Figure 6-22: Ensemble PSDF of optimal release   for System (Small, 3500), 

            ,            , with the ‗mean-price‘ economic scheme. 

 
Figure 6-23: Ensemble PSDF of optimal release   for System (Mid, 3500),        

     ,             , with the ‗mean-price‘ economic scheme. 

 
Figure 6-24: Ensemble PSDF of optimal release   for System (Big, 3500),        

      ,             , with the ‗mean-price‘ economic scheme. 



 
Figure 6-25: Ensemble PSDF of optimal release   for System (Small, 5000), 

            ,            , with the ‗mean-price‘ economic scheme. 

 

 
Figure 6-26: Ensemble PSDF of optimal release   for System (Mid, 5000),        

     ,            , with the ‗mean-price‘ economic scheme. 

 
Figure 6-27: Ensemble PSDF of optimal release   for System (Big, 5000),        

      ,             , with the ‗mean-price‘ economic scheme. 



 
Figure 6-28: Ensemble PSDF of optimal release   for System (Small, 8300), 

            ,            , with the ‗mean-price‘ economic scheme. 

 
Figure 6-29: Ensemble PSDF of optimal release   for System (Mid, 8300),        

     ,             , with the ‗mean-price‘ economic scheme. 

 
Figure 6-30: Ensemble PSDF of optimal release   for System (Big, 8300),        

      ,             , with the ‗mean-price‘ economic scheme. 



Appendix: „Mean Price‟ Economic Scheme CPSDF       

 
Figure 6-31: Ensemble CPSDF of optimal release   and inflow   for System (Small, 

2000),             ,             , with the ‗mean-price‘ economic scheme. 

 
Figure 6-32: Ensemble CPSDF of optimal release   and inflow   for System (Mid, 

2000),             ,             , with the ‗mean-price‘ economic scheme. 

 
Figure 6-33: Ensemble CPSDF of optimal release   and inflow   for System (Big, 

2000),              ,              , with the ‗mean-price‘ economic scheme. 



 
Figure 6-34: Ensemble CPSDF of optimal release   and inflow   for System (Small, 

3500),             ,            , with the ‗mean-price‘ economic scheme. 

 
Figure 6-35: Ensemble CPSDF of optimal release   and inflow   for System (Mid, 

3500),             ,             , with the ‗mean-price‘ economic scheme. 

 
Figure 6-36: Ensemble CPSDF of optimal release   and inflow   for System (Big, 

3500),              ,             , with the ‗mean-price‘ economic scheme. 



 
Figure 6-37: Ensemble CPSDF of optimal release   and inflow   for System (Small, 

5000),             ,            , with the ‗mean-price‘ economic scheme. 

 
Figure 6-38: Ensemble CPSDF of optimal release   and inflow   for System (Mid, 

5000),             ,            , with the ‗mean-price‘ economic scheme. 

 
Figure 6-39: Ensemble CPSDF of optimal release   and inflow   for System (Big, 

5000),              ,            , with the ‗mean-price‘ economic scheme. 



 
Figure 6-40: Ensemble CPSDF of optimal release   and inflow   for System (Small, 

8300),             ,            , with the ‗mean-price‘ economic scheme. 

 
Figure 6-41: Ensemble CPSDF of optimal release   and inflow   for System (Mid, 

8300),             ,             , with the ‗mean-price‘ economic scheme. 

 
Figure 6-42: Ensemble CPSDF of optimal release   and inflow   for System (Big, 

8300),              ,             , with the ‗mean-price‘ economic scheme. 

  



Appendix: „Mean Price‟ Economic Scheme CPSDF       

 
Figure 6-43: Ensemble CPSDF of optimal release   and reservoir storage   for 

System (Small, 2000),             ,             , with the ‗mean-price‘ 

economic scheme. 

 
Figure 6-44: Ensemble CPSDF of optimal release   and reservoir storage   for 

System (Mid, 2000),             ,             , with the ‗mean-price‘ 

economic scheme. 

 
Figure 6-45: Ensemble CPSDF of optimal release   and reservoir storage   for 

System (Big, 2000),              ,              , with the ‗mean-price‘ 

economic scheme. 



 
Figure 6-46: Ensemble CPSDF of optimal release   and reservoir storage   for 

System (Small, 3500),             ,            , with the ‗mean-price‘ 

economic scheme. 

 
Figure 6-47: Ensemble CPSDF of optimal release   and reservoir storage   for 

System (Mid, 3500),             ,             , with the ‗mean-price‘ 

economic scheme. 

 
Figure 6-48: Ensemble CPSDF of optimal release   and reservoir storage   for 

System (Big, 3500),              ,             , with the ‗mean-price‘ 

economic scheme. 



 
Figure 6-49: Ensemble CPSDF of optimal release   and reservoir storage   for 

System (Small, 5000),             ,            , with the ‗mean-price‘ 

economic scheme. 

 
Figure 6-50: Ensemble CPSDF of optimal release   and reservoir storage   for 

System (Mid, 5000),             ,             , with the ‗mean-price‘ 

economic scheme. 

 
Figure 6-51: Ensemble CPSDF of optimal release   and reservoir storage   for 

System (Big, 5000),              ,             , with the ‗mean-price‘ 

economic scheme. 

  



 
Figure 6-52: Ensemble CPSDF of optimal release   and reservoir storage   for 

System (Small, 8300),             ,            , with the ‗mean-price‘ 

economic scheme. 

 
Figure 6-53: Ensemble CPSDF of optimal release   and reservoir storage   for 

System (Mid, 8300),             ,             , with the ‗mean-price‘ 

economic scheme. 

 
Figure 6-54: Ensemble CPSDF of optimal release   and reservoir storage   for 

System (Big, 8300),              ,             , with the ‗mean-price‘ 

economic scheme. 

  



Appendix: „Real Price‟ Economic Scheme PSDF       

 
Figure 6-55: Ensemble PSDF of optimal release   for System (Small, 2000), 

               ,             , with the ‗real-price‘ economic scheme. 

 
Figure 6-56: Ensemble PSDF of optimal release   for System (Mid, 2000),        

     ,             , with the ‗real-price‘ economic scheme. 

 
Figure 6-57: Ensemble PSDF of optimal release   for System (Big, 2000),        

      ,              , with the ‗real-price‘ economic scheme. 



 
Figure 6-58: Ensemble PSDF of optimal release   for System (Small, 3500), 

            ,            , with the ‗real-price‘ economic scheme. 

 
Figure 6-59: Ensemble PSDF of optimal release   for System (Mid, 3500),        

     ,             , with the ‗real-price‘ economic scheme. 

 
Figure 6-60: Ensemble PSDF of optimal release   for System (Big, 3500),        

      ,             , with the ‗real-price‘ economic scheme. 



 
Figure 6-61: Ensemble PSDF of optimal release   for System (Small, 5000), 

            ,            , with the ‗real-price‘ economic scheme. 

 
Figure 6-62: Ensemble PSDF of optimal release   for System (Mid, 5000),        

     ,            , with the ‗real-price‘ economic scheme. 

 
Figure 6-63: Ensemble PSDF of optimal release   for System (Big, 5000),        

      ,             , with the ‗real-price‘ economic scheme. 



 
Figure 6-64: Ensemble PSDF of optimal release   for System (Small, 8300), 

            ,            , with the ‗real-price‘ economic scheme. 

 
Figure 6-65: Ensemble PSDF of optimal release   for System (Mid, 8300),        

     ,             , with the ‗real-price‘ economic scheme. 

 
Figure 6-66: Ensemble PSDF of optimal release   for System (Big, 8300),        

      ,             , with the ‗real-price‘ economic scheme. 

  



Appendix: „Real Price‟ Economic Scheme CPSDF       

 
Figure 6-67: Ensemble CPSDF of optimal release   and inflow   for System (Small, 

2000),             ,             , with the ‗real-price‘ economic scheme. 

 
Figure 6-68: Ensemble CPSDF of optimal release   and inflow   for System (Mid, 

2000),             ,             , with the ‗real-price‘ economic scheme. 

 
Figure 6-69: Ensemble CPSDF of optimal release   and inflow   for System (Big, 

2000),              ,           , with the ‗real-price‘ economic scheme. 



 
Figure 6-70: Ensemble CPSDF of optimal release   and inflow   for System (Small, 

3500),             ,            , with the ‗real-price‘ economic scheme. 

 
Figure 6-71: Ensemble CPSDF of optimal release   and inflow   for System (Mid, 

3500),             ,             , with the ‗real-price‘ economic scheme. 

 
Figure 6-72: Ensemble CPSDF of optimal release   and inflow   for System (Big, 

3500),              ,             , with the ‗real-price‘ economic scheme. 



 
Figure 6-73: Ensemble CPSDF of optimal release   and inflow   for System (Small, 

5000),             ,            , with the ‗real-price‘ economic scheme. 

 
Figure 6-74: Ensemble CPSDF of optimal release   and inflow   for System (Mid, 

5000),             ,            , with the ‗real-price‘ economic scheme. 

 
Figure 6-75: Ensemble CPSDF of optimal release   and inflow   for System (Big, 

5000),              ,            , with the ‗real-price‘ economic scheme. 



 
Figure 6-76: Ensemble CPSDF of optimal release   and inflow   for System (Small, 

8300),             ,            , with the ‗real-price‘ economic scheme. 

 
Figure 6-77: Ensemble CPSDF of optimal release   and inflow   for System (Mid, 

8300),             ,             , with the ‗real-price‘ economic scheme. 

 
Figure 6-78: Ensemble CPSDF of optimal release   and inflow   for System (Big, 

8300),              ,             , with the ‗real-price‘ economic scheme. 

  



Appendix: „Real Price‟ Economic Scheme CPSDF       

 
Figure 6-79:  Ensemble CPSDF of optimal release   and reservoir storage   for 

System (Small, 2000),             ,            , with the ‗real-price‘ 

economic scheme. 

 
Figure 6-80: Ensemble CPSDF of optimal release   and reservoir storage   for 

System (Mid, 2000),             ,             , with the ‗real-price‘ 

economic scheme. 

 
Figure 6-81: Ensemble CPSDF of optimal release   and reservoir storage   for 

System (Big, 2000),              ,              , with the ‗real-price‘ 

economic scheme. 



 
Figure 6-82: Ensemble CPSDF of optimal release   and reservoir storage   for 

System (Small, 3500),             ,            , with the ‗real-price‘ 

economic scheme. 

 
Figure 6-83: Ensemble CPSDF of optimal release   and reservoir storage   for 

System (Mid, 3500),             ,             , with the ‗real-price‘ 

economic scheme. 

 
Figure 6-84: Ensemble CPSDF of optimal release   and reservoir storage   for 

System (Big, 3500),              ,             , with the ‗real-price‘ 

economic scheme. 



 
Figure 6-85: Ensemble CPSDF of optimal release   and reservoir storage   for 

System (Small, 5000),             ,            , with the ‗real-price‘ 

economic scheme. 

 
Figure 6-86: Ensemble CPSDF of optimal release   and reservoir storage   for 

System (Mid, 5000),             ,             , with the ‗real-price‘ 

economic scheme. 

 
Figure 6-87: Ensemble CPSDF of optimal release   and reservoir storage   for 

System (Big, 5000),              ,             , with the ‗real-price‘ 

economic scheme. 



 
Figure 6-88: Ensemble CPSDF of optimal release   and reservoir storage   for 

System (Small, 8300),             ,            , with the ‗real-price‘ 

economic scheme. 

 
Figure 6-89: Ensemble CPSDF of optimal release   and reservoir storage   for 

System (Mid, 8300),             ,             , with the ‗real-price‘ 

economic scheme. 

 
Figure 6-90: Ensemble CPSDF of optimal release   and reservoir storage   for 

System (Big, 8300),              ,             , with the ‗real-price‘ 

economic scheme. 

 



  



CHAPTER 7  

 

SUMMARY AND CONCLUSIONS 

 

This thesis has focused on the optimization of hydropower reservoirs using 

dynamic programming (DP) algorithms, with a particular emphasis on stochastic DP 

(SDP) and sampling SDP (SSDP).  The thesis has six major chapters, but three 

research foci.  The first three chapters of the thesis provide introduction and 

motivation for this work (Chapter 1), a review of past work on DP and SDP models 

for reservoir operations (Chapter 2), and a description of the Kennebec River system 

which serves as the case study for this work. 

The first research focus, discussed in Chapter 4, is how inflow and forecast 

uncertainty should best be represented in stochastic hydropower optimization models?  

The Second research focus, discussed in Chapter 5, is the development of a new and 

efficient solution technique for multi-reservoir SDP models.  The third and final focus, 

discussed in Chapter 6, is the development of diagnostic analyes which can be used to 

study a reservoir system and aid in the evaluation of simulation or optimization model 

performance, or actual operations.  The following sections describe the conclusions 

from each of the three research foci. 

Chapter 4 Conclusions 

In Chapter 4 the single-reservoir SSDP algorithm is leveraged to answer three 

research questions.  First, what is the utility of various representations of uncertainty?  

Second, what is the value of forecast precision to hydropower operations?  And third, 



how do the answers to the first two questions depend on the characteristics of the 

system under study? 

To explore each of these questions the operation of a number of hypothetical 

reservoir systems is simulated over 60 summer operating periods.  Two economic 

models were used: one with a constant energy price profile for each day and one with 

a variable energy price profile. 

It was found that in many cases more complex models, with many uncertainty 

transition points outperformed simpler two-stage representations of uncertainty and 

deterministic models which do not consider uncertainty.  However, it was found that 

for large reservoirs with small turbine capacities, simple two-stage uncertainty models 

perform as well as more complex multi-stage uncertainty models.  And with small 

reservoirs with little storage, operation is essentially run-of-river, and forecasts are of 

little value. 

Furthermore, improved forecast precision generally improved algorithm 

performance, though it was found that as turbine size becomes smaller the efficiency 

of the optimization algorithm is less sensitive to the precision of the forecast.  This is 

particularly true for reservoirs with large storage, and in the ‗variable price‘ case 

where energy prices change from day-to-day. 

Finally in Chapter 4 it was shown that algorithm efficiency is generally very 

low for the ‗variable price‘ case compared to the ‗mean price‘ case.  This is partially 

because there is now an added layer of uncertainty and partially because the algorithm 

efficiency is distorted by an improvement in the ‗perfect‘ decision rule performance. 



Chapter 5 Conclusions 

Chapter 5 the addresses the solution of multi-dimensional SDP models, which 

continues to be a challenging problem more than 50 years after Bellman coined the 

‗Curse of Dimensionality.‘  However increased computing power and improved 

numerical techniques continue to push the boundaries of what is possible.  New work 

on Q-Q iteration DP [Castelletti, 2010] and adaptive sparse grids [Brumm and 

Scheidegger, 2014] as well as past work using cubic splines [Johnson et al., 1993] and 

SDDP [Pereira and Pinto, 1985] allow significant improvement over traditional SDP 

solution techniques.  In this vein, Corridor DP seeks to reduce the computational 

burden of high-dimensional DP by focusing the optimization effort in the region of the 

state space where the system is likely to reside.  Results presented in Chapter 5 show 

that with careful basis selection, Corridor SDP paired with RBF interpolation can 

outperform DP with Cubic Spline interpolation in that it achieves the same accuracy 

with about a 1/10 the effort for a smooth (nearly linear) test surface and about 1/30 the 

effort for a curved surface (with penalties to enforce minimum targets).  Corridor SDP 

paired with RBF interpolation can achieve the same accuracy as linear-DP with 

1/1100 and 1/215 the number of points for the smooth and curved objectives 

respectively. 

Chapter 6 Conclusions 

This short chapter focuses on diagnostic tools which can be used to evaluate 

the character of system one is dealing with, the important time scales of operation to a 

system, and the amount of variability in the optimal control policy which is explained 

in different frequency bands.  The dimensionless diagnostic measurements are simple 



to apply and can be very revealing.  Chief Joseph Dam is in the top 5 power producing 

dams in the United States, and yet it is essentially a run of river plant.  This is 

counterintuitive: Chief Joseph dam has an enormous storage and is nearly 200 ft high.  

However the operational constraints on the active storage, and the enormous flows in 

the Columbia River, reduce this massive project to essentially run of river and daily 

regulation operations. 

The regression analysis approach to identifying potential state variables and 

important duration periods is inspired by past work that derives optimal operating 

policies by regressing on the results of deterministic optimization (see Karamouz and 

Houck [1982] for an early example).  However, in the analysis proposed here, the 

optimal policy is not derived from the regression analysis; but rather the regression 

analysis informs the structure of the stochastic optimization model.  In the examples 

provided in Chapter 6 it is shown that inflow in the next 7-24 hours is most related to 

the optimal perfect policy over a wide range of hypothetical systems.  From this 

observation it was concluded that the inflow forecast for the next 24-hours was the 

most informative for the optimization models applied in Chapter 4. 

The spectral analysis approach to diagnosing hydropower reservoir operating 

frequencies is new, and needs more explanation, but it clearly shows that the diurnal 

peaking cycle in the energy market explains a huge amount of the variability in the 

system operation, though the largest fluctuations are due to seasonal drawdown to 

meet flood storage targets. 



Future Work 

I see great opportunities for SSDP models for two reasons.  First the 

affordability of high-end computation is becoming such that running short-term SSDP 

models is becoming operationally feasible for even unsophisticated system operators 

(like the small utilities in New England).  Second, ensemble forecasts of many types 

are becoming very popular in the fields of hydrology and meteorology, and water 

resource planners and managers are becoming increasingly interested in incorporating 

such forecasts into their models.  SSDP provides a natural DP framework to 

incorporate such forecasts.  There appears to be two reasons are why there has been a 

resurgence of interest in SSDP [Kim et al., 2007;  Vicuna et al., 2010; Cote et al., 

2011; Eum et al., 2011].  Given this trend there is great value and will be great appeal 

for the type of research in Chapter 4, which is exploratory in nature and might easily 

be applied to draw general conclusions about the value of model classes for reservoir 

types given a basin‘s hydrology. 

A significant achievement in Chapter 5 was the demonstration that cubic 

splines worked so well on a realistic system, as Johnson et al. [1993]‘s results were 

based on a simple example.  The fact that Corridor DP can beat splines by an order of 

magnitude (or more) in some cases is a significant result.  There are two areas of 

future research here.  The first is to extend the Corridor study to higher dimensions.  

The cost of cubic spline interpolation on a full grid will increase exponentially, but it 

seems very doubtful that the cost of Corridor DP will increase that fast.  Thus I believe 

that Corridor DP will become more attractive in higher dimensions, and we hope to 

pursue that idea. 



Secondly, it seems that Hermite RBFs and least-squares RBFs have the 

potential to significantly improve the performance of the Corridor DP algorithm.  The 

Hermite RBF surface provides much more information about the shape of the function 

surface than regular RBFs, thus one expects that fewer points should be required to 

achieve a desired accuracy.  Hermite RBFs are described in Chapter 5, and it is my 

hope to pursue this research immediately upon graduation.  Least-squares RBFs 

become attractive as the size of the basis becomes larger.  This is because as the basis 

becomes larger, separation distance becomes smaller, and an interpolating surface can 

develop irregular ‗wiggles,‘ which can be disastrous when using quasi-Newton search 

over the RBF surface.  By freeing the surface from the interpolation constraint, a 

smoother surface results, and this should result in better results at high densities (i.e. 

large basis). 

Finally the exploratory analysis in Chapter 6 represents an initial investigation 

of novel approaches to reservoir system diagnostics, especially the use of spectral 

analysis.  I am excited to continue the study started in Chapter 6 as I see real potential 

for that work.  Future work using the regression analysis procedure from Chapter 6 

will explore the nuances and special considerations required for to develop good 

regression relationships so as to better identify key variables. 
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