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Single and multiple group models for the spread of HIV (human immunodeficiency 
virus) are introduced. Partial analytical results for these models are presented for two specific 
cases. First for a model for which the duration of infectiousness has a negative exponential 
distribution and second for a model for which all individuals remain infectious for a fixed length 
of time. 

1. Introduction 

The discovery by Barre-Sinoussi's and Gallo's groups [1 ,2,3,4,5] that HIV (human 

immunodeficiency virus) is the etiological agent for AIDS has brought an unprecedented 

amount of research on the biology of this retrovirus. At present, however, there is not enough 

understanding on the consequences of its transmission at the population level. Some routes of 

HIV transmission are through sex (direct, anal, and oral), through needle sharing, through 

blood transfusions and through vertical transmission (mother to child at birth). Important 

epidemiological factors involved in its transmission include: variable infectivity [6,7,8], long 

periods of infecti.ousness [9] of eight years or more and cofactors (e.g. whether or not the HIV 

carrier is infected with another venereal disease). In addition, biological and socio­

demographic factors such as sex, age, economic status, race, sexual preference, geographical 

area of residence, and the nature of the social networks that are particular to each culture, 

have to be taken into consideration if we are to understand the dynamics of HIV. 

This epidemic already has raised many, some perhaps unsolvable, moral, practical, 

economical and ethical questions regarding the possible implementation of a variety of 

extreme intervention plans. These include random testing of the population, random testing of 

specific ethnic groups and the possibility of putting (known) infected individuals in quarantine 

(see [1 0] for a commentary). The testing of the possible effectiveness of (such extreme) 

intervention plans may only make sense in a realistic mathematical framework. However, any 

mathematical model has its faults. There is always a tradeoff between detail and tractability, 

and there are inherent limits to predictability. Although mathematical models can suggest 

possible consequences of intervention plans and assist in thinking about complex issues, we 

strongly feel that the numerical and mathematical results obtained through their use should not 

be used to circumvent the moral and ethical questions raised by this epidemic. 



In this paper, we report on a series of models that we have developed recently and that are 

extensions of those of Anderson et al. [11, 12]. Our objective has been to identify the role 

played by the long period of infectiousness associated with HIV on the dynamics of sexually 

transmitted HIV in homogeneous and heterogeneous populations. We present only a brief 

description of these models and a partial list of our analytical results. Extensions and proofs 

of these results can be found in Castilla-Chavez et al. [13-14]. We note that some of our 

results partially overlap with some of the results obtained simultaneously and independently 

by Blythe and Anderson [15]. 

2. Single group models 

In this section we describe two models with alternative distributions of the duration of 

infection. First we assume, as is commonly done in epidemiological models, that individuals 

are transfered out of the infected class at a constant rate, or equivalently that the duration of 

infection has a negative exponential distribution (Hethcote et al. [16]). For our second model, 

we assume that all infected individuals remain infectious for a fixed length of time. This 

approach allows us to compare the effect of the mean infectious period on the reproductive 

number (i.e. the number of secondary infections generated by a single infectious individual in 

a purely susceptible population) and therefore to understand better its role on the dynamics of 

HIV in a homogeneous population. 

a. Model with exponential removal 

We divide the population --sexually active male homosexuals with multiple partners-- into five 

groups: S (susceptibles) , I (infected that will develop "full-blown"· AIDS), Y (infected that will 

not develop full-blown AIDS), Z (former Y individuals that are no longer sexually active), and A 

(former I individuals that have developed "full-blown" AIDS). Note that A and Z are 

cumulative classes and hence once individuals move into these classes they no longer enter 

into the dynamics of the disease; however, for bookkeeping purposes, we keep them on 

record. We do not include a latent class (i.e., those exposed individuals that are not yet 

infectious). Furthermore, we assume that once an individual develops full-blown AIDS or 

enters the Z class, he is no longer infectious because he has no sexual contacts. We also 

assume that all infected individuals become immediately infectious, and that they stop being 
sexually active or acquire AIDS at the constant rates ayand a1; hence 1/a1 denotes the 

average infectious period and 1/ay the average sexual longevity of an individual. In addition, 

we let A denote the recruitment rate into the susceptible class (defined to be those individuals 

who are homosexually active); Jl, the natural mortality rate; d, the disease-induced mortality 

due to AIDS; p, that fraction of the susceptibles that become infectious and will go into the 



AIDS class; and therefore (1-p), the fraction of susceptible individuals that become infectious 

and will not develop full blown AIDS. Following Anderson et. al. [11] and using 
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Fig. 1: Flow diagram for a single group model with exponential removal, for details see the text. 

Figure 1, we arrive at the following simple epidemiological model with exponential removal: 

dS(t) =A_ A.C[T](t)S(t)W(t) _ S(t) 
dt T(t) ll ' 

(1 .1) 

dl(t) =A. C(TI(t)S(t)W(t) _ ( ) l(t) 
dt p I J T(t) a,+ ll ' (1.2) 

dY(t) = /..(1 _ )C(TI(t) S(t)W(t) _ ( ) Y(t) 
dt p I J T(t) <ly + ll ' (1.3) 

dA(t) 
----cit= a 1 l(t) - (d + Jl) A(t) , (1.4) 

d~~t) = <ly Y(t) - ll Z(t) , (1.5) 

where 

W = I + Y and T = W +S. (1.6) 

Here the function C[1] denotes the mean number of sexual partners an average individual has 

per unit time, given that the population density is T, and A. (a constant) denotes the average 

sexual risk per partner. More specifically (as in Hyman and Stanley [17]), A.= i <1> where i 

denotes the probability of infection per sexual contact (with an infected individual) and <1> 

denotes the average number of contacts per sexual partner. Hence, A.C[1] denotes the 

transmission rate per unit time per infected partner. The factor W!T is the probability that a 

contact of a susceptible with a randomly selected individual will be with an infectious 

individual. Since individuals in classes A and Z are not sexually active, A.C[1]SW!T denotes the 

number of newly infected individuals per unit time. C[1] is usually assumed to be 

approximately linear for small T and to approach a saturation level for a large T. For AIDS, it 

may be that C[1] should be taken as proportional to T0 for 0 < 8 ::; 1 for small populations, but 

treated as a constant for large populations. This is because there is some evidence (Kingsley 

et al. [18]) that the probability of seroconversion (infection) increases with the number of 

infected sexual partners for those individuals that practice receptive anal sex. We use a 



general functional form for C[T] that includes both of the above choices as special cases in 

order to determine how this assumption affects the conclusions. Anderson and May [12] have 

shown that in a homogeneous (one-group) model, C[T] should not be the mean number of 

sexual partners per unit time, but rather should be larger because of the important role played 

by highly active 

individuals who are more likely to acquire infection and are also more likely to transmit it. 

Unfortunately, there is evidence that AIDS is actually a progressive disease and that 

most individuals that have been infected will go on to develop "full-blown" AIDS. If we accept 

this view, then p is approximately equal to one and equations (1.3) and (1.5) are no longer 

necessary. In the rest of this article we will report results only for the case p = 1: for the case 

0<p<1 the reader is referred to [13-14]. Observe that the dynamics of the classes Sand I are 

governed autonomously, and hence the system (1.1 ), (1.2), (1.4) can be reduced to 

dS I 
- = A- 'A.C[T]S:- JlS dt T I 

(1.7) 

dl s 
- = I ('A.C[T] - - cr) dt T I 

(1.8) 

where T = S + I , cr = Jl + a 1 , and where we assume that C[T] is an increasing function ofT. 

The system (1.7)-(1.8) always has the infection-free state 

A (S,W) = (-,0), 
Jl 

as an equilibrium. 

(1.9) 

For this model, the reproductive number R, i.e. the number of secondary infections 

produced by an infectious individual in a purely susceptible population, is given by 

A 1 
R = 'A.C[-] - I 

Jl cr 
(1.1 0) 

where we observe that 1/cr denotes the mean infectious period. We note that if R > 1 there 

exists a unique endemic equilibrium given implicitly by the unique positive solution to the 

system: 

T cr 
s = C[T] A. I 

(1.11 a) 

I= (A - S) Jl . 
Jl cr 

(1.11b) 

For these equilibria, we have established the following results: 



The system (1.7)-(1.8) has a unique (positive) endemic state if and 

only if the reproductive number exceeds unity (R>1).The infection­

free state (1.9) is globally asymptotically stable (relative to solutions 

for which S(O) ~ 0, W(O) ~ 0) whenever the reproductive number R is 

less than unity (R<1) and it is unstable when R>1. In addition when R 

crosses 1 (from below) there is a transcritical bifurcation with the 

endemic equilibrium becoming globally stable. 

b. Models with constant incubation period 

As previously, we assume that all individuals become immediately infectious; hence with this 

formulation the incubation period is again taken to be equal to the infectious period. For the !­

infected it is assumed to be constant {co) and for theY-infected it is assumed to be a constant 1: 

equal to the average length of their sex-life. Therefore all infected (assumed infectious) 
individuals remain a fixed length of time (co} or ('t) in their corresponding classes (more general 

forms of the model allow (co) and ('t) to be distributed [13-14]). lo(t) and Yo(t) denote those 

individuals that were in either class I or Y at timet= 0, and are still infectious; Zo(t), those 

individuals that were in class Z at timet= 0, and are still alive; and Ao(t), those individuals that 

had already developed full-blown AIDS at time t = 0, and are still alive. We assume that Zo(t) 

and Ao(t) vanish for large enough t, i.e., in mathematical terms that they have compact 
support. Since co denotes the infectious period and 't the average sex-life of an individual in 

this population, we assume that lo(t) = Yo(t) = 0 for t > max(co,'t). The function H(x) that 

appears in the following is the Heaviside function, defined as being equal to 1 if x > 0 and zero 

otherwise. The rest of the parameters are defined as in Section 1. Using these conventions, 

and with the aid of Figure 2, 

----4•• A _.,... Jl +d 
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Fig. 2: Flow diagram for a single group model with constant periods of infectiousness, for 
details see the text. 

we obtain the dynamical equations: 

dS(t) = A_ A.C[T](t) S(t)W(t) _ S(t) 
dt T(t} Jl I 

(1.12} 



t 

l(t) = 10(t) + A-p J C[T](x) S(~(~(x) H(x)e -ll(t- x)dx , (1.13) 

t -(J) 

t 

Y(t) = Y0 (t) + A-(1 - p) Jc[T](x) S(~(~(x) H(x)e -ll(t- x)dx , (1.14) 

t-r 

t - (J) 

A(t) = A0 (t) + A-p J C[T](x) S(~(~(x) H(x)e -ll(t- x)- d (t- x- ro)dx , (1.15) 

0 

t - 't 

Z(t) = Z0 (t) + A-(1 - p) J C[T](x) S(~(~(x) H(x) e-ll (t- x)dx , (1.16) 

0 

where W(t) = l(t) + Y(t) , and T(t) = S(t) + W(t) and C[T] is an increasing function ofT. ObseNe 

that the classes A and Z are completely determined by the classes S, Y, and I. Hence we can 

restrict our analysis to the system given by (1.12)-(1.14). In addition, the results of Miller [19] 

and Landen [20] show that the initial population composition as expressed by, lo(t), Yo(t), Zo(t), 

and Ao(t) will have a transient effect, but may be neglected for large enough t. The existence , 

uniqueness and positivity of solutions is established as follows: 

First, we specify an appropriate set of initial conditions by setting S(t) = r(t), 
l(t) = p(t),Y(t) = m(t), on the interval [- max(ro,'t), 0]. Moreover, in order to 

make this system consistent, we assume that lo(t) = p(t),Yo(t) = m(t) on the 
interval [-max(ro,'t), 0]. For this set of ordinary delay-differential equations 

local existence and uniqueness of solutions follows from standard results 

(see Hale, [21]). 
We now assume that lo(t) ~ 0, Yo(t) ~ 0 on [-max(ro,'t), 0], and will show 

that the solutions remain nonnegative fort > 0 as long as they are defined. 

That is, we will show that the point (S(t), l(t), Y(t)) remains in the nonnegative 

"orthant" in R3. To correspond to the biological context, we also assume that 

S(t) > 0 on [-max(ro,'t), 0], that at least one of the infectious classes is strictly 

positive on a subinteNal of [-max(ro,'t), 0], and that A> 0. 

The trajectory cannot reach a point in the face S = 0, since if S = 0 then dS/dt 

> 0 in a neighborhood by (1.12). Next we show that a solution cannot reach 

a face where either I= 0 or Y = 0. For, if ( is the first time that I = 0 (or Y = 
0), then from (1.13) 

t* 

I (t.) ~A p J C[T](x) S(~(~(x) H(x) e -ll(t- x) dx , 

t*- (J) 



which is a contradiction. Thus all variables are positive fort > 0 , under the 

stated conditions. 

As before, we restrict our analysis to the case p = 1 (that is we model AIDS as a 

progressive disease). In this case equation (1.14) is no longer relevant and the study of the 

steady states reduces to the following set of equations: 

dS(t) =A- A.C[T]S(t) J!l -J.LS(t) 
dt T(t) ' 

(1.17) 

dl (t) = A.[C[T](t)S(t) l(t} - C[T](t - ro)S(t - ro) l(t - ro) e-~j -Jll (t) , 
dt T(t) T(t - ro) 

(1 .18) 

For this system the infection free-state (A , 0) is always an equilibrium, in addition, the mean 
Jl 

infectious period is given by 
-wo 

1 - e 
Jl 

and therefore, the reproductive number R, is given by 

For this model we have established the following results 

The system (1.17)-(1.18) has a unique positive endemic state if and 

only if the reproductive number. exceeds unity (R>1). The infection­

free state is globally asymptotically stable whenever the 

reproductive number R is less than unity (R<1) and it is unstable 

when R > 1. In addition, the endemic state is locally asymptotically 

stable whenever R >1. Furthermore, periodic solutions do not arise 
when one varies parameters from either the endemic state or the 

infection-free state. 

For extensions of these results to the case 0<p<1 and to the case where distributed (rather 

than constant) delays are used the reader is referred to [13-14]. 



2. Multigroup models 

In this section we describe two multigroup models: the first assumes that individuals 

transfer from the infected class at a constant rate (i.e. that the duration of infection has a 

negative exponential distribution); in the second model we assume that all individuals remain 

infectious for a fixed length of time. In both models we assume that AIDS is a progressive 

disease; we relax this assumption in [13-14]. 

a. Model with exponential removal 

A model with three subpopulations (i = 1 ,2,3) with different sexual and social practices is 

considered (in constructing this model, we follow the approach of Ross [22], and Hethcote and 

Yorke [23]). Group 1 includes those individuals whose sexual preferences, degree of sexual 

activity and social practices can facilitate the transmission of HIV. If we assume that the 

reservoir of the HIV virus is within the (sexually active) homosexual population, then Group 1 

could include (sexually active) bisexuals, and perhaps a subgroup of the male and female 

population of prostitutes. Group 2 includes those heterosexual individuals who have multiple 

sexual partners, and Group 3 includes those essentially monogamous individuals whose risk 

of infection arises from social and sexual contact primarily with individuals of Group 2. This 

classification is somewhat arbitrary, but it is given primarily for the purpose of illustration. We 

denote by S1, IJ, and At, the corresponding classes for group i as defined in Section 1. In this 

case C1[T] = c1C[T] (Ci appropriate constants for each group), A.t, Ait a and J.L are defined as 

before but with a subindex to differentiate groups. 

Proceeding as in Section 1 and guided by Figures 1 and 3, we arrive at the following 

model: 

dS1(t) W(t) 
dt = Al - \ c1 C[T](t)S1 (t) T(t) - J.1S1 (t) (2.1) 

dS2 (t) W(t) 
dt = A2 - \ c2 C[1](t)S2 (t) T(t) - J.1S2(t) ' (2.2) 

dS3 (t) 12(t) 
dt = A3 - \ c3C[T](t)S3(t) T(t) - J.1S3(t) ' (2.3) 

dl1 (t) W(t) 
dt = \ c1 C[T] (t)S 1 (t) T(t) - al1 (t) , (2.4) 

dl2 (t) W(t) 
dt = A.2 c2 C[1](t)S2 (t) T(t) - a12 (t) ' (2.5) 



dl3(t) 

dt 
(2.6) 

Remark. Note that perhaps it would be more appropriate to use a different T for the third group 

(i.e. T 2 = S2 + S3 + l2 + l3 ), and to use a constant instead of c3C[T]. However, we feel that 

these changes would not affect the basic dynamics as they have a minimal effect in the 

reproductive number. Nevertheless, the use of a different C[T] for each group may lead to 

complex dynamics. We are presently working on further elaborations of these models. For 

specific results on ann-group model that generalizes this model see Castilla-Chavez et al. 

[24]. 

COREGROUP1 

COREGROUP2 

Fig. 3: Three group network, with two core groups and one noncore group, for details see the 
text. 

This system always has the infection free-state 

(2.7) 



as an equilibrium. In addition the reproductive number is given by the following expression: 

A A c1 + A A c2 A +A +A 1 
R = 1 1 2 2 C[ 1 2 3] _ , 

A +A +A Jl cr 
1 2 3 

which is tho crucial parameter in the establishment of the following stability result. 

The infection-free state is locally asymptotically stable provided its 
reproductive number R < 1 , and is unstable if R > 1. 

The stability analysis of endemic equilbria for a general C(T] has not yet been fully resolved. In 

this case there may be more complicated dynamics. For further details on some partial results 

see [13-14]. 

b. Model with constant incubation period 

If we now modify the previous model by assuming that !-infected individuals remain 

infected and infectious for a fixed length of time (co), and ignore transient dynamics (as in 

Section lb) we then arrive at the following limiting model (using Figures 2 and 3): 

dS1 (t) W(t) 
dt = A1 - \ c1 C[T](t)S1 (t) T(t) - J.1S1 (t) • (2.8) 

dS2 (t) W(t) 
dt = A2 - A2 c2 C[T](t)S2 (t) T(t) - J.1S2(t) ' (2.9) 

dS3 (t) 12(t) 
dt = A3 - \ c3C[T](t)S3(t) T(t) - J.1S3(t) ' (2.10) 

dl1(t) W(t) W(t- ro) -~ 
-d- = A1c1[C[T](t)S1(t) T(t) - C[T](t- ro)S1(t- ro) e J- J.LI1(t) , 

t ~-~ 
(2.11) 

dl2 (t) W(t) W(t - ro) - J.Lj 
-d- = A2 c2 [C[T](t)S2 (t) T(t) - C[T](t- ro)S2 (t- ro) e - J.LI2 (t), 

t ~-~ 
(2.12) 

dl3(t) 12(t) 12(t- ro) _ J.Lj 
--af = \ c3[C[T](t)S3(t)T(t) - C[1](t - ro)S3(t - ro) T(t _ ro) e - J.LI2(t) , (2.13) 

This system always has the infection free-state 



(2.14) 

as an equilibrium. In addition the reproductive number is given by the following expression: 

A A c + A A c A + A + A 1 - J.Lro 
R = 1 1 1 2 2 2 C[ r 2 3] ( - e ) ' 

A +A +A ll ll 
1 2 3 

which is the crucial parameter in the establishment of the following results: 

The infection-free state is locally asymptotically stable provided its 

reproductive number R < 1 , and unstable if R > 1. Furthermore, 

periodic solutions do not bifurcate from this state when parameters 

are varied. 

The local stability analysis of endemic equilibria for a general C[T] has not yet been fully 

resolved. For some partial results in this direction and for partial results for the case 0<p<1 (i.e. 

when AIDS is not assumed to be a progresive disease), see [13-14, and 24]. 
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