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ABSTRACT 

Social scientists report that their colleagues and students frequently 

misinterpret the meaning of the p-value, particularly when comparing experiments 

with different sample sizes. This confusion motivates development of a confidence 

interval for the estimand, p, of the data-based p-value. An interval estimate will 

have an interpretation that does not change with sample size. One-sided 
, 

intervals, which include zero, are suggested to address "evidence against H0 ." For 

z and t tests, the distribution of the p-value is derived for all sample sizes. Using 

these distributions, confidence intervals for p, along with Taylor series 

approximations, are then constructed. 

1. INTRODUCTION 

P-values are often considered to be "a way of providing a quantification of 

strength of evidence" (Kempthorne and Folks 1971, p 314). One widely accepted 

interpretation of a significance test (where p is the observed p-value) is: 



) 

p-value 

p ~0.01 

0.01< p ~0.05 

0.10< p 

Interpretation 

Strong evidence against the 
null hypothesis 

Moderate evidence against the 
null hypothesis 

Little or no real evidence against 
the null hypothesis. 

Several statisticians have suggested that the p-value is not a good measure 

of evidence against the null hypothesis. Most point out that the meaning of the 

p-value changes as the sample size changes. Others note that p-values disagree 

with measures that compare the posterior probability (Bayesian) or likelihood of 

H0 to that of H1 in broad classes of situations and therefore the p-value must be a 

poor measure of evidence against H0 (Berger and Sellke, 1987; Johnstone, 1986; 

Lindley, 1957). This latter criticism focuses on too narrow a question; p-values 

measure evidence against H0 in a different sense thaR do Bayesian or likelihood 

ratio methods. To interpret a p-value as evidence against H 0 the alternative 

hypothesis need only be vaguely specified. 

The changes in the meaning of the p-value with increasing sample size 

causes serious problems. For this discussion, higher confidence in a p-value means 

that one is more certain that there is a meaningful difference between populations 

and not that the p-value has a lower variance. Logically, there are three possible 

changes in the interpretation of, or confidence in, p-values with changing sample 

size: higher confidence in p-values from small samples, higher confidence in p-

values from large samples, and equal confidence in p-values from large and small 
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samples. Royall (1986) and others, including Minturn et al. (1972), correctly 

point out that, for a given p-value, one ought to have more confidence that the 

difference between the populations is important with a small sample size than 

with a large sample size. The fact that many practicing psychological researchers 

choose an incorrect interpretation (Minturn et al., 1972 and Nelson et al., 1986) 

only emphasizes Royall's conclusion: 

We should not be surprised to find that despite their apparent 
inconsistencies, interpretations can be given of all three statements ... 
that make each of them correct .... No wonder many good students 
and scientists find the statistical concepts embodied in "simple" tests 
of significance elusive. 

The evidence against H0 provided by Bayesian posterior probabilities is 

different from that provided by p-values for point (or small interval) null 

hypotheses (Berger and Sellke, 1987). Yet, for some classes of prior densities with 

one-sided hypotheses, Bayesian and p-value measures of evidence against the null 

hypothesis agree (Casella and Berger, 1987). These arguments also apply to 

likelihood ratios, since Bayesian posterior distributions are based on likelihood 

functions. However, as Barnard (1986) points out, p-values can be used when the 

alternative hypothesis is only vaguely specified and a likelihood function for the 

alternative hypothesis cannot be written. For example, in a simple one-sample z-

test we can use the p-value to test: 

H0 : The X.""" N(O,u 2), independent and identically distributed 
(iid), ~ith u 2 known 

H1: one or more of the conditions in H0 is not true. 

A dataset which generates a small p-value indicates that either a rare event has 

occured and H0 is true or that H0 is not correct. We do not imply that the p-
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value is the measure of choice for testing each aspect of this sort of null 

hypothesis. We stress the fact that the p-value does provide a measure of 

evidence against H0 in a sense different from a that provided by a likelihood ratio 

test. 

When we use a likelihood ratio test (or a Bayesian posterior probability) we 

will typically make some assumptions under H1 that match those made under H 0 , 

and allow only one or a few changes, for example: 

H0 : The Xr-iid N(O,u2), with u 2 known 

H1: The Xr-iid N(p,u2), with u 2 known. 

If the common assumptions are vali~, then the likelihood ratio tests are preferable 

because they are more specific. Note that, when the common assumptions (equal 

variance and independence) are valid, z-tests, t-tests and F-tests, which generate 

p-values, are likelihood ratio tests. 

The key then to interpretation of the p-value is consideration of the sample , 

s1ze. Since the p-value is often interpreted without reference to the sample size, 

there is a strong need for a measure that has a similar meaning to the p-value, 

which takes account of the effect of the sample size. We propose a method that 

has these properties for z, t, and F-tests. This approach is based on construction 

of an interval estimate for the estimand of the p-value. This interval estimate will 

have a consistent interpretation with changing sample size. 

Since the observed p-value, p, is a monotone transformation of a calculated 

test statistic, its distribution can be derived from the distribution of the test 

statistic. Because, p is a point estimate, additional information is needed to have 
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confidence in the reported p-value. Specifically, p alone provides no information 

about n, thus confidence in the reported f> is questionable. Even when both f> and 

n (or :E(xrx)2 in regression) are reported, no practical method is available for 

formally combining these to make statements about the meaning off>. 

Theoretical methods have been proposed (Kiefer, 1977), but these have not seen 

much practical use. 

When we realize that f> is a point estimate it is reasonable to ask what f> is 

estimating. As established by Joiner (1969), the expected value off> is P(T0 ~T), 

where T 0 is a random variable (the test statistic) with some distribution under 

H0 , and T is also a random variable, independent of T 0 , with some distribution 

under H1• H1 is the alternative that assumes that 8 is the true value of the 

unknown parameter. The fact that f> has a Uniform(0,1) distribution under H0 is 

well known. To construct confidence intervals for the true p, the distribution of f> 

under H1 is needed. 

Lambert and. Hall (1982 and 1983) have shown that the asymptotic 

distribution of log (f>) is N (nc,nr2 ), where c and r 2 are functions of the parameters 

of sampled distributions. Due to the difficulty in interpreting c and r 2 , their use 

is suggested for the comparison of tests "as summary measures of test 

performance" (Lambert and Hall 1982, p 44). The results reported here provide 

several advantages over their results for z, t and F tests. 

We report the distribution of p, rather than log (f> ), expressed in terms of 

the parameter p, rather than c and r 2 • The interpretation of the parameter p is 

far simpler than that of c and r 2 , the Bahadur half-slope and the variance of the 
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log-transformed p-value, respectively. In addition, we report results for all sample 

sizes rather than only asymptotic results. For z-tests, the confidence intervals for 

p, based on the asymptotic distribution of f>, are very conservative. Hence, the 

exact distribution that we provide is a needed result. 

In constructing confidence intervals based on an exact distribution off> we 

need assumptions similar to those needed for likelihood ratio tests. We consider a 

specific alternative hypothesis and no longer have a fixed a level for the test. The 

quantity 1-P(T 0 ~T) is equivalent to the power function averaged over all sizes for 

the test (Dempster and Schatzoff, 1965). By recognizing that the converse of a 

confidence interval for pis a confidence interval for the average power, we may 

gain some insight on how to use this new interval estimate. 

There are at least two ways to motivate a derivation of p, both of which 

lead to the same definition of p. One way is to define p as the expected value of 

f>, so f> is an UMVUE when f> is based on a complete set of statistics. A second 
" 

way is to ask that p equal the probability that the test statistic under the null 

hypothesis (a random variable) is larger than the test statistic under the 

alternative hypothesis (again, a random variable); in notation: p = P(T 0 > T). 

These two notions are equivalent (Theorem 1 ). This leads us to define 

p = P(T0 >T) for T'""'Fe and T 0 -F0 , with T and T 0 independent 

for a test with a rejection region of the form {TIT> k}. 

We derive a general expression for the probability density function (pdf) for 

f> in terms of the cumulative density functions of the test statistic under the null 

and alterative hypotheses. We also derive and tabulate expressions for p as a 
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function of the parameters of the sampled population for z, t and F tests. With 

expressions for p we then establish and tabulate the density function of p for each 

of these tests. Some properties of these density functions that have implications 

for the interpretation of p-values are then noted and briefly discussed. 

The confidence intervals constructed for p are based on pivotal quantities. 

The upper end point of each interval is reported, along with a set of expressions 

for a quadratic Taylor series approximation. In addition, other approximation 

methods are briefly discussed. A set of tables is included for use in constructing 

approximate confidence intervals. 

2. THE DISTRIBUTION OF THE P-VALUE 

We now establish the notational and formal setting for Theorem 1. 

Consider a test of H0 : (} ~ 0 vs. H1: (} > 0, based on a test statistic T where the 

critical region has the form {TIT > k}. We use p to represent the usual p-value, 
"' 

which is a random variable equal to 1- F 0(T). The observed p-value (f>obs) is an 

observed value of the random varible p = 1- F 0(T) with Pobs= P(T o~tcalc), and 

E(f>)=P(T0 ~T). 

THEOREM 1. LetT have cdf (cumulative density function) F9(.) and T 0 have 

cdf F 0(.), with T and T 0 independent. For the statistic p = p(t) = 1-F0 (t), we 

have 

Proof: Separate T and T 0 by conditioning on T=t and integrating over the 

support of F 9(. ). The fact that 1 - F 0(T) = p gives the result. 
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With the equivalence of P 0(T 0 > T) and E0[f>(T)) established, it makes sense 

to define p := P 0(T 0 > T) when testing a one-sided hypothesis. For a two-sided 

hypothesis, we would define p = min(P0(T0 <T),P0(T0 >T)), because we do not 

know, a priori, on which side of the null distribution the alternative will lie; for 

any 0=/=00 , p will be smaller than 1/2. 

We can derive a general form for the density function off> for a test 

statistic T with a continuous distribution. This pdf, derived in Theorem 2, will be 

written in terms of the density function of the test statistic T under both H0 and 

H1 as well as the cumulative density function ( cdf) and inverse cdf of the test 

statistic under H0 • Clearly, the distribution of the test statistic involves the 

actual parameters of the sampled distribution (which we simplify to () (=I'/ q) 

and n). With an expression for p as a function of 0 and n (Theorem 3) we can 

reparameterize the density function of f> as a function of p (Theorem 4 ). 

, 
THEOREM 2. Let i> = 1- Fk 0 (T), and soT= Ff 0(1- p), where the test 

' ' 
statistic T has cdf F k,() with k a vector of degrees of freedom and () the true value 

of the unknown parameter. The pdf of p is then 

where fk () is the derivative of F k 0. 
' ' 

Proof: The univariate transformation f> = 1- Fk (T), where i> is considered a ,o 

random variable, applied to the true distribution of the test statistic, fk 0(T), will 
' 

yield the above result. 
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Using Theorem 1, straightforward calculation will yield Theorem 3. For a 

random variable with an F-distribution, with k and m degrees of freedom and 

non-centrality parameter >. we will use Fk , (.) and fk , (.) to represent the ,m,.-. ,m,.-. 

cumulative density function and the density function respectively. Similarly, we 

use F-k1 (.)to represent the pdf of the inverse cdf of a central F-distribution ,m,o 

with k and m degrees of freedom. We also use the same type of notation for the 

t-distribution, where we will replace F and f by T and t respectively. We will use 

the same type of notation to denote the inverse cdf of a x2 with m degrees of 

-1 
freedom as X~ (. ). 

Theorem 3. For tests of H0 : 9 50, on normal populations, with 9 =I'/ u, Eo(f>) = p 

is a function of the parameters of the sampled distribution which depends on the 

type of test being used: 

a) for a z-test, p=Eo(f>)=G(O,n)=~(-O(n/2)1/ 2) (1) 

b) for a t-test with k degrees of freedom, " 

k+1 (-02n)s 
- ~ - - 1 or(k) ( n )1/2 00 r(-2- +s) -r 

P- Eo(P)- G(O,n,k)- ~.rr(k/2) 21r s~ r(k+s+ 1/2)(2s+ 1)s!' (2) 

c) for an F-test, with k and m degrees of freedom 

_ ~ _ _ ~ >.iexp{->.} ( k ) 
p- Eo(P)- G(O,n,k,m)- LJ .1 Ey Fk+2i m 0(k+2. Yo) , 

i=O 1. o ' ' I 

"(3) 

where Y 0 ""'Fk 0 and >. = n92 /2. ,m, 

Proof: Apply Theorem 1. See the appendix for the details. 

We now use Theorem 2 and Theorem 3 to construct Theorem 4, a list of 

density functions for f> from z, t and F tests. 
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Theorem 4. For tests of H0 : (} ~ 0 vs. H1: (} >0, where O=Jl/ u, on normal 

populations, where p=G(O,n,k) and 9=H(p,n,k), the inverse function of G(.) exists, 

the pdf of p, f(p;v) can be written as a function of p, which will vary with the 

type of test as follows: 

b) for a t-test with k degrees of freedom 

c) for an F-test with k and m degrees of freedom 

_ . r( k/2 )exp{ -n(H(p,n,k))2 /2} 
f(p;p,n,k,m) = ( ) 

r (k+m)/2 

oo ( F-1 {1- p) )i 
x L (nk(H{p,n,k))2 /2)i r(ktm + i) · k,~1 _ t(r(~ + i)i!) . 

. _ m+kFk (1-p) t-o ,m 

Proof: Use a transformation to go from the distribution of the test statistic to the 

distribution of p, then use the results of Theorem 3 to reparameterize the 

distribution in terms of p (see the appendix for the details). 

Before examining the effects of sample size, let us establish a few properties 

of the pdf of p. For p from a z-test, the pdf is monotone and unimodal in p (see 

the appendix for proof). We already know that when 0=00 the true p=1/2; hence 

the pdf of p is a Uniform (0,1 ). As (} moves away from zero the density of p "piles 

up" near one end of the range of p, (0,1] as is illustrated in Figure 1. With these 
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results in mind, we can examine the changes in the shape of the density functions 

as we change n, (}or p. 

In Figure 2 we see small p-values become more likely as the sample size 

increases. This illustrates "Lindley's Paradox" (Lindley, 1957). This is, in fact, 

the situation most researchers face, where the true 0, or shift, is fixed. If the 

sample size is "too large" one will detect as statistically significant a very small 

shift, so small that it means little in practice. Another way to view this is "with a 

large enough sample size, anything is statistically significant." Experienced 

researchers are familiar with this phenomenon and require observed p-values to be 

very small before concluding that important or "significant" differences between 

populations exist in studies with large sample sizes. 

Figure 3 compares experiments with different sample sizes and the same p. 

Here, larger p-values become more likely as the sample size increases. While this 

appears to be different from the result observed in Figure 2, the difference can be 
~ 

explained by examining what happens when pis fixed. To keep things simple we 

will use the expression for p as a function of (} for a z-test from Theorem 3, 

p=~(-8(n/2l/2). When we compare two experiments with the same p (or 

estimate of p) and different n, we are comparing populations with different 8s. To 

keep the same p, the change in (} must be the same size as the change in n t/ 2• By 

comparing Figures 1 and 2, we see that a change in (} usually has a much larger 

effect on the distribution of f> than does a change in the sample size. Hence, the 

combined effect of decreasing (}and increasing n so as to keep p fixed makes large 

f> values more likely. 
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Because 1-P(T0 >T) is the average power (averaged over all a), the 

confidence interval on p (the expected value off>), could be inverted to give a 

confidence interval on the average power. This power interpretation may help to 

clear up the apparent problem with the increasing width of the confidence interval 

for p when f> is fixed and n is increased. In that case, we are forcing the shift to 

1/2 
decrease at a rate of n . With the shift decreasing we would expect the power 

to decrease. 

These considerations all support Royall's conclusion cited earlier in this 

paper. The fact that many researchers report and interpret experimental results 

solely in terms of the f> values is clearly cause for concern. 

3. CONSTRUCTION OF CONFIDENCE INTERVALS 

For any two-tailed hypothesis test f> will always be less than or equal to 

1/2. For one-tailed hypothesis tests, evidence that the true p value is larger than 
" 

1/2 is rarely useful in practice, so we will restrict the discussion to values of p less 

than 1/2. For these values of p, a reasonable confidence interval is the region 

between zero and some upper endpoint (for which we will find an expression). For 

each test we used a pivotal quantity to find an appropriate upper end point for a 

confidence interval. These upper endpoints are presented in Theorem 5. 

Theorem 5. For tests of H0:0 ~ 00 vs. H1: (} >00 , where B=pfu, on normal 

populations, where p=G(B,n,k) and B=H(p,n,k), the inverse function of G(.) exists, 

the upper end of a one-sided nominally 1-a confidence interval for p, based on f>, 

a) for a z-test we get <~~(2 1/ 2 ( cJI- 1(f>)- cJI- 1(a))), 
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b) for a t-test with k degrees of freedom we get 

G(-Tkt,o(f>)( Xk -1((1-a)t/2)/nk r/2- <f.>-1({1-a)t/2)/n t/2 ,n ,k ), 

with G(.) defined in (2) of Theorem 3, 

c) for an F-test with k an m degrees of freedom we get 

a{ (X~ -1 ((1-o-)1/2) :f~ ( Fk1,m (1-p )- Fk,m ((1-a )t/2)) r/2 ,n,k,m }. 

with G(.) defined in (3) of Theorem 3. 

(4) 

(5) 

Proof: In each case, we find pivotal quantities to construct a one-sided confidence 

interval that bounds(} away from zero. Applying the appropriate G(.) from 

Theorem 3 completes the derivation (see the appendix for the details). 

None of the expressions in Theorem 5 are easy to compute in practice. 

However, this is not an obstacle since we can derive approximations for these 

functions that will serve quite well. In particular, we can either use standard 

approximations, or Taylor series approximations to each expression. The first 

approach is a good fit for the z-test (based on approximations in Abramowitz and 

Stegun, 1971). 

A general expression for a second order Taylor series approximation to a 

function (of f> ), centered at s is 

f(p) ~ f(s) + r'(s)(f>-s) + r''(s)(f>-s? /2. 

With a set of tabulated values for f(s), r'(s) and r''(s), one could easily find an 

approximate upper end point for the confidence interval. We compute r'(s) and 

r''(s) where f(s) is, in turn, each of the expressions in Theorem 5. We will then 

choose a set of values of s for each test (along with other parameters such as 

degrees of freedom and a) and tabulate these constants. 
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3.1 Taylor approximation to a confidence interval endpoint for z-test 

A two-term Taylor series expansion around s for the upper endpoint of a 

one-sided (including zero) 1-a confidence interval for p, for a f> from a z-test is: 

f(i>) ~ <~>(g(s)) + ¢(g(s))(f>-s)l(2112 ¢[<I>-1(s)]) 

+ ¢(g(s)) ( <I>- 1(s)- g(s) ¢[ <I>-1(s)]) (fJ-s )2 1( 2 .[2 ( <P[ <li-1(s )]r) 

These constants are listed in Table 1 for various combinations of p and a. Note 

that these are quadratic polynomials which are most accurate at s, so the group 

with s closest to the observed p should be chosen. This approximation is 

reasonably accurate as illustrated by Figure 4. 

3.2 Taylor approximation to a confidence interval endpoint for t-test 

For a second order Taylor series approximation to the upper end point of a 

one-sided, 1-a confidence interval for p, based on f> from a t-test we start with 

f(s) = G(-Tk,0(s)(xf\(1-a)112)1nk rl2 - <I>-1((1-a)112)1n112 ,n ,k ), 

(4) of Theorem 5, with G(IJ,n,k) defined in (2) of Theorem 3. 

We then have 

f'(s) = 2-112 r(k) ( xk: -1 ((1-a)112) yl2 ( 1 + (Tk1,o(s))2 lk )(k+1)12E1 I r(kt1) 

(T1 (s))2 k 
f''(s) = r(k)f(~) (2nYI2 ( xf\(1-a)112) Yl2 ( 1+ k,~ ) I r(kt1)2 

- (T1 (s))2 
x(k-1l 2(k+1)Tk,o(s)'E1 - 2n-112(xk: 1((1-a)112)YI2(1+ k,~ )E2) 

where E 1 and 'E2 are 
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. 2-1 1/2 1/2 
L: = ~r(i+(k+1)/2)(-!!)1 (T1 ( )(xk ((1-a) ))1/2 + ~- 1((1-a) ))2i F' 

1 ,L.., r((k+i+ 1) /2) 2 k,o s nk 1/2 1' 
1=0 n 

. 2-1 t/2 t/2 
L: = ~r(i+(k+1)/2)(-n)1(-T 1 ( )(xk ((1-a) ))1/2 _ ~- 1 ((1-a) ))2i-1 /("-1)' 

2 .L..,r((k+i+1)/2) 2 k,o s nk 1/2 1 •• 
1=o n 

TABLE 1 

Coefficients for a quadratic Taylor series approximation to the upper end point of 
a 1-a confidence interval for p, based on j> from a z-test. The upper end of the 
confidence interval is approximated by: a + b(j>-s) + c(p-s )2 • The first term of 
the approximation from each set of coefficients is exact at j> = s. 

a=0.20 a=0.05 
s a a 

b b 
c c 

0.20 0.5000 0.2850 
1.0076 2.3278 

-1.5146 -17.9010 

0.15 0.5548 0.3335 
0.9981 2.4934 

-1.5690 -19.3467 

0.10 0.6221 0.3986 
0.9600 2.6464 

-1.5923 -20.7631 

0.05 0.7150 0.5000 
0.8575 2.7352 

-1.5325 -21.8110 

0.010 0.8531 0.6851 
0.5807 2.4353 

-1.1777 -20.0068 

Using this approximation, we construct Table 2 for use in calculating an 

approximate upper end point for a 90% confidence interval for p based on p from 
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a one-sided t-test. Some confidence intervals, with their approximations from 

Table 2, are shown in Figure 5. It is clear that the approximation does a good 

job, and is therefore reasonable to use in practice. This confidence interval will 

provide some perspective on the strength of evidence against H0 • 

3.3 Taylor approximation to a confidence interval endpoint for F-test. 

For a second order Taylor series approximation to the upper end point of a 

one-sided, 1-a confidence interval for p, based on p from an F-test we start with 

f(s) = G( ( x~ -1 ((1-a)1/ 2 ) ;~ (FiLm (1-p )- Fk1,m ((1-a)1/ 2)) Y/2 ,n,k,m ), (5) of 

Theorem 5, and G(O,n,k,m)as defined in (3) of Theorem 3. 

We then have 

2 00 >.ie->.(. ) ( k ) f(s) = ( ) ""-.1- 1- >. Ey Fk+2· m(k+2.Yo) , f F-1 (1-p) .L.:::' 1. o 1, 1 
k,m k,m 1-0 

where>.= x:U- 1((1-a) 1/ 2)~ (Fk1,m(1-p)-Fk,m((l-a)1/ 2 )). 
; 

And we also have 

x f(i- >.)Eyo( F k+2i,m(k~2i Yo)) >.iexp{->.} /i! 
1=0 

with 1 = F-k1 (1-f>) and 6 = F-k1 (1-f>)-Fk-1 ((1-a)1/\ ,m ,m ,m 
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TABLE 2. 
Coefficients for a quadratic Taylor series approximation to the upper end point of a 90% confidence 
interval for p, based on f> from a one-sample t-test. The approximate endpoint is a+b(f>-p1)+c(p-p1) 2 , 

where p1 is the observed p-value, f> is from the table and a, b and care the three values listed in the 
table in descending order. Note that a is the upper end of the confidence interval for p. Where values 
do not appear there were underflow problems in the calculations. 

d-f\p 0.001 0.005 0.01 0.025 0.05 0.10 0. 15 

2 0.0150 0.0432 0.1571 0.3096 
0.8280 1.4841 2.9086 3.0061 

10.1848 16.1911 7.5175 -3.5490 

5 0.0008 0.0077 0.0213 0.0775 0.1798 0.3509 0.4774 
1.0909 2.2343 3.1184 4.0987 3.9362 2.9252 2.1842 

201.6135 111.7152 68.2606 9.5668 -9.4899 -8.9802 -6.0169 

10 0.0060 0.0384 0.0769 0.1712 0.2855 0.4389 0.5436 
7.4113 8.0806 7.2882 5.4581 3.8794 2.4648 1.7865 

624.2396 -65.5193 -79.6328 -45.2819 -22.1761 -9.1181 -5.0596 

15 0.0164 0.0683 0.1166 0.2186 0.3305 0.4735 0.5693 
15.7584 11.0375 8.5707 5.5530 3.6883 2.2662 1.6344 

-1002.7507 -353.0945 -175.9914 -59.7918 -23.7530 -8.6676 -4.6276 

20 0.0271 0.0903 0.1429 0.2467 0.3561 0.4928 0.5838 
21.8488 12.4389 9.0524 5.5133 3.5570 2.1541 1.5505 

-3036.0215 -528.1685 -223.1527 -65.1843 -24.0188 -8.3544 -4.3852 

30 0.0443 0.1192 0.1751 0.2795 0.3851 0.5145 0.6001 
28.9986 13.6793 9.3907 5.4067 3.3955 2.0281 1.4571 

-6044.8925 -709.5909 -266.3832 -69.1661 -23.9247 -7.9712 -4.1161 

40 0.0566 0.1372 0.1945 0.2985 0.4017 0.5269 0.6094 
32.8806 14.2178 9.4970 5.3232 3.2991 1.9568 1.4043 

-7909.7293 -799.8845 -286.0504 -70.5986 -23.7298 -7.7447 -3.9657 

50 0.0657 0.1497 0.2076 0.3111 0.4127 0.5351 0.6156 
35.3012 14.5113 9.5378 5.2608 3.2341 1.9096 1.3694 

-9146.8524 -853.7634 -297.2110 -71.2706 -23.5574 -7.5931 -3.8675 

75 0.0807 0.1692 0.2279 0.3304 0.4293 0.5475 0.6250 
38.6679 14.8670 9.5611 5.1583 3.1348 1.8389 1.3170 

-10957.1317 -925.9994 -311.4762 -71.9349 -23.2468 -7.3636 -3.7216 

100 0.0900 0.1808 0.2398 0.3416 0.4390 0.5547 0.6304 
40.4614 15.0314 9.5571 5.0954 3.0770 1.7982 1.2868 

-11964.5529 -963.2259 -318.4978 -72.1612 -23.0459 -7.2312 -3.6386 
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4. ASYMPTOTIC INTERVALS 

The asymptotic distribution off> from a z-test derived by Lambert and Hall 

(1982) is described by ln(f>),....., AN(-n0 2 /2,n0 2 ), where AN denotes asymptotically 

normal. We can derive an approximate confidence interval for p from this 

asymptotic distribution. Standardizing ln(f>) we get, 

n1/\ln(f>)/n0 + 0/2),....,AN(0,1), and hence 

1-a= Lim (P(n1/ 2(ln(f>)+~)<~- 1(1-a))) =Lim (P(ln(f>) +~- ~-1 ( 1-a)<o))· 
n_.oo nO 2 n_.oo nO 2 1/2 

n 

When we multiply each term by 0, we must address the fact that 0 can be 

positive or negative. Thus we get 

1_a = {k!~oo(p(nf- On1/ 2 ~- 1(1-a) + ln(f>) < o)) 

k~oo(p(nf- On1/2~-1(1-a) + ln(f>) > o)) 

Solving the quadratic equation for On 1/ 2, we get the interval 

for 0<0 

for 0>0 

~- 1 (1-a)-(( ~- 1 (1-a))2 -2In(f>)Y/2 < On1/ 2 < ~- 1 (1-a)+(( ~- 1 (1-a))2 -2ln(f>)Y/ 2 • 

Note that the left end of this interval is always non-='positive, and the right end is 

always non-negative. Hence, the interval does not exclude any reasonable values 

of 0. By dividing each term by 21/ 2 then taking each term as an argument of 

~( · ), we get an asymptotic 1-a confidence interval for the true p. 

Using the fact that f> = ~(-Xn 1/\the approximate coverage probability is 

P( ~(-Xn 1/ 2 ) < exp(n 1/ 2 0 ~- 1(1-a)- n02 /2)). 

Because Xn 1/ 2 ,...., N (On 1/ 2 ,1 ), we express the coverage probability for the 

confidence interval for p based on the asymptotic distribution off> as 

<t>(On 1 /~ + <I>-1( exp{n 1/ 2 <I>-1(1-a)-n02 /2}) ). 

This interval is very conservative, as is shown by the calculated coverage 
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probabilities in Table 3. Hence, the exact confidence interval that we have 

developed gives a useful improvement. 

TABLE 3 
Coverage probabilities for 95% confidence intervals based on the asymptotic 
distribution of p at various combinations of the shift (0) and sample size (n). 
Note that these intervals are all very conservative. Where values do not appear 
there were underflow problems in the calculations. 

0\n 10 50 100 500 1000 5000 10000 

0.1 1.000 1.000 1.000 1.000 1.000 0.992 0.985 
0.2 1.000 1.000 1.000 0.999 0.994 0.979 0.973 
0.3 1.000 1.000 1.000 0.993 0.986 0.972 1.000 
0.4 1.000 1.000 1.000 0.988 0.981 0.985 
0.5 1.000 1.000 0.997 0.983 0.977 1.000 
0.6 1.000 0.999 0.995 0.980 0.974 
0.7 1.000 0.998 0.992 0.977 0.972 
0.8 1.000 0.996 0.990 0.975 0.970 
0.9 1.000 0.994 0.987 0.973 0.990 
1.0 1.000 0.992 0.985 0.971 1.000 
1.1 1.000 0.990 0.984 0.970 1.000 
1.2 1.000 0.989 0.982 0.969 1.000 
1.3 0.999 0.987 0.981 0.998 
1.4 0.999 0.986 0.979 1.000 
1.5 0.998 0.984 0.978 1.000 ; 

5. SUMMARY 

P-values are shown to be unbiased estimators of P(T 0 > T), where T 0 is a 

random variable (the test statistic) under the null hypothesis, and Tis the actual 

test statistic. The p-value is thus a useful measure of evidence against a specified 

null hypothesis. This use of the p-value does not depend on the specification of an 

alternative hypothesis. Hence, p-values measure something qualitatively different 

from what is measured by a likelihood ratio, or a Bayesian posterior probability. 
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This fact partially explains why many people have found that p-values and 

Bayesian posterior probabilities often provide conflicting evidence against H0 • 

As sample size increases, the meaning of the evidence against a specific null 

hypothesis provided by a given p-value changes. This fact alone is sufficient 

motivation to develop a measure, similar to the p-value in meaning, that has an 

interpretation that does not change with the sample size. We argue that a 

confidence interval on P 0(T 0 > T) will have this desired property. In order to· 

construct this interval we have had to assume a specific alternative hypothesis. 

For the cases of z, t and F tests, we have developed confidence intervals for 

the estimand of the p-value, P(T 0 > T). We have constructed one-sided intervals 

that include zero because a p-value or a confidence interval on p is commonly used 

to answer the question: "can we reject H0 ?" The upper end point of the intervals 

for each test are presented along with Taylor series approximations. 

APPENDIX 

Al.l Derivation of the expressions in Theorem 3. 

1. Let p = E(f> ), with f> the p-value from a z-test. Let X = Z - Z0 ; hence, X "" 

N(0,2). With p := P 0(Z0 > Z), we get p = P o(X < 0) = ~(-0 /21/\ 

2. Let p = E(f> ), with f> the p-value from a t-test with k degrees of freedom. 

With p: P..\(Y0 >Y), we get p = P0(z0 -Z(S~/SD1/2 > o) with Y0=Z0 /S0 and 

Y=Z/S1 where z_._,N(On 1/ 2 ,1), kSifu2 "'x~, and Z0 , S0 , Z and S1 are all 

independent. Then T = S~ /S~ "" F k k. Hence, 
' 
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= j p 8( (Zt1/ 2 -Zo)/ (l+t)1/ 2-8(nt /(1+t ))1/ 2 <-8(nt I (l+t))1/ 2 IT=t) F T(t) dt. 
0 

Because the random variable on the left side of the inequality is distributed N(0,1) 

we can write, 

Using the fact that if T....., F k k then U = T /(l+T) ..... Beta(k/2, k/2) we can use a 
' 

transformation and write, 

P = J <~>(-8(nt/(l+t)) 1/2) FT(t)dt = j <~>(-8(nu)1/ 2) f(k) 2 uk/2-1 {1-u)k/2-1 du. 
o o (r{k)) 

Taking the derivative and rearranging gives 

dp _ -(..!L)1/2~(-82 n/2)s f{s+{k+l)/2)f(k) 
d 8 - 27T &o s! f(k/2) f(k+s+l/2)" 

Now, integrating both sides, we can solve forp 

_ ( n )1/2 00 (-82n/2)sf(s+(k+1)/2)f(k) 
p -- 8 27T k, (2s+1)s! f(k/2) f(k+s+l/2) + c. 

For 8=0, we know that p=l/2, hence C=1/2. Thus, we have 
~ 

1 ( n )1/2 ~ (-8 2 n/2)sf(s+{k+1)/2) r(k) 
p = 2- 8 27T &o (2s+l)s! f{k/2)f{k+s+1/2) 

3. Let p be the expected value off>, with f> the p-value from a F-test with k and 

m degrees of freedom. By definition p = P(Y 0 > Y), with Y and Y 0 independent. 

Conditioning by Y0 = y and integrating over the distribution of Y 0 to get 

00 

p = J PA(Y<y)fk,m(y)dy = Ey0(Fk,m,..\(Y0)). 

0 

Because fk,m,A {x) = i~/k+2i,m (k!2ix) P(I=i), with I....., Poisson(A), we can write 

P = ~EYo ( F k+2i,m (k!2iYo)) ..\iexp{-A} /i!. 

When we substitute A=n82 /2 {Searle, 1971) we have the desired result. 
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A1.2 Derivation of the expressions in Theorem 4 

1) For p from a z-test, use the transformation 

0=H(p)=G-1(p) = -ui'b-1(p)ln112, where 0 = Jllu. Thus, we have 

fi>(i>IP) = exp{-~[( i'b-1(p) r +2Jln 1l 2 I uib-1(i> )+(Jln 112 I u r]+~[( i'b-1(i>) /]}. 

Recognizing that -2112i'b-1(p) = Jln 112 I u leads to 

fp(PIP) = exp{ i'b-1(p >[21l 2 i'b-1(p) - i'b-1(p >]}. 
2) For p from a t-test, Theorem 2 and the symmetry of the t-distribution give 

This ratio of density functions (see Searle, 1971) reduces to: 

Substituting H(p,n,k) for 0 yields the statement in the Theorem. 

3) For p from an F-test, Theorem 2 gives 

fk m A(Fk1 m(l-p)) ., n2 
f(p;p,k,m) = ' ' ' , where A=!!£._. 

f (F-1 (1-i>)) 2 k,m k,m 

When we take this ratio (these pdfs can be found in Searle, 1971 ), we get 

f("· k )_r(kl2)exp{-A}~(Ak)ir(i+(k+m)/2)( Fk,m(l-p) )i 
p,p, ,m - r((k+m)/2) ~ i! r(i + k/2) m+kF-k1 (1-P) . 

t-O ,m 

A1.3 The pdf of p from a z-test is monotone and unimodal in p. 

From the definition of f(p;p ), we have 

d fr~p) = exp{ i'b-1(p )( 2112 i'b-1(p )-i'b-1(p))} i'b-1(p) 2112 ¢(p ). 

Note that the exponential term is always larger than zero, the i'b-1(p) term is less 

than zero for p less than 1/2 (because i'b-1(p) > 0 for p > 1/2 ), and ¢(p) is always 

positive. Thus, for a given p, the slope does not change sign. Hence, the pdf is 
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monotone. Specifically, for p less than 1/2, the slope of the pdf is always 

negative. Unimodality follows from monotonicity. 

A1.4 Derivation of the expressions in Theorem 5 

1) Solving p and f> for I' and X respectively leads to X= -u<l!-1(f>)/n 1/ 2 and I'= 

-u<l!-1(p)(2/n)1/ 2. Using the fact that (X-Jl)n1/ 2Ju,..... N(0,1), we see that 

z = <f!-1(p)21/ 2 - <f!-1(f>) ....- N(0,1). Thus, Z is a pivotal quantity, by this and the 

symmetry of the Normal distribution we have: 

The confidence interval follows directly. 

quantities (S2 is the usual sample variance, with k degrees of freedom), and they 

are independent. Thus, ther'e exist q1, q2, q3 and q 4 so that, 

which leads to 

(1-a )(1-a ) = p(X-~ < ~ <X_~. fCi3 < ~ < fCI4). 1 2 (!' 1/2 (!' (!' 1/2 ' 'Jk (!' 'Jk 
n n 

Substituting X/u = (n1/ 2X/S)(sf(un1/ 2)) = -Tic1,0(f>) Sf(un 1/ 2) yields 

(-Tk o(f>)S q2 -Tk o(f>)S qt (q3)1/2 S (q4)1/2) 
(1-atl(1-a2)=P '1/2 - 1/2 <O< '1/2 - 1/2 ; k < u< k . 

un n un n 

To obtain a one sided confidence interval for p, with the confidence region 

abutting 0, set q1 =-oo and therefore q2 = <1!-1(1-at). Similarly, set q3 = 0 and q4 
-1 

= xk (1-a2), (the inverse cdf of a x2 with k degrees of freedom). This yields 

( -Tk oCf>) S <f!-1(1-a1) S ( 2-1 )1/ 2) 
(1-al)(1-a2) = p 0 > '1/2 - 1/2 ; 0' < xk (1-a2)/k 

un n 
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Substituting the upper bound from the right hand inequality into the left hand 

inequality and letting 1-a = (1-a1)(1-a2), we obtain: 

Because G(O,n,k) is decreasing in 0, we must reverse the inequality when we apply 

G to both sides of the inequality. Hence, we have 

( ( 1 ( 2-1 )1/2 1 112 )) 1-a ~ P p < G -Tk,o(f>) xk (1-a2)/nk - 4>- (1-at)ln ,n,k . 

If we let 1-a = (1-a1)(1-a2), and we let a 1=a2 = 1-(1-a)112 , then substitute into 

the previous expression we obtain the confidence interval in the statement of the 

theorem. 

3) For f> from an F-test, f>=1-Fk ( SSA/ku: )• where SSA/u2 has a 
,m SSEimu 

non-central xk: A distribution and SSE I u 2 has a central x~ distribution, and A = 
' 

n0 2 /2, with O=pfu. Because we know that E(SSA/u2 ) = k + n0 2 /2, 

I k th t SSAiku2 - n0 2 l2k F h ~ . . . I we a so now a · 2 "' k ; ence, It 1s a p1vota 
SSE/mu ,m 

quantity. We can construct a confidence interval on u 2 from the distribution of 

SSE I u 2 , which is also a pivotal quantity. The only difficulty here is that these 

pivotal quantities are not independent. Because SSE and ~~~~! are negatively 

correlated we can construct the following probability statements 

( ( 2k 2 -l ( 1 1 ))1/2) ~p IOI > run Xm (1-a2) Fk,m (1-f>)- Fk,m (1-a1) • 

Setting a 1=a2=1-(1-a)112 , applying G(. ,n,k) (from Theorem 3) which is a 

decreasing function, immediately yields the interval in the theorem. 
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