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The development of faster and higher resolution MR imaging devices has made

accessible mass quantities of image data. Much information can be extracted by

analyzing these high spatial resolution images. For instance, tissue volumes, which

can be measured through MR images, are used as an indicator in many clinical ap-

plications and research studies. Research studies involving tissue volume analysis

often require the processing of a vast amount of data hence manual segmentation of

the images by experts is very time-consuming. Data segmented by human experts

are also likely to show inter- and intra-observer inconsistency. For these reasons,

automated segmentation of MR images is of great importance and interest.

MR images present many challenges for automated segmentation. In addition

to noise, MR images are also corrupted by problems specific to MR imaging such

as intensity inhomogeneity. Furthermore, poor contrast at tissue boundaries due

to multiple tissues having similar MR intensities also present problems. On the

other hand, strong contours may exist where boundaries are not desired, because

multiple tissues with very different MR intensities may be present within the same

anatomical structure. Prior information, such as spatial atlases and shape priors

can be very powerful in these cases.

In this thesis, we developed highly accurate and robust graph cuts-based

method that automatically segments MR images. The images we are most inter-

ested in are those that cannot be correctly segmented using intensity information

alone. We developed models for robustly incorporating prior information such as



spatial atlas and geometric or statistical shape priors into the efficient graph cuts

segmentation framework. Specifically, we developed methods to incorporate spa-

tial atlas, statistical and geometric shape priors with graph cuts for MR image

segmentation. We tested our methods on MR brain, abdomen and cardiac images

with intensity inhomogeneity, poor contrast at desired boundaries and/or strong

contrast at undesired boundaries and obtained encouraging results. Finally, we

proposed a way of dealing with objects with curvy boundaries.
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Chapter 1

Introduction

1.1 Background and Motivation

The first MR image, produced over 30 years ago, brought a new era of modern

medicine [25]. Today, there are thousands of MR scanners in use across the United

States, generating high quality internal images of human bodies for diagnostic and

research purposes. Unlike its earlier counterparts such as X-ray and computed to-

mography (CT) scans, MR imaging does not involve exposure to imaging radiation

which greatly limits its side effects [52, 49]. Imaging in 3D is also easy with MR

scanners. The goal of this thesis is to develop robust method with high accuracy

that automatically divides MR images into anatomical structures. In this section,

we introduce the basics of MR imaging technologies and discuss the importance

and challenges of MR image segmentation.

1.1.1 Magnetic Resonance (MR) Imaging Technologies

Discussing the full scale of quantum physics behind MR imaging is beyond the

scope of this thesis and we will give only a brief summary. Hydrogen nuclei in

water and lipids play an integral part in medical MR imaging. Atomic nuclei are

made of protons and neutrons. Protons and neutrons both have spins (or angular

momentum intrinsic to the body) of 1/2, and therefore possess magnetic moments.

Most elements have nuclei made up of an even number of protons and neutrons

and the magnetic moments are canceled out. However, the most common isotope

of hydrogen nuclei (with an abundance of more than 99.98%) is made up of one

proton and no neutrons possessing a magnetic moment and tends to align with a

strong magnetic field (Fig. 1.1). The hydrogen protons in a magnetic field have
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(a) In their normal states, the mag-
netic moments of hydrogen nuclei
point in all directions.

(b) In a strong magnetic field the
nuclei tend to align with the field
in one direction or the other. (The
arrow in the middle shows the di-
rection of the magnetic field.)

Figure 1.1: Magnetic moments of hydrogen nuclei.

Figure 1.2: Protons in a magnetic field have two potential energy levels.

two potential energy levels (Fig. 1.2) [55]. It is possible to excite a proton in

the lower energy state to the higher energy state with an electromagnetic wave

possessing exactly the transition energy (energy difference between the two states)

of the proton. We call the frequency of this particular electromagnetic wave the

Larmor frequency. The transition energy (∆E) and Larmor frequency (fLarmor)

are determined by the strength of the magnetic field:

∆E =
γhB

2π
, fLarmor =

γB

2π
, (1.1)
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Figure 1.3: In a magnetic field, a proton in the lower energy state can be excited
to the higher energy state by an electromagnetic wave with the proton’s transition
energy. The proton eventually comes back to the lower energy state releasing the
transition energy.

where γ is the gyromagnetic ratio of protons, h is the Planck’s constant and B

is the strength of the magnetic field. Excited protons stay in the higher energy

state for a while, but eventually come back to the lower energy state, releasing the

transition energy (Fig. 1.3). The time lapse between the excitement of the proton

and the energy release is called relaxation time [55].

Medical MR machines image the relaxation times of excited hydrogen protons

since the relaxation times differ from tissue to tissue. The scanner first applies a

gradient magnetic field, which varies in three orthogonal directions. This gives each

location in space a magnetic field with unique strength, hence a unique Larmor

frequency. The relaxation time at each location is then measured by exciting the

protons through electromagnetic energy (RF pulses) with their Larmor frequency

and receiving the released energy through a receiving coil [57].
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1.1.2 Why Magnetic Resonance (MR) Image Segmenta-

tion?

The development of faster and higher resolution MR imaging devices have made

accessible mass quantity of image data. Much information can be extracted by

analyzing these high spatial resolution images. For instance, tissue volumes, which

can be measured through MR images, are used as an indicator in many clinical

applications and research studies. For example, medical studies are underway to

investigate the relationship between brain volume loss and Alzheimer’s disease

[56, 71]. In autosomal dominant polycystic kidney disease (ADPKD) patients,

the rate of kidney enlargement have been shown to characterize the rapidness of

renal function decline [32]. Thickening of the myocardium of the left ventricle

is often used as a marker in clinical diagnosis for cardiovascular diseases [14].

Dividing medical images into different anatomical structures, i.e. medical image

segmentation, is the key to tissue volume analysis. Medical image segmentation

also leads to many other useful applications such as visualization of 3D anatomical

structures for the purpose of surgical planning and simulation [81].

Research studies involving tissue volume analysis often require the processing

of a vast amount of data and hence manual segmentation of the images by experts

is very time-consuming. Data segmented by human experts are also likely to

show inter- and intra-observer inconsistency [43, 40]. For these reasons, automated

segmentation of MR images is of great importance and interest.

1.1.3 Challenges of MR Image Segmentation

MR images present many challenges for automated segmentation. In addition to

noise, MR images are also corrupted by problems specific to MR imaging such as

4



(a) MR images with bias field.

(b) MR images with bias field correction.

Figure 1.4: Effects of intensity inhomogeneity in MR images. Images based on
[36].

intensity inhomogeneity. Intensity inhomogeneity (also called bias field or intensity

non-uniformity) refers to the non-anatomic spatial variation in intensities within

an MR image caused in part by the difference in distance between image voxels

(the smallest unit in MR images) and the receiving coil [36]. Examples of images

corrupted by intensity inhomogeneity are shown in Fig.1.4. For comparison, the

same images without intensity inhomogeneity are also shown.

Furthermore, poor contrast at tissue boundaries due to multiple tissues having

similar MR intensities also present problems. For example, the kidney tissues and

neighboring psoas muscle tissues have similar intensities in Fig. 1.5(a). Fig. 1.5(b)

shows a cardiac image with weak contrast at boundaries between the epicardium

and the liver and those between the endocardium and the blood pool. On the

other hand, strong contours may exist where boundaries are not desired, because
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(a) Poor contrast exists be-
tween kidney tissues and mus-
cle tissues.

(b) Poor contrast exists be-
tween the epicardium and liver
tissues and between the endo-
cardium and the blood pool in-
side the left ventricle (LV).

Figure 1.5: MR images that are hard to segment because of poor contrast at desired
boundaries.

Figure 1.6: An MR image that is hard to segment because of strong contrast
at undesired boundaries. Here, cysts with very different intensities than normal
kidney tissues exist within the kidney.

multiple tissues with very different MR intensities may be present within the same

anatomical structure. For example, Kidneys of ADPKD patients also include a

large amount of liquid, which have very different intensity levels than normal kidney

tissues, creating strong contours within the kidney as shown in Fig. 1.6.

Traditional image segmentation methods make general assumptions such as

objects generally have smooth boundaries [70]. Some anatomical structures stray

from such assumptions, which make their segmentations using conventional image

segmentation method difficult. Fig. 1.7 shows a brain MR image with many curvy

6



(a) Brain image (b) White matter tissue in
the brain with curvy bound-
aries

Figure 1.7: MR brain images have many curvy boundaries.

boundaries which cannot be correctly segmented using traditional segmentation

methods assuming smooth boundaries.

1.2 Medical Image Segmentation using Prior Information

As mentioned above, automated MR image segmentation is a challenging problem.

Intensity inhomogeneity, poor contrast at tissue boundaries and strong contours

within anatomical structures make segmentation using intensity information alone

very difficult. Prior information, such as spatial atlases and shape priors can

be very powerful in these cases. Atlases can help segment images using spatial

information where intensity information alone cannot classify voxels accurately.

Shape priors allow global information to be incorporated into segmentations. In

this section, we first briefly summarize recent image segmentation methods. We

then discuss representations and generations of spatial atlases and shape priors

and their incorporation with recent segmentation techniques.
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1.2.1 Image Segmentation Methods

Computer vision is a decades old field of study and a large number of image seg-

mentation methods have been proposed in the literature. In image segmentation,

one wishes to divide an image into different regions. This task can be accom-

plished directly by defining contours representing object boundaries or indirectly

by assigning each image pixel a label representing the region to which it belongs.

Early segmentation techniques depended on basic image features including inten-

sity and edge information. Such techniques include: region growing, clustering,

thresholding and edge detection-based approaches [70].

In recent years, elegant approaches involving energy minimization have gained

the most interest. These segmentation methods can be roughly divided into two

categories. One involves continuous boundary representations and the other dis-

crete boundary representations. The first category includes active contour methods

such as ”snake” [41] and level set-based approaches [15, 17]. The level set-based

methods embed object boundaries as the zero level set in a level set function and

use curve evolution to find the boundaries with the lowest energy for the cost func-

tion. Within the second category of energy-based segmentation methods, graph

cuts-based approaches have become popular because they allow for globally op-

timal efficient solutions in an N-dimensional setting [9, 33, 91]. These methods

represent images using weighted undirected graphs. Image pixels are nodes on the

graph and each pair of pixel neighbors are connected through an edge. The weights

of edges depend on the similarity of the pixels. Image segmentation is performed

by separating the nodes into disjoint sets through the removal of some edges in the

graph. Developments in this thesis on based on the graph cuts image segmentation

method and we will give a detailed review in the next chapter.
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1.2.2 Spatial Atlases-Guided Brain MR Image Segmenta-

tion

With medical images, it is often possible to produce anatomical probabilistic maps

based on manual labeling. These atlases can help when voxels cannot be easily

classified using intensities by classifying them using spatial information. In this

thesis, we focus on atlas-guided brain image segmentation since brain atlas is the

most prevalent type of spatial atlas in the literature. Spatial atlases are generated

using manually segmented data [27, 62]. The first atlas-based brain segmentation

approaches registered the atlas with the image and segmented the image based on

the atlas alone [67], [38]. Although these methods are very fast, their accuracy is

highly dependent on the quality of the atlas.

Later techniques incorporate a brain atlas into a segmentation framework. Such

methods generally include two steps: registering the atlas to the MR brain image

and segmenting the brain image using the registered atlas. Sequential approaches

were first proposed [21, 51, 64, 19, 47]. In these methods, the segmentation is sus-

ceptible to inaccuracies in the atlas registration. There have been recent attempts

to unify the medical image segmentation and atlas registration. Joint segmenta-

tion and rigid registration has been studied in [5], [87], [84], [61] and [29]. In [5],

an entropy-based framework is developed for CT images. [87] and [61] use vari-

ational approaches while [84] and [29] adopt Bayesian methods for segmentation.

Deformation of brain images cannot be adequately represented using rigid motion

and so non-rigid transformation is necessary.

In [3] and [65], methods integrating non-rigid registration with mixture model-

based segmentation are proposed. Here, intensity probability distributions of dif-

ferent tissues in the brain are modeled using Gaussian Mixture Models (GMMs) [7]

and the GMM parameters and segmentations are calculated through expectation
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maximization (EM)-based approaches [26, 53]. [3] is a voxel-based method where

voxels are classified independently and labels of neighboring voxels are not taken

into consideration whereas [65] uses spatial neighboring constraints although not

full scale Markov random field model. Classifications of image voxels generally

exhibit spatial dependency and segmentation methods that take this into consid-

eration work better. Coupled segmentation and registration methods of misaligned

medical images using Markov Random Field models has been studied in [85]. [80]

presents a level set-based approach, which unifies the image segmentation and atlas

registration problems.

1.2.3 Segmentation of Anatomical Structures using Shape

Priors

Many shape models have been explored for segmentation purposes. [23] used

a point-based shape model and [42] represented object surfaces using spherical

harmonics. Both of these methods used principle component analysis (PCA) to

reduce the dimensionality of the shape statistics. Medial shape representation and

non-parametric shape models were studied in [63] and [24] respectively.

Algorithms for incorporating statistical shape information with level set-based

segmentation methods have been studied extensively. In [68, 18], variational level

set-based approaches were proposed. In [76, 48, 66], signed distance maps were

used to represent the statistical shape information. During each step, [48] esti-

mated the shape based on shape information from the previous step and intensity

information of the image. The segmentation was then found using the shape at the

current step and the intensity information. [76] calculated the segmentation di-

rectly in the shape space. Expectation maximization [26] was used for optimizing

the bias field/shape parameters and the segmentation iteratively in [66].
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There have been recent attempts to add a shape prior to the graph cuts segmen-

tation technique. [72] proposed the usage of an elliptical prior. [30] presented a

method that uses a fixed shape template aligned with the image by the user input.

1.3 Validation of Medical Image Segmentation Methods

Validating medical image segmentation methods is generally hard because of lack

of ground truth. For real images, even if manual expert segmentations exist, these

cannot be treated as ground truth automatically because inter- and intra-observer

variabilities are always present for manual segmentation. There have been al-

gorithms developed for generating an accurate ground truth segmentation when

multiple expert manual segmentations exists [82]. However, very few medical

images and their ground truth segmentations are publicly available. Simulated

data based on phantoms are very popular for validation purposes. In addition to

having ground truth, one can also generate synthetic images with different level of

intensity non-uniformity and noise, making it easy to analyze the effect of these

factors on the segmentation method.

Possible quantitative measures for validation include the percentage of misclas-

sified voxels and the Dice Similarity Measure (DSM) [90] w.r.t. the ground truth.

DSM is defined as

DSMt
a,b =

2 · N t
a,b

N t
a + N t

b

, (1.2)

where N t
a and N t

bare the voxels classified as tissue t with methods a and b, respec-

tively, and N t
a,b is the number of voxels classified as tissue t by both methods. This

measure takes into account both false positives and false negatives.
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1.4 Contributions of the Thesis

In this thesis, we are interested in developing highly accurate and robust graph

cuts-based method that automatically segment MR images. The images in which

we are most interested are those that cannot be correctly segmented using in-

tensity information alone. We developed models for robustly incorporating prior

information such as spatial atlas and geometric or statistical shape priors into the

graph cuts segmentation framework. The accuracy of the alignment of the atlas

with the image and that of the shape prior are important to the accuracy of the

segmentation. Therefore, we use an iterative approach and alternately calculate

the atlas registration or the shape prior and the segmentation of the image, so that

atlas registration and the shape prior could also be updated as more information

becomes available. We also designed our models so that updates of the atlas reg-

istration and the shape prior are not merely based on the segmentation, in order

to avoid a bad segmentation from sending the methods into vicious cycles of in-

accurate shape priors and segmentations. Unlike some previous approaches, our

final segmentation is not limited by the variabilities presented in the spatial atlas

or by the shape priors. Finally, we also proposed a way of dealing with objects

with curvy boundaries.

The major contributions of this thesis can be summarized as the development

of models to

- simultaneously perform graph-based segmentation, non-rigid atlas reg-

istration and intensity non-uniformity correction for MR brain images (algorithm

1).

- incorporate statistical shape priors with graph cuts segmentation for MR

images (algorithm 2).

- incorporate geometric shape priors with graph cuts segmentation for MR
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images (algorithm 3).

We discuss, in more detail, the major contributions with the rest of the section.

1.4.1 Simultaneous Graph-Based Segmentation, Atlas

Registration and Intensity Inhomogeneity Correc-

tion

Curvy boundaries, intensity inhomogeneity and poor contrast between tissues,

these are all challenges faced by automated brain MR image segmentation. We

propose an approach that simultaneously performs graph-based brain MR im-

age segmentation, non-rigid atlas registration, and intensity inhomogeneity correc-

tion. We propose a graph-based segmentation approach that can deal with fine

brain structures. Our segmentation accounts for spatial dependency and fine brain

structures with efficient calculations. We address the intensity inhomogeneity by

dividing the brain image into small blocks and modeling the intensity probability

distributions of brain tissues with local GMMs. To capture both the global and

local effects, our non-rigid registration uses two sets of parameters. We model the

global registration of the atlas with the brain image using an affine transformation

and use a B-spline representation for the deformable transformation. We consider

both atlas/segmentation and atlas/brain image fit during registration to increase

robustness and accuracy.

We validate our method on both synthetic and real T1 brain images. We com-

pare the performance of our proposed method and its equivalent sequential method

and show the effectiveness of conducting brain image segmentation and atlas reg-

istration simultaneously. We compare the results from our method with those

from a well known brain image segmentation method, to evaluate the objective
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performance of our approach.

1.4.2 Graph Cuts Segmentation with Statistical Shape Pri-

ors

Many techniques combining shape priors with level set-based segmentations have

been reported in the literature. Although graph cuts segmentation method can

also benefit from shape priors greatly, the area has yet to be explored. In this

thesis, we studied the incorporation of two types of shape priors with graph-based

segmentation.

We propose a segmentation method that incorporates statistical shape priors to

the graph cuts technique for robust and accurate segmentations of medical images.

We adopt the implicit shape representation proposed in [58]. The statistical

shape information is obtained from a training set of segmented images. We take

a unified approach and solve these two problems through one objective function.

Two novel terms accounting for shape/image fit and shape/segmentation fit are

introduced to the graph cuts energy function. The first term prevents an initial

inaccurate segmentation from producing a vicious cycle of inaccurate shape priors

and segmentations while the second allows the segmentation and shape fitting

problems to interact with one another. Our proposed method is able to deal with

complex shapes and shape variations while taking advantage of the globally efficient

optimization by graph cuts. We demonstrated the effectiveness of our method on

kidney images that cannot be segmented correctly using intensity information alone

due to weak boundaries. The results show that our proposed method is able to

handle images that cannot be correctly segmented without using any priors. Our

segmentations are also not restricted by the shape variabilities represented by the

training shapes.
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1.4.3 Graph Cuts Segmentation with Geometric Shape

Priors

Finally, we propose a novel segmentation method that incorporates geometric

shape priors with the graph cuts technique for robust segmentations of MR images.

The geometric shape priors do not require training, making the method fast and

efficient. Again, we add terms accounting for shape prior/segmentation and shape

prior/image fit to the graph cuts representation. We demonstrate the effectiveness

of our method by correctly segmenting the left ventricle using concentric circles as

shape priors and by segmenting the kidney using an ellipse as a shape prior. These

images are hard to segment without priors because of reasons discussed previously

in this chapter.

1.4.4 Comparison of the Three Algorithms

The priors we use in the three algorithms are respectively spatial atlases, statistical

shape priors and geometric shape priors. The first two are constructed using

registering and averaging hand-segmented brains and aligning segmented organs

then applying Principle Component Analysis to reduce dimensionality. The last

method does not require prior construction thus works faster, but the constraints

applied here are less accurate. Which method among the three is applicable is

determined by the type of available prior information. Since the accuracy of the

segmentations are dependent on the match between the prior and the medical

image of interest, the methods cannot segment accurately organs largely different

from those used in the prior constructions.

Each of the algorithms uses graph cuts as the basis for segmentation, although

in the first algorithm, we alter the standard graph cuts to address the issue of
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fine structures prevalent in brains. Additional terms are introduced to the energy

functions including a term measuring the match between the prior and the segmen-

tation and a grounding term preventing vicious cycles. The former is calculated

based on the spatial probabilistic information in the registered atlas in the first

method and distances to the shape prior in the second and third method. The

grounding term is measured through mutual information between the registered

atlas and the image in the first algorithm and entropies of intensity distributions

inside and outside the shape prior in the second and third algorithms.

16



Chapter 2

Preliminaries
In this chapter, we summarize the algorithms which make the basis of this thesis

namely the graph cuts algorithm and the expectation-maximization method.

2.1 Graph Cuts Segmentation

2.1.1 Markov Random Field Modeling for Computer Vi-

sion

Let F = {f1, ..., fN} be a set of random variables at sites S = {1, ..., N} w.r.t. a

neighboring system N where fn ∈ L. If F has the following properties, then F is

said to be a Markov Random Field (MRF):

• Positivity: P (f) > 0 ∀f ∈ F,

• -Markovianity: P (fn|fS−{n}) = P (fn|fNn
),

where fNn
= {fq|q ∈ Nn} and Nn are neighboring sites of n. The Markovianity

property says that each random variable fn depends on other random variables

through its neighbors. According to the Hammersley-Clifford theorem [34], the

joint probability of f can be written as

P (f) ∝ exp(−Σc∈CVc(f)), (2.1)

where Vc(f) is the clique potential for c.

Many early vision problems such as image segmentation can be formulated in

a Bayesian framework using Markov Random Field, where each image pixel is

considered a site and a pair of neighboring pixels are considered a clique [31]. In

17



the case of image segmentation, the random variable at each site represents the

classification of the pixel. If we denote the pixel intensities as I = {I1, ..., IN},

then we could solve the pixel labeling problem by maximum a posteriori (MAP)

estimation P (f |I) ∝ P (I|f)P (f), where

P (f) ∝ exp(−Σn,q∈NVc(fn, fq)), (2.2)

P (I|f) = ΣnP (In|fn). (2.3)

We can also formulate this into an energy minimization problem with the following

energy function:

E(f) = −Σn log P (In|fn) + Σn,q∈NVc(fn, fq). (2.4)

This problem is computational intractable and many approximations for the

solution of MRF have been proposed including those using simulated annealing

[35, 59], iterated conditional modes [29, 89], Newton descent [51] and mean field

approximation [88, 39]. Although, the most popular solution is based on the graph

cuts framework described in the rest of this section.

2.1.2 Efficient MRF Optimization using Graphs

The basic graph cuts image segmentation framework is developed in [12]. Following

the MRF formulation, the standard form for the energy function in graph cuts

segmentation is:

E(f) =
∑

n

Dn(fn) +
∑

n,q∈C,fn 6=fq

Vc(fn, fq), (2.5)

where E is the energy for label configuration f and n, q ∈ C denotes that pixel

n and m are neighbors. Dn(fn) measures the cost of assigning label fn to pixel

n (assignment cost) while Vn,q(fn, fq) measures the cost of assigning neighboring
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(a) (b)

Figure 2.1: A simple 2D 3x3 image (a) and its corresponding graph/the minimum
cut on the graph (b). Figure based on [13].

pixels n and q different labels fn and fq (separation cost). The graph cuts method

has become popular because it provides globally optimal efficient solutions in N-

dimensional settings for binary segmentations when the separation costs satisfy

the regularity condition [44].

The idea for binary segmentation using graph cuts is as follows. An image is

mapped onto a weighted undirected graph where each pixel is represented as a node

and each pair of neighboring pixels is linked by an edge. Two additional ”terminal”

nodes, the source s and the sink t, represent the object and the background. Every

non-terminal node is linked to s and t through edges called t-links. A cut on the

graph divides the nodes into two sets: one that is connected to the source s and

one that is connected to the sink t, hence producing a binary segmentation. The

cost of a cut is the sum of weights of all the edges severed by the cut. Edge

weights on the graph are formulated so that the minimum cut (i.e. the cut with

the minimum cost) on the graph produces the label configuration that minimizes

the energy function in equation (2.5). There are numerous algorithms that can

solve the minimum cut problem in polynomial time [2, 11]. An example of an

image and its corresponding graph/the minimum cut on the graph are shown in

Fig. 2.1(a) and Fig. 2.1(b).

Graph cuts can be extended to multiple labels using α−β swap or α-expansion
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(a) Initial labeling (b) α − β-swap (c) α-expansion

Figure 2.2: α − β-swap and α-expansion moves. Figure based on [78].

[13]. The α−β swap move exchanges the labels of an arbitrary set of pixels labeled

α and another arbitrary set labeled β (Fig. 2.2(b)). The α-expansion move assigns

label α to an arbitrary set of pixels (Fig. 2.2(c)). In the case of multiple labels,

exact minimum on the graph can be found efficiently for a specific separation cost

Vn,q(fn, fq) = |fn − fq| [37], but the problem is generally NP-hard [78]. Both α−β

swap and α-expansion moves guarantee that the energy decreases constantly. In

addition, the α-expansion move generates a local minimum that is within a known

factor of the global minimum when the separation cost is a metric [78].

The specific separation cost for which an exact minimum is possible in the

case of multi-labels (|fn − fq|) does not preserve discontinuity, since the penalty is

allowed to grow arbitrarily large. Adding a cap to the maximum value the penalty

can take helps to preserve discontinuity. Generalized Potts models are useful for

this purpose and can be defined as:

Vn,q(fn, fq) = λn,q(1 − δ(fn − fq)), (2.6)

where λn,qs are non-negative coefficients and δ() is a delta function. Graph cuts

can find approximate solutions within the factor of 2 of the global optimums for

multi-label energy functions with generalized Potts models as separation costs
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(a) Data sampled from
two lines

(b) Initial guess (c) Final guess

Figure 2.3: ”Line fitting” using an EM-style method.

2.2 Expectation-Maximization in Image Analysis

Many problems in computer vision, including image segmentation, can be framed

as estimation problems where we want to find the underlying parameters when

the observed data is incomplete. A simple example of such a problem is the ”line

fitting” problem, where we sample data from two lines without knowing which data

points came from which line. In the ”line fitting” problem, our goal is to calculate

the parameters for the underlying lines with the assignment of points to lines as

hidden data (or unobserved data). An intuitive way to solve this problem would be

to make an estimation of the assignment of points to lines, then calculate the line

parameters based on the estimations. Once we have the line parameters, we can

improve our estimations of the assignment of points to lines and based on the new

estimations recalculate the line parameters. By repeating these two processes, we

should be able to find a reasonable solution (Fig. 2.3). Expectation-Maximization

(EM) proposed in [26] formalizes this iterative method and proves that in certain

cases, the algorithm is guaranteed to converge. The rest of this section discusses

the EM method more formally and shows how it can be applied to calculating

parameters for Gaussian mixtures with incomplete data, a problem that is closely

related to MR image segmentation.
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2.2.1 The Expectation-Maximization Algorithm

Suppose we have a set of observable random variables X = {X1, ..., XN} and a set

of hidden random variables H = {H1, ..., HN} drawn from an unknown distribution

θ, and Xn and Hn are dependent. We can find the underlying distribution θ by

computing the maximum likelihood:

θ∗ = arg max log P (X|θ), (2.7)

where

P (X|θ) = ΣhP (X,h|θ) = ΣhP (X|h, θ)P (h|θ), (2.8)

and h are the realizations of H. This computation is not always possible and

EM produces a good approximation. As mentioned previously, EM is an iterative

method. If we can define a lower bound function l(θ|θt) at each iteration t for

the likelihood function L(θ) = log P (X|θ), where l(θ|θt) = L(θ) for θ = θt, and

maximize it as shown in Fig. 2.2.1, then we can gradually close in on the global

maximum of L(θ). This process is strictly non-decreasing, since

L(θt+1) ≥ l(θt+1|θt) ≥ l(θt|θt) = L(θt). (2.9)

EH|X,θt [log P (X,H|θ)] = ΣhP (h|X, θt) log P (X,h|θ) (2.10)

has been proven to be such a function and is used in EM. Skipping all the de-

tails, the two steps in EM work as follows and together maximize l(θ|θt) =

EH|X,θt [log P (X,H|θ)] during each iteration.

1) E(stimation) step: estimate the likelihood for each realization of the hid-

den parameters based on the current set of parameters P (h|X, θt),

2) M(aximization) step: maximize the lower bound function to find the best

parameters arg maxθEH|X,θt(log P (X,H|θ)).

Detail derivations of the EM method can be found in [53, 54]. In the ”line

fitting” example mentioned previously, we assigned data points to lines during each
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Figure 2.4: A graphical interpretation of the convergence of EM. Image based on
[8].

iteration. This does not strictly follow the formulation of EM, since with EM, we

need to estimate the probability of the data points belonging to each of the lines.

Methods that do not strictly follow the mathematical framework of EM cannot

be guaranteed convergence, although they are still popular because they generally

work. The segmentation proposed in this thesis follows the style of EM, although

we assign each voxel one label and do not estimate the probability of the voxels

belonging to each of the labels. As such, it is not strict EM.

2.2.2 Gaussian Mixture Models and the EM algorithm

Let us think about the problem where we have a Gaussian mixture model (GMM)

made up of multiple Gaussians and we sample data from these Gaussians to cal-

culate their parameters. We denote the Gaussian mixture as θ = {µd, Σd, πd}, d ∈

{1...D} where D is the number of Gaussians, µd, Σd, πd are respectively the mean,

variance, and prior probability of the d-th Gaussian. Say we observed N data

points: X = {X1, ..., XN} and we do not know which points came from which

Gaussian. The EM method works beautifully in this case. First, we introduce a
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, (2.11)

where Hd
n = 0 when data point n does not come from Gaussian d and Hd

n = 1

when it does. During each iteration of EM, the E-step estimates the hidden data

H according to

< Hd
n >= 1 × P (Hd

n = 1|Xn, θt) + 0 × P (Hd
n = 0|Xn, θt). (2.12)

The M-step calculates the underlying parameters of the Gaussian by maximizing

EH|X,θt(log P (X,H|θ)) = ΣnΣd < Hd
n > log P (Xn, Hd

n|θ). (2.13)

The M-step can be solved analytically by taking the first order partial derivative

w.r.t. each model parameter and have a closed form solution:

∂EH|X,θt(log P (X,H|θ))
∂µd

=
∂

∂µd

ΣnΣd < Hd
n > log P (Xn, H

d
n|θ) = 0, (2.14)

where P (Xn, H
d
n|θ) = P (Xn|µd, Σd) · πd and P (Xn|µd, Σd) is Gaussian probability.

After some derivation:

∂

∂µd

ΣnΣd < Hd
n > log P (Xn, Hd

n|θ) ∝ ΣnΣd < Hd
n > (Xn − µd) = 0, (2.15)

giving us the updated equation:

µd =

∑

n < Hd
n > ·Xn

∑

n < Hd
n >

. (2.16)

Similarly, the updated equations for Σd and πd are respectively:

Σd =

∑

n < Hd
n > ·(Xn − µd)

2

∑

n < Hd
n >

, πd =

∑

n < Hd
n >

∑

n 1
. (2.17)
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(a) Original image (b) Segmentation based on GMM

Figure 2.5: Segmentation of an image using GMM. Image based on [75].

Gaussian mixture models can be applied to image segmentation problems by

assuming a number of Gaussians for the intensity probability distribution of each

label. Then, the assignment of pixels to Gaussians would also determine the clas-

sification of the pixels. Fig. 2.5 shows a segmentation of an image using GMM.

Gaussian mixture models have been used in segmentation and tracking algorithms

in [28, 50, 75]. GMM-EM has been used in medical image segmentation in [47, 83].
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Chapter 3

Simultaneous Geo-Cuts Segmentation,

Non-Rigid Atlas Registration and

Intensity Non-Uniformity Correction for

MR Brain Images

3.1 Chapter Overview

Segmentation of brain MR images leads to many clinical and research applications.

Factors such as intensity inhomogeneity and poor contrast at tissue boundaries

make automated brain MR image segmentation difficult. In the medical imag-

ing community, spatial atlas-aided segmentation techniques have been proposed

[21, 51, 64, 19, 47, 29, 5, 87, 84, 61, 3, 65]. Early atlas-based techniques performed

atlas registration and brain image segmentation sequentially. The accuracy of

these methods is highly dependent on the accuracy of the atlas registration. Re-

cent methods focus on the unification of registration and segmentation. However,

a method has not been suggested which precisely models spatial relations between

voxel neighbors during image segmentation. Spatial neighboring relations are es-

pecially hard to model for brain images because they contain many thin structures.

In this chapter, we propose a novel approach that simultaneously performs

graph-based brain MR image segmentation, non-rigid atlas registration, and inten-

sity inhomogeneity correction. For segmentation, we define a Riemannian space in

which the ideal segmentation boundaries, including those around fine brain struc-

tures, have the smallest Riemannian length. The geodesic contours in this space are

found efficiently using graph cuts. Our segmentation accounts for spatial depen-

dency and fine brain structures with efficient calculations. To increase robustness
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(a) white matter (b) gray matter (c) CSF

Figure 3.1: MNI spatial brain atlas.

and accuracy, we consider both atlas/segmentation and atlas/brain image fit dur-

ing registration. We address the intensity inhomogeneity by dividing the brain

image into blocks and modeling the intensity probability distributions of brain tis-

sues with local Gaussian mixture models (GMMs). By finding the segmentation

and optimizing registration and GMM parameters through one objective function,

we unify the three problems and allow them to interact with one another.

We use the widely available MNI brain atlas in the Statistical Parametric Map-

ping (SPM) package [1]. This atlas is constructed from the average of hundreds

of normal brain scans. The brain scans are registered with each other through

affine transformation [73]. The spatial atlas contains probabilistic information

of the major brain tissues including white matter (WM), gray matter (GM) and

cerebrospinal fluid (CSF). Fig. 3.1 shows the spatial atlas for WM, GM and CSF

in the brain.

We validate our method on both synthetic and real T1 brain images. The pro-

posed method correctly segments fine structures in our test images. In order to find

out whether unified segmentation/atlas registration is effective, we also implement

a sequential version of our proposed method. We compare the performance of our

proposed method and its equivalent sequential method and show the effectiveness

27



of conducting brain image segmentation and atlas registration simultaneously.

The rest of the chapter is organized as follows. In section 3.2, we first summarize

our graph-based segmentation method and our models for non-rigid registration

and intensity non-uniformity correction. We then describe our novel objective

function, which links the three problems and allows them to be solved simulta-

neously. In section 3.3, we show how our energy function is optimized through

an expectation maximization (EM)-style approach. We describe in section 3.4,

our datasets and methods for evaluating our proposed algorithm and show the

experimental results in section 3.5.

3.2 Objective Function

In this section, we first give a summary of our graph-based segmentation methods.

We then discuss our models for non-rigid registration and intensity inhomogeneity

correction. We end by introducing our novel energy function. In the next section,

we will show how this function is optimized.

We represent brain images as a 1D array I = (I1, . . . , IN), where In is the

intensity of voxel n and N is the total number of voxels. We assign each voxel

one of three labels: white matter (WM), gray matter (GM), and cerebrospinal

fluid (CSF). Our segmentations are represented as label configuration of all voxels,

f = (f1, . . . , fN), where fn ∈ {WM, GM, CSF}.

Geodesics via Graph Cuts

Graph cuts-based segmentation methods using standard separation costs deter-

mined by intensity differences between neighboring voxels such as the one in equa-

tion (3.1) do not work well in preserving fine structures prevalent in brain images.

For example, Fig. 3.2(a) shows a slice of brain MRI with many fine structures
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and Fig. 3.2(b) shows its segmentation using graph cuts with equation (3.1) as

separation cost. Fig. 3.2(b) fails to capture the thin structures of white matter

and CSF in Fig. 3.2(a).

Vc(fn, fq) =
1

1 + (In − Iq)2
(3.1)

We propose incorporating the geo-cuts method to overcome the problem men-

tioned above. The geo-cuts method developed in [10] combines the benefits of

graph cuts and geodesic active contours [16, 86, 60]. The idea is to first define

an image induced Riemannian space so that ideal segmentation boundary in the

image is equivalent to the geodesic curve in this space. We will give a brief re-

view of Riemannian geometry later on in this paper but the Riemannian metric

replace the second term in equation (2.5) as separation cost. Boykov showed in

[10] how to build a grid graph and set its edge weights so that lengths of contours

in an anisotropic Riemannian space are arbitrarily close to the costs of cuts on this

graph, as in equation (3.2):

wk(n) = Cgrid ·
|en

k |3 det D(n)

(en
k

T D(n)en
k)2

, (3.2)

where wk(n) is the edge weight for edge en
k at voxel n, D(n) is the Riemannian

metrics at voxel n, and Cgrid is a constant determined by the grid graph. The

geodesic curve representing the ideal segmentation boundary is then equivalent

to the minimum cut on its corresponding graph, which can be found efficiently

through graph cuts.

Riemannian Geometry for Image Segmentation

In a Euclidean space, the length of a vector τ can be calculated as

LE(τ) =
√

τT τ , (3.3)
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and does not depend on the location or orientation of the vector. In a Riemannian

space, this is no longer true. In order to measure length in a Riemannian space,

a metric or a collection of symmetric and positive definite matrices D(n) at each

point n is given. The length of a vector in the local neighborhood of n can then

be calculated as

LR
n (τ) =

√

τT D(n)τ . (3.4)

A Euclidean space can be considered as a special type of Riemannian space and

the Riemannian metric in this case is the identity matrix for all points.

In order for the geodesic contour to represent the ideal segmentation, we need

our Riemannian metric to satisfy the following:

1) In an area where gradient magnitude of the image is low, Riemannian

lengths of vectors should not depend on the orientations of the vectors and should

be large for all orientations, since it is equally unlikely for boundaries to exist in

this area in all directions.

2) In an area with strong contours that are straight, Riemannian lengths

of vectors should depend on the orientations of the vectors. The contours are

likely to correspond with object boundaries in the image whereas their normals

very unlikely. Therefore, vectors in the direction of the contours should be short

in the Riemannian space and in the normal directions long. We can preserve fine

structures and prevent undesirable smoothing by setting the Riemannian length

of the former to be very short and the latter very long.

3) In an area with strong contours that have large curvature, Riemannian

lengths of vectors should again not depend on the orientations of the vectors and

should be short for all orientations, since in this case, it is possible for boundaries

to exist in all directions and not just the direction of the contour.
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The specific Riemannian metric D(n) we use is as follows:

D(n) = (1 − g(|∇In|))Iident

+ g(|∇In|) · (f(Kn)εIident + (1 − f(Kn))|∇In|uuT ),

(3.5)

where g and f are strictly increasing functions between 0 and 1. Iident is the

identity matrix, and ε is a small number that is less than 1. D(n), In, u and Kn

are respectively the Riemannian metric, the image intensity, the unit vector in the

direction of the image gradient and the curvature at point n. Fig. 3.2(c) shows the

segmentation result of the brain MRI in Fig. 3.2(a) using our set up. Compared

to Fig. 3.2(b), fine structures are better preserved in Fig. 3.2(c).

3.2.1 Non-Rigid Registration of the Spatial Atlas to the

Brain Image

We denote the atlas as A = (A1, . . . ,Am, . . . ,AM), where Am =

(AWM
m , AGM

m , ACSF
m )T and AWM

m , AGM
m , and ACSF

m are respectively the probability for

voxel m to take the label WM, GM and CSF. The atlas could also be written as

A = (AWM ,AGM,ACSF)T , where

AWM = (AWM
1 , ..., AWM

m , ..., AWM
M ),

AGM = (AGM
1 , ..., AGM

m , ..., AGM
M ),

ACSF = (ACSF
1 , ..., ACSF

m , ..., ACSF
M ).

Following the approach in [69], we use an affine transformation and a free

form deformation (FFD) based on B-splines [45, 46] to represent our registration.

The affine transformation models the global registration between the atlas and the

brain image with rotation, translation, scaling and shearing. The FFD models local

31



deformation by manipulating a mesh of control points. FFD has been previously

applied to the analysis of cardiac images [6].

Let R = {Rl, φi,j,k, 1 ≤ l ≤ 12, 1 ≤ i ≤ nx, 1 ≤ j ≤ ny, 1 ≤ k ≤ nz} denote

the registration parameters, where Rls are the affine transformation parameters

and φi,j,ks are a mesh of nx × ny × nz control points with uniform spacing for the

FFD. Transformation R maps a point (x, y, z) in the original atlas A to (x̃, ỹ, z̃)

in the registered atlas Ã(R) according to:













x̃

ỹ

z̃













= Taffine (x, y, z)+TFFD (x, y, z) , (x̃, ỹ, z̃)T = Taffine (x, y, z)+TFFD (x, y, z) ,

(3.6)

where Taffine is the affine transformation and can be written as

Taffine (x, y, z) =













R1 R2 R3

R4 R5 R6

R7 R8 R9

























x

y

z













+













R10

R11

R12













, (3.7)

and TFFD is the B-spline-based FFD and can be written as

TFFD (x, y, z) =
3
∑

l=0

3
∑

m=0

3
∑

n=0

Bl(r)Bm(s)Bn(t)φi+l,j+m,k+n, (3.8)

where i = bx/nxc − 1, j = by/nyc − 1, k = bz/nzc − 1, r = x/nx − bx/nxc , s =

y/ny − by/nyc , and t = z/nz − bz/nzc and Bl(•)s are the l -th basis function of

the cubic B-spline [77]:

B0(r) = (1 − r)3/6,

B1(r) = (3r3 − 6r2 + 4)/6,

B2(r) = (−3r3 + 3r2 + 3r + 1)/6,

B3(r) = r3/6.

As the values of the basis functions at each point are fixed, the control points
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serve as parameters for the local deformation and the transformations of points

are governed by the 4x4x4 control points in their local areas.

3.2.2 Mixture of Gaussians

To address intensity non-uniformity in MR images, we use a straightforward ap-

proach and divide the image into small blocks, modeling the intensity probability

distributions of brain tissues locally for each block with a GMM. We use one Gaus-

sian for each brain tissue within a block. The size of the blocks is predetermined.

Let θ = {µb
k, Σb

k, πb
k, k ∈ WM, GM, CSF, b ∈ 1, . . . , B} denote the GMM param-

eters. Here, µb
k, Σb

k, πb
k are respectively the mean, variance, and prior probability

of the Gaussian associated with tissue type k in block b . B is the total number

of blocks. The prior probabilities within each block add up to 1 (
∑

k πb
k = 1).

3.2.3 Energy Function

Our problem can be formulated as: given a brain image I and a spatial brain

atlas A, we wish to simultaneously find the segmentation of the brain image f

and the parameters that register the atlas with the image R. We define the energy

functional in equation (3.9) to guide the image segmentation and atlas registration.

E(I, θ, f ,R) = EI(I, θ, f) + ES(I, f) + EP(f ,R) + EA(I,R). (3.9)

The first term measures how well the voxel labels and the GMM parameters fit

together given the voxel intensities and can be written as

EI(I, θ, f) = −
∑

n

log P(In|fn, θ) = −
∑

n

log P(In|µb
fn

, Σb
fn

, πb
fn

), (3.10)

where n ∈ b. The second term is the Riemannian length of the segmentation

boundary. The third term denotes the correctness of the non-rigid registration
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between the atlas and the current segmentation and can be written as

EP(f ,R) = −
∑

n

log P(fn|Ã(R))) = −
∑

n

log(Ãfn

n (R)). (3.11)

The fourth term measures how well the atlas itself fits with the brain image through

measuring mutual information [20, 79]:

EA(I,R) = −
∑

i

∑

a

P (i, a) log(
P (i, a)

PI(i)PA(a)
), (3.12)

where PI(i) is the probability for a voxel to have intensity i in the brain image,

PA(a) the probability for a voxel to have intensity a = (aWM, aGM, aCSF)T in the at-

las and P (i, a) the joint probability of a voxel to have intensity i in the brain image

and a in the registered atlas. aWM, aGM, and aCSF are respectively the probabilities

for a voxel to have the label WM, GM and CSF.

3.3 Energy Minimization

As mentioned previously, we use an EM style approach to minimize the energy

function presented in equation (3.9) and alternately update the GMM and regis-

tration parameters while fixing the segmentation (maximization step) and use the

GMMs and the registered atlas to facilitate the image segmentation (estimation

step).

3.3.1 M(aximization) Step

Differentiating equation (3.10) w.r.t. µb
k, we get:

∂E(I, θ, f ,R)

∂µb
k

= − ∂

∂µb
k

∑

n∈b,fn=k

log P(In|µb
k, Σ

b
k, π

b
k) = 0, (3.13)

giving us the updated equation:

µb
k =

∑

n∈b,fn=k In
∑

n∈b.fn=k 1
. (3.14)
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Similarly, the updated equations for Σb
k and πb

k are respectively:

Σb
k =

∑

n∈b,fn=k(In − µb
k)

2

∑

n∈b,fn=k 1
, πb

k =

∑

n∈b,fn=k 1
∑

n∈b 1
. (3.15)

We use the regular step gradient descent method to update the registration

parameters. The update equation can be written as

Rt+1
l = Rt

l − λ

(

∂EP(f ,R)

∂Rl

+
∂EA(I,R)

∂Rl

)

φt+1
i,j,k = φt

i,j,k − λ

(

∂EP(f ,R)

∂φi,j,k

+
∂EA(I,R)

∂φi,j,k

), (3.16)

where λ is the step size for the gradient descent optimization.Rt
l , φ

t
i,j,k and

Rt+1
l , φt+1

i,j,k are the registration parameters at time t and t+1. The terms

∂EP(f ,R)
∂Rl

and ∂EP(f ,R)
∂φi,j,k

are updated according to

∂EP(f ,R)

∂Rl

= −
∑

n

∂ log(Ãfn
n (R))

∂Rl

= −
∑

n

1

Ãfn
n (R)

· ∂Ãfn
n (R)

∂Rl

∂EP(f ,R)

∂φi,j,k

= −
∑

n

∂ log(Ãfn
n (R))

∂φi,j,k

= −
∑

n

1

Ãfn
n (R)

· ∂Ãfn
n (R)

∂φi,j,k

, (3.17)

where

∂Ã
Ffn
n (R)

∂Rl

=
∂Ãfn

n (R)

∂x̃
· ∂x̃

∂Rl

+
∂Ãfn

n (R)

∂ỹ
· ∂ỹ

∂Rl

+
∂Ãfn

n (R)

∂z̃
· ∂z̃

∂Rl

∂Ãfn
n (R)

∂φi,j,k

=
∂Ãfn

n (R)

∂x̃
· ∂x̃

∂φi,j,k

+
∂Ãfn

n (R)

∂ỹ
· ∂ỹ

∂φi,j,k

+
∂Ãfn

n (R)

∂z̃
· ∂z̃

∂φi,j,k

. (3.18)

Here,
(

∂Ã
fn
n (R)
∂x̃

, ∂Ã
fn
n (R)
∂ỹ

, ∂Ã
fn
n (R)
∂z̃

)

is the image gradient for Ãfn
n (R) whereas

(

∂x̃
∂Rl

, ∂ỹ

∂Rl
, ∂z̃

∂Rl

)

and
(

∂x̃
∂φi,j,k

, ∂ỹ

∂φi,j,k
, ∂z̃

∂φi,j,k

)

can be found easily by differentiating

equations (3.7) and (3.8). The terms ∂EA(I,R)
∂Rl

and ∂EA(I,R)
∂φi,j,k

are updated accord-

ing to
∂EA(I,R)

∂Rl

= −
∑

i

∑

a

∂P (i, a)

∂Rl

log(
P (i, a)

PI(i)
)

∂EA(I,R)

∂φi,j,k

= −
∑

i

∑

a

∂P (i, a)

∂φi,j,k

log(
P (i, a)

PI(i)
)

. (3.19)

For derivations of equation (3.19) and details on the calculation of

∂P (i,a)
∂Rl

and ∂P (i,a)
∂φi,j,k

, please refer to [74].
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3.3.2 E(stimation) Step

Since we have three labels, segmentation of the image consists of three stages based

on the α-expansion. In the first stage, voxels previously classified as gray matter

or CSF are either re-labeled as white matter or remain with the same label while

voxels previously labeled as white matter do not change labels. The second stage

re-classifies a set of the voxels previously labeled white matter or CSF as gray

matter and the third stage a set of those previously labeled white matter or gray

matter as CSF.

During each step, we create a graph with nodes corresponding to voxels and

two additional terminal nodes. The first and third terms in our energy function

are applied to the graph as t-links. We follow the derivation in [10] to set the

Riemannian lengths as n-links in the graph. The fourth term does not apply. The

minimum cut on the graph is then computed using max-flow [22].

3.4 Evaluation

The simulated data in this study come from the brain phantom from McConnell

Brain Imaging Center [19]. The brain phantom consists of a brain model and a

MRI simulator. The brain model comes from classification of a normal subject

and contains probabilities for each voxel to belong to WM, GM and CSF. The MR

simulator uses this model to generate images with different RF non-uniformity

and noise levels. Since these images are widely used by brain image segmentation

methods in the literature and quantitative performance by existing methods are

readily available, we use these images for the quantitative evaluation of our method.

To verify the effectiveness of jointly segmenting the brain image and registering the

brain atlas with the image, we compare the performance of our proposed method
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SUMMARY OF ALGORITHM

Initialization

The GMM parameters are initialized using pre-defined values. We ini-
tialize the rigid motion by registering the brain image and the atlas. The
initial non-linear deformation is set to zero.

Iterative Minimization

REPEAT
E(stimation) Step

Find segmentation using graph cuts:

f̂ = min
f

E(I, θ, f ,R).

M(inimization) Step
Learn Gaussian mixture model parameters:

µb
k =

∑

n∈b,fn=k In
∑

n∈b.fn=k 1
, Σb

k =
∑

n∈b,fn=k(In−µb
k
)2

∑

n∈b,fn=k 1
, πb

k =
∑

n∈b,fn=k 1
∑

n∈b 1
.

Update registration parameters through gradient descent optimization
until convergence:

Rt+1
l = Rt

l − λ
(

∂EP(f ,R)
∂Rl

+ ∂EA(I,R)
∂Rl

)

,

φt+1
i,j,k = φt

i,j,k − λ
(

∂EP(f ,R)
∂φ

i,j,k

+ ∂EA(I,R)
∂φ

i,j,k

)

,

UNTIL GMM/REGISTRATION PARAMETERS CONVERGE

and the performance of the same method without the simultaneous component.

We also compare our method with an existing brain MRI segmentation method -

expectation-maximization segmentation (EMS) presented in [47], to evaluate the

effectiveness of our method objectively. We use as quantitative measures, the

percentage of misclassified voxels over all tissues and the Dice Similarity Measure

over each tissue w.r.t. the ground truth.

Real images are much more complex than the synthetic ones from a brain

phantom, therefore validating our method on real brain images is necessary. 18 real

volumetric T1-weighted brain images and their hand segmentations are available
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from the Internet Brain Segmentation Repository (IBSR) at the Massachusetts

General Hospital. We test our proposed method on these images and inspect its

performance against the hand segmentations.

3.4.1 Equivalent Sequential Method

We implemented a sequential method that is equivalent to our proposed unified

method, in order to validate the effectiveness of unified segmentation and atlas

registration. In this sequential method, we first register the image with the atlas

through minimizing:

EA(I,R) = −
∑

i

∑

a

P (i, a) log(
P (i, a)

PI(i)PA(a)
). (3.20)

Using the registered atlas, we then perform image segmentation through minimiz-

ing the energy function:

E(I, θ, f ,R) = EI(I, θ, f) + ES(I, f) + EP(f ,R), (3.21)

where EI(I, θ, f), ES(I, f) and EP(f ,R) are defined previously in section 3.2. The

minimization of equation (3.21) occurs through the iterations of two steps: image

segmentation based on graph cuts and GMM parameters calculation. The GMM

parameters can still be updated using Eq. 3.14 and Eq. 3.15 whereas during

segmentation, the first and third terms in equation (3.21) could still be applied as

t-links and the second term n-links.

3.5 Results

First, we show the effectiveness of our proposed method in preserving fine brain

structures with Fig. 3.2. Our proposed method does a much better job preserving
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(a) (b) (c)

Figure 3.2: Segmentation results by standard graph cuts (b) and our proposed
geo-cuts-based method (c) of a slice of real brain MRI data (a). (c) does a better
job preserving fine structures in white matter and CSF.

fine structures of white matter and CSF than the standard graph cuts method in

this case.

The percentages of voxels misclassified by our method and its sequential coun-

terpart (sequential method) on synthetic images with different level of noise and

intensity inhomogeneity are shown in Table 3.1. Table 3.2 and Table 3.3 show

the Dice Similarity Measure for these two methods w.r.t. the ground truth on the

same images. The results indicate that our proposed method shows improvement

over the sequential method on images with all levels of noise and bias field for both

overall performance and individual tissues. Note that the standard level of noise

for real MR images is 3%. The Z-scores are ∞, 33.12 and ∞ according to the

misclassifications, DSM for WM and DSM for GM, which make the joint method

better at the 99% confidence level in all cases.

Fig. 3.3 and Fig. 3.4 demonstrate two sample segmentations by our proposed

joint method and its sequential counterpart on the synthetic images. As shown in

Fig. 3.3 and Fig. 3.4, the joint method performs better than the sequential method

especially in areas where intensities of the voxels themselves cannot accurately
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Table 3.1: Percentages of misclassified voxels by our method and its sequential
counterpart on synthetic images with different level of noise (N) and bias field
(BF). The results indicate that our proposed method shows improvement over the
sequential method on image with all levels of noise and bias field.

Sequential Method Joint Method
N=0,BF=0 5.08085% 3.66684%
N=1,BF=0 3.59626% 2.47611%
N=3,BF=0 4.32948% 3.34663%
N=5,BF=0 5.72533% 4.67929%
N=7,BF=0 7.55655% 5.70425%
N=0,BF=40 3.08586% 2.19323%
N=1,BF=40 3.21537% 2.35018%
N=3,BF=40 4.27003% 3.37058%
N=5,BF=40 6.43218% 5.11434%
N=7,BF=40 7.75894% 7.51967%

Table 3.2: Dice Similarity Measure (DSM) for WM w.r.t. the ground truth are
shown for our proposed joint method and its sequential counterpart. The results
show that our proposed method works better than the sequential method on for
images with all levels of noise and bias field.

DSM-WM
Sequential Method Joint Method

N=0,BF=0 0.955394 0.977121
N=1,BF=0 0.967582 0.983641
N=3,BF=0 0.958922 0.972563
N=5,BF=0 0.948609 0.964309
N=7,BF=0 0.927565 0.953107
N=0,BF=40 0.973651 0.986247
N=1,BF=40 0.972185 0.984362
N=3,BF=40 0.960478 0.972953
N=5,BF=40 0.937137 0.955087
N=7,BF=40 0.942725 0.938707
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Table 3.3: Dice Similarity Measure (DSM) of GM w.r.t. the ground truth are
shown for our proposed joint method and its sequential counterpart. The results
show that our proposed method works better than the sequential method for images
with all levels of noise and bias field.

DSM-GM
Sequential Method Joint Method

N=0,BF=0 0.945581 0.960133
N=1,BF=0 0.961172 0.973404
N=3,BF=0 0.952958 0.964020
N=5,BF=0 0.938320 0.949318
N=7,BF=0 0.917758 0.938611
N=0,BF=40 0.966672 0.976551
N=1,BF=40 0.965269 0.974874
N=3,BF=40 0.953787 0.963913
N=5,BF=40 0.929783 0.94481
N=7,BF=40 0.917564 0.919515

(a) (b) (c) (d)

Figure 3.3: Segmentation by our proposed joint method (Fig. 3.3(a)) and its
sequential counterpart (Fig. 3.3(b)) on a slice of synthetic MR image (Fig. 3.3(c))
with 3% noise and 40% intensity inhomogeneity. The ground truth segmentation
is shown in Fig. 3.3(d). The joint method shows improvement over the sequential
method for areas where intensities alone cannot classify the voxels correctly as
indicated by the circle in Fig. 3.3(c).

indicate to which tissue types the voxels belong and the classifications depend

heavily on the atlas. With the joint method, the overall atlas alignment is improved

by the correct segmentation of other areas, which in turn benefits the segmentation

of the problematic areas.

One interesting aspect of the results by our proposed method one can see from
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(a) (b) (c) (d)

Figure 3.4: Segmentation by our proposed joint method (Fig. 3.4(a)) and its
sequential counterpart (Fig. 3.4(b)) on a slice of synthetic MR image (Fig. 3.4(c))
with 3% noise and 40% intensity inhomogeneity. The ground truth segmentation
is shown in Fig. 3.4(d). The joint method shows improvement over the sequential
method for areas where intensities alone cannot classify the voxels correctly as
indicated by the circle in Fig. 3.4(c).

Table 3.1 and Table 3.2, Table 3.3 is that the images with a moderate amount of

noise are better segmented than images with no noise. At the same time, images

with intensity inhomogeneity are better segmented than images with no bias field

when the level of noise is low. For a closer examination, we look at table 3.4. Table

3.4 shows the percentages of white matter voxels classified as white matter or gray

matter and the percentages of gray matter voxels classified as white matter or gray

matter by our proposed method. As one can see from this table, a large percentage

of white matter voxels are classified as gray matter for the image with no noise or

bias field, whereas the segmentation of white matter is significantly improved when

either noise or bias field is added. This effect can be explained by the difference

in the GMM parameters. For brain MRI images where no noise or bias field is

present, the voxel intensities for gray matter exhibit a much bigger variance than

that for white matter. Therefore, partial voxels consisting of both gray matter and

white matter have a large tendency to be classified as gray matter. When noise or

bias field is present, the variance of white matter intensities also becomes larger,

forcing the partial voxels to be classified more evenly.

Fig. 3.5 compares the performance of our proposed method against EMS for
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Table 3.4: Percentages of WM voxels labeled as WM and GM and percentages of
GM voxels labeled as WM and GM by our proposed method.

WM voxel
labeled as WM labeled as GM

N=0,BF=0 91.6743% 8.31934%
N=1,BF=0 96.8939% 3.10503%
N=0,BF=40 98.2076% 1.78666%

GM voxel
labeled as WM labeled as GM

N=0,BF=0 0.175322 % 95.2741%
N=1,BF=0 2.53092 % 96.1036%
N=0,BF=40 2.63104 % 96.5441%

(a) (b)

Figure 3.5: DSM for our proposed method and EMS on synthetic images with
0% intensity non-uniformnities (Fig. 3.5(a)) and 40% intensity non-uniformnities
(Fig. 3.5(b)) and various levels of noise.

synthetic images with different levels of noise and bias field. As indicated by these

graphs, our method performs significantly better than EMS. The Z-scores are ∞

and ∞ according to the DSM for WM and DSM for GM, which make our proposed

method better at the 99% confidence level in both cases.

Fig. 3.6 and Fig. 3.7 show the segmentations by our method and the hand

segmentations for the real images from IBSR. As shown by the images, although the

real brain MRI data from IBSR have low contrast, large intensity inhomogeneity

and contain imaging artifacts, our method is able to obtain segmentations similar
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(a) (b) (c)

Figure 3.6: Segmentation of WM and GM tissues by our proposed method (Fig.
3.6(a)) on a real T1-weighted MRI image from ISBR (Fig. 3.6(b)) and its expert
hand segmentation (Fig. 3.6(c)).

(a) (b) (c)

Figure 3.7: Segmentation of WM and GM tissues by our proposed method (Fig.
3.7(a)) on a real T1-weighted MRI image from ISBR (Fig. 3.7(b)) and its expert
hand segmentation (Fig. 3.7(c)).

to the expert segmentations.

3.6 Discussions

In this paper, we proposed a novel approach that simultaneously performs graph-

based brain MR image segmentation, non-rigid atlas registration, and intensity

inhomogeneity correction. We define a Riemannian space in which the ideal seg-

mentation boundaries, including those around fine brain structures, have the small-

est Riemannian length. ”Geo-cuts” is incorporated to find the geodesic contours

in this space. Our segmentation accounts for spatial dependency and fine brain
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structures with efficient calculations. We addressed the intensity inhomogeneites

by dividing the brain image into small blocks and modeling the intensity proba-

bility distributions of brain tissues with local GMMs. To capture both the global

and local effects, our non-rigid registration uses two sets of parameters. We model

the global registration of the atlas with the brain image using an affine transfor-

mation and use a B-spline representation for the deformable transformation. To

increase robustness and accuracy, we consider both the atlas/segmentation and the

atlas/brain image fit during registration. By finding the segmentation and opti-

mizing the registration and the GMM parameters through one objective function,

we unified the three problems and allowed them to interact with one another. We

validated our method on both synthetic and real T1 brain images. We compared

the performance of our proposed method and its equivalent sequential method

and showed the effectiveness of conducting brain image segmentation and atlas

registration simultaneously.

Although we used local GMMs to compensate for intensity non-uniformity,

many other methods have been proposed to address this issue in literature. It is

certainly interesting to validate our approach against other methods and will be

one of our future works. In our current work, we used a brain atlas constructed

from normal brains. This atlas will not work for brains of Alzheimer’s patients or

brains with tumors. Disease specific atlases are required in these cases. Whether

an atlas is useful for the segmentation of brains with tumors is also an interesting

topic for future studies.
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Chapter 4

Graph Cuts Segmentation with

Statistical Shape Priors For Medical

Images

4.1 Chapter Overview

As mentioned, medical images present many challenges for automated segmenta-

tion and traditional segmentation methods based solely on intensity information.

In the previous chapter, we studied spatial atlas guided image segmentation. Spa-

tial atlases are very powerful for brain images. Although, for the MR image seg-

mentation of organs other than the brain, priors capturing shape variabilities and

constraints are more applicable.

In this chapter, we propose a graph cuts-based segmentation method for medi-

cal images that incorporates statistical shape priors to increase robustness. Many

shape representations for segmentation purposes have been proposed. such as

point-based shape models [23], spherical harmonics [42], medial shape represen-

tations [63] and non-parametric shape models [24]. Here, we adopt the implicit

shape representation with signed distance maps. The statistical shape information

is obtained from a training set of segmented images. We solved the segmenta-

tion and shape parameters calculation simultaneously. In our proposed method,

an initial inaccurate segmentation is prevented from producing a vicious cycle of

inaccurate shape priors and segmentations. Our method is able to deal with com-

plex shapes and shape variations while taking advantage of the globally efficient

optimization by graph cuts. We demonstrate the effectiveness of our method on

kidney images without strong boundaries.

In section 4.2, we first give a brief summary of our shape representation us-
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ing signed distance maps. We then describe our novel objective function, which

links the shape fitting and image segmentation problems. In section 4.3, we show

how our energy function is optimized through an expectation maximization-style

approach. We evaluate in section 4.4, our proposed algorithm and show the ex-

perimental results.

4.2 Segmentation Method

In this section, we first discuss our models for shape representation and intensity

probability distribution. We end by presenting our novel objective function and its

optimization. In the next section, we show how the energy function is optimized.

We represent images as a 1D array I = (I1, . . . , IN), where In is the intensity

of voxel n and N is the total number of voxels. We assign each voxel one of two

labels: object (O) or background (B). Our segmentations are represented as label

configuration of all voxels, f = (f1, . . . , fN), where fn ∈ {O, B}.

4.2.1 Shape Representation

We adopt the implicit representation and model shapes with signed distance func-

tions, where shape boundary voxels have the value of zero and inside and outside

voxels are assigned negative and positive distances respectively.

The training shapes are first aligned with one another through linear transfor-

mation. We then follow [48, 76] and reduce the redundancy from the statistical in-

formation stored in the training shapes using principle component analysis (PCA).

PCA is a method for dimensionality reduction by finding the modes of variation

with significance. It is applicable when random variables we observe at a higher

dimension come from a smaller set of random variables at a lower dimension. A
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Figure 4.1: PCA is useful in these cases for dimensionality reduction. Although
the data are observed in 3-D (e1, e2, e3), they really come from 2-D (b1, b2).

simple example of when PCA can be used is shown in Fig. 4.1. In our case of

dimensionality reduction for shape representations, we treat each element in the

signed distance function as a random variable. Given the signed distance functions

of C aligned training shapes {v1, ...,vC} in 1-D array forms, we first calculate the

mean shape:

U =
1

C

∑

c

vc. (4.1)

To calcuate the shape variabilities using PCA, we need to find the covariance

matrix for elements in the signed distance function. This is calculated by first

subtracting the mean shape U from the signed distance functions creating the

mean-offset functions {v̂1, ..., v̂C}. A N × C shape variability matrix V, whose c-

th column is v̂c, is then constructed. The covariance matrix is 1
C
VVT . Performing

singular value decomposition (SVD) on this covariance matrix, we get:

1

C
VVT = WSWT , (4.2)

where the columns of W give us the eigenshapes Uk and the diagonal elements of

S their corresponding eigenvalues. Eigenshapes with larger eigenvalues are more

important and represent the major shape variabilities. New shapes U can then

be represented using the mean shape and the K eigenshapes with the K largest

eigenvalues:

U = U +
K
∑

k=1

wkU
k, (4.3)
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where w = {w1, ..., wk, ..., wK} are the weights for the eigenshapes and each w

represents a different shape.

A rigid transformation T = {T0, ..., T8} describing rotation, translation and

scaling is necessary to align the shape information with the image to be segmented.

T maps a point (x, y, z) to point (x̃, ỹ, z̃) according to



















x̃

ỹ

z̃

1



















= T (T0, T1, T2) · S(T3, T4, T5)

·Rx(T6) · Ry(T7) · Rz(T8) ·



















x

y

z

1



















,

(4.4)

where

T (T0, T1, T2) =



















1 0 0 T0

0 1 0 T1

0 0 1 T2

0 0 0 1



















, (4.5)

S(T3, T4, T5) =



















T3 0 0 0

0 T4 0 0

0 0 T5 0

0 0 0 1



















, (4.6)

R(T6) =



















cos(T6) − sin(T6) 0 0

sin(T6) cos(T6) 0 0

0 0 1 0

0 0 0 1



















, (4.7)
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R(T7) =



















1 0 0 0

0 cos(T7) − sin(T7) 0

0 sin(T7) cos(T7) 0

0 0 0 1



















, (4.8)

R(T8) =



















cos(T8) 0 sin(T8) 0

0 1 0 0

− sin(T8) 0 cos(T8) 0

0 0 0 1



















. (4.9)

Here, T (T0, T1, T2) represents transformation, S(T3, T4, T5) scaling, and R(T5),

R(T6) and R(T7) rotation. We denote the shape prior, the mean and eigenshapes

after the transformation as U?, U
?

and Uk? .

4.2.2 Mixture of Gaussians

We model the intensity probability distribution of the image with a Gaussian

mixture model (GMM) using one Gaussian for the object and D Gaussians for

the background. Let θ = {µd, Σd, πd, d ∈ 0, ..., D} denote the parameters for the

GMM, where µd, Σd, πd are respectively the mean, variance, and prior probability

of Gaussian d with d=0 being for the object (O) and d=1,...,D for the background

(B). We define a parameter b =













bO
1

bB
1






, . . . ,







bO
n

bB
n






, . . . ,







bO
N

bB
N












(where

bO
n ∈ {0} and bB

n ∈ {1, ..., D}) that assigns each voxel to one Gaussian belonging

to the object and one to the background.

4.2.3 Objective Function

Our problem can be formulated as: given a medical image I = (I1, . . . , IN) with N

voxels and shape information of the target object, we wish to
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(1) identify the parameters (w,T) of the shape that best matches the

object in the image and

(2) segment the image into object and background.

The segmentation and shape fitting problems are inter-related and we solve them

in an iterative manner in that we use the shape prior to aid the segmentation and

use the segmentation to calculate the shape parameters.

We define the energy functional in equation (4.10) to guide the image segmen-

tation and shape prior calculation.

E(I, θ,w,T, f ,b) = ED(I, θ, f ,b) + EN(I, f)

+EP(f ,w,T) + ES(w,T, I).

(4.10)

The first term measures how well the voxel labels and the GMM parameters

fit the image given its intensities and can be written as

ED(I, θ, f ,b) = −
∑

n

ED(In, θ, fn, bn)

= −
∑

n

log P(In, bn|θ),
(4.11)

where

bn =











bO
n (fn = O)

bB
n (fn = B)

. (4.12)

The second term measures the smoothness of the label configuration and follows

the standard graph cuts formulation:

EN(I, f) =
∑

fn 6=fq ,q∈Nn

1

1 + (In − Iq)2
, (4.13)

where , q ∈ Nn denotes that voxel n and q are neighbors.

The third term denotes the fitness between the current shape prior and the

current segmentation and can be written as
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EP(f ,w,T) =
∑

n

(Mn − U?
n)2, (4.14)

where Mn = const when fn = B and Mn = −const when fn = O and const

is a positive constant. A penalty is applied for voxels classified differently by the

segmentation and the shape prior through equation (4.14) and by adding this term,

we allow the segmentation and the shape prior to interact with each other.

The last term measures how well the shape prior itself fits with the image

through calculating the entropy of intensity distributions inside and outside the

shape prior. This term can be written as

ES(w,T, I) = −
∑

i

(pS(i) log pS(i) + pNS(i) log pNS(i)), (4.15)

where pS(i) and pNS(i) are respectively the probability for voxels inside and outside

the shape prior to have intensity i . pS(i) and pNS(i) are calculated as

pS(i) =
NS(i)

AS

, pNS(i) =
NNS(i)

ANS

, (4.16)

where NS(i) and AS are the number of voxels with intensity i and the area inside

shape prior, and NNS(i) and ANS are those for outside the shape prior. As in

the previous chapter, we denote a heavyside step function with H(•) and a delta

function with δ(•), and

AS =
∑

n

H(−U?
n),

ANS =
∑

n

H(U?
n),

NS(i) =
∑

n

H(−U?
n)δ(In − i),

NNS(i) =
∑

n

H(U?
n)δ(In − i).

(4.17)

By adding the last term in equation (4.10), we prevent an initial inaccurate seg-

mentation from producing inaccurate shape priors.
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4.3 Energy Minimization

As mentioned above, we use an expectation maximization-style approach to mini-

mize the energy function presented in equation (4.10) and alternately update the

GMM and shape parameters while fixing the segmentation (maximization step)

and use the GMMs and the shape prior to facilitate the image segmentation (esti-

mation step).

4.3.1 M(aximization) Step

We start by assigning two Gaussians to each voxel, one which minimizes the first

term in equation (4.10) when the voxel belongs to the object and one when the

voxel belongs to the background.

Differentiating equation (4.11) w.r.t. µd, we get:

∂ED(I, θ, f ,b)

∂µd

= − ∂

∂µd

∑

bn=d

log P(In|µd, Σd) = 0, (4.18)

giving us the update equation

µd =

∑

bn=d In
∑

bn=d 1
. (4.19)

Similarly, the updated equations for Σd and πd are respectively:

Σd =

∑

bn=d(In − µd)
2

∑

bn=d 1
,

πd =











∑

bn=d 1
∑

bn=0
1

(fn = O)
∑

bn=d 1
∑

bn=1,...,D 1
(fn = B)

.

(4.20)

We use a gradient descent optimization to update the shape parameters. The

update equation for w is

wt+1 = wt − α(∇wEP + ∇wES), (4.21)
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where α is the step size for the gradient descent optimization and wt and wt+1 are

the weights at time t and t + 1 respectively. ∇wEP is calculated by differentiating

(4.14):

∂EP

∂wk

=
∑

n

2(U?
n − Mn)Uk?

n . (4.22)

∇wES is calculated by differentiating (4.15):

∂ES

∂wk

= −
∑

i

[
1

AS

QS − 1

ANS

QNS]
∂NS(i)

∂wk

+
∑

i

[
NS(i)

A2
S

QS − NNS(i)

A2
NS

QNS]
∂AS(i)

∂wk

,

(4.23)

where

QS = (log
NS(i)

AS

+ 1),

QNS = (log
NNS(i)

ANS

+ 1),

(4.24)

and
∂AS

∂wk

= −
∑

n

δ(−U?
n)Uk?

n ,

∂NS(i)

∂wk

= −
∑

n

δ(−U?
n)Uk?

n δ(In − i).

(4.25)

The alignment parameters T can be updated in a similar manner:

Tt+1 = Tt − β(∇TEP + ∇TES), (4.26)

where β is the step size and Tt and Tt+1 are the alignment parameters at time t

and t + 1 respectively and

∂EP

∂Tk

=
∑

n

2(U?
n − Mn)

∂Un
?

∂Tk

, (4.27)

and
∂ES

∂Tk

= −
∑

i

[
1

AS

QS − 1

ANS

QNS]
∂NS(i)

∂Tk

+
∑

i

[
NS(i)

A2
S

QS − NNS(i)

A2
NS

QNS]
∂AS(i)

∂Tk

.

(4.28)
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Here,
∂AS

∂Tk

= −
∑

n

δ(−U?
n)

∂U?
n

∂Tk

,

∂NS(i)

∂Tk

= −
∑

n

δ(−U?
n)

∂U?
n

∂Tk

δ(In − i),

(4.29)

and

∂Un
?

∂Tk

=
∂U?

n

∂x̃
· ∂x̃

∂Tk

+
∂U?

n

∂ỹ
· ∂ỹ

∂Tk

+
∂U?

n

∂z̃
· ∂z̃

∂Tk

, (4.30)

where (∂U?
n

∂x̃
, ∂U?

n

∂ỹ
, ∂U?

n

∂z̃
) is the image gradient for U?

n and ( ∂x̃
∂Tk

, ∂ỹ

∂Tk
, ∂z̃

∂Tk
) can be easily

calculated by differentiating equation (4.4).

4.3.2 E(stimation) Step

We follow the graph cuts framework for segmentation and create a graph with

nodes corresponding to voxels and two additional terminal nodes representing the

object and the background. The first and third terms in our energy function are

applied to the graph as t-links. The second term is added as n-links between

neighboring nodes. We use the max-flow [13] algorithm to find the minimum cut

on this graph.

4.4 Experimental Results

We tested our algorithm on MR kidney images of patients with ADPKD. These

images are hard to segment using intensity information alone because the kid-

ney tissues and neighboring psoas muscle tissues have similar intensities, resulting

in poor contrast at desired tissue boundaries. Kidneys of ADPKD patients also

include a large amount of liquid, which have very different intensity levels than

normal kidney tissues, creating strong contours within the kidney. As shown in

Fig. 4.2, the segmentation produced by the graph cuts method without any pri-
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Summary of Algorithm

Initialization

The GMM parameters are initialized using pre-defined values. We use
the average shape as the initial shape prior. The initial transformation
of the shape prior is set to zero.

Iterative Minimization

REPEAT
E(stimation) Step

Find segmentation using graph cuts:

f̂ = min
f

E(I, θ, f ,w,b).

M(inimization) Step
Assign two Gaussians to each voxel:

b̂O
n = argmin

bOn

ED(In, θ, O, bn), b̂B
n = argmin

bBn

ED(In, θ, B, bn).

Learn Gaussian mixture model parameters:

µd =
∑

bn=d In
∑

bn=d 1
,Σd =

∑

bn=d(In−µd)2
∑

bn=d 1
, πd =







∑

bn=d 1
∑

bn=0
1

(fn = O)
∑

bn=d 1
∑

bn=1,...,D 1
(fn = B)

.

Update shape parameters through gradient descent until Convergence:

wt+1 = wt − α(∇wEP + ∇wES), Tt+1 = Tt − α(∇TEP + ∇TES).

UNTIL GMM/SHAPE PARAMETERS CONVERGE

ors ”leaks” into tissues that do not belong to, but have similar intensities as, the

kidney.

Our training set contains 30 segmented 2-D images from three different patients.

Fig. 4.3 shows examples of training kidney shapes and signed distance functions

associated with them. Fig. 4.4 shows the mean shape and the first three primary

modes of variance obtained through the training set.

Fig. 4.5 shows the shape prior and final segmentation obtained by our method
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(a) (b)

Figure 4.2: On the right is the segmentation produced by the graph cuts method
without any priors for the image on the left. The voxels classified as kidney are
shown in green. Without any priors, the segmentation ”leaks” into tissues that do
not belong to, but have similar intensities as, the kidney.

(a) (b)

Figure 4.3: Examples of the training shapes and their signed distance maps.

for a patient whose kidney images were used in the training set (although these

images themselves were not a part of the training data). Fig. 4.6 shows the shape

prior and final segmentation obtained by our method for patients whose kidney

images were not used in the training set. As visible from Fig. 4.5 and Fig. 4.6, our

method overcomes the ”leakage” problem encountered by the graph cuts method

without priors and produce accurate segmentations. The shape prior in Fig. 4.6

is more accurate than the ones in Fig. 4.5, because the shape of the kidney in Fig.

4.5 is closer to those used for training the eigenshapes. Even though the shape

priors in Fig. 4.6 are not very accurate, our method is able to produce good final

segmentations showing that our results are not restricted by the shape variabilities
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.4: The mean shape and shape variabilities obtained from the training
dataset. The middle column shows the mean shape. The left column shows +1σ
variation and the right column −1σ variation. The first, second and third row rep-
resents the first, second and third principle modes respectively. σ2 is the eigenvalue
associated with each principle mode.

represented in the training dataset.

4.5 Discussions

In this chapter, we proposed a graph cuts-based method for medical image segmen-

tation that incorporates statistical shape priors to increase segmentation robust-

ness in cases of poor contrast. We adopted the implicit shape representation pro-
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(a) (b)

Figure 4.5: Shape prior (a) and segmentation (b) produced by our proposed
method for a kidney image from a patient whose kidney images were used in
the training set (although these images themselves were not a part of the training
data). Our method was able to overcome the ”leakage” problem encountered by
the graph cuts method without priors as shown in Fig. 4.2.

posed in [58]. The statistical shape information was obtained from a training set

of segmented images and extracted through PCA. We took a unified approach and

solved the image segmentation and shape fitting problems through one objective

function. Two novel terms accounting for shape/image fit and shape/segmentation

fit were introduced. The former prevents an initial inaccurate segmentation from

producing a vicious cycle of inaccurate shape priors and segmentations while the

latter allows the segmentation and shape fitting problems to interact with one an-

other. Our objective function is minimized through an EM-style approach where

the segmentation and shape prior were calculated iteratively. The proposed method

is able to deal with complex shapes and shape variations while taking advantage

of the globally efficient optimization by graph cuts.

We demonstrated the effectiveness of our method on kidney images that cannot

be segmented correctly using intensity information alone due to weak boundaries.

The results show that our proposed method is able to handle images that cannot

be correctly segmented without using any priors. Our segmentations are also not

restricted by the shape variabilities represented by the training shapes. In the
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Shape priors (left column) and segmentations (right column) produced
by our proposed method for kidney images from patients whose kidney images
were not used in the training set. Our method was able to overcome the ”leakage”
problem encountered by the graph cuts method without priors as shown in Fig.
4.2.
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future, we need to focus on quantitative verification of results by our proposed

method.
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Chapter 5

Graph Cuts Segmentation with

Geometric Shape Priors for Medical

Images

5.1 Chapter Overview

In the previous section, we studied statistical shape priors with graph cuts for MR

image segmentation. Statistical shape priors require manual training set, which is

not always available. Some anatomical structures resemble basic geometric shapes,

which make geometric priors that do not require statistical training attractive. In

this chapter, we propose a novel segmentation method that incorporates geometric

shape priors with the graph cuts technique for medical image segmentation. We

demonstrate the effectiveness of our method on cardiac images and kidney images

without strong boundaries using respectively concentric circles and ellipses as shape

priors. Since statistical training is not involved, the method is very efficient.

One of the major differences between our method and [72], which proposed

elliptical priors for graph cuts segmentation, is that the shape in [72] is estimated

using the segmentation from the previous step alone whereas we estimate the shape

priors using both the segmentation from the previous step and information from

the image. Therefore, an initial bad segmentation may produce a vicious cycle of

inaccurate shape priors and segmentations for the method in [72], while it would

not for our proposed method.

In section 5.2, we first give a brief summary of the graph cuts image seg-

mentation framework. We then discuss our representation of intensity probability

distribution and model for shape priors. We end by presenting our novel objec-

tive function and its optimization. We demonstrate our method on left ventricle
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segmentation using concentric circles as shape priors in section 5.4 and on kidney

image segmentation using elliptical shape priors in 5.3.

5.2 Segmentation Method

5.2.1 Mixture of Gaussians

We model the intensity probability distribution of the image with a Gaussian mix-

ture model (GMM). Let us say we wish to segment the image into M regions. We

denote Gm as the number of Gaussians we use to model the intensity distribution

in the m-th region. Let θ = {µm
d , Σm

d , πm
d ,m ∈ 1, ..., Gm} denote the parameters

for the GMM associated with the m-th region, where µm
d , Σm

d , πm
d are respectively

the mean, variance, and prior probability of the d-th Gaussian in the m-th region.

The image is represented in an array form: I = (I1, ..., IN). We define a param-

eter b =
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(where bm
n ∈ {1, ..., Gm}) that

assigns all N voxels in the image to one Gaussian belonging to each of the M

regions.

5.2.2 Shape Representation

We model shapes using basic geometric shapes. The type and number of shapes are

determined by the structure we wish to segment. We denote the shape parameters

as w = {w0, ..., wK−1}, where K is the number of parameters necessary to express

our shape prior. The shape prior divides the image into M regions. fsn denotes
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the region the shape prior assigns voxel n to. We show the specific shape priors

for left ventricle segmentation in section 5.4 and those for kidney segmentation in

section 5.3.

5.2.3 Objective Function

Our problem can be formulated as: given a medical image and basic shape infor-

mation of the desired biological structure, we wish to

(1) identify the shape parameters w that best match the image and

(2) segment the image into M regions.

Our segmentations are represented as label configurations f = (f1, . . . , fN),

where each voxel n is assigned a label fn ∈ {0, ...,M − 1}. The segmentation and

shape fitting problems are inter-related and we solve them in an iterative manner

in that we use the shape prior to aid the segmentation and use the segmentation

to calculate the shape parameters.

We define the energy functional in equation (5.1) to guide the image segmen-

tation and shape parameters calculation.

E(I, θ,w, f ,b) = ED(I, θ, f ,b) + EN(I, f)

+EP(f ,w) + ES(w, I).

(5.1)

The first term measures how well the voxel labels and the GMM parameters

fit the image given its intensities and can be written as

ED(I, θ, f ,b) = −
∑

n

ED(In, θ, fn, bn)

= −
∑

n

log P(In, bn|θ),
(5.2)

where

bn = bm
n (m = fn). (5.3)
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The second term measures the smoothness of the label configuration and follows

the standard graph cuts formulation:

EN(I, f) =
∑

fn 6=fq ,n,q∈C

1

1 + (In − Iq)2
, (5.4)

where n, q ∈ C denotes that voxel n and q are neighbors.

The third term denotes the fitness between the current shape prior and the

current segmentation and can be written as

EP(f ,w) =
∑

n

∑

m

[(CSm − Um
n )2], (5.5)

where CSm = cm when fn = m and CSm = −cm when fn 6= m, and c is a positive

constant. Here, Um
n has a positive value when fsn = m and a negative value when

fsn 6= m. The value of Um
n is determined by the distance to the region boundaries.

A penalty is applied for voxels classified differently by the segmentation and the

shape prior through equation (5.5). By adding this term, we allow the segmentation

and the shape prior to interact with each other.

The last term measures how well the shape prior itself fits the image through

calculating the entropy of intensity distributions inside each of the M regions

divided by the shape prior. This term can be written as

ES(w, I) = −
∑

m

∑

i

(pm(i) log pm(i)), (5.6)

where pm(i) is the probability for voxels where fsn = m to have intensity i and is

calculated as

pm(i) =
Nm(i)

Am

, (5.7)

where Nm(i) and Am are respectively the number of voxels with intensity i and

the total number of voxels where fsn = m. By adding the last term in equation

(5.1), we prevent inaccurate segmentations from producing a loop of inaccurate

shape priors and segmentations.
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5.2.4 Energy Minimization

As mentioned previously, we use an EM-style approach to minimize the energy

function presented in equation (5.1) and alternately update the GMM and shape

parameters while fixing the segmentation (maximization step) and use the GMMs

and the shape prior to facilitate the image segmentation (estimation step).

M(aximization) Step

We start by assigning M Gaussians to each voxel, one which minimizes the first

term in equation (5.1) when the voxel belongs to each of the M regions.

Differentiating equation (5.2) w.r.t. µm
d , we get:

∂ED(I, θ, f ,b)

∂µm
d

= − ∂

∂µm
d

∑

fn=m,bm
n =d

log P(In|µm
d , Σm

d ) = 0, (5.8)

giving us the update equation

µm
d =

∑

fn=m,bm
n =d In

∑

fn=m,bm
n =d 1

. (5.9)

Similarly, the updated equations for Σm
d and πm

d are respectively:

Σm
d =

∑

fn=m,bm
n =d(In − µm

d )2

∑

fn=m,bm
n =d 1

, πm
d =

∑

fn=m,bm
n =d 1

∑

fn=m 1
. (5.10)

We use a gradient descent optimization to update the shape parameters. The

update equation for w is

wt+1 = wt − α(∇wEP + ∇wES), (5.11)

where α is the step size for the gradient descent optimization and wt and wt+1

are the shape parameters at time t and t + 1 respectively. ∇wEP is calculated by

differentiating (5.5):

∂EP

∂wk

=
∑

n

∑

m

[2(Um
n − CSm

n )
∂Um

n

∂wk

]. (5.12)
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∇wES is calculated by differentiating (5.6):

∂ES

∂wk

= −
∑

m

∑

i

[
1

Am

Qm

∂Nm(i)

∂wk

− Nm(i)

A2
m

Qm

∂Am(i)

∂wk

], (5.13)

where

Qm = (log
Nm(i)

Am

+ 1). (5.14)

∇wU, ∂Am

∂wk
and ∂Nm

∂wk
are necessary to update w and we show their calculations in

later chapters.

E(stimation) Step

We follow the graph cuts framework for segmentation and create a graph with

nodes corresponding to voxels and two additional terminal nodes. The first and

third terms in our energy function are applied to the graph as t-links. The second

term is added as n-links between neighboring nodes. We use the max-flow [13]

algorithm to find the minimum cut on this graph. When there are more than two

labels, we use the α expansion.

67



Summary of Algorithm

Initialization

The GMM and shape parameters are initialized using pre-defined values.

Iterative Minimization

REPEAT

E(stimation) Step

Find segmentation using graph cuts:

f̂ = min
f

E(I, θ, f ,w,b).

M(inimization) Step

Assign M Gaussian to each voxel:

b̂m
n = argmin

bm
n

ED(In, θ, fn = m, bn).

Learn Gaussian mixture model parameters:

µd =
∑

fn=m,bm
n =d In

∑

fn=m,bm
n =d 1

, Σd =
∑

fn=m,bm
n =d(In−µd)2

∑

fn=m,bm
n =d 1

, πd =
∑

fn=m,bm
n =d 1

∑

fn=m 1
.

Update shape parameters through gradient descent until convergence:

wt+1 = wt − α(∇wEP + ∇wES).

UNTIL GMM/SHAPE PARAMETERS CONVERGE

5.3 Elliptical Priors For Kidney Segmentation

We model the kidney using an ellipse. We denote the shape parameters as w =

{w0, w1, w2, w3, w4}, where (w0, w1) is the center of the ellipse, w2 and w3 its radii
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for the major and minor axes and w4 its rotation. We denote the ellipse using its

signed distance function V = (V1, ..., VN ).

In this case, we have two regions we want to divide the image into: the kidney

(fn = 0) and the background (fn = 1). We use one Gaussian for the kidney and

three Gaussians for the background. For Um
n in the third term of equation (5.1),

we use U0
n = −Vn and U1

n = Vn. Nw(i) and Aw can be calculated as:

N0(i) =
∑

n

H(−Vn)δ(In − i),

N1(i) =
∑

n

H(Vn)δ(In − i),

A0 =
∑

n

H(−Vn),

A1 =
∑

n

H(Vn).

(5.15)

∇wU can again be updated easily using geometry whereas

∂N0(i)

∂wk

= −
∑

n

δ(−Vn)
∂Vn

∂wk

δ(In − i),

∂N1(i)

∂wk

=
∂N0(i)

∂wk

,

∂A0

∂wk

= −
∑

n

δ(−Vn)
∂Vn

∂wk

,

∂A1

∂wk

=
∂A0

∂wk

.

(5.16)

Fig. 5.1 shows kidneys segmented from MR images by our proposed method.

Although these images exhibit many challenges for segmentation, such as having

weak contrast at boundaries between the kidney and the muscles and having strong

contours within the kidney, our method was able to segmentation them accurately.
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(a) Original MR images (b) Shape priors (c) Segmentations

Figure 5.1: Two kidney segmentations obtained by our method are shown in each
row. The left column shows the original MR images, the middle and right column
shows the shape priors and segmentations obtained by our method. Although these
images have weak contrast at boundaries and strong contrast within the kidney,
our method was able to segmentation them accurately.

5.4 Concentric Circle Priors For Left Ventricle Segmenta-

tion

Since in short-axis MR cardiac images, the left ventricle roughly resembles the

shape of a donut, we model the left ventricle using two concentric circles. We denote

the shape parameters as w = {w0, w1, w2, w3}, where (w0, w1) is the center of the

circles and w2 and w3 are respectively the radii for the inner circle (representing the

endocardium boundary) and outer circle (representing the epicardium boundary).

We denote the signed distance functions of the concentric circles as V = (V0,V1)T ,

where V0 = (V 0
1 , ..., V 0

N ) and V1 = (V 1
1 , ..., V 1

N ) are respectively the signed distance

functions of the inner and outer circles. These functions are assigned zero value for

boundary voxels and negative and positive distances respectively for voxels inside

and outside the boundaries.
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Here, we have three regions we want to divide the image into: the blood pool

(fn = 0), the myocardium (fn = 1) and the background (fn = 2). We use one

Gaussian each for the first two regions and four Gaussians for the background. For

Um
n in the third term of equation (5.1), we use U0

n = −V 0
n , U2

n = V 1
n and

U1
n =























V 0
n (V 0

n < 0)

less(V 0
n , |V 1

n |) (V 0
n > 0, V 1

n < 0)

−|V 1
n | (V 1

n > 0),

. (5.17)

If we denote a heavyside step function with H(•) and a delta function with δ(•),

then

N0(i) =
∑

n

H(−V 0
n )δ(In − i),

N1(i) =
∑

n

H(V 0
n )H(−V 1

n )δ(In − i),

N2(i) =
∑

n

H(V 1
n )δ(In − i),

A0 =
∑

n

H(−V 0
n ),

A1 =
∑

n

H(V 0
n )H(−V 1

n ),

A2 =
∑

n

H(V 1
n ).

(5.18)

∇wU, ∂Nm

∂wk
and ∂Am

∂wk
are necessary to update w using equation (5.11). ∇wU can

71



be updated easily using geometry whereas

∂N0(i)

∂wk

= −
∑

n

δ(−V 0
n )

∂V 0
n

∂wk

δ(In − i)

∂N2(i)

∂wk

=
∑

n

δ(V 1
n )

∂V 1
n

∂wk

δ(In − i)

∂N1(i)

∂wk

= −∂N0(i)

∂wk

− ∂N2(i)

∂wk

∂A0

∂wk

= −
∑

n

δ(−V 0
n )

∂V 0
n

∂wk

∂A2

∂wk

=
∑

n

δ(V 1
n )

∂V 1
n

∂wk

∂A1

∂wk

= −∂A0

∂wk

− ∂A2

∂wk

. (5.19)

Fig. 5.2 shows the segmentations and the shape priors obtained by our method

for left ventricles. Although these images have weak contrast at boundaries be-

tween the epicardium and the liver and those between the endocardium and the

blood pool, our method was able to segmentation them accurately. The average

Dice Similarity Measure between our segmentation and the hand segmentation for

the entire dataset was 0.81, whereas over 0.7 indicates a good agreement.

5.5 Discussions

In this chapter, we proposed a novel segmentation method that incorporates geo-

metric shape priors, which do not require statistical training, with the graph cuts

technique for robust and efficient segmentations medical images. We demonstrated

the effectiveness of our method by segmenting the left ventricle using concentric

circles as shape priors and by segmenting the kidney using an ellipse as a shape

prior.

72



(a) Hand segmentations

(b) Geometric priors calculated by our method

(c) Endocardium boundaries obtained by our method

(d) Epicardium boundaries obtained by our method

Figure 5.2: Two left ventricle segmentations obtained by our method are shown
in each column. The top row shows the original cardiac images. The second row
shows the shape priors and the third and fourth row show the endocardium and
epicardium boundaries obtained by our method.

73



Chapter 6

Conclusions

6.1 Conclusions

In this thesis, we developed highly accurate and robust graph cuts-based methods

that automatically segment MR images. The images in which we are most in-

terested are those that cannot be correctly segmented using intensity information

alone. We developed models for robustly incorporating prior information such as

spatial atlas and geometric or statistical shape priors into the efficient graph cuts

segmentation framework. The accuracy of the alignment of the atlas with the im-

age and that of the shape prior are important to the accuracy of the segmentation.

In order to improve these, we use an EM-based approach and alternately calculate

the alignment of the atlas/the shape prior and the segmentation of the image. We

also designed our models so that updates of the atlas registration and the shape

prior are not merely based on the segmentation, in order to avoid a bad segmen-

tation from sending the methods into vicious cycles. Finally, we proposed a way

of dealing with objects with curvy boundaries.

Specifically, we developed methods to incorporate spatial atlas with graph-

based segmentation for MR brain images. Another kind of prior information we

incorporated with graph cuts for MR image segmentation is shape priors. We

studied statistical shape priors and the simpler geometric shape priors. As shown

in chapter 3, an EM-based iterative method for segmentation and prior calculation

is better than a sequential method because correctly classified voxels in the current

segmentation make the match between the prior information and the image more

accurate. This could also be extended to methods described in chapter 4 and 5.

We tested our methods on MR brain, abdomen and cardiac images with inten-
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sity inhomogeneity, poor contrast at desired boundaries and/or strong contrast at

undesired boundaries and obtained encouraging results.

6.2 Future Works

Many immediate possible future works come to mind. Our proposed methods for

incorporating shape priors require quantitative validation on images with ground

truth segmentation. A comparison of our proposed methods and their equivalent

sequential methods would also be interesting in this case. The spatial brain atlas

we used was constructed through linear registration. Non-rigid registration is

better at capturing variabilities within the training data, and an atlas based on

it might be able to improve our algorithm. Although we used local GMMs to

compensate for intensity non-uniformity and the results are quite good, many other

methods have been proposed to address this issue in literature dividing voxels into

homogenous and inhomogeneous [4], using low pass filters [83] and modeling

with spline functions [47]. It is certainly interesting to validate our approach

against other methods. The EM-based approach provides a good framework for

incorporating prior information. Prior information can be used to improve basic

image segmentation techniques such as region-growing.
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