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This thesis describes the architecture, implementation and application of a parallel com-

puting system modeled after the structure and function of neural circuits in animal brains.

The system is constructed with custom digital CMOS circuits and consists of distributed

cores of model neurons and synapses that are embedded in a spike-based communication

network. Energy consumption associated with high neural fanout is kept at a minimum in

the system with the use of distributed on-chip memory arrays that tightly couple synaptic

information with the neural datapaths, and with the use of event-driven asynchronous

communication circuits that efficiently transfer spikes within and between cores. A com-

pact crossbar memory arrangement along with compact and low-power neuron datapaths

add to the energy efficiency of the system and keep the silicon footprint of each core

small. Synchronization circuitry between the computing and communication elements

ensure that all cores run in lockstep with a software simulator enabling rapid develop-

ment of algorithms. In a 28nm CMOS process 4096 of these cores are packed in a single

chip measuring 4.3cm2. The chip supports 1 million neurons and 256 million synapses, op-

erates in real time and consumes only 70mW during typical network operation. Because

of its compact size, high energy efficiency and real-time operating speed, the chip can

be used to implement brain-inspired algorithms in a wide range of mobile and embedded

systems. For demonstration, the implementation of four canonical neural computations –

intensity invariance, pattern decorrelation, associative recall and attentional modulation

– is developed in this thesis.
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Chapter 1

Introduction
Biological neural circuits are capable of an incredible range of energy-efficient real-time

computations. Tasks such as sensory perception, motor pattern generation, autonomous

learning and cognitive decision making are carried out by these circuits1 in the brain

much more effectively and efficiently than today’s most advanced computer algorithms.

Information is processed in these circuits through the spatiotemporal spiking activity of

neurons, with different connectivity configurations between neurons with specific dynam-

ical properties implementing distinct algorithms. The human brain consists of approx-

imately 1011 neurons and 1014 synapses, all contained within a volume of 2L, weighing

less than 4lbs, and running on a 20W power budget [1].

Simulation of brain circuits in general-purpose processors are common and special-

ized software environments such as NEURON [2] have been developed to facilitate them.

General-purpose processors are based on a von Neumann computing architecture, wherein

processing and memory are physically separated and instructions are largely executed fol-

lowing a sequential compute model. This architecture is not a natural fit to the parallel

and event-driven nature of neural computations. The storage and retrieval of a large

number of neuron and synapse parameters from off-chip memory arrays lead to high en-

ergy consumption and increased latency, limiting efficiency and scalability. In addition,

the computing and communication circuitry of these processors are not customized for

modeling the behavior of neurons and their networks. To achieve large-scale implemen-

tations using these processors requires supercomputer-levels of computational power and

associated costs, for example [3] and [4]. More specialized off-the-shelf hardware such as

GPUs [5] or FPGAs [6] can manage some parallel applications more efficiently, but the

fine-grained parallelism of brain networks and their memory intensive simulations also

1The basic computational units of the brain are nerve cells called neurons.The junction
between the output of one neuron and the input of another is called a synapse. A
configuration of neurons and synapses is referred to as a neural circuit or a neural network.

1
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render these processors inefficient.

Custom-designed VLSI chips provide a means with which these inefficiencies can be

overcome. Neural-inspired Application-Specific Integrated Circuits (ASICs), commonly

refered to as “neuromorphic” circuits, are intended to mimic the parallel and distributed

function of biological neural systems in real time and approach their compact size/weight

and low power consumption. Implementing large numbers of model neurons and synapses

in a scalable and reliable platform and within aggressive area and power constraints

requires careful design and implementation choices to be made. Efficient design can lead

to orders of magnitude better speed, energy consumption and compactness compared to

off-the-shelf processors.

Traditionally, neuromorphic designs have used continuous-time analog circuits to

model biological components, and digital asynchronous circuits for spike communication

[7]. Analog circuits have been popular in the past, since they are compact, and reduce

power consumption by directly using the transconductance properties of transistors to

mimic the dynamics of neurons. Dense analog circuits however are sensitive to fabrication

process variations, ambient temperatures and noisy environments, making it difficult to

configure circuits that operate reliably under a wide range of external parameters. This

limited correspondence between what the software (the neural algorithm) has been config-

ured to do and how the hardware (the analog implementation) functions adversely affects

the usability of such circuits in real-world applications and simulation-based research. In

addition, analog circuits do not scale well to deep-submicron CMOS processes [8], in part

due to a lack of high-density capacitors and increasing sub-threshold currents..

This thesis describes the architecture, implementation and application of a digital

neuromorphic system that was designed to overcome the problems associated with imple-

menting brain-like computations in off-the-shelf digital chips and neuromorphic analog

hardware. The following features of the chip described here make it a highly-efficient

brain-like processor –



3

• Parallel computing datapaths, custom-designed to model neuron-like dynamics in

compact and low-power circuits, are distributed across the chip.

• Distributed memory arrays storing neuron and synapse configuration parameters

are tightly coupled to the computing datapaths minimizing data movement across

the chip. Each memory array has a crossbar architecture to efficiently implement

a high neural fanout.

• Energy-efficient event-driven routing circuits, customized for spike-based commu-

nications, manage distributed communication between the computing and memory

elements.

• Synchronization circuits maintain fidelity of freely-configurable algorithms.

• Deep submicron transistor feature sizes allow compact size and high energy-efficiency.

The resulting compact and low-power hardware can mimic large-scale brain-like net-

works in real-time, enabling new classes of algorithms in a variety of mobile and embed-

ded systems. Example applications include brain-based robotics, neural-inspired pattern

recognition systems, neural implants and brain-simulation platforms.

The thesis is organized as follows. Chapter 2 describes the architecture and circuit-

level description of a scalable neuromorphic processor that is inspired from the computing

and communication features of biological brains. Chapter 3 describes spike-based infor-

mation coding mechanisms on the chip that reflect the operational principles of biological

neural circuits. Chapter 4 describes the configuration of four commonly observed neural

computations on the chip. The implementation of these computations are inspired from

the hypothesized mechanisms at play in several biological neural circuits, but are not

necessarily meant to be an exact replica. Rather, through necessary innovations and sim-

plifications, it is shown that the configured computations are effective means of solving

pattern recognition tasks.
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Together, these chapters demonstrate how the application of systems neuroscience

principles to computer architecture and artificial intelligence can lead to new classes of

powerful and efficient devices.



Chapter 2

Neuromorphic Systems Architecture

2.1 Design Factors

Digital ASICs can be customized from the architecture level down to the transistor level

to create compact, energy-efficient and real time neuromorphic systems. This section

describes the design considerations associated with building such systems.

2.1.1 Computing

The response properties of neurons to synaptic inputs can be captured through var-

ious mathematical models. These range from low-level multi-compartment models to

high-level phenomenological models [9]. Lower-level models precisely account for the

morphological and electrochemical properties of neurons and synapses and capture their

dynamical characteristics in detail. In contrast, higher-level models reduce the number

of free parameters and capture the neuron’s essential properties without accounting for

all biophysical details.

These models, expressed as systems of differential equations, are implemented in a

digital ASIC through customized circuitry that numerically solve the equations in discrete

time. Because of this customization the solution of the differential equations are carried

out with substantially higher speed, energy efficiency and compactness compared to that

in general purpose processors. Any reduction in model complexity translates directly

to simplifications in ASIC circuits and correspondingly reduces computing time, energy

consumption and silicon footprint.

Transistors in modern digital circuits have switching speeds in the picosecond scale.

Therefore these circuits easily solve the model differential equations within the millisecond

timescales of biological neurons. For example, one iteration of the Izhikevich equations [9]

with a 16-bit word length can be carried out within 86ns in a 65nm ASIC implementation

5
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[10]. Thus a neuron model circuit can be run much faster than biological real time or

alternatively, one instantiation of the circuit can be used to solve for multiple neurons

(see Sec. 2.3.2).

The energy per neuron update, summed across all neurons, contributes to the overall

system energy consumption and therefore should be kept low particularly for neuron

models that require a large number of operations per update. For the 65nm ASIC neuron

(point model) mentioned above, the energy consumption per neuron update is 0.5nJ .

This is a relatively small number compared to the communication energy of the system

(see Sec. 2.1.2).

The area footprint is the most significant factor in the design of a neuron circuit.

Not only does it directly affect the number of neurons that can be implemented in a

given silicon real estate it also affects the energy consumption associated with neural

communications. To implement synapses, data storing connectivity information has to

travel (often large distances) across the neuron circuits in the system. The large number

of synapses in typical neural networks result in high energy consumption associated with

this data movement (see Sec. 2.1.2). Smaller neuron circuits shorten the distance that

this data moves and therefore increases the energy efficiency of neural communications.

The 65nm ASIC neuron mentioned above occupies an area of 0.03mm2.

2.1.2 Communication

Typical neurons have 103 to 104 synapses, which make point-to-point connections among

the neuron circuits with dedicated wires on an ASIC intractable for any significant num-

ber of neurons. However, neuron activity is measured in the Hz range, whereas ASIC

wire bandwidth can reach hundreds of MHz to several GHz. Thus, neuromorphic sys-

tems [7, 11] time multiplex wire usage between groups of neurons to implement dense

interconnectivity. These groups are encapsulated in neural cores (Fig. 2.1) and are tiled

within a packet routing network (Fig. 2.2).
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Figure 2.1: A typical neural core with on-core memory for storing connectivity configurations.

Communication circuits within a core time multiplex the connections of all neurons

inside the core through a protocol termed Address-Event Representation (AER) [12]. In

this protocol, each neuron in the core is associated with a unique address, and a shared

I/O bus local to each core communicates all the spikes to and from the core via discretized

AER packets. A packet usually takes the form of a (source, destination) tuple indicating

the addresses of the source neuron and the destination neural core respectively. Some

systems use other packet designs, for example packets with multiple destination fields

or packets without destination fields where the direction of routing is determined via a

memory look up at each routing stage.

The AER packet associated with each neuron is usually stored in on-core memory

(illustrated as “Routing Memory” in Fig. 2.1). Packets are accessed from this memory

when neurons spike and they are sent out of the core via an AER-packet router [13, 14].

These routers are distributed across the cores and they direct inter-core traffic using the
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Figure 2.2: Array of neural cores, connected by a 2D Manhattan mesh network.

source or destination fields of the packets. When a packet reaches its destination core

its postsynaptic targets (i.e. the neurons inside the destination core that connect to

the source neuron) along with the associated parameters (e.g. the synaptic weights) are

accessed from off-chip or on-chip (illustrated as “Synaptic Memory” in Fig. 2.1) memory

to update the state of the network.

For a target temporal precision (usually 1 millisecond), the speed of this AER com-

munication system (usually 100s of MHz of packet bandwidth) determines the degree

of multiplexing that can be implemented as well as the total network size and network

activity that can be supported. The area footprint of the communication circuits is rela-

tively small compared to the area occupied by the neurons in the core, but nevertheless

should be kept at a minimum to reduce area overhead.

The most critical factor in the design of the communication system is the active

energy consumption of data movement. Because the number of synapses exceed the

number of neurons by three to four orders of magnitude in typical neural networks, the

energy consumption associated with fetching synaptic parameters from off-chip memory
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as well as that associated with AER packet traversal is a large determinant of the energy

efficiency of the system. For example, in a system of ARM968 processors [15] that

communicate across a custom-designed AER routing network and that store synaptic

information in off-chip memory, the energy per neural update (Izhikevich equations [9])

is 27nJ while the energy per synaptic event is 8nJ . This means that a neuron with

a 1ms timestep, firing at 40Hz and making 1000 synaptic connections will have over

an order of magnitude more communication energy consumption than computing energy

consumption. This effect is even more pronounced for custom neuron circuits where

computing energy goes down by an order of magnitude (see Sec. 2.1.1).

A variety of ASIC design optimizations can significantly lower the communication

energy consumption (see Sec. 2.2). These include for example, tightly coupling large

memory blocks to the neural cores to reduce the distances of data travel associated

with fetching synaptic configurations, arranging these memory blocks in structures that

minimize storage and access requirements, restricting the number of cores that an AER

packet can communicate to, customizing routing topologies to reflect the properties of

typical neural networks, and using event-driven asynchronous communication circuits

that naturally minimize energy consumption during idle periods while maintaining high

throughput during bursty periods1.

2.1.3 Memory

Typical general-purpose multiprocessors have some amount of on-chip cache memory

that compliment the computing cores of the processor. In the implementation of neural

networks on these processors the on-chip memory is usually used up for the storage of

neuron variables, parameters, and update instructions. For example, in the ARM968

implementation [15] mentioned above, all of of the 96 KBytes of tightly coupled memory

1In addition, in both ASICs and general purpose multiprocessors, mapping highly
communicating neural groups close to each other in the hardware can significantly reduce
energy consumption.
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associated with each core is used for the storage and update of 1000 neurons. The synaptic

parameters in this system are stored in a 1 Gbits off-chip memory table.

As mentioned in the previous section, the energy consumption associated with fetching

synaptic configuration parameters from off-chip memory tables is a large factor in the

total energy consumption of the system. The energy consumption and latency of accessing

off-chip memory in a medium-size chip (in the order of pJ/bit and 10s of ns respectively)

are about 2 orders of magnitude higher compared to accessing on-chip memory that is

tightly localized with the computing datapaths (in the order of fJ/bit and a 100s of ps).

Therefore as mentioned earlier it is highly desirable to incorporate memory blocks storing

synaptic parameters close to the neural cores in an ASIC implementation.

With hundreds or thousands of synaptic connections per neuron, the size of the on-

chip memory block for synapse storage becomes a critical design factor. For example,

in a 65nm technology the size of a SRAM bit cell is approximately 0.6um2. Assuming

1000 connections per neuron for 256 neurons in a single core and 8-bit synaptic weights,

this corresponds to approximately 1.2mm2. Assuming an Izhikevich neuron datapath

(0.3mm2 in 65nm [10]) shared for all the neurons in the core, the synaptic memory

area is 4× the neuron datapath area. Thus, reduction of the synaptic memory area,

for example by using new memory technologies [16] and compact memory designs (see

Sec. 2.2), is a crucial component of the ASIC implementation.

2.1.4 Synchronization

Digital neuromorphic systems can be designed to run discrete-time simulations of neural

networks like those that run through software environments on general purpose proces-

sors. In such instances a fidelity between hardware operation and an equivalent software

simulation is desirable. A one-to-one equivalency between the two allows users to develop

and test algorithms in a software simulator of the neuromorphic system on any platform

with the guarantee that it will run exactly the same way once mapped on the hardware.
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For such equivalency between hardware and software with respect to a global simu-

lation timestep, extra circuitry is necessary inside a neural core to synchronize the inte-

gration of presynaptic spikes (coming from a shared non-deterministic routing network)

with the generation of postsynaptic spikes in the neurons. Such synchronization circuits,

along with necessary bounds to the computation and communication time in the system,

can keep hardware operation in lock step with a software simulator (see Sec. 2.2.1).

Alternatively, a system can be designed to run freely without synchronization to a

global update signal of a discrete-time simulation. Neural updates can be carried out as

AER packets come in, or updates can be continuously made and incoming packets checked

for between updates. Without the need to lock to a global timestep, the speed of the

system will only be bound by the speed of the circuits. Hardware-software correspondence

will no longer be guaranteed due to indeterministic communication sequences.

2.2 Design of a Neuromorphic Core with Integrated Synapses

This section presents the design and implementation of a scalable asynchronous neuromor-

phic computing core [11] named Golden Gate, specifically describing (i) the asynchronous

circuits that mimic central elements of biological neural systems; (ii) an architecture that

integrates computation, communication and memory; (iii) the asynchronous communica-

tion infrastructure required to accommodate the architecture; and (iv) the synchroniza-

tion mechanisms required to maintain a one-to-one correspondence with software (this

is the first neuromorphic system to demonstrate such an equivalence). A prototype chip

consisting of a single core with 256 digital leaky-integrate-and-fire neurons, 1024 inputs,

and 1024×256 programmable binary synapses implemented with a SRAM crossbar array

is described. The entire core fits in a 4.2mm2 footprint in IBM’s 45 nm SOI process and

consumes 45pJ per spike in active power.

Two primary factors are behind the efficiency of the core. First, an on-chip memory

array that stores synaptic parameters is integrated in close proximity to the neurons
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minimizing data movement across the system. A crossbar architecture in the memory

array is used to implement high neural fanout with low storage requirements. Second, an

asynchronous design style results in circuits that naturally mimic the distributed event-

driven processing of neural networks and ensures that power dissipation of inactive parts

of the system are kept at a minimum.

2.2.1 Architecture and Operation

Neurons and Synapses

The leaky integrate-and-fire model of a neuron captures the behavior of real neurons in

a range of situations and offers an efficient implementation. This neuron model is used

as the basic computational unit of the core.

The neurons in the chip are interconnected through axons and synapses. Each axon

may correspond to the output of a neuron in the same core or somewhere else in a large

system of many cores. Some axons may also be driven by embedded sensors or some

external driver. The connection between axon j and neuron i is represented as Sji. Each

axon is parameterized by a type Gj that can take one of three different values indicating

the type of synapse (e.g. strong excitatory, weak excitatory or inhibitory) that the axon

forms with neurons it connects to. Each neuron is parameterized by a leakage current

L, a spike threshold θ and three synapse weights W 0, W 1, W 2 that correspond to the

different axon types. All these parameters are configurable during start-up.

The core implements a discrete-event simulation where the neuron states are updated

at each timestep according to external input and interconnectivity. The state of neuron i

at some time t, is represented by its voltage Vi[t], while the state of axon j is represented

by its activity bit Aj[t].

The parameters and state variables of the system are tabulated in Fig. 2.3. Neuron i

receives the following input from axon j:

Aj[t]× Sji ×W
Gj

i .
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 NAME DESCRIPTION SIZE AND TYPE 

Vi Voltage of Neuron i 10 bit signed variable 

Wi
0..2 3 Synaptic Weights of Neuron i 9 bit signed constant 

Li Leak of Neuron i 9  bit signed constant 

!i Threshold of Neuron i 8 bit unsigned constant 

Sji Connection between axon j and neuron i Binary constant 

Gj Type of Axon j 3 distinct constants 

Aj State of Axon j Binary Variable 

!"#$%!&'()('*%

Figure 2.3: Top: Architecture of the neuromorphic core with K axons and N neurons. Each

junction in the crossbar represents a synapse between an axon (row) and dendrite (column).

Each neuron has a dedicated column in the crossbar. Active synapses are represented by an

open circle in the diagram. An example sequence of events in the core is illustrated. The

scheduler accepts an incoming address event and communicates with the axon token-ring. The

token-ring activates axon 3 (A3) by asserting the third wordline of the SRAM crossbar array.

As a result, a synaptic event of type G3 is delivered to neurons N1, N3, and NM . The AER

transmitter sends out the addresses of these neurons if they consequently spike. Bottom: State

variables and parameters of the system. All values are represented as integers, and all constants

are configurable at start-up.
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The neuron’s voltage is updated at each time step by subtracting a leakage from its

voltage and integrating the synaptic input from all the axons:

Vi[t+ 1] = Vi[t]− Li +
1024�

j=1

(Aj[t]× Sji ×W
Gj

i ).

When V [t] exceeds a threshold θ, the neuron produces a spike (represented by a digital

‘1’ in its output) and its voltage is reset to 0. Negative voltages are clipped back to 0 at

the end of each time step.

Communication Infrastructure

At the heart of the neurosynaptic core is a crossbar memory that forms the synapses

between the axons and the neurons. This embedded memory allows large synaptic fanout

without resort to off-chip memory, drastically reducing energy consumption and latency

associated with accessing synaptic parameters (See Sec. 2.1.3). The crossbar array is user

configurable and arbitrary networks can be set up in the system (e.g. Axons 1, 2, and

3 are connected to the first neuron in the 2D neuron array in Fig. 2.3). Each row of

the crossbar corresponds to an axon, each column corresponds to the input of a neuron

(the dendrite), and the junctions are binary synapses implemented by a two terminal

memory cell (e.g., SRAM). Thus each of the N neurons may get up to K synaptic inputs

depending on the activity in the axons and the configuration of the crossbar. K was chosen

to be 1024 and N was chosen to be 256 resulting in 1024×256 crossbar synapses and an

enormous configuration space. Each row of the crossbar memory has two additional bits

that indentify the type of the axon. The postsynaptic neurons weigh a synaptic event on

an axon with one of three distinct 8-bit weights based on this type information.

Spikes events are sent to and from the core using address-event representation (AER)

packets (See Sec. 2.1.2 and Sec. 2.3.1). On the output side, an AER transmitter [12]

encodes spiking activity by sending the locations of active neurons through a multiplexed

channel, leveraging the fact that the bandwidth of wires (easily larger than 100s of MHz)

is orders of magnitude larger than the bandwidth of biological axons (in the 10s of Hz



15

range). The spikes can be sent off chip, or routed to an axon of another core via a memory

table. On the input side, an AER receiver delivers incoming spikes to the appropriate

axon at a time determined by a configured field in the AER packet. As spikes are

serviced sequentially, their addresses are decoded to the crossbar where all 256 synaptic

connections of an active axon are read out in parallel.

Because the crossbar structure implements the synaptic connections of an axon using

a 256-bit (+2 bits for the type information) vector, the need to store and access 256 multi-

bit synaptic weights for each synapse is eliminated. As a result, the energy consumption

and area associated with implementing synapses is reduced. These are achieved however

at the cost of reduced flexibility since the type and delay of an axon in the crossbar

structure has to be the same for all postsynaptic targets.

Discrete-time Operation

An example sequence of operation in the core is illustrated in Fig. 2.3. The operation

has two phases during each time step.

The positive edge of a global synchronization clock (Sync) initiates the first phase

of operation. In this phase, address-events along with their time stamps are sent to the

core and are received by the scheduler. The scheduler evaluates the time stamps and

asserts the appropriate axons that go into a token-ring. The units in the token-ring that

receive active axons assert the rows of the crossbar in a mutually exclusive manner. Once

a wordline in the crossbar is activated all the neurons that are connected to the axon

(corresponding to the 1’s in the row) receive an input spike along with information about

the type of the axon. The neurons update their voltages as axon events come in. The first

phase needs to complete within the first half of the global synchronization clock (that

usually has a period of 1 millisecond) – a precise margin in which neural updates need

to complete for potentially all 1024 axon inputs.

In the second phase of operation, the negative edge of the synchronization clock

is detected by all the neurons. On receiving this event, neurons whose voltages have
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exceeded their respective thresholds produce spikes in their output ports. The spiking

addresses are encoded by the AER transmitter and sent out of the core sequentially.

This phase needs to complete within the other half of the global clock – i.e. the AER

transmitter has to service 256 potential spikes within the global timestep.

A 1 millisecond global clock period (typical temporal precision in biological neural

networks) means that the performance requirements of the circuits in the two phases

of operation are easily met. Breaking neural updates into two phases ensures that the

hardware is always in sync with an equivalent software simulation at the end of each time

step. Specifically, the order in which address-events arrive to the core or exit from the

core can be variable due to resource arbitration, especially when events are sent through a

non-deterministic routing network. To preserve one-to-one correspondence, the different

orderings must not influence the spiking dynamics, and this is achieved in the system by

first accounting for all the synaptic events and then checking for spikes.

2.2.2 Circuit Design

The neuromorphic architecture described above was implemented using asynchronous

quasi-delay-insensitive (QDI) circuits [17] that are synchronized with the global timestep.

A QDI design style leads to extremely robust circuits that remain operational under a

wide range of process, voltage and temperature variations, making them ideally suited

for mobile, embedded applications.

In this section the concurrent processes of the architecture is described using Com-

municating Hardware Processes (CHP - see Appendix) that can be synthesized into QDI

asynchronous circuits using Martin’s synthesis method [17].

Scheduler

The scheduler receives packets from outside the core and delivers spikes on the axons at

specific times. The packets may come from spiking neurons in the core or from outside

the core. In addition to these packets, the scheduler also receives a clock and a global
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The circuit diagram in 3 represents the first and the second CHP processes put 

together. This circuit performs all the computation, as well as delays the spike by an 

appropriate amount of time (based on the global counter state).  

The circuit that succeeds the MUX receives the data from the multiplexer (on 

channel T). It then looks up the axonal delay of the specified dest_addr (lower 10 bits of 

the packet). The value of axon_delay (4 bits) is passed to the asynchronous adder as the 

first operand and the y.dt  (time when the spike occurred, obtained from the packet) value 

as the second operand. The resulting sum is passed to the DEMUX/DECODE unit as the 

data input. The control for the DEMUX/DECODE unit is y.dest_addr bits of the packet, 

slack matched to the SRAM and the adder.  

The DEMUX then outputs 5 bits indicating the final timestamp of when the spike 

has to be released to a dedicated crossbar channel. The [Delay + Sync] unit MUST 

contain full buffers at the input, because all the hardware used prior to this stage is time-

shared and the DEMUX/DECODE’s output channel has to be “released” as soon as 

possible to allow assertion of the next spike. 

Each [Delay + Sync] unit compares the timestamp of the global timer with the 

obtained delay_y final timestamp and initiates a spike to a corresponding crossbar 

channel A[y.dest_addr] communication, when the two values match.   

The synchronization is contained in the [Delay + Sync] unit. The synchronization 

part is not trivial and requires some design effort. The data obtained from the 

DEMUX/DECODE must be aligned to the clock without any knowledge of the data 

arrival time in relationship to the clock edge. Precautions have to be taken in order to 

avoid potential Metastability during synchronization with the global clock. Such 

metastbility may occur since there is no timing correlation between the edge of the 

global clock and the packets arriving from the mesh router. A modified two flip-flop 

synchronization scheme is used in our design. 
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Figure 2.4: Internal structure of the Scheduler. The overall function is: (1) Receive input

packets; (2) Add the stored axonal delay to the time field of the packet to get the spike delivery

time; (3) Demultiplex the address field of the packet; and (4) Deliver the spike to the appropriate

axons at the edge of a global clock when the global timestep equals the computed delivery time

of the spikes.

counter time. The block also stores a configurable axonal delay (inside an SRAM array)

for each of the axons. Each packet (y) coming in contains an axon address (y.dest addr)

and a time of spike (y.dt - in units of clock ticks). The scheduler decodes the packet to

determine where the spike should be delivered (the axon number). The time in the packet

is added to the axonal delay for the specified axon, and this value is compared against

the current global counter time on every tick of a clock that the scheduler receives. When

the time matches, a spike is delivered to the crossbar. This makes the spike delivery to

the crossbar synchronous with the global system clock. The CHP of the processs is:
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Scheduler ≡

*[[IN ?y ;

axon delay := SRAM [y .dest addr];

delay y := y .dt + axon delay ;

[delay y = timestamp];

A[y .dest addr]!spike

]]

The scheduler implements the axonal delay stored in a 1024 (number of axons) by

4 (range of delays) SRAM array. It receives the packet in the channel IN , adds the

axonal delay to the time in the packet, waits for the global time to reach this value and

then delivers the spike to the axon corresponding to the address in the packet. Besides

implementing the axonal delay, this procedure synchronizes input spikes to the core with

the clock edge, implementing the first of the two phases of operation (Section 2.2.1) that

allow the system to produce 1-1 correspondence with a software simulator.

The internal blocks of the scheduler are illustrated in Fig. 2.4. For the prototype chip,

a common delay block was used instead of a full 1024× 4 SRAM array to implement the

axonal delay. This fixed delay is a 4 bit number that can be configured at the chip’s

startup, and is the delay value for all axons. The Adder adds this delay to the time

value in the packet and passes it to the DEMUX/DECODE unit. The control for the

DEMUX/DECODE unit is the destination address in the input packet, slack-matched

to the SRAM and the adder. The DEMUX then outputs 5 bits indicating the final

timestamp for spike release to the axon. This value goes to 1 of 1024 [Delay + Sync]

blocks. These blocks must contain full buffers at the input because all the hardware used

prior to this stage is time-shared and the DEMUX output channel has to be “released” as

soon as possible to allow assertion of the next spike. Each [Delay + Sync] unit compares

the timestamp of the global timer with the obtained final timestamp and initiates a spikes

to an axon when the value matches.
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The clock synchronization is contained in the [Delay + Sync] unit. The synchro-

nization part is not trivial and requires some design effort. The data obtained from the

DEMUX/DECODE must be aligned to the clock without any knowledge of the data ar-

rival time in relationship to the clock edge. Precautions have to be taken in order to avoid

potential metastability during synchronization with the global clock. Such metastability

may occur since there is no timing correlation between the edge of the global clock and

the packets arriving from the router. A modified two flip-flop synchronization scheme is

used in the design [18].

Axon Token-Ring

At an edge of the synchronizing clock, the scheduler pulls up the axon lines that have

spikes. Each axon has a corresponding row (a wordline) in the crossbar memory array.

The dendrites (inputs) of a neuron correspond to a column (bit line) of the crossbar array.

Since a dendrite can potentially connect to multiple axons, the rows of the crossbar have

to be asserted in a mutually exclusive manner. This function is carried out by an array

of axon servers that implement a token-ring mutual exclusion algorithm [19]. Each server

has an axon as its input and the wordline of the crossbar as its output. A token circulates

among the servers to give them mutually exclusive access to the crossbar.

When an axon is asserted, its server requests its neighbor to pass the token. The

request propagates through the token-ring, and the token is passed along to the requesting

server. Upon the arrival of the token, the server asserts the corresponding row of the

crossbar. The CHP of an individual server is given below. Channel A communicates

with the axon from the scheduler and channel WL with the crossbar, while channels U

and D communicate with the neighbor above or below. The local variable b represents

the token. The D port of the last server is connected to the U port of the first server.

The channel C communicates with a completion tree (see Fig. 2.3) that indicates when

all the neurons have completed processing events for a particular axon.
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Axon Server ≡

*[[A −→ [b −→ skip []¬b −→ D !; b↑ ];WL!;

[C −→ C ; A?]

|U −→ [b −→ skip []¬b −→ D ! ]; b↓;U ?

]]

Crossbar Memory

The states of the memory cells of the crossbar array represent the synaptic configuration

of a network (i.e. which axons connect to which neurons) and in part determine the unique

properties of that particular network. Organizing the synapses in this crossbar structure

allows an active axon to fan out to potentially 256 neurons in parallel through a single

control operation. For large connectivity, this reduces the dynamic power consumption

and accelerates the speed at which the network is updated.

The configuration of the crossbar has to be set up prior to the operation time of the

chip. Shift register scanners were included to configure the bit cells of the array. Standard

6T SRAM cells were used as the bit cells. The axon token-ring controls the wordlines

of the bit cells while a set of synapse controllers interfaces the bitlines with the neurons.

The CHP of a synapse controller unit is given below.

Synapse Controller Unit ≡

*[[BL.t −→ N !; C !

[] BL.f −→ C !

]]

When the axon token-ring drives one of the wordlines of the crossbar, one of the

two bitlines of each cell in the corresponding row will discharge asserting either the

BL.t or the BL.f wires of the synapse controller. If BL.t is asserted the controller

communicates with the neuron corresponding to the column to update the neuron’s state.

Once this communication is over, or if BL.f was the wire originally asserted, the controller
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communicates with a completion tree. The right-most controller receives the ”type”

information for each axon (they are stored in the last 2 bit cells of each crossbar row)

and communicates this information to the neurons. Once all synapse controllers have

completed their operation, the completion tree communicates with the C channel of the

axon token-ring, after which the token-ring unit with the token releases the wordline of

the crossbar and token becomes free to travel. Another token-ring unit with an active

axon will then get the token and assert its corresponding wordline.

Neuron

The neurons are the basic computational units in the system. They were implemented

using dedicated circuits (non-multiplexed), allowing all the neural updates to happen in

parallel. This parallelism comes at the cost of relative density inefficiency that is in part

mitigated by the use of a dense technology.

The design of the neuron circuits needs to accomodate two conflicting requirements.

On the one hand, a neuron must service events quickly to avoid holding up the crossbar.

On the other hand, a neuron receives very few events in typical scenarios, so it must

not burn dynamic power when it is idle. A purely event-driven design is therefore ideal:

it has a fast service time (100MHz-GHz range), but only burns power during the rare

occurrence of an event.

During the first phase of operation (Section. 2.2.1) each neuron receives event-driven

synaptic input from the crossbar memory synapse controller. The neurons update their

state (represented by an internal voltage V ) by integrating the incoming synapses (Sec-

tion. 2.2.1). During the second phase of operation, the neurons synchronize with the

global clock edge, at which point they output a spike (represented by a 1 bit output) if

their voltage is above threshold or leak out an amount of the voltage if it is below thresh-

old. The synchronization of the neuron during the second phase of operation, along with

the synchronization of the scheduler during the first phase (Section. 2.2.2) ensures that

the operation in the core is in 1-1 correspondence with a software simulator.
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The internal parameters of the neurons (the threshold, the leak, and the three synaptic

strengths) are configured at start-up. They are all represented with 8-bit integers in 2’s

compliment form. The internal voltage of a neuron is represented by a 10-bit integer also

in 2’s compliment form.

The operation of the neuron is decomposed into control and datapath blocks. A block

diagram of the processes involved is illustrated in Fig. 2.5.
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Figure 2.5: Block diagram of the neuron. The control block interfaces with the crossbar,

directs information flow in the datapath, synchronizes with the global time step and outputs a

spike when the neuron voltage exceeds its threshold. The datapath elements update the voltage

after each synaptic event and check for a spike when directed by the control.

The CHP of the control block is:
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Neuron Control ≡

*[[N −→ G?x ; [x = Type0 −→ M 5!0

[]x = Type1 −→ M 5!1

[]x = Type2 −→ M 5!2

],M 2!0;N

[]C −→ T?y ; [y = spike −→ S , M 5!3,

M 2!1

[]y ! = spike ∧ (y <= 0) −→

M 5!4,M 2!1

[]y ! = spike ∧ (y > 0) −→

M 5!3,M 2!0

];C

]]

The control block interfaces with the synaptic input coming from the neuron’s ded-

icated crossbar column through the channel N . Upon a communication request on this

channel, the control reads in the ”type” information of the axon through the channel G

that connects to the synapse controller representing the last two columns of the crossbar.

Before completing the handshake in N the control communicates with the datapath of

the neuron through channels M5 (that relays synaptic type information) and M2 (for

voltage control in the datapath). Once these communication actions have completed N

and G are acknowledged and the next cycle of synaptic inputs may come in.

In the second half of the global timestep, the neurons receive a synchronization event

in the channel C (that is driven by a process that uses one of the edges of the global clock

to initiate a handshake). When this event comes in, the control initiates a communication

with the datapath through the T channel. The datapath sends back one of three distinct

values indicating whether the voltage for the current timestep is above threshold, below

threshold but above zero; or below zero. If the voltage is above threshold the control

communicates with the AER transmitter through the channel S to send out a spike.
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Through M2 the control also instructs the datapath to reset the voltage to 0 if there is

a spike or if the voltage is below 0. If the voltage has not been reset to 0, the control

instructs the datapath to apply the leak to the current voltage.

The CHP of the datapath units are:

MERGE 5 ≡

*[[M 5 −→ M 5?d ;

[d = 0 −→ AI 1!W 0

[]d = 1 −→ AI 1!W 1

[]d = 2 −→ AI 1!W 2

[]d = 3 −→ AI 1!L

[]d = 4 −→ AI 1!0

];

]]

MERGE 2 ≡

*[[M 2 −→ M 2?d ;

[d = 0 −→ AO0?x ; AI 0!x

[]d = 1 −→ AI 0!0

];

]]

ADDER ≡

*[AI 0 ∧AI 1 −→ AI 0?x , AI 1?y ; z := x + y

[]AO0 −→ AO0!z

[]AO1 −→ AO1!z

]]
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COMPARATOR ≡

*[T −→ AO1?V ;

[V > Threshold −→ T !0

[](V < Threshold) ∧ (V <= 0) −→ T !1

[](V < Threshold) ∧ (V > 0) −→ T !2

];T

]

When the control drives MERGE 5, the process forwards either a synaptic strength

(during the integration phase), a leak (during the resetting phase if V > 0) or the value

0 (during the resetting phase if V <= 0) to one of the inputs of the ADDER process.

When the control drives MERGE 2, the process forwards either the previous voltage

(during integration) or the value 0 (if V > threshold or V < 0 during the firing phase)

to the other input of ADDER. The ADDER process is a 10 bit adder that sends out

the sum of its inputs to the COMPARATOR and the MERGE 2 processes when they

request it. The control drives COMPARATOR when it needs to evaluate the state of

the neuron voltage.

AER transmitter

Spikes from the 2-dimensional array of neurons are sent out of the core through token-ring

AER transmitter circuits [12] that allow all the neurons to share one output channel. In

this scheme, a set of row servers and column servers circulate tokens in each dimension

of the neuron array and give spiking neurons mutually exclusive access to the shared

communication channel. A counter keeps track of the location of the tokens, and sends

out neuron addresses upon request. This methodology leads to compact transmitter

circuits capable of efficiently servicing clusters of spiking activity.

The design of the transmitter is illustrated in Fig 2.6. The sequence of operation

is: (1) A spiking neuron asserts a row request line; (2) The corresponding row server

requests for the row token from its neighbors; (3) As the row token moves, the counter
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Figure 2.6: Illustration of the AER transmitter architecture using a 3×3 sample neuron array.

When a neuron (N) has a spike, it communicates with its corresponding row server (RS) and

column server (CS). A counter (CNTR) keeps track of circulating row and column tokens and

sends out the spike address through the shared output bus.



27

keeps track of its position; (4) Upon receipt of the token, the row server acknowledges the

row request; (5) The neuron then asserts a column request line; (6) The corresponding

column server requests the column token from its neighbors; (7) As the column token

moves, the counter keeps track of its position; (8) Upon receipt of the token the column

server communicates with the counter to send out the row and column token addresses

and then acknowledges the column request; (9) The neuron does a second communication

with the row server to indicate the completion of service.

The neurons interface with their respective servers via open-drain shared row request

lines and shared column request lines. The servers also communicate with the counter via

shared wires. These wires need to be carefully implemented since transitions are shared

across processes and span an entire dimension of the neuron array.

2.2.3 Results

As demonstration of the architecture, one core (minus the scheduler) was implemented

in a 45 nm SOI process. The fabricated chip occupies 4.2mm2 of silicon (Fig. 2.7, left).

Each of the 256 neurons in the core occupies 35µm × 95µm. Each SRAM bitcell in the

1024 × 256 synaptic crossbar array occupies 1.3µm2 (plus another 1.9 µm2 associated

with conservatively-designed periphery). A custom printed circuit board allows the chip

to interface with a PC through a USB link (Fig. 2.7, right).

Active Power

The primary focus during the design was the reduction of active power since passive power

can be addressed through fabrication options and active leakage reduction circuitry. The

purely event-driven nature of the core results in very low power consumption since active

power in such a design style is dependent only on the typically low activity rates of the

neurons. The QDI methodology allows aggressive reduction of the operating voltage in

the core without affecting chip functionality. As shown in Fig. 2.8, the core consumes

only 45pJ of active power per spike at Vdd = 0.85.
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membrane potential is above threshold, and if so, it produces a
spike and resets the membrane potential to 0; these spikes are
encoded and sent off as address events in a sequential fashion.
After checking for a spike, the leak is applied.

The purpose of breaking neural updates into two phases
is to ensure that the hardware and software are always in
lock step at the end of each time step. Specifically, the order
in which address events arrive to the core or exit the core
can vary from chip to chip due to resource arbitration—
especially when events are sent through a non-deterministic
routing network. To remain one-to-one, the different orderings
must not influence the spiking dynamics. We achieve one-to-
one equivalence by first accounting for all the axon inputs,
and then checking for spikes after these inputs have been
processed. This also gives us a precise bound for operating in
real time: all address events must be accounted for before the
synchronization event, which we trigger once per millisecond.
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Fig. 3. (left) Neurosynaptic die measures 2mm × 3mm including the I–O
pads. (right) Test board that interfaces with the chip via a USB 2.0 link. Spike
events are sent to a PC for data collection, and are also routed back to the
chip to implement recurrent connectivity.

We have designed, fabricated, and tested our neurosynaptic
core using IBM’s 45nm SOI process. Our core has 3.8 million
transistors in 4.2mm2 of silicon (Fig. 3, left), and all transistors
are ultra-high threshold (UVT) to reduce leakage.

The core’s 256 neurons are organized into a 16 × 16 array,
where each neuron occupies 35µm × 95µm. For crossbar
synapses, we use a custom SRAM array with 1024× 256 bits
implementing over 256K binary synapses. The bitcell occupies
1.3µm2 (plus another 1.9µm2 associated with conservatively-
designed periphery). Because our bitcell was custom, its area
is approximately 4× larger than the commercially available
bitcells in the same technology.

To test our design, we built a custom printed circuit board
that interfaces with a PC through a USB link (Fig. 3, right).
Through this link, we can interface our chip to virtual and
real environments via address event communication, as well
as configure neuron–synapse parameters via a shift-register
scanner (not shown).

For testing, we focused on active power1 and one-to-one
equivalence with software. We also demonstrate that our chip
can implement a well-known neural algorithm, a restricted
Boltzmann machine (RBM), which acts as a front end to an
off chip linear classifier for recognizing digits.

1Active power is our primary focus because passive power depends on the
fabrication options, and can be addressed by process selection and availability.

A. Active Power
In our chip, active power scales linearly with spike activity

since the design is purely event driven. To measure active
power, we measure the increase in current beyond the baseline
during high activity (averaged), where all neurons and axons
are active in each time step (1kHz rate).2 Our measurements
are repeated over a range of supply voltages (Fig. 4); at Vdd =
0.85V, the core consumes just 45pJ/spike.
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Fig. 4. Active energy per spike (red) decreases approximately linearly with
lower Vdd, whereas the core’s total passive power (blue, inset) decreases
exponentially, shown on a log scale.

B. One-to-One Equivalence
To test that the chip satisfied one-to-one equivalence, we

configured the synaptic strength and leak values of each
neuron to +1, and the thresholds to +100. Then, we generated
a pseudorandom connectivity where each synapse had a 20%
probability of being 1. Lastly, the CPLD was set to route all
neuron spikes back into the core (neuron 0,1,2 drove axon
0,1,2, respectively), creating a complex recurrent network.

Running the chip we observe that after 100 time steps, all
the neurons spike in unison due to their identical positive
leaks. This first barrage of spikes is routed back around to the
axonal inputs, activating a pseudorandom pattern of excitatory
recurrent connections; these inputs cause neurons to spike
earlier in the next cycle, thereby having a de-synchronizing
effect. Within a few cycles, the recurrently-driven activity
dominates the dynamics leading to a complex spatiotemporal
pattern. We simulated a software network with an identical
configuration, and confirmed that the software and hardware
have identical behavior (Fig. 5).

C. Implementing a Restricted Boltzmann Machine (RBM)
Our neurosynaptic core is capable of implementing a

wide range of neural network algorithms, where weights are
first learned offline, and then transformed into a hardware-
compatible format. We present one example that implements
a RBM, which is a well-known algorithm for classification and
inference tasks. Specifically, we trained a two-layer RBM with
484 visible units and 256 hidden units on handwritten digits
from the MNIST dataset. Our learning procedure followed
directly from [5]; briefly, we use contrastive divergence to
learn 484× 256 real-valued weights to capture the probability

2Note that an axon event contributes less active power than a spike.

Figure 2.7: Left: Die measures 2mm × 3 mm including the I-O pads. Right: Test board that

interfaces with the chip via a USB 2.0 link. Spike events are sent to a PC for data collection

and can also be routed back to the chip via the CPLD.
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membrane potential is above threshold, and if so, it produces a
spike and resets the membrane potential to 0; these spikes are
encoded and sent off as address events in a sequential fashion.
After checking for a spike, the leak is applied.

The purpose of breaking neural updates into two phases
is to ensure that the hardware and software are always in
lock step at the end of each time step. Specifically, the order
in which address events arrive to the core or exit the core
can vary from chip to chip due to resource arbitration—
especially when events are sent through a non-deterministic
routing network. To remain one-to-one, the different orderings
must not influence the spiking dynamics. We achieve one-to-
one equivalence by first accounting for all the axon inputs,
and then checking for spikes after these inputs have been
processed. This also gives us a precise bound for operating in
real time: all address events must be accounted for before the
synchronization event, which we trigger once per millisecond.
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We have designed, fabricated, and tested our neurosynaptic
core using IBM’s 45nm SOI process. Our core has 3.8 million
transistors in 4.2mm2 of silicon (Fig. 3, left), and all transistors
are ultra-high threshold (UVT) to reduce leakage.

The core’s 256 neurons are organized into a 16 × 16 array,
where each neuron occupies 35µm × 95µm. For crossbar
synapses, we use a custom SRAM array with 1024× 256 bits
implementing over 256K binary synapses. The bitcell occupies
1.3µm2 (plus another 1.9µm2 associated with conservatively-
designed periphery). Because our bitcell was custom, its area
is approximately 4× larger than the commercially available
bitcells in the same technology.

To test our design, we built a custom printed circuit board
that interfaces with a PC through a USB link (Fig. 3, right).
Through this link, we can interface our chip to virtual and
real environments via address event communication, as well
as configure neuron–synapse parameters via a shift-register
scanner (not shown).

For testing, we focused on active power1 and one-to-one
equivalence with software. We also demonstrate that our chip
can implement a well-known neural algorithm, a restricted
Boltzmann machine (RBM), which acts as a front end to an
off chip linear classifier for recognizing digits.

1Active power is our primary focus because passive power depends on the
fabrication options, and can be addressed by process selection and availability.

A. Active Power
In our chip, active power scales linearly with spike activity

since the design is purely event driven. To measure active
power, we measure the increase in current beyond the baseline
during high activity (averaged), where all neurons and axons
are active in each time step (1kHz rate).2 Our measurements
are repeated over a range of supply voltages (Fig. 4); at Vdd =
0.85V, the core consumes just 45pJ/spike.
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Fig. 4. Active energy per spike (red) decreases approximately linearly with
lower Vdd, whereas the core’s total passive power (blue, inset) decreases
exponentially, shown on a log scale.

B. One-to-One Equivalence
To test that the chip satisfied one-to-one equivalence, we

configured the synaptic strength and leak values of each
neuron to +1, and the thresholds to +100. Then, we generated
a pseudorandom connectivity where each synapse had a 20%
probability of being 1. Lastly, the CPLD was set to route all
neuron spikes back into the core (neuron 0,1,2 drove axon
0,1,2, respectively), creating a complex recurrent network.

Running the chip we observe that after 100 time steps, all
the neurons spike in unison due to their identical positive
leaks. This first barrage of spikes is routed back around to the
axonal inputs, activating a pseudorandom pattern of excitatory
recurrent connections; these inputs cause neurons to spike
earlier in the next cycle, thereby having a de-synchronizing
effect. Within a few cycles, the recurrently-driven activity
dominates the dynamics leading to a complex spatiotemporal
pattern. We simulated a software network with an identical
configuration, and confirmed that the software and hardware
have identical behavior (Fig. 5).

C. Implementing a Restricted Boltzmann Machine (RBM)
Our neurosynaptic core is capable of implementing a

wide range of neural network algorithms, where weights are
first learned offline, and then transformed into a hardware-
compatible format. We present one example that implements
a RBM, which is a well-known algorithm for classification and
inference tasks. Specifically, we trained a two-layer RBM with
484 visible units and 256 hidden units on handwritten digits
from the MNIST dataset. Our learning procedure followed
directly from [5]; briefly, we use contrastive divergence to
learn 484× 256 real-valued weights to capture the probability

2Note that an axon event contributes less active power than a spike.

Figure 2.8: Active and passive energy consumption in the core.
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One-to-One Equivalence

To test that the chip satisfied one-to-one equivalence, the synaptic strength and leak

values of each neuron were set to +1 and the thresholds were set to to +100. Random

connectivity was generated where each synapse had a 20% probability of being active.

The CPLD was set to route all neuron spikes back into the core (neuron 0, 1, 2 drove

axon 0, 1, 2, respectively), creating a complex recurrent network. After 100 time steps

in the chip, all the neurons spike in unison due to their identical positive leaks. This

first barrage of spikes is routed back around to the axonal inputs, activating the random

pattern of excitatory recurrent connections. These inputs cause neurons to spike earlier

in the next cycle, thereby having a de-synchronizing effect. Within a few cycles, the

recurrently-driven activity dominates the dynamics leading to a complex spatiotemporal

pattern. Results from a software simulation of a network with an identical configuration

confirmed that the software and hardware have identical behavior (Fig. 2.9).
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Fig. 5. The spiking dynamics of the chip exactly match a software simulation
when configured with the same parameters and recurrent connectivity. Spikes
are plotted as dots for measured chip data and circles for simulation.

distribution of pixel correlations in the digits (60,000 images).
After learning these weights, we trained 10 linear classifiers
on the outputs of the hidden units using supervised learning.
Finally, we test how well the network classifies digits on out-
of-sample data (10,000 images), and achieved 94% accuracy.

To map the RBM onto our neurosynaptic core, we make
the following choices: First, we represent the 256 hidden units
with our integrate-and-fire neurons. Next, we represent each
visible unit using two axons, one for positive (excitatory) con-
nections and the other for negative (inhibitory) connections,
accounting for 968 of 1024 axons. Then, we cast the 484×256
real-valued weight matrix into two 484×256 binary matrices,
one representing the positive connections (taking the highest
15% of the positive weights), and the other representing the
negative connections (taking the lowest 15% of the weights).
Finally, the synaptic values and thresholds of each neuron are
adjusted to normalize the sum total input in the real-valued
case with the sum total input of the binary case.

Following the example from [6], we are able to imple-
ment the RBM using spiking neurons by imposing a global
inhibitory rhythm that clocks network dynamics. In the first
phase of the rhythm (no inhibition), hidden units accumulate
synaptic inputs driven by the pixels, and spike when they
detect a relevant feature; these spikes correspond to binary
activity of a conventional (non-spiking) RBM in a single
update. In the second phase of the rhythm, the strong inhibition
resets all membrane potentials to 0. By sending the outputs
of the hidden units to the same linear classifier as before
(implemented off-chip) we achieve 89% accuracy for out-of-
sample data (see Fig. 6 for one trial).

Our simple mapping from real-valued to binary weights
shows that the performance of the RBM does not decrease
significantly, and suggests that more sophisticated algorithms,
such as deep Boltzmann machines, will also perform well in
hardware despite binary weights.

V. DISCUSSION

A long standing goal in the neuromorphic community is to
create a compact, modular block that combines neurons, large
synaptic fanout, and addressable inputs. Our breakthrough
neurosynaptic core, with digital neurons, crossbar synapses,
and address-events for communication, is the first of its kind
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Fig. 6. (left) Pixels represent visible units, which drive spike activity on
excitatory (+) and inhibitory (-) axons. (middle) 16 × 16 grid of neurons
spike in response to the digit stimulus. Spikes are indicated as black squares,
and encode the digit as a set of features. (right) An off-chip linear classifier
trained on the features, and the resulting activation. Here, the classifier predicts
that 3 is the most likely digit, whereas 6 is the least likely.

to achieve this long standing goal in working silicon. The
key new component of our design is the embedded crossbar
array, which allows us to implement synaptic fanout without
resorting to off-chip memory that can create an I–O bottleneck.
By bypassing this critical bottleneck, it is now possible to build
a large on-chip network of neurosynaptic cores, creating an
ultra-low power neural fabric that can support a wide array of
real-time applications that are one-to-one with software.

Looking forward, to build a human-scale system with 1014

synapses (distributed across many chips), our next focus is
to tackle the formidable but tractable challenges of density,
passive power, and active power for inter-core communication.
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2.3 Design of a Multi-Core System

A multi-core chip consisting of multiple instantiations of Golden Gate-like (Sec. 2.2) cores

was fabricated in a 28 nm CMOS process [20]. The chip, named True North, consisted

of 64× 64 cores and a total of 1 million neurons and 256 million programmable synapses.

For effective multi-core implementation, the design of the core was slightly modified from

the design of Golden Gate. A router block was added to each core for the communication

of spikes between cores. The number of axons in a core was reduced from 1024 to 256

to reduce the footprint of the core. The availability of many neurons and axons across

numerous cores meant that this reduction did not have a significant effect on the types

of networks that can be accomodated. Further reduction in the footprint of the core

was achieved by multiplexing, via a control block, the datapath circuits that are used to

update the states of the neurons in a core. The scheduler block (Sec. 2.2.2), that was not

included in the 45 nm implementation (Sec. 2.2.3), was added to each core.

This section describes the design of True North, focusing on the communication and

control circuitry required for efficient large-scale spike-based computing.

2.3.1 Spike Routing

The cores were tiled in a 2-dimensional routing mesh and the router blocks of each core

formed the backbone of the mesh. When a neuron of a core spikes, an associated AER

(see Sec. 2.2.1) routing packet (stored in the local memory of the core) is sent to the local

input terminal of the router. The router uses the information in the packet to direct it in

one of five directions – east, west, north, south or local. Each router was also responsible

for communicating traffic coming from the neighboring cores in each direction of the

2-dimensional mesh. A block diagram of the router is shown in Fig. 2.10.

The AER routing packet produced by a spiking neuron is shown in Fig. 2.11. The

packet encodes the address of one axon anywhere in the system. 5-bit dx and a dy fields

in the packet relatively address the destination core by encoding the number of routing
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Figure 2.10: Block diagram of the router associated with each core. The “To Array” and

“From Array” blocks communicate packets to and from the local core. The “Forward East”

and “Forward West” blocks communicate packets coming from each of the horizontal directions

in the mesh. The “Forward North” and “Forward South” blocks do the same for the vertical

directions in the mesh.

hops in the horizontal and vertical directions of the mesh respectively. At each hop, the

router decrements the value in the dx field (for a horizontal hop) or the dy field (for a

vertical hop). A 4-bit dt field in each packet encodes a delivery time that allows users to

configure axonal delays. A 8-bit axon field in each packet encodes the address of the axon

in the crossbar memory (see Sec. 2.2.1) of the destination core. The dt and axon fields

are decoded by the scheduler block of the destination core to assert the destination axon

at some time of the simulation. A necessary condition to maintain 1-1 correspondence

between hardware and software (see Sec. 2.2.1) is that the routing network routes the

spike to the destination core within dt ticks of the global timestep.
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Fig. 1. The core consists of axons, represented as rows; dendrites, represented
as columns; synapses, represented as row–column junctions; and neurons that
receive inputs from dendrites. The parameters that describe the core have
integer ranges as indicated.

The structure of the core consists of K axons that connect via
K × N binary-valued synapses to N neurons. We denote the
connection between axon j and neuron i as Wji.

The dynamics of the core is driven by a discrete time step
that is used to implement a discrete-event simulation. Let t
denote the index that denotes the current time step. Typically,
t has units of milliseconds.

Each axon corresponds to a neuron’s output that could either
reside on the core or somewhere else in a large system with
many cores. At each time step t, each axon j is presented with
an activity bit Aj(t) that represents whether its corresponding
neuron fired in the previous time step. Axon j is statically
designated as one of three types Gj , which assumes a value
of 0, 1, or 2; these types are used to differentiate connec-
tions (e.g., excitatory or inhibitory) with different efficacies.
Correspondingly, neuron i weighs synaptic input from axon j
of type Gj ∈ {0, 1, 2} as S

Gj

i . Thus, neuron i receives the
following input from axon j:

Aj(t)×Wji × S
Gj

i .

For our neurons, we use a leaky integrate-and-fire model
(single compartment) parameterized by its membrane
potential V (t), leak L, threshold θ, and three synaptic values
S0, S1, S2 that correspond to the different axon types. The
membrane potential of neuron i is updated in each time step as

Vi(t+ 1) = Vi(t) + Li +
K�

j=1

�
Aj(t)×Wji × S

Gj

i

�
.

When V (t) exceeds its threshold θ, the neuron produces a
spike and its potential is reset to 0. We also enforce that
negative membrane potentials are clipped back to 0 at the end
of each time step.

III. EVENT-DRIVEN IMPLEMENTATION

To implement the above specification in hardware, we are
presented with non-trivial tradeoffs between power, perfor-
mance, and density. For our current design, we chose to
minimize active power consumption, meet (or exceed) real-
time performance, but did not aggressively pursue density
optimizations. First, our strategy to reduce active power is to

perform neural updates in an event-driven manner. Specifically,
we followed an asynchronous design style, where every block
performs request-acknowledge handshakes to perform quasi-
delay insensitive communication (no clock). Next, our strategy
to meet and exceed real-time performance is to implement all
neurons using dedicated circuits (non-multiplexed), allowing
all the neural updates to happen in parallel. The cost of this
extreme parallelism, however, is relative density inefficiency,
which is in part mitigated by use of a dense technology.
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Fig. 2. Internal blocks of the core include axons (A), crossbar synapses
implemented with SRAM, axon types (G), and neurons (N). An incoming
address event activates axon 3, which reads out that axon’s connections, and
results in updates for neurons 1, 3 and M.

Based on these considerations, we arrived at a block-level
implementation of our neurosynaptic core that consists of
an input decoder with 1024 axon circuits, a 1024 × 256
SRAM crossbar, 256 neurons, and an output encoder (Fig. 2).
Communication at the input and output of the core follows
an address-event representation (AER), which encodes binary
activity, such as A(t), by sending the locations of active
elements via a multiplexed channel [4]. For each time step,
the detailed operation of the core commences in two phases:
the first phase implements the axon-driven component, and the
second phase implements a time step synchronization.

In the first phase, address-events are sent to the core one
at a time, and these events are sequentially decoded to the
appropriate axon block (e.g., axon 3 from Fig. 2). On receiving
an event, the axon activates the SRAM’S row, which reads
out all of the axon’s connections as well as its type. All
the connections that exist (all the 1’s) are then sent to their
respective neurons, which perform the appropriate membrane
potential updates; the 0’s are ignored. After the completion
of all the neuron updates, the axon block de-asserts its read,
and is ready to process the next incoming address event; this
continues until all address events for the current time step are
serviced.

In the second phase, which occurs once every millisecond,
a synchronization event (Sync) is sent to all the neurons. On
receiving this synchronization, each neuron checks to see if its
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Figure 2.11: The AER routing packet associated with each neuron.

The AER packet design along with the on-chip crossbar memory structure (Sec. 2.2.1)

results in efficient spike-based communication. When a neuron spikes it sends out one
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packet addressing only one axon of the whole system instead of addressing its postsynaptic

neurons individually. The drawback of this is that the postsynatpic targets of a neuron

has to be restricted to one core (and 256 neurons) of the system2. As noted in Sec. 2.2.1,

the integrated crossbar synaptic memory inside the core results in a drastic reduction of

distances that data has to travel across the system compared to an implementation that

uses off-chip memory.

The router was constructed with asynchronous QDI circuits that naturally mimic

the event-driven nature of neural communications. In a typical application, neurons in

a core will stay inactive for relatively long periods of time with intermittent bursts of

spikes caused for example by some change in the external environment that the neurons

represent. Spikes therefore are not expected to create regular traffic patterns in the

router and therefore a synchronous design would result in energy overheads or extra

circuit complexity.

The circuit-level description of the router and its deadlock free operation in the mesh

are described in [14].

Circuitry for chip-to-chip spike communication at the edges of the chip enable the scal-

ability of True North to multi-chip systems. These circuits implement serialization and

deserialization processes that multiplex AER packets crossing chip boundaries through

limited I/O pins. Before exiting a row (or column) of a mesh, each packet is tagged with

a 6-bit value to identify the row (or column) of the destination mesh that the packet is

to be delivered to.

The serialization and deserialization processes were implemented with asynchronous

merges and asynchronous controlled splits as shown in Fig. 2.12. The splits at the des-

tination use the 6-bit tag to direct the packet towards its destination in the receiving

chip. With these processes at all four edges of a chip, multiple chips can seamlessly tile

together without any modification to the routing processes inside a chip.

2This restriction can be overcome using multi-stage synaptic communications using
multiple neuron instantiations to simulate one neuron.
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Figure 2.12: Chip-to-chip serialization/deserialization process illustrating the communication

of AER packets across chip boundaries. The merge tree adds a tag to the AER packet and the

split tree uses the tag to direct the packet towards its destination. The padded bits are stripped

off before the packets enter the receiving mesh.

2.3.2 Core Control

Whereas Golden Gate (Sec. 2.2) has 256 parallel neuron datapaths per core, True North

uses one multiplexed datapath block to sequentially update the state of all 256 neurons

in a core. This design choice lowers the area footprint of the neurons and consequently

enables the implementation of a more complex neural update equation [21] within aggres-

sive area constraints. The latency overhead associated with multiplexing is not significant

because neural updates are in the millisecond scale (orders of magnitude slower compared

to transistor switching speeds) and all 256 updates are carried out well within 1 millisec-

ond unless held up by the spike communication system (see below). The variables and

parameters of each neuron in a core reside in a memory array that is integrated with the

synaptic memory array (Sec. 2.2.1) of the core. The memory block is tightly localized

with the datapath block, and with the small feature sizes of a 28 nm process, the energy

overhead associated with data movement from the memory onto the multiplexed neural
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datapaths is not significant.

Parallelism is maintained at the multi-core level with 4096 cores operating in parallel

and communicating through the mesh routing fabric.

A control block inside each core coordinates the activity of the other blocks to imple-

ment the multiplexing. This is carried out with the following steps and is illustrated in

Fig. 2.13.

1. At the positive edge of the global synchronization signal (“Time Step” in Fig. 2.13a)

the control communicates with the memory to assert the wordline of one memory

row. Consequently, the variables and parameters of a neuron are read by the neuron

datapath, the state of the configured connections of the neuron are read by the

control, and the value of the output AER packet of a neuron is buffered on the

local input terminal of the router. The control also accesses the state of the axons

in the given timestep from the scheduler. A sub-block of the control carries out a

bit-wise AND between the state of the connections and the state of the axons.

2. Through a series of blocks (represented by T in Fig. 2.13a) that implement token-

ring mutual exclusion [19], synaptic integration is carried out in the neuron datapath

for each active synapse (the output of the bit-wise AND). Each of these blocks store

the type information of its corresponding axon. An axon can be one of four types

representing different strengths of excitatory or inhibitory inputs to the neuron

(similar to the synaptic integration in Golden Gate described in Sec. 2.2). At the

arrival of the token in a token block, a clock signal is generated and the synapse

type communicated to the synchronous neuron datapath (see below) if the token

block has an active synapse. At the end of the period of the generated clock, the

token block passes the token to its neighbor.

3. After all axons have been accounted for, a final token block communicates with the

router. The router in turn communicates with the neuron, and in the event of a

spike the buffered AER packet is sent out from the core.
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4. The updated state of the neuron is stored back into memory.

5. The steps are repeated for 256 neurons in sequence. Note that in the event of high

traffic congestion in the local routing network, the token can circulate back to the

block that communicates with the router before the router is able to send out the

packet of the previous spiking neuron. In such a scenario the system will stall until

the communication network frees up.
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Extended Data Figure 1: Layout and operation of the neurosynaptic core, which accounts for 256 neuron, 256 axons, and 256× 256 synapses. Top Layout of the five
main blocks of the core (rotated from Fig. 1g for readability). Neuron circuit performs synapse, leak, and threshold operations for all 256 neurons. Memory stores the
synaptic connections, neuron parameters, neuron state (VM), and neuron target address (Route), organized so that each row contains all information for each neuron
(N0 . . .N255). Scheduler queues incoming spikes by writing each one in a custom dual-port memory. The 256 columns correspond to input axons and the 16 rows
correspond to delivery times (T0 . . .T14). Router passes spikes between adjacent cores, as well as the local core. The Router’s datapath allows any neuron to transmit
to any axon up to 255 cores away in both x and y directions (where a single chip is 64 × 64 cores). Controller sequences core operation, reading the axon vector
A(t) from the Scheduler, reading and writing each neuron’s state once per time step, and injecting spike events into the Router. Bottom Core timing diagram. At the
beginning of a time step (Global Timer rising edge) the first row of the Memory (N0, representing neuron 0’s data) and the first row of the Scheduler (T0, representing
axon events for the current time step) are copied to the Controller. The Controller then compares the ith axon–synapse pair in sequence (the result is stored as Si, and
if they are both logic 1’s (axon is active and synapse is active), an update is issued to the Neuron (NeuronInstruct), which specifies the value to add to the membrane
potential (VM); the controller skips the instruction in any other case. After all updates (S0 to S255) are evaluated, a leak is applied (Lk), the membrane potential is
compared to a threshold (Thr) and if there is a spike, it is injected into the Router (Spk) with its predefined route. The updated membrane potential is then written back
into the Memory. Neurons 1 to 255 are processed in a similar fashion, where the controller reads each row of memory in succession, and performs the necessary updates.
When all neuron updates are processed, the Scheduler clears its current row (and the core’s local timer is advanced to the next row of the Scheduler, not shown), and
the core awaits the next time step (slack). For a typical network with neurons that fire at an average rate of 20Hz and make an average of 128 connections, a core will
receive five incoming spike events in a 1ms time step, which corresponds to 640 neural updates (with 128 active synapses per neuron). Out of the possible 256×256
neural updates in the time step, our event-driven Controller eliminates 99% of them, saving unnecessary circuit switching in the Neuron. The core structure reduces data
communication energy; its main circuit blocks are co-localized to reduce distance of data movement and communication is orchestrated to reduce the number of data
transfers.
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Figure 2.13: (a) The sub-blocks of the controller consist of an initialization block (Init)

that initializes update at the arrival of the global timestep, a set of token blocks (T) that

communicate with other elements of the core, and a bit-wise AND block that determines the

state of the synapses. (b) Layout of the core illustrating its operation.
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The control sub-blocks (Fig. 2.13a) are designed with asynchronous event-driven cir-

cuits that naturally fit with the other event-driven communication blocks of the system

(namely the router and the scheduler). This design style is especially effective in the

token blocks of the control since the state of the synaptic inputs are not known apriori –

they are dependent on the network activity and the connectivity configuration. Instead

of having to wait for predefined clock periods, the asynchronous token blocks swiftly skip

inactive synapses thereby completing the neural updates at a faster pace. The extra

speed is especially critical at times of spike traffic congestion in the local routing network

that can hold up progress of sequential neural updates, as described above, and endanger

the 1-1 correspondence feature of the chip.

In the event that traffic congestion slows down the operation of the control to a point

where it is unable to carry out all 256 updates within the global timestep (1 ms), an error

signal is sent out of the control to indicate a breakdown of 1-1 correspondence between

hardware and software. In this scenario the user would be required to reconfigure the

network (e.g. by mapping the network more efficiently or reducing the network activity)

if 1-1 correspondence is to be maintained.

In contrast to the control, router and scheduler blocks, the neuron block was con-

structed with synchronous circuits. This allowed the use of commercial design tools that

are more streamlined than asynchronous design tools. In addition, the reduced number

of wires in a synchronous design compared to a QDI asynchronous one (where multiple

wires are required to represent one bit) resulted in a smaller footprint of the datapath

elements.

2.3.3 Results

True North was fabricated in Samsung’s 28nm process (Fig. 2.14 a and b) [20]. Each chip

consists of 64 × 64 cores tiled in two dimensions and occupies an area of 4.3cm2. Each

core measures 390um× 240um (Fig. 2.13b), 18 times smaller than the core of Sec. 2.2.
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A probabilistically-connected recurrent network with neurons firing at 20Hz and 50%

utilization of the crossbar synapse array was configured onto each of the cores. At 0.775V

the chip consumed 70mW , corresponding to 26pJ per synaptic event and 70uJ per mil-

lisecond timestep [20]. This is four orders of magnitude lower than a general-purpose

processor running the same model [22].

With each chip supporting a million neurons and 256 million synapses, multi-chip

systems (Fig. 2.14c) can be constructed to implement millions of neurons and billions

of synapses. The system thus provides a platform for implementing scalable brain-like

computations in compact, energy-efficient and real-time systems.
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directed connections from axons to neurons. b, Multi-core network at chip scale and c, multi-chip
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Neurons behaviors are individually programmable with two examples shown. e, Functional chip
architecture is a two-dimensional array of cores where long-range connections are implemented
by sending spike events (packets) over a mesh routing network. f, Routing network extends across
chip boundaries through peripheral merge and split blocks. g, Physical layout of core in 28nm
CMOS process for 256 neurons and 256×256 synapses. h, Chip layout of 64×64 cores, wafer,
and chip package. i, Chip periphery to support multi-chip networks.
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Figure 2.14: (a) The layout of the chip consists of cores tiled in a 64× 64 mesh. (b) Picture

of chip die. (c) Illustration of chip tiling for a multi-chip system.



Chapter 3

Spike-Based Information Coding
Trains of spikes between neurons communicate information across a neural circuit. These

spike trains are encoded as either rate codes or temporal codes in a single neuron or in

a population of neurons. Codes are distinguished by their time scale of operation1, their

tolerence to noise, and their energy efficiency. This section describes the implementation

of these spike codes in Golden Gate (the neuromorphic core of Section 2.2). The neural

computations described in Section 4 use these codes.

3.1 Rate Codes

Neurons may change their average firing rate over some interval of time as the strength of

their inputs are varied. Such firing rate modulations are ubiquitous across the brain [23].

Examples of neurons that use firing rate codes include retinal ganglion cells, olfactory

sensory neurons, and motor neurons at neuromuscular junctions.

The neurons in Golden Gate support a rate coding mechanism. As the rate of AER

packet receipt (firing rate stimulus) of a neuron increases, the neuron integrates faster

towards its spike threshold and consequently increases its rate of AER packet transmission

(firing rate response).

Three parameters (freely configurable by the user) in the neuron affect the output

transmission rate given a receipt rate. These are the periodic leak (L), the firing threshold

(θ), and the weight of the synaptic input (W ). They determine the number of excitation

cycles required to reach threshold. This value is ceil[θ/W ] with L = 0, where ceil[x] refers

to the rounding of x to the next highest integer.

For a neuron with L = 0, the time between two consecutive AER output packets po

1Spike codes in biological neural circuits typically have precisions of a few milliseconds
to hundreds of milliseconds. The precision of spike codes in Golden Gate is bound by the
global time step of operation.

38



39

(the period of spiking) can be expressed in relation to the time between two consecutive

AER input packets pi as

po = ceil[
θ

W
]pi (3.1)

The output firing rate fo (equals 1/po) of the neuron is thus related to the input firing

rate fi (equals 1/pi) as

fo = ceil[
W

θ
]× fi. (3.2)

A non-zero transmission rate of a neuron with zero leak is thus linearly related to the

receiver rate with a slope determined by the value of W/θ as shown in Fig. 3.1.

The amount of traffic in the local AER routing network of a neuron affects how

large its AER transmission/receipt rates can be. The maximum rate is bounded by the

temporal precision (the period of the global synchronization signal of Fig. 2.3 – usually

set to 1 ms) of the system.

Figure 3.1: Firing rate code with zero leak of a Golden Gate neuron. Different colors represent

different values of W/θ. Higher slopes correspond to higher ratios.
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An input-independent temporal component to the neural voltage integration is added

by setting a non-zero leak. In between AER inputs, there is now a decrease of the neuron

voltage. The net excitation of the neuron between two consecutive excitatory synapses

is W − (L × pi). The number of excitatory synapses required to excite the neuron to a

voltage of θ is

θ

W − (L× pi)
. (3.3)

The number of excitatory synapses required to excite the neuron to threshold is

ceil[
θ

W − (L× pi)
]. (3.4)

The relationship between pi and po is thus

po = ceil[
θ

W − (L× pi)
]× pi, (3.5)

and I/O firing rate relationship is

fo = ceil[
θ

W − ( L
fi
)
]× fi. (3.6)

As fi changes, the slope of the fo − fi curve encounters discrete jumps because of the

ceil[] term. For example, consider a neuron with θ = 30mV , L = 1mV and W = 10mV

that has one input. As the period of the input changes from pi = 4ms to pi = 3ms

the number of presynaptic spikes required to excite the neuron to threshold stays at 5.

However as pi reduces further to 2ms, the number of presynaptic spikes required for a

postsynaptic spike changes to 4. These abrupt changes correspond to changes in the slope

of the po − pi (and fo − fi) curve.

Rate codes are robust to interspike-interval noise when spikes are averaged over wide

time windows. Encodings over narrower windows are less tolerant because of erroneous

inclusion or exclusion of spikes that may result from spike-time jitters.2

2Because of the high signal-to-noise ratio of digital circuits, spike-time jitters in digital
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A population of neurons can represent a vector with a firing rate code, with individual

neurons representing individual components of the vector. A population rate code in

Golden Gate is represented in Fig. 3.2, where a group of 8 neurons is driven by a 8-

dimensional input signal.

Figure 3.2: Peri-stimulus time histogram illustrating population rate coding in Golden Gate.

The presynaptic spike rate of each neuron is chosen from a Gaussian distribution with mean =

100 Hz, standard deviation = 50 Hz.

3.2 Temporal Codes

A temporal code enables faster and more energy-efficient processing compared to a rate

code by using the precise spatiotemporal pattern of individual spikes in a population of

neurons to encode information. This type of code however may have a lower tolerance

to interspike interval noise especially when defined over fine timescales. Temporal codes

have been observed in numerous neural circuits, such as those in the hippocampus, the

olfactory bulb, and the primary visual cortex [23].

neuromorphic systems are solely from the noise associated with external signals or internal
random number generators.
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In Golden Gate, the timings of neuronal spikes are maintained across the system

within a precision determined by the global synchronization clock (usually 1 ms). This

feature, along with the neuronal leak and the axonal time delay, can be exploited for

neural processing using temporal codes.

One form of a temporal code is a latency code. Since the strength of excitation of a

Golden Gate neuron translates to how fast it integrates its interval voltage, the time ts

between the start of a stimulus and the generation of a spike can code for input strength.

For a neuron with a threshold of θ, a leak of L and one synaptic input with weight W

and period pi, ts (related to Eq. 3.3) can be expressed as

ts =
θ

W − (L× pi)
× pi. (3.7)

A common temporal reference frame is necessary in a population of neurons coding

for a stimulus vector using latency codes. In-vivo such a reference frame may be provided

for example by oscillatory potentials arising from shared interactions across a population

[23]. Neurons lock their spike times to a constant phase of the oscillation that reflect their

activation levels and therefore this coding scheme is also referred to as a phase code. One

way of mimicking this mechanism in Golden Gate is by periodically driving a common

inhibitory rhythm that connects to all neurons in a population and resets their voltages

to zero. This implementation is illustrated in Fig. 3.3 where a rate-coded input vector

is transformed into a latency code. The timing of a neuron’s spike after inhibition is

released is dependent on the strength of its input. Multiple spikes within one oscillation

cycle from the same neuron is prevented by “handshaking” with a spiking neuron’s input

that results in a shut down of the input until the start of the next cycle.

Another type of temporal code that is related to a phase code but does not necessitate

an explicit temporal reference frame is the interspike interval code. Here, information is

encoded by the time between two or more consecutive presynaptic spikes. In its simplest

form, a neuron may code for the timing difference between two excitatory synapses. If
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20

common signal, for example a common inhibitory rhythm, that connects to all neurons in

a population. This is illustrated in Fig. 3.4 where a rate-coded input vector is tranformed

into a latency code under a common inhibitory rhythm. The timing of a neuron’s spike

after inhibition is released is dependent on the strength of its input. Every neuron has

a refractory period that prevents it from spiking more than once in the oscillation cycle.

The refractory period is implemented by partnering each neuron with in inhibitory neuron

that keeps inhibiting the former for some period of time after a spike. The refractory

period ends when a delayed self-inhibitory input shuts down the inhibitory neuron.

Figure 3.4: (a) Depiction of a network implementing a latency code under a common inhibitory

rhythm. (b) Spike patterns when the network in (a) is implemented in Golden Gate.

Remove colors from fig. Remove the spikes. Put in raster plot from simulations.
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Figure 3.3: Latency code of Golden Gate neurons under a common inhibitory rhythm.

the presynaptic spikes come within some time window, the neuron spikes. Otherwise,

the reduction in voltage from the leak of the neuron prevents it from crossing its spike

threshold voltage. Such a neuron is called a coincidence detector, and the boundaries of

the time window it detects is set by its internal parameters. The time to spike ts of a

coincidence detector with two inputs of same weight can be expressed by Eq. 3.7, with

pi representing the period between presynaptic spikes in the two input terminals.

Coincidence detectors along with axonal delays in Golden Gate can be utilized to

process time varying features in a neuronal network. An example is provided in Fig. 3.4

where the movement of a sound source is represented by a population of neurons. Sound

may arrive at different times to two sensors located at opposite sides of Golden Gate. A set

of coincidence-detecting neurons (Fig. 3.4(a)) arranged systemically along axonal delay

lines inside the chip can detect this difference (each input of each neuron is represented

by a distinct axonal line in the chip). For example, the top-most neuron has a short

delay line from the left sensor but a long delay line from the right sensor. When the

sound source is exactly adjacent to the right sensor, the axonal delay in the right sensor

path compensates for the time lag between the arrival of the sound in the two sensors.

The neuron would thus receive coincident inputs and respond maximally, decoding the
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location of the sound source. Neural circuits in the auditory pathways of birds use this

mechanism for sound localization [24]. As the sound source moves from the left of the

core all the way to the right in a semi-circular trajectory and then back to its original

position (Fig. 3.4(b)), distinct neurons in Golden Gate spike representing the source in

neural space (Fig. 3.4(c)). A software simulation running the same algorithm confirms

that our chip is in 1-1 correspondence.

Interspike interval coding is not restricted to coincident detectors in Golden Gate.

For example, the postsynaptic spike rate of a neuron can be modulated based on the

temporal proximity of its presynaptic spikes.
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Fig. 6. Sound localization using axonal delays and coincidence detection. Coincidence detecting neurons spike when their inputs come within a time
window defined by the neurons’ internal parameters. Left: There is a difference in the arrival times of a sound in two sensors located at opposite sides
of a system (e.g. two ears). Hence the sensors contain information about the location of the sound source. This information is decoded by a set of
coincidence-detecting neurons (circles) arranged systemically along axonal delay lines. For example, the top-most neuron has a short delay line from
the left sensor but a long delay line from the right sensor. When the sound source is exactly adjacent to the right sensor, the axonal delay in the right
sensor path compensates for the time lag between the arrival of the sound in the two sensors. The neuron would thus receive coincident inputs and
respond maximally, decoding the location of the sound source. Avian auditory pathways use this mechanism for sound localization [12]. Center: The
neurosynaptic core can use a similar method for localizing a sound source based on the inputs of two sensors (not shown). The sensors would have to
receive the sound and convert them into address-event packets. The first input (corresponding to the sensor closer to the sound source) will hit several
axon lines that implement different axonal delays using the scheduler (in our prototype system, the operation of the scheduler is replicated outside the
chip). Each neuron in the core will connect to one of these axon lines. The second input will hit a separate axon line that connects to all neurons.
Those neurons that have temporally coincident inputs will spike maximally, representing the location of the sound source in neural space. The difference
between the input arrival times in the two sensors will typically be in the 10s of microseconds range. The sensors may amplify this difference to keep
the core at its usual (millisecond) precision range, or the time step in the core may be made more precise. Right: The dynamics of the chip when the
axon lines are driven in the manner suggested. The sound source starts at the left of the core, moving all the way to the right in a semi-circular trajectory,
and then back to its original position. As the source moves, a unique neuron spikes to indicate the new location. A total of 50 neurons were included
to identify 50 distinct positions. A software simulation running the same algorithm confirms that our chip is in 1-1 correspondence.
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Fig. 6. Sound localization using axonal delays and coincidence detection. Coincidence detecting neurons spike when their inputs come within a time
window defined by the neurons’ internal parameters. Left: There is a difference in the arrival times of a sound in two sensors located at opposite sides
of a system (e.g. two ears). Hence the sensors contain information about the location of the sound source. This information is decoded by a set of
coincidence-detecting neurons (circles) arranged systemically along axonal delay lines. For example, the top-most neuron has a short delay line from
the left sensor but a long delay line from the right sensor. When the sound source is exactly adjacent to the right sensor, the axonal delay in the right
sensor path compensates for the time lag between the arrival of the sound in the two sensors. The neuron would thus receive coincident inputs and
respond maximally, decoding the location of the sound source. Avian auditory pathways use this mechanism for sound localization [12]. Center: The
neurosynaptic core can use a similar method for localizing a sound source based on the inputs of two sensors (not shown). The sensors would have to
receive the sound and convert them into address-event packets. The first input (corresponding to the sensor closer to the sound source) will hit several
axon lines that implement different axonal delays using the scheduler (in our prototype system, the operation of the scheduler is replicated outside the
chip). Each neuron in the core will connect to one of these axon lines. The second input will hit a separate axon line that connects to all neurons.
Those neurons that have temporally coincident inputs will spike maximally, representing the location of the sound source in neural space. The difference
between the input arrival times in the two sensors will typically be in the 10s of microseconds range. The sensors may amplify this difference to keep
the core at its usual (millisecond) precision range, or the time step in the core may be made more precise. Right: The dynamics of the chip when the
axon lines are driven in the manner suggested. The sound source starts at the left of the core, moving all the way to the right in a semi-circular trajectory,
and then back to its original position. As the source moves, a unique neuron spikes to indicate the new location. A total of 50 neurons were included
to identify 50 distinct positions. A software simulation running the same algorithm confirms that our chip is in 1-1 correspondence.
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Figure 3.4: Sound localization using axonal delays and coincidence detection. (a) Systemic ar-

rangement of axonal delay lines. (b) Motion of sound source across the chip. (c) Spatiotemporal

spike representation of the sound source in neural space.



Chapter 4

Canonical Neural Computations
The brain uses a set of canonical neural computations to implement common operations

for solving different problems. These computations are observed in a wide range of neural

systems across multiple species and they form modules with which larger systems are

constructed. Implementing them in Golden Gate (the neuromorphic core of Section 2.2)

is a step towards using the system for brain-like perception, control and cognitive tasks.

The mechanisms with which these computations are implemented vary between dif-

ferent regions of the brain and between the brains of different species. Here we use the

mechanisms available in Golden Gate to mimic those computations. Four canonical neu-

ral computations are illustrated. Each section describes the what, where and why of a

computation and its implementation in the chip.

4.1 Intensity Invariance

In the brain, the stimuli of a population of neurons can vary across a large range of in-

tensities. For example, across visual environments light intensities range over 10 factors

of 10 [25]. The visual system recognizes the identity of objects despite this variation in

illumination levels. Similar examples abound across the brain [25], such as odor recogni-

tion across a wide range of concentrations in the olfactory system and texture recognition

across a wide range of pressures in the somatosensory system. Neurons in the brain and

in Golden Gate therefore need to recognize patterns of activity across a large dynamic

range.

4.1.1 Relational Representations

The firing rates of neurons in both systems have an upper limit. In the brain, the time

constants of the molecular processes underlying spike generation bound the maximum
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firing rate of typical neurons to approximately 1 kHz. In Golden Gate the maximum

firing rate of a neuron is also limited to 1 kHz by the synchronization clock (the global

timestep) that needs to be slow enough to allow the multiplexed communication circuits to

reliably transfer spikes1. The available dynamic range of firing rate responses of neurons

in both systems is equal to the encoding time window of the firing rates. For example

with an encoding window of 10 ms, a neuron can fire with one of 10 distinct rates between

0.1 kHz and 1 kHz. Therefore, encoding large dynamic ranges necessitates large encoding

time windows that reduce the information processing speed of the system. Alternatively,

large neural populations can be employed to distribute the dynamic range in space (i.e.

use lots of neurons to represent a wide range of stimuli) with a corresponding increase in

area and energy requirements of the system.

To represent and recognize patterns across large dynamic ranges without incurring

these overheads, neural circuits use relational representations of stimulus values. That is,

instead of representing the absolute level of input, a neuron’s activity reflects the amount

of input relative to the input received by other neurons in a population. The operating

points of neurons (the region of high slope) in their rate-coded input-output graph will

shift based on the global level of activity in such a representational scheme. A wide

dynamic range can be represented by a neuron with a narrow dynamic range by such

modulations of the operating point. Stimulus identity is thereby encoded in the relative

population activity that remain largely invariant to absolute changes in intensity.

4.1.2 Global Inhibition

A possible mechanism with which operating points can be modulated and relational

representations created is via a global inhibitory network that inhibits the activity of

1In the prototype Golden Gate chip, the 1 ms period of the global synchronization clock
is much larger than what is necessary to communicate all spikes between 256 neurons.
However, for the larger multi-core/multi-chip system described in Sec. 2.3, the full period
of the clock will often be necessary to communicate all the spikes across the system within
a timestep.
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every neuron based on the mean level of input on the population. Such a mechanism,

illustrated in Fig. 4.1, reflects properties of neural circuits in the olfactory bulb [26] and

primary visual cortex [25] where principal neurons are inhibited by interneurons that

increase their activity in proportion to the global level of afferent input.

P0 P1 PC

S2S1S0

Excitatory Synapse Inhibitory Synapse

I0
S1

S2
I1

S0

S2
I2

S0

S1

Figure 4.1: Illustration of a global inhibitory network for creating relational representations

between three principal neurons. Inhibitory interneurons (I0, I1, I2) deliver inhibition propor-

tional to the global amount of input activity (S0, S1, S2) on the principal neurons (P0, P1,

P2). As a result principal neurons reduce their activity in proportion to the total input.

Golden Gate can be configured to implement inhibitory networks like Fig. 4.1. Fig. 4.2

shows the I/O curve of a neuron in the chip when it is part of such a network of 10 principal

neurons (P cells), each inhibited by an interneuron (I cell) and excited by a firing rate

stimulus2 (S). The I cell network is fully connected as in Fig. 4.1. When the mean level

of input in the population is 0.1 kHz, the high-slope region of the curve falls around the

input value of 0.1 kHz. As the mean activity increases, the curve shifts its operating

point to higher input levels. Relational representations of the input across wide dynamic

ranges are created in the neural population in this way. The parameters used in the

network are presented in Table. 4.1.

A drawback of networks such as Fig. 4.1 is that they do not scale efficiently with the

dimensionality of the stimulus because of all-to-all connections among the I cells. Better

scalability is achieved by implementing dense local connections among I cells as in Fig. 4.1

2S is represented by 10 inputs with the same average firing rate.
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Figure 4.2: Operating Point Modulation. The high-slope region of a neuron’s rate-coded I/O

curve shifts based on the mean level of activity of a neural population. As a result a relatively

narrow dynamic range of an individual neuron is used to represent input with a large dynamic

range via relational population activity.

Table 4.1: Parameter Values for Fig. 4.1

Neuron Threshold (mV) Leak (mV) Wexc (mV) Winh(mV )

Principle Neuron 21 1 20 -50

Interneuron 25 16 20 -

along with a few longer range projections via additional shared interneurons (S Cells).

Each S cell is driven by I cells in its local neighborhood and delivers excitation onto other

I cells at various locations in the network. High clustering of the I cells and the long-range

projections via the S cells result in a short average path length in the inhibitory network

and consequently a uniform level of I cell activation across the network. Consequently a

uniform level of inhibition (proportional to the total amount of stimulus drive) is delivered

onto each P cell – a small-world network effect. This structure is depicted in Fig. 4.3,

where the S cells and the I cells are shown.
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A B

FIGURE 6 | Normalization of the total activity of mitral cells via the
ET/sSA network. (A) Illustration of the lateral connectivity of sSA cells.
Glomeruli receive inputs from the axons of multiple sSA neurons located at a
characteristic distribution of distances away. These axons branch extensively,
although for clarity this is not shown. The sSA neurons receive synaptic input
from ET cells in a small number of immediately neighboring glomeruli
(depicted as the gray dendrites of the black sSA cells). Figure adapted from
Cleland (2010). (B) Crossbar connectivity in the chip to replicate the

normalization effects of the ET/sSA lateral network. Each sSA neuron receives
input from ET cells from the same row. The PGe and ET neurons of each of
the 48 columns receive input from 10 sSA neurons, most of which are located
in neighboring rows, but some of which are more than five rows away. Spikes
generated by an sSA neuron are routed to its axon in the crossbar which
synapses with the PGe and ET cells of 10 different glomeruli. The outputs of
the PGe and ET neurons also are routed to their axons in order to make the
appropriate inter- and intra-glomerular connections (see Figure 1).

FIGURE 7 | Chip data illustrating the enhanced signal-to-noise ratio
(SNR) in a mitral cell compared to an OSN. A constant
low-concentration odor was presented between 30 and 50 ms (solid
black line). This increases the spiking probability of individual OSNs
during one time step (1 ms) from 0.1 to 0.15. Background spiking is

depicted by open circles; additional odor-evoked spikes are depicted by
solid black dots. Since multiple OSNs converge on one mitral cell, mitral
cell activity during the stimulus period exhibits a significant increase over
its background level. The signal-to-noise ratio in an OSN is 0.3 while that
in the mitral cell is 0.8.

in the overlap of the combinatorial representations of similar ana-
lytes creates a sharply decorrelated set of odor representations. The
basic decorrelation function is illustrated in Figure 9.

CONCENTRATION INVARIANCE
Figure 10 illustrates the normalizing effects of the ET/sSA cell
network on the activity of mitral cells in the chip. The uniform
level of activation integrated by this network excites PGe and ET
cells in all glomeruli and thereby uniformly inhibits all mitral
cells in proportion to the global average level of OSN activation.
This process generates a relational representation among mitral
cells in which the relative (rather than the absolute) pattern of

activity best represents the identity of an odor and also helps to
preserve recognizable odor-specific activity patterns across con-
centrations (concentration invariance). This normalization also is
necessary for NTCE to function across different concentrations.
Optimal concentration invariance still will be limited by sensor
non-linearities and ultimately may be improved by an adaptive
algorithm as discussed in Cleland et al. (2012).

The ET/sSA network is sparsely connected and fairly localized
in its projection topology (see Network Configuration). However,
the axonal profiles of this network contain sufficient long-range
projections to evoke small-world effects (Watts and Strogatz,
1998). As a result, this sparse, localized connectivity profile is
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Figure 4.3: An efficient arrangement for providing global inhibition. S cells (black) are driven

by I cells (grey) in its local neighborhood. The axons of the S cells branch to various distances,

although for clarity this is not shown. Each I cell receives inhibition from S cells various distances

away. This is depicted in the I cell shown in red. The short average path length between the

I cells as a result of the S cell projections result in their activity being approximately uniform

across the network. As a result, each P cell in the network receives a uniform level of inhibition

without the need for all-to-all connectivity among the I-cells.
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Biological neural circuits may use this solution [26] to reduce the metabolic costs

associated with providing global inhibition. The inhibitory effects of such a network

structure configured in Golden Gate is depicted in Fig. 4.4 [27]. The results shown are

for a network of 48 P cells, 48 S cells, and 96 I cells divided into two classes – one that is

driven by the same stimuli as a corresponding P cell and that drives local S cells, and the

other that is driven by S cells from various distances and that delivers inhibition onto a

corresponding P cell.

The reduction in the spiking activity of the network due to global inhibition is quan-

tified in Fig. 4.5. The global inhibition provided by different degrees of connectivity

among the inhibitory interneurons is depicted in Fig. 4.6. As expected, a small-world

connectivity results in better energy efficiency compared to an all-to-all network while

still delivering uniform global inhibition across the network.

Other mechanisms besides global inhibition are also at play to aid the construction of

intensity invariant representations over large dynamic ranges in the brain. For example,

the retina consists of photoreceptors with preferential sensitivities to different illumination

levels; and many retinal ganglion cells adapt to background light intensities, responding

only to temporal changes in intensity levels. The configurability of Golden Gate can be

used to mimic these mechanisms in addition to the global inhibition described above.
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A

B C

FIGURE 10 | (A) With the ET/sSA network off, mitral cell population
activity increases monotonically in proportion to input intensity (odor
concentration, [C]). The spikes of those mitral cells that are most sharply
tuned to the presented odor are depicted in red and indicated by red
arrows; additional, weakly activated mitral cells also are recruited in to the
active ensemble as concentration increases. With the ET/sSA network on,
aggregate mitral cell population activity remains largely independent of
concentration. Odor identity is represented by the profile of the most
sharply tuned mitral cells, and their relative activities remain essentially
stable after normalization. (B) Quantification of the normalizing effect of
the ET/sSA network. Spiking activity of mitral cells that are moderately or
poorly tuned to a given stimulus (i.e., the count of all black marks in the
raster of (A), excluding the spikes from sharply tuned neurons as denoted

in red) was plotted against odor concentration. The inhibitory effects of the
ET/sSA network limit or prevent firing in more weakly tuned mitral cells,
such as those that are recruited only at higher odor concentrations. At high
concentration the normalizing effects reduce the spike count by as much
as 80%. (C) Effects of ET/sSA network normalization on contrast
enhancement. Contrast was calculated as the total number of spikes in
the most strongly tuned neurons divided by the total number of spikes in
the population. With the ET/sSA network disconnected (top), the
recruitment of weakly tuned mitral cells by elevated odor concentrations
prevents improvements in contrast across mitral cell population activity.
With the ET/sSA network active (bottom), increases in concentration result
in net inhibition of marginally activated neurons, increasing the contrast
between them and the most strongly activated neurons.

ET/sSA network. Good normalization results were obtained for
sSA densities as low as four inputs per glomerulus. These results
demonstrate that a small-world network on the chip can achieve
close to the maximum normalization quality using up to 10 times
less energy compared to an all-to-all network. As we scale the sys-
tem (through multiple cores), this effect will become increasingly
significant, since all-to-all ET/sSA connectivity at larger scales
would consume an increasingly disproportionate share of chip
resources.

CONCLUSION
We have presented the design of a low-power neuromorphic chip
and have configured it to replicate the connectivity and functional

transformations of the glomerular layer of the mammalian olfac-
tory bulb. The architecture that we presented is both scalable
and practically extensible in that the 48 glomeruli of each core
are designed to communicate efficiently with the glomeruli of
other cores. With multiple cores in a chip and the utilization of
multiple chips in an operational system, this architecture could
approach and even surpass the numbers of neurons and synapses
in biological olfactory pathways.

This chip is designed to receive a primary olfactory repre-
sentation comprised of spike trains generated by broadly tuned,
concentration-sensitive sensors. With m distinct activation levels
of each sensor, m48 different odors can in principle be represented.
The convergence of 10 distinct sensors of the same type to one

Frontiers in Neuroscience | Neuromorphic Engineering June 2012 | Volume 6 | Article 83 | 10

Figure 4.4: Principle neuron spiking activity with and without the effects of global inhibition.

With the inhibitory network off, principal neuron population activity increases monotonically

in proportion to input intensity (concentration, [C]). The spikes of those neurons that are

most sharply tuned to the presented stimulus are depicted in red and indicated by red arrows;

additional, weakly-activated neurons also are recruited into the active ensemble as intensity

increases. With the inhibitory network on, aggregate principal neuron population activity

remains largely independent of intensity. Stimulus identity is represented by the activity profile

of the most sharply tuned principal neurons since their relative activities remain essentially

stable when global inhibition is delivered.
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Figure 4.5: Quantification of the inhibitory effects in Fig. 4.4. Spiking activity of neurons that

are moderately or poorly tuned to the stimulus (i.e., the count of all black marks in the raster of

Fig. 4.4, excluding the spikes from sharply-tuned neurons as denoted in red) is plotted against

stimulus concentration (intensity). With global inhibition, the spike count is approximately

equal across concentrations, consistent with unchanged relative population activity.



54

Imam et al. Olfactory bulb circuits in silicon VLSI

FIGURE 11 |The sparse connectivity of the ET/sSA network on the chip
is functionally equivalent to a fully connected network, but carries out
global normalization at a reduced energy cost. The abscissa is a
measure of the density of sSA connections, bounded by the extremes of a
fully isolated network at x = 0 and an all-to-all interconnected network at
x = 48. The primary ordinate (left) denotes the coefficient of variation
(CV% – the standard deviation as a percentage of the mean) of sSA activity
across the sSA population. Low CVs indicate high uniformity in sSA activity
across the network. The secondary ordinate (right) denotes the energy
consumed in the chip (at its present scale) by updating all synaptic inputs
when sSA neurons spike. Denser interconnectivity requires more energy.
The dotted vertical line denotes the density of sSA innervation presently
implemented in the chip. This reasonably optimized solution corresponds
directly to that which appears to be implemented in mouse and rat
olfactory bulbs (cf. Figure 5B in Cleland et al., 2007).

glomerulus increases the signal-to-noise ratio from 0.3 in the sen-
sors to 0.8 in the mitral cells. NTCE results in moderately tuned
mitral cells to be inhibited as much as 20% below their baseline
spiking activity, thereby sharpening the tuning curves of the mitral
cell population. Global normalization of mitral cell activity results
from the effects of small-world connectivity in the ET/sSA net-
work. The connectivity profile of this network follows a gaussian
distribution with the connection probability between ET cells and
sSA cells larger for cells closer to each other in the physical lay-
out of the chip. With a connectivity profile corresponding to 10
sSA inputs per glomerulus, global spike count reduces by as much
as 80% while largely preserving the activity of the most strongly
responsive mitral cells. The CV of sSA activity in this network is
within 5% of that in an all-to-all connected ET-sSA network while
consuming six times less energy. By making the ET/sSA connec-
tion sparser, the energy consumption could be reduced to 10 times
lower than that in a fully connected network, while keeping the CV
within 10%.

As a result of the transformations in the chip, the secondary
representation generated across mitral cell spike trains exhibits
an improved signal-to-noise ratio, and is sharply tuned and nor-
malized with respect to the global activity. Output representations
from the chip (illustrated in Figure 12) can be further processed,
analyzed, and/or classified by standard pattern recognition engines

FIGURE 12 | Mitral cell population activity in the chip in response to
the presentation of four different odors. This activity constitutes the final
output of the system in its present configuration. Spiking patterns from 24
of the 48 mitral cells on the chip are depicted. Odorant concentration [C]
was modulated as depicted at the bottom of the figure. Compared to the
primary representation of the chemical environment by the broadly tuned,
concentration-sensitive population of simulated sensors driving the chip,
this secondary representation is more sharply tuned, normalized, and
exhibits an increased signal-to-noise ratio. For final odor identification and
discrimination, this output activity can be sent to a standard pattern
recognition engine, or to biomimetic circuits representing higher
processing stages in olfactory pathways.
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Figure 4.6: A sparsely connected inhibitory network on Golden Gate is functionally equivalent

to a fully connected network, but delivers global inhibition at a reduced energy cost. The

horizontal axis is a measure of the density of interconnections among the inhibitory network,

bounded by the extremes of a fully isolated network at x = 0 and an all-to-all connected

network at x = 48. The primary vertical axis (left) denotes the coefficient of variation (CV%–

the standard deviation as a percentage of the mean) of inhibitory neuron activity across the

population. Low CVs indicate high uniformity in inhibitory activity, i.e. a uniform level of

inhibition on all principal neurons. The secondary vertical axis (right) denotes the energy

consumed in the inhibitory population. Denser interconnectivity requires more energy. The

dotted vertical line denotes the density chosen for a near-optimal chip implementation (results

in Fig. 4.4 and Fig. 4.5).
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4.2 Pattern Decorrelation

Interfering backgrounds from the environment as well as imprecision and noise in the

sensory transduction process3 can induce undesirable correlations between distinct neural

representations (an overlap in receptive fields), making it harder to differentiate between

them. Reduction of this correlation is another common operation that a wide range of

neural circuits in the brain implement. This operation, commonly referred to as pattern

decorrelation or pattern seperation, makes neural representations more distinct from one

another thereby facilitating subsequent decoding (readout) by downstream circuits.

Decorrelation in the brain is implemented between primary sensory neurons, for ex-

ample between retinal ganglion cells representing neighboring points in the visual field;

as well as between neurons that have higher-order receptive fields, for example between

orientation-selective neurons in the primary visual cortex. The computation can operate

within neural maps that are precisely organized in space such as the visual retinotopic

maps and auditory tonotopic maps; or it can operate within neural populations that do

not have a precise topographical organization, such as those in the olfactory system and

the hippocampus.

A variety of mechanisms implemented in neural circuits aid the construction of decor-

related representations. One mechanism is the sparse projection from a neural popula-

tion of N neurons to a neural population of K neurons [28]. Sparse denotes a projection

where K >> N and the number of afferent synapses S onto each of the K neurons is

small. Because of the increase in the dimensionality of the representation through such

a projection, any overlap between representations in the N neuron population will be

reduced in the K neuron population by an amount determined by the values of N , K

and S. Examples include axonal projections from retinal ganglion cells to pyramidal cells

of the primary visual cortex; and from mitral cells of the olfactory bulb to pyramidal

cells of the piriform cortex. Arbitrary networks can be set up in Golden Gate via the

3In addition to external sources of noise, biological neural circuits also have intrinsic
noise related to molecular processes.
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freely configurable crossbar, and therefore sparse projections can easily be implemeted.

With successive versions of the chip incorporating orders of magnitude more neurons and

synapses (Sec. 2.3) sparse projections can be used as a useful mechanism for decorrelating

patterns in the Golden Gate architecture.

Another mechanism that aids decorrelation is the inhibition, and subsequent shut

down, of neurons that are weakly activated by a particular stimulus. Overlap of weakly-

tuned neurons (that are often particularly sensitive to noise) between the representations

of different stimuli can be reduced in this way. Examples include the center-surround

organization of retinal ganglion cells that decorrelate neighboring neurons [29], and the

PGo cell-mediated non-topographical decorrelation of mitral cells in the olfactory bulb

[30]. The high degree of configurability in the synaptic parameters of Golden Gate allow

such a mechanism to be readily implemented [27]. The degree of decorrelation (dictated

by the amount of inhibition) is often controlled by modulatory circuits such as those

underlying attention (see Sec. 4.4).

Yet another mechanism used by neural circuits to decorrelate is competitive inhibitory

interactions among representations of similar patterns [30, 31, 32]. Here, a group of neu-

rons representing a frequently-encountered pattern inhibits other neurons in a population

that are not part of the group but are involved in the representation of other distinct

(but possibly similar) patterns. Correlations between distinct groups induced by positive

noise4 can be removed in this way. In this section, such a decorrelation procedure is illus-

trated in Golden Gate. No spatial organization is assumed in the configured network and

the pattern of inhibitory weights is learned from the input statistics of the stimuli. The

procedure leads to a powerful engine to decorrelate arbitrary high-dimensional patterns

expressed as neural spike trains.

4Here, positive noise refers to noise that increases the activation levels of neurons.
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4.2.1 Inhibition Via Higher-Order Receptive Fields

A group of 16 principal neurons (PCs) receive a 16-dimensional input vector. Each PC is

associated with a group of 100 interneurons (ICs) that form inhibitory connections onto

them. The axons of the PCs extend across the entire PC population. Each IC randomly

connects to a subset of 3 PC axons and, when excited beyond its threshold voltage, deliv-

ers inhibition to its corresponding PC. The ICs thus possess higher-order receptive fields,

i.e. they spike in response to combinatorial patterns of activity in the PC population

(essentially a logical AND of spikes from three PCs) driven by specific features of the

input. The strength of inhibition provided by the ICs onto the PCs is synapse specific,

with PCs that are not part of learned ensembles of activity being strongly inhibited (see

Network Plasticity below). Groups of neurons involved in representing different stimuli

thereby inhibit each other resulting in a reduction in overlap (decorrelation) between

stimulus representations in the PC population. This network arrangement is shown is

Fig. 4.7.

PC

IC

IC

IC

PC

IC

IC

IC

PC

IC

IC

IC

SSS

Excitatory Synapse Inhibitory Synapse

Figure 4.7: Pattern Decorrelation via inhibitory interneurons (ICs) that learn higher-order

receptive fields and deliver synapse specific inhibition on principal neurons (PCs)

These kinds of networks are seen in neural circuits that perform decorrelation of high-
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dimensional spiking patterns, such as the network formed by mitral cells and granule cells

in the olfactory bulb [30] or that formed by CA3 pyramidal cells and DG granule cells

in the hippocampus [31]. This network structure can also support decorrelation between

neural populations that are far apart in a topographic map. For example, long-range

inhibitory interactions can explain some of the extra-classical receptive field properties

of neurons in the primary visual cortex [32].

To make efficient use of the crossbar synaptic array in Golden Gate, ICs are shared

across PCs as shown in Fig. 4.8. Since the role of ICs is to learn common activity patterns

and deliver PC specific inhibition, the modified structure is effective since the IC → PC

synapses remain individually tunable. By “factoring out” ICs in such a fashion the total

number of ICs required to learn a given number of spatiotemporal patterns is reduced.

Recall that each axon in the crossbar synapse memory (see Sec. 2.2) can be one of

three distinct “types”. A neuron uses the “type” value from the crossbar to assign one

of three distinct weights to a synapse. For a PC, one of these weights are excitatory (for

the S input), one is weakly inhibitory and one is strongly inhibitory5. The drawback of

sharing ICs as described in the previous paragraph is that the axon of an IC would be

required to have the same “type” value for all the PCs. To overcome this and enable an

IC to weakly inhibit some PCs while strongly inhibiting other PCs, two separate neurons

(along with their two separate crossbar axons) with the same receptive field is used to

represent one IC.

Another restriction that arises due to the sharing of the ICs is that the neuronal

parameters and the presynaptic connectivity of an IC is no longer PC specific, but these

are inconsequential to the decorrelation computations of this section.

5The 8-bit weight of a weak or strong inhibition is determined via learning and is
neuron specific.
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Figure 4.8: Network arrangement for pattern decorrelation in Golden Gate. Parameter values

are listed in Table. 4.2

4.2.2 Rhythm Generation and Phase Codes

Stimulus patterns across a neural population is often represented as a latency code with

respect to a shared oscillatory potential as described in Sec. 3.2. The PCs in the decorre-

lation network implemented in Golden Gate use this kind of coding. A common inhibitory

signal (driven from outside the chip) represented by a step function (see Fig. 3.3) oscil-

lates at 25 Hz and is delivered to all PCs. The PCs spike during the positive phase of

this “gamma” rhythm (in analogy to the gamma frequency local field potentials measured

in-vivo) at a time that reflects the strength of input on the PCs, with higher strengths

causing earlier spikes. If a PC spikes, its S inputs are set to zero for the rest of the gamma

cycle (i.e. until the inhibitory rhythm is asserted) to prevent a PC from spiking multiple

times in one cycle.

The input on the PCs are sampled at a rate of 5 Hz – a “theta” rhythm. Thus a given

input is sampled by the network 5 times, allowing dynamical interactions in the network

across multiple cycles of the inhibitory rhythm. Interactions across multiple cycles is

important for several reasons. First, late spiking PCs can influence earlier spiking PCs
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only across cycle boundaries. While in the biological system this may be due to IC

inhibition lasting across cycle boundaries, in Golden Gate it is implemented via delays

in some of the PC → IC projections. Second, reciprocal interactions with downstream

neural circuits, such as a pattern completer (Sec. 4.3) can evolve over multiple cycles.

Third, differential modulation of these circuits, for example by different concentrations

of neuromodulators (Sec. 4.4), can act over multiple cycles to extract salient information

in the network.

Table. 4.2 lists the parameter values used in Fig. 4.8. Each PC has one of two distinct

inhibitory weights whose value is determined through learning (see below) and capped at

−20mV .

Table 4.2: Parameter Values for Fig. 4.8

Neuron Threshold (mV) Leak (mV) Wexc (mV) Winh max(mV )

PC 30 1 10 -20

IC 31 2 15 –

Fig. 4.9 shows PC population activity when Golden Gate is configured with the struc-

ture of Fig. 4.8 and the dynamics described above. The figure shows the 40 Hz gamma

rhythm embedded into the 5 Hz theta rhythm.

4.2.3 Learning Inhibitory Weights

The IC-PC inhibitory synapses are learned via a synaptic plasticity rule in a software

model of the network. The learned weights are then downloaded onto Golden Gate, and

the one-to-one hardware-software correspondence feature of the chip guarantees desired

operation in the hardware circuits. A drawback here is that whereas biological neural

circuits continuously learn and adapt to the statistics of their inputs, Golden Gate requires

fixed weights and therefore reconfiguration of the chip if changes in input statistics are

expected. Synaptic plasticity for online learning will be incorporated in future versions
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Figure 4.9: Raster plot showing PC activity when the network in Fig. 4.8 is configured in

Golden Gate. (a) 20 periods of the 5 Hz theta cycle. The network takes a new sample of the

input data at the start of each theta cycle. (b) Part a expanded between 1800 ms and 2200 ms

showing 2 theta cycles with different data samples. Periodic inhibition break each theta cycle

into 5 gamma cycles. (c) Part b expanded between 2000 ms and 2020 ms showing one half

period of a gamma cycle. The times of the spikes relative to the start of the cycle at 2000 ms

(a latency code) represent the stimulus vector.

Figure 4.9: Raster plot showing PC activity when the network in Fig. 4.8 is configured in

Golden Gate. (a) 20 periods of the 5 Hz theta cycle. The network takes a new sample of the

input data at the start of each theta cycle. (b) Part a expanded between 1800 ms and 2200 ms

showing 2 theta cycles with different data samples. Periodic inhibition break each theta cycle

into 5 gamma cycles. (c) Part b expanded between 2000 ms and 2020 ms showing one half

period of a gamma cycle. The times of the spikes relative to the start of the cycle at 2000 ms

(a latency code) represent the stimulus vector.
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of the chip (see [33] for a prototype).

The learning rule to update the IC→PC inhibitory synapse is expressed in Eq. 4.1.

When an IC is excited beyond threshold it grows inhibitory weights on all PCs that

are not part of the active ensemble in that gamma cycle. This rule ensures that ICs

activated by a unique stimulus identity only grows inhibition on those PCs that are not

consistently involved in the representation of that identity. The value of δ used was

0.2mV . The weights were bound between 0mV and −20mV . Before downloading to the

chip, the weights of the IC inputs to a PC were quantized to three values between 0mV

(corresponding to a 0 in the state of the synapse in the crossbar) and the most negative

learned weight.

w =






w + δ if PC has a spike within current gamma cycle

w − δ otherwise
(4.1)

The result of the network structure of Fig. 4.8 and the learning rule of Eq. 4.1 is

that a statistically dominant pattern of activity in the PC population recruit unique

ensembles of ICs that inhibit all PCs not part of the pattern, thereby reducing any

representational overlap with a distinct pattern that may be caused by noise from sensory

transduction and/or interfering backgrounds. Activity patterns representing different

stimuli are therefore decorrelated from one another.

Plasticity in the PC→IC synapse, although not implemented here, can also benefit

the decorrelation process. As described above, an IC is driven by three PCs chosen

at random. If the three PCs chosen are not combinatorially recruited for any one of

the frequent inputs that the network encounters then the IC will not contribute to the

decorrelation process. The chances of productively using an IC can be improved by

increasing the number of PC inputs to an IC and pruning those synapses via Hebbian

plasticity mechanisms to learn the higher order receptive fields [34]. Furthermore, if none

of the PC synapses on an IC show significant growth after some period of time (i.e. if no

subset of the initial PC group connected to the IC show consistent activity) the input of
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the ICs can be rewired to sample a different combination of PCs, reflecting the process

of adult neurogenesis in neural circuits of the olfactory bulb and the hippocampus [35].

4.2.4 Evaluation

Fig. 4.10 illustrates decorrelation performed by the network of 16 PCs and 160 ICs de-

scribed above once configured in Golden Gate. When a learned pattern is corrupted by

noise, ICs inhibit out the PCs that are not part of the learned pattern, thereby decorre-

lating its representation from other possible patterns.

To further test the network, 16-dimensional vectors, representing the activity of 16

sensors with 8 distinct activation levels, were constructed from a normal distribution

(truncated at 0 and 8) with mean 1 and standard deviation 5. 10 such vectors, labelled

A through J were presented to the network. At each presentation, a vector drove the

PCs for a full theta cycle and the population activity of PCs were recorded. This was

termed the labeling period. A small amount of noise (see Fig. 4.11) was added to each

vector before presenting it to the network during the labeling period. Next, the vectors

were presented to a software model of the network for a period of time, termed the

learning period, during which the IC → PC inhibitory weights were learned according to

Eq. 4.1. During the learning period, one of the 10 vectors were presented to the network

at random with a probability distribution shown in Table. 4.3. The learned weights were

downloaded onto Golden Gate, and the vectors were again presented to the chip but this

time with random Gaussian noise added to each sensor activation level for each of the

vectors. The noise distribution was truncated at 0 and 8, and had mean 0 and varying

standard deviations described below. The resulting pattern of PC activity was again

recorded from the hardware, and a nearest-neighbor classifier (operating outside the chip

in a software environment) classified the pattern according to its euclidean distances to

the patterns in the labeling period. This period was termed the noise period.

The protocol for labeling, learning and testing is illustrated in Fig. 4.11.
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Figure 4.10: Raster plot illustrating decorrelation of PC activity.
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Label in 
Hardware 

Train in Software 
(Low Noise) 

Test in  
Hardware 

(High Noise) 

Figure 4.11: Labeling, training and testing protocols of the 16-dimensional sensor vectors. The

sensor activation levels and additive noise on each sensor in the training and testing periods

were drawn from a truncated Gaussian distribution as shown.
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Table 4.3: Probability distribution of data labels during the learning period

Data Label A B C–J

Probability 60 % 30 % 10 %

The inhibitory network shuts down noisy activity to extract learned patterns in the

data. In a Euclidean space spanned by PC activity levels, noisy data points will come

closer to the learned data after inhibition of the PCs by the ICs. To quantify this effect,

a self-similarity index was computed for each of the labelled data

Self Similarity =
1

1 + ED(label, noise)
, (4.2)

where ED(label, noise) is the Euclidean distance between a vector in the labeling

period and the same vector in the noise period. This index is a measure of how close a

vector in the noise period resembles the same vector in the labeling period. An index of

1 represents perfect resemblance.

For data label A (see Table. 4.3), Fig. 4.12 shows the effects on the self-similarity

index as the amount of noise in the noise period is increased. Here, the learning period

is fixed at 2000 ms (10 theta cycles). For increasing standard deviation of the zero-

mean additive noise, the self-similarity index computed from the PC population activity

decreases as expected. However, due to the effects of the inhibitory network, this index

always remains higher than the self-similarity index computed directly from the sensor

array. As a result, the performance of the nearest-neighbor classifier is more robust using

the PC patterns compared to using the raw sensors patterns (Fig. 4.13).

Fig. 4.14 and Fig. 4.15 show how the network performs for different lengths of the

learning period for a standard deviation of noise set at 5. The most frequently-encountered

data (label A) shows the most marked increases in self-similarity and thus can be classified

most robustly. Data that are not frequently observed during the learning period do not

result in corresponding IC→PC inhibition growth and thus are often misclassified. The
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number of misclassifications for these less frequently-observed data may actually grow

as the learning period increases as the network biases towards detecting the frequently-

observed data labels.
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Figure 4.12: Self-Similarity index for different noise levels for data label A (Table. 4.3). As the

standard deviation of the noise increases, the data becomes more dissimilar to itself. However,

as a result of the decorrelation performed by the network of PCs and ICs, the self-similarity

index computed from the PC population is always higher than that computed from the sensors

directly. The representation created by the PCs are therefore more tolerant to noise than the

sensor representation increasing the robustness of a nearest-neighbor classifier that decodes the

patterns (Fig. 4.13).
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Figure 4.13: Classification performance of the nearest-neighbor classifier for different noise

levels for data label A (Table. 4.3). The increase in the self-similarity index (Fig. 4.12) as a

result of decorrelation performed by the network of PCs and ICs creates greater noise tolerance

in the classification of the PC patterns compared to the classification of the sensor patterns.
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Figure 4.14: Increase in self-similarity index for different learning periods. Longer learning

periods bring the noisy data closer to the labeled data and thus increases the self-similarity

index. The increase is higher for more frequently-encountered data. Increased self-similarity

leads to better classification performance (Fig. 4.15).
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Figure 4.15: Classification performance of the nearest-neighbor classifier for different learning

periods. The increase in the self-similarity index (Fig. 4.14) leads to an increase in the classi-

fication performance. The increase is higher for longer learning periods and more frequently-

encountered data.



72

4.3 Associative Recall

Associative recall, or pattern completion, in neural circuits work in tandem with pattern

decorrelation (Section. 4.2) to recover common spiking patterns that are degraded by

noise (e.g. from interfering signals). Whereas pattern decorrelation seperates overlapping

representations, pattern completion recovers representations that are partially present

by matching degraded population activity to previously encountered spiking patterns.

This process promotes perceptual stability, allowing the system to maintain previously

acquired associations and meaning despite stimulus fluctuations induced by noise.

Associative recall has been most thoroughly studied in the hippocampus, where re-

current connectivity within subregion CA3 “fill in” incomplete afferent patterns based on

previously encountered input [36]. By doing so, neural circuits in this region maintain

stability of complex memories (such as the spatial map of the animal’s environment or

the details of episodic memories) in the face of variations. Pattern completion is also

critical in maintaining stable percepts in the olfactory system since most natural odors

are rarely encountered with exactly the same components in the same proportions. Re-

current neural circuits in the piriform (olfactory) cortex have the capacity to associate

some molecular features (represented by afferent spiking activity) with others, thereby

recognizing degraded odorant signals among complex mixtures [37].

In this section, a recurrent network that performs associative recall of learned patterns

is illustrated in Golden Gate. Excitatory synapses in the recurrent network group neurons

together thereby completing patterns that have been degraded by negative noise6. The

basic association network presented here can be further enhanced by adding inhibitory

interneurons that modulate network activity, for example by sparsifying the number of

neurons participating in the storage of each pattern to reduce memory interference.

Patterns of interest from complex mixtures of activity from sensor arrays feeding into

Golden Gate can be extracted by passing them through the decorrelator of Section. 4.2

6Here, negative noise refers to noise that reduces the activation levels of neurons.
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followed by the associator described in this section. Such a structure can counter both

positive noise (where pattern decorrelation is required) and negative noise (where pat-

tern association is required), providing a powerful substrate for high-dimensional signal

processing.

4.3.1 Recurrent Associative Connections

A group of 16 association neurons (ANs), each driven by 4 values from a 16-dimensional

stimulus vector (S) was configured in Golden Gate. The ANs have recurrent excitatory

connections among them as illustrated in Fig. 4.16. The connectivity profile among

the ANs are learned via a spike-time-dependent plasticity rule as described below. This

structure resembles the recurrent connections among pyramidal cells of the piriform cortex

and of the CA3 subregion of the hippocampus.

Similar to what was done for the ICs in the decorrelation network (Sec. 4.2.1), each

AN is represented by two neurons driven by identical S values. This allows each AN to

have two distinct “types” of axons in the crossbar. Thus an AN could strongly excite

some ANs while weakly exciting other ANs7.

4.3.2 Rhythm Generation and Phase Codes

The stimulus vector S driving the ANs in the network of Fig. 4.16 have a latency code (see

Sec. 3.2) under a common “gamma” rhythm oscillating at 25 Hz. The stimulus identity

is encoded in the spatiotemporal spiking pattern of S inside one gamma cycle. The ANs

naturally inherit the gamma-band oscillation of their inputs.

The parameters used for the ANs are shown in Table. 4.4. For an AN to be driven to

threshold solely through afferent synapses, 3 out of its 4 S inputs need to spike within a

relatively narrow time window. If the presynaptic activity is less than this, the AN will

require excitation from the recurrent connections to be driven to threshold. The recur-

7The 8-bit weight of a strong or weak excitation is determined via learning and is
neuron specific.
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Figure 4.16: Structure of the associative network. Three association neurons (ANs) are shown.

Each AN is driven by a stimulus vector S and the axons of other ANs. The strength of excitation

is between the ANs is learned through a spike-time-dependent plasticity rule (Fig. 4.17).

rent connections therefore enable the recovery (or completion) of learned AN population

activity patterns in the face of incomplete input that has been degraded by noise.

Table 4.4: Parameter Values for the Association Neurons in Fig. 4.16

Threshold (mV) Leak (mV) WS (mV) WAN Max(mV )

70 1 30 10

4.3.3 Learning Associations

As was done in Sec. 4.2, a software model of the network was used to learn the weights of

the recurrent connections between the ANs. These association weights were initialized to

zero and the ANs were driven by a set of stimulus vectors. As learning progressed, these

weights grew according to the spike-time-dependent plasticity rule shown in Fig. 4.17. A

recurrent synapse developed strong excitation if a postsynaptic spike consistently followed

a presynaptic spike on that synapse. The weights were bounded between 0mV and 10mV
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(Table. 4.4). After a period of learning, the learned association weights of an AN were

quantized to three different values between 0mV and the maximum learned weight and

configured on the chip. As explained earlier each AN (represented by two different neurons

on the chip) has two associated axons in the crossbar representing two distinct excitatory

“types”. An AN weighs another AN’s spike by a weight of 0 (no connection in the

crossbar), or one of its two positive association weights.

The result of this learning procedure is that excitatory connections develop among

ANs enabling them to perform associative recall when negative noise degrades the S

inputs.

Figure 4.17: The learning rule used to modify the weights of the associative connections

between the ANs. The x-axis is the time difference between the arrival of a pre-synaptic spike

at a synapse of an AN and the generation of a postsynaptic spike in that AN. The y axis is the

resulting change in the weight of that synapse.
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4.3.4 Evaluation

Fig. 4.19 illustrates associative recall performed by the recurrent network of ANs de-

scribed above once it is configured in Golden Gate. When a learned pattern is corrupted

by negative noise, the recurrent excitatory connections among the PCs delivers extra

excitation to the suppressed PCs to complete the degraded pattern.

To further test the network, 16-dimensional stimulus (S) vectors, representing the

activity of 16 sensors with 8 distinct activation levels were constructed from a uniform

distribution. NP (initially set to 5) such vectors were presented to the network. At

each presentation, a vector drove the ANs for a gamma cycle and the population activity

of the ANs were recorded. This was termed the labeling period. A small amount of

noise (see Fig. 4.19) was subtracted from each vector before presenting it to the network

during the labeling period. Next, the vectors were presented to a software model of the

network for a period of time, termed the learning period, during which the recurrent

associative connections among the ANs were learned according to the plasticity rule of

Fig. 4.17. During each gamma cycle of the learning period, one of the NP vectors was

presented to the network at random with equal probability. After the network was driven

by every vector for 15 gamma cycles the learned weights were downloaded onto Golden

Gate, and the vectors were again presented to the chip but this time with large random

negative Gaussian noise (see Fig. 4.19) added to each sensor activation level for each

of the vectors. The noise distribution was truncated at 0 and -8, and had a standard

deviation of SD (initially set to 1). The resulting pattern of AN activity was again

recorded from the hardware, and a nearest neighbor classifier (operating outside the chip

in a software environment) classified the pattern according to its euclidean distances to

the each of the patterns in the labeling period. This period was termed the noise period.

For comparison, the performance of the nearest neighbor classifier was also tested for a

network (with the same configuration) which did not undergo the learning process (i.e.

all associative connections were zero).
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The protocol for labeling, learning and testing is illustrated in Fig. 4.19.

Fig. 4.20 shows the performance of the network in the noise period as the standard de-

viation of noise is varied from 1 to 5 with the number of different input patterns fixed at 5.

For increasing standard deviation of the zero mean negative noise, the performance of the

classification drops because the inputs become progressively more corrupted. However,

because of pattern completion, the performance of the nearest-neighbor classifier after

learning the recurrent associative weights is always better compared to the performance

without the learned weights.

Fig. 4.21 shows the performance of the network during the noise period for different

numbers of pattern stored with the standard deviation of noise fixed at 4. For increasing

number of patterns stored, the performance of the classification drops because of inter-

ference caused by the overlap of pattern representations. However, because of pattern

completion, the performance of the nearest-neighbor classifier after learning the recur-

rent associative weights is always better compared to the performance without the learned

weights.
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Figure 4.18: Raster plot showing pattern completion via the recurrent associative connection

of the ANs. (a) The representations of two similar data labels. (b) The representation of

data label A corrupted by noise. Noise reduces afferent excitation on Neuron 4 and Neuron 15

(required to differentiate between labels A and B) and prevents them from reaching their spike

thresholds. (c) The associative connections provide extra excitation on Neuron 4 and Neuron

15, causing them to spike and complete the pattern for label A.
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Figure 4.19: Labeling, training and testing protocols of the 16-dimensional sensor vectors.

The sensor activation levels are drawn from a uniform distribution (not shown). Negative

noise on each sensor in the training and testing periods were drawn from a truncated Gaussian

distribution as shown.
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Figure 4.20: Average classification performance (for all data labels) of the nearest-neighbor

classifier (number of patterns = 5) for different noise levels. The pattern completion resulting

from learned associative connections result in greater noise tolerance.
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Figure 4.21: Average classification performance (for all data labels) of the nearest-neighbor

classifier (standard deviation of noise = 4) for different number of patterns stored in the asso-

ciative network. The pattern completion resulting from learned associative connections result

in greater noise tolerance.
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4.4 Attentional Modulation

Neuromodulation refers to the change in the state of a neuron or a population of neurons

that subsequently alters its response properties [38]. The release of neurotransmitters

associated with the modulation process in biological neural circuits can be either through

individual synapses or through diffused transmitter release at the vicinity of the target

population. A number of neuromodulatory systems are used in the brain such as the

dopaminergic system that modulates reward-driven behavior and the acetylcholine system

that modulates attention and memory.

4.4.1 Acetylcholine and Attention

Attention is the process of selectively enhancing the effects of certain stimuli at the

expense of others in order to meet task demands and to resolve ambiguities. The acetyl-

choline (ACh) neuromodulatory system has been shown to be critically involved in atten-

tional processes across different sensory and memory systems of the brain [38]. Lesions of

ACh inputs have been shown to impair performance in tasks related to sustained atten-

tion and memory whereas infusions of ACh have been shown to have the opposite affect

in the same tasks.

At the cellular and circuit levels, ACh release increases the firing rates of some neu-

rons while decreasing that of others, thereby selectively enhancing the effects of certain

stimuli. This affect can be used for several processes required for attention such as the

potentiation of feedforward environmental stimuli along with the suppression of feedback

cortical projections [39], the sharpening of neuronal tuning curves [40, 41], or the selective

gating of top-down biases [42].

This section describes the implementation of a network in Golden Gate that mimics

ACh-driven neuromodulation in the brain. Specifically, the sharpening of neuronal recep-

tive fields in response to a neurmodulatory input, similar to ACh effects in the primary

visual cortex [40] and the olfactory bulb [41], is demonstrated.
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4.4.2 Saliency Enhancement

The configured network, illustrated in Fig. 4.22, consists of a group of 18 principal cells

(PCs) each associated with an inhibitory cell (IC) and a modulatory cell (MC). Each PC

and IC are driven by one value of a stimulus vector (S), represented by a rate code. Each

IC inhibits its corresponding MC. Inputs simulating the activation of neuromodulators

(ACh), representing by a rate code, provides a uniform level of excitation to all PCs and

all MCs. The parameters of the cells, given in Table .4.5, are set such that when the ACh

input is high, PCs that have low levels of S excitation will lower their activity while PCs

that have high levels of S excitation will increase their activity. This is because for low

Si, ICi is not strongly driven and as a result MCi strongly inhibits the weakly activated

PCi. In contrast for high Si, ICi strongly inhibits MCi, thereby reducing its inhibition

on the strongly activated PCi.

Excitatory Synapse Inhibitory Synapse

MC1

S1

ACh ACh ACh

IC1 PC1

S2 S3

IC2 PC2

MC2 MC3

IC3 PC3

Figure 4.22: Structure of the network showing the principal cells (PCs), the inhibitory cells

(ICs), and the modulatory cells (MCs). The network is driven by a stimulus vector (S) and

by inputs simulating acetylcholine (ACh) activation. Each input Si is represented by 10 axons

with the same spike rate. The ACh input, also represented by 10 axons with the same spike

rate, is common to all PCs and MCs.
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Table 4.5: Parameter Values for Fig. 4.22

Neuron Threshold (mV) Leak (mV) Wexc S (mV) Wexc Ach (mV) Winh(mV )

PC 40 5 8 5 -40

IC 40 1 8 – –

MC 80 0 – 40 -200

The spike rates recorded from the configured network in Golden Gate is shown in

Fig. 4.23. Activation of the ACh inputs reduce the activity of weakly-tuned PCs and

increase the activity of strongly-tuned PCs in the population, thereby sharpening the

population tuning curve. The result of this “attentional modulation” is that the repre-

sentation of the salient features of the stimulus vector, corresponding for example to the

strongest signal from the sensory environment or the strongest internally-generated mem-

ory pattern, are enhanced while the representation of the other features, corresponding

for example to background environment or interfering memory patterns, are suppressed.

The corresponding increase in the signal-to-noise ratio of the salient features is an im-

portant property for a pattern recognition system required to detect signals in the face

of uncertainty, interference and noise.

The level of attention is represented by the activation level of the ACh inputs. As

ACh activation rises the population tuning curves become sharper. A raster plot of the

network as the ACh level is swept from 0.05kHz to 0.2kHz at 100ms intervals is shown in

Fig. 4.24. A pattern recognition system using this network can modulate the ACh input

depending on what activity levels need to be included/discarded to resolve ambiguities

in the recognition process.



85

Figure 4.23: Effects of ACh Modulation in the output firing rate of the PCs. ACh input

sharpens the population activity. For illustrative purposes, the PCs are indexed such that the

most highly active cells are symmetrically grouped in the center.
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Figure 4.24: PC population activity for different levels of ACh. As the ACh input increases

the weaker PCs (e.g. PC #4) lower their activity while the stronger PCs (e.g. PC #8) increase

their activity, representing a progressive sharpening of the population tuning curve.



Chapter 5

Example Applications
The four neural computations described in this thesis can be combined for the creation

of robust sensory representations despite many sources of ambiguities such as interfering

stimuli and variable environmental conditions. As demonstration, a simple visual object

representation task is illustrated below.

The visual object and its pre-chip representation is shown in Fig. 5.1. 50×50 patches

from the original 200 × 200 greyscale image is passed through an edge filter to create a

16-dimensional vector of edges. Each element in the vector is a value in the interval [0,7]

representing the fraction of pixels in the patch that constitute an edge (0 for low path

edginess, 7 for high path edginess). Uniform positive noise and random Gaussian noise

are then added to the vector to model effects of contrast variance, visual clutter, visual

occlusion, etc. In a space spanned by the elements of the edge vector, the Euclidean

distance between the original image vector and the“noisy” image vector is 12.49. The

task of the neural computations is to bring these two points closer together in the 16-

dimensional space of edges so that they can be recognized to be the same visual object,

amidst the memory of other visual objects, by downstream neural circuits.

An unambiguous neural representation of the “noisy” image vector is created when

the vector is passed through the configured computations on the chip. This is illustrated

in Fig. 5.2. Each of the computations brings the noisy image vector closer to the original

vector as noted by the shorter euclidean distance (ED) between the two. The global inhi-

bition stage reduces the activation levels of the elements in the edge vector in proportion

to the summed activation level, thereby reducing the effects of increased image contrast

that can potentially increase activation levels beyond the available dynamic range. In

the pattern decorrelation stage, the synaptic strengths of the inhibitory interactions are

learned (see Sec. 4.2.3) based on the features of the noise-free vector before the noisy

vector is presented. As a result, features added to the edge vector, for example due to

87
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visual clutter, are suppressed. A similar learning stage in the pattern completion network

(see Sec. 4.3.3) results in the recovery of features of the primary visual object (i.e. the

clock tower) that are missing from the noisy vector, for example due to visual occlusion.

Finally, the attentional modulation stage increases the activity of the strong elements of

the edge vector while suppressing the weak elements, thereby preferentially enhancing

the representation of the most salient features of the visual scene.

Edge Filter!

Image Vector!

Uniform Positive Noise !

Random Gaussian Noise!

Noisy Image Vector!

Contrast Variance!

Clutter/Occlusion/etc !

ED = 12.49 !

Figure 5.1: Creation of a “noisy” image vector to model various sources of ambiguities such

as contrast variance, clutter, occlusion, etc.

The implementation of larger networks to process higher dimensional stimuli (for

example, higher resolution images), the explicit account of many sources of variance

across multiple learned objects, and the use of these neural computations in other sensory
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Global Inhibition!

Pattern Decorrelation!

Pattern Completion !

Attention!

Image Representation!

ED = 12.49 !

Noisy Image Vector!

ED = 11.53!

ED = 7.87!

ED = 3.74!

ED = 2.24!

Figure 5.2: A series of neural computations on the “noisy” vector progressively reduces its

euclidean distance (ED) to the noise-free representation of the vector, thereby creating a robust

representation despite various sources of ambiguities.
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(particularly olfaction) and non-sensory applications are left for future work.

Several other applications have been previous demonstrated [43] on the neuromorphic

system described in Sec. 2.2. Some of these are illustrated in Figs. 5.3–5.5.

(a) Virtual Environment (b) System Block Diagram
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Fig. 2. (a) Screenshots of the robot-eye view in the virtual environment at top and the simulated P3AT robot on the racetrack at bottom. (b) Autonomous
robot control system block diagram. (c) top Spike activity of network during driving task. bottom Average distance from center of driving track, as a function
of the number of neurons used where distance saturates at 2.0 in failed trials.

equal power. The system is a self-contained closed loop, and a
block diagram is shown in Fig. 2(b). Vision processing consists
of a layer of “On” feature detectors that spike when the road is
within their receptive field. Note that this feature layer could
be augmented with many other features (e.g., “Off” features,
edges, road color statistics, etc.) for a more complex visual
processing system, which would be necessary in more realistic
environments. The neurons in the sensory layer, which reside
in the neurosynaptic core, are driven from these feature layer
detectors to essentially form road detectors that represent the
position of the road in the visual field. The motor command
processing block integrates the spiking output from the sensory
layer and produces two values, one for both of the left and
right wheels to steer the robot. The power to each wheel is
proportional to the number of spikes on each side of the visual
field; therefore, if the road is left of center the left wheel
receives greater power, causing a turn to the left, centering
the position of the road in the visual scene.

We program the neurosynaptic core as follows, mapping the
sensory neuron layer to the hardware. There are 512 “On”-
features, which are mapped to 1024 axons, half excitatory and
half inhibitory. The 256 neurons are then divided up across
the visual field, centered at uniform intervals and each taking
input from 32 excitatory and 16 inhibitory axons. The road
detectors are excitatory in the center (S0 = +2), inhibitory on
the edges (S1 = −2), and zero elsewhere, forming a matched
filter that fires maximally when the road is centered in the
filter’s receptive field.

We measured the robustness of our neural controller by
varying the fraction of neurons enabled(from 10 to 100%)
and tracking the average distance the robot deviated from the
center of the track (Fig. 2c). Using 100% of the neurons,
the performance is near perfect (low mean-squared error), and
degrades smoothly with decreasing percentage of neurons.

B. Pong Player

For our second example, we simulated the classic video
game of Pong and implemented an autonomous player that is
controlled by the neurosynaptic core. The goal of Pong is to
keep a moving ball contained in a 2D box, where one wall
of the box is open such that the ball must be hit by a paddle
controlled by a player. To make the game more challenging
the direction of the ball is randomly perturbed when it bounces
off the wall opposite to the paddle. Because the ball moves
faster than the paddle, the challenge for the player is to predict
the correct paddle position far enough in advance.

To implement an autonomous player, the neural network
interacts with the game the same way a normal player would,
through visual access to the ball’s position and a 1D paddle
controller but without access to precise ball position, velocity,
and kinematics that virtual players typically have. The playing
area is divided into a 16 × 14 grid corresponding to visual
receptive fields of 224 neurons that are direction selective,
spiking only when the ball moves towards the virtual player’s
side of the field (loosely based on the fly visual system [12]).
For paddle-control, we assign 14 motor neurons to control
a joystick (inertial controller), which moves the paddle’s
location toward the position of the most active motor neuron.

We implement the player with a spiking neural network
using three subsystems: sensory, reset, and motor. The function
of the sensory neurons is to store the ball’s trajectory as a trace
of neural activity (Fig. 3(b-c)). Specifically, sensory neurons
become active when the ball moves across the game area,
and remain active without external input via excitatory self-
connections (autapses). To reset the persistent activity between
volleys, the sensory neurons receive strong inhibition from
an interneuron when the ball reaches the paddle, and the
sensory neurons remain inhibited until the ball reaches the
bottom row of the playing area (shutoff by a second inhibitory
interneuron).

Finally, to associate ball trajectories with the appropriate

Figure 5.3: The chip was configured to drive a physics-based emulation of the MobileRobots

Pioneer 3-AT (P3AT) – a four wheel drive robotic platform with a vision sensor – around a

racetrack defined in the Unreal Tournament 3 virtual environment [43]. (a) Screenshots of the

robot-eye view in the virtual environment at top and the simulated P3AT robot on the racetrack

at bottom. (b) Block diagram of the autonomous closed-loop control system that receives visual

input from a camera and issues differential wheel speed commands to the robot. (c) top Spike

activity of network during driving task. bottom Average distance from center of driving track

as a function of the number of neurons used.
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Fig. 3. (a) Schema of the underlying architecture of the network. Excitatory connections are red, inhibitory connections are blue, and autapses are black.
Areas of projecting or projected excitatory/inhibitory connections are red/blue circled. (b) left Representation of the Pong game area and right example traces
of active neurons left by the ball trajectory (white squares), and the motor neuron corresponding to the position of the paddle center (upper grid in red). The
red arrow indicates the paddle’s initial and final position. (c) Three examples of the neural player after training. (d) Performance of the system measured as
the percentage of hits as a function of increasing ball velocity. The data points are fit by a cubic line.

motor neuron activations, we used an offline supervised learn-
ing algorithm to learn the sensory to motor neuron connec-
tions. Specifically, the connections were updated according to
a perceptron update algorithm conditioned to maximal sta-
bility [13] based on training examples of ball trajectories and
desired motor outputs (a teacher signal). Through this training,
the network learned to recognize trajectories and their associ-
ated endpoints rather than computing the ball’s kinematics. To
transform the real-valued weights into a hardware-compatible
format, the synapse strengths for each motor neuron were
truncated to the closest of the means of a trivariate Gaussian
fit (since neurons are restricted to three synapse types). With
this mapping, the player performance is perfect for slow ball
velocities, and degrades as the speed increases (Fig. 3(d)).
Qualitatively, the learned strategy resembles a human strategy,
since the motor neurons move the paddle in the vicinity of
the correct position early in the ball’s trajectory (i.e., coarse
prediction), and continually refines its prediction as the ball
approaches.

C. Visual Digit Recognition

Our third application was to classify handwritten numeric
digits from the MNIST dataset [14]. The MNIST dataset
contains 70,000 example images of the handwritten digits 0
through 9. Each 22x22 pixel image has been segmented into
binary (black or white) pixels. The challenge of this task is
to accurately recognize the digits in spite of the significant
variation between writing styles and handwritten instances.

We approached this task using a Restricted Boltzmann
Machine (RBM), a well-known algorithm for classification
and inference tasks. Specifically, we trained a two-layer RBM
offline with 484 visible units and 256 hidden units on hand-
written digits from the MNIST dataset. Our learning proce-
dure followed directly from [15]; briefly, we use contrastive
divergence to learn 484× 256 real-valued weights to capture

the probability distribution of pixel correlations in the digits
(60,000 images). After learning these weights, we trained 10
linear classifiers on the outputs of the hidden units using
supervised learning. Finally, we test how well the network
classifies digits on out-of-sample data (10,000 images), and
achieved 94% accuracy.

To map the RBM onto our neurosynaptic core, we make
the following choices: First, we represent the 256 hidden units
with our integrate-and-fire neurons. Next, we represent each
visible unit using two axons, one for positive (excitatory) con-
nections and the other for negative (inhibitory) connections,
accounting for 968 of 1024 axons. Then we cast the 484×256
real-valued weight matrix into two 484×256 binary matrices,
one representing the positive connections (taking the highest
15% of the positive weights), and the other representing the
negative connections (taking the lowest 15% of the weights).
Finally, the synaptic values and thresholds of each neuron were
adjusted to normalize the sum total input in the real-valued
case with the sum total input of the binary case.

Following the example from [16], we are able to imple-
ment the RBM using spiking neurons by imposing a global
inhibitory rhythm that clocks network dynamics. In the first
phase of the rhythm (no inhibition), hidden units accumulate
synaptic inputs driven by the pixels, and spike when they
detect a relevant feature; these spikes correspond to binary
activity of a conventional (non-spiking) RBM in a single
update. In the second phase of the rhythm, the strong inhibition
resets all membrane potentials to 0. We sent the outputs of the
hidden units to the same linear classifier as before (note that
these classifiers are not implemented in the neural hardware).

We achieve 89% accuracy for out-of-sample data (see Fig. 4
for one trial). Our simple mapping from real-valued to binary
weights shows that the performance of the RBM degrades
gracefully, and suggests that more sophisticated algorithms,
such as deep Boltzmann machines, will also perform well in

Figure 5.4: The chip configured to control the paddle in the classic game of pong [43]. The

ball moves faster than the paddle and the chip is required to predict the position of the ball

far enough in advance based on visual information of the ball’s position. (a) Direction-selective

neurons spike when the ball moves towards the paddle and remain spiking via self-excitatory

synapses (black). The trajectory of the ball is associated with a position of the paddle and the

latter is continuously updated. Interneurons driven by the sensor neurons at the top-most row

and the bottom-most row shut down the persistent activity when the ball reaches the paddle

and prevent sensor neuron activation until the ball reaches the bottom-row of the playing area.

Excitatory connections are red and inhibitory connections are blue. Areas of projecting or

projected connections are red/blue circled. (b) left Representation of the game area. right

Example traces of active neurons left by the ball trajectory (white squares) and the motor

neuron corresponding to the position of the paddle center (upper grid in red). The red arrow

indicates the paddles initial and final positions. (c) Three example traces. (d) Performance of

the system measured as the percentage of hits as a function of increasing ball velocity.
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Fig. 4. (a) Pixels that represent visible units drive spike activity on excitatory (+) and inhibitory (-) axons to stimulate a 16 × 16 grid of neurons on the
chip. Here, spikes are indicated as black squares, and encode the digit as a set of features. The spikes are sent to an off-chip linear classifier that predicts 3
as the most likely digit, whereas 6 is the least likely. (b) Measured performance for each digit for out-of-sample data (points), and the average performance
(red line) is 89%.

hardware despite low precision synaptic weights.

D. Autoassociation

Our fourth application was storing and recalling patterns
in a manner that allows a subset of a pattern to retrieve the
whole. The challenge of this autoassociation task is storing
patterns implicitly in synaptic weights such that they can be
recalled with fidelity. We approach autoassociation in two
distinct ways, one with a sparse version of the classic Hopfield
Network and the other with a two-layer spiking network
(Fig. 5).

The Hopfield Network is a classic neural network, which
realizes autoassocative memory in a recurrently connected
network by increasing connection strengths between correlated
neurons while decreasing strengths between anticorrelated
neurons across stored memory patterns. We select a sparse
Hopfield implementation, storing m binary patterns of length
n = 256 each with 8 1s (sparsity γ = 8/256) [17], [18]. Such
a sparse implementation is less sensitive to low precision
(binary) weights while maintaining a high memory capacity.
We trained the network offline, computing real-valued
connection strengths from neuron j to neuron i with the
Hopfield Rule given by:

Wji =
m�

k=1

�
vkj
γ

− 1

��
vki
γ

− 1

�

where vkj and vki are the stored states of the jth and ith neurons
in pattern k.

We mapped the real-valued synaptic strengths to the binary
neurosynaptic core using the same procedure that we used
for the RBM (Section 4.3): We imposed a global inhibitory
rhythm that clocks neuron dynamics; we binarized the weight
matrix (Wij) by using two axons for each neuron’s recurrent
connections, setting postive weights to one on a positive axon
(S0

i > 0) and the rest to one on a negative axon (S1
i < 0)

and setting S0
i , S1

i such that the sum total of excitation and

inhibition were preserved. Then, we set all neurons’ thresholds
(θi = 1) so that any net excitation caused a neuron to spike,
signalling the recall of a 1.

We tested the Hopfield Network’s capacity, the number
of patterns it can store, as well as its completion, how well
it recalls stored patterns. To test capacity, we activated each
pattern in its entirety (10 sets of patterns) and after 10 time
steps observed similarity between the final state and stored
pattern, given by the overlap:

β =
1

n

n�

i=1

(pi − γ)(vi − γ)/γ/(1− γ)

where p is the original pattern, and v is the network state. We
found that for few patterns stored (α = m/n < 0.6) patterns
were well maintained, with β ≈ 1; as more patterns were
stored, storage degraded, with with β decreasing further below
1 as the number of stored patterns increased (Fig. 5(b)). We
tested the network’s completion by activating half the 1s in
each pattern (β = 0.5) and observing how the pattern overlap
β changed. For few patterns stored (α < 0.6), patterns were
faithfully recalled; β increased to ≈ 1. As the number of
pattern stored increased (0.6 < α < 1.0), the network state
moved closer to stored patterns but did not consistently recall
full patterns; β increased above 0.5 but did not reach 1. As
the number of pattern stored was further increased (α > 1.0),
the network state moved further from the stored patterns; β
decreased below 0.5, degrading from the partially activated
pattern.

In a similar manner to the Hopfield network, we imple-
mented autoassociative pattern recall in a two-layer spiking
network. The two-layer spiking network stores patterns in the
connections between two excitatory layers of neurons [19].
The first layer, E1, acts as both the input and output. When
activated, E1 neurons drive the second layer, E2, activating
only the neuron(s) most selective to the input, ensured by
winner-take-all inhibition mediated by a neuron in layer I
(Fig. 5(c)). Through reciprocal connections, activity in E2

Figure 5.5: Classification of handwritten numeric digits from the MNIST dataset through a

Restricted Boltzmann Machine configured on the chip. The network captures the probability

distribution of pixel correlations in the digits and its activity is used to classify the digits via an

off-chip linear classifier. (a) Pixels from a handwritten digit drive the activity in the chip via

excitatory (+) and inhibitory (-) connections on the 16× 16 grid of neurons. Spikes on the chip

(indicated as black squares) create a representation of the digit based on the features that are

present in the pixel correlations. This representation is sent to an off-chip linear classifier that

predicts the identity of the digit. (b) Measured performance for each digit for out-of-sample

data (points), and the average performance (red line).



Chapter 6

Conclusion
This thesis has described the design and implementation of a compact, energy-efficient

and scalable neuromorphic architecture for mimicking neural computations in real-time

artificial systems. The unique features of the architecture are the distributed on-chip

synaptic memory arrays that implement high neural interconnectivity with minimal data

movement, the event-driven asynchronous circuits that multiplex hardware with low ac-

tive energy consumption, the compact and low-power custom-designed digital circuits

that model neural operation, and the synchronization circuitries that create a 1-1 equiv-

alence between software and hardware. The architecture is modular and its scalability

and efficiency is demonstrated using a 28nm CMOS process with which 1 million neu-

rons and 256 million synapses are packed within 4.2mm2 of silicon that dissipates only

70mW of power during typical network operation. Future work will include the scaling of

this architecture into large multi-chip systems, incorporation of features such as synaptic

plasticity and non-linear neural voltage integration, and exploitation of future advances

in memory, logic and sensor technologies.

The configuration of four canonical neural computations in the chip was also demon-

strated in this thesis. These computations, inspired from various regions of the biological

brain, can be used in a variety of artificial pattern recognition tasks. First, a global

inhibitory network that creates relational neural activity was demonstrated. Such rela-

tional representations are capable of encoding information across wide ranges of stimulus

intensities using neural codes with small dynamic ranges. Second, the decorrelation of

distinct neural representations was shown using reciprocal interactions between a popula-

tion of principle neuron and inhibitory interneurons. This process enables the detection of

distinct patterns despite large interference with background signals and noise. Next, asso-

ciative interactions among neurons were demonstrated through a recurrently connected

excitatory network. These interactions implement the process of pattern completion
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whereby missing elements of a pattern are recovered to enable the recognition of de-

graded signals. Finally, a process of attentional modulation was demonstrated whereby

the representation of the most salient signals of an environment are enhanced over a

noisy background. Work in the immediate future will include scaled up implementations

of these computations and illustration of their effectiveness in a wide variety of datasets.

Several applications await the use of neural-inspired technologies. First, conventional

machine learning algorithms have fallen short in many sensory-motor problems such as

visual, auditory and chemical signal recognition, and locomotor central pattern genera-

tion. The hardware and computations developed in this thesis offer novel, powerful and

efficient ways of tackling many of these problems [27, 44, 45]. Second, brain-based robots

[46] that explicitly model the brain’s interaction with the body and the environment in

real time are made more effective with systems that closely mimic neural computations

such as the chips described here. These robots are promising tools for studying the brain

and are novel approaches for designing intelligent physical systems. Third, brain-machine

interfaces [47] intended for neural prosthetics and implants can be made more natural and

effective with compact and energy-efficient spike-based computations in silicon, such as

the ones demonstrated here. Finally, the hardware architecture developed here can be ex-

ploited in custom-designed brain simulation platforms for high-speed and energy-efficient

simulation-based research [3, 48].



Appendix A

CHP Notation
The CHP notation we use is based on Hoare’s CSP [49]. A full description of CHP and

its semantics can be found in [17]. What follows is a short and informal description.

• Assignment: a := b. This statement means “assign the value of b to a.” We also

write a↑ for a := true, and a↓ for a := false.

• Selection: [G1 → S1[] ...[]Gn → Sn], where Gi’s are boolean expressions (guards)

and Si’s are program parts. The execution of this command corresponds to waiting

until one of the guards is true, and then executing one of the statements with a

true guard. The notation [G] is short-hand for [G → skip], and denotes waiting

for the predicate G to become true. If the guards are not mutually exclusive, we

use the vertical bar “|” instead of “[].”

• Repetition: *[G1 → S1 [] ... [] Gn → Sn]. The execution of this command

corresponds to choosing one of the true guards and executing the corresponding

statement, repeating this until all guards evaluate to false. The notation *[S] is

short-hand for *[true → S].

• Send: X !e means send the value of e over channel X .

• Receive: Y ?v means receive a value over channel Y and store it in variable v .

• Probe: The boolean expression X is true iff a communication over channel X can

complete without suspending.

• Sequential Composition: S ;T

• Parallel Composition: S � T or S ,T .
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