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ABSTRACT 
This paper proposes a novel generative workflow for 
walkable neighborhood design. Key components of the 
workflow include automating the process of parsing the 
map data, building contextual models with population and 
amenity data, conducting an integrated mobility simulation, 
and generating a street network and amenity allocation plan 
accordingly. The proposed framework is versatile and 
adaptive by allowing designers to tune simulation 
parameters and customize the decision-making process. The 
applicability and effectiveness of the workflow are tested in 
a pedestrian-oriented neighborhood design case study. 
Three scenarios that adapt to different design goals and 
boundary conditions are presented. This research equips 
designers with capabilities to co-design of mobility 
solutions and urban form early on in the design process. 
Further, it can be leveraged by more stakeholders in sectors 
such as real estate, public services, and public health to 
make decisions as the urban built environment has a 
fundamental impact on all these fields. 
Author Keywords 
generative urban design; walkability; mobility; simulation. 
1 INTRODUCTION 
Population growth, urbanization and ever-increasing 
vehicle use in urban areas have a significant impact on the 
quality of life and the environment. Increasing traffic-
related energy consumption, greenhouse gas emissions, air 
and noise pollution, as well as lifestyle-related health issues 
such as obesity and diabetes can be promoted by poor urban 
design [1]. While these are worrisome circumstances, the 
need for urban renewal and densification [2] also provides a 
unique opportunity to rethink planning paradigms and 
design approaches. Emerging design movements aim to 
remedy the aforementioned mentioned issues. They [3] 
promote high density, walkable neighborhoods as one 
solution for these challenges. Studies have shown that 
walkable neighborhoods can significantly reduce traffic-
related pollution and lower the risk for chronic diseases 
[3,4], support local businesses, promote tourism, attract 
investors, higher property values [6] and foster an increase 
in social capital and political participation [7]. Walkable 
amenities, one of the most important ingredients of a 

walkable city, have also been associated with 
socioeconomic growth [7,8] and quality of life [10]. 
Understanding the implications of urban design choices on 
walkability while incorporating this understanding into 
early stages of urban design process provides a unique 
opportunity to address these issues. This is particularly 
important because street grids hardly ever change once the 
urban design is set [11].  

One of the major challenges in designing walkable 
neighborhoods is the lack of effective metrics and 
workflows that can provide measurable and actionable 
feedback to facilitate design decision making. To evaluate 
the walkability of cities, researchers have proposed to rank 
neighborhoods based on the distance and density analysis of 
points of interest (POI) in the city. These walkability 
ratings, commonly referred to as Walkscore [12], are 
computed on a scale of 1-100 and include factors such as 
accessibility to amenities like grocery stores, restaurants, 
banks, parks, and schools. Generative design workflows for 
walkable neighborhoods that leverage this metric have been 
developed [13]. They usually first generate an urban layout 
by spatial logics and then optimize the Walkscore through 
an evolutionary process that places additional amenities 
until a sufficiently high score is reached. However, the 
main question regarding the use of Walkscore as a sole 
metric in such workflow is its insensitivity to the interactive 
relationship between key urban design parameters including 
street network, amenity allocation, and population 
distribution in the model. This can result in several 
questionable design decisions: Firstly, generating a street 
network without considering amenity placement or 
population distribution can be problematic because the 
latter two factors significantly influence street utilization 
and therefore play important roles in urban morphology. 
Secondly, placing or adding services and amenities only to 
drive up Walkscore may not be feasible as those new 
services may not be sustainable as demand is spread too 
thinly. Thirdly, the amounts and categories of amenities to 
which it is essential to have walking access differ by 
population groups. Thus, designers should be able to 
evaluate walkability with demographic-specific metrics. As 
a result, it is imperative to propose a more integrated 
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generative urban design workflows that can take into 
consideration all the mentioned factors.  

Additionally, common generative design workflows rely on 
optimization solvers such as the Genetic Algorithm, which 
searches for optimal solution evolutionarily based on each 
iteration’s performances on certain metrics. Although such 
a strategy is widely used in many generative urban design 
studies [13,14], it remains questionable in terms of speed of 
convergence and stability [15]. Although such a trial & 
error approach is unavoidable for certain ill-defined design 
problems, this paper proposes a simplified, efficient and 
transparent approach using the Urbano toolkit [16]. In this 
workflow, the first step is to build a mobility model with 
urban data such as streets, buildings, amenities and 
population densities. Then the potential pedestrian volumes 
of streets and amenities are evaluated by a mobility 
simulation. The simulation outcome can directly inform the 
generative process of the street network and amenity 
allocation. Throughout this process, designers can 
customize the model and control the simulation by tuning 
key parameters and changing variable constraints so that 
different design conditions can be accommodated. 

Overall, this paper introduces a novel generative urban 
design workflow that is sensitive to street networks, 
amenity allocation, and population distribution. The 
workflow is implemented in a pedestrian-oriented 
neighborhood design case study, and its adaptivity is tested 
by accomplishing different design requirements. 
2 METHODS 
Urbano allows designers to build mobility models, run the 
network and amenity analyses within the Rhinoceros CAD 
platform and the visual scripting environment Grasshopper. 
The automated modeling and simulation process is used to 
drive the generative processes described in this paper. 
2.1 Data-Driven Modeling 
There are three layers of data that are necessary for the 
mobility model: Street network, amenities (points of 
interest), and buildings with building-level population 
information. Knowing the location and boundary of the site, 
Urbano can import streets, points of interest (POIs) and 
buildings, along with their metadata, from sources such as 
shapefiles (shp), OpenStreetMap (osm) [17] or Google 
Places API [18]. Streets, buildings, and amenities are 
represented by geometric primitives such as curves or 
points. Metadata such as names, types, and addresses are 
attached to the geometric data using serializable 
dictionaries that can be modified and customized alongside 
the geometric objects parametrically within Grasshopper or 

through the CAD user interface in Rhino. If required 
information, such as building-level population, is not 
accessible from the sources, Urbano provides functions that 
can infer data or can help to synthesize this information 
using other data sources. For example, it can estimate 
building-level population size using total building floor 
area, customized area usage breakdown, and generalized 
occupant densities [16,17]. 
2.2 Trip-Sending Simulation 
The simulation framework is initially driven by the Activity 
Demand Profile (ADP). The ADP describes pedestrian 
activities over time and can be adapted to reflect activities 
of specific demographics. One way to derive location-
specific ADP is to interpret the spatiotemporal distribution 
of human activities in a local area by measuring the 
activeness in urban amenities in this area [21]. The main 
data source for this method is Google Places “Popular 
Times” data. Table 1 shows a sample set of the integrated 
ADP which presents the hourly percentage of population 
that engages in particular activities in one day in the case 
study area (Figure 5). Each column represents a one-hour 
time slot in a day, which can be further synthesized into 
time periods such as morning, noon and evening. Figure 1 
is a graph for ADP data using a 24-hour timeline, which 
depicts a more detailed activity distribution. The y-axis 
refers to the overall amount of activities, which peaks 
during the day and dips in the early morning. Each color 
layer represents the demand pattern of an amenity. For 
example, banks and post offices tend to stop service in the 
early afternoon, while bars and pubs become dominant 
activities at midnight. Nevertheless, ADP data can also be 
customized by the designer to target an assumed 
demographic group. In the simulation, one or multiple sets 
of ADP can be utilized to represent different human activity 
patterns coexisting in the area. 

Figure 1. 24-hour timeline representing Activity Demand Profile. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
errands 0 0 0 0 0 0 0 0 0.4 1.1 1.3 1.5 1.6 1.8 1.8 1.8 1.6 1.1 0.3 0.2 0.2 0.2 0 0 

restaurant 1.1 0.1 0 0 0 0.4 1.7 5.5 8.3 9.1 9.9 13.3 19.6 22.1 19.5 15.8 14.2 16.8 20.6 21.8 19.4 14 8.2 3.3 
grocery 1.8 0.9 0.7 0.5 0.7 0.8 1.6 3.1 5.7 7.6 9.4 11.2 12.9 13.8 14.2 14.1 14.5 14.9 14.3 12.3 9.7 7.3 5 3.2 

shopping 0 0 0 0 0 0 0 0 0.8 3.3 7.1 10.7 12.8 14.9 15.1 15 16.1 17.5 16.2 10.7 4.4 1 0.4 0 
entertainment 6.2 4 3 1 0 0 0 0 0 0.3 0.4 2.7 5.3 5.7 7.2 7.9 11.6 17.2 24.8 31.6 29.1 25.8 21.8 17 

Table 1. Sample of Activity Demand Profile data for the study area. (unit: %)
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Figure 2. Diagram of the trip-sending simulation algorithm. 

The following simulation is based on a trip-sending 
process, and the concept of each trip is made up of multiple 
information: the origin building, the destination amenity, 
the route taken and the corresponding population. The 
executed trip-sending algorithm is as follows (Figure 2):  

1. Input model consisting of streets, amenities, and
buildings; one or multiple ADPs with same time metrics

2. For each time step of ADPs
3. Initialize empty list of trips
4. For each building in the model
5. Set the building as origin and get its population size
6. Divide the population into activities according to

the percentage data in its ADP
7. For each activity
8. Search for corresponding amenities as 

destinations within walking distance (user-
defined) using a shortest-path algorithm 
influenced by biased routing factors 

9. Distribute the activity population to 
destinations according to biased destination 
factors 

10. Generate trips with the distributed population 
and add the trips to the list 

11. Output a data tree of trips grouped by time steps
The biased factors are inputs allowing for more control by 
designers. There are currently two types of them in the 
presented algorithm. The first one is the biased destination 
factor, defined as the weight of a destination which 
determines the proportion of the population sent to them. 
The higher the weight, the more proportion of the total 
accessible population the amenity can receive. This factor 
can be set according to the quantifiable quality parameters 
of amenities such as the capacity, popularity or rating. The 
other one is the biased routing factor, defined as the 
coefficient of calculated street length. This coefficient 
allows certain street segments to be “shortened” in the 
simulation so that they can be more utilized in the shortest-
path routing process, or “lengthened” in the opposite way. 
By modifying this coefficient, the simulation can count into 

more factors influencing the route choice other than 
distance, such as shade, landscape, facades, urban 
environment, etc. 

Output: Each time step has a distinct set of resulting trips. 
Trips data can be post-processed into three complementary 
metrics: Street Hits and Amenity Hits. Street Hits counts 
how many people use a certain street segment on all trips. 
Amenity Hits tallies up the total number of people that are 
sent to a specific amenity on all trips. Moreover, a building-
level Walkscore can also be computed according to its 
original method [12] using data of all trips that originate 
from a single building. All these metrics will inform the 
generative design process. 
2.3 Generative Process 
The primary setup for the generative method is to replace 
the original design site with a dense grid mimicking a 
virtual environment that lets people cross freely. This step 
parallelly establishes a perpendicular coordinate grid 
representing all potential locations for amenities (Figure 3). 
Street Hits results from the simulation on this dense grid 
can reveal people’s potential movement trails across the 
site. Street segments with high Hits can be transformed into 
new roads in the designed network. Amenity Hits results on 
the coordinate grid can identify the most profitable 
locations for amenities that grant most walking access to 
the population in the model, which can inform the 
placement of new amenities. 

Figure 3. Using part of the case study’s site as an example (a), the 
primary setup is to replace the original site with a dense grid (b) 
mimicking a virtual environment that lets people cross freely. It 

parallelly establishes a coordinate grid (c) representing all potential 
locations for amenities
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Figure 4. Two series of visualizations of Street Hits output. The first row (a) shows evolving results when increasing the user-defined walking 

distance. The second row (b) presents changing results when placing new amenities on the design site.

Due to the nature of the trip-sending algorithm, the outcome 
spontaneously concerns the interactivity between streets, 
amenities and population distribution in the model. it is also 
responsive to changes. Figure 4 shows the example of two 
series of visualizations of Street Hits output from the same 
simulation (Figure 3) but only with a specific parameter 
modified. The first row shows when increasing the user-
defined walking distance, more trips are generated because 
more amenities become accessible to all buildings within 
that distance. The second row presents changing results 
when placing new amenities on the design site. Besides 
these, other parameters such as the biased routing and 
destination factors, or ADPs can all impact the generative 
process. A highly customizable framework like this enables 
designers to tune the generative process for specific 
conditions or goals in design practice as in the case study. 
3 CASE STUDY 
The site in Figure 5 is located in New Haven, Connecticut. 
It has residential neighborhoods to the South, a high-density 
commercial district to the North, institutions to the West, 
and an industrial area to the East. A highway and a railway 
adjacent to the East and the North form obstacles isolating 
the site. The current street network does not connect urban 
amenities well as Street Hits analysis on the original site 
reveals that most activities do not take routes across the site 
(Figure 6). The site is predominantly used as parking lots 
and is considered as an empty area as the initial condition in 
this study. However, the site has great potential as it can 
connect the railway station to the city and fill the gap in 
pedestrian mobility between different urban areas 
surrounding it.  

The initial site model consists of existing streets, amenities, 
and buildings. Building types are categorized into 

residential and non-residential so that population data can 
be synthesized accordingly. The overall design objective is 
to develop a new mixed-use and pedestrian-oriented 
neighborhood that can alleviate some of the described 
connectivity issues. All the existing streets and buildings on 
the site are supposed to be overridden. 

 

 
Figure 5. The site and the main components in the initial site model.  

 
Figure 6. Street Hits analysis of the original site shows that most 

activities do not take routes across the site.
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Figure 7. Diagram of the generative workflow of Scenario One. 

To test the proposed workflow, three scenarios are 
generated under distinct design intentions and assumptions. 
They follow the same primary generative methods but 
differ in modeling and decision-making process. 
3.1 Scenario One 
This scenario aims to create a better linking zone. The new 
network should contribute more efficient passing routes so 
that increasing pedestrians can go across the site and 
support new businesses and amenities.  

In Figure 7, Step 1 is the primary setup. Step 2 presents the 
Street Hits result using one normalized ADP data of Table 
1. The progress in Step 2 is expanded below to show how
the main routes with high Street Hits gradually become 
visualized during the simulation iteration of all buildings. 
Using this result, Step 3 generates a new street network by 
straightening the busiest streets, merging the minor links, 
and converting the largest intersections into potential 
plazas. This step is drawn manually at the current stage. 
Based on this network, Step 4 analyzes Amenity Hits 
distribution by setting all cells on the 20m*20m coordinate 
grid as one amenity type. The results are visualized in heat 
maps highlighting the recommended locations for each 
amenity type (grocery, errands, library, entertainment, 
restaurant, shopping). Since the population density is much 
higher in the northern downtown, all new amenity locations 
tend to concentrate at the north edge for maximized 
potential patronage. However, heat maps still vary in color 
uniformity due to the influences of existing nearby 
amenities. For amenity allocation, designers can place 
amenities on the best performing locations, conduct a new 
simulation for the scenario and evaluate the Amenity Hits 
of the newly placed amenities. Comparing the resulting Hits 

with the Hits of other same-type amenities existing in the 
model can help designers measure the balance between 
supplies and demands of new amenities, and then make 
decisions about their amounts and locations. 

One thing to mention is this paper does not focus on the 
parcellation in the lots or generation of building footprints. 
However, to present that the previous results can be further 
developed into actionable design scenarios, the workflow 
integrates the last two steps. Step 5 computes the final 
Walkscore based on the coordinate grid, which is used in 
Step 6 to inform the distribution of development density 
(FAR) on the generated lots. Since better walkability 
indicates improved property values, the lots with a greater 
Walkscore get a higher density. Figure 8 presents an 
example of how the final masterplan could look. 

Figure 8. Sample masterplan developed for Scenario One.
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Figure 9. Diagram of the generative workflow of Scenario Two. 
3.2 Scenario Two 
This scenario intends to include several design conditions: 
(1) a proposed pedestrian boulevard linking the railway 
station and the downtown area through the new bridge; (2) 
a predefined and specifically located high-rise cluster which 
will hold a high density of population on design site; (3) a 
prospective new school mostly serving the southern 
residential neighborhood. The generative workflow is 
adjusted to address these particular design issues (Figure 9). 

Figure 10. Sample masterplan developed for Scenario Two. 

Step 1 models the boulevard and high-rise cluster based on 
the primary setup. The boulevard is modeled by setting the 
segments on the grid along the route with a biased routing 
factor of 0.5. The high-rise cluster is modeled by setting 
500 population to each of five high-rise locations on the 
coordinate grid. Step 2 visualizes heat maps of Amenity 
Hits. These heat maps differ from Scenario One because the 
“shortened” boulevard in the simulation attracts more trips 
crossing the site through this route, and the high-rises also 
bring more population as consumers. Among all amenities, 
the analysis of Hits for school differs from the others 
because it only considers pedestrians coming from the 
southern residential area. The school’s heat map result also 

reveals this adjustment as it is best located on the corners 
that are closest to the neighborhood side. With all amenity 
allocation decided, Step 3 visualizes Street Hits on the grid, 
and Step 4 generates the new street network accordingly. 
The final two steps of Walkscore analysis and lot-level 
FAR distribution remain the same as Scenario One. Figure 
10 presents an example of how the final masterplan looks. 
3.3 Scenario Three 
Instead of using one normalized ADP data in the first two 
scenarios, this scenario considers the temporal difference in 
street and amenity utilization. It aims to create a 24-hour 
active neighborhood by overlapping the generative results 
of time steps. However, this scenario only generates street 
network while the amenity allocation is an input. 

In Figure 12, Step 1 specifies an input of the amenity 
allocation scenario. Step 2 visualizes the Street Hits for 
three time-periods: morning, noon and evening. Step 3 
generates the network by filtering the most vibrant streets at 
these times and overlapping them together. Step 4 and Step 
5 remain the same for Walkscore analysis and lot-level 
FAR distribution. An additional Step 6 demonstrates 
people’s dynamic movement on the network over time. 

Figure 11. Sample masterplan developed for Scenario Three. 
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Figure 12. Diagram of the generative workflow of Scenario Three. 
3.4 Comparison 
To be adaptive to different design goals and conditions, the 
proposed workflow varies in three scenarios. Firstly, the 
sequences of decision-making are different. Scenario One 
generates streets first because it aims to create better links 
between the surrounding built environment. Scenario Two 
has more specific requirements for program allocation. 
Thus, the street network is generated later in the workflow 
so as to address the new design conditions. Secondly, the 
generative parameters change. The same one normalized 
ADP is used in the first two scenarios while the third one 
uses the ADP of multiple time periods. Also, the biased 
routing factors and the population distribution are modeled 
differently in Scenario Two. More parameters such as 
biased destination factors or walking distance limits have 
not yet been modified among three scenarios. They are able 
to allow more precise controls by designers.  
4 LIMITATION AND PROSPECT 
The limitation of modeling is data quality. For example, 
high-quality GIS data is only provided in major 
metropolitan areas. Also, some open data source such as 
OpenStreetMap has significantly fewer POI entries 
compared with other sources such as Google data. 
Consequently, a model that uses data where only a few 
POIs have been recorded, will yield misleading results. The 
workflow proposed in this paper will be able to benefit 
from the ongoing efforts to improve urban data systems. 

As for the simulation, there are difficulties in thorough 
validation, because there is no openly available reference 
data with which to compare the results. The current ADP 
data is derived using user-generated data such as Google 
Places “Popular Times” data, which mostly relies on GPS. 

To provide a basic check of the simulation results, five 
randomly selected samples of cafes and restaurants in the 
simulation model are used for comparative study. Figure 13 
plots their Amenity Hits and their real profiles in Google 
“Popular Times” data (both normalized and scaled to 1.0) 
together. There is a certain level of consistency, but 
exceptions also exist. In the future, more detailed data such 
as opening hours can be leveraged to improve consistency 
further. Though “Popular Times” data is indeed an input of 
deriving ADP, such comparison can still verify the 
interpretation process of the framework along with other 
synthesized parameters such as population distribution. 

Figure 13. Comparison of five random samples’ Amenity Hits 
results and their real profiles in Google Popular Times data. 

In the generative workflow, caution is needed when taking 
advantage of its adaptivity. Some customized parameters, 
such as biased routing and destination factors, provide 
designers with the power to control the generative process, 
but they also open to the risk of being arbitrary or biased. 
More sophisticated metrics defining these factors are in 
demand.  
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5 CONCLUSION 
Design decisions such as zoning, density, program 
allocation, and the layout of public spaces and streets can 
have a fundamental impact on the performance of mobility 
systems. Employing urban planning to mitigate traffic-
related problems is widely recognized as an effective 
strategy. It is expected that this research can equip 
designers with capabilities that enable the co-design of 
mobility solutions and urban form, thus motivating the 
early discovery of cost-effective solutions.  

This paper proposes a novel workflow of automating the 
process of parsing the map data, building contextual models 
with population and amenity data, conducting integrated 
mobility simulation, and generating street network and 
amenity allocation for urban design. The effectiveness and 
adaptivity of the workflow are tested in a pedestrian-
oriented neighborhood design case study by generating 
three scenarios for different design goals and conditions. 
This versatile framework can contribute to the design 
profession and education in terms of increasing awareness 
and responsiveness to mobility-related urban factors. 
Moreover, as mobility metrics also have economic and 
environmental implications, the proposed framework can 
become more valuable by including other stakeholders in 
urban development. Practitioners in sectors such as real 
estate, public services, and public health can leverage the 
analysis result to make decisions, and designers can benefit 
from involving a broader range of data and metrics from 
these fields into the design solution-seeking process. 
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