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Abstract 

A discrete stochastic spatial model for a single species is examined. 
First, detailed spatial simulations are performed using stochastic cellular 
automata. Then, several analytic approximations are made. First, two 
versions of mean field theory are presented: the infinite-dispersal mean 
field approximation, which is a metapopulation-like model, and the local­
dispersal mean field approximation, which incorporates the locality of the 
cellular automaton model but assumes that no spatial correlations develop 
in the lattice. Next, the local-dispersal mean field theory is generalized 
into several varieties of local structure theory, in which one assumes that 
groups of nearby sites in the lattice are correlated, and tracks such cor­
relations under the action of the cellular automaton rule. Assuming such 
local correlations allows one to predict patch occupancy as well as the de­
gree of clustering in the cellular automaton model much more accurately 
than mean field theory, especially in parameter regimes where mean field 
theory does poorly. Simulation and mean field theory are seen to be two 
opposite extremes of an entire spectrum of methods that may be used to 
investigate discrete spatial models. 

1 Introduction 

There has recently been growing interest in spatial issues in ecology, such as 
how locality of competition and range of dispersal play a role in ecosystem dy­
namics (Kareiva, 1994; McLaughlin and Roughgarden, 1993; Pacala, 1986a,b; 
Tilman, 1994}. As a result, there is increasing interest among theoreticians 
in spatial models as well. These models are usually investigated via simula­
tion (Colasanti and Grime, 1993; Darwen and Green, 1996; Etter and Caswell, 
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1994; lnghe, 1989; McCarthy, 1996; Oborny, 1994; Silvertown et al., 1992), or 
else they are simplified by essentially throwing away all of the detailed spatial 
structure -giving the so-called metapopulation or mean-field models (Caswell 
and Cohen, 1991a,b, 1993; Hanski, 1991, 1994; Hanski and Gilpin, 1991; Hast­
ings, 1991; Nee and May, 1992; Tilman, 1994). The latter type of model may be 
most appropriately termed "pseudo-spatial," since there is some notion of space 
involved, but no actual spatial structure. In some cases, both types of models 
are explored and compared, usually by constructing a mean-field approxima­
tion of a detailed spatial model (Caswell and Etter, 1993; Durrett and Levin, 
1994a; McCauley et al., 1993; Rhodes and Anderson, 1996). This method of 
approximation involves the assumption in some form that "space doesn't mat­
ter." However, even this assumption may be made in more than one way. The 
most common method is to assume dispersal over arbitrarily long distances 
in the model, as in metapopulation models; this method is referred to as the 
infinite-dispersal mean field approximation here. The other method, called the 
local-dispersal mean field approximation, assumes that no spatial correlations 
develop in the lattice over time, but still takes into account the locality of the 
detailed spatial model. It is the latter method which will be generalized here. 

Several researchers have recently been generalizing the mean-field approach 
in continuous-time models, yielding the so-called pair approximation method (Harada 
et al., 1995; Harada and lwasa, 1994; Kubo et al., 1996; Levin and Durrett, 1996; 
Matsuda et al., 1992; Sato et al., 1994). Whereas continuous-time mean-field 
models involve only differential equations describing the frequencies of states 
of individual sites in the lattice, the pair approximation models also include 
equations for the frequencies of pairs of sites being in any given states. The pair 
approximation technique therefore incorporates some local spatial correlations. 

Pair approximation apparently has not been applied to ecological models in 
discrete time, although these techniques have been applied to deterministic cel­
lular automata in the physics literature (Gutowitz and Victor, 1987; Gutowitz 
et al., 1987; Schulman and Seiden, 1978; Wilbur et al., 1986), known variously 
as generalized mean field theory, cluster expansion, or local structure theory. 
Discrete-time models are often useful in ecology, for example when reproduction 
and mortality are strongly seasonal. The purpose of this study was to inves­
tigate the ability of local structure theory to predict a discrete-time stochastic 
spatial ecological model, under different assumptions about the patterns of spa­
tial correlations among sites in the lattice. 

2 The Model 

We will use a version of the basic contact process (e.g., Durrett and Levin, 
1994b) on a finite lattice in discrete time to model single-species dynamics. 
This model may also be thought of as a stochastic cellular automaton using the 
von Neumann neighborhood (i.e. using the four nearest neighbors, and not the 
diagonal neighbors). The sites in the lattice represent patches of space; thus 
this is a patch-occupancy model, and not an individual-based model. A site 
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having value one represents the presence of the species at that site; a site in 
state zero represents an empty patch, or a patch whose population size is below 
some given threshold. 

On each time step, the following things occur: 

1. Colonization: each occupied site sends propagules to each of its four neigh­
bors, independently with probability A each. That is, with probability A a 
propagule is sent to the "north" neighbor, with probability A a propagule 
is sent to the "east" neighbor, and so on. If a propagule lands on an oc­
cupied site, it is wasted and has no effect. If one or more propagules land 
on an empty site, then that site will be colonized, i.e. become occupied 
on the next time step. Thus, observe that an occupied site produces X 
seeds on each time step, where X has a binomial distribution with n = 4 
and probability p = A. 

2. Disturbance: Every site in the lattice is "disturbed" (becomes empty), 
independently with probability J..t. This includes sites that were just colo­
nized; in other words, disturbance affects empty sites. 

Each site in the lattice is therefore a nonlinear Markov chain, with the following 
transition probabilities: 

P[O -t 0] = 1- -y(1 - J..t) 
P[O -t 1] = -y(1 - J..t) 

P[1-t 0] = p. 
P[1 -t 1] = 1 - J.t 

where -y = 1 - (1 - A)n is the colonization probability, and n is the number of 
occupied sites among the four nearest neighbors. For the purposes of this study, 
A was held fixed with a value of 0.25. Thus, on average an uncrowded site would 
produce one propagule (although depending on the value of J..t, new seeds may 
not have a very large chance of surviving even until the beginning of the next 
time step). 

This detailed spatial model was first investigated via simulations; all simula­
tions were performed on a 256 x 256 lattice with periodic boundary conditions. 
The simulations were begun with 50% of the sites in the lattice occupied, chosen 
at random. At each time step, p1 , the proportion of sites that were occupied 
(i.e. the patch occupancy probability), was measured. As in Caswell and Etter 
(1993), when the least-squares regression line through the values of Pl for the 
last 100 time steps had a slope ofless than 0.001, the simulation was considered 
to be close enough to equilibrium, and stopped. At that time, the patch occu­
pancy probability Pl was averaged over the last 10 time steps, and that value 
recorded as the equilibrium patch occupancy probability for those parameter 
settings. Figure 1 shows the state of the lattice at the end of such a run, with 
J.t = 0.375 and A = 0.25, and a random lattice with the same value of p1 for 
companson. The value of Pl over time for that same simulation is shown in 
figure 2. 
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Figure 1: The left half of the figure shows the configuration of the lattice at 
the end of a run with J.L = 0.375, A = 0.25. The measured patch occupancy 
probability in the lattice is roughly Pl = 0.19. The right half of the figure shows 
a random lattice with the same density of occupied sites for comparison, making 
the clustering in the left figure more readily visible. 

0.5 ,...----.----.-----.----......,,......---,.-----, 
siniAalon-

0.45 

0.4 

0·15 0 L----20~----40._ ___ ...JeoL-----:'ao':----,:-'o~o-----1,20 
Tine 

Figure 2: The graph displays the measured patch occupancy probability Pl 
in the lattice over time, during the simulation on a 256 x 256 periodic lattice 
whose final configuration is shown in figure 1. In the initial configuration of the 
lattice, 50% of the sites were occupied and 50% were empty, chosen at random. 
The parameter settings for this simulation were A= 0.25 and J.L = 0.375. The 
simulation was stopped when the regression line had small enough slope. 
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3 The Infinite-Dispersal Mean Field Approxi­
mation 

When constructing a non-spatial approximation of a spatial model, one wants to 
assume that "space doesn't matter." However, this assumption may be made 
in more than one way. For spatial models in discrete time, the most widely 
used technique is to assume infinite dispersal over the lattice (e.g., Caswell and 
Etter, 1993; Rhodes and Anderson, 1996). This is also the usual assumption 
in continuous-time mean field or metapopulation models as well (e.g., Durrett 
and Levin, 1994a; Tilman, 1994). In the model presented here, this means we 
assume that any given site still produces X seeds, where X has a binomial 
distribution as before with n = 4 and p = .A; but rather than dropping the seeds 
on neighboring sites, instead the seeds will be dropped at random anywhere 
in the lattice. Thus, if there are N sites in the lattice, there is probability -fr 
that any given seed will land on some particular empty site being considered. 
If the patch occupancy probability is p1 at the current time (also denoted by 
Pt[1] when the time dependency needs to be made more explicit), then there 
will be N p1 occupied sites; each one produces on average 4>.. seeds. Thus, the 
colonization probability for a given empty site is 

( 
1 )4>..Npl 

'Y = 1 - 1 - N ~ 1 - e-4>..p 1 , (1) 

where the approximation is very accurate when N is reasonably large (on our 
256 x 256 lattice N = 65,536, which is more than adequate). 

Recalling that in order for a site to change from state 0 (empty) at timet to 
state 1 (occupied) at timet+ 1, that site must not only be colonized but also 
survive disturbance, it is easy to see that the expected proportion of occupied 
sites on the following time step, denoted by Pt+1[1], is 

P[O -t 1] ·Po + P[1 -t 1] · Pl 

'Y(1- f.l)Po + (1- f.l)Pl, (2) 

where 'Y is as given in equation (1), Po= 1- Pl is the proportion of sites which 
are empty at timet, P[O -t 1] is the probability that an empty site is colonized 
and survives disturbance, and P[1 -t 1] is the probability that an occupied site 
is still occupied after the current time step, i.e. survives disturbance. 

To find the equilibrium patch occupancy probability (i.e. the fixed point of 
this mapping), one needs to solve this equation for Pt+t[1] = Pt[1]. Since this 
is a transcendental equation, one must resort to numerical methods or simply 
iteration, but such methods are very simple and efficient. In this investigation, 
iteration was used to find the fixed point for this and the other approximation 
methods. 
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Figure 3: Under the assumptions of the local mean field theory (independence of 
sites in the lattice), the probabilities of single sites being empty or occupied are 
used to compute the probabilities of all pre-images in the center of the figure; 
the cellular automaton rule is then applied to the pre-images to compute the 
new probabilities for single sites on the following time step. 

4 The Local-Dispersal Mean Field Approxima­
tion 

A second method of assuming that "space doesn't matter" is now presented; one 
which retains more of the flavor of the detailed cellular automaton rule. Instead 
of changing the behavior of seed dispersal, we still allow dispersal to occur only 
among the four nearest neighbors on the lattice. However, instead we assume 
that no spatial correlations are developing between the sites in the lattice as time 
goes on (an assumption which is obviously not true, of course). We assume that 
the probability of finding a particular site in state 1, for example, is independent 
of the probabilities of any other site in the lattice being in state 0 or 1. Under 
this assumption, we may characterize the state of the entire lattice at timet with 
a single probability, Pt[1], the probability that any given site is occupied (i.e. 
the value of p1 at that time). Given this probability (and the complementary 
probability Pt[O] = 1- Pt[1], or p0 ) and the assumption of the independence of 
sites, we may then calculate the probability that a group of five sites as shown 
in the center of figure 3 is in any particular configuration - the probability 
is simply the product of the probabilities of the sites within the group being 
in their respective states. This particular group of sites happens to be the pre­
image of a single site under the cellular automaton rule: that is, the state of 
the site in the center of the group at the next time step depends only upon 
the states of the sites in the pre-image at the previous time step, and not upon 
any other sites in the lattice. Thus we may compute the probability of finding 
a particular site in state 1 at time t + 1 by conditioning on the state of the 
pre-image of that site at time t, and using the law of total probability. This 
may be written formally as: 

Pt+t[1] = L Pt[g] · P[g produces a site in state 1], (3) 
gE!J 

where g is the set of all pre-images of a single site (there are 25 = 32 of them), 
and Pt[g] is the probability of seeing the pre-image g at timet. The last prob­
ability in equation (3) is simply the conditional probability that a site will be 
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occupied at timet+ 1 given that the pre-image was in state g at timet. Also, 
note that if we denote by # 1 (g) the number of occupied sites in the pre-image 
g and by #o(g) the number of empty sites, then Pt[g] = pffo(g) pt1 (g) by the 
assumption of the independence of sites. 

In fact, since under the cellular automaton rule used here, the probability 
of colonization depends only on how many of the four neighboring sites are 
occupied, and not their actual arrangement, we may rearrange the sum in equa­
tion {3), grouping together terms involving pre-images where the center site is 
occupied versus those where it is empty. One can finally obtain the following 
equation for the patch occupancy probability on the following time step under 
the local-dispersal mean field theory assumptions: 

{4) 

where the colonization probability "Y is given by 

"Y = t ( : ) P~P6-k [1- (1- ,\)k] · 
k=O 

(5) 

This expression for the colonization probability "Y is obtained by conditioning 
on the number of occupied neighboring sites. Again, numerical methods or 
iteration can be used to find the fixed point ofthe mapping in equation (4), i.e. 
the equilibrium probabilities Po and Pl· 

One can see that equations (2) and ( 4) are identical, the only difference being 
the different values of the colonization probabilities "Y given in equations {1) 
and {5). The colonization probabilities "Y for the two models are not identical, 
although the first-order terms do agree: 

Infinite-dispersal: "Y = 1- e-4>-Pt 

= 4,\pl - 8,\2 Pi+ ... 

Local-dispersal: "Y = t ( ! ) p~ P6-k [ 1 - {1 - ,\)k] 
k=O 

= 4,\pl - 12,\pt + 6,\2 Pt + ... 
The main difference between the infinite-dispersal and the local-dispersal 

mean field approximations is that the infinite-dispersal approximation allows 
for the possibility of "mass events" - for example, under this approximation, it 
is possible (although unlikely) for 10 sites to simultaneously drop a seed onto 
the same site. This cannot happen in the detailed spatial (cellular automaton) 
model, and also cannot happen in the local-dispersal mean field approximation 
- a site can have at most four seeds dropped on it at any given time, by its 
four neighbors. Although this distinction is fairly unimportant for this particu­
lar model, it may play a larger role in other models. Thus the choice of which 
nonspatial approximation to use for other models should be given some con­
sideration. Finally, note that henceforth in this report, any mention of mean 
field theory refers to the local-dispersal mean field theory, and not the infinite­
dispersal approximation. 
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Figure 4: Under the assumptions of the local structure theory, adjacent sites in 
the lattice are correlated and non-adjacent sites are independent. The proba­
bilities of all four possible 2 x 1 blocks are used to compute the probabilities 
of all pre-images in the center of the figure; the cellular automaton rule is then 
applied to the pre-images to compute the new probabilities for the 2 x 1 blocks 
on the following time step. 

5 Local Structure Theory 

The next step in approximating the detailed spatial model is a simple generaliza­
tion of the local-dispersal mean field theory. Instead of assuming that all sites in 
the lattice are uncorrelated, we now assume that adjacent sites in the lattice are 
correlated, but that non-adjacent sites are independent. Furthermore, instead 
of characterizing the lattice by the probabilities of any given site being in state 
0 or 1, we now instead use the probabilities that any given 2 x 1 block of sites 
is in any of its four possible state configurations. Note that we will also assume 
rotational symmetry, so the probabilities will be the same for 1 x 2 blocks, and 
for notational convenience we will freely interchange 2 X 1 (vertical) and 1 x 2 
(horizontal) blocks since they have the same probabilities. The methodology 

in equation (3) may then be generalized to apply to the probability Pt+l [ b ] 
that any 2 x 1 block has one site in state a and the other in state b at time t + 1 
-we again condition on the state of the pre-image of a 2 x 1 block, and use 
the law of total probability: 

Pt+l [ b] = l:P[g] · P {g produces the block [ b]}. (6) 
gEQ 

Figure 4 illustrates the process, and is the local structure theory analogue of 
figure 3 from the mean field approximation. 

The main difficulty with the local structure theory is determining how to 
compute the probabilities of the pre-images shown in the center of figure 4, 
using the assumptions given. Gutowitz et al. (1987) discuss the problem for 
one-dimensional cellular automata, while Gutowitz and Victor (1987) suggest a 
generalization of the method to two dimensions. The problem is basically how 
to use the knowledge of the probabilities of 2 x 1 blocks of sites to compute the 
probabilities of larger blocks, for example 3 x 1 blocks. First, if we assume that 
our 2 x 1 block probabilities satisfy some basic consistency conditions (Gutowitz 
et al., 1987), then note that from the 2 x 1 block probabilities, we may compute 
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the probabilities Pl and Po of single sites being occupied and empty, by summing 
over appropriate 2 x 1 probabilities. For example Pl = P[1] may be computed 
by summing over all 2 X 1 blocks with a 1 in the leftmost position: 

Pl = P[1] = P[10] + P[ll]. {7) 

Note that the consistency conditions mentioned above basically state that the 
same result is obtained if one sums over the probabilities of all 2 x 1 blocks 
with a 1 in the rightmost position. Also, the same idea allows one to compute 
Po= P[O] = P[OO] + P[01]. Next, we wish to compute the probability of a given 
3 x 1 block "abc", where a, b, and c each have values 0 or 1. First observe 
that the conditional probability that the rightmost site has value "c" given that 
the leftmost two sites are in states "ab", written as P[* * clab*] (where the * 
is a placeholder indicating that we don't care about the state of a particular 
site), under our local structure theory assumptions is equal to the probability 
P[* * cl * b*], because the site in the third position is independent of the site in 
the first position. Thus, 

{8) 

Then, noting that P[* * c nab*] = P[abc], and P[* * c n *b*] = P[*bc], we use 
the definition of conditional probability and equation {8) to write: 

P[abc] P[*bc] 
P[ab*] = P[*b*]. {9) 

Now, the probability P[ab*] is simply the probability P[ab] which we know, and 
we can also compute P[*b*] = P[b] by summing over 2 X 1 block probabilities as 
in equation {7). Thus, rearranging equation {9) yields the probability we want: 

P[ b ] = P[ab]P[bc] 
a c P[b] ' 

and note that if P[b] = 0, then by convention we shall set P[abc] = 0 as well. 
The basic idea in the above is that in order to compute the probability of a 

larger block of sites, we cover it by overlapping small blocks whose probabilities 
multiply, and then divide out the probability of the overlapping region. This 
method may be applied to other shapes, such as any given pre-image as shown 
in figure 4, by covering the pre-image with overlapping 2 x 1 "dominoes". Note 
however that there is more than one such tiling. For example, to compute the 

probability of a 2 x 2 block P [ ~~ ] using the 2 X 1 block probabilities, there 

are four possible ways: we could either cover the block with the tiles [ ~ ] , 

[c d], and [ ~ ] , or we could use the tiles [a b], [ ~ ] , and [c d], and so on. 

Different tilings can in fact give different probabilities. Although the lack of a 
unique way of extending probabilities may seem somewhat troubling, one may 
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Figure 5: The graph displays the measured patch occupancy probability from 
the cellular automaton simulations (averaged over the last 10 time steps from 
each run after equilibrium was reached, as discussed in section 2), and as pre­
dicted by the mean field theory and 2 x 1local structure theory approximations. 
This probability is shown for values of Jl ranging from 0.025 to 0.7 in increments 
of 0.025, with ~ held fixed at 0.25. 

simply think of them as different estimators for the larger probabilities, and 
choose one (or several) of them to try. The extension method used to compute 
the probabilities of pre-images in figure 4 for this study was 

where again the probability on the left hand side is set to zero if any of the 
denominators on the right vanish. Other tiling methods were tried, with similar 
results. Using the above formula to compute the probability of each pre-image 
g, equation (6) may then be used to compute the probabilities of the four 2 x 1 
blocks on the next time step. One can find the fixed point as before, numerically 
or by iteration. Once the equilibrium probabilities of all four 2 x 1 blocks have 
been computed, the equilibrium patch-occupancy probability may be computed 
using equation (7). 

The predicted patch-occupancy probabilities from the local-dispersal mean 
field approximation and the 2 x 1 local structure approximation are shown in 
figure 5, along with the measured values from the cellular automaton simula­
tions. The results from the infinite-dispersal mean field approximation are not 
shown, since they are so similar to the local-dispersal approximation predictions 
for this model. To more clearly compare the results of the two methods shown 
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Figure 6: The error in the predicted patch occupancy probabilities is shown, 
i.e. the difference between the predicted values and the values measured from 
the simulations, for the mean field theory and 2 x 1 local structure theory 
approximations. 

in figure 5, figure 6 displays the error in the predictions, i.e. the difference 
between the predicted patch occupancy probabilities and the values measured 
from the actual simulations. As can be seen in figure 6, the largest error in the 
2 x 1 predictions (0.149, when JJ = 0.400) is about 0. 77 times as large as the 
maximum error in the mean field predictions (0.193). Thus, using 2 x 1 blocks to 
track some of the local spatial correlations in the approximations does improve 
the predictions. Note that both methods of approximation overestimate the 
patch occupancy probability Pt, quite drastically for intermediate values of JJ. 
This is most likely because the assumptions of independence of most sites in the 
lattice by the two approximations causes both methods to underestimate the 
degree of clustering in the actual simulations. When there is more clustering, 
i.e. when occupied sites tend to be near other occupied sites, more seeds are 
''wasted" by being dropped on neighboring occupied sites (and thus p1 drops) 
than would be if nearby sites were not so highly correlated. 

6 More Local Structure 

The same basic ideas behind the 2 x 1 local structure theory approximation may 
be extended further: instead of using 2 x 1 correlation templates, other sizes 
and shapes may be used. For example, 4 x 1 and 2 X 2 templates were also 
investigated for this model. The idea behind equation (6) still applies, only now 
we use larger blocks which in turn have larger pre-images. The pre-images of 
4 x 1 and 2 x 2 blocks are shown in figure 7. To compute the probabilities of 
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Figure 7: Larger correlation templates such as 4 x 1 (top) and 2 x 2 (bottom) 
may be used with the local structure theory. As before, the probabilities of 
all pre-images must then be computed, and the cellular automaton applied to 
the pre-images in order to compute the new block probabilities on the following 
time step. 

pre-images needed in the general versions of equation (6), we again must cover 
the pre-images with overlapping blocks of sites whose probabilities we already 
know. We do this in a similar manner as before, summing over probabilities 
of known blocks in order to compute the probabilities of smaller blocks which 
we need for the tiling. The single-site patch occupancy probability p1 is also 
computed from the block probabilities by summing over the appropriate set; 
for example to compute Pl from the 4 x 1 block probabilities, one can sum the 
probabilities of all blocks which have a 1 in the leftmost position: 

p1 = P[1000]+ P[llOO]+ P[1010]+ P[lllO]+ P[lOOl ]+ P[l101]+P[1011]+ P[llll]. 

Again, there are multiple ways of covering the pre-images with overlapping tiles; 
in fact, as the pre-images become larger, in general there are many more ways to 
cover them. A thorough investigation of the performance of all tiling methods 
was not performed here; rather, for the 4 x 1 and 2 x 2 cases, a single tiling was 
selected which used primarily the largest blocks whose probabilities were known. 
One could in fact tile the pre-images for example using only 2 x 1 tiles, but 
this would defeat the purpose of the larger scale local structure approximation, 
by neglecting the extra correlation information contained in the larger block 
probabilities. 

To illustrate the power of these methods, figure 8 shows the error in patch 
occupancy probabilities predicted by all of the methods discussed (except for 
the infinite-dispersal mean field approximation): local-dispersal mean field, 2 x 
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Figure 8: The error in the predicted patch occupancy probabilities is shown for 
the local-dispersal mean field, 2 x 1, 4 x 1, and 2 x 2 local structure approxima­
tions. 

1, 4 x 1, and 2 x 2 local structure approximations. As can be seen in this 
graph, the maximum error in the 2 x 2 predictions (0.069) is approximately 
0.36 times as large as the maximum error in the mean field predictions (0.193), 
quite a significant reduction in error. It is also worth noting that 2 X 2 block 
probabilities do significantly better than 4 x 1 blocks. This suggests that if one is 
going to track spatial correlations among groups of four sites in the lattice, one 
is much better off using more detailed local correlations (square quadrats) as 
opposed to using correlations over a larger range of distances (longer transects). 
This is despite the fact that the 2 x 2 approximation actually requires fewer 
computations than the 4 x 1, since the 4 x 1 block has four times as many pre­
images (214) as the 2 x 2 block (212 ), because it has two sites more. In general, 
using larger blocks requires computing probabilities of more pre-images. If the 
blocks become too large, these computations become prohibitive in terms of both 
time and memory. The computations involving the largest block sizes used here 
run to completion on a Sparc-10 workstation within about one minute, and so 
are still quite feasible. As the blocks become larger, eventually they will reach 
the size of the entire lattice, at which time the approximation will in some sense 
become the simulation. In fact, this is a somewhat loose analogy, because the 
simulation is really only a single sample of the possible detailed behaviors of the 
system, while the local-structure computation involving blocks the size of the 
whole lattice will actually be computing the probabilities of all possible states 
of the entire lattice. 

Following the example of Kubo et al. (1996), in addition to computing the 
patch occupancy probability, the conditional probability q0; 0 that a randomly 
chosen neighbor of an empty site is empty as well, was also computed. This 
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Figure 9: The error in the predicted q0; 0 conditional probabilities is shown for 
the local-dispersal mean field, 2 x 1, 4 x 1, and 2 x 2 local structure approxima­
tions. 

is one measure of the degree of clustering in the lattice. If the sites in the 
lattice are not correlated, this probability will simply equal Poi this is the value 
predicted by the mean field approximation. For the 2 x 1local structure blocks, 
this conditional probability is simply P[OO]/ po. For the larger blocks, q0; 0 may 
be computed in a similar manner, by summing several of the block probabilities 
to compute P[OO], in a manner analogous to computing po and p1 from the larger 
block probabilities. The predictions of q0; 0 from the various methods is shown in 
figure 9. For this value, the maximum error in the 2 x 2 approximation (0.061, 
again when Jl = 0.400) was only 0.29 times as large as the maximum error in 
the mean field approximation (0.211). This difference is even more extreme 
than that in the predictions of the patch occupancy probabilities, which is not 
surprising given that the q0; 0 conditional probability reflects more of the local 
spatial structure in the lattice, and thus one would expect the methods which 
track local correlations to predict q0; 0 more accurately. 

7 Conclusions 

The two standard tools for investigating spatial models, simulation and infinite­
dispersal mean field theory, are seen to be extremes of an entire spectrum of 
methods. In addition, a second style of mean field involving only local dispersal 
exists, which is more open to generalization. Rather than keeping track of an 
entire lattice of spatial information, as in the simulations, or throwing away all 
of the spatial information, as in the mean field approximations, one may track 
local correlations of varying sizes and shapes using the local structure approxi-
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mation, a generalization of mean field theory. These techniques incorporate the 
local spatial effects of the cellular automaton rule on groups of nearby sites, 
in what is still essentially a mean-field-like approach. Predictions of the patch 
occupancy probability p1 and clustering as measured by the conditional prob­
ability q0; 0 can be dramatically improved using even the very simplest version 
of the local structure approximation, 2 x 1 block probabilities, as has also been 
demonstrated in continuous-time models (e.g., Kubo et al., 1996). If one tracks 
correlations among larger groups of sites such as four-site blocks, the most ac­
curate predictions are achieved when tracking detailed local correlations within 
2 x 2 blocks of sites, as opposed to correlations across a larger scale of distances 
in 4 x 1 blocks. It is hoped that these techniques may help researchers to better 
understand the nature and effects of detailed local spatial interactions within 
discrete spatial models. 

8 Acknowledgements 

This work was conducted with financial support from NSF training grant BIR-
9113307, "The Dynamics of Heterogeneous Ecological and Evolutionary Sys­
tems," administered by Cornell University. The author would like to thank 
Howard Gutowitz for helpful discussions of these methods. 

References 

CASWELL, H. & CoHEN, J. E. (1991a). Communities in patchy environments: 
A model of disturbance, competition, and heterogeneity. In: Ecological Het­
erogeneity (Kolasa, J. & Pickett, S., eds) pp. 97-122. New York: Springer­
Verlag. 

CASWELL, H. & COHEN, J. E. (1991b). Disturbance, interspecific interaction, 
and diversity in metapopulations. Biol. J. Linn. Soc. 42,193-218. 

CASWELL, H. & CoHEN, J. E. (1993). Local and regional regulation of species­
area relations: A patch-occupancy model. In: Species Diversity in Ecological 
Communities: Historical and Geographical Perspectives (Ricklefs, R. E. & 
Schluter, D., eds), pp. 99-107. Chicago: The University of Chicago Press. 

CASWELL, H. & ETTER, R. J. (1993). Ecological interactions in patchy en­
vironments: From patch occupancy models to cellular automata. In: Patch 
Dynamics (Powell, T., Levin, S. A., & Steele, J., eds) pp. 93-109. New York: 
Springer-Verlag. 

CoLASANTI, R. L. & GRIME, J.P. (1993). Resource dynamics and vegetation 
processes: A deterministic model using two-dimensional cellular automata. 
Func. Ecol. 7,169-176. 

DARWEN, P. & GREEN, D. (1996). Viability of populations in a landscape. 
Ecol. Modelling 85,165-171. 



D. Hiebeler, Stochastic Spatial Models 16 

DURRETT, R. & LEVIN, S. A. (1994a). The importance of being discrete (and 
spatial). Theor. Pop. Biol. 46,363-394. 

DURRETT, R. & LEVIN, S. A. (1994b). Stochastic spatial models: A user's 
guide to ecological applications. Phil. Trans. R. Soc. Lond. 8343,329-350. 

ETTER, R. J. & CASWELL, H. (1994). The advantages of dispersal in a patchy 
environment: Effects of disturbance in a cellular automaton model. In: Re­
production, Larval Biology and Recruitment in the Deep-sea Benthos, (Eckel­
barger, K. & Young, C., eds) pp. 284-305. New York: Columbia University 
Press. 

GUTOWITZ, H. A. & VICTOR, J. D. (1987). Local structure theory in more 
than one dimension. Complex Systems 1,57-68. 

GUTOWITZ, H. A., VICTOR, J.D. & KNIGHT, B. W. (1987). Local structure 
theory for cellular automata. Physica D28,18-48. 

HANSKI, I. (1991). Single-species metapopulation dynamics: Concepts, models 
and observations. Biol. J. Linn. Soc. 42,17-38. 

HANSKI, I. (1994). Patch-occupancy dynamics in fragmented landscapes. Tr. 
Ecol. Evo. 9,131-135. 

HANSKI, I. & GILPIN, M. (1991). Metapopulation dynamics: Brief history and 
conceptual domain. Biol. J. Linn. Soc. 42,3-16. 

HARADA, Y., EzoE, H., IWASA, Y., MATSUDA, H. & SATO, K. (1995). Pop­
ulation persistence and spatially limited social interaction. Theor. Pop. Biol. 
48,65-91. 

HARADA, Y. & lWASA, Y. (1994). Lattice population dynamics for plants with 
dispersing seeds and vegetative propagation. Res. Pop. Ecol. 36,237-249. 

HASTINGS, A. (1991). Structured models of metapopulation dynamics. Biol. 
J. Linn. Soc. 42,57-71. 

INGHE, 0. (1989). Genet and ramet survivorship under different mortality 
regimes - a cellular automata model. Jour. Theor. Biol. 138,257-270. 

KAREIV A, P. ( 1994). Space: The final frontier for ecological theory. Ecology 
75,1. 

Kuso, T., IWASA, Y. & FURUMOTO, N. (1996). Forest spatial dynamics with 
gap expansion: Total gap area and gap size distribution. Jour. Theor. Biol. 
180,229-246. 

LEVIN, S. A. & DURRETT, R. (1996). From individuals to epidemics. In 
preparation. 



D. Hiebeler, Stochastic Spatial Models 17 

MATSUDA, H., 0GITA, N., SASAKI, A. & SATO, K. (1992). Statistical me­
chanics of population. Prog. Theor. Phys. 88,1035-1049. 

McCARTHY, M. A. (1996). Extinction dynamics of the helmeted honeyeater: 
Effects of demography, stochasticity, inbreeding, and spatial structure. Ecol. 
Modelling 85,151-163. 

McCAULEY, E., WILSON, W. G. & DERoos, A.M. (1993). Dynamics of age­
structured and spatially structured predator-prey interactions: Individual­
based models and population-level formulations. Am. Nat. 142,412-442. 

McLAUGHLIN, J. F. & RoUGHGARDEN, J. (1993). Species interactions in 
space. In: Species Diversity in Ecological Communities: Historical and 
Geographical Perspectives (Ricklefs, R. E. & Schluter, D., eds), pp. 89-98. 
Chicago: University of Chicago Press. 

NEE, S. & MAY, R. (1992). Dynamics ofmetapopulations: Habitat destruction 
and competitive coexistence. J. Anim. Ecol. 61,37-40. 

0BORNY, B. (1994). Growth rules in clonal plants and environmental pre­
dictability- a simulation study. J. Ecol. 82,341-351. 

PACALA, S. W. (1986a). Neighborhood models of plant population dynamics: 
2. multispecies models of annuals. Theor. Pop. Biol. 29,262-292. 

PACALA, S. W. (1986b). Neighborhood models of plant population dynamics: 
4. single-species and multispecies models of annuals with dormant seeds. Am. 
Nat. 128,859-878. 

RHODES, C. & ANDERSON, R. (1996). Persistence and dynamics in lattice 
models of epidemic spread. Jour. Theor. Biol. 180,125-133. 

SATO, K., MATSUDA, H. & SASAKI, A. (1994). Pathogen invasion and host 
extinction in lattice structured populations. J. Math. Biol. 32,251-268. 

SCHULMAN, L. & SEIDEN, P. (1978). Statistical mechanics of a dynamical 
system based on Conway's game of life. J. Stat. Phys. 19,293-314. 

SILVERTOWN, J., HOLTIER, S., JoHNSON, J. & DALE, P. (1992). Cellular au­
tomaton models of interspecific competition for space - the effect of pattern 
on process. J. Ecol. 80,527-534. 

TILMAN, D. (1994). Competition and biodiversity in spatially structured habi­
tats. Ecology 75,2-16. 

WILBUR, W. J., LIPMAN, D. J. & SHAMMA, S. A. (1986). On the prediction 
of local patterns in cellular automata. Physica D19,397-410. 


