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ABSTRACT 

 

Extreme climate events are increasing the susceptibility of children's health and nutrition. This study focuses 

on the link between varying levels of precipitation and temperature and the occurrence of child undernutrition 

in Ethiopia. By combining data from nationwide demographic and health surveys with hourly weather 

observations of a high-resolution geographic scale, the study reveals that experiencing dry weather is linked to 

an 8 percent rise in stunting levels. Additionally, exposure to higher temperatures is associated with a 13 percent 

increase in wasting levels. Furthermore, the study offers suggestive evidence that highlights agriculture and 

infectious diseases as the primary pathways connecting different weather exposures to child undernutrition. 
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1. INTRODUCTION  

Addressing the challenges associated with child undernutrition remains one of the central issues within the 

sphere of global development. Child undernutrition, taking on varied forms, contributes to 45 percent of all 

child deaths globally (Black et al., 2013). It also holds the potential for a lasting adverse impact on both health 

and socioeconomic outcomes in children’s later life (Alderman et al., 2006; Hoddinott et al., 2013; Victora et 

al., 2008). Studies also indicate that the rising frequency and intensity of extreme climate events are contributing 

to an elevated risk of child health and nutritional outcomes (Helldén et al., 2021; Romanello et al., 2022). 

Presently, an estimated 22 percent of children under the age of five worldwide are stunted (low height-for-age), 

and 7 percent are wasted (low weight-for-height) (FAO, 2022). 

Ethiopia stands out as a notable example of a country vulnerable to climate-induced risks. Located in the Horn 

of Africa, one of the world's most drought-prone regions, the country has witnessed escalating temperatures 

and heightened drought risks in recent times (FEWSNET, 2022; Funk et al., 2023). In parallel, the country 

contends with higher rates of child undernutrition. Its population under the age of five is approximately 13 

million (nearly 16 percent of the total population), of which 35 percent are stunted, and 7 percent are affected 

by wasting (FAO, 2022; UNICEF, 2023). 

This study examines the impacts of exposures to varying weather conditions on child nutrition outcomes in 

Ethiopia. Specifically, it addresses two primary research questions. Firstly, it investigates the effect of exposure 

to different precipitation and temperature levels on the prevalence of chronic undernutrition (stunting) among 

children aged between 6 to 36 months, born between 1989 and 2011.  The study's focus on this specific age 

group is motivated by a methodological preference to explore the climatic effects during the children’s crucial 

age, a period when they are notably susceptible to underlying nutrition-related factors and health risks 

(Alderman & Headey, 2018; Shrimpton et al., 2001; Victora et al., 2010).  Secondly, it explores a similar effect 

on acute undernutrition (wasting) level within the same age-group and timeframe. The WHO height-for-age 

(HAZ) and weight-for-height (WHZ) standard scores are employed to measure child stunting and wasting 

levels, respectively. 

The study integrates data from demographic and health surveys with historical weather data, using a spatial 

resolution of 0.1 degrees, which is around 11-kilometer scale. This approach enables the categorization of 

weather conditions observed within the spatial grid-cells where the sampled children were located. Accordingly, 

the precipitation and temperature levels at each grid-cell are classified into three exposure intensities. 

Subsequently, the study calculates the precipitation and temperature exposure amounts by summing the 

monthly hours during which a child is exposed to the three exposure levels across two distinct time windows. 
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These exposure windows correspond to the two outcome variables: chronic and acute undernutrition. To assess 

acute undernutrition, a condition associated with short-term nutritional deficiencies, the study examines the 

recent exposure period spanning three months before the survey interview date. To assess the impact on 

chronic malnutrition, the entire lifetime exposure is analyzed. The analytical approach of measuring the 

exposure levels largely builds on the method used by (Blom et al., 2022).  

Three major findings emerge from the study using a fixed-effect cross-sectional estimation approach. Firstly, 

chronic undernutrition is primarily influenced by exposure to arid weather. The estimation result indicates that 

a 100-hour increase in children’s mean monthly lifetime exposure to precipitation below 0.5 mm, compared to 

the middle exposure bin, [0.5 – 4] mm, is associated with approximately an 8 percent decline from the sample 

mean HAZ score. Secondly, acute malnutrition appears to be more sensitive to varying levels of exposure, with 

warm temperatures (above 26 °C) having a particularly pronounced impact. In terms of the sample mean, this 

effect translates to an approximate 13 percent decline in WHZ score and an 11 percent worsening in the 

prevalence of wasting, compared to the effects of the middle exposure bin, [16 – 26] °C. Thirdly, the study 

offers suggestive evidence regarding agriculture and infectious diseases as the two primary underlying pathways 

that potentially link various levels of weather exposure to the incidence of acute and chronic undernutrition. 

The study finding concerning the relationship between precipitation exposure and stunting, along with the 

associated underlying impact pathways, closely aligns with the outcomes of existing research. However, the 

study's other findings, highlighting the absence of a noteworthy effect from warm temperature exposure on 

child stunting, and likewise, the lack of a significant impact from arid weather exposure on child wasting, deviate 

from conclusions drawn in previous studies in Ethiopia (Dimitrova, 2021; Hagos et al., 2014; Randell et al., 

2020). 

Furthermore, the study's primary contribution to the current body of literature revolves around the 

methodology for assessing weather exposure, an approach previously lacking in Ethiopian weather-nutrition 

studies. This method, which measures hourly weather exposure at a high-resolution geographic scale, 

significantly enhances the precision of weather pattern assessment compared to conventional approaches that 

rely on mean monthly or seasonal data at a broader geographic scale or administrative units. The study’s findings 

will also contribute to a deeper understanding of the intricate interconnections between climate variability and 

child nutritional outcomes. 

The rest of the study is organized as follows. Section 2 provides a concise conceptual framework, Section 3 

outlines the empirical methodology, Section 4 presents the main findings, Section 5 provides a general 

exploration of the mechanisms that explain the main findings, and section 6 concludes. 
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2. CONCEPTUAL FRAMEWORK 

This section outlines the primary factors contributing to child undernutrition, thus providing a basis for 

formulating hypotheses regarding the potential pathways through which climate variability may impact child 

undernutrition in Ethiopia. Subsequently, the hypotheses will be judiciously integrated into the development of 

the study's empirical methodology. 

The study depends on the conceptual framework of maternal and child undernutrition, originally developed by 

UNICEF and expounded in (Black et al., 2008, 2013). This framework establishes a hierarchy of three 

interrelated levels that impact child nutrition. The first level consists of two immediate determinants, namely 

child’s adequate dietary intake and health status. These immediate factors are mutually dependent and, in turn, 

are determined by three key underlying factors: household food security status, adequate care for mother and 

child, and household access to health environment and services. At the third level, there are basic determinants 

that manifest at broader geographical levels and directly influence the underlying determinants. The basic 

determinants encompass a range of factors, including economic, demographic, environmental, and 

infrastructural elements. 

The interplay of the determinants at the three levels is manifested in the short-term and long-term consequences 

of child nutrition outcomes. The short-term consequences of child undernutrition, often referred to acute 

malnutrition (wasting), include thin physical stature and a weakened immune system, leading to an increased 

risk of disease and mortality (Black et al., 2013). On the other hand, the long-term consequences of inadequate 

dietary intake and recurrent diseases result in chronic malnutrition (stunting) – the condition of being too short 

for one's age. Stunted children are exposed to a lifetime of possibly irreversible consequences, including poor 

cognitive development, reduced school attainment, diminished intellectual capabilities, and lower labour 

productivity as adults (Alderman et al., 2006; Hoddinott et al., 2013; Victora et al., 2008) 

Within this conceptual framework, the impact of climate variability on child nutrition outcomes primarily 

occurs through its influence on the underlying causes, operating through interconnected pathways (Helldén et 

al., 2021; Romanello et al., 2022). Some of these pathways involve direct effects, which are triggered by changes 

in temperature and precipitation levels. For instance, extreme heatwaves (Ortiz-Bobea et al., 2019) or droughts 

can directly affect agricultural productivity, leading to food shortages and reduced access to nutrition (Bahru et 

al., 2019; Isabel et al., 2021). Additionally, the indirect effects of climate variability are associated with a wide 

range of changes in the ecosystem. These changes can affect water quality (Bandyopadhyay et al., 2012; Levy et 

al., 2018), air pollution (Sun et al., 2017), and disease transmission  (Siraj et al., 2014), ultimately impacting child 

nutrition and health (Helldén et al., 2021; Swinburn et al., 2019).  
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Furthermore, the impact of climate variability on child undernutrition can be influenced by basic determinants, 

such as economic conditions, demographic trends, and infrastructural development. As a result of this intricate 

interplay, identifying specific causes of child undernutrition due to climate variability often becomes 

challenging. For instance, the interaction of these multiple factors may have a mitigating role on the positive 

side or an amplifying role on the negative side. Consequently, understanding the specific contributions of 

climate variability to child undernutrition demands careful consideration of the broader context of various 

influencing elements within the settings of a given study area. 

This leads to an inquiry into the possible impact pathways of precipitation and temperature exposures on child 

nutrition outcomes in Ethiopia. I identify two major pathways given the existing literature. Firstly, weather 

conditions and variability may have an effect through their impact on agriculture production and household 

food security, subsequently affecting child dietary intake (Hagos et al., 2014; Randell et al., 2020). Almost the 

entire Ethiopian agricultural production relies on a rain-fed agriculture system, making it highly vulnerable to 

weather variability. Secondly, climatic conditions can contribute to the prevalence and transmission of various 

waterborne and vector-borne pathogens that frequently impact child health in Ethiopia. For instance, 

inadequate hygiene and sanitation practices leading to diarrhea, coupled with malaria infections, remain notable 

factors contributing to child mortality and morbidity rates in Ethiopia (Ahmed et al., 2020). 
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3. EMPIRICAL METHODOLOGY  

This section begins by describing the data utilized. In the second part, it explains the model variables, with a 

particular focus on the classification methods used to quantify precipitation and temperature exposures. 

Subsequently, the identification strategy is discussed.  

3.1 Data 

 

A. Demographic and health survey 

The study draws data from five waves of nationally representative demographic and health surveys (DHS), 

conducted between 1993 and 20141. These surveys were conducted at approximately five-year intervals, with 

new enumeration areas (EAs) being resampled each time. The DHS employs a two-stage cluster design to 

determine its sample. In the first stage, a random sample of enumeration areas (EAs) at the sub-district level is 

selected. In the second stage, households are chosen from each of the EAs. Then within each household, all 

women of reproductive health age (15 to 49 years) are interviewed. Consequently, the child data is organized in 

such a way that there is one record for every child of the interviewed women who were born in the five years 

preceding the survey.  

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 1. DHS cluster locations and wereda boundaries 
Note: Wereda is the third-level administrative unit, following region and zone. Map is draws at a scale of 0.1 degrees. 

 
1 These are the years of the survey interviews, distinct from the reporting years.  
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The surveys altogether covered all regional and zonal administrations, and nearly half of the weredas (districts) 

in the country. On the other hand, The DHS geo-location reference is at the EA level. Approximately 3% of 

the EAs lack geo-location information and have therefore been excluded from our sample. Figure 1 illustrates 

the wide coverage and representativeness of the surveys.  

From this representative sample, I specifically focus on children aged 6 to 36 months. This age group is of 

particular interest because it commonly observes growth faltering patterns especially in developing countries 

(Victora et al., 2010). In other words, during their early ages, typically spanning up to three years, children’s 

anthropometric measures often exhibit a rapid decline followed by recovery. This phenomenon can be 

attributed to heightened vulnerability of children to underlying nutrition-related factors and health risks 

(Alderman & Headey, 2018; Shrimpton et al., 2001; Victora et al., 2010). Thus, the study aims to investigate the 

climatic impacts on child nutritional outcome during this critical period.  

And finally, after excluding any missing and unrealistic child anthropometric measurements, the final sample 

consists of 17,950 children. Table 1 presents a summary of the child anthropometric outcomes by survey 

rounds. The overall average of the sample reveals a HAZ score of -1.71 and a WHZ of -0.65. Over the course 

of the study period, there was a remarkable decline in the prevalence of stunting, decreasing by 18% from 55% 

in 2000. Additionally, the prevalence of stunting wasting showed a decline of 7%, down from 16%. 

 

Table 1. Child anthropometric outcomes by survey round  
 

 

 

 

 

 

 

 

 

 

 

 

 

B. Weather data 

The study uses the 'ERA5-land' dataset obtained from the Copernicus Climate Change Services. This dataset 

provides hourly reanalysis weather data at a spatial resolution of 0.1 degrees. By utilizing this dataset, Figure 2 

Year Sample 
HAZ Stunted WHZ Wasted 

mean sd pct sd mean sd pct sd 

2000 4,373 -2.14 1.67 0.55 0.50 -0.80 1.29 0.16 0.37 

2005 1,917 -1.82 1.90 0.49 0.50 -0.50 1.46 0.14 0.35 

2011 4,611 -1.69 1.77 0.44 0.50 -0.69 1.25 0.13 0.34 

2016 4,418 -1.40 1.72 0.38 0.48 -0.61 1.26 0.13 0.34 

2019 2,586 -1.48 1.53 0.37 0.48 -0.48 1.14 0.09 0.29 

Total 17,905 -1.71 1.74 0.45 0.50 -0.65 1.28 0.13 0.34 
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and Figure 3 depict the temporal and spatial variations - respectively, of precipitation and temperature levels in 

Ethiopia.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Temporal climatology of Ethiopia  
Note: the data cover years ranging from 1985 to 2014. The temperature (shown in a line graph) indicates the monthly  
average in degrees Celsius, while precipitation (depicted in a bar graph) represents the monthly total in millimeters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Spatial climatology of Ethiopia  
Note: the data cover years ranging from 1985 to 2014. Precipitation (left) represents the monthly total in millimeters; 
 while temperature (right) represents the monthly average in degrees Celsius. Maps are draws at a scale of 0.1 degrees.  
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Three important insights can be derived from the weather distributions. Firstly, precipitation stands out as a 

major factor, displaying noteworthy spatiotemporal disparities. The main rainy season spans from June to 

September, contributing to more than two-thirds of the annual rainfall (Segele & Lamb, 2005). Prior to this, a 

brief rainy season is experienced in the majority of the highlands, occurring between February and May. On 

average, the annual precipitation ranges up to 500 mm in the lowland region to 1200 mm in the highlands. 

Secondly, the country predominantly experiences a tropical climate, with mean annual temperatures ranging 

from 15°C in the highlands to 25°C in the lowlands. Additionally, there are noticeable temperature variations 

across regions, with intra-day variation being relatively higher in the lowlands. Thirdly, a large part of the 

western half of the country gets more rain and lower temperatures. This sub-region constitutes the primary 

rain-fed agricultural area, inhabiting  more than 90 percent of the total population (Wakjira et al., 2021). The 

geographical concentration of survey clusters in Figure 1 notably aligns with this sub-region.  

 

3.2 Model variables  

 

A. Outcome variables  

The study examines two outcome variables: chronic undernutrition and acute undernutrition. Chronic 

undernutrition captures the impact of prolonged nutritional deficiency or repeated illness. It is measured by 

child anthropometric measurements for stunting using the height-for-age (HAZ) score. On the other hand, 

acute undernutrition represents the impact of short-term consequence of insufficient food intake or incidence 

of diseases. It is measured by child anthropometric measures for wasting using the weight-for-height (WHZ). 

Children are classified as stunted or wasted if their HAZ or WHZ scores, respectively, fall more than two 

standard deviations below the WHO Child Growth Standards median. A three standard deviation threshold 

implies severe undernutrition for both forms. 

      

      Table 2. Child undernutrition distribution across agro ecological zones  

Variable 
Tropical 
(n=6125) 

Subtropical 
(n=8756) 

Temperate 
(n=3024) 

 Mean Sd Mean Sd Mean Sd 

HAZ -1.57 1.82 -1.8 1.69 -1.77 1.69 

Stunted (1/0) 0.41 0.49 0.47 0.50 0.46 0.50 

WHZ -0.84 1.29 -0.6 1.26 -0.39 1.23 

Wasted (1/0) 0.17 0.38 0.13 0.33 0.09 0.29 

Monthly precipitation (mm) 37.33 29.3 62.45 38.89 95.39 48.84 

Monthly temperature (°C) 25.06 2.75 18.71 1.72 14.77 1.62 

Altitude (m) 973.28 377.44 1878.4 202.77 2542.16 213.89 

Note: The agro-ecology classification is primarily based on (MoA, 1998). Subtropical zones span altitudes from 1500 to 2300 
meters above sea level, with the lower and upper ranges corresponding to tropical and temperate regions, respectively. 
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Table 2 presents the distribution of stunted and wasted children across agro ecological zones in our sample. 

These ecologies mainly depend on altitude, where tropical, subtropical, and temperate regions roughly match 

lowland, midland, and highland areas, respectively. While there is no prima facie association between stunting 

and agro ecologies, we do notice a relatively higher prevalence of wasting in tropical regions, where there is 

higher temperature and lesser precipitation distribution. 

 

B. Precipitation exposures 

Precipitation exposure measures the hourly amount of precipitation experienced in the grid cells where the 

children were located. The exposure is categorized into three ranges: absence of precipitation (below 0.5 mm), 

light to moderate rainfall (0.5-4 mm), and heavy to intense rainfall (above 4 mm). To establish the exposure 

categories, I initially take into account the average daily rainfall during the main rainy season (June to 

September), which usually amounts to about 3.5 mm. In addition, the overall daily average rainfall is 

approximately 2.0 mm. Subsequently I set rule-of-thumb thresholds to distinguish between instances of no 

precipitation and heavy rainfall. It's important to note that daily precipitation events frequently transpire within 

specific hours rather than spanning an entire day. Therefore, this study adopts an hourly approach to more 

effectively capture intra-day variations in precipitation frequency and intensity2. 

Then, I calculate the levels of precipitation exposure within two different time frames for the two outcome 

variables. For acute undernutrition, which is associated with short-term undernutrition events, I calculate the 

recent exposure period spanning three months prior to the survey interview date. This duration is considered 

adequately sufficient to observe the effects on children's wasting measures before their recovery.3 The lifetime 

exposure period, covering from birth to interview dates, is calculated to capture the impact on chronic 

undernutrition. 

Figure 4 illustrates the distribution of average monthly exposure hours by child. In Panel I, the recent exposure 

period shows a dense concentration of children from the sample in the lower exposure range – below 0.5 mm. 

The median exposure to this particular range is 422 hours out of the total 720 hours in a month (30 days’ x 24 

hours). Similarly, in Panel II, for the lifetime exposure period, the median exposure in the lower range is 502 

hours. 

 
2 A sensitivity analysis is included for daily basis exposure in section 4.3.  

3 For instance, according to UNICEF, approximately 90 percent of severely wasted children can achieve full recovery in approximately six weeks. A sensitivity 

analysis for scenarios of one to five months confirms the robustness of the three-month exposure window. 
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Figure 4. Mean monthly precipitation exposure by child 
Note: the box plots show the distribution of mean monthly hours of exposure in each precipitation range during recent and lifetime 

exposure periods. I calculate this by adding the number of hours a child is exposed to a given precipitation level during recent exposure 

window (three months prior to the date of the survey interview) and the after-birth exposure window (entire lifetime period). For 

comparison purposes, I then normalize the total exposure hours by dividing three months for recent exposure and by age of the child 

(in months) for after-birth exposure. The outlier values shown, a minimal in number, have been excluded in the regression analysis to 

improve the overall representativeness of the sample. 

 

The major assumption here is that precipitation exposures primarily affect child undernutrition through 

agricultural pathways. Specifically, arid regions with heightened exposure to lower precipitation levels (below 

0.5 mm) endanger household food security and subsequently impacting child dietary intake. Conversely, 

excessive precipitation in the form of heavy rainfall and flooding (above 4 mm) may intensify water 

contamination, thereby positively correlating with increased diarrhea cases.  

  

C. Temperature exposures 

Temperature exposure measures the hourly temperature experienced in the grid cells where the children were 

located. The exposure is divided into three ranges: cold (below 16°C), cool (16 to 26°C), and warm (above 

26°C). This classification is primarily based on the temperature levels commonly observed in the three major 

agro ecological zones. Furthermore, careful consideration is given to how different temperature ranges are 

associated to the growth and survival of pathogens and vectors that potentially affect child health. 

The temperature exposure timeframes and calculation follow the same procedure with the precipitation case. 

Figure 5 illustrates the distribution of average monthly temperature exposure hours by child. In Panel I, the 

recent exposure period shows a dense concentration of children in the middle exposure range – [16 to 26] °C. 
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The median exposure to this particular range is 426 hours out of the total 720 hours in a month (30 days’ x 24 

hours). In the same way, in Panel II, for the lifetime exposure period, the median exposure in the middle range 

is 417 hours. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Mean monthly temperature exposure by child   
Note: the box plots show the distribution of mean monthly hours of exposure in each temperature range during recent and lifetime 

exposure periods. We calculate this by adding the number of hours a child is exposed to a given temperature level during recent exposure 

window (three months prior to the date of the survey interview) and the after-birth exposure window (entire lifetime period). For 

comparison purposes, we then normalize the total exposure hours by dividing three months for recent exposure and by age of the child 

(in months) for after-birth exposure. The outlier values shown, a minimal in number, have been excluded in the regression analysis to 

improve the overall representativeness of the sample. 

 

Here the assumption is the higher temperature range (above 26°C) has a more adverse impact on child 

nutritional outcomes compared to the lower temperature ranges. Specifically, our hypothesis is grounded in the 

potential link between warmer temperatures and the spread of various pathogens that can undermine child 

health. For instance, temperatures falling below approximately 18°C and 15°C, respectively, are known to 

impede the development of Plasmodium falciparum and P. vivax parasites, which are responsible for the 

majority of malaria cases in Ethiopia (Lyon et al., 2017). In contrast, the optimal conditions for the highest 

proportion of the malaria vector survival during the incubation period lie within the temperature range of 28°C 

to 32°C (Teklehaimanot et al., 2004). However, it is important to note that this assumption is contingent on 

other climatic factors that influence the prevalence and distribution of malaria vectors, such as altitude and 

rainfall patterns. Furthermore, studies indicate a correlation between higher temperatures and waterborne as 

well as foodborne child illnesses, including cases of diarrhea (Ahmed et al., 2020). 
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D. Precipitation anomalies 

The precipitation and temperature categories discussed quantify the degree of weather exposures. The 

precipitation anomalies on the other hand aim to account for deviations from normal climatic patterns. In the 

context of the agricultural system, timing – specifically the onset and cessation of rainfall during cropping 

seasons – is a critical factor in determining production outcomes. Particularly, the precipitation anomaly gains 

significant relevance in Ethiopia's agricultural setting, which heavily relies on rain-fed systems (Segele & Lamb, 

2005; Wakjira et al., 2021). Strong evidence suggests that irregularities in precipitation timing can have adverse 

effects on agricultural production, ultimately resulting in diminished food security.  

In our model, the precipitation anomaly is calculated (scaled in thousands of millimeters) as the average 

deviation of monthly total precipitation from the historical levels observed between 1985 and 2014 in the 

specific grid-cell where the children were located. Appendix A illustrates the distribution of exposures to 

monthly precipitation anomalies during both the recent and lifetime exposure periods. As can be observed, the 

median exposure across months is largely negative, implying that a majority of the children in our sample 

experienced lower precipitation exposure compared to historical weather conditions. 

 

E. Demographic factors 

The demographic factors include determinants of child nutrition outcome at child, mother and household 

levels. Table 3 presents the summary statistics of these variables. Among the total children in the sample, 49 

percent are female, aged above 20 months, and of medium birth size. Of these children, 19% are first-born in 

their families. Turning to the characteristics of the mothers, the average age is above 28 years old, and their 

height averages at 163 centimeters. A small proportion of the mothers, just 8%, have completed more than 9 

grades of education. Household access to clean drinking water and sanitation facilities follows the DHS 

program standard for 'improved' access. Accordingly, access to improved drinking water and sanitation facilities 

stands at 42% and 17%, respectively. Lastly, a majority of these households fall below the third wealth quantile. 
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 Table 3. Summary statistics by key demographic variables 

Variable Mean Sd 

Child is female (1/0) 0.49 0.50 

Child’s age (months) 20.57 9.02 

Child birth size4 3.10 1.35 

Eldest child (1/0) 0.19 0.40 

Mother’s age (years) 28.62 6.47 

Mother’s education (9+ years) 0.08 0.27 

Mother’s height (cm)5 163.62 70.38 

Improved drinking water (1/0) 0.42 0.49 

Improved latrines (1/0) 0.17 0.38 

Wealth quantile 2.70 1.52 

 

 

3.3 Identification strategy  

Our main data source, the DHS, introduced new EAs and households with each new wave. This consideration 

primarily influences the choice of our estimation model. As a result, I employ the appropriate, fixed-effect 

cross-section model, represented by the following equation. 

𝐘 = Preciptation𝛃  +  Temperature𝛄 +  Weather_anomaly𝛅 +  

                                      Weather_controls𝛈 +  Demographic_controls𝛉 + 𝛂𝑹 + 𝛂𝐓 +  𝛆             (1) 

                                 

Where Y is a column vector of outcome variable, chronic child undernutrition (HAZ score or stunting level) 

for child i, in grid-cell g, with birth-date d, birth-month m and birth-year y. 

Precipitation represents the mean monthly precipitation exposure of child_igdmy, in hundred-hours, across 

lower (< 0.5 mm) and upper (> 4 mm) precipitation ranges during the lifetime exposure window. The middle 

range [0.5 – 4] mm serves as the reference (omitted) category variable in the model. Thus, β denotes the effects 

of a 100-hour increase per month in children’s exposure within a given lower or upper precipitation range 

compared to the reference exposure range. 

 
4 Child birth size as reported by mother, ranges from 1 (very large) to 5 (very small) 

5 Missing mother's height values, which amount to 8% of the total sample are replaced with the median value. 
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In the same way, temperature refers to the mean monthly temperature exposure of child_igdmy, in hundred-

hours, across lower (< 16 °C) and upper (> 26 °C) temperature ranges during the lifetime exposure window. 

The intermediate range [16 – 26] °C serves as the reference (omitted) category variable. Thus, γ represents the 

effects of a 100-hour increase per month in children’s exposure within lower or upper temperature ranges 

compared to the reference temperature range. 

Weather anomaly represents the mean monthly precipitation anomalies in grid-cell g, where child_idmy was 

located during the lifetime exposure window. Thus δ measures the effects on chronic undernutrition for each 

monthly average deviation (scaled in thousands mm) from historical observed levels. 

Weather controls contain as set variables that include precipitation exposure, temperature exposure and weather 

anomalies during prenatal period. The prenatal weather exposure calculation and timeframe coincides with the 

after-birth exposures. On the other hand, the demographic controls refer to determinants of child nutrition 

outcome at child, mother and household levels. The model further incorporates region-specific fixed effects 

(α𝑅), along with distinct time fixed effects (αT) for months and years relevant to both the survey interview and 

the birth period. 

Finally, in order to estimate the effect on acute undernutrition, equation (2) is adopted to accommodate distinct 

factors from the chronic undernutrition case. The exposure window now spans three months prior to the 

interview date, excluding prenatal weather exposures. As result, the time fixed effects also exclude the birth 

month control. 

𝐘 = Preciptation𝛃  +  Temperature𝛄 +  Weather_anomaly𝛅 +  

Demographic_controls𝛉 + 𝛂𝑹 + 𝛂𝐓 +  𝛆                           (2) 
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4. RESULTS 

In this section, I present the main results on the effects of weather exposures on child nutrition outcomes 

using the outlined identification strategies.  

4.1 Effect on chronic undernutrition  

Table 3 presents the results of the effects of lifetime weather exposures on chronic child undernutrition, as 

measured by HAZ score and associated binary indictors of child stunting prevalence: stunted (HAZ < -2) and 

severely stunted (HAZ < -3). The table columns represent alternative model results of Equation (1) using 

different sets of control variables.  

 

Table 4. Effects of lifetime weather exposures on HAZ and stunting 

Note: This table reports the OLS estimates of the effects of lifetime weather exposures on HAZ and stunting. The after-birth (lifetime) 

exposure period spans from birth to the survey interview dates, while the prenatal exposure period encompasses three years preceding 

the birthdate for precipitation, and the standard gestation period of 40 weeks for temperature. The coefficients of the weather bins 

indicate the effects of a 100-hour increase per month in children’s exposure within a given bin compared to their respective middle bins, 

[0.5 – 4] mm for precipitation and [16 – 26] °C for temperature. ‘Prcp anomaly’ is the average deviation of monthly total precipitation 

from the historical levels observed between 1985 to 2014 in the specific grid-cell where the children were located. Demographic controls 

refer to child, mother and household characteristics. Standard errors are clustered at the region level. See Appendix B for the complete 

regression result. Significance levels: *p<0.1; **p<0.05; ***p<0.01 
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Our preferred model, Table 3 (4), indicates that after-birth exposure to arid weather (i.e., precipitation < 0.5 

mm) has a statistically significant negative association with HAZ score. This result aligns with our initial 

assumption that arid weathers could possibly contribute to a prolonged nutritional stress. The result can be 

interpreted as a 100-hour increase in children’s exposure to arid weather is associated with a decrease of HAZ 

by 0.113 points compared to the effects on the exposure of the reference bin, [0.5 – 4] mm. Given the mean 

HAZ score of our sample, which is -1.71, this effect is approximately an 8% decline.  

However, as reported in Table 3 (5) and (6), we do not find evidence supporting the idea that prolonged 

exposure to arid weather affects the prevalence of stunting, despite the correlations aligning with our 

expectations. Additionally, we find no statistically significant associations between other weather exposure 

categories and both the HAZ score and the prevalence of stunting. On the other hand, regarding the effects of 

precipitation anomalies, a deviation in monthly precipitation level (scaled in thousands mm) from the normal 

weather pattern (i.e., the historical average) has a negative effect on HAZ score, as assumed, but it is not 

statistically significant. This effect is mainly observed during the major rainy months, which run from June 

through September. However, for most of dry months, the association direction is positive, and statistically 

significant. This effect of monthly precipitation anomalies is further illustrated in Figure 6.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Effects of monthly precipitation anomalies on HAZ and stunting  
Note: This figure illustrates the coefficient estimates of monthly precipitation anomalies derived from the main model results for chronic 

undernutrition. The anomaly is calculated (scaled in thousands mm) as the average deviation of monthly total precipitation from the 

historical levels observed between 1985 to 2014 in the specific grid-cell where the children were located. Standard errors are clustered 

at the regional level. See Appendix C for complete regression result. 
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Coming back to the results of exposure to arid weather condition, the age and location-specific effects are 

illustrated in Figure 7. Panel (I) shows the age-specific effect, which aligns with the growth faltering patter 

expectation, indicating that children in the sample are most vulnerable to climatic shocks before they turn two 

years of age. As can be seen, this impact is highest on children aged between 18 and 23 months, gradually 

decreasing afterward. Given the mean HAZ score -2.0 and stunting prevalence 0.52 of this particular age group, 

the effect is over 13 percent decline and approximately 11 percent increase, respectively.  

Additionally, panel (II) indicates that the impact of exposure to arid weather is more pronounced on children 

located in subtropical and temperate zones, where relatively higher precipitation levels are observed on average 

compared to tropical areas. Tropical regions, which already have longer dry seasons, do not show notable 

differences in response to arid weather exposure when the precipitation remain below 0.5 mm. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7 Age and location specific effects of lifetime exposure to arid weather 
Note: panel I and II illustrate the coefficients of age and location-specific estimates from the main model – table 4 (4-5), respectively. 

Both panels represent different model results, in which age and ago-ecology groups are separately interacted with the lower precipitation 

range (< 0.5 mm). The regression results are reported in appendices E and F. 
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4.2 Effect on acute undernutrition  

 

Table 5 presents the results of the effects of recent weather exposures on acute child undernutrition, as 

measured by WHZ score and wasting prevalence.  Column (4) is the preferred model as it is specified with the 

full set of control variables. The results show that WHZ and wasting prevalence are sensitive to the different 

levels of weather exposures, except for the higher precipitation range.  

 

Table 5. Effects of recent weather exposures on WHZ and wasting 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: This table reports the OLS estimates of the effects of recent weather exposures on WHZ and wasting. The coefficients of the 

weather bins indicate the effects of a 100-hour increase per month in children’s exposure within a given bin compared to their respective 

middle bins, [0.5 – 4] mm for precipitation and [16 – 26] °C for temperature. ‘Prcp anomaly’ is the deviation of monthly total 

precipitation from the historical levels observed between 1985 to 2014 in the specific grid-cell where the children were located. 

Demographic controls refer to child, mother and household characteristics. Standard errors are clustered at the region level. See 

Appendix C for the complete regression result. Significance levels: *p<0.1; **p<0.05; ***p<0.01 

I emphasize the impact of exposure to higher temperature (> 26 °C), considering the higher possibility of this 

specific exposure category as a significant factor leading to acute child undernutrition. In particular, the 

assumption is based on the potential correlation between warmer temperatures and various pathogens that can 

have adverse effects on child health.  
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The findings also highlight this particular temperature range as having the highest magnitude when compared 

to other exposure ranges. The estimation result indicates that compared to the effects of exposure in the 

reference bin [16 – 26] °C, a 100-hour increase in children’s exposure to warm weather is associated with a 

decrease of 0.083 points in WHZ and a 1.4% increase in the prevalence of wasting. Considering the sample 

mean, this effect translates to an approximate 13% decline in WHZ score and an 11% worsening in the 

prevalence of wasting. 

Figure 7 illustrates age and location specific effects of recent exposure to warm temperature on acute 

undernutrition. Panel (I) indicates a heightened vulnerability of infants aged 6 to 11 months to the consequences 

of climatic shocks, as compared to their older counterparts. This impact can be quantified as a decline of more 

than 13 percent and increase around 8 percent, respectively, based on the mean HAZ score (-0.79) and the 

prevalence of stunting (0.22) for the specific age group. This observation aligns with previous research 

indicating an imminent risk of increased child wasting, preceding the potential occurrence of stunting in later 

stages (Rieger & Trommlerová, 2016). Furthermore, panel (II) illustrate the location-specific effect, in which 

the impact of exposure to arid-weather is significantly pronounced on children located in in tropical zones.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Age and location specific effects of recent exposure to warm temperature 
Note: panel I and II illustrate the coefficients of age and location-specific estimates from the main model – table 5 (4), respectively. 

Both panels represent different model results, in which age and ago-ecology groups are separately interacted with the higher temperature 

range (> 26 °C). The regression results are reported in appendices E and F.  
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Regarding the impact of monthly precipitation anomalies on acute malnutrition, it is important to note that the 

surveys were conducted in specific months. As a result, the calculation of recent exposure, which covers the 

three-month period preceding the survey interviews, primarily falls between April and July. Despite this, we 

observe similar impact trends during these months, where the rainy months (June and July) exhibit a negative 

association with HAZ score (see Appendix B for full regression result). 

 

4.3 Robustness check  

This section highlights the major tests conducted to assess the overall robustness of the study's main findings. 

The initial step involves verifying the plausibility of weather exposure estimates using a set of alternative control 

variables. Thus, as a first step, the analysis is systematically performed, progressing from the grid-cell level to 

various cluster levels. The results at lower cluster levels and with time fixed effect interaction terms hide much 

of the identifying spatiotemporal variations necessary for the model estimation. In comparison, the preferred 

specification at the regional cluster level leads to overall improved estimation results. Nevertheless, the 

alternative specifications reveal a consistent correlation between weather exposure bins and the outcome 

variables, despite differences in significance levels. Moreover, the final estimation result emerges after 

addressing potential model endogeneity problems, such as seasonality issues, by including monthly anomalies 

and accounting for omitted covariates through the inclusion of major demographic controls that determine 

child undernutrition. 

 
  

                               Table 6. Effects of daily mean weather exposure  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: The coefficients of the weather bins indicate the impact of an additional day's exposure per month compared to the respective 
reference bins, [0.5 – 4] mm for precipitation and [16 – 26] °C for temperature.  
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In the subsequent phase, I perform two sensitivity analyses concerning the categorization of weather bins. The 

initial test involves examining weather exposure on a daily basis rather than hourly. Table 6 presents the 

resulting test outcomes, revealing that the overall correlations between the new estimates and the outcome 

variables remain consistent. These coefficients representing daily mean weather exposure can be interpreted as 

the impact of an additional day's exposure per month in the lower or upper temperature and precipitation bins, 

relative to the respective reference bins. However, these estimates exhibit a relatively lesser magnitude in 

comparison to the hourly exposure. This difference could potentially be attributed to the assumption that the 

alternative hourly method might more effectively capture intra-day variations in terms of exposure frequency 

and intensity6.  Furthermore, Table 7 presents the results of a sensitivity analysis conducted for recent exposure 

window scenarios, ranging from one to five months, thereby confirming the robustness of the three-month 

exposure window. Notably, column (3) demonstrates a larger impact when compared to the other scenarios. 

 

 
            Table 7. Sensitivity analysis of recent exposure periods on WHZ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: each column corresponds to recent exposure period in months from the surveys interview date.  
Column (3) is the preferred model, representing the three-month exposure period.    

 
 
 

 
6 The estimates in the main model represent an additional 100-hour exposure effect per month, while the estimates in Table 6 represent an additional daily (24-
hour) exposure effect per month. 
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5. MECHANISMS  

The main findings of the study indicate that chronic undernutrition is predominantly influenced by exposure 

to arid weather. On the other hand, acute malnutrition appears to be more sensitive to varying levels of 

exposure, with warm temperatures having a particularly pronounced adverse impact. Thus, this section provides 

a general exploration of the underlying pathways that explain these findings. 

First I examine the agricultural channel through how adverse weather environments affect chronic child 

undernutrition. The DHS data lacks information on agricultural production and income to directly evaluate this 

pathway. Therefore, I focus on investigating maternal employment within the agricultural sector. The 

underlying rationale is that women's participation in employment has the potential to augment the total 

household income and increase the share of income managed by women. On the contrary side, maternal 

employment might also influence the allocation of time, which could potentially impact maternal childcare 

responsibilities. Consequently, increased vulnerability to adverse weather conditions could potentially 

exacerbate challenges in both agriculture and childcare aspects. 

        

Table 8. Effects by maternal employment in the agricultural sector   

 

 

 

 

 

 

 

 

 

 

 
 

 

Note: This regression result extends the findings of the main model from Table 4 (4). "Arid-weather" represents the lower precipitation 

exposure range (< 0.5 mm). Standard errors are clustered at the regional level. Significance Levels: *p < 0.1; **p < 0.05; ***p < 0.01. 
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Table 8 presents effects by maternal employment in the agricultural sector. The result shows a positive 

correlation between maternal on-farm work and HAZ score. Specifically, mothers engaged in the agricultural 

sector exhibit an additional HAZ score of 0.432 compared to those involved in non-agricultural employment 

or without any employment. Additionally, when considering the interaction between maternal employment and 

adverse weather conditions (precipitation below 0.5 mm), the result reveals a negative effect, implying that 

mothers with on-farm work are adversely affected by 0.09 HAZ points (or 14 percent from sample mean) more 

than the others. Furthermore, Table 8 (3-4) presents the model results with the inclusion of the partially 

available paternal employment data. These directions of impact remain consistent even after accounting for 

paternal employment. Certainly, this preliminary exploratory analysis highlights a future research area of work. 

A more comprehensive and robust model could be developed by considering household decision-making 

dynamics, off-farm employment and the influence of paternal involvement. 

Secondly, I investigate the impacts of climate variability on acute undernutrition through disease pathways. 

Diarrhea and fever incidences observed in the last two weeks from the survey dates serve as proxy indicators 

for the prevalence infectious diseases. As depicted in Table 9 (1-2), a significant positive correlation exists 

between the upper temperature exposure range and the prevalence of these incidences. Considering the sample 

mean of the occurrence of both cases, the effect is approximately 7.5 percent for diarrhea and 6.5 percent for 

fever. 

Building upon this observation, Table 9 (3-4) sheds light on the influence of warm temperatures on water, 

hygiene, and sanitation aspects linked to acute undernutrition. The result generally underscores how children 

from households with improved access to drinking water and sanitation remain less vulnerable to the adverse 

climate effects of warmer temperatures. Specifically, given the sample mean, these children from household 

with improves waster access are with 9 percent less likely to be affected by wasting, and similarly the latrines 

are 8 percent less likely to be wasted. However, the results also uncover a negative direct correlation between 

access to drinking water and both WHZ and wasting prevalence. This phenomenon could potentially be 

attributed to scenarios where the impact of water contamination or related diseases is influenced by other 

cofounding factors, such as household behavior. For instance, Table 9 (5-6) demonstrates that this relationship 

become statistically insignificant when accounting for access to improved latrines and weather specific effects. 

The study also investigated the potential impact of malaria on acute undernutrition through an assessment of 

favorable months and rainfall distribution of the weather data. However, these analyses did not yield significant 

results. This could possibly be due to the necessity for a more comprehensive spatial identification model, 

capable of accurately pinpointing malaria transmission-favorable areas while accounting for various geographic 

factors. These findings highlight a potential area of future research. 
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   Table 9. Effects by access to improved drinking water and latrines   

 

 

Note: This regression result extends the main model's findings from Table 5 (4). "Warm-temp" represents the upper temperature range 

(> 26 °C). Standard errors are clustered at the regional level. Significance Levels: *p < 0.1; **p < 0.05; ***p < 0.01. 
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6. CONCLUSION  

This paper highlights the relationship between different levels of rainfall and temperature and the prevalence 

of child undernutrition in Ethiopia. The study focuses on ages 6 to 36 months, a critical period when children 

are especially susceptible to underlying nutrition-related factors and health risks. Three major findings emerge 

from the study. 

Firstly, chronic undernutrition is mainly influenced by arid weather. For every 100-hour increase in children's 

monthly exposure to less than 0.5 mm of precipitation over their lifetime, their HAZ score drops by 0.113 

points compared to moderate exposure of [0.5 – 4] mm. This represents an 8 percent reduction from the 

average HAZ score in our sample. This effect is most pronounced until the age of two years and then gradually 

decreases. Additionally, the impact of dry weather is more significant on children in subtropical and temperate 

areas, where average precipitation levels are relatively higher compared to tropical regions. 

Secondly, acute malnutrition is more responsive to different exposure levels, especially with higher temperatures 

having a stronger negative effect. The results indicate that a 100-hour rise in recent exposure to warm 

temperatures above 26°C, compared to the moderate range of [16 – 26] °C, results in a decrease of 0.083 points 

in WHZ and a 1.4 percent rise in wasting prevalence. On average, this corresponds to roughly a 13 percent 

decrease in WHZ score and an 11 percent increase in wasting prevalence. This effect is most pronounced on 

children aged 6 to 11 months. Moreover, the impact of dry weather on acute child undernutrition is particularly 

significant for children in tropical zones. 

Thirdly, the study suggests that agriculture and infectious diseases are the main pathways connecting different 

weather exposures and child undernutrition. Children with mothers working in agriculture exhibit a higher 

HAZ score of 0.432 compared to those with non-agricultural working mothers or those without jobs. However, 

children whose mothers engage in on-farm work are more affected by adverse weather conditions than the 

others. Additionally, there's a clear link between children's recent exposure to warm temperatures above 26°C 

and the incidence of fever and diarrhea. The findings also indicate that children with access to improved water 

and sanitation are less vulnerable to the negative effects of adverse weather. 

Overall, the study's finding regarding the positive impact of rain on stunting, and the related pathways, align 

with existing research. However, the study doesn't find evidence of a significant effect of warm temperatures 

on stunting, nor does it indicate a notable impact from arid weather on wasting. Complementing these results 

of the study with the existing research findings will contribute to a deeper understanding of the intricate 

connections between climate variability and child nutritional outcomes. 
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Finally, two key limitations of this study point toward future research directions. The first pertains to the 

method of recent weather exposure used to investigate the impact on acute malnutrition. The second relates to 

the methods employed to assess the impact pathways of agriculture and infectious disease. In both instances, 

comprehensive and high-frequency data on agricultural income, household decision-making, and child health 

could strengthen the causal implications of the findings. Additionally, combining this data with an improved 

spatial identification model capable of better identifying areas conducive to disease transmission could further 

enhance the study's validity. 
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APPENDIX 
 

A. Precipitation anomalies  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Mean monthly precipitation anomalies by child   
Note: the box plots show the distribution of mean monthly precipitation anomalies during recent and lifetime weather exposure periods. 

Precipitation anomaly is calculated (scaled in thousands mm) as the average deviation of monthly total precipitation from the historical 

levels observed between 1985 to 2014 in the specific grid-cell where the children were located. The surveys were conducted in specific 

months, and thus the calculation of recent exposure - the three-month period preceding the survey interviews, predominantly falls 

between April and July. 
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B. Full regression report  

 
  
 
 
 
 
 
 

…continued on the following page 
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Table 10. Full regression report  
Note: The table reports the regression results of the effects of lifetime weather exposures on HAZ and stunting (for Table 3); and of 

the effects of recent weather exposures on WHZ and Wasting (for Table 4). The full set of fixed effects are listed in the summary result 

tables. In addition, child age is controlled through a set of 31 fixed effects, accounting for each month of age between 6 and 36. Standard 

errors are clustered at the region level. Significance levels: *p<0.1; **p<0.05; ***p<0.01 
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C. Age-specific effects of adverse weather conditions  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 11. Effects of exposure to adverse weather conditions across age groups 
Note: This regression result extends the main model’s findings. Adverse weather represents precipitation < 0.5 mm for HAZ and 
stunting columns, and temperature > 26 °C for WHZ and wasting columns. The total age-specific effects are calculated as β1 + β2, 
where β1 is the coefficient for adverse weather in the age group of 6 to 11 months, and β2 is the coefficient for the associated age-
specific interaction term for the rest of the age groups. Standard errors are clustered at the regional level. 
Significance levels: *p < 0.1; **p < 0.05; ***p < 0.01. 
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D. Location-specific effects of adverse weather conditions  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 12. Effects of exposure to adverse weather conditions across agro ecological zones 
Note: This regression result extends the main model’s findings. Adverse weather represents precipitation < 0.5 mm for HAZ and 
stunting columns, and temperature > 26 °C for WHZ and wasting columns. The total agroecology-specific effects are calculated as β1 
+ β2, where β1 is the coefficient for adverse weather in the age group of 6 to 11 months, and β2 is the coefficient for the associated 
agroecology-specific interaction term for the rest of the age groups. Standard errors are clustered at the regional level. 
Significance levels: *p < 0.1; **p < 0.05; ***p < 0.01. 
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