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Wireless networks hold many applications and are an integral part of our lives.

Security and reliability are extremely important in wireless networks. These

networks must be reliable so that data can be conveyed from transmitters to

receivers. Data sent across wireless networks must be kept confidential from

unintended users and it is necessary that false packets generated by illegitimate

users are rejected by the receiver. Another important task is for the network to

determine which network components can be trusted and to what degree.

The work presented in this dissertation addresses the security and reliability

issues in wireless networks through the use of coding theory. The network is

composed of numerous nodes and we consider a classical point to point com-

munication problem. We explore the network reliability issue and develop two

algorithms (exponential and polynomial time) which determine minimum re-

dundancy and optimal symbol allocation to assure that the probability of suc-

cessful decoding is greater than or equal to a specified threshold. The perfor-

mance of the algorithms is compared with each other, and MDS, LT, and Raptor

codes are compared using the exponential algorithm. We also consider the secu-

rity problem of keeping a message confidential from an illegitimate eavesdrop-

per in a multiple path network. Carefully crafted Raptor codes are shown to

asymptotically achieve perfect secrecy and zero-error probability, and a bit allo-

cation method across the paths is developed. Lastly, we look into the problem of

determining the integrity of nodes in the network. In particular, we show how



the malicious nodes can be localized in the network through the use of Reed-

Muller codes. The Reed-Muller codes represent the paths that are necessary in

the network. For the case where a path is not realizable according to the net-

work connectivity matrix, we conceived an algorithm to treat the non-realizable

paths as erasures and decode to localize malicious nodes. The performance of

the algorithm is compared to several techniques.
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CHAPTER 1

INTRODUCTION

In recent years, the demand and applications for wireless networks have prolif-

erated. The nature of wireless networks causes transmitted data to be particu-

larly susceptible to noise. The noise, which results from either signal degrada-

tion caused by obstacles or traversing long distances, or to an illegitimate user

tampering with the data, yields corrupted data. Thus, it is vital that means are

found to assure that the message is received reliably and securely at the decoder.

In particular, the message needs to be encoded in a manner that allows the re-

ceiver to correctly decode the message with the channel induced errors. Also,

this encoding should prevent any malicious presence from having the ability to

deduct anything about the original message. A related problem is how to assess

the reliability and integrity of a wireless network.

1.1 Wireless Networks

Wireless networks are composed of multiple nodes connected without the use

of wires. These nodes are used to communicate data between two end points

which could be any one of the nodes. There are various forms of wireless net-

works which can be divided into two classes, decentralized and centralized net-

works. Decentralized networks are referred to as ad hoc networks, and unlike

centralized networks, they do not depend on a pre-existing infrastructure. This

means that they have frequent changes in topology due to link failures, physical

obstructions, network intrusions, etc. Dependability on these sort of networks

requires dynamic algorithms which quickly determine routing, redundancy, etc.
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for deviations in the network. Centralized networks depend on routers or regu-

lated access points. Examples of centralized networks include wireless personal

area network (WPAN), wireless local area network (WLAN), and mobile device

networks. Three types of wireless ad hoc networks include mobile ad hoc net-

works, wireless mesh networks, and wireless sensor networks.

Wireless personal area networks are networks that connect devices in a small

area (normally around a person). A Bluetooth earpiece which connects to a cell

phone is an example of WPAN.

Wireless local area networks connect computers in a home, office, school,

etc. setting. WiFi is an example of a WLAN which allows devices with WiFi ca-

pabilities to connect with one another and also to connect to internet. Wireless

metropolitan area networks connect multiple WLAN’s together in a metropoli-

tan area.

Mobile device networks connect mobile devices to the internet and to one

another. Cellular networks are mobile device networks which allow cell phones

to surf the internet, send/receive data, and hold conversations.

Mobile ad hoc networks are networks in which the nodes in the network are

able to change their location, they are self-configuring. This mobility results in

frequent network connectivity changes causing the need to develop techniques

for dynamic forwarding of data so that it arrives at the desired location. There

are many examples of the use of mobile ad hoc networks, a popular one being

WiFi connections with laptops/communication devices. The growing use of

wireless communication devices has caused these networks to receive a large

amount of attention.
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Wireless mesh networks are built with nodes in a mesh structure and unlike

most traditional wireless networks, only one node needs to be wired to the in-

ternet (such as a DSL modem). Mesh clients are devices such as cell phones and

laptops, and mesh routers forward the data through the network. The cluster

of nodes which can communicate with one another are referred to as a connec-

tivity cloud. Mesh networks have a variety of important applications one being

linking WiFi hot spots together and keeping an entire city connected. This al-

lows people to check their email at places such as a park, coffee shop or bus, and

also keeps emergency workers connected to the network when cell phones are

not working. Another important application of mesh networks is in developing

countries that lack wired infrastructure. The nodes, dispersed in the country,

can be solar powered and connected to cellular or satellite internet connections.

Wireless sensor networks are formed with wireless nodes that collect data in

a distributed fashion. The sensor nodes are generally small and cheap, and they

aggregate some type of information (temperature, sound, pressure, etc.) around

them. Sensor networks can have nodes that have enough computational power

to analyze the received data, and they can also be formed with nodes that just

measure and forward data to a central estimation node which performs the data

analysis. Sensor networks can be used in a large amount of applications ranging

from battle field to medical purposes. In a battle field they can be used to detect

the presence of enemies. They can also be used to monitor the health of an elder

person. A person can wear sensors in a variety of places on his/her body, and

the sensor network could detect if the person fell, or had any sort of problem

and convey this information to medical doctor, emergency services, etc.
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1.2 Network Attacks

Wireless networks have been the target of many sorts of attacks. The following

are several types of attacks on wireless networks:

• Eavesdropping: When an illegitimate user spies on packets transmitted

through the network.

• Denial of Service (DoS): When a malicious user prevents data communi-

cation, network functionality.

• Intrusion: Unauthorized user joins network and uses network resources.

Without proper security measures, eavesdropping may result in an adversary

obtaining a users private information. Denial of service attacks result in the

ceasing of network use for a legitimate user. Denial of service attacks could

be caused by RF jammming, i.e. sending bursts of power through the medium

and preventing legitimate messages from getting through, refusing to route a

message to the correct location, sending incorrect packets instead of legitimate

messages, etc. Intrusion attacks reduce available bandwidth for paying cus-

tomers. It is vital that networks are protected from such attacks and there is a

significant amount of research currently being done in this area.

1.3 Network Reliability

An important attribute that all the types of wireless networks must have is data

reliability. Data transmitted from one point to another must be received reliably

at the receiving point hence enabling communication between the transmitter
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and receiver. Cellular networks need to allow cell phones to communicate reli-

ably with one another even in adverse conditions. Wireless networks are prone

to all sorts of errors due to the medium through which their information travels

and hence it is necessary to protect this data, to add more information about the

message in the case of errors. An error in a message could change it to a differ-

ent set of bits or it could delete parts of the message. DoS attacks cause parts of

or entire packets to be lost. A common approach to mitigate errors caused by a

channel is through the use of codes.

1.4 Network Security

Wireless networks must also guarantee a level of security in the data commu-

nication. The messages must be kept confidential between the sender and re-

ceiver. The destination must also be able to tell the legitimacy status of a mes-

sage, whether it has been tampered with. The research in this work primarily

focuses on keeping a message confidential from an adversary. Proper encryp-

tion measures make it extremely tough for an eavesdropper to extract any sensi-

tive information about the data. If an eavesdropper attains private information,

which could be a password to a bank or email account, this would cause sig-

nificant negative impact to the compromised user. Similarly, consider a body

sensor network that measures the health and actions of an elder. If something

happens to the person and this information is attained by a health insurance

company, they could charge the elder higher rates. Similarly, if a crook attains

information that the elder has fallen down the stairs or is debilitated, he/she

can use this to their advantage and break into the house. The network must

also be protected from unauthorized use or any malicious users who tamper-
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with/destroy data. False packets and not forwarding legitimate packets results

in lower network throughput, thus it is necessary for methods to take care of

these types of attacks.

1.5 Network Integrity

The message must be kept secret from an adversary, as well as protected from

any damage that the adversary may cause. Determining the location where the

malicious nodes reside is another extremely important task since it allows the

network to take appropriate action against them. This could mean removing the

node from use or lowering the “trustworthiness” of the node. The localization

task is tough since it requires close monitoring of all of the nodes in the network

since the final destination of a message will not know exactly where the attack

occurred. Having each node check the received packets from all of its neigh-

bors is computationally inefficient and requires higher processing on the nodes.

There has been a large quantity of research done in determining the “trustwor-

thiness” of nodes ranging from game theoretical solutions to nodes rating their

neighbors.

1.6 Contribution

The work in this dissertation addresses research done by the author in the three

important wireless network topics mentioned earlier: network reliability, net-

work security, and network integrity. Suggested solutions to these issues are

all based on the use of coding theory, in particular, using certain types of error-
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correction codes.

The first piece of contributed work found also in [9] and [11] considered

the network reliability problem. A multiple path wireless network is assumed

through which a source-destination pair would like to communicate. More-

over, the presence of adversaries on some paths may cause information to be

lost or corrupted. The presence of malicious nodes and noise are modeled as

an erasure channel. The questions that were asked were: “how should the data

be routed and how much redundancy should be added to the original mes-

sage to guarantee at least a specified level of success?”. The authors solutions

to these problems include the design of two algorithms MRAET (exponential

time) and MRAPT (polynomial time) to determine minimum redundancy and

optimal symbol allocation to attain a probability of success. The performance

of the algorithms are compared with respect to each other and the desired suc-

cess level. The algorithms are tested and compared on three different error-

correction codes, namely MDS, LT, and Raptor codes. The MDS, LT, and Raptor

code parameters are designed to be compatible with the algorithms. The per-

formance of the codes is evaluated using the MRAET algorithm.

The next subject researched was related to network secrecy. Specifically, the

network is assumed to be a multiple path wireless network in the presence of

an eavesdropper. The question that was answered is: “What kind of coding

scheme can be used which not only adds redundancy to correct channel errors

but also guarantees that the eavesdropper cannot extract anything about the

original message given the information she has received?”. In particular, the

introduced method uses Raptor codes which guarantees the desired destination

to have zero error probability asymptotically and to have perfect secrecy against
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an eavesdropper. Additionally, a method to efficiently route the data across

multiple, simultaneous paths is introduced [10].

The last piece of work in this thesis considers the network integrity issues.

The assumption on the network is that it is a multiple node wireless network

with a point to point communication problem. The question that needed to

be answered in this work was: “What kind of technique can be developed to

determine the locations of malicious nodes in the network?”. A technique is

developed which determines the locations of malicious nodes in the network

using error control codes. Reed-Muller codes are applied to paths in the net-

work and the decoding at the destination node reveals the byzantine nodes [12].

The method depends on the probability of a node being malicious as well as the

number of nodes in the network. An algorithm is introduced which deals with

the case when all the paths are not realizable in the network and this is followed

by comparison of other techniques.

1.7 Thesis Organization

The thesis will continue next with Chapter 2 on important background theory,

such as coding and information theory, which is necessary to understand the

contributed work. Following, Chapter 3 will discuss related work to the re-

search found in this dissertation. Chapter 4 gives a detailed analysis and de-

scription of the two algorithms MRAPT and MRAET which assure network

reliability. The method to assure network secrecy and reliability using raptor

codes is covered in Chapter 5. The derived tactic which uses Reed-Muller codes

to determine the locations of adversary nodes is described along with simula-
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tions in Chapter 6. Finally, Chapter 7 concludes the thesis.
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CHAPTER 2

BACKGROUND

2.1 Information Theory

Mathematical theory of communication systems, or information theory, was

first formulated by Claude Shannon, who is now known as the father of infor-

mation theory, in 1948 in [30]. Shannon considered the encoding of a message

prior to being transmitted across a channel. He developed a metric which con-

veys the amount of information present in a message. Basic Shannon theory

will be discussed next.

A metric which represents the amount of information/ level of uncertainty

present in a random variable (r.v.) is called entropy. Assume that pX(x) is the

probability distribution for x ∈ X.

Definition 1 Entropy

H(X) = −
∑

x∈X
pX(x) log pX(x)

The entropy for two r.v.’s X and Y is defined as follows.

Definition 2 Joint Entropy

H(X, Y) = −
∑

x∈X

∑

y∈Y
pX,Y(x, y) log pX,Y(x, y)

The conditional entropy of a r.v. given another is defined as:

10



Definition 3 Conditional Entropy

H(X|Y) = −
∑

x∈X

∑

y∈Y
pX,Y(x, y) log pX|Y(x|y)

Mutual Information, I(X; Y), is a mathematical function which quantifies the

amount of information between two r.v.’s. If two r.v.’s X and Y are independent

then their mutual information is zero, since having one r.v. gives absolutely no

information about the other.

Definition 4 Mutual Information

I(X; Y) =
∑

x∈X,y∈Y
pX,Y(x, y) log2

(

pX,Y(x, y)
pX(x)pY (y)

)

= H(X) − H(X|Y)

= H(Y) − H(Y |X)

Assume that M ∈ M represents the message random variable and X ∈ X

the codeword r.v. The decoder receives Y ∈ Y which is the altered version of

X after it traverses through a channel with probability distribution p(X|Y). Let

pX(x) represent the distribution from which the r.v. X comes from.

For discrete memoryless channels, the maximum rate which a message can

be transmitted at, which results in arbitrarily low error probability in the recon-

structed message, is called the channel capacity.

Definition 5 Channel Capacity

C = max
p(x)

I(X; Y)

11



2.2 Galois Fields

Finite fields were come across by French Mathematician Evariste Galois, and

hence also referred to as Galois Fields. Galois fields are useful in the construction

of algebraic codes such as Reed-Solomon codes. A Galois field with q elements

is labeled GF(q), and q is of the form pm where p is a prime number and m is a

positive integer. Next some relevant definitions found in [38] will be mentioned

in order to fully understand the structure of finite fields.

Definition 6 Groups

A group G is a set with binary operation “·” defined. The binary operation between any

two elements in G ensures the result is also in G, closure. The operation also guarantees

the following properties:

1. Associativity: (a · b) · c = a · (b · c)

2. Identity: ∀a ∈ G, ∃ e ∈ G : a · e = a

3. Inverse: ∀a ∈ G, ∃a−1 : aa−1
= e

A commutative group has one more property:

4. Commutativity: a · b = b · a ∀a, b ∈ G

Definition 7 Field

A field F is a set of elements with two binary operations, · and +, with the following

properties:

1. F forms a commutative group under +, with additive identity element 0.

2. F\{0} forms a commutative group under ·, 1 being the multiplicative identity.

12



3. Distributive property under · and +, a · (b + c) = (a · b) + (a · c)

Definition 8 Finite Field

A finite field is a field F with finite cardinality represented as GF(q), where GF(q) =

{0, 1, . . . , q − 1}. GF(q) has cardinality q.

Definition 9 Order

The order of an element β ∈ GF(q) is the smallest m ∈ Z
+ such that βm

= 1.

Definition 10 Primitive Element

A primitive element of a finite field GF(q) is an element which has order q − 1.

It can be shown that the first element to repeat in a finite field is always 1, hence

the non-zero elements of GF(q) can be completely represented by the powers of

a primitive element α since {αq−1
= 1, α1, α2, . . . , αq−2} are q − 1 distinct elements.

2.3 Coding Theory

Communication systems use three different classes of codes: source codes, se-

crecy codes, and channel codes. The background theory behind these classes is

mentioned in the next several sections. Channel codes are most often referred

to as error-control or error-correction codes (ECC). The research in this thesis

focuses only on secrecy and channel codes.
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2.3.1 Source Codes

Source codes map a message source to another alphabet so that the message

source can be perfectly decoded (lossless source coding) or so that the message

can be decoded within a specified distortion level (lossy source coding). Source

codes are primarily used for data compression and these codes usually reduce

the size of the original message.

Shannon introduced a metric which determines the minimum number of

symbols needed to be able to reconstruct a source message with negligible error.

He proved that if there were any less symbols, then information would be lost.

This result is called the source coding theorem and is shown next.

Theorem 1 Source Coding Theorem

Consider a source of n independent identically distributed (i.i.d) variables X1, . . .Xn over

probability distribution p(X). The source can be reliably encoding with arbitrarily small

error probability with nH(X) bits or at a rate R (bits per source symbol) if

H(X) ≤ R

Otherwise the error will be bounded away from zero.

2.3.2 Secrecy Codes

A secrecy code is one which removes information about the original message.

In simple terms, the codeword reveals little to no information about the mes-

sage. In 1949, Shannon first introduced communication secrecy in information-

theoretic terms [31]. The code is an invertible mapping from the message space
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to another space, the ciphertext space. Going from the ciphertext space to the

message space requires a pre-known key, and unique deciphering is essential.

The key is chosen and distributed to the destination points. Then a message

is chosen, encrypted and transmitted to the destination. It is possible that the

ciphertext is intercepted or seen by an adversary prior to reaching the desired

recipient. It is assumed that the adversary has a priori knowledge of the key

and message probabilities. Using these probabilities and the intercepted cipher-

text, the enemy cryptanalyst can calculate the a posteriori probabilities that a

particular message and key were used to generate the ciphertext.

Shannon wanted to determine how safe a system is from cryptanalysis if the

adversary has unlimited time and power. Suppose that our sender is Alice and

she wants to send a message to the receiver Bob. The adversary Eve wishes to

obtain the message sent from Alice to Bob. Eve is aware of the message alphabet

and the probability distribution over the messages prior to receiving transmit-

ted data. Assume that the message comes from a set X with a priori distribu-

tion p(X), and the ciphertext come from a set C. The messages are mapped to

the ciphertext through the use of a transformation TK which is a function of

the key K. The key is chosen independently from the message and the trans-

formation. From the intercepted ciphertext, Eve can calculate the a posteriori

probability for all the messages in the set. Assume this a posteriori distribution

is pC(X) = p(X|C).

Shannon came up with the notion of perfect secrecy in a system, which rep-

resents the case when the encoded data stolen by an illegitimate user does not

give any information about the original message. In particular, it means that for

all C the a posteriori distribution is the same as the a priori distribution over the
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messages independent of C. Mathematically, pC(X) = p(X). The uncertainty in

X is H(X) and the uncertainty in the key is H(K). Shannon showed that perfect

secrecy required that H(X) ≤ H(K) implying that Alice and Bob have to share a

key that is at least as long as the message.

Another important concept Shannon introduced is called equivocation which

represents the amount of uncertainty one has given the ciphertext. Two impor-

tant equivocation expressions include the message equivocation HC(X) and the

key equivocation HC(K). It can be shown that HC(X) ≤ HC(K). For perfect se-

crecy, HC(X) = H(X|C) = H(X) or equivalently I(X; C) = 0, each key must be

equally likely, and HC(k) = H(k).

More realistically in a wireless channel both Bob and Eve will receive cor-

rupted versions of the codeword C. Wyner [40] extended Shannon’s notion of

communication secrecy to the scenario where Bob and Eve have a channel be-

tween them and Alice. Their channels are different and Bob’s channel is called

the main channel. Both security and reliability have to be considered in this

model. Bob and Eve receive Y, Z respectively and X → C → (Y, Z) form a Markov

chain. In this case perfect secrecy is attained if I(X; Z) = 0. Eve’s equivocation

is represented as ∆ = 1
k H(X|Z), where X is a k-bit vector and Z an n-bit vector. It

is desirable to have the largest equivocation possible. Wyner showed that if the

capacity of the eavesdroppers channel is less than that of Bob’s (i.e. Eve’s chan-

nel is worse than Bob’s) then there exists a coding method which guarantees

both reliability and security.

Secrecy capacity represents the maximum possible transmission rate be-

tween Alice and Bob such that perfect secrecy from Eve is achieved. It can be

shown that for a simple wiretap channel, where the eavesdroppers channel is
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worse than the main channel, the secrecy capacity is:

Cs = max
pX (x)

[I(X; Y) − I(X; Z)] (2.1)

2.3.3 Channel Codes/Error-Correction Codes

Channel codes are applied to a message to protect it from errors caused by the

channel through which it will travel. Channel codes are often referred to as

error-control/correction codes. Error-control codes are beneficial tools for either

correcting or flagging errors incurred by a message. An (n, k) error-correction

code maps a k-symbol message into an n-symbol codeword, where k < n and the

n − k extra symbols contain redundant information about the message symbols.

Given the code C, the extra symbols give the decoder the capability of correcting

and detecting a certain number of errors. Generally, codes are able to detect

more errors than they can correct. Next, the notation and definitions used in

analyzing error-correction codes will be introduced.

Definition 11 Rate

The rate of an (n, k) code is defined to be r = k
n .

As mentioned earlier, the upper bound on the code rate varies depending on the

channel through which the message traverses and is referred to as the channel

capacity.

Definition 12 Weight

The Weight of a code word is the number of non-zero symbols.
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Definition 13 Hamming Distance

The Hamming Distance between two codewords u, v of length n is the number of

positions in which they differ or,

dHamming(u, v) = d(u, v) = |{i|ui , vi, i = 0, 1, . . . , n − 1}|

Definition 14 Minimum Distance of a Code

The Minimum Distance , dmin of a code is the minimum Hamming distance between

all distinct codewords in the codebook.

An (n, k) code is one which starts with a message of length k and encodes it to a

codeword of length n, or adds n − k redundant symbols. We call the ratio n
k = γ.

Theorem 2 Singleton Bound

The minimum distance dmin for an (n, k) code is bounded by

dmin ≤ n − k + 1

A code with minimum distance dmin can detect all error vectors with weight

less than or equal to dmin − 1 and can correct all error patterns with weight less

than or equal to t = ⌊ dmin−1
2 ⌋.

2.3.4 Maximum-Distance Separable Codes

Definition 15 Maximum-Distance Separable Code

Maximum-distance separable (MDS) codes meet the Singleton Bound with equality, or:

dmin = n − k + 1
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From [38] it is known that for any (n, k) MDS code in systematic form, any com-

bination of k out of the n codeword symbols allows for perfect recovery of the

original message. This attribute serves well in erasure channel scenarios be-

cause, with complete certainty, a message can be decoded with up to n − k era-

sures.

An important and well known MDS code is the Reed-Solomon (RS) code.

RS codes are thus excellent candidates for channels with bursts of error such as

CD’s, DVD’s, and the newer blu-ray discs. The reason for this is the fact that

these data discs get errors when the disc gets scratched or dirty in a specific

area resulting in error bursts. The next section provides a detailed review of

Reed-Solomon codes.

Reed-Solomon Codes

Reed-Solomon codes were invented in 1959 by Irving S. Reed and Gustave

Solomon at MIT Lincoln Laboratory and their work was published in 1960

[38]. Reed-Solomon Codes are a special case of BCH codes [38], they are non-

binary BCH codes, specifically, qm-ary BCH codes of length qm − 1. BCH codes

were discovered by two different research groups at approximately the same

time, A. Hocquengham in 1959 followed by Bose and Ray-Chaudhuri’s pub-

lications. The relationship between BCH and Reed-Solomon Codes was dis-

covered through work published by Gorenstein and Zierler on the extension of

BCH codes to arbitrary field sizes. There are three approaches for forming RS

codes: the original approach, the generator polynomial approach, and finally

the Galois Field Fourier Transform (FFT) approach [39]. The original approach

is the method which Reed and Solomon introduced. The generator approach
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construction of RS codes was realized after the publication of Gorenstein and

Zierler’s work.

The original approach is a fairly simple approach. Consider a k-symbol

message m = {m0,m1, . . .mk−1}, where each symbol mi ∈ GF(q). A polyno-

mial can be constructed from the message symbols in the following fashion:

P(x) = m0 + m1x + . . . + mk−1xk−1. Then, using the original approach, the n = q-

symbol codeword for this message can be formed using a primitive element α ∈

GF(q) as: c = (c0, . . . , cq−1) = (P(0), P(α), . . .P(αq−1)). All possible codewords can

be found by considering all possible k-symbol messages.

The generator approach is based on cyclic codes and is the most popular form

in coding literature [39]. Cyclic codes are codes ones in which if c = (c0, . . . , cn−1)

is a codeword then c′ = (c1, . . . cn−1, c0) is also a codeword. An (n, k) cyclic code

can be represented with a generator polynomial g(x) = g0 + g1x + . . . + gn−k xn−k.

In this construction, the codeword c is seen as a codeword polynomial or c(x) =

c0 + c1x + . . . cn−1xn−1. A codeword c is part of a code with generator g(x) only if

c(x) is a multiple of g(x). Assume that the message polynomial is m(x) = m0 +

m1x + . . .mk−1xk−1. The codeword in the code with generator g(x) for message

m(x) is: c(x) = m(x)g(x). The generator polynomial is generated as follows. For

a t error correcting code, take a primitive element α ∈ GF(q) and the generator

polynomial is:

g(x) =
2t

∏

i=1

(x − αi)

More detailed theory can by found in [39]

The Galois FFT (GFFT) approach is the classical approach in terms of fourier

transforms. Consider the codeword c = (c0, c1, . . . , cn−1) and its fourier trans-
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form, written F {c} = (C0,C1, . . .Cn−1). Where Ci is defined as:

C j =

n−1
∑

i=0

ciα
i j where j = 0, . . . , n − 1

It can be shown that the GFFT approach is the dual to the generator polynomial

approach, and leads to efficient encoders and decoders [39]. There are many

algorithms for decoding Reed-Solomon codes, we refer the reader to [39] for

detailed descriptions.

Compact Disc’s (CD’s) were the first application of RS codes which were

mass produced in 1982. In particular, the CD uses a form of RS code called

Cross-Interleaved RS codes or CIRC. CIRC is composed of the concatenation of

two layers of an RS code separated by an interleaver. Each symbol consists of

8-bits and a message block or frame contains 24 symbols. The first layer takes a

message block and encodes it into 28symbols using a (28, 24)RS code. These 28

symbols are then sent through an interleaver which disperses the information

in this frame among all the 109 frames. Next, the second layer (32, 28) code is

applied to each frame out of the 109 frames. The newly formed frames have

32 symbols and they are sent through a different interleaver. The decoding is

applied in the opposite fashion. The interleaving is useful because it disperses

the errors among the frames resulting in higher error-correction. These codes

are also used for forward error correction in data transmission. Due to the min-

imum distance of RS codes, they are extremely useful for erasure channels. As

mentioned above, any k out of n symbols can be used to to generate a lossless

reconstruction of the original message. Another application includes satellite

communications. RS codes concatenated with convolutional codes were used

in the Voyager to encode digital pictures. They were also used on the Mars

Pathfinder, Galileo, Mars Exploration Rover, and Cassini missions in concate-

nation with convolutional codes.
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Reed-Solmon codes are extremely useful since their codewords are maxi-

mally spaced apart, though there is a trade-off between this property and run-

ning time complexity. The encoding and decoding times for an RS code are

quadratic with the codeword size. This implies that these codes are optimal for

small message and codeword size. The problem is that most applications re-

quire fairly large source sizes. In a following section, LT codes are introduced,

which are almost MDS codes and have reduced running times. For further the-

ory on the Reed-Solomon code we encourage the reader to go to [39].

2.3.5 Low-Density Parity-Check codes

Robert Gallager invented Low-Density Parity-Check (LDPC) codes in 1963 [7].

As the name implies, an LDPC code has an extremely sparse parity matrix,

meaning that the rows and columns have a large amount of ‘0’s and small

amount of ‘1’s. These codes are linear and are derived from sparse bipartite

graphs. LDPC codes have received a lot of recent attention due to the fact that

they are capacity approaching codes on symmetric memoryless channels. Be-

fore getting into the details of constructing LDPC codes, some applications will

be mentioned.

LDPC codes are used in the 10 Gigabit Ethernet standard, the fastest ethernet

standard with data speeds up to 10 Gbps as the name implies. In 2003, LDPC

codes were chosen for the Digital-Video Broadcasting-Satellite-Second genera-

tion (DVB-S2), which is the standard for the satellite transmission of digital tv.

ITU-T picked LDPC codes for the G.hn standard, the next generation home net-

work technology (currently being developed) which supports networking over
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power lines, phone lines, and coaxial cables with data rates up to 1 Gbps.

Consider a sparse bipartite graph with n left nodes and r right nodes. The left

nodes are called the message nodes and the right ones are called check nodes.

This graph can be represented by a matrix H, where a ‘1’ in spot (i, j) represents

a connection between the ith message node and jth check node. H is the parity

matrix of the code. Regular LDPC codes are ones in which all the columns have

the same number of ‘1’s and all the rows have the same number of ‘1’s. The

codewords c = {c1, . . . , cn} for the LDPC code are such that HcT
= 0.

LDPC codes are decoded using message passing algorithms, most com-

monly the Belief Propagation algorithm. Message passing algorithms are iter-

ative algorithms in which a message is passed between the message and check

nodes. The Belief Propagation algorithm is discussed in the next section.

Belief Propagation Decoding Algorithm

The belief propagation algorithm is an iterative algorithm in which the mes-

sages passed between check and message nodes are probabilities. A message

from a message node v to a check node r would represent the probability that

the v has a specific value given the values of other incident check nodes received

in the preceding round. The message transmitted from r to v would contain in-

formation about the data that r received from message nodes other than v in the

previous round.

Assume that H is the parity matrix and that Hi, j represents the item in the ith

row (check bits) and jth column (message bits). Let n denote the set of message

bits and r the check bits. The set N(m) = {n : Hm,n = 1} denotes the set of
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message bits which participate in check m and N(n) = {m : Hn,m = 1} the set

of check bits which message bit n participates in. Assume the codeword c was

transmitted and r = c + e is received. Call z = HrT the syndrome. If there is no

error then z = 0, otherwise z , 0. To proceed with the algorithm it is necessary

to know the noise distribution and the prior probability of the input symbols.

If z , 0 then we know that z = HeT since HcT
= 0, so the goal is to find the

variable x = {x1 . . . xn} such that HxT
= z. In particular, pick the x that maximizes

P(x|HxT
= z). Define qx

mn = P{xn = x| info from check bits N(n)\m} and rx
mn =

P{check bit m is satisfied|xn = x and qmn′ : n′ ∈ N(m)\n}.

• Initialization

1. p0
n = P(xn = 0), p1

n = P(xn = 1) = 1− p0
n

2. ∀(n,m) with Hm,n = 1 set q0
mn = p0

n, q1
mn = p1

n

• Horizontal Step (running through checks)

r0
mn =

∑

{xn′ :n′∈N(m)\n}
P

(

zm|xn = 0, {xn′ : n′ ∈ N(m)\n})
∏

n′∈N(m)\n
qxn′

mn′

r1
mn =

∑

{xn′ :n′∈N(m)\n}
P

(

zm|xn = 1, {xn′ : n′ ∈ N(m)\n})
∏

n′∈N(m)\n
qxn′

mn′

• Vertical Step

q0
mn = αmn

∏

m′∈M(n)\m
r0

m′n
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q1
mn = αmn

∏

m′∈M(n)\m
r1

m′n

where αmn is chosen to satisfy q0
mn + q1

mn = 1.

q0
n = αn p0

n

∏

m′∈M(n)

r0
mn

q1
n = αn p1

n

∏

m′∈M(n)

r1
mn

The qx
n are used to form an estimate for xn. If q1

n > 0.5 set x̂n = 1. If x̂ is such

that Hx̂T
= z, then halt algorithm, otherwise return to horizontal step and

halt after a maximum amount of iterations.

2.3.6 Digital Fountain Codes

Digital Fountain Codes are a class of sparse-graph codes designed for erasure

channels. Unlike typical codes used for erasure channels, such as Reed-Solomon

codes, fountain codes are rateless codes which implies that the symbols can be

determined on the fly. Fountain codes are almost MDS meaning that with k in-

put symbols, the decoder needs about k(1+ ǫ) symbols for successful decoding.

Typical network protocols often use a feedback channel to mitigate the effects

of an erasure channel, through which the receiver notifies the sender of any lost

packets. Classic Shannon theory has shown that the capacity of a discrete mem-

oryless channel with feedback is equivalent to the same channel without feed-

back, implying that feedback channels are wasteful and unnecessary for this

class of channels. For high erasure probabilities, there is a significant amount

of information transmitted over the erasure channel [19]. Rateless codes do not
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depend on a rate implying that as an unlimited amount of output symbols can

be transmitted. This is due to the fact that each output symbol does not depend

on a previous or future output symbol. Feedback channels are completely un-

necessary for rateless codes since as many output symbols can be transmitted

as needed to successfully decode the message.

Luby Transform (LT) Codes

Luby Transform (LT) codes, popular fountain codes for erasure channels, were

invented by Michael Luby in 1998 and formally published in [18] in 2002. These

codes are based off of sparse bipartite graphs. A simple analogy to LT codes

is holding a bucket and catching drops until a sufficient amount of drops are

caught. The codes can be thought of as the balls and bins problem, where the

bins represent the input symbols and the balls being the encoded symbols. The

question is, how many balls does one have to throw so that with probability 1−δ

each bin has at least one ball. Given that there are k bins, the number of balls

should be around k log k
δ

[18]. This yields small encoding and decodings times

both on the order of k log k
δ
. We will first introduce the encoding and decoding

algorithms for the LT codes.

Suppose we have a source message m1m2 . . .mk, and we wish to form an out-

put symbol ci. The encoding of the message goes as follows:

1. Pick dn from a degree distribution ρ(d). The specifics of ρ(d) will be re-

vealed below.

2. Choose dn distinct input packets uniformly at random and call the set of

their indices Idn . Then using modulo 2 arithmetic, cn =
∑

j: j∈Idn
m j.
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These codes are sparse because the constructed degree distribution results

in a mean degree that is considerably smaller than k. There are many different

ways to relay the degree and edge connectivity of the graph to the decoder such

as synchronized clock, sending header containing a key, etc.

Successful decoding depends on the degree distribution used and the edges

in the graph G. The decoding is quite simple due to the encoding structure and

it goes as follow:

1. Find output symbol cn that is connected to only one input symbol mi. If

there is no such output node then the decoding fails causing incomplete

information about the input message.

(a) Let mi = cn

(b) Let Cmi be the set of indices of output symbols which are connected

to mi , or all j such that Gi, j = 1, and set

c j = c j + mi ∀ j ∈ Cmi

(c) Remove the edges connected to the input symbol mi

2. Go back to step 1 until all the input symbols are determined.

This decoding is a simplified version of the belief propagation algorithm

also known as the sum-product algorithm [19]. Using terminology as in [13],

the ripple represents the set of output symbols of degree one. If the decoding

algorithm reaches a point where the ripple is empty prior to decoding all the

input symbols, then the receiver fails to obtain the source message. Hence, it

is vital to design a degree distribution which assures with high probability that
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the ripple is always nonempty prior to decoding all the input symbols, and also,

that all the input symbols are connected to at least one output symbol. In theory,

the ideal degree distribution is called the ideal soliton distribution,

ρ(1) = 1
k

ρ(d) = 1
d(d−1) for d = 2, 3, . . . , k

which behaves as it should in expectation. The expected degree of this distribu-

tion is about logk. The problem with this distribution is that even the smallest

oscillation around the expected degree results in the failure of the decoding al-

gorithm because there is no degree one check node. To take care of this issue,

Luby introduced a slightly altered degree distribution which he calls the robust

soliton distribution [18]. This distribution avoids the problem of not having an

output node with degree one by guaranteeing that the expected number of de-

gree one outputs is approximately R = c log(k/δ)
√

k (c > 0). The robust soliton

distribution is:

µ(d) =
ρ(d) + τ(d)

Z

where Z =
∑

d ρ(d) + τ(d) and τ(d) is defined as follows,

τ(d) =







































R
kd for d = 1, 2, . . . , k

R − 1

R
k log(R

δ
) for d = k

R

0 for d > k
R

Using this distribution there need to be at least n = kR encoded symbols so that

with probability 1−δwe can successfully decode the message [18]. Raptor codes,

discussed next, are an extension of LT codes which have a linear encoding and

decoding time [33].
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Raptor Codes

Raptor codes were developed by Amin Shokrollahi in 2001. Raptor codes are

a class of fountain codes which have the property that encoding and decoding

have a constant cost (in the per symbol sense). LT codes have a per symbol de-

coding on the order of O(log(k)) since the decoding graph must have roughly

k log(k) edges to ensure that the input symbols are all covered with high prob-

ability. Raptor codes diminish this condition to having a certain fraction of re-

coverable input nodes, which results in constant decoding cost [33]. Since the

goal is to be able to recover all the input symbols, Raptor codes first apply a

classical erasure code to the input symbols, followed by the LT code. A Raptor

code is of the form (k,C,Ω(x)), where C is the first layer code and Ω(x) is the

output symbol distribution. The encoding goes as follows:

1. Using the code C, encode the message (m) of length k symbols into a code-

word (c) of n symbols.

2. Apply the LT code algorithm to the codeword c resulting in another code-

word c′ which is slightly larger than c. The LT algorithm should use the

specified output distribution Ω(x).

The choice of the code C effects the encoding and decoding costs, and also

the decoding algorithm. Choices for C include Tornado codes, LDPC codes,

extended Hamming codes, etc [20]. In our paper we use a regular Gallager

LDPC code for C.
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2.3.7 Reed-Muller Codes

In 1954, Muller discovered what are now known as Reed-Muller (RM) codes

using a “Boolean net function” language. Later that year, Reed recognized that

Muller’s codes could be mapped into multinomials over the binary field, which

resulted in Reed-Muller codes [38]. RM codes have had few applications with

comparison to other codes but they are still an important type of error-correction

codes. The applications are discussed next.

First-order RM codes of length 32 were used for error-correction on all

Mariner Mars spacecraft missions from 1969 to 1977 [38]. Another more re-

cent application of RM codes is in the third generation (3G) cellular wide-

band CDMA standard. They are used in the dedicated physical control chan-

nel (DPCCH) which is one of the two uplink channels. Specifically, each 10-

milisecond length frame of the DPCCH is composed of 15 time slots of 10 bits

each. These 10-bits are time-multiplexed over four fields, one of which is the

transport format combination indicator (TFCI). The RM codes are used to en-

code the TFCI bits [8]. An advantage of these codes is that they have an incredi-

bly fast maximum likelihood decoding algorithm developed by Reed, the Reed

decoding algorithm [38]. The structure of these codes allows us to develop a

method to find the adversary nodes. We will discuss this in a later section. The

theory behind RM codes, found in more detail in [38], is discussed next.

Consider m binary linearly independent vectors v1, v2, . . . , vm. Let M be a set

that contains all possible boolean functions of these m vectors that are repre-
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sented by a monomial term,

M = {1, v1, . . . , vm, v1v2, . . . , vm−1vm, v1v2v3, . . . ,

vm−2vm−1vm, . . . , v1v2 · · · vm}

From [38] it is known that there is a unique Boolean function f for each vector f

composed as:

f = a01+ a1v1 + . . . + amvm + a12v1v2

+ . . . + a12...mv1v2 · · · vm (2.2)

Definition 16 Reed-Muller Codes R(r,m)

The Reed-Muller code R(r,m) of order r and length 2m consists of all vectors f associated

with all Boolean functions f that are polynomials of degree less than or equal to r in m

variables [38].

For example anR(2, 4)code would consist of f = a0+a1v1+. . .+a4v4+a12v1v2+. . .+

a34v3v4. In an R(r,m) code, the m vectors v1, . . . , vm are formed by considering an

n × 2m matrix with vi as rows, and filling each of the 2m columns with a different

m-tuple. Combining all the columns results in all possible m-tuples. An R(r,m)

RM-code has minimum distance dmin = 2m−r [38].

The above information leads to the actual encoding process. Consider an

R(r,m) RM code and a message vector s= (s1, s2, . . . , sm, s12, . . . , sm−r+1...m−1m). Take
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the vector vi and form a generator matrix:

G =
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(2.3)

The message vector s can be grouped into order groups as: s0 = s0, s1 =

(s1, s2, . . . , sm), s2 = (s12, . . . , sm−1m), . . . , sr = (s12...r, . . . , sm−r+1...m−1m). Then the en-

coding is the following simple operation [38]:

c = (c0, c1, . . . , c2m−1)

= [s0|s2| . . . |sr]
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(2.4)

The decoding process was discovered by Reed and is called the Reed De-

coding Algorithm. This is a majority logic technique which happens to be the

maximum likelihood method. Before discussing the decoding technique, a few

definitions will be introduced. Consider a codeword (c0c1c2c3c4) = 10011, this

vector is the incidence vector for the points {P0, P3, P4} since there is a ‘1’ in bit

positions 0,3 and 4. Pi is equivalent to the one’s complement of the binary ver-

sion of the integer i (P1 = (1000)) . Define a set I = {1, . . . ,m} which contains the
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indices of the first order basis vectors. The higher order vector indices can be

formed using the indices in I (v1v2 corresponds to {1, 2}). The entire decoding

process for an R(r,m) RM code with a received word r goes as follows [38]:

• Step 1: Start with the message bits that have the highest order, r, and let

j = r and ĉ be the received vector.

• Step 2: For all the























m

j























of the order j message bits perform:

1. Pick message bit si1i2...i j

2. Consider associated incidence vector vi1vi2 . . . vij

3. Let S = {Pi1, Pi2, . . . , Pi j}

4. Let I\{i1, i2, . . . , i j} = {k1, k2, . . . , km− j} and T = {Pk1, Pk2, . . .Pkm− j}

5. Form km− j translations of T by translating {Pi1, Pi2, . . . , Pi j} by each

Pkl , l ∈ {1, . . . ,m − j}

6. Take one of the translations Pt1, . . . , Pt j , and form first message bit es-

timate ŝ(1)
i1i2...i j

= ĉt1 + ĉt2 + . . . + ĉt j (all in GF(2)). Do this for all the

translations.

7. Let ŝi1i2...i j = maj{ŝ(1)
i1i2...i j
, . . . , ŝ

(km− j)
i1i2...i j
} (where maj represents taking the

most often occurring value of the argument).

8. Go to step 3.

• Step 3:

– If all message bits of order j have been estimated then form ŝr from

the estimates of the message bits of order j and let j = j − 1.

∗ If j >= 0 , then let ĉ = ĉ− ŝrGr. Go to step 2.
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∗ Else decoding process is done.

– Else go to step 2.

Please see [38] for more detailed theory on Reed-Muller codes.
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CHAPTER 3

RELATED WORK

There has been a variety of work done in assuring network reliability, network

security, and network integrity which is related to the research in this thesis.

There are numerous works on these topics, and for realistic length constraints

only the most closely related works are referenced. In the next few sections,

brief details are mentioned about the research related to each of the authors

contributions.

3.1 Network Reliability

There is a vast array of work done on routing in multiple path channels. In

[15], the authors introduce a method to find maximally disjoint paths. We as-

sume that the independent paths in our setup were found in a similar fashion.

In their paper they transmit information down these paths assuming that they

have the same security level. In [35], the authors discuss a multiple path routing

technique over equally reliable links. They devise a method to optimally allo-

cate channel coded packets down the paths by maximizing the success proba-

bility. The problem with this method is the low network efficiency. In another

paper [36], the authors remove the assumption that the paths have the same

performance. They determine an approximation of the success probability for

the network and then allocate packets down each path as to maximize this func-

tion. They do not consider the question of how much redundancy to add to the

original message, and just assume that it is a pre-determined number.

35



Redundancy is vital in erasure channels since it allows perfect decoding even

with some erasures. Maximum distance separable (MDS) codes are important

examples of erasure codes since they have the property that only a set the size of

the input symbols is required to perfectly decode the message. Our algorithms

are based on the structure of MDS codes. In [25], the authors also use redun-

dancy in the form of an erasure code which is based off of Rabin’s algorithm

[26]. A widely used MDS code is the Reed-Solomon code [39].

[6] develops a multipath routing algorithm between a single source and des-

tination which ranks each path based on three metrics: energy, delay and re-

liability. The paths between the source and destination are found by sending

simple query and reply messages. They also suggest the use of forward error-

correction (FEC), in particular block codes, to account for packet losses. This

work does not focus on FEC and hence no error-correction code is specified.

In [25], the authors suggest a protocol for secure message transmission in a

multiple path channel. They generate a method to assess the “trustworthiness”

of each path based on previous behavior, and the paths which are trusted above

a certain threshold are put in the active path set (APS). The ”trustworthiness”

level of a path is directly linked to the probability of successful transmission.

The paths in the APS are then used to transport messages.

Wireless networks such as mobile ad hoc networks or sensor networks have

frequent changes in topology due to link failures, physical obstructions, net-

work intrusions, etc. Dependability on these sort of networks requires dynamic

algorithms which quickly determine routing, redundancy, etc. for deviations in

the network. In [9], the authors introduce algorithms to dynamically determine

the redundancy and message dispersion among the path.

36



3.2 Network Security and Reliability

As mentioned earlier, in 1975 Aaron Wyner introduced the wiretap channel in

[40]. This initial work has lead to a large amount of research related to wire-

tap channels. Ozarow and Wyner discuss system design to protect a wiretap

channel from revealing information to an intruder in [23].

The authors in [32] show the maximum possible rate to achieve perfect se-

crecy using MDS codes on the wiretap channel. The channels between Bob and

Eve are assumed to each have a specified number of erasures, unlike the work in

this document which assumes a probabilistic channel. The authors introduce a

nested coding scheme based off of MDS codes which achieves secrecy capacity.

The application of LDPC codes to wiretap channels are introduced in [34].

These authors prove that capacity achieving codes can attain secrecy capacity

for any wiretap channel. For the binary erasure and binary symmetric channels,

specific codes are shown which result in perfect secrecy. Our research on secrecy

is an extension of this work.

McEliece introduces the idea of using algebraic codes for security in [22]. He

generates a public-key cryptosystem by permuting the generator matrix of an

algebraic code (Goppa Code) and using the permutation as the public key. It is

shown that the technique is hard to decode if one only knows the public key.

The method does not have perfect secrecy.

In [21], the authors introduce a block cipher code called High Diffusion (HD)

cipher which corrects errors and encrypts a message simultaneously. The setup

of the codes are introduced, though not shown how to be formed. Security
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capabilities are analyzed with respect to linear and differential cryptanalysis as

well as the square attack. Error-correction capabilities are derived and these

codes are shown to be MDS. These codes do not attain perfect secrecy but most

realizable encryption methods do not.

3.3 Detection of Malicious Nodes in Network

In [14], the authors first introduce the well known Byzantine Generals problem

in which loyal and disloyal generals communicate with one another through a

messenger. The primary focus of this paper is for reliability in computer sys-

tems, showing when reliable communication can occur, i.e. when traitors can

be detected.

The authors in [5], describe an information theoretic method to detect Byzan-

tine adversaries using random network coding. The method adds overhead to

the messages in the form of hash value and shows how malicious packets can

be detected, but does not find the origin of these malicious packets.

A secure routing protocol which is robust to malicious nodes is developed in

[1]. Our method, on the other hand, assumes that a standard encryption algo-

rithm is used and determines the exact location of the adversary. The location

of malicious nodes is important in determining which nodes can be trusted or

the level to which each node can be trusted. If a node is constantly being hacked

into by an illegitimate user, then for the sake of the integrity of the network, this

node should be thrown out/not used.

The location of nodes is found in [37], but their method requires the interior
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nodes to converse and monitor suspected malicious nodes. In our method the

only job of the nodes is to forward packets.

[24] suggest the use of the secure traceroute protocol to detect and locate

routers which fail to correctly forward traffic. They assume that the malicious

routers misdirect the data. We assume that adversary nodes direct the data

correctly but with fake packets, hence not allowing the destination to receive

desired data.

39



CHAPTER 4

RELIABILITY FOR MULTIPLE PATH NETWORK

4.1 System Model for reliability

We assume that we have a source node who wishes to convey information to

a specific destination node. These two nodes are separated by multiple wire-

less paths, each acting like an independent erasure channel. An erasure on a

particular path could be caused by a malicious node which is stealing or tam-

pering with data. The data is encrypted with a standard encryption algorithm

which allows the destination to determine if an adversary has corrupted a path.

Hence each path is associated with a pre-determined erasure probability which

represents its “trustworthiness” level. Let path i have a probability of success

pi. Without loss of generality, we assume that p1 ≥ p2 ≥ . . . ≥ pN given that

there are N paths. The transmitting node knows the statistics of the channels

between itself and the receiving node, and hopes the message can be decoded

within probability of success p∗. The source node needs an algorithm that in-

creases the length of the message and allocates symbols down the paths so that

p∗ is achieved. Increasing redundancy reduces throughput and increases band-

width thus it is important to find the minimum necessary redundancy. Since the

security level on the paths changes over time, it is desirable that this algorithm

is dynamic.
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4.1.1 Channel Probability Distribution

Each path i out of the N paths acts as an erasure channel with erasure probability

1−pi. An erasure channel with erasure probability p is one in which each symbol

is erased with probability p [4]. In our model we assume that the destination

node either receives all the symbols down a particular path or receives nothing.

This assumption is feasible since data cannot be trusted if it has been tampered

with by an adversary. Figure 4.1 shows the network model.

.

.

.

PEC

α1

PEC

α2

PEC

αN

S DECENC
C Y

Ŝ

Figure 4.1: Multiple path network receiver sees each path as a packet era-
sure channel

A codeword of length n is dispersed among the N paths, with path i receiving

fi symbols forming a vector f = { f1, f2, . . . , fN}. This means that
∑N

i=1 fi = n. We

can form a vector s of length N composed of ‘1’s and ‘0’s with a ‘1’ in spot i

representing a non-erasure on path i and a ‘0’ representing an erasure. If we

use an MDS code, then with complete certainty the message can be decoded if k

out of n symbols are received. Thus, if we construct a matrix S composed of all

possible combinations of ‘0’s and ‘1’s our probability of successful decoding for

a specified f becomes:

Psuccess(f ) =
∑

s∈S

N
∏

i=1

psi
i (1− pi)

1−si u(s · f − k) (4.1)

where u(·) represents the unit step function. The matrix S is filled with all pos-

sible vectors s implying that there are 2N rows. Hence if we run through all the
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rows in S to calculate Psuccess, this results in an exponential running time with

relation to the number of paths. If the number of paths is not too large and one

wishes for extreme precision, this calculation is not too arduous. Otherwise it is

necessary to find a close alternative which we will discuss next.

Each path has a Bernoulli distribution since it receives the exported symbols

(1) with probability pi or an erasure (0) with probability 1 − pi. This implies

that the sum of multiple transmissions across path i has a Binomial distribution.

For large sample sizes, the Binomial distribution can be approximated using

the Gaussian distribution, and the authors in [36] suggest this approximation to

calculate the probability of success.

We consider a random variable that represents the average number of suc-

cessful transmission attempts out of fi on path i. Using the observation men-

tioned above, this random variable is distributed binomially. We approxi-

mate this random variable using a Gaussian distribution and it is known that

the distribution of the sum of independent Gaussian random variables is also

Gaussian. This indicates that the distribution of the sum of the paths is also

Gaussian. Hence, the approximation on each path is Gaussian distribution

∼ N
(

fi pi, f 2
i pi(1− pi)

)

, and the distribution of the sum of the paths becomes

∼ N
(

∑N
i=1 fi pi,

∑N
i=1 f 2

i pi(1− pi)
)

. Then, integrating this distribution over the sce-

nario that k or more symbols are received in total yields a probability of success

function:

Psuccess(f ) ≈
1
2
+

1
2

erf


















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



∑N
i=1 fi pi − k + 1

2
√

2
∑N

i=1 f 2
i pi(1− pi)










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









(4.2)

where erf(x) = 2
π

∫ x

0
e−y2

dy. It can be seen that computation of this success proba-

bility approximation is significantly simpler than that of the true success proba-

bility.

42



The source node wants to assure that his message is received intact with

probability p∗ at the destination. The success probability functions along with

the security level of each path can be used to determine message redundancy

and symbol allocation. The original data is k symbols long, and if an MDS code

is used to extend the k to n symbols, there are a few observations we can make.

As mentioned earlier, any of the k of the n symbols can decode the original

message. Let γ = n
k represent the redundancy ratio. Below are some initial

observations:

• p1 ≥ p2 ≥ . . . ≥ pN implies that f1 ≥ f2 ≥ . . . ≥ fN

• If γ ≥ N then an optimal approach is to send f1, f2, . . . , fN ≥ k

• It is not optimal to send more than k symbols down any path

• If p1 ≥ p∗ then k symbols should be sent down path 1. In this case γ = 1

These observations have led to developing two optimal redundancy and symbol

allocation algorithms described in [9], and presented in a later section.

4.2 Algorithms

4.2.1 Optimal Symbol Allocation and Minimum Redundancy

for N = 3

To simplify our analysis, in [9], we began with the situation with N = 3 paths

between the source and destination. A brute force method can be used to find

optimal symbol allocation and minimum redundancy. Assume that the desired
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success probability is p∗ and that paths 1, 2, 3 have erasure probabilities 1−p1, 1−

p2, 1− p3. The optimal symbol allocation vector f and redundancy ratio γ are as

follows:

• If p1 + p2 − p1p2 < p∗ ≤ p1 + p2 + p3 − p1p2 − p2p3 − p1p3 + p1p2p3

⇒ γmin = 3 and f1, f2, f3 = k

• If max{p1p2 + p2p3 + p1p3 − 2p1p2p3, p1} < p∗ ≤ p1 + p2 − p1p2

⇒ γmin = 2 and f1, f2 = k, f3 = 0

• If p1 < p1p2+ p2p3+ p1p3−2p1p2p3 and p1 < p∗ ≤ p1p2+ p2p3+ p1p3−2p1p2p3

⇒ γmin =
3
2 and f1, f2, f3 = k

2

• If 0 < p∗ ≤ p1

⇒ γmin = 1 and f1 = k, f2, f3 = 0

Fig. 4.2 shows a plot of minimum redundancy versus the target success prob-

ability for p1 ≥ p1p2 + p2p3 + p1p3 − 2p1p2p3. Fig 4.3 shows the case where

p1

p1+p2+p3 -p1p2 -p1p3 -p2p3 +p1p2p3

1

2

3

p

∗

p1+p2-p1p2

γ
min

=

n
k

Figure 4.2: Minimum Redundancy for N = 3 when p1 ≥ p1p2+ p2p3+ p1p3−
2p1p2p3

p1 < p1p2 + p2p3 + p1p3 − 2p1p2p3. Results in figures 4.2 and 4.3 represent all
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p1

p1+p2+p3 -p1p2 -p1p3 -p2p3 +p1p2p3

1

2

3

p

∗

3

2

p1p2+p1p3+p2p3-2p1p2p3

p1+p2-p1p2

γ
min

=

n
k

Figure 4.3: Minimum Redundancy for N = 3 when p1 < p1p2+ p2p3+ p1p3−
2p1p2p3

possible combinations for the symbols across the paths. Ordering the paths

simplifies the analysis so assume that p1 ≥ p2 ≥ . . . ≥ pN . We know that the

redundancy γ is such that 1 ≤ γ ≤ 3. Considering γ = 1 then there are three

different possible symbol allocations: f = k, 0, 0, f = k
2,

k
2, 0, and f = k

3,
k
3,

k
3. It is

known that a success occurs if the sum of the received symbols across all the

paths is greater than or equal to k and since p1 ≥ p2 ≥ p3, this implies that we

only need to look at three situations: 1) when only the first path is needed for

success, 2) when the first and second path are needed for success, and 3) when

all three paths are needed for success. The reason for having only three symbol

allocations is based on the following observation. Consider the case when only

two paths are required and assume that k
2 symbols are sent down each path,

then it can be seen that probability of success is exactly the same as when (i−1)k
i

symbols were sent down the first path and k
i symbols sent down the second

path. Note that p1, p1p2, and p1p2p3 are probabilities of success for scenarios

1, 2 and 3 respectively. So clearly in this scenario, f = k, 0, 0 yields the highest

success probability. Continuing in this manner for different possible values of γ

we obtain the results shown above. Unfortunately, there are not always going
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to be N = 3 paths, so next we devise a method to take care of the instance where

there are an arbitrary amount of paths.

4.2.2 Algorithms for Arbitrary Number of Paths

Following [9], the results can be extended to an arbitrary number of paths. Since

the APS set size varies with path security, it is important to design an algo-

rithm that dynamically determines all parameters. A closed form expression

for the network’s probability of success is difficult to obtain, thus, we developed

heuristic algorithms which determine parameters. One of these algorithms has

exponential running time and is called Minimum Redundancy Algorithm in Ex-

ponential Time or MRAET. Though MRAET has an exponential running time,

we prove that in several special cases it’s optimal. In cases when exponential

running time is unacceptable, we introduce an algorithm with polynomial run-

ning time. We call it Minimum Redundancy Algorithm in Polynomial Time

(MRAPT).

Both MRAET and MRAPT algorithms consist of two steps. Part 1 is to reduce

dimensionality of the space due to the fact that the search redundancy/symbol

dispersion space is extremely large. This reduction results in a shorter search

time required to determine the desired parameters. Given p∗, part 1 first assigns

the symbol allocation vector f = [k, 0, . . . , 0]. f is then plugged into probability

expression (Eq. 4.1, Eq. 4.2 in MRAET, MRAPT respectively) and compared

with p∗. If the value is greater than or equal to p∗ the algorithm moves on to

part 2. Otherwise it sets f = [k, k, 0, . . . , 0] and repeats the procedure. Part 1 is

exited when f is found that generates a probability greater than or equal to p∗.

46



Part 2 picks off where part 1 left off, and it checks possible symbol allocations

which have a smaller redundancy than that found in part 1 and also result in

a success probability greater than p∗. The algorithm terminates when there are

no options left. Taking the value j = γmin from the first part of the algorithm,

the second part of the algorithm starts with the case were the first j − 2 paths

have k symbols assigned to them. The algorithm then steps through different

combinations for the rest of the N − ( j − 2) paths to see if there is a combination

which results in a lower redundancy and also meets the target success probabil-

ity requirement. An example of a combination which part two of the algorithm

will attempt would be f1, f2, . . . , f j−2 = k, f j−1, f j, f j+1 =
k
2, f j+2, . . . , fN = 0. Some

new notation will be mentioned before introducing both parts of the algorithm.

PA
success =

∑

s∈A

N
∏

i=1

psi
i (1− pi)

1−si

where A is some submatrix of S (S is a matrix filled with all possible length N

binary vectors, with the first row being the all zero vector and the last row being

the all one vector).
∑

s∈A represents a sum which begins with the first row vector

of A and terminates with the vector that is the last row of A. Let,

Z j
(i,s) = {z ∈ {1, . . . , 2

N−( j−2)} |
j−2+i
∑

l= j−1

S z,l ≥ s}

for some integers s, i, j. Where S z,l represents the element of S in the zth row and

lth column. Let S ((i: j),(1:l)) (i ≥ j and l ≥ 1) represent a submatrix of S composed

of all the rows i, i + 1, . . . , j of S up to the column l.
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Minimum Redundancy Algorithm in Exponential Time

Part 1:

Step 1: Assign j = 1 and go to step 2.

Step 2: Let A = S ((2N− j+1:2N ),(1:N)) and go to step 3.

Step 3: Calculate PA
success

If PA
success ≥ p∗

f1, . . . , f j = k, f j+1, . . . , fN = 0

γmin = j, Ptemp = PA
success

Go to Part 2 of the algorithm

else let j = j + 1

if j > N move on to Part 2

else return to Step 2

If j < 2 then we have an optimal allocation and we are done. Otherwise:

Part 2:

Let i = 2 and j = γmin

Step 1: Let i = i + 1

if i > N or j − 2+ i > N then terminate Part 2

else go to Step 2

Step 2: Let s = 2 and go to step 3

Step 3:

if j − 2+ i
s ≤ j
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Let A denote the subset of matrix S composed of rows whose indices are in

Z j
(i,s) (where Z j

(i,s) is the set defined above) followed with rows (2N−( j−2)
+

1 : 2N) of the matrix S , or

A =

























S (

(Z j
(i,s)),(1:N)

)

S ((2N−( j−2)+1:2N ),(1:N))

























Go to step 4

else Go to step 6

Step 4: Calculate PA
success

if (PA
success ≥ p∗ with j − 2+ i

s < j) or ( j − 2+ i
s = j and Ptemp < PA

success)

Go to step 5

else Go to step 6

Step 5: Let Ptemp = PA
success , γmin = j − 2+ i

s , and

f1, . . . , f j−2 = k

f j−1, . . . f j−2+i =
k
s

f j−1+i, . . . , fN = 0

Go to step 6

Step 6: Let s = s + 1

if s > i Go to step 1

else Go to step 3

This algorithm is optimal for several of cases. One case is when we have

N = 3 paths.
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Theorem 3 MRAET is optimal when N = 3

Proof: After Part 1 of the algorithm, we have 3 options for j, j = 1, 2, 3.

If j = 1, then the algorithm terminates after part 1 since j < 2. We are left with

γmin = 1 ⇒ n = k

Thus f1 = k, f2 = f3 = 0 which is optimal.

If j = 2, then

A =
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
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
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


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

0 1 0

0 1 1

1 0 0
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1 1 0

1 1 1
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












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


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





and Ptemp = p1 + p2 − p1p2

The algorithm then steps into part 2. It starts and ends with the scenario i = 3, s = 2

since N = 3. It first checks is j − 2+ i
s ≤ γmin = j. If so, then it searches through

S =


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
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
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







rows (1, . . . , 2N−( j−2)) = (1, . . . , 8) such that the columns ( j−1, . . . , j−2+ i) = (1, . . . , 3)
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sum to greater than or equal to s = 2. Then

A =






















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
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0 1 1
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1 1 0
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




















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
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


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



















.

Then since j − 2+ i
s =

3
2 < j = 2, MRAET checks if Psuccess =

∑

s∈A
∏3

l=1 psi
i (1− pi)1−si =

p1p2 + p2p1 + p1p3 − 2p1p2p3 ≥ p∗. If so, then γmin =
3
2 and f1, f2, f3 = k

s =
k
2, otherwise

γmin = 2 and f1 = f2 = k, f3 = 0.

Lastly, if j = 3 the algorithm stops before part 2 because j − 2 + 3 > 3. Thus,

f1 = f2 = f3 = k, which is the same allocation as we had above. �

Next, we prove a theorem to help us show another optimal case.

Theorem 4 Suppose we have k symbols allocated to paths 1, . . . , i − 1 and 0

symbols allocated to the remaining of the N paths, resulting with probability

of success p̂i−1. Then, if we let path i have k symbols, the probability of success is

p̂i = p̂i−1 + pi − p̂i−1pi (4.3)

Proof: By induction on the integer i.

Base Case: i = 2

We have p̂i−1 = p̂1 = p1, since we only have success if path 1 succeeds. If we let path

2 have k symbols, then we have a success solely if path 1 succeeds, if path 2 is the only

successful one, or if they both succeed. This is equivalent to:

p̂2 = p̂1p2 + p̂1(1− p2) + (1− p̂1)p2 = p̂1 + p2 − p̂1p2
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Inductive Hypothesis: Suppose Eq. 4.3 holds ∀i ≤ m − 1

Inductive Step: Let i = m . Then by inductive hypothesis we know that p̂m−1 is the

probability of success for the first m − 1 paths having k symbols and the rest having 0.

We can think of p̂m−1 as being the probability of success for one super path. Thus, if we

let the mth path have k symbols, then we have success if only the super path is successful,

the mth path is the only successful one, or if they are both successful. That is:

p̂m = p̂m−1pm + p̂m−1(1− pm) + (1− p̂m−1)pm

= p̂m−1 + pm − p̂m−1pm

Hence the result holds ∀i ∈ 2, . . .N. �

Theorem 5 MRAET is optimal when j = N

Proof: If j=N, then we know that A is equal to S , excluding the all zero first row,

PA
success ≥ p∗.

By Thm. 4 we know that the probability of success for the first N − 2 paths having k

symbols and the rest having 0 is:

p̂N−2 = p̂N−3 + pN−2 − p̂N−3pN−2 < p∗

Thus, if we treat the first N−2 paths as one super path with probability psuper = p̂N−2,

then the current problem can be mapped to the case where N = j = 3 since super path is

path 1, N − 1 is path 2, and N is our third path. �

Corollary 1 MRAET is optimal when j = N − 1

This results follows from the theorem above, since j = N − 1 can be mapped to the case

where N = 3 and j = 2.
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Minimum Redundancy Algorithm in Polynomial Time (MRAPT)

For MRAPT we proceed similarly to MRAET but we use the success probability

approximation, eqn. 4.2. This means that there is no need to search through

the matrix S and further spending exponential running time by calculating the

true probability of error. Hence, Part 2 for the MRAPT algorithm excludes the

S matrix search, and when it terminates a vector f is returned. Next we will

analyze the running time of these algorithms.

Algorithm Running Time Analysis

We begin by analyzing the MRAET algorithm. We assume that S is computer

offline. The matrix S has 2N rows and the worst case scenario is if we have

to search through the entire matrix. Using a common logarithmic search algo-

rithm like the binary search mentioned in [3], the running time of this process

becomes O(log2(2
N)) = O(N). The worse case running time (A = S ) calculating

the probability of success is O(2N). Thus, inside the loop running time becomes

O(N + 2N). It can be seen that the outer loop takes < N iterations, hence the total

worst case running time of part 1 is O(N(N + 2N)). Part 2 has one more outside

loop of N iterations but the analysis is pretty much identical. This implies that

MRAET’s total worst scenario running time is O(N2(N + 2N)). Without a doubt

MRAET is an exponential time algorithm.

The running time of MRAPT is significantly reduced since it is not necessary

to traverse matrix S or to calculate the true success probability. Using eqn. 4.2

as the probability of success function, it is necessary to calculate the mean and

variance of the Gaussian distribution ∼ N
(

∑N
i=1 fi pi,

∑N
i=1 f 2

i pi(1− pi)
)

. . Assuming
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that the values pi(1− pi) are saved, the mean and variance calculations each take

O(2N) iterations which is the worst case running time. Similar to the analysis

for MRAET, the second part overbears the running time with its two loops re-

sulting in O(N2(4N)) = O(N3) running time for MRAPT. MRAPT thus runs in

polynomial time with respect to the number of paths.

4.3 Application to Different Codes

Although these algorithms were developed for MDS codes, we can also apply

them to LT and Raptor codes. These codes are almost MDS codes implying that

instead of needing to receive exactly k symbols to decode the message, around

k(1 + ε) are needed for decoding. Although this increase in overhead is not

desirable, these codes have several advantages over the classic MDS codes. As

mentioned above, both LT and Raptor codes have smaller encoding/decoding

time than MDS codes. There are many instances where the network efficiency

is less important than the cost of the encoder/decoder. Another advantage of

these codes is that they are fountain codes, meaning that they are rateless. This is

extremely important because in the situation where the decoder does not receive

enough output symbols to decipher the transmitted message, the encoder can

very simply send some more data independently of the output symbols which

were received. An RS code, for example, would either require knowledge of the

exact locations of missing symbols or would have to re-encode and retransmit

the original message.
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4.3.1 LT Code Implementation

Theoretically in an LT code, with probability of 1− δ, all k input symbols can be

recovered from a set of k(1+ ε), where overhead ε depends on δ. To implement

LT codes, we first decide on the value of δ which is used to determine the pa-

rameter R = c log(k/δ)
√

k. The next step is to establish the overhead ε. We use

the Robust Solition distribution mentioned in an earlier section for the output

symbol degree distribution. In [18], the authors show that using this distribu-

tion and to ensure a probability 1 − δ of successful decoding, the total output

symbol size should be on the order of K = k + O(
√

(k) ln2(k/δ)). In particular,

K = k +
∑k/R−1

i=1
R
i + R ln(R/δ) implying that ε = 1

k

(

∑k/R−1
i=1

R
i + R ln(R/δ)

)

. Our algo-

rithm is used to determine total redundancy needed to ensure that the probabil-

ity of success is above a certain threshold. This means that our algorithm passes

1 − δ and p∗ as parameters and determines the symbol allocation/redundancy

so that the calculated success probability is at least as large as p∗.

4.3.2 Raptor Code Implementation

We implement a raptor code using a regular LDPC code combined with an LT

code. The first step is to determine the overhead of both codes. Based on the

fraction of input symbols, δ, which we would like to decode using the inner LT

code, we determine εLT which specifies the LT redundancy. Then, following the

method used in [2], we let εraptor = 2εLT. Since (1+ εraptor) = (1+ εLDPC)(1+ εLT),

εLDPC becomes

εLDPC =
εraptor

2+ εraptor
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Next, using the raptor overhead, or k(1 + εraptor), the total redundancy and

symbol allocation are determined using either MRAET or MRAPT. Once the re-

dundancy and the symbol allocation is specified, it is necessary to determine the

amount of redundant check nodes of each code. Since the previous overheads

represented the k out of n symbols similar to MDS codes, these redundancies no

longer match the total code size. So the initial overhead used to determine the

total amount of check nodes and symbol allocation was:

k′ = k(1+ εLDPC)(1+ εLT) (4.4)

In order to determine the new redundancies, we keep in mind that we would

like the ratio of the original redundant nodes of each code to be the same. We

introduce two new constants which we would like to solve for: γLT and γLDPC.

These constants represent the increase in the overhead for the LDPC and LT

code to reach the size of the final codeword n. We have,

n = k(1+ γLTεLT)(1+ γLDPCεLDPC) (4.5)

Initially there are riLDPC = kεLDPC and riLT = k(εLT + εLTεLDPC) redundant nodes

for the LDPC and LT code respectively. After finding the total codeword size n

from the algorithm, the LDPC code has rLDPC = kγLDPCεLDPC redundant symbols

and the LT code has rLT = k(γLDPCεLT+γLTγLDPCεLTεLDPC) redundant symbols. We

solve for γLT, γLDPC by setting the ratio of the final redundant symbols equal to

that of the initial ones, or:

rLT

rLDPC
=

riLT

riLDPC
=
γLDPCεLT + γLTγLDPCεLTεLDPC

γLDPCεLDPC

=
ǫLT + ǫLTǫLDPC

ǫLDPC

(4.6)

Using equation 4.5 we obtain:

γLT =

n
k(1+γLDPCεLT) − 1

εLT
(4.7)
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From eqn’s 4.6 and 4.7 we acquire:

γLDPC =

n
k − 1

(εLDPC + εLT + εLDPCεLT)
(4.8)

Hence the LDPC code has kγLDPCεLDPC redundant nodes. We use a regular Gal-

lagher code, meaning that the n − k × n parity check matrix has three ‘1’s per

column. The belief propagation algorithm is used for decoding.

To determine the degree distribution of the LT code, we use an idea dis-

cussed in [33] and [17]. In [33], the authors discuss the design of the LT degree

distribution for finite length raptor codes. Based on keeping the expected ripple

size of the LT code at c
√

k(1− x), they determine that the LT degree distribution

should meet this inequality:

Ω
′(x) ≥

− ln
(

1− c
√

1−x
k

)

1+ εraptor
(4.9)

with x ∈ [0, 1−δ] and δ > c/
√

(k). The degree distribution can be solved as in [33],

by discretizing x in the interval [0, 1−δ] and forming a linear program that must

meet the constraints in 4.9. In particular, the linear program is a minimization

problem where the expected degree, Ω′(1), is minimized, or:

minΩ Ω
′(1)

s.t Ω
′(x) ≥

− ln
(

1− c
√

1−x
k

)

1+ εraptor

D
∑

i=1

Ωi = 1 (4.10)

x ∈ [0, 1− δ]

where D represents the maximum degree. Using the overhead determined

above for the LT code, we use this degree distribution in the final step of the

encoding process to add redundancy to the LDPC code and forming the final

codeword.
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4.4 Simulations

All of our simulations are run over numerous Monte Carlo runs to accurately

depict performance. We measure the performance of our algorithms by first

comparing the success probability of MRAET and MRAPT in Fig. 4.4. Figure

4.4 also shows the desired probability level as well as the success probability

approximation to allow for a full comparison. The parameters we use for this

plot are N = 7, k = 4, p = [0.8000, 0.5901, 0.5338, 0.5261, 0.5203,

0.5107, 0.5000]T . MRAET algorithm performs very well and achieves a success

probability that is higher or equal to p∗. MRAPT on the other hand seems to os-

cillate around p∗, but typically stays above p∗. This makes MRAPT particularly

practical since it determines symbol allocation and redundancy in polynomial

time. Comparing MRAPT to the approximation we used for the probability of

success, it can be seen that this approximation seems to be off by a constant

offset from the true performance.
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Figure 4.4: Probability of Success of MRAPT and MRAET

Using the same parameters as used for 4.4, Fig. 4.5 shows a comparison

of the redundancy ratios of MRAET and MRAPT vs. p∗. Due to the sub-
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optimality of MRAPT, the redundancy ratio of MRAPT is slightly higher than

that of MRAET. The gap between the redundancy ratios is fairly small until p∗

gets to be around 0.98 and there appears to be a large jump for the redundancy

of MRAPT.
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Figure 4.5: Redundancy Ratio for MRAPT and MRAET

Figures 4.6, 4.7, and 4.8 show the performance of MDS, LT, and Raptor codes

using the MRAET algorithm for k = 50. In the remaining figures we change the

number of input symbols to k = 50, and we evaluate the performance of MDS,

LT, and Raptor codes using the MRAET algorithm. Fig. 4.6 shows the actual

probability of successful decoding for MDS, LT, and Raptor codes as compared

to the target probability of success. All of these codes have a successful decoding

probability that is equal to or above p∗, making them excellent candidates for

multipath channels. On average, the MDS code seems to have lower success

probability than the other codes, though in Fig. 4.7 it can be seen that the MDS

codes do have the minimum redundancy. The Raptor code has higher decoding

success probability than the LT code for lower values of p∗ but as p∗ grows the LT

code outperforms the Raptor code. Though in Fig. 4.7 LT code has significantly

bigger codeword size than both Raptor and MDS codes.
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Figure 4.6: Probability of Success over Different Codes using MRAET

The Raptor code seems to have a constant amount of extra output symbols

than the MDS code. The code has more redundancy added but it outperforms

the MDS code significantly as shown in Fig. 4.8. Fig 4.8 depicts the average bit

error probability for these three codes. The Raptor code has consistently lower

bit error rate than both the other codes, and the LT code has lower bit error rate

than the MDS code. The bit error rate for the Raptor code is extremely low and

the LT error rate is higher by a relatively minute amount.
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Figure 4.7: Total Codeword size for Different Codes using MRAET
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Figure 4.8: Bit Error Rate over Different Codes using MRAET

4.5 Summary

This chapter considered a network setup with a source and destination node

and N independent paths separating them. These paths are erasure paths and

they have a pre-determined “trustworthiness” level. We determined the mini-

mum code length and message dispersal down the paths as to achieve a target

success probability. Due to the inability to express the true success probability

in closed form, we introduced two heuristic algorithms to determine the men-

tioned parameters. MRAET uses the actual success probability and results in an

exponential running time. MRAPT on the other hand uses an approximation

of the probability of success, which causes sub-optimal performance, though

runs in efficient polynomial time. Both these algorithms are developed for the

specific class of codes called MDS codes.

We applied MRAET to three codes, MDS, LT, and Raptor codes. The sim-

ulations showed that the Raptor code appears to be the best candidate for our

algorithm in a multipath channel. It has a high success probability, along with

very low bit error rate, and the code does not have a huge amount of redun-
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dancy difference over the MDS code. If one wishes to have higher network

efficiency MDS codes would be the ideal choice since the redundancy is lower

than the other codes. The problem with MDS codes is that the higher encod-

ing/decoding time result in more complex and expensive encoders/decoders.

Also, if an MDS code is used, and the necessary output symbols are not received

then it is much more difficult to retransmit the missing information. Raptor and

LT codes are rateless meaning it is very simple to re-encode and transmit miss-

ing output symbols. Another advantage of these codes is the fact that they have

cheap encoding/decoding costs and result in low bit-error rate.
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CHAPTER 5

SECURITY AND RELIABILITY FOR MULTIPLE PATH NETWORK

5.1 System Model for reliability and security

In this model, we want a method to be simultaneously secure and robust from

an adversary. There are two legitimate users in the network, Alice and Bob,

and Alice would like to convey a message to Bob through an imperfect channel.

Unfortunately, there is an adversary, Eve, present in the network who would

like to spy on the conversation between Alice and Bob. Alice wishes to keep

the data private from Eve, but she also wants Bob to be able to reconstruct the

message. We use Raptor codes to both encrypt the message and to allow the

receiver to decode the message with probability 1.

Network Model

Our network is similar to the network models used in [36] and [11]. We assume

that the network has a large amount of nodes and that a disjoint path algo-

rithm has found N node disjoint paths between the source (Alice) and destina-

tion (Bob). These paths could be picked based on numerous parameters such as

their reliability, length, or trustworthiness level. Each of these paths indepen-

dently acts like a binary erasure channel (BEC). Additionally, an eavesdropper

(Eve) has access to each path and also views them as BEC’s. In particular, each

path can be thought of as a wiretap channel. We assume that the distributions

across both the legitimate and illegitimate channels are known. The main chan-

nel on path i has bit erasure probability αi and the wiretap channel has erasure
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probability ǫi. Figure 5.1 shows the network model.
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Figure 5.1: Multiple path network where both the legitimate and illegiti-
mate users have binary erasure channel

Alice, the sender, wants to reliably broadcast a message to Bob without giv-

ing too much information to Eve. For each path i we assume that αi < ǫi, since

otherwise there would be no point in transmitting down that path. With out

loss of generality, we assume α1 ≤ α2 ≤ . . . ≤ αN . Alice has a message S that

is k bits long which she will encode into a length n codeword C using a Raptor

code. We will introduce Raptor codes in the next section. In order to increase

the probability of successful transmission, Alice will split the codeword into N

groups of bits { f1, f2, . . . , fN} and then she will transmit the first group of f1-bits

or c(1)
= (c(1)

1 c(1)
2 . . . c

(1)
f1

) down path 1, next f2-bits, c(2)
= (c(2)

1 c(2)
2 . . . c

(2)
f2

), down path

2, and so on. Figure 5.2 shows how each path i looks individually. Alice wants

to determine the minimum redundancy and the bit-allocation across each path

to assure that the message can be decoded by Bob and that it is perfectly secure

from Eve.
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Bob

Eve

Alice

BEC(αi)

BEC(ǫi)

c
(i)

=

(c
(i)

1 c
(i)

2 . . . c
(i)

fi
)

Figure 5.2: Wiretap channel on each path i

5.2 Asymptotic System Secrecy and Reliability

The goal is to develop an encoding scheme to assure a zero error probability

for Bob and complete uncertainty for Eve. In [34], the authors show how LDPC

codes can be applied to the wiretap channel to achieve asymptotic robustness

and security. Previous work [11] has shown that Raptor codes perform well over

multiple path erasure channels. We extend the work in [34] to multiple path

wiretap channels, using Raptor cod es rather than LDPC codes. An advantage

of Raptor codes is the fact that they are rateless, so if the receiver does not receive

enough bits, then some extra output symbols can be transmitted on the fly. Also,

these codes have linear encoding and decoding time.

5.2.1 Raptor Code Parameters

As mentioned above, Raptor codes are well known fountain codes which were

first introduced in [33]. The structure of Raptor codes allows them to have high

error correction as well as having properties of rateless codes. This is due to the

fact that they are constructed using a high performing error-correction code as

a pre-code followed by an LT code, which is a fountain code.
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Assume that c
∑N

i=1 fi bits are transmitted over our network, where fi repre-

sents the number of bits transmitted across path i and c the total number blocks

of bits transmitted across paths (so there are c blocks of fi-bits transmitted across

path i). In our model, asymptotically (as c → ∞), Bob and Eve will receive

c
∑N

i=1 fiαi and c
∑N

i=1 fiǫi erasures respectively. This is true because the distribu-

tion of each main path (same analysis for the eavesdroppers path) is Bernoulli

with parameter αi, since we have two possible outcomes: an erasure with prob-

ability αi and the transmitted bit with probability 1− αi. It is known that if one

obtains n independent samples of a Bernoulli random variable with parameter

p (representing an erasure), then as n gets large, the number of erasures ap-

proaches the mean of the random variable, np. Hence, if c fi bits are transmitted

down path i, then the number of erasures on this path as c tends to infinity will

approach c fiαi, implying that the total number of erasures across all the paths

becomes c
∑N

i=1 fiαi. Using the same LT code parameters, (n′,ΩD), as found in

[33], we have a degree distribution:

ΩD(x) =
1
µ + 1















µx +
D

∑

i=2

xi

(i − 1)i
+

xD+1

D















where D = ⌈4(1+ ǫ)/ǫ⌉, µ = (ǫ/2) + (ǫ/2)2, and ǫ is the overhead of the entire

encoding process. We restate an important result shown in [33] for clarity.

Lemma 1 ∃a(ǫ) > 0 such that any set of n′(1 + ǫ/2) + 1 output symbols of an LT

code with parameters (n′,ΩD) are sufficient to recover at least (1 − δ)n′ with an error

probability at most e−a(ǫ)n′ , where δ = (ǫ/4)/(1+ ǫ).

Given a choice of δ, Alice needs to determine the amount of bits to transmit.

If n′(1 + ǫ/2) = ck(1 + ǫ) output bits are sent, with c fi transmitted on each path,

then, asymptotically, Bob will receive n′(1 + ǫ/2) − c
∑N

i=1 fiαi bits. In order to
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guarantee 1 − δ fraction of decoded bits, Alice needs to consider the erasures

Bob’s channel will incur. Thus she needs to send ck(1 + ǫ) + c
∑N

i=1 fiαi output

bits to Bob. Mathematically this implies that Alice send c
∑N

i=1 fi = n bits to Bob,

where cf T (1−α) = ck(1+ ǫ). Then according to Lemma 1, and assuming that Bob

uses the BP decoding algorithm, at least (1− δ)n′ bits will be recovered after the

LT decoding.

The next question we answer is how to determine the values of fi, i ∈

{1, . . . ,N}. Starting with the value of δ we determine the overhead ǫ. We know

that it is undesirable to transmit more than k-bits down each path and ideally

we want to minimize the total number of transmitted bits. This is a simple linear

optimization problem of the following form:

min f T 1

s.t f T (1− α) = k(1+ ǫ)

0 ≤ fi ≤ k, ∀i ∈ {1, . . . ,N}

It is assumed that Eve knows the connectivity graph of both the LDPC code

and the LT code. Typically in information security papers it is assumed that

the adversary has infinite computational power. Thus, instead of assuming that

Eve uses the BP algorithm to decode the message, we assume that she uses the

best possible graph decoding algorithm. It is known that Maximum Likelihood

(ML) decoding is optimal, thus Eve cannot do any better than it.

In [29], the authors provide lower bounds on the bit error probability for

codes on graphs. A bound found in this paper that is of interest to us is one that

shows the minimum possible erasure probability after decoding a graph code

which traversed a binary erasure channel (BEC). This bit erasure probability

is lowest for all possible decoding algorithms, even the Maximum-Likelihood
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(ML) algorithm, meaning that Eve cannot achieve a lower erasure probability.

Before showing this lower bound we will define some variables. Assume that H

is the parity check matrix for the LT code. A parity check matrix of an LT code is

such that HXT
= CT , where the row Hi is generated randomly using the output

degree distribution (in our setup ΩD(x)) [15].

Definition 17 The density ∆ = ∆(H) of a parity check matrix H is the normalized

number of ones in H per information bit.

Definition 18 The normalized density t = t(H) of H is:

t = t(H) =
R∆

2− R

Where R is the rate of the code. Let Pb be the bit erasure probability and the

erasure probability across the channel is ǫ. The bound is as follows:

h(Pb) ≥ R − (1− ǫ) + (1− R)(1− ǫ)
(2−R)t
1−R (5.1)

where h(·) is the binary entropy function (logarithm to the base of 2). This bound

is used in the following manner. Since c
∑N

i=1 fi = n bits are transmitted, this im-

plies that as c→ ∞ Eve will have c
∑N

i=1 fiǫi erasures. Therefore, Eve will asymp-

totically have probability of bit erasure ǫavg = c
∑N

i=1 fiǫi/n =
∑N

i=1 fiǫi/
∑N

i=1 fi over

the combined paths. Using ǫavg as the erasure probability over Eve’s entire chan-

nel, one can find the lower bound for the bit erasure probability after decoding

the LT layer by solving Equation (5.1) for Pb. In particular, since Pb represents

the minimum possible fraction of erasures after decoding with the best possible

decoding algorithm, it can be used to determine an upper bound on the fraction

of symbols Eve decodes, which is (1− Pb)n′. The erasure probability Pb is asso-

ciated with the case where Eve uses the best possible decoding algorithm over
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the LT code, hence one needs to assure that δ is picked so that δ < Pb. Since δ

represents the upper bound for the number of erasures Bob will have after the

LT decoding and Pb is the lower bound on Eve’s erasures, this implies that a

scheme around these parameters will consider the worst case scenario. Hence,

such a scheme will be valid for any feasible decoding outcome.

We first mention some information about the LT decoding in order to prop-

erly determine the LDPC code parameters. The LDPC parameters are picked

to assure perfect secrecy and reliability, which will be shown after the encod-

ing process is mentioned. After decoding the received message using the LT

code’s tanner graph, both Bob and Eve’s inner channel is transformed into a bit

erasure channel (BEC), which can be seen in Figure 5.3. This means that the

multiple path network is converted into a single path network following the

first decoding process. Using Lemma 1 and Equation (5.1), the decoding of the

LT code results in Bob having a BEC with erasure probability δ and Eve having

a BEC with erasure probability Pb . We begin with the encoding process which

is similar to that in [34].

Bob

Eve

Alice

BEC(Pb)

BEC(δ)

Figure 5.3: Channel Transformation after LT Decoding (BEC Wiretap
Channel)

As mentioned above, the wiretappers inner BEC channel has erasure prob-

ability Pb and the legitimate receivers has erasure probability δ. First pick a

length n′ code C1, with rate r1 and parity matrix H1, from an LDPC ensemble
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with threshold Pb. Next, consider the dual space of C1 and pick n′(1− r2) inde-

pendent vectors, where r2 > r1. From these vectors form a n′(1 − r2) × n′ parity

matrix H2, corresponding to code C2. C2 should be from the LDPC ensemble

with threshold δ. Combine the rest of the independent vectors in the dual space

of C1 to construct a matrix H̄2. Capacity and security requirements yield the

following inequalities:

1− r2 ≥ δ

1− r1 ≥ Pb

1− r2 < Pb

Soon it will be shown how the parameters of the code result in secrecy and

reliability, but first the encoding method will be discussed.

5.2.2 Raptor Encoding

Suppose Alice wants to send a secret message S which has n′(r2 − r1)-bits. She

first concatenates n′(1 − r2) 0’s with S resulting in an n′(1 − r1)-bit vector. Then,

she randomly picks a vector X out of the vectors that form a solution to:























H2

H̄2























XT
= [0 · · ·0S]T (5.2)

It can be shown that using this encoding method, the secrecy rate becomes r2−r1.

Finally, X is encoded into an n =
∑N

i=1 fi bit vector, C, using the LT code with

parameters (n′,ΩD).
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5.2.3 Raptor Decoding

Asymptotically, Eve receives c
∑N

i=1 fiǫi erasures, and after applying the optimal

decoding using the LT code connectivity graph, by Equation (5.1) she will de-

code at most (1 − Pb)n′ bits. Thus in the long run, after decoding the LT code,

Eve will have Pbn′ erasures. This results in 2n′(Pb−(1−r2)) solutions to H2XT
= 0

which are equally likely. The code C1 has threshold Pb implying that any sub-

matrix formed from nPb columns of its parity matrix H1 will have full column

rank [27]. This implies that each solution X maps to a specific value of S. Hence

Eve’s uncertainty is ∆ = n′(Pb − (1 − r2)), and using a capacity achieving code

with 1 − r1 = Pb, her uncertainty becomes ∆ = n′(r2 − r1), implying complete

secrecy.

Bob acquires c
∑N

i=1 fi(1 − αi) bits of the codeword C, and by lemma 1, he

decodes n′(1 − δ) bits of the intermediate codeword X. Since C2 has erasure

threshold δ, this means that as n → ∞ Bob can decode the sent codeword, X,

using belief propagation with probability one. He can then form an estimate

of S by solving H̄2XT
= S. Hence the probability of error approaches zero as n

approaches infinity using this coding method.

5.2.4 Secrecy Capacity

It can be shown that the secrecy capacity of the inner channel is Cs = Pb − δ. The

rate of our encoding scheme is r2 − r1 = r2 − (1− Pb). The scheme does not attain

the secrecy capacity unless C2 is also picked to be capacity achieving code with

r2 = 1− δ, yielding a rate of r2 − (1− Pb) = Pb − δ = Cs.
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5.3 Summary

In this chapter we have considered the problem of deterring a wiretapper in a

multiple path wireless network. We have shown how Raptor codes can be ap-

plied to our network model to guarantee security and robustness. Specifically,

we derived the number of erasures that the eavesdropper could correct from

decoding the LT code, and then determined the necessary parameters for the

LDPC layer. Also, we devised a method to route the codeword through a mul-

tiple path network, assigning a certain number of bits to each path. The routing

scheme depends on the erasure probabilities and the LT code specifics.
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CHAPTER 6

DETECTING MALICIOUS NODES

6.1 System Model for localizing malicious nodes

Our network is composed of N + 2 nodes with one source node and one des-

tination node, let V be a set containing the nodes in the the network where

V = {us, u1, u2, . . . , uN, ud} (us, ud represent the source and destination node re-

spectively). We assume that malicious nodes are present in the network. The

source wishes to transmit a message to the destination node, and the destina-

tion node wants to determine the adversary node locations. The network can be

represented by G = (V, E), where E represents all the edges in the network. It is

assumed that the source and destination node are impervious to infection while

each of the internal nodes are not. By infected node we mean the node is being

tampered with, i.e. a malicious or byzantine node. Note, this should not be

confused with the network epidemic spreading problem since a malicious node

will not transmit its “infection” to any of its neighbors. Internal node ui has a

probability pi of becoming infected. If a node is overtaken by an adversary, the

node will refuse to forward legitimate data and instead will transmit tampered

with/fake packets.

Prior to transmitting a message, the source node will encode the message

using a standard encryption technique. This implies that the receiver will be

able to recognize a false or tampered with packet when the packet is decrypted.

Thus, the destination can denote an uncorrupted packet by a ‘0’ and a corrupted

one by a ‘1’. The output of a particular path at the destination is a function of

all the nodes that form the path. The destination node will receive n messages
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from n different paths (messages not necessarily unique) and it represents the

legitimacy status with a vector ĉ, of length n, in the following manner:

ĉi =























0 if message received on path i is legitimate

1 if message received on path i is illegitimate
(6.1)

If there is an adversary on at least one node in a path, the false message from

the node will be propagated across the rest of the path, resulting in the detection

of the illegitimate message by the terminal node. In particular, path i (Pi) will

have ĉi = 1 if at least one node on the path has been infected. Let ‘1’ represent

the event that a specified node is malicious and ‘0’ if the node has not been

tampered with. Form a variable s = {s1, s2, . . . , sN} expressing this information,

or

si =























1 if ui is malicious

0 otherwise
(6.2)

The the value of ĉi can be written as function of all s j given that u j ∈ Pi. The

function for ĉi is the ‘or’ operation over all the nodes in path i. Mathematically,

the output of path i can be written:

ĉi =

∨

j:u j∈Pi

s j (6.3)

It can be seen that this expression can be re-formulated in terms of addition in

the Galois field of order 2, GF(2), as

ĉi =

∑

j:u j∈Pi

s j +

∑

j:u j∈Pi

∑

k> j:uk∈Pi

s jsk + . . . +
∏

j:u j∈Pi

s j (6.4)

6.2 Localizing Adversary Nodes

Our method is based on transmitting a message or many messages across a

large number of paths, and using the path outputs to determine the locations
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of adversaries in the network. The intuition behind it comes from ECC theory:

by forming a set of specified combinations of the message bits into a codeword

and transmitting across a channel, one can determine the points at which errors

occurred as long as the number of errors is less than a specified number. With

enough paths traversing through the nodes, it is possible to deduce the infected

node locations. In particular, we treat the node status variable s = {s1, . . . , sN}

as a message vector. The reasoning behind this is explained in the next section.

This allows us to determine the values of each si by using RM codes.

6.2.1 Mapping Paths to Reed-Muller Codes

As mentioned earlier, the variable representing each node’s legitimacy status is

considered to be the message bit, i.e. si is the ith message bit. For each path

i, form an N-bit vector Pi which has a ‘1’ in spot i if ui belongs to path i and

a ‘0’ otherwise. Eq. (6.4) reveals that each received codeword bit ĉi is formed

by monomial combinations of the node status variables which belong to path i.

The goal is to map this expression to the formation of RM codes.

In RM codes, given the generator matrix and message vector, the codeword

is formed as in Eq.(2.4) in Chapter 2 resulting in:

c = (c0, c1, . . . , c2m−1)

= s01+ s1v1 + . . . + smvm + s12v1v2

+ . . . + sm−r+1 ... m−1 mvm−r+1 · · · vm−1vm (6.5)

Where sm+1 has been renamed s12, sm+2 has been renamed s13, and so on until
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sN has been renamed s12...m. Consider a row in the above expression, or ci =

s0+ s1v1(i)+ . . .+ smvm(i)+ s12v1(i)v2(i)+ . . .+ sm−r+1... m−1 mvm−r+1(i) · · · vm(i) =
∑

j:u j∈Pi
s j,

and let Pi = (1, v1(i), . . . , vm(i), v1(i)v2(i), . . . , vm−r+1(i) · · · vm(i)). If there is a ‘1’ in

the jth spot then node u j is present in path i, otherwise it is not. This implies that

each column of the generator matrix represents a required path in the network

and we call these paths RM-paths.

Comparing the two equations (6.4) and (6.5), it can be seen that they do not

match. In particular, Eq.(6.5) is missing all terms of order greater than one. We

assume that the message has been encoding using the RM code, as in Eq. (6.5),

and the codeword ĉ, corresponding to Eq.(6.4), is received. The extra terms

found in Eq. (6.4) on each path i can be treated as the error in the ith codeword

bit, so ĉi = ci + ǫi where

ǫi =
∑

j:u j∈Pi

∑

k> j:uk∈Pi

s jsk + . . . +
∏

j:u j∈Pi

s j (6.6)

Thus, it is necessary to analyze the probability that the higher order terms

alter the true codeword value.

The only way that the higher order terms change the value of the first order

terms in path i is if the sum of them results in the value ‘1’ or ǫi = 1. It can be

shown that this occurs if an even number greater than zero of the message bits

on path i have the value ‘1’. For simplicity, assume that with probability pi = p

an interior node ui becomes malicious. The following equations can be easily

altered for the case where the nodes have different infection probabilities. Let li

represent the number of nodes on path i, n = 2m represent the number of paths,

and
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Ne(li) =























li if li is even

li − 1 otherwise

Then an error on path i occurs with probability:

Perror =

∑

k=2,4,6...,Ne(li)























li

k























pk(1− p)li−k (6.7)

For simplicity, since the structure of the paths has not yet been determined, it is

assumed that the paths are independent from one another. Hence, the expected

number of errors over all the paths approximately becomes:

E{Number of errors}

≈
n

∑

i=1

∑

k=2,4,...,Ne(li)























li

k























pk(1− p)li−k

=

n
∑

i=1























∑

k=0,2,...,Ne(li)























li

k























pk(1− p)li−k − (1− p)li























=

n
∑

i=1

(
1
2
− (1− p)li) (6.8)

=
n
2
−

n
∑

i=1

(1− p)li

This expression will be used to determine the parameters for the RM code. In

particular, the expected number of errors is used to determine the minimum

distance of the code.
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6.2.2 Designing the Reed-Muller Parameters

The length of each path vector Pi needs to be equal to the number of nodes N.

This implies that m and r should be such that

N =
r

∑

j=0























m

j























The code must be able to “correct” at least n
2−

∑n
i=1(1− p)li errors to determine the

location of the adversaries. An error-correction code with minimum distance

dmin can decode ⌊ dmin−1
2 ⌋ errors. This implies that the minimum distance of the

code must satisfy dmin = 2m−r ≥ 2(n
2 −

∑n
i=1(1− p)li) + 1. The larger the minimum

distance, the longer the codeword, hence implying more paths. The values of li

are not known, so it is necessary to form bounds on the number of errors. There

are no more than N nodes on each path implying li ≤ N for all i, therefore,

2(
n
2
−

n
∑

i=1

(1− p)li) + 1 ≤ 2(
n
2
− n(1− p)N) + 1 ≤ dmin

Since n = 2m−r we have,

dmin = 2m−r ≥ 2m(1− (1− p)N) + 1

⇒ 2−r ≥ 1− (1− p)N
+ 2−m (6.9)

⇒ r ≤ − log2(1− (1− p)N
+ 2−m)

Using this minimum distance, the code can localize all malicious nodes as long

as there are less than n(1− (1− p)N) + 1 errors.

6.2.3 Forming Paths in Network

These relationships between N,m and r give the possibility to obtain their values

and form an R(r,m) RM-code. The code is formed as in Section (2.3.7) of Chapter
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2. An issue occurs if all the RM-paths are not present in the network, thus next

we discuss how to assure that the RM-paths formed from the code are realizable

in the network. First, all the simple pathsP (paths not containing a specific node

more than once) between the source and destination must be found. To do this

we use an algorithm, developed by Rubin, in [28] which finds all simple paths

between each pair of nodes. Once all the paths are found, they are compared

to the paths that were generated by the RM code. All the RM-paths Pi that

belong to P are fine and can be used in localizing the malicious nodes. The

remainder of the RM-paths, Pi < P, must be formed by combinations of paths

in P. These combinations can be found by starting with combining two paths,

comparing them to the particular path Pi < P and seeing if they match. If no two

combinations match, then comparing them to combinations with three paths,

and continuing in this fashion until a matching combination has been found.

Suppose three paths, P′k1
, P′k2
, P′k3

, are needed to represent a path Pk (composed

of nodes uk1, . . . , uklk
) which was found with the RM code. This means that P′k1

+

P′k2
+ P′k3

= Pk and ck = sk1 + sk2 + . . . + sklk
. The decoder will have ĉk1, ĉk2, ĉk3 from

paths P′k1
, P′k2
, P′k3

respectively. Then the decoder will combine the three outputs

of the paths as ĉk = ĉk1 + ĉk2 + ĉk3. This implies that the probability of error on

paths that do not belong inP, and hence must be formed through a combination

of paths, is larger than that on the paths in P (shown in Eq. 6.7).

This error probability can be analyzed as follows. Assume that an RM-path

Pk needs to be realized by using n different paths, so Pk =
∑n

i=1 P′ki
. Then ,
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ĉk =

n
∑

i=1

ĉki

=

n
∑

i=1





















∑

j:u j∈P′ki

s j +

∑

j:u j∈P′ki

∑

l> j:ul∈P′ki

s jsl + . . . +
∏

j:u j∈P′ki

s j





















Since Pk is formed through the modulus two addition of n paths, this implies

that the first order message bits corresponding to the nodes that do not belong

on path Pk are canceled out. Hence,
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Thus, the error term can be seen to be:

ǫ′k =

n
∑

i=1
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(6.10)

An error occurs in the kth codeword bit only if ǫ′k = 1, which happens only if an

odd number of the n paths have an even number of malicious nodes. Given the

relationships between these n paths, the probability of error can be analyzed.

Once all the messages have been received, the destination node will combine

the required paths, and then use the Reed Decoding algorithm to form an esti-

mate of the message. If spot i has a ‘1’, then this implies that node vi has been

compromised. This information allows the network to update the probability

of each node being malicious, and if necessary remove certain nodes from the

network. An RM path which is not present in P may result in a higher error
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probability than that calculated in Eq.6.7, which may yield more codeword er-

rors than expected and an incorrect message estimate. This uncertainty can be

taken into account when updating the probability of a node being malicious.

6.2.4 Treating Missing RM-paths as Erasures

The resulting probability of bit error is higher when several paths are combined

to form an RM-path, thus we consider another technique where the missing

RM-paths are treated as erasures. We develop an algorithm which exploits the

structure of our decoding process to mitigate erasures. Before introducing the

algorithm, a few key observations are mentioned.

• If ĉi = 0⇒ ĉi = ci and s j = 0 ∀s j ∈ Pi

• If si1i2...i j = 0 is known and one of its bit estimate expressions or ŝi1i2...i j =

ĉt1 + ĉt2 + . . . + ĉt j has exactly one k such that ĉtk = 1 and has no erasures,

then ĉtk has an error and ctk = 0.

• If si1i2...i j = 0 is known and one of its bit estimate expressions or ŝi1i2...i j =

ĉt1 + ĉt2 + . . . + ĉt j has exactly one k such that ĉtk = e (an erasure) and has no

ctl = 1, ∀l ∈ {1, . . . , j}, then ctk = 0.

These observations are used to generate an algorithm which is used in com-

bination with the Reed-decoding algorithm to form an estimate of the original

message. The algorithm will be introduced next and then we will show some

simulations showing the differences between using and not using the algorithm.

Assume ĉi = e represents an erasure and initialize an empty set, M = ∅. To sim-

plify some notation, assume that for 1 ≤ j ≤ m, u j ∈ Pi is analogous to s j ∈ Pi,
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um+1 ∈ Pi ⇒ s12 ∈ Pi, um+2 ∈ Pi ⇒ s13 ∈ Pi, . . ., and uN ∈ Pi ⇒ s12...m ∈ Pi. Also,

the algorithm mention earlier is referred to as the Reed-Decoding algorithm and

the following algorithm is referred as the RD-Erasures algorithm

RD-Erasures Algorithm

Step 1: ∀ ĉi i ∈ {1, . . . , 2m} such that ĉi = 0 and si1i2...i j ∈ Pi set to ŝi1i2...i j = 0 and

add {i1i2 . . . i j} as a set into M. Set means that if {i1i2 . . . i j} is in M that does

not necessarily imply that i1 is in M. (M represents the message bits which

are known with complete certainty).

Step 2: ∀ ĉi i ∈ {1, . . . , 2m} such that ĉi = e check if {i1i2 . . . i j} ∈ M, ∀si1i2...i j ∈ Pi.

If so, then set ĉi = 0.

Step 3: Let j = r (highest order)

Step 4: Start with Step 2 of the Reed-Decoding algorithm as mentioned in an

earlier section.

Step 5: Stop the Reed-Decoding algorithm directly before Part 6 of Step 2 for

bit si1i2...i j , check to see if {i1i2 . . . i j} ∈ M. If so keep going with this step

knowing that ŝi1i2...i j = si1i2...i j , otherwise go to Step 6 of this algorithm.

1. If ∃ exactly one ĉtl , l ∈ {1, . . . , j} such that ĉtl = 1 and the rest of the

current codeword bits {ĉt1, ĉt2, . . . , ĉt j}\ĉtl used for an estimate of ŝi1i2...i j

have value ′0′, then set ĉtl = 0. Otherwise do nothing

2. Else if ∃ exactly one ĉtl , l ∈ {1, . . . , j} such that ĉtl = e and the rest of the

current codeword bits {ĉt1, ĉt2, . . . , ĉt j}\ĉtl used for an estimate of ŝi1i2...i j

have value ′0′, then set ĉtl = 0. Otherwise do nothing
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Go to Step 3 of the Reed-Decoding algorithm, and at the end of this step,

if the decoding process is not done, go to Step 4 of the RD-Erasures algo-

rithm.

Step 6: Continue with rest of Reed-Decoding algorithm starting at Part 6 Step

2. Go to Step 3 of the Reed-Decoding algorithm, and at the end of this

step, if the decoding process is not done, go to Step 4 of the RD-Erasures

algorithm.

In the next section, we simulate the performance of several methods in the pres-

ence of missing paths. In all the methods we assume that there are certain paths

not realizable in the network. The details of the message are discussed next.

6.3 Simulations

The simulations show comparisons of bit-error probability over several meth-

ods. One of the methods uses the path combination method to take care of

the paths not in the network and then follows with the Reed-Decoding Algo-

rithm, we call it the “path-combination” technique. The next method treats the

non-realizable paths as erasures and just ignores those codeword bits in the

Reed-Decoding algorithm. This implies that in the presence of erasures each bit

estimate is formed with a smaller number of values in the majority ruling. The

final method also assumes that the non-realizable paths are erasures and uses

the RD-Erasures algorithm to form a message estimate.

Assume that the number of nodes/message bits is 11 and that the number

of codeword bits is 16 with code parameters r = 2,m = 4. The different curves
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on the first two plots each represent a different number of path erasures. Fig-

ure 6.2 shows the bit-error probability over different malicious node probabili-

ties for the method which assumes erasures and only uses the Reed-Decoding

algorithm. Bit-error probability is analogous to the probability that a node is

mistaken to be malicious/non-malicious in our setup. Figure 6.1 shows the bit-

error probability over different malicious probabilities for the case with erasures

and using RD-Erasures algorithm. It can be seen that for both methods when

the number of erasures is between 1 and 4 the bit-error probability is almost

the same, especially for the RD-Erasures algorithm. An interesting result oc-

curs when there are no erasures, the bit-error probability is actually higher than

when there are 1-4 erasures. This implies that it is better to have an erasure than

an error. Another explanation for this if there is more than one non-realizable

path, then one of these paths will most certainly be the path including all the

nodes. It can be deduced that this path is the most prone to errors since it con-

tains the most nodes. Similarly, as expected, in both plots the bit-error probabil-

ity increases as the probability of a node being malicious increases. It can be seen

in figure 6.3 that the method using the RD-Erasures algorithm outperforms (has

a lower bit-error probability) than the method only using the Reed-Decoding

algorithm. The RD-Erasures algorithm significantly outperforms only using the

Reed-Decoding algorithm in the case of no erasures and the difference increases

as the probability of a node being malicious grows. When the number of era-

sures gets large, the performance deteriorates, as seen when there are six era-

sures in both fig.’s 6.1 and 6.2. The RD-Erasure algorithm yields a low bit-error

probability for most instances.

Next, it is assumed that we have a specific node connectivity matrix, imply-

ing that we have a set number of non-realizable paths. In particular, there are 4
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Figure 6.1: Performance of the RD-erasures algorithm over different num-
ber of erasures
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Figure 6.2: Performance of the Reed-Decoding algorithm over different
number of erasures

non-realizable paths out of 16. Assume that the first node has a connection to

the source node (otherwise we can re-order the nodes so that this condition is

met).
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Figure 6.3: Difference between the bit-error probability of the Reed-
Decoding algorithm and the RD-Erasures algorithm

Difference between the bit-error probability of the Reed-Decoding algorithm

and the RD-Erasures algorithm over a different number of erasures
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Forming this matrix (each row represents a path) of realizable RM-paths. The
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last node in a row vector with the value ′1′ is connected to the destination node:
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For the “combining-paths” technique, the paths that are needed to combine

to form each non-realizable path are found. As mentioned earlier, the missing

paths are handled as erasures for the RD-Erasure algorithm. The performance of

the two methods is shown in figure 6.4, which compares the bit-error probabil-

ity as the probability of a node being malicious increases. It can be seen that the

RD-erasures algorithm significantly outperforms the “combining-paths” tech-

nique. The “combining-paths” technique seems to have a propagation of errors

and hence our conclusion is that it is better to treat the non-realizable paths as

erasures.
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Figure 6.4: Comparing the “combine-paths” technique with RD-erasures
algorithm

6.4 Summary

In this chapter we have considered the problem of detecting and localizing ma-

licious nodes in a wireless network. We have shown the application of Reed-

Muller codes for finding the adversary nodes. The minimum distance of these

codes must be scaled with the expected number of malicious nodes in the net-

work. The code parameters are found based on the probability of a node be-

ing malicious. Once the RM-code is known, network paths are derived from

the generator matrix of the code and it is shown how the byzantine nodes are

located. For the case of non-realizable paths, we derived an algorithm to cor-

rect for these paths. We compared the performance of several techniques and

showed that our algorithm achieves the lowest bit-error probability.
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CHAPTER 7

CONCLUSION

Applications of wireless networks are immense and there are many issues

which come with transmitting data through the air (wirelessly). Data transmit-

ted through the air is subject to noise and a variety of attacks. There are many

possible approaches and solutions for solving these problems. The common

goal between all of these approaches is to guarantee network reliability, network

security, and network integrity. The network must have reliability in order to

be able to communicate successfully in the presence of adverse conditions. Se-

curity in a network refers to preventing false packets from being mistaken for

legit ones, making sure that adversaries in the network are not preventing the

forwarding of legitimate packets, and keeping the data message secret from an

illegitimate user. The integrity of a network is the degree to which a user can

trust the network components.

We have three contributions related to wireless network reliability, security,

and integrity. Each piece of research assumes a specific network and channel

distribution and applies coding theory to find a solution.

7.1 Summary of Contributions

First the network reliability issue is addressed. We assume that the wireless net-

work has multiple paths where each path acts like an erasure channel. Since

MDS codes are known to perform well under erasure channels, properties of

MDS codes are used to generate algorithms to guarantee a level of success. Two
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algorithms are generated, an exponential one (MRAET) and a polynomial one

(MRAPT) which take as input the probability of erasure on each path and the

lowest allowed probability of successful decoding. Adding redundancy to the

message is important for reliability but the higher the redundancy the more

bandwidth is used which is undesirable. Thus, the algorithms aim at finding

the minimum redundancy and optimal symbol allocation so that this success

probability is attained. The symbol allocation determines how many symbols

to transmit down each path. MRAET is proved to be optimal for three cases.

The performancec of MRAET, MRAPT and the target success probability are

compared and shown that the algorithms perform very well. MDS, LT, and

Raptor codes are used in the MRAET algorithm and their performance is com-

pared. The performance comparison yields the conclusion that Raptor codes are

favorable over the other two.

The next contribution concerns message secrecy in a multiple path wireless

network. An eavesdropper (Eve) is spying on the network and views the same

multiple paths as the legitimate receiver (Bob) though has a noisier channel.

Wyner [40] showed that a message could be kept secret if this was the case. Bob

and Eve each have binary erasure channels. We generate a coding and bit al-

location method which guarantees message secrecy and reliability. Specifically,

it is shown how a Raptor code with carefully picked parameters can result in

message secrecy and zero-probability of error as the message size tends to infin-

ity. A technique to determine the number of bits to transmit down each path at

each message round is introduced.

Finally we show how to determine the location of an adverse node in a wire-

less network. We assume that there is standard encryption on the messages
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and that the receiver can correctly determine the legitimacy of a packet. The

nodes each have a certain probability of being malicious. Paths in the network

are formed so that each column of the generator matrix of a Reed-Muller code

is represented, where a ‘1′ in spot i of a vector represents node i present on a

particular path. Given the node maliciousness probability, it is shown how to

pick the Reed-Muller code parameters. The paths required by the Reed-Muller

code are not necessarily realizable in the network, so we derive a decoding al-

gorithm for this case. The algorithm treats the missing paths by erasures and

goes from there. The performance of this algorithm is compared with several

other methods and it can be shown that our algorithm outperforms the other

methods.

7.2 Future Work

Possible future work for the reliability of wireless networks is generating a cod-

ing scheme for the network without using the assumption of independent paths.

This could entail a routing method through the nodes generating node depen-

dent paths and inventing a coding scheme for these dependent paths. A non-

routing approach could be taken using network coding and a practical coding

method could be developed which assures probability of successful decoding.

Future problems to solve in coding theory for secure wireless communica-

tions include developing realistic codes which meet the secrecy and reliability

criterion. The scheme we developed in Chapter 5 depends on capacity achiev-

ing codes and on the codeword size tending to infinity which is unrealistic in the

real world. Usually for security in system, the error-control codes are applied
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after the encryption codes instead of a simultaneous encoding, having codes

which both correct and secure a message would reduce this to one step. Further

work can also consider the secrecy and reliability of a message when applied to

different types of main and eavesdropper channels.

Wireless network integrity is an important ongoing research area with many

prospective idea suggestions. Some ideas similar to our work are mentioned

here. One idea is deriving an error-correction scheme from the network con-

nectivity information. Instead of assuming a particular (n, k) code like in this

document which might result in unattainable paths, the paths in the network

would be used to determine the best code and parameters to guarantee a high

probability of correct localization. Another option includes a probabilistic local-

ization scheme which uses the network connectivity information and the proba-

bility of each node being malicious as input to help determine location of recent

adversaries. Applying different types of error-correction codes for the localiza-

tion problem is a simple extension of the authors work which will be their next

step.
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