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ABSTRACT

Current spatiotemporal modeling techniques used to
understand and predict ecosystem processes can often be
categorized into one of two distinct modeling frameworks. Eulerian
frameworks are often used to balance changes and fluxes of mass
and energy and usually used in the simulation of physicochemical
regimes. Lagrangian frameworks are often used to simulate the
movement and/or behavior of individuals, groups of individuals, or
populations. The use of different frameworks has created a
disconnect between the modeling capabilities of physiochemical
modelers (usually engineers) and biological population modelers
(usually biologists). I describe a modeling framework, the Coupled
Eulerian-Lagrangian Hybrid (CEL Hybrid) Ecological Modeling
System, which couples the two frameworks into a comprehensive,
unified framework for simulation of ecological processes. The CEL
Hybrid modeling framework provides the means to simulate the
spatiotemporal population processes, particularly movement
dynamics, of higher trophic level species in aquatic environments.

The couple, the Numerical Fish Surrogate, allows movement
behavior and other biological dynamics best simulated with a
Lagrangian framework to be incorporated into Eulerian-based
physicochemical simulation models. The Numerical Fish Surrogate
(NFS) is, at its core, a particle-tracking algorithm enhanced with

behavioral, or stimuli-response, rules. The NFS is the translation



mechanism that mediates between sensory inputs from the
physicochemical environment and emergent behavior. To
demonstrate the capabilities and potential of CEL Hybrid modeling,
I developed and applied a CEL Hybrid Ecological Model to simulate
the movement behavior dynamics of a cool water fish species,
blueback herring (Alosa aestivalis), in J. Strom Thurmond Lake, a
stratified southeastern impoundment.

Analysis of the results indicates the CEL Hybrid model
performed well in reproducing the distribution of blueback herring
in the reservoir for days when field data existed. Virtual sampling is
introduced and used as the means to compare model output with
actual field data. Comparison of virtual and actual fish
distributions, as obtained from virtual and actual hydroacoustic
surveys, in the vertical direction yielded an r-squared value of 0.93
while comparison of virtual and actual distributions along the
longitudinal axis of the reservoir yielded an r-squared value of 0.67.
I believe the results are good given the assumptions made and the

inevitable shortcomings associated with development of a prototype.
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Simulating Mobile Populations in Aquatic Ecosystems Using a

CEL Hybrid Ecological Model: Concept Development

1.1 Abstract

Current spatiotemporal modeling techniques used to simulate
and predict ecological processes may often be categorized into one of
two distinct modeling frameworks. Eulerian frameworks are used to
balance fluxes and changes of mass and energy and are usually
used in the simulation of physicochemical processes. Lagrangian
frameworks, on the other hand, are often used to simulate the
movement and/or behavior of individuals, groups of individuals,
and/or populations. I describe a modeling framework, the Coupled
Eulerian-Lagrangian Hybrid (CEL Hybrid) Ecological Modeling
System, which couples the two frameworks into a comprehensive,
unified framework for the simulation of ecological processes.

In the coupled system, physicochemical regimes are simulated
using a Eulerian framework, as before. Within the Eulerian-based
structured environment, individuals or aggregates of individuals of a
population move in response to simulated physicochemical
conditions using stimuli-response rules. The rules are embedded in
an ‘enhanced’ particle-tracking algorithm, creating the Numerical
Individual Surrogate, or NIS. The NIS is then able to describe
movement behavior and other selected processes that are best
simulated using a Lagrangian framework. The NIS records the

position, size, biomass, and age of each ‘particle’ and other relevant



parameters so that particles can be aggregated, converted, and
integrated, if needed, into the same spatial averaging scheme used
‘in Eulerian-based physicochemical regime simulations. The NIS
allows the computer simulation to alternate between the Eulerian
and Lagrangian modeling frameworks depending upon the needs of
the simulation. The unified framework provides a platform for
improved simulation of ecosystem processes because modelers can
simultaneously exploit the advantages and strengths of each

modeling framework.

1.2 Introduction

Scientists as well as policy-makers are increasingly aware that
many of the values and services provided by healthy ecosystems
cannot be adequately assessed by simply examining limited
attributes of the physicochemical environment or by restricting
evaluations of impacts to a limited number of living resource
categories. Ecosystems have emergent properties only describable
when the system is considered in its entirety. That is, the interplay
between variables that results in observed ecosystem structure and
function cannot be described when only a limited subset of the
ecosystem is analyzed.

Full ecosystem-level analyses that realistically capture the
dynamics of multiple hierarchical levels are rarely performed.
Presently, the assessment of landscape and waterscape activities is

typically constrained to a limited spatial scale, analyze a limited



number of processes, and/or analyze the dynamics of only a limited
number of living resources. In many cases, however, the
physicochemical environment of an ecosystem cannot be adequately
predicted and assessed without considering feedbacks from higher
trophic levels (Schaus et al., 1997). In fact, biomanipulation of fish
stocks is even used as an in-situ restoration technique to promote
zooplankton grazing, decrease algal standing stocks, and increase
water clarity (Badgery et al., 1994). Changes in the stoichiometry of
nutrient cycling, whether due to the presence of biota or alterations
in food web structure, have direct impacts on physicochemical |
environment (Schindler and Eby, 1997). Similarly, higher trophic
levels cannot be adequately predicted and assessed without
considering the feedbacks from physicochemical processes of the
ecosystem (Michaletz, 1998).

Improved natural resource management, restoration planning,
and impact assessment requires improved knowledge and
understanding through research on the interactive relationships
between bottom-up factors (e.g., nutrient concentrations), top-down
factors (e.g., fish populations), and the phjfsicochemical
environment (e.g., Badgery et al.,, 1994). Acquiring this knowledge
and understanding, however, requires additional tools, as current
modeling methods are hardly available or sufficient (Tischendorf,
1997; Parrish and Turchin, 1997).

Presently, multidimensional spatiotemporal analytical

techniques used to simulate ecosystem processes (e.g.,



physicochemical environment, lower trophic levels, higher trophic
levels, etc.) can be classified as belonging to one of two analytical
approaches, or analytical frameworks: Lagrangian or Eulerian
(Turchin, 1997). Each analytical framework has unique capabilities
and liabilities, and neither framework is able to capture all the
spatiotemporal dynamics of an ecosystem. In this chapter, however,
I describe an approach for using an existing numerical modeling
technique to integrate both frameworks into a single, unified
analytical approach, or framework, that [ believe is capable of
capturing many, if not most, dynamic mechanisms that constitute
an ecosystem. This technique, the Coupled Eulerian-Lagrangian
Hybrid (CEL Hybrid) Ecological Modeling System, provides the
foundation needed for improved simulation of ecosystem processes
because modelers can avoid many of the liabilities and

simultaneously exploit the strengths of each distinctive framework.

1.2.1 Traditional Modeling Approaches

The models employed by biologists and engineers to simulate
various components of the same ecosystem often differ in the
modeling framework used. This creates a disconnect between the
modeling capabilities of biologists and engineers. Models used by
biologists to simulate the movement behavior of organisms are often
Lagrangian-based, that is, they are centered on the individual (e.g.,
Parrish and Turchin, 1997). Individual movement may then be

characterized by a position, a velocity, and even an acceleration



(Turchin, 1997). On the other hand, models used by engineers to
simulate physicochemical regimes are almost always Eulerian-
based, that is, they are centered on a point fixed in space. Fluxes of
mass and energy can then be routed through the system,
represented mathematically as a series of interconnected
compartments fixed in space, and balanced at compartment
interfaces using established equations (Thomann and Mueller,

1987).

1.2.1.1 Simulation of Animal Movement

Although animal movement can be modeled using the
Eulerian framework, by representing the movement of individuals as
fluxes and/or diffusions of population densities (e.g.; Okubo, 1980;
Edelstein-Keshet, 1988; Turchin and Simmons, 1997), the
Lagrangian framework is preferred since a detailed understanding of
individual movement can be translated into an understanding of
population redistribution, while the converse is génerally not
possible (Turchin, 1997). In addition, the use of individual positions
and vectors enhances the compatibility with tracking data and

analytical treatments of movement processes (Tischendorf, 1997).

1.2.1.2 Simulation of Physicochemical Regimes

Although the Lagrangian framework is used, at times, in
physicochemical modeling, e.g., to decouple advection from diffusion

in hydraulic modeling (Oliveira and Baptista, 1995), the simulation



of physicochemical regimes requires the use of a Eulerian
framework (a structure fixed in space) to route and balance mass
and energy fluxes. In order to use many established flow and
chemical equations, these mass- and energy-balance models must
represent a system, mathematically, as a series of interconnected
compartments, within which physicochemical conditions are
averaged. Mass and energy may then be routed through
compartments and balanced at compartment interfaces.
Compartments may be one-dimensional (i.e., a line segment), two-
dimensional (i.e., a grid cell), or three-dimensional (i.e., a box,
pyramid, etc.). After accounting for sources and sinks of mass and
energy within and bordering the system, a virtual representation of
the flow and water quality regimes within an aquatic system, for
instance, can be generated. In addition to physicochemical
simulations, the Eulerian framework has proven useful for modeling
dynamic processes of lower trophic levels (e.g., Gin et al., 1998). As
with physicochem}ical simulations, however, spatial and temporal
resolutions must be adequate to capture essential processes and

dynamics.

1.2.1.3 Disconnect Between Modeling Frameworks

The different numerical approaches used in Lagrangian and
Eulerian schemes provide each framework with unique attributes
(Figures 1.1 and 1.2). These unique attributes translate into unique

capabilities and liabilities associated with each framework. For



instance, transport equations are often solved in Lagrangian form,
particularly when simulating animal movement, because the
Lagrangian form of such equations is often simpler to understand,
visualize, and implement. At the same time, however, Eulerian
schemes may sometimes be preferred to avoid the lack of formal
conservation from which Lagrangian schemes suffer (Gravel and
Staniforth, 1994). This may be particularly important, for instance,
in simulating the fate and transport of bacteria where tracking the
movement of individual particles and ensuring conservation (i.e.,
accounting for the addition, loss, and change in mass and form of
all individuals) may prove difficult and/or computationally
demanding. For such simulations, modeling concentrations or
densities may prove more convenient and equally viable. In
Lagrangian schemes, conservation has to be imposed as an
additional constraint on the system.

Lagrangian schemes often offer the ability to use larger time
steps than Eulerian-based models, with no loss of accuracy. This
may be an attractive property, for instance, when simulating a
species’ annual reproductive cycle since a Eulerian-based model
may require shorter time steps, therefore, increasing the
computational resources needed. Eulerian-based simulations often
require the use of shorter time steps to maintain computational

stability (Gravel and Staniforth, 1994).
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Figure 1.1 Attributes of Lagrangian-based numerical schemes.
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Figure 1.2 Attributes of Eulerian-based numerical schemes.



The liabilities of each framework, particularly the Eulerian
framework, are often disregarded. For instance, population
processes best simulated in Lagrangian form (e.g., movement of
individuals) are often forced into Eulerian-based models (e.g.,
physicochemical models) by converting the individuals into biomass,
or other such Eulerian-based quantities. Consequently, population
processes must then be described in terms of the biomass in each
compartment (e.g., grams of carbon per unit volume), as opposed to
a tally of individuals. Similarly, changes in the population are
simulated as mass fluxes, as opposed to an increase or decrease in
the number of individuals. Capturing the population dynamics of a
species in such a reference frame is difficult because population
dynamics are often based on the behavior of individuals, or groups
of individuals, and not on spatially-integrated averages (Figure 1.3).
Individuals that contribute to inter-population and intra-population
processes are not evenly distributed in time or space and, therefore,
cannot be realistically averaged for placement into a Eulerian
framework. Similar kinds of averaging errors occur when members
of many different species, each with specific relationships to the rest
of the ecosystem, are lumped into a relatively few trophic levels,
obfuscating the response of species, life stages, or individuals to
changing environmental conditions. In addition, the structuring
factors in food web organization may not be clear (Murtaugh and
Kollath, 1997) making it difficult to assign species in a food web to

trophic levels.
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Eulerian Reference Frame Lagrangian Reference Frame

Processes Life-Stage / Age

(U)ptake (g O, m™ hl)

(R)espiration (g CO, m™ h-}) Adults (# Individuals)
(G)rowth (g Cm3hl Juveniles (# Individuals)
(E)xcretion (g NH; m= h-}) Larvae (# Individuals)
(B)iomass (g C m3 Eggs (# Individuals)

Figure 1.3 Integration of population dynamics into a Eulerian

framework.

While some organisms (e.g., zooplankton, phytoplankton,
bacteria, etc.) may be best simulated as Eulerian-based quantities
(e.g., concentration or density of individuals in each compartment),
the simulation of many biological organisms would benefit from
decoupling those attributes best simulated in a Eulerian framework
from those best simulated in a Lagrangian framework, and at the
same time maintain the integrity of the simulated organism. The
simulation of highly mobile higher-trophic level organisms, in
particular, would benefit from such treatment since their complex

movements are difficult to capture in a Eulerian framework
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(Breitburg et al., 1997). At the same time, however, their influence
on local physicochemical conditions, e.g., local water quality, due to
respiration, excretion, and other processes must be modeled in a
Eulerian framework (i.e., integrated into Eulerian-formulated
physicochemical equations). Consequently, a modeling framework
hoping to capture the full suite of dynamics and processes
constituting an ecosystem cannot restrict its perspective to either a
Eulerian or Lagrangian framework. Realistic simulation of complex

ecosystem processes requires the use of both modeling frameworks.

1.3 Foundation and Description: CEL Hybrid Ecological Models

1.3.1 Coupling Eulerian and Lagrangian Frameworks

Despite the differences between Lagrangian and Eulerian
modeling attributes, these differences need not be an impediment to
the develqpment of advanced modeling capabilities. In fact, it is the
differences between the two modeling frameworks that provide the
opportunity for modeling abilities not yet realized. The key to
establishing a new modeling paradigm for simulating a full range of
ecosystem-level processes is to identify unifying concepts between
the contrasting Eulerian and Lagrangian frameworks. The
Lagrangian framework maintains the integrity of an object as it
moves through simulated space (Figure 1.4) since the framework is
centered on the individual. In contrast, the Eulerian framework is
centered on a point fixed in space and, thus, cannot track the

movement of individual objects. Instead, the Eulerian framework
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requires that individual objects be converted into compartment-
averaged values, e.g., concentrations or densities of individuals,
which can then be transported through the system as a series of

fluxes across compartment interfaces (Figure 1.5).

- Location of an
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Figure 1.4 The Lagrangian modeling framework, in most computer
models, can be described as analogous to a ‘moving’ frame of
reference, which allows an observer to track the path of an object
through space. The exact location of the object in space (x-, y-, z-

coordinates) is known at each time step.
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Figure 1.5 The Eulerian modeling framework uses a set of fixed
points in space around which mass and momentum can be
balanced. Without supplemental transport equations, the only way
to transport an object in a Eulerian-structured environment is to
convert it into a compartment-averaged value; the ‘object’ is then
transported to other cells by way of fluxes across compartment

interfaces. The object’s exact location in space is not defined.

From the perspective of a Eulerian-structured environment,
an individual organism in a Lagrangian-based model, where
physicochemical processes/conditions are not simulated, may be
viewed as a particle (i.e., a point in space) (Matuda et al., 1993)
implicitly positioned within one large compartment (i.e., an
environment where all physicochemical conditions are uniform). If

the particle represents an individual, or some aggregation of a
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population (LePage and Cury, 1997; Rose et al., 1996), then a
particle-tracking algorithm can be employed to move the particle in
response to physical forces (e.g., flow) and environmental conditions
(e.g., water quality) computed by the Eulerian-based model as well
as in response to the presence of other ‘particles’ (Matuda et al.,

1993; Parrish and Turchin, 1997).

1.3.2 Particle-Tracking

In aquatic systems, in particular, particle-tracking algorithms
involve the use of discrete particles to model the transport and
dispersion of a tracer or cohtaminant. They have been used
extensively for decades to investigate sea ice transport, ocean fronts,
oil spills, tidal-dispersion processes, chaotic stirring in tidal
environments, and the fate of floatables and dissolved and
suspended materials (Scott, 1997; Chapman et al., 1994). For use
in aquatic systems, a particle-tracking algorithm generally works by:
1) referencing hydraulic information at given locations in the
Eulerian-structured system, 2) interpolating the hydraulic
information to obtain the needed information at interior points
within compartments, and 3) using the interpolated information as
a surrogate for continuous spatial information that is then used to
move an object in the compartments. Interpolation provides the
means to generate a nearly continuous information field while at the
same time allowing the information to change over time and space

as simulated in the Eulerian-based physicochemical model.
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1.3.2.1 Enhanced Particle-Tracking with Behavioral Rules

The ability to simulate dynamic spétial information fields and,
at the same time, maintain the integrity of moving objects in
continuous space allows for the behavior of individual organisms to
be modeled, in a virtual ecosystem. For aquatic applications, the
simulation of physicochemical regimes, in essence, creates a virtual
aquatic environment in which individual organisms may be placed.
Recognizing that movement decisions of an individual group
member can be viewed as a balance of forces (Okubo, 1980),
behavioral cues, or stimuli-response rules, can be programmed into
a particle-tracking algorithm to emulate a species’ movement
behavior. In particular, these rules dictate the attractions to and
repulsions from various sources or foci (Parrish and Turchin, 1997).
Enhancement of the particle-tracking algorithm through the
addition of stimuli-response rules, which when taken as a whole
dictate the pattern of movement (Schilt and Norris, 1997), creates a
virtual organism. This virtual organism is then capable of making
individual movement decisions in a way that emulates the behavior
of real organisms.

Niche theory is the basis upon which stimuli-response rules
are developed. Niche theory tells us that species have ecological
“preferences,” meaning they are found in areas where environmental
variables have some “optimal” value (Legendre et al., 1997). Given

this, virtual organisms can be created and programmed, for
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instance, to avoid areas of low dissolved oxygen, high water
temperatures, or significant toxic concentrations. Methods for
acquiring the information needed to build such stimuli-response
rules for aquatic species are discussed in Nestler and Goodwin
(1999).

If the ‘enhanced’ particle-tracking algorithm is then combined
with other models that capture aspects of a species’ behavioral
ecology (e.g., Nonacs et al., 1994) and bioenergetics (e.g., Schindler
and Eby, 1997; Stockwell and Johnson, 1997), the CEL Hybrid
Ecological Model could be used to assess the effects of ecosystem-
level changes on species populations as well as to feed back the
responses of the species to local physicochemical processes. Rule-
based models can provide useful input into the design of
biodiversity management strategies because of their ability to assess

the importance of different mechanisms (Skelly and Meir, 1997).

1.3.3 The Duality of Organisms

Depicting individuals of a population as particles recognizes
the duality that large, mobile organisms exhibit. That is, they have
some attributes that are best simulated using a Lagrangian
framework and other attributes that are best simulated using a
Eulerian framework. Attributes of the species population under
study must be sorted into those that are best simulated using a
Lagrangian framework and those best simulated using a Eulerian

framework. For example, the Lagrangian framework may be
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preferred for simulating processes and attributes such as mortality,
recruitment into the adult population, and fecundity since these all
have strong spatial ties. The Eulerian framework, on the other
hand, is best suited for simulating biochemical and bioenergetic
processes. Biochemical and bioenergetic processes such as
respiration, excretion, and decomposition are best simulated using
physicochemical equations most conveniently solved using the
Eulerian framework.

Depicting an organism, or group of organisms, as a particle
capable of moving continuoﬁsly through simulated space is the
conceptual building block for complex simulations of ecosystem-
level processes. Development of the conceptual framework can be
thought of as follows:

+ A semi-permeable barrier is placed in a water body (Figure
1.6a) so the system is represented as two, nearly separate,
entities (Figure 1.6b). Placement of the barrier could be
arbitrary or coincide with characteristics of the water body
such as a thermocline location. From the population
modeling perspective, there are now two populations.
Typically, this is referred to as a meta-population; each
subpopulation is represented as a single ‘particle’. From
the Eulerian perspective, the water body is represented as
two compartments, each having unique and uniform

physicochemical conditions.
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+ Different physicochemical conditions are allowed to elicit
differing behavior in the subpopulations, all else being
equal.

+ Migration between the subpopulations through the semi-
permeable barrier is permitted (Figure 1.6c¢).

Numerous characteristics of the physicochemical environment
may be used to elicit responses from an organism. In aquatic
systems, for instance, characteristics may include, but are not
limited to, water quality constituents such as temperature,
nutrients, and toxics as well as hydraulic variables such as velocity,

acceleration, turbulence, and pressure waves.

b.)

Figure 1.6 Strategy for spatially distributing a population in a

Eulerian-structured aquatic system.

After redistribution of the particles (i.e., individuals of the

subpopulations) in time, each portion of the population may
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participate in selected biological processes such as death, birth, or
recruitment into the next age/size stage. Physicochemical
conditions, such as water quality or hydraulics, may influence these
biological processes. Once the subpopulations have participated in
selected biological processes, they can be categorized based on an
appropriate criterion into stages (e.g., eggs, larvae, juveniles, and
adults) or ages (e.g., O-year olds, 1-year olds, 2-year olds, and 2+
year olds). Characteristics of the population relevant to
physicochemical processes (e.g., number of individuals) can then be
converted into Eulerian-based quantities (e.g., biomass, mass of
nutrient generation, mass of nutrient uptake) using conversion
factors so the influence of biological organisms, e.g., uptake,
excretion, decomposition, etc., on the physicochemical environment
can be accounted for.

With the conversion of selected population characteristics into
FEulerian-based quantities, virtual organisms can influence
physicochemical processes (e.g., Schindler and Eby, 1997)
simulated by the Eulerian-based model. Accounting for such
influences may prove important in achieving accurate simulation of
ecosystem conditions. Fish schools, for instance, can alter
dissolved respiratory gases (McFarland and Moss, 1967) as well as
increase ammonium and nutrient concentrations (Oviatt et al.,
1972; Meyer et al., 1983; Bray et al., 1986). The modeling of such
influences is not new. McFarland and Okubo (1997), for instance,

modeled the oxygen consumption within a mullet school.
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Using particles to represent organisms provides an added
flexibility. Organisms can be aggregated differently to fit the scale of
the analysis. For example, one particle may represent an entire
population. Another alternative is to allow each particle to
represent an individual organism or aggregates of individuals as is
done in individually-based models (IBMs). Obviously, there is a
gradient from which to choose the appropriate particle
representation. Individual organisms can be aggregated in multiple
ways. Each particle could represent from one to many individuals
of equal size, age, sex, or life-stage depending upon the complexity
of the problem, the speed of the computer, or other factors that
might influence the level of aggregation necessary to address a

particular issue.

1.3.4 Markov Chain Behavioral Algorithms

A key ingredient in implementing CEL Hybrid Ecological
Models is the ability to develop algorithms capable of realistically
simulating the movement behavior of large and/or abundant
animals within ecosystems. This can be achieved through the use
of discrete-time Markov Chains. Markov Chains are often used by
animal behavioralists for describing the complex behavior of
individual animals (Haccou and Meelis, 1992) and provide the most
comprehensive foundation for simulating animal movement

behavior.
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A Markov Chain can represent a dynamic system consisting of
several distinct, mutually exclusive states where specific
probabilities exist for changing between states. In a behavioral
system, a Markov Chain representation requires that an individual
organism exist in one of a number of distinct, describable, and
mutually exclusive behavioral states. For example, an organism
may exist in one of three separate behavioral states: resting, feeding,
or migrating. Unique probabilities are associated for changing
between each state. The probability of moving from a “feeding state”
to a “resting state”, for example, may be 0.1 at each time step. For a
given species and state of behavior, movement behavior rules can be
developed to predict the movement of individual organisms.

An assortment of rules can be assembled to best simulate
realistic movement. For example, a reasonable rule for emulating
the movement behavior of salmon in a “migrating state” may be to
have the particle, or virtual fish, swim at its physiological maximum
swimming speed upstream against the flow, to have the virtual fish
select the lateral location within the stream channel with minimal
downstream water velocity, and to have the virtual fish swim at a
depth having the least turbulence. Movement behavior rules may
also be developed for daytime and nighttime behavior as well as
spawning and non-spawning behavior.

The Markov Chain statistical model facilitates the simulation
of complex movement behavior using states of behavior and allowing

for the modification of species responses to physicochemical
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conditions based on the current behavioral state. Different stimuli-
response rules can be employed within each distinct behavioral
state. Most long-term applications of Markov Chain statistical
models, however, require substantial numbers of states since the
response of an organism to stimuli may depend on the time of day,
season of the year, life-stage, time since last feeding, or other
factors, all of which must be represented as “states of behavior”. In
addition, state-specific population dispersion may be incorporated
by allowing individuals to switch between different probability-based
random movement processes depending on their behavioral state or
other factors. The switching process itself could be modeled as a

finite state Markov Chain (Blackwell, 1997).

1.4 Qualities of CEL Hybrid Ecological Models

The Coupled Eulerian-Lagrangian Hybrid (CEL Hybrid)
Ecological Modeling System is a developed application of a Eulerian-
Lagrangian method. Eulerian-Lagrangian methods (ELMs) have
evolved over the last three decades to become one of the most
attractive modeling techniques (Oliveira and Baptista, 1995) in
numerous fields. Eulerian-Lagrangian concepts were introduced in
the 1950’s and 1960’s and have been used to simulate everything
from fluid flows (e.g., Udaykumar et al., 1996) to the transport of
material in fluids (e.g., Chapman et al., 1994) to the dynamic

behavior of leukocytes (e.g., Tran-Son-Tay et al., 1998). However, a
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literature search revealed that ELMs have not been widely applied in
the field of ecological modeling.

Benefits of ELMs include, among ofhers, the ability to
decouple processes best simulated using a Lagrangian framework
from those best simulated using a Eulerian framework (e.g.,
advection and diffusion processes in hydraulic modeling) and the
potential for savings in computational resources resulting from the
ability to use longer time steps, for certain processes, without loss of
accuracy. For ecological modeling, mixed, or coupled, Eulerian-
Lagrangian frameworks have improved capabilities over traditional
Lagrangian-based population, or animal movement, models and
Eulerian-based physicochemical models for the simulation of

ecological processes.

1.4.1 Improved Mathematical Accuracy

Predictions made by mass-balance models may differ from
predictions made by models that consider individual elements of a
system, or small aggregations of elements (particularly, individual-
based population models), in those situations where the interactions
between individuals influence the outcome of a simulation. For
instance, consider a hypothetical ecosystem comprised of 30 grid
cells (Figure 1.7). The interactions between individuals of differing
cells can be ignored if densities do not exhibit substantial temporal
or spatial variability (Figure 1.7, Ecosystem 1) because the

interactions can be treated as a constant within the analysis.
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However, if densities do exhibit substantial temporal or spatial
variability (Figure 1.7, Ecosystem 2}, then the type or degree of
interactions between individuals may also change substantially; a
situation not easily handled by mass-balance models, but easily
addressed by Lagrangian-based population models. As an example,
in a lake setting, a mass-balance model may predict a
transformation of prey fish biomass into predator fish biomass even
under very low prey density. However, a model that considers the
exact locations and interactions among individuals may show no
transformation of prey biomass into predator biomass because

under low densities the predator may never encounter the prey.
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Figure 1.7 The impact of individual interactions on the ecosystem
may be significant. In Ecosystem 1, interaction between
neighboring cells may be treated as a constant whereas in
Ecosystem 2, the interaction between individuals of neighboring
cells must be taken into account since it is possible individuals may

not meet in order to take part in selected population dynamics.

1.4.2 Ecosystem-Level Risk Assessment

Population models are used as the basis of risk assessment
for issues commonly involving individual species and the effects of
contaminants and toxic materials (or other stressors) on population
numbers. Population models vary in complexity, but typically a
modeler must estimate fecundity, density dependence, and survival,

either for ages or stages of the population. Population dynamics are
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simulated by randomly selecting the necessary coefficients from a
distribution of coefficients. Typically, a baseline condition is
simulated multiple times to obtain a distribution of results that will
serve as the basis of comparison (Figure 1.8). The model runs are
summarized as the probability, or risk, that at a reference time the

population abundance will decrease below a certain threshold value.
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Figure 1.8 Schematic of the population risk assessment process.

The effects of a stressor are predicted using the same steps
except that the coefficients used to estimate population dynamics
are adjusted to represent the effects of the stressor. For example,
fecundity or survival may be reduced in the presence of the stressor

(Figure 1.8). Multiple model runs with coefficients selected from the
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revised distributions are then used to develop a family of model
runs that includes the effects of the stressor. The model runs that
include the effects of the stressor can then be summarized and
compared to the baseline runs in terms of the changes in risk
associated with the stressor compared to the baseline.

CEL Hybrid Ecological Models allow for a more detailed
analysis of the cause and effect relationships behind population
estimates. For example, a lake may contain a site in which
sediments are contaminated with mercury. This same lake may
contain a population of striped bass, a fish whose distribﬁtion
within a lake is determined by water temperature and dissolved
oxygen stratification. In a standard population model based risk
assessment, a general comparison between the baseline (no
contaminated sediments) and contaminated sediments scenario
results would be used to evaluate the effects of the stressor.
However, a CEL Hybrid Ecological Model would allow other aspects,
such as reservoir operations, to be included in the risk assessment
by linking the movement of striped bass to stratification patterns
within the reservoir. The CEL Hybrid Ecological Model can then be
used to estimate dose-exposure for the fish (how much time each
fish spends in areas of different stressor concentrations) and,
thereby, refine the effects of the stressor. Alternatively, the CEL
Hybrid Ecological Model can be used to evaluate the impact of
various management scenarios (e.g., reservoir operations) on

patterns in the physicochemical environment (e.g., stratification
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patterns), which, in turn, may affect the dose-exposure histories of
the organisms. For instance, in aquatic systems a CEL Hybrid
Ecological Model could be used to determine if raising the pool
elevation by two feet minimizes the dose-exposure of striped bass in
the reservoir. CEL Hybrid Ecological Models can be used to
consider and manage stressors in an ecosystem context and tradeoff
the effects of natural stressors, such as naturally occurring elevated
temperatures or low dissolved oxygen levels, against the effects of

contaminants or toxic materials.

1.4.3 Virtual Sampling

CEL Hybrid Ecological Models create a virtual ecosystem that
can be sampled using virtual sampling gear. Unlike Eulerian-based
models in which individual organisms have to be converted into
biomass, CEL Hybrid Ecological Models can simulate organisms
directly and individually, and the virtual reality of the model can be
sampled with virtual sampling gear to allow direct comparison with
real-world sampling gears, without transformations or conversions.
Virtual sampling gears can be burdened with all of the assumptions
and inadequacies of real-world sampling gears to generate samples
that have similar statistical characteristics (mean and variance) as
real-world samples. Therefore, the step of transforming the
abundance of a target species population from numbers per life-
‘stage per meter to a variable such as kg/m3 is avoided along with

the associated loss of information. Furthermore, tradeoffs in
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sampling efficiency between different sampling gear types can be

evaluated using CEL Hybrid Ecological Models.

1.5 Summary and Conclusions

1.5.1 Theoretical Considerations

The best model for capturing the full suite of ecosystem
processes is the ecosystem itself. Unfortunately, such detailed
replication of natural ecosystems is not possible. In lieu of complete
duplication, ecosystem modelers attempt to capture the most
important aspects of ecosystem structure and processes in
numerical models, fully realizing that the model is nothing more
than a highly simplified version of reality.

In the existing state-of-the-art, modelers have one of two
major conceptual pathways that they follow in an attempt to
mathematically recreate natural spatiotemporal ecological
mechanisms. A modeler may take the Eulerian approach or the
Lagrangian approach. However, either approach, by itself, is an
incomplete representation of reality since the strengths of the other
perspective are unavailable. Therefore, neither approach by itself
can serve as a guide to achieving a more complete understanding of
ecosystem structure and function.

ELMs and, in particular, CEL Hybrid Ecological Models,
provide a more complete perspective for understanding ecosystems
than either Eulerian or Lagrangian approaches by themselves. The

coupled approach has the potential for a total description of
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complicated processes that neither approach can achieve by itself
(Tran-Son-Tay et al., 1998). Particle-tracking logic can be used as a
gateway to move back and forth between the two modeling
frameworks as needed. By éoupling Eulerian and Lagrangian
frameworks into a single modeling framework, ecosystem scientists
have the potential for getting closer to a first principles
understanding of natural systems since the coupled framework can

build on the unique strengths of each perspective.

1.5.2 Representing Different Temporal and Spatial Scales

Levin (1992) identifies determination of scale and pattern as
the central problem facing ecologists in their studies of ecosystems.
Presently, CEL Hybrid Ecological Models offer some advantages over
either mass-balance or population models separately because CEL
Hybrid Ecological Models perform simulations at the scale of the
Eulerian-based model and at the scale of the Lagrangian-based
model. The scales at which each of the two submodels in a CEL
Hybrid Ecological Model run do not have to be the same. Therefore,
CEL Hybrid Ecological Models tend to be bi-scale with the Eulerian-
based model running at a relatively fine temporal and spatial scale
and the Lagrangian-based model (or, at least, parts of it) running at
larger temporal and spatial scales.

CEL Hybrid Ecol'ogical Models, even though they may have
more complete scale representation than their component

submodels, still must generally operate over a limited range of
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scales because of limitations in computational resources. Therefore,
application of CEL Hybrid Ecological Models will require some
judgment on the part of the modeler to optimally scale a simulation
to address a particular issue. Presently, it is not possible to include
more than a limited number of species populations in a CEL Hybrid
Ecological Model because description of movement in the model is

computationally demanding.

1.5.3 Conclusions

CEL Hybrid Ecological Modeling is a new method for coupling
the Eulerian and Lagrangian modeling frameworks so the higher
trophic levels of an ecosystem can be systematically and realistically
simulated. CEL Hybrid Ecological Models have the potential to
partially address the problems identified by Alewell and
Manderscheid (1998), that some biological processes are inherently
too difficult to simulate, and by Turchin (1997}, that full
spatiotemporal analysis is conceptually difficult. The study of
animal behavior is challenging because behavior is often an
integrated response to a complex situation (Schilt and Norris, 1997).
CEL Hybrid Ecological Models provide a systematic means for
segregating these integrated responses into their component parts
so that animal behavior can be better understood for development of

improved natural resources management.
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Simulating Mobile Populations in Aquatic Ecosystems Using a

CEL Hybrid Ecological Model: Algorithm Development

2.1 Abstract

Eulerian-Lagrangian methods (ELMs) provide a means to
achieve a more realistic simulation of higher trophic level aquatic
species movement behavior in dynamic systems. Although the
Lagrangian framework is preferred, for several reésons, for
simulating the movement of individuals in a biological population,
movement behavior dynamics are often forced into the Eulerian
framework used in simulating physicochemical regimes, e.g., flow
and water quality fields. I develop a couple, the Numerical Fish
Surrogate, that allows movement behavior and other biological
dynamics best simulated with a Lagrangian framework to be
incorporated into Eulerian-based physicochemical simulation
models.

The Numerical Fish Surrogate (NFS) is, at its core, a particle-
tracking algorithm enhanced with behavioral, or stimuli-response,
rules. The NFS is the translation mechanism that mediates between
sensory inputs from the physicochemical environment and emergent
behavior. The resulting modeling framework, the Coupled Eulerian-
Lagrangian Hybrid (CEL Hybrid) Ecological Modeling System, has
improved capabilities for handling the movement behavior, and
other dynamics, of higher trophic level species in a realistic and

systematic manner.
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2.2 Introduction

Aquatic ecosystems have emergent properties that can only be
assessed when the system is considered in its entirety. Decision-
support tools, therefore, must be capable of capturing, at the very
least, a select number of critical ecological processes in order to
realistically capture the impact landscape and waterscape
modifications may have on aquatic ecosystems. Presently, a
number of tools exist for simulating the impact various activities
(e.g., dam and reservoir operation, construction, dredging) have on a
number of these critical ecosystem processes (e.g., hydraulics, water
quality, lower trophic levels). However, few tools exist that capture
the impact of such activities on higher trophic level aquatic species,
due to changes in the physicochemical regimes (i.e., hydraulic and
water quality fields), much less the full suite of integrated and
synergistic relationships that exist between physicochemical
regimes, lower trophic levels, and higher trophic levels (Tischendorf,
1997).

The obstacle to achieving such simulation capacity is two-fold:
the lack of a robust translation mechanism and the absence of an
appropriate modeling framework. First, few algorithms exist that
have the capacity to realistically and systematically translate the
mechanisms that mediate between the sensory input of higher
trophic levels, e.g., from flow and water quality fields, and emergent

behavior. Second, no systematic modeling framework has been
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employed that allows for routine, systematic, and realistic handling
of such higher trophic level simulations as well as the various
feedback processes. Ideally, the modeling framework would also be
conducive to investigative processes (e.g., data mining) so, among
other things, the quantitative and qualitative information acquired
from field research would be directly and immediately compatible
with the method used to replicate, or simulate, the ecological
process studied.

In this chapter, I describe an algorithm, the Numerical Fish
Surrogate, and how it is used to simulate/translate mechanisms
that mediate between sensory inputs and emergent behavior
(Warburton, 1997) of a higher trophic level cool water fish species.
This description is critical because the Numerical Fish Surrogate
(NFS) is also the computational doorway allowing modelers to move
freely between the Eulerian modeling framework, typical of most
hydraulic and water quality models, and the Lagrangian modeling
framework, preferred for simulating the movement of animals
(Turchin, 1997). The NFS is the centerpiece of the CEL Hybrid
Ecological Modeling System (Chapter 1) because it allows the
modeler to exploit the strengths of each modeling framework.
Application and evaluation of the NFS in simulating the movement

behavior of a cool water fish species is detailed in Chapter 3.
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2.2.1 CEL Hybrid Ecological Modeling

The computer models used by engineers, to simulate
physicochemical regimes, and by biologists, to simulate animal
movement, often differ in the modeling framework employed.
Physicochemical models used to simulate hydraulic and water
quality processes employ the Eulerian framework (i.e., a framework
centered on a point fixed in space) so that fluxes of mass and energy
may be balanced in both time and space, to ensure conservation of
mass, energy, and momentum. In contrast, many biological
population models used to simulate animal movement employ the
Lagrangian framework (i.e., a framework centered on the individual .
object) and are vector-based to enhance compatibility with tracking
data and analytical treatments of movement processes (Tischendorf,
1997). -

The use of different modeling frameworks creates a disconnect
between the existing engineering and biological modeling abilities.
For instance, population models must often ignore spatial
heterogeneity because it is difficult to incorporate into the
Lagrangian framework. At the same time, engineers often
incorporate population characteristics, such as the number and
sizes of individuals in a population, by converting them into
spatially-integrated surrogate variables (e.g., cell biomass) so they
can be incorporated into the Eulerian, or compartment-based,
models. However, the use of surrogate variables constrains an

ecosystem-level assessment because most surrogate variables (e.g.,
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biomass) cannot capture information needed to realistically simulate
other important population attributes (e.g., size-specific egg
production).

The Coupled Eulerian-Lagrangian Hybrid (CEL Hybrid)
Ecological Modeling System (Chapter 1) circumvents this problem
by separating those processes best simulated using a Eulerian
framework from those best simulated using a Lagrangian
framework. CEL Hybrid Ecological Models use a Lagrangian
framework to maintain the integrity of individuals as they move
through simulated space while concurrently using the Eulerian
framework to simulate the physicochemical and other
characteristics of the system over time and space. The NFS, a
particle-tracking algorithm enhanced with behavioral rules,
translates the sensory inputs to biological individuals, either
Eulerian-based quantities (e.g., témperature) or Lagrangian-based
quantities (e.g., nearest-neighbor), into emergent Lagrangian-based
movement behavior. The framework also allows for the translation
of Lagrangian-based quantities (e.g., number and size of individuals)
into Eulerian-based quantities (e.g., mass of nutrient generation or
depletion due to uptake, excretion, etc.) so that biological processes
may be feed back into the physicochemical simulation. The addition
of existing models/algorithms that capture aspects of behavioral
ecology (e.g., Nonacs et al., 1994) and bioenergetics (e.g., Schindler
and Eby, 1997) would complete the CEL Hybrid Ecological Modeling

System.
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2.3 Development of the Numerical Fish Surrogate

Development of the NF'S was based on position data sets
available for blueback herring (Alosa aestivalis) in the dynamic,
heterogeneous environment of J. Strom Thurmond (JST) Lake, a
reservoir on the Savannah River between Georgia and South
Carolina. This cool water fish species was selected because its
response to temperature and dissolved oxygen stratification and
hydraulic patterns is representative of the response of many cool
and cold water fish species found in lakes, streams, and estuaries.
Realistic simulation of the movement dynamics of this spécies will
serve as a model for similar species whose distribution may be
impacted by environmental changes associated with water resources
development, particularly in settings where the changes in the
hydrodynamic and water quality regirhes can be accurately

simulated.

2.3.1 Procedure

Development of the NFS consisted of a series of integrated
steps, including: 1) obtaining suitable field data for quantitatively
describing the movement of the target fish species, 2) obtaining a
calibrated and verified hydrodynamic and water quality model, 3)
integrating a particle-tracking algorithm into the hydrodynamic and
water quality model, 4) developing stimuli-response rules for the

target fish species to variables simulated in the model, 5) simulating
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the hydrodynamic and water quality regimes along with the
movement of virtual fish, and 6) presenting model results in a
format consistent in scale and resolution to the field data obtained

in step 1.

2.3.1.1 Step 1 — Fish Position Field Data.

Fish positional data used for the NFS calibration were
obtained from gillnet and dual-beam hydroacoustic surveys
(Dennerline and Degan, in prep) conducted during August 1996.
More specifically, the positional data used in this study included:

1. Mobile fisheries hydroacoustic surveys - a sampling
method in which a specialized SONAR system is
deployed from a boat, which runs transects back
and forth across a water body. The results of mobile
surveys can be used to locate fish in three-
dimensions within a lake.

2.  Gillnet surveys - a sampling method in which a
series of nets are used to capture fish. Each net is
made up of several separate panels, with each panel
having a different mesh size. The result is a series
of nets having a graded series of different mesh
sizes, which increases the probability of catching
fish of various sizes. Gillnets are typically used to
indicate the presence or absence of fish species

susceptible to gillnetting.
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2.3.1.2 Step 2 — Hydrodynamic and Water Quality Model,

The hydrodynamic and water quality component of the CEL
Hybrid Ecological Model was CE-QUAL-W?2 Version 3.0 (Cole and
Tillman, in prep). CE-QUAL-W2 is a two-dimensional, laterally
averaged, dynamically-linked hydrodynamic and water quality
model. It has been under continuous development since the mid-
1970s. CE-QUAL-W2 has been applied to numerous lakes,
estuaries, rivers, pit lakes, and reservoirs (e.g., Cole and Tillman,
1996).

The FORTRAN structure of CE-QUAL-W2 was used as the
basis for the NFS. The NFS was coded into CE-QUAL-W?2 as a series
of 14 FORTRAN subroutines dynamically linked to the main CE-
QUAL-W2 program. This link allowed the NFS to run in step with
the hydrodynamic and water quality algorithms, thus avoiding the
need for computer disk space to store flow and water quality output.

CE-QUAL;WZ defines horizontal velocity (Uy,i) at the right
vertical face, vertical velocity (Wk,i) at the lower horizontal face, and
water quality constituents (WQk,j) at the center of each respective
laterally-collapsed grid cell located at the intersection of vertical
layer k and longitudinal segment i (Figure 2.1). For computational
convenience, and to facilitate graphics post processing, all flow and
water quality information was moved (i.e., interpolated) and
redefined at the upper-left node for each respecti\}e grid cell. 3rd

Order Newton interpolation polynomials (Chapra and Canale, 1998)
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were used to “move” velocity information from cell faces to the node,
and bilinear splines (Spath, 1995) were used to “move” water quality

information from the cell center to the node (Figure 2.1).

WQy; , Uy, and Wy
Redefined Here for Celly ;

Node, ;
—1—. O
Vertical WQ;
Layer o X U, O
k Cell, , Cell, , W,
4o oo = o
Vertical
Layer O o
k+1 Cellk_,_l’i_l Cellk+1,i
= @ — O
Longitudinal Longitudinal
~— Segment —>« Segment >
i-1 1

Figure 2.1 Horizontal velocity (Uk,), vertical velocity (Wk,i), and
water quality constituent values (WQk,i) in CE-QUAL-W2 were
defined at the center of the right vertical face (O), at the center of the
lower horizontal face (), and at the cell center (X), respectively, for
each grid Cellk,i. For computational convenience, these values were
moved (i.e., interpolated) and redefined at the upper-left node (e) of

the corresponding Cellk,i.
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2.3.1.3 Step 3 - Particle-Tracking Algorithm.

The particle-tracking algorithm used as the foundation for the
NFS was developed by the U.S. Army Engineer Waterways
Experiment Station (Chapman et al., 1994) to predict the transport
and fate of floatables and suspended and dissolved materials in
three dimensions. The algorithm was simplified for use in CE-
QUAL-W2 by deleting portions of the model relating to surface
transport of floatables and suspended and dissolved materials. In
addition, transport equations for lateral movement were deleted
because CE-QUAL-W2 only computes forcing functions in the
longitudinal and vertical directions. Figure 2.2 describes how the
particle-tracking algorithm defines the exact location of each

particle in CE-QUAL-W2.

Node(k,i) Located at

(z ) X )
Node(k,i) Node(k,i)

fa—A x —»] [ Ax >
¢ ®
Cellkﬂ'-l ’ Cellk i Particle at A%Z
t b
Az (ZX) y
Particleat | | | = ="7T7
(Zt+1 Xt"‘l)O_ -
)
¢ @
Zt =z t+ Az 7wl = 4 o+
Node(k,i) Node(k,i-1)
X' = x .+ Ax X' = x _
Node(k,i) Node(k,i-1)
o O o

Figure 2.2 Scheme for describing the exact positions of a

hypothetical particle at times t and t+1 in CE-QUAL-W2.
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Equations in Chapman et al. (1994) were simplified for use in

CE-QUAL-W2 as follows:

where;

X+ 1

Ztt 1

Xt

Zt

UY(Zt,XY)

WH(Zt, XY

At

Xt = Xt + UL(ZXY * At (2.1)

Z+1 = 7t + WEHZEXY * At (2.2)

I

Longitudinal position, Xnode(k,j + AX, of
particle at time t+1, in meters

Vertical position, Znode(s,ij + Az, of particle at
time t+1, in meters

Longitudinal position, Xnode(k,i) + AX, of
particle at time t, in meters

Vertical position, Znode(k,j + Az, of particle at
time t, in meters

Interpolated horizontal flow velocity (m/s)
at location (Zt,X?Y)

Interpolated vertical flow velocity (m/s) at
location (Zt,XY

Time interval between time t and time t+1,

in seconds.

After Xt*1 and Zt*! were calculated, boundary checks were

performed to determine if the particle’s new position exceeded either -

the longitudinal or vertical dimensions of its current cell or any
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system boundary. If the particle’s new position exceeded the
longitudinal or vertical dimensions of the current cell, an algorithm
was activated to determine the appropriate cell in which to place the
particle. Once the appropriate cell was found, k, i, Nodek,i, XNode(k,i),
ZNode(k,i), AX, and Az were updated for the particle and stored. If the
particle exceeded a system boundary (e.g., a water surface,
upstream, downstream, or lake bottom boundary), special rules

were triggered to reflect the particle.

2.3.1.4 Step 4 — Developing stimuli-response rules.

Particle-tracking algorithms only simulate the passive
movement of objects in a flow field. However, recognizing that
movement decisions of an individual fish can be viewed as a balance
of forces (Okubo, 1980), in particular a set of attractions to and
repulsions from various sources or foci (Parrish and Turchin, 1997),
behavioral cues, or stimuli-response rules, can then be added to the
particle-tracking algorithm to emulate the fish’s movement behavior.
Enhancement of the particle-tracking algorithm through the
addition of stimuli-response rules, which when taken as a whole
dictate the pattern of movement (Schilt and Norris, 1997), creates a
virtual organism capable of making individual movement decisions
related to the spatial information as provided by the Eulerian-based
model (Tischendorf, 1997) in a way that emulates the behavior of

real fish.
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Specifically, an additional term was added to each passive
transport equation to account for the speed of volitional swimming
in the X- and Z- directions (Ufish, Wfish) in response to environmental
gradients. The movement of fish could then be described as the
resultant of passive and volitional movement (Figure 2.3). The
passive transport equations (i.e., equations 2.1 and 2.2) were

expanded as follows:

Xt+l = Xt + (UYZL, XY + Utgish) * At (2.3)
Ztl = Zt 4 (WYZLXY + Wiesh) * At (2.4)
O ? ¢
(z', X))
Passive Movement e

o€ =" 17 /
@ @ ~—@
1 1 %
VARD Gy / Volitional 4

esf‘”:&;{ Movement

Resultant
Movement

Figure 2.3 The movement of fish is described as the resultant of

passive and volitional movement.

The speed and direction of volitional swimming was
determined using stimuli-response rules related to the spatial

context of the individual’s position (Tischendorf, 1997). These
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stimuli-response rules were developed based on Niche theory and
couched as a simplified version of a Markov Chain behavioral model
(Haccou and Meelis, 1992). Rules translated the presence of
environmental gradients into emergent behavior by: a) developing a
sensory ovoid representative of the area blueback herring would
search, during each time step, to determine various environmental
gradients, b) calculating gradients of velocity, temperature, and
dissolved oxygen, c) determining the movement response to each
environmental gradient independently, d) normaliAzing and weighting
each environmental gradient and having the virtual fish select a
variable (i.e., a gradient or a random number) to respond to, and e)
eliciting volitional movement by combining the virtual fish’s
“motivation to move” with its maximum swim speed decremented for

non-optimal water quality conditions.

2.3.1.4.1 Development of a Sensory Ovoid.

Niche theory states that biological species have ecological
“preferences,” meaning that they are found in areas where
environmental variables have some “optimal” value (Legendre et al.,
1997). Literature on blueback herring (e.g., Isely, 1996; Thomas et
al., 1992; Osteen et al.,, 1989; West et al., 1988; Dadswell, 1985;
Meador et al.,, 1984; Fay et al., 1983; Pardue, 1983; Skjeveland,
1982; Loesch and Lund, 1977) suggests that moderate water
temperatures (e.g., 14°C-27°C), dissolved oxygen, and fast-flowing

water are important factors that attract blueback herring,
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particularly for spawning. Gradients of these environmental
variables were used together with a random term, used to generate
dispersion in the virtual fish population, to elicit volitional
movement.

To determine appropriate gradients, a sensory ovoid is
constructed around each ‘particle’ as an estimate of how much area
(two-dimensional laterally-collapsed volume) an adult blueback
herring would search in order to select its direction of movement,
within a single time step of the model. The limit of the sensory
ovoid represents the maximum distance that a blueback herring
could be expected to search in the X- or Z-direction in one time step.
The aspect ratio of the sensory ovoid was distorted so that the
horizontal axes (Ax1, Ax2) were substantially larger than the vertical
axes (Azi1, Azz) (Figure 2.4) since field observation indicates that
blueback herring swim primarily in the longitudinal direction.
Among other things, the limit of the sensory ovoid is dependent on
the time step used. Size of the sensory ovoid will increase with an
increasing time step so that time step intervals of minutes will be
associated with larger sensory ovoids than time step intervals of

seconds.
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Limit of Sensory Ovoid

Figure 2.4 Diagram of a virtual blueback herring sensory ovoid.

The sensory ovoid can extend into other cells.

A scaled sensory ovoid is calculated using the following equations:

where:

Ax it = FBDYSEARCH * FSIZE * RRRt (2.9)
Axot = BBDYSEARCH * FSIZE * RRRt (2.6)
Azt = UBDYSEARCH * FSIZE * RRRt (2.7)
Azot = DBDYSEARCH * FSIZE * RRRt (2.8)
FSIZE = Size (i.e., length) of the fish (m)
FBDYSEARCH =  The number of body lengths (FSIZE) in
front of the fish that it can search
during a time interval
BBDYSEARCH =  The number of body lengths (FSIZE)

behind the fish that it can search

during a time interval
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]

UBDYSEARCH The number of body lengths (FSIZE)
above the fish that it can search during
a time interval

DBDYSEARCH

The number of body lengths (FSIZE)
below the fish that it can search during
a time interval

RRRt = Random number between 0.0 and 1.0

I assume that blueback herring determine flow and water
quality gradients from their current location to a range equal to or
less than the limit of the sensory ovoid. The distances in X and Z
along which gradients are calculated are obtained from a random
uniform distribution scaled so that the minimum distance is 0.0
and the maximum distance over which gradients can be determined
is defined by the limit of the sensory ovoid.

The notion of a sensory ovoid also allows the NFS to adjust to
different models that may vary in their scales of discretization, time
steps, and degrees of distortion between axes. The CE-QUAL-W?2
representation of JST Lake uses a scale of discretization of 0.5 or
1.0 m in the Z-direction and 1000 m to 9000 m in the X-direction
and a time step ranging between one and three minutes. The aspect
ratio of the grid cells is such that they are about 10,000 times
longer than thick.

The time step of the NFS can vary independently of the time
step of CE-QUAL-W2. The time step of CE-QUAL-W2 is selected to
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keep the solutions to hydrodynamic and water quality equations as
stable and accurate as possible. The time step used by the NFS,
however, can be set to any time interval greater than or equal to

that used by CE-QUAL-W2.

2.3.1.4.2 Calculation of Environmental Gradients.

A bilinear spline interpolation function (Spath, 1995) was
used to determine the horizontal and vertical gradients of the two
velocity components, temperature, and dissolved oxygen between
the initial fish position and the four cardinal points of the scaled
sensory ovoid boundary. The interpolation scheme can operate
across cell boundaries so gradients can be determined even if the
boundary of the sensory ovoid excee(is the edges of the Eulerian cell
in which the fish is located. Since bilinear splines were used,
gradients in the same plane will only be different if opposing edges
of the sensory ovoid lie in different Eulerian cells. The direction the
fish is facing (i.e., upstream or downstream) is recorded so that the
user can specify a sensory ovoid with different distances to the -
forward and backward boundary. The following gradients are

determined (Figure 2.5):
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C = { Horizontal Velocity (U), Vertical Velocity (W),

Temperature (T), Dissolved Oxygen (DO) }

Figure 2.5 Separate linear gradients are calculated between the
edge of the scaled sensory ovoid and the fish location for horizontal

velocity, vertical velocity, temperature, and dissolved oxygen.

2.3.1.4.3 Prioritizing Among Variables.

To begin translating the presence of environmental gradients
into emergent behavior, each environmental gradient was analyzed
~in each plane (i.e., horizontal and vertical) to determine what the
preferred movement direction would be if the fish were responding
only to that environmental variable. Of the environmental
gradients, temperature gradients and the horizontal gradient of
horizontal velocity (0U/ox:1 and 0U/0x2) required special attention.

The diel vertical migration of blueback herring (Loesch et al.,
1982) has been attributed to, among other things, water
temperature, light intensity (Jessop, 1990; Loesch, 1987), and the

diel movement of zooplankton (Pardue, 1983; Neves, 1981).
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Blueback herring density is greater at the surface at night than at
midday (Meador et al., 1984; Bulak, 1979; Wang and Kernehan,
1979). To best capture this movement behavior, temperature was
used as a surrogate variable to account for not only the influence of
temperature on the diel movement of blueback herring, but also the
influences of light intensity and zooplankton. Diel movement could
then be simulated by programming the NFS so that virtual blueback
herring seek out different optimum ‘temperatures’ during the day
than at night. The main reason for treating the diel movement
behavior as a response to temperature was that only temperature
was available from the water quality model (CE-QUAL-W2), although
it is possible, if not likely, that light intensity and zooplankton
densities are correlated with water temperature and would, if
proven, further justify the use of a surrogate variable.

Unlike other variables whose gradients could be proportioned
to obtain a surrogate value for the motivational state of an
individual to move, the horizontal gradients of horizontal velocity
(both forward, oU/dx1, and behind, dU/0dx2, the fish) did not provide
the spatial and temporal attributes necessary to produce
“motivational” values leading to realistic fish movement behavior.
On the other hand, actual velocity values did provide the necessary
spatial and temporal attributes. For this reason, the horizontal
gradients of horizontal velocity were replaced with actual velocity
values. In place of dU/0x1 and dU/0x2 were substituted the values

of horizontal velocity at the forward edge (Ux1) and the backward
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edge (Uxz) of the scaled sensory ovoid, respectively. Preliminary
assessment of the benefit in making additional substitutions for the
remaining components of velocity showed only marginal
improvement in model performance, mainly because other factors
were dominant in eliciting modeled fish movement.

A ‘gradient selection logic’ is employed once gradients for each
variable are determined in the four principle directions. Thatis, a
suite of tests is performed on the gradients to select the horizontal
and vertical directions leading to improved habitat conditions for the
target species life stage. No gradient is chosen if conditions around
the fish provide habitat of less quality than the fish’s present
location. The selection logic is summarized as follows, with an

illustration of possible results following in Table 2.1:

(oU/ox)pt =  Of the velocities {|Ux1|, |Ux2|}, whichever is greater

(@U/oz)pt =  Of the gradients {oU/dz1, 0U/dz2}, the one leading to
more desirable conditions

(OW/ox)pt =  Of the gradients {OW/0x1, OW /dx2}, the one leading
to more desirable conditions

(oW /oz)pt =  Of the gradients {0W/0z1, OW /dzg}, the one leading
to more desirable conditions

(0T / 0x)pt = Of the gradients {0T/0x1, 0T /dx2}, the one leading to

‘ more desirable conditions
(0T / 0z)pt = Of the gradients {¢T/dz1, 3T/ 0z2}, the one leading to

more desirable conditions
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(6DO/ox)pt =  Of the gradients {{DO/dx1, 0DO/0x2}, the one
leading to more desirable conditions
(DO /oz)pt =  Of the gradients {{DO/0dz1, dDO/dz2}, the one

leading to more desirable conditions.

Table 2.1 An Illustration of Results from Prioritizing

Among Variables.

Preferred Preferred
Movement in Movement in
Variable Horizontal Plane Vertical Plane
Horizontal Velocity (U) Forward Upward
Vertical Velocity (W) Forward Downward
Temperature (T) Neither! Downward
Dissolved Oxygen (DO) Backward Upward

INeither’ will result if the current condition is more desirable than

neighboring conditions.

2.3.1.4.4 Prioritizing Between Variables.

At each time step, only one of the environmental variables
may influence fish movement. We assume that the speed and
direction of movement for each virtual fish is determined by the
variable exhibiting the largest gradient. To determine this gradient,
the NFS inspects the output of the Eulerian component of the CEL

Hybrid Ecological Model to determine the largest gradient for each
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environmental variable. The NFS then uses a “maximum response
gradient” (defined for each environmental variable in the input) to
normalize the gradients to the range [-1,1]. Occasional normalized
gradients exceeding | 1.0| are truncated. The following formulation

was used to normalize variable gradients:

(eC/od)tn = (0C/od)pt / |0C/0d |max (2.9)
where: C = {Horizontal velocity (U), vertical velocity (W),
temperature (T), dissolved oxygen (DO)}
d = {Horizontal plane (x), vertical plane (z)}
(0C/od)tn = Normalized gradient of variable “C” in the “d”
plane
(oC/od)pt = Preferred gradient of variable “C” in the “d”

plane, as calculated in 2.3.1.4.3
| 0C/od | max= Gradient of variable “C” in the “d” plane likely
to induce the maximum movement response

in a blueback herring.

The “maximum response gradient” values inputted for each
variable remain constant throughout the entire simulation. Once
the variable gradients are normalized, they can then be compared
against one another, on equal footing, as well as compared to a
random number that ranges from -1 to 1. The normalized gradients

and the random number are then weighted. The environmental
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variable weights below permit unequal attention/response to

different variables:

(6Cw/d)t = (8C/8d)tn * Cu (2.10)

Il

where: (0Cw/ad)t Weighted normalized gradient of variable “C”

in the “d” plane, or weighted random number

(0C/od)tn = Normalized gradient of variable “C” in the “d”
plane, or unweighted random number with
range [-1,1]

Cw = Weight of variable “C” or random number

representing influence on fish movement

behavior; range [0,1].

I assume that biota are more likely to respond to
environmental gradients when subjected to unsuitable habitat
conditions than when located in optimum habitat. To account for
this behavior, variable gradient values for temperature and
dissolved oxygen are decremented if habitat conditions at the fish
location are near optimum. Also, blueback herring are a pelagic
species (i.e., they swim continuously), so to accommodate this
behavior the random term is adjusted so fish moving randomly (i.e.,
not responding to any environmental stimulus) continue to move at

some constant swimming speed.



62

The absolute value of each gradient value is taken after
variable gradient values have been normalized, weighted, and
decremented by the NFS. Virtual fish are programmed to then
select one of the absolute values or the random number, whichever
is greater, for each plane of movement. Once a gradient value or
random number is chosen, the value’s sign is restored with positive
values resulting in movement forward and negative values resulting
in movement backwards. An illustration of results that could be

obtained from an analysis is shown in Table 2.2.

Table 2.2 An Illustration of Results from Prioritizing

Between Variables.

Preferred Preferred
Movement in Movement in
Variable Horizontal Plane Vertical Plane
Horizontal Velocity (U) - -
Vertical Velocity (W) - -
Temperature (T) - Downward
Dissolved Oxygen (DO) - -
Random Number Forward -

2.3.1.4.5 Summarizing Fish Movement Simulation.
At this point, all elements exist to simulate movement

behavior of blueback herring. The movement methodology is based
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on using the values calculated in cross-variable analysis (2.3.1.4.4)
as a surrogate for “urgency”, or the motivational state of an
individual (Warburton, 1997) to move from its current position.
These urgency values (Xurgency, Zurgency) range from -1 to 1, with
higher absolute values (O to 1) eliciting greater movement responses
from virtual fish. All movement in the lateral dimension is random
because no flow or water quality variation is computed. Lateral
movement must be computed to take advantage of a bookkeeping
scheme developed specifically for the NFS that allows virtual fish to
move into tributaries (i.e., branches). In short, the following

equivalencies are made:

X'URGENCY (0Cw/ ox)t (2.11)

ZYRGENCY (0Cw/ 0z)t (2.12)
Once urgency is determined, the speed at which the virtual

fish ‘swims’ must be determined. I assume the speed at which fish
swim is related to both the fish’s urgency to move and its maximum
swimming speed. In order to proceed with this assumption,
maximum swimming speed must be determined. First, the
physiological maximum swimming speed (i.e., the fastest a fish can
swim under optimum conditions; Ufish,MaX, Wiish,MaX) is calculated

from inputted values as:
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It

Ufish,MAX FSIZE * MXXSPDL (2.13)

Wiish,MAX FSIZE * MXZSPDL (2.14)

where: MXXSPDL Number of fish lengths (FSIZE) covered in
the horizontal direction per second at the
fish’s physiological horizontal maximum

swimming speed

MXZSPDL Number of fish lengths (FSIZE) covered in
the vertical direction per second at the
fish’s physiological vertical maximum

swimming speed.

The maximum physiological swimming speed is then
decremented based on water quality conditions thought to slow
swimming speed in blueback herring (e.g., Fay et al., 1983). A
simple linear function was used to decrement swimming
performance under poor temperature and dissolved oxygen
conditions. The physiological maximum swimming speed is first
decremented if the fish is located in non-optimum water

temperatures as:

Utfish,MAX,dt =  Utfish,MAX*(1- | THZt,X)-Topt | / Topt) (2.15)
Wiish, MAX*(1- | THZE,X9)-Topt | / Topt) (2.16)

Wifish, MAX,dt
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where: Utfish, MAX,dt Temperature decremented maximum

horizontal swimming speed (m/s)

Il

Wtfish, MAX,dt Temperature decremented maximum
vertical swimming speed (m/s)

THZ!, XY

1l

Temperature (°C) at fish location (Zt,Xt)
Topt = Temperature (°C) for optimum blueback

herring swimming performance.

Lastly, the maximum swimming speed is decremented when
the fish is located in water with dissolved oxygen levels below a
critical threshold (DOwres). If the fish is located in water with
dissolved oxygen levels above DOuwres, then the maximum swimming
speed is not decremented for that time step. However, if dissolved
oxygen levels are below the specified threshold, then the maximum
swimming speed is decremented according to the following linear

function:

Utfish,MAX,dt,ddo = Utfish,MAX,dt*(1-(DOthres-DOYZt,XY) /DOthres) (2.17)
Wrtiish,MaX,dt*(1-(DOthres-DOYZt,XY)) / DOtires) (2.18)

Wifish,MAX,dt,ddo

where: Utfish MAX,dt,ddo = Maximum horizontal swimming speed
(m/s) decremented for both temperature

and dissolved oxygen conditions
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1l

Wtfish, MAX,dt,ddo Maximum vertical swimming speed
(m/s) decremented for both temperature

and dissolved oxygen conditions

Il

DOYZt,XY) Dissolved oxygen (mg/L) at fish location
DOthres = Dissolved oxygen threshold (mg/L),
below which fish swimming performance

suffers.

Within the algorithm, checks are placed to ensure swimming
speed does not fall below zero. Volitional swimming in the
longitudinal and vertical directions is then computed as the product
of ‘urgency to move’ and ‘maximum swimming speed’. Describing
realistic movement behavior in the lateral direction is impossible
since no variation or forcing functions exist in the lateral dimension.
Instead, a random number is selected for ‘urgency of movement’ in
the lateral direction and the maximum lateral fish swimming speed
is arbitrarily set to 1. Component vectors of volitional swimming are

computed as follows:

Uttish =  Utfish,MAX,dt,ddo * X'URGENCY (2.19)

Wtfish

]

Wtfish,MAX,dt,ddo * Z'URGENCY (2.20)

2.3.1.5 Step 5 — Sirmulating the hydrodynamics and water quality.

The NFS can be run either coupled (i.e., integrated) with or

decoupled (i.e., independently run) from the flow and water quality
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model. Integrating the NFS into the physicochemical simulation
model, as I have done, reduces computer disk storage requirements.
Biological modeling convention suggests that a minimum of a
thousand individuals be simulated to obtain statistically acceptable
results when employing an individually-based model (IBM). The
NFS emulates many characteristics of the IBM approach. For this
reason, it is logical to use the same guidance for IBMs to select the
number of individuals for the CEL Hybrid Ecological Model. For this
project, approximately 10,000 virtual fish were simulated.

The CEL Hybrid Ecological Model simulations were performed
on a Silicon Graphics (SGI) R12000 Octane workstation (~200MHz,
300 Mbytes RAM) with one simulation requiring about 6 CPU hours.
An SGI Onyx workstation (4 R10000 processors) and an SGI
PowerStation II (4 R10000 processors) were also utilized and were
able to run approximately 12 independent simulations every 12

hours when all processors were available.

2.3.1.6 Step 6 — Presenting model results.

Engineering physicochemical simulation models typically
require that biological data be converted into a Eulerian-based
quantity, such as cell biomass, for integration into the model. On
the other hand, the NFS simulates fish movement with sufficient
realism that virtual fish created by the CEL Hybrid Ecological Model
can be “sampled” using an algorithm that duplicates the scale and

resolution of real-world sampling. This approach, i.e., virtual
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sampling, enables the direct comparison of model results with
actual field data without the need for conversion 6r reformatting of
either of the data sets. The NFS for blueback herring in JST Lake
was calibrated by comparing the distribution of virtual fish in the
virtual system, created by the CEL Hybrid Ecological Model, to the
distribution of actual blueback herring as estimated by dual-beam
hydroacoustics.

A virtual gillnet was created as a plane extending from the
virtual water surface to the bottom of the simulated system. Each
time a virtual fish crossed the plane in either direction it was held in
place on the ‘net’ and a counter incremented by one. Each virtual
fish captured was tallied by depth so that the virtual catch could be
summarized by depth and longitudinal distance. Similar logic was
employed for virtual mobile hydroacoustic sampling, except that the
plane was allowed to move within the virtual system at a speed
similar to that of the sampling boat. However, virtual fish were not
held in place after detection; and as in real hydroacoustic sampling,
a fish could be counted more than once. As with virtual gillnetting,
each virtual fish detected was tallied by depth so that virtual
hydroacoustic survey data could be summarized by depth and
longitudinal distance.

Virtual sampling results may be compared with actual field
data in a number of ways. For instance, results from virtual
hydroacoustic surveys may be compared with actual survey results

by evaluating the differences between the virtual and actual fish
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distributions, as detected by the surveys, along an axis of the water

body (e.g., Figure 2.6) or by depth (e.g., Figure 2.7).

M Actual Survey Virtual Survey

50

40

% of Fish Sample Detected

Hydroacoustics Survey Location

Figure 2.6 Example comparison between the longitudinal

distributions of fish, as detected by actual and virtual hydroacoustic

surveys.
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Figure 2.7 Example comparison between the vertical distributions

of fish, as detected by actual and virtual hydroacoustic surveys.
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2.4 Discussion

Depicting individuals of a biological population as ‘particles’
recognizes the duality that large, mobile organisms often exhibit.
That is, they have some attributes best simulated using a
Lagrangian modeling framework and other attributes best simulated
using a Eulerian modeling framework. For example, the Lagrangian
framework is ideal for sirﬁulating processes such as movement,
reproduction, recruitment into the adult population, and mortality.
The Eulerian framework is best suited for simulating
physicochemical processes such as respiration and nutrient
regeneration.

Simulating movement behavior is a fundamental step towards
achieving a realistic simulation of aquatic ecosystems that include
higher trophic level species. Once movement behavior can be
captured, the Eulerian-Lagrangian couple can serve as a platform
for the addition of bioenergetic processes such as species growth,
mortality, and nutrient cycling as well as predator-prey interactions
(e.g., Nonacs et al., 1994; Schindler and Eby, 1997; Stockwell and
Johnson, 1997) or any other relevant processes needed to elevate

the model to an ecosystem perspective.

2.4.1 Future Enhancement Opportunities
Numerous opportunities exist for enhancing and modifying
the CEL Hybrid Ecological Model and its biological module (the

Numerical Fish Surrogate). Enhancements are all but necessary to
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achieve more realistic simulations and predictions of movement

behavior. Opportunities exist to apply CEL Hybrid Ecological

Models to other higher and lower trophic level species.

The major limitation to fully implementing CEL Hybrid

Ecological Models, in particular development of the biological

module, is the lack of sufficient biological data. Suggested

improvements that could enhance the NFS include:

Model the physicochemical environment in all three dimensions.
Enhance the logic used to compute a sensory ovoid and obtain
gradients required to calculate urgency values.

Enhance the stimuli-response rules. The rules were constructed
so that future enhancements could be easily made whether
through data mining of integrated engineering-biological data
sets, optimization, more biological field data, better
understanding of existing field data, or advancements in the
understanding of fish sensory systems.

Permit the “maximum response gradient” to change based on
season of the year, time of day, or other important factors.
Enhance the function for decrementing maximum fish swimming
speed in non-optimum habitat conditions.

Incorporate a schooling/dispersion algorithm for replicating
predator-prey behavior known to dominate many species’

movement behavior during the day.
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e Incorporate turbulence, acoustics, and other variables of the flow
and water quality fields that are believed to influence fish
movement behavior.

e Use better techniques for locating optimum habitat within the
sensory ovoid.

e Conduct a detailed analysis of the tradeoffs associated with using
velocity values in place of velocity gradients for the purpose of
computing urgency values.

e Enhance the logic used to normalize environmental variable
gradient values, so cross-variable analysis can take place.

o Incorporate additional types of random movement or dispersion
processes. Investigate the benefit of dispersing individuals in a
population differently based on a behavioral state or other factors

(Blackwell, 1997).

2.5 Conclusion

Coupled Eulerian-Lagrangian Hybrid (CEL Hybrid) Ecological
Models provide the conceptual and computational bridge to unite
existing engineering and biological modeling capabilities for
improved ecosystem simulation. The couple, the Numerical Fish
Surrogate, described in this chapter presents an opportunity to
achieve realistic simulation of movement behavior of higher trophic
level species. With the ability to simulate rhovement behavior,
engineers and scientists can add, or further refine, existing models

that describe other ecosystem processes.
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Simulating Mobile Populations in Aquatic Ecosystems Using a

CEL Hybrid Ecological Model: Application and Evaluation

3.1 Abstract

Coupled Eulerian-Lagrangian Hybrid (CEL Hybrid) Ecological
Models are a novel approach for simulating the population
processes, particularly the movement dynamics, of higher trophic
level species in aquatic environments. To demonstrate the potential
and capabilities of CEL Hybrid Ecological Modeling, I developed and
applied a model that simulates the movement behavior of blueback
herring (Alosa aestivalis) in J. Strom Thurmond Lake, in a realistic
context. The model was built by coupling a biological module (a
Numerical Fish Surrogate) to an existing engineering flow and water
quality model. Virtual sampling is introduced and used as a means
to compare model output with actual field data.

Analysis of model results indicates the CEL Hybrid Ecological
Model performed well in reproducing the distribution of blueback
herring in the lake. Comparison of virtual and actual fish
distributions, as obtained from virtual and actual hydroacoustic
sampling, in the vertical plane yielded an r-squared value of 0.93
while comparison of virtual and actual distributions along the
longitudinal axis of the lake produced an r-squared value of 0.67. I
believe the results are good given the assumptions made and the

inevitable shortcomings associated with development of a prototype.
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3.2 Introduction

Hydraulic and water quality regimes of the aquatic
environment are of principal importance in the evolution and
maintenance of aquatic biota populations. Aquatic organisms are
dependent on hydraulic forces for transport to necessary habitats as
well as the advection of food sources to their location. Dissolved
oxygen, temperature, nutrients, toxic substances, etc. (often
grouped under the term ‘water quality’) are of principal importance
in determining the rate and success of bioenergetic processes
required for respiration, reproduction, recruitment, feeding,

migration, and mortality.

3.2.1 Previous Research

With advances in computational resources and increased
understanding of fish behavior have come numerous models
attempting to capture the influence environmental and other factors
have on fish movement behavior. While not mutually exclusive
épproaches, many models simulate either individual objects,
representing from one to many actual individuals in a biological
population, or the population as a whole, represented by some
spatial, temporal, and/or probability distribution. For example,
Sekine et al. (1997) developed a model to predict fish distributions
based on water temperature, cover, current velocity, turbidity, food
amount, depth, and stem of aquatic plants. However, weighted

parameter values used to quantify the influence environmental
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factors have on fish movement were calibrated in a lab, where fish
swimming behavior may be markedly different from that in the field
(Hughes and Kelly, 1996; Schilt and Norris, 1997). In addition,
simulated movement was compared only with the general knowledge
of fish behavior in flood situations.

Parrish and Turchin (1997) used an individually-based
approach to identify sources of, and quantify the response to,
various sources of attraction and repulsion within a fish school.
Sources of attraction and repulsion were quantified in the context of
some “congregation focus”, i.e., a neighbor, a group of neighbors, or
the entire fish school. A quantitative description of the rules
describing individual movement was then developed by exploring
the position and movement of individuals relative to other objects in
the individual’s environment, based on a balance of attractive and
repulsive forces. However, individual movement was only explored
as a response to ‘objects’ in its local; behavioral responses to
environmental (physicochemical) conditions were not the focus of
the research.

Other models include those developed by Laevastu and
Larkins (1981), who used randomization, temperature, and food to
simulate migratory fish movement and diffusion, and Zabel (1996},
who used equations derived from diffusion equations and expressed
as probability density functions to model the distribution of
migrating juvenile salmonids. To date, although the importance of

hydraulic forces and other environmental factors on the health of
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aquatic populations is acknowledged and numerous tools are under
development, few systematic approaches exist for analyzing and
simulating the response of aquatic species to multiple visual,

chemical, and mechanical factors (Tischendorf, 1997).

3.2.2 CEL Hybrid Ecological Modeling

The Coupled Eulerian-Lagrangian Hybrid (CEL Hybrid)
Ecological Modeling System was developed (Chapter 1) to bridge the
disconnect between existing physicochemical simulation and
biological modeling traditions. The developed modeling system
provides a framework for systematically analyzing the responses of
biological organisms to multiple visual, chemical, and mechanical
factors and also provides a framework for the realistic replication, or
simulation, of such movement responses. The name of the
modeling system is derived from the mathematical process used to
integrate the simulation of animal movement into existing
physicochemical simulation models.

Physicochemical models, often employed by engineers to
simulate the hydraulics and chemical regimes of aquatic systems,
use the Eulerian framework to solve established equations of flow
and water quality. This framework involves representing the
aquatic system as a series of compartments, fixed in space, through
which fluxes of mass and energy are routed and balanced. On the
other hand, spatiotemporal population models, often employed by

biologists to simulate animal movement, most often use the
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Lagrangian framework to solve equations for position in space and
time. The Lagrangian framework is centered on individual objects,
rather than on a point fixed in space, and is, therefore, not
stationary (Turchin, 1997). This framework allows the modeler to
track the exact spatial coordinates of each individual, which
increases the compatibility with tracking data and analytical
treatments of movement processes (Tischendorf, 1997).

In order to integrate Lagrangian-based movement models, or
Lagrangian movement, into Eulerian-based physicochemical
simulation models, an individual, a group of individuals, or an
entire population is symbolically represented as a single particle, or
point, in space (Matuda et al., 1993). A particle-tracking algorithm
can then be used to move the ‘particle’ continuously within and
between compartments (e.g., grid cells for 2-D models) that

comprise the system (Figure 3.1).
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T >¢ = Symbolic Population
Figure 3.1 Placing a virtual organism in an engineering flow and
water quality model. The Eulerian-based engineering
(physicochemical) model represents and simulates spatial
heterogeneity through the use of multiple compartments, each
compartment representing an environment in which all conditions
have been averaged (i.e., spatially integrated). A particle-tracking

algorithm may be used to move a ‘particle’, or virtual fish, within

and between compartments comprising the system.

Recognizing that movement decisions of an individual fish can
be viewed as a balance of forces (Okubo, 1980), in particular, a set
of attractions to and repulsions from various sources or foci (Parrish
and Turchin, 1997), behavioral cues, or stimuli-response rules, can
be programmed into the particle-tracking algorithm to emulate the
fish’s movement behavior. Enhancement of the particle-tracking
algorithm through the addition of stimuli-response rules, which
when taken as a whole dictate the pattern of movement (Schilt and
Norris, 1997), creates a virtual fish capable of making individual

movement decisions related to the spatial information as provided



87

by the Eulerian-based model (Tischendorf, 1997) in a way that
emulates the behavior of real fish.

Specifically, stimuli-response rules are used to determine the
speed and direction of volitional swimming. These rules are
developed based on Niche theory and couched as a Markov Chain
behavioral model (Haccou and Meelis, 1992). Niche theory tells us -
that biological species have ecological “preferences,” meaning that
they are found in areas where environmental variables have some
“optimal” value (Legendre et al., 1997). Appropriate environmental
variables to use in developing the stimuli-response rules can be
obtained from a variety of sources, including published literature,
field data, and field experience.

These stimuli-response rules transform the ‘passive’ object
into a virtual organism by allowing the object to make decisions
regarding volitional movement based on any number of
physicochemical and other factors (Matuda et al., 1993;
Tischendorf, 1997). Couching the stimuli-response rules as a
Markov Chain statistical model allows the object to make decisions
based on any number of factors, including the time of day, season of
the year, food availability, local predators or prey, etc. These
enhanced particle-tracking ‘rules’ constitute the biological module of

the CEL Hybrid Ecological Model.
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3.3 CEL Hybrid Ecological Model Application

To create the CEL Hybrid Ecological Model, a biological
module (the Numerical Fish Surrogate, Chapter 2) is coupled to an
existing engineering flow and water quality model. The CEL Hybrid
Ecological Model was developed to realistically simulate the
movement behavior of blueback herring (Alosa aestivalis), a cool
water fish, in J. Strom Thurmond Lake for the summer of 1996.
Although the model is capable of using any number of
physicochemical and other environmental factors to elicit emergent
fish behavior, only water velocity, temperature, and dissolved
oxygen were used. Virtual sampling was used as the means to

compare model output with actual field data.

3.3.1 Engineering Model

Hydrodynamic and water quality processes in the lake were
simulated using an existing engineering model. The model, CE-
QUAL-W?2 Version 3.0 (Cole and Tillman, in prep), is a two-
dimensional, laterally-averaged, dynamically—linkéd hydrodynamic
and water quality model. CE-QUAL-W2 has been under continuous
development since the mid-1970s and has been applied to
numerous lakes, estuaries, rivers, pit lakes, and reservoirs,
including over 14 reservoirs in the southeastern United States alone
(e.g., Cole and Tillman, 1996).

A laterally-averaged model, CE-QUAL-W2 does not compute

flow or water quality variations in the lateral direction. Since no
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variation exists to elicit movement behavior, movement in the lateral
direction is simply random (see Figure 3.2). Movement in the lateral
direction, albeit random, allows virtual fish to swim upstream into
tributaries by way of a bookkeeping scheme developed specifically
for the Numerical Fish Surrogate (NFS) module. Movement into
downstream tributaries is also permitted, using existing mechanics

within CE-QUAL-W2.

CE-QUAL-W?2
Approximates Bathymetry of System in 3-D
Conserves Mass and Momentum of System in 2-D

Mass & Momentum
Conserved Not Conserved

Fish “Swim” in 3-D Fish Visualized in 2-D

Figure 3.2 Lateral movement in a laterally-averaged flow and water
quality model. Although movement is random, the movement
enhances the realism of the simulation and also allows the virtual

fish to swim upstream into tributaries.
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3.3.1.1 Site Characteristics

The hydrosystem studied consisted of three dams and two
reservoirs on the Savannah River between Georgia and South
Carolina. Hartwell Dam defines the upstream boundary for Richard
B. Russell (RBR) Lake and the downstream boundary of this
reservoir is Richard B. Russell (RBR) Dam. Releases from RBR Dam
flow into the headwaters of J. Strom Thurmond (JST) Lake; RBR
Dam was operated as a pump-storage project from March 1996 to
October 1996 with maximum conventional releases of 518 m3/s
(60,000 ft3/s) and maximum pumpback of 259 m3/s (30,000 ft3/s).
The downstream boundary of JST Lake is Clarks Hill Dam.
Although fish movement is simulated only in the downstream
reservoir (JST Lake, Figure 3.3), the entire hydrosystem is modeled
by CE-QUAL-W2 since the water quality of JST Lake is heavily
influenced by the conditions in RBR Lake near RBR Dam (Cole and

Tillman, in prep).
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Richard B. Russell Dam

J. Strom Thurmond Lake

Clarks Hill Dam

Figure 3.3 J. Strom Thurmond (JST) Lake: surface area = 28,320
ha; total length = 61 km. JST Lake resides along the Savannah
River between South Carolina and Georgia in between Richard B.

Russell and Clarks Hill Dams.

Releases from RBR Dam impact more than just the flow and
water quality regi.mes in the tailrace. Blueback herring populations
are also impacted. Well oxygenated cool water discharges from RBR
Dam, and warm stratified conditions throughout JST Lake in
August thru October, help to concentrate blueback herring in the
tailrace of RBR Dam (Isely, 1996). During pumpback, blueback
herring can dominate entrainment and have become a serious
problem for continued pumpback operation. Rapid changes in
water temperatures may also impact the timing of blueback herring
spawning (Meador et al., 1984). The impact RBR Dam has on the

flow and water quality regimes of JST Lake and on the blueback
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herring population, through both direct (i.e., entrainment) and
indirect (i.e., the creation of desirable habitat in the tailrace where
entrainment is possible) means, makes JST Lake an ideal site for

implementing the CEL Hybrid Ecological Modeling System.

3.3.2 Biological Data

The simulation and analysis of blueback herring movement
behavior was selected not only because of the entrainment issue at
RBR Dam, but also because the environmental factors determining
optimal habitat for blueback herring are relatively well-known.
Research literature on blueback herring (e.g., Isely, 1996; Thomas et
al., 1992; Osteen et al., 1989; West et al., 1988; Dadswell, 1985;
Meador et al., 1984; Fay et al., 1983; Pardue, 1983; Skjeveland,
1982; Loesch and Lund, 1977) suggests that moderate water
temperatures (e.g., 14°C-27°C), dissolved oxygen, and fast-flowing
water are important factors that attract blueback herring,
particularly for spawning. Other research (e.g., Ploskey et al., 1994)
has even focused on the behavioral responses of blueback herring to
various specific stimuli. In 1996, hydroacoustic and gillnet surveys
(Dennerline and Degan, in prep) were performed to gain insight into
the location, movement, behavior, and habitat preferences of
blueback herring in JST Lake. The gillnet and hydroacoustic survey
results from August 1996 were used to calibrate the NFS.

The locations of blueback herring over time were determined

by integrating the results from dual-beam hydroacoustics and
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vertical gillnets. Vertical gillnets were used to estimate the species
composition of targets detected by the hydroacoustics versus depth.
Vertical gillnets were composed of two mesh panels, each 6 feet
wide. Gillnets were placed at several stations. At each station, net
repetitions were used to increase the statistical rigor of the survey
results. Net repetitions consisted of 3 nets with mesh panel
combinations of (3/g”, 1/2”), (°/8”, 3/4”), and ("/8”, 17).

Dual-beam hydroacoustic surveys were conducted on the
reservoir over a period of ;chree non-contiguous days. The main
stem of JST Lake was surveyed by hydroacoustics in a series of
lateral transects, each one upstream of the previous. These surveys
were conducted at night, starting in the evenings of August 14th
(JDAY 227), August 21st (JDAY 234), and August 237 (JDAY 236).

To incorporate the hydroacoustic results into the CEL Hybrid
Ecological Model, for which all lateral process are averaged (i.e., no
lateral information), results were grouped into 5 km longitudinal
segments beginning at the upstream end of the reservoir (i.e., at
RBR Dam). Organizing data in this manner permitted the
calculation of variability in the hydroacoustic results for each
segment. No hydroacoustic sampling was conducted in the

upstream-most 5 km segment near RBR Dam.

3.3.3 Modeling Procedure
Numerous methods can be used to calibrate the stimuli-

response rules that make up the NFS. Some of the methods [ used
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were qualitative in nature and used, with intuitioh, as a first-cut in
parameterizing the stimuli-response rules. Other methods were
quantitative in nature and used to fine-tune the parameters of the
stimuli-response algorithm. Both types of methods were of benefit
in the calibration process. I believe that intuition is a significant
resource, when used appropriately, and should not be discounted.
Currently, not enough is known about higher trophic level aquatic
species to disallow intuitive estimates of how their behavior is
structured.

The first step in calibrating the NFS involved developing
preliminary stimuli-response rules capable of emulating fish
movement behavior under well-behaved flow and water quality
conditions, where fish movement can be fairly well judged. After
these preliminary rules were developed, the rules were incorporated
into the hydrodynamic and water quality module of the CEL Hybrid
Ecological Model. The CEL Hybrid Ecological Model was then
programmed to output instantaneous movement decisions made by
the population at each time step as well as to track the decision-
making history of the population over the course of the simulation.
These instantaneous and cumulative values were then used to
evaluate the realism of the movement behavior. These decision
histories allowed insight into whether fish were responding too often
or too seldomly to particular components of the flow and Wéter
quality fields. Decision histories provided the means necessary to

fully calibrate many of the parameters. However, several
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parameters, particularly variables influencing the response to
horizontal velocities and the amount of horizontal random
movement, proved especially difficult to calibrate because of
synergistic interactions. To overcome the difficulty, a multi-
dimensional matrix was created consisting of values that I believed
bracketed the optimum parameter values. Successive application of
these matrices to areas where previous matrices indicated good
simulation results enabled the final calibration of even the most

difficult and synergistically-behaving variables.

3.3.3.1 Virtual Sampling

The importance of outputting model results in a manner
consistent with the scale and resolution of field data for the purpose
of calibrating a biological model should not be underestimated. In
the past, Eulerian-based models required that biological items be
converted into a format consistent with other variables handled by
the model. Typically, this involved converting biota into biomass or
some other compartment-averaged value. However, field surveys
are inherently variable, influenced by factors such as the natural
patchiness of population distributions, fish behavior, boat and gear
types and operational methods, and survey design and
environmental conditions (Jessop, 1985). The conversion of such
field data into compartment-averaged values almost assuredly
degrades the integrity of the field data and its compatibility with

analytical treatments of movement behavior. To maintain the
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integrity of the field data and ensure its compatibility with the NFS
model, virtual sampling was developed to produce model results
that are directly comparable to actual field data.

The process of virtual sampling entails programming the NFS
so the hydrodynamic and water quality environment created by the
physicochemical simulation model, within which the virtual fish are
located, may be sampled with gear such as virtual gillnets or virtual
hydroacoustic beams. Virtual sampling within the CEL Hybrid
Ecological Model can be structured such that virtual counterparts to
the actual activity have the same capabilities and liabilities and can
be deployed using the same, or very similar, survey designs and
operational methods. This enables the direct comparison of model
output with results from field surveys.

In the virtual ecosystem created by the CEL Hybrid Ecological
Model, virtual gillnets can be created with sizes and selectivities
comparable to those of gillnets used in actual sampling. Virtual
hydroacoustic sampling can be achieved by creating an elliptical
cone equivalent in size, range, and characteristics to the

hydroacoustic beam used in actual sampling.

3.3.3.2 Movement Visualization

In addition to virtual sampling, movement visualization
software (Figure 3.4) was developed to assist with calibration. The
software displays fish movement in a user-friendly format along with

selected characteristics of the flow and water quality environment
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(i.e., water temperature and dissolved oxygen concentration).
Visualization helped to determine whether virtual fish were

responding to habitat conditions, on a macro scale, in a realistic

manner.

August 30, 1996 2 am (JDAY 243.08)
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0 Distance (m) Along Longitudinal Axis of Lake 60000

Figure 3.4 Visualization software developed for the CEL Hybrid
Ecological Model. Yellow dots represent virtual fish; colored contour
fills represent water temperature; gray-scaled contour lines
represent selected dissolved oxygen concentrations; black arrows

represent velocity vectors; red bar charts indicate instantaneous fish
responses to various environmental factors for each movement
direction; blue triangles indicate an intersecting tributary; and red

triangles indicate a drastic change in reservoir cross-sectional area.
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3.4 Model Performance

Graphical and statistical analyses of the CEL Hybrid
Ecological Model’s performance in simulating the movement
behavior of blueback herring suggest the model is capable of
simulating aquatic species movement, even in dynamic
physicochemical environments. This ability can contribute to the
discussion of conceivable consequences that modified
physicochemical environments have on the movement, and health,
of biological species (Tischendorf, 1997). Analysis of the virtual
sampling results reveals a general agreement between the observed
and predicted fish distributions in both the longitudinal and vertical
planes. This is particularly encouraging in light of the assumptions
required to construct the NFS and the variability of the actual field
data.

Distributions of blueback herring, as obtained from actual
and virtual hydroacoustic surveys, were compared in the
longitudinal and vertical directions using both graphical and
statistical means. For statistical comparison of the distributions, I
selected the coefficient of determination. The coefficient of
determination, or r-squared value, roughly indicates the amount of
total variation in the actual data that can be explained by the CEL
Hybrid Ecological Model.
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3.4.1 Vertical Distribution

The vertical distribution of fish within a managed water body
is important to the biologist and the water resources manager alike
since the operation of dams and reservoirs can impact the vertical
stratification of lakes. Alterations in stratification patterns may
change the prey stratification and the spatial/temporal overlap with
predators as well as constrain the distribution of fish and possibly
reduce the access to zooplankton resources important to
planktivorous fishes such as blueback herring (Stockwell and
Johnson, 1997). Therefore, any model hoping to capture the impact
dam and reservoir operations have on biological populations must
first be able to reproduce the vertical distribution of those species
under previous known conditions.

Figure 3.5 shows the actual and virtual blueback herring
distributions in the vertical direction for the entire length of JST
Lake. Results from gillnet surveys indicated that a majority of the
hydroacoustic targets below the thermocline (approximately 8m
below the water surface during hydroacoustic sampling) could be
assumed to be blueback herring. Gillnet surveys provided
inconclusive results on the species composition of the targets above
the thermocline. Since it was not possible to determine the
proportion of blueback herring above the thermocline accurately,
hydroacoustic targets above the thermocline were not used.
Statistical comparison of the actual and virtual distributions in the

vertical direction yielded an r-squared value of 0.93.
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Figure 3.5 The vertical distribution of the entire JST Lake blueback
herring population as detected by actual and virtual hydroacoustic

surveys.
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Figure 3.6 shows the cumulative distribution function (CDF)
of the entire blueback herring population in JST Lake in the vertical
direction. From the cumulative distribution function, it can be seenv
the two distributions are very similar with the main discrepancies
océurring at the tails of the vertical distribution. The discrepancy at
the tail nearer the water surface is almost assuredly attributable to

the absence of actual field data above the thermocline.
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Figure 3.6 Cumulative distribution function (CDF) of the vertical
distribution of the entire JST Lake blueback herring population as

detected by actual and virtual hydroacoustic surveys.
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3.4.2 Longitudinal Distribution

The longitudinal distribution of species within a managed
water body is important because the operation of dams and
reservoirs impacts certain areas of the water body more than others.
The location of species is important in determining whether
management will impact the population. Hence, any model hoping
to capture the impact dam and reservoir management may have on
biological populations must first be able to locate where the
populations will be under known conditions.

In JST Lake, Figure 3.7 shows the longitudinal distribution of
blueback herring in 5 km segments, except for near RBR Dam
where no hydroacoustic surveys were conducted. Survey results
indicate the CEL Hybrid Ecological Model performed well in
reproducing the longitudinal distribution of blueback herring.
Statistical comparison of the actual and virtual longitudinal
distributions yielded an r-squared value of 0.67.

Figure 3.8 shows the CDFs for blueback herring in the
longitudinal direction. From the CDFs, it can be seen the plots are
quite similar indicating little difference between the modeled and
actual distributions, as detected by virtual and actual hydroacoustic
surveys, respectively. The main discrepancy occurs, approximately,
1/3 the length of the reservoir downstream from RBR Dam. I believe
this discrepancy is caused by virtual fish ‘unwilling’ to leave the
nearby high velocity area just downstream. This proves to be aﬁ

opportunity for future improvement in the NFS.
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Figure 3.7 The longitudinal distribution of the entire JST Lake
blueback herring population, except for the upstream-most Skm
segment where no surveys were conducted, as detected by actual

and virtual hydroacoustics.
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Figure 3.8 Cumulative distribution function (CDF) of the
longitudinal distribution of the entire JST Lake blueback herring
population, except for the upstream-most Skm segment where no
surveys were conducted, as detected by actual and virtual

hydroacoustics.
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3.4.3 Vertical Distribution by Longitudinal Segment

Figure 3.9 shows the vertical distribution of virtual blueback
herring in each 5km longitudinal segment. As indicated in Figures
3.7 and 3.8, the model seems to perform quite well in all areas, with
the exception of one or two segments (i.e., 15 to 20 km and 20 to 25
km segments downstream from RBR Dam). In all other segments,
the model performed quite well in placing virtual blueback herring
in the correct proportion both longitudinally and vertically within

the virtual reservoir.
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Figure 3.9 Vertical distribution by longitudinal segment of the
blueback herring population in JST Lake, as detected by actual and
virtual hydroacoustic surveys. “Spread” of the actual data is equal

to % the standard deviation of the survey results.
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3.4.4 Decision-Making Histories

The NFS tracks the decisions made by every virtual fish
during simulation. A summary of the decisions is output in the
form of instantaneous and cumulative decision histories. These
histories can be compared with intuitive estimates of how
individuals should, or are likely to, respond. For ins.tance, a
decision history showing virtual blueback herring responding to
temperature gradients in anoxic zones may be realistic (this
behavior has been observed in JST Lake), while a decision history
showing virtual fish responding to dissolved oxygen gradients in
water temperatures greater than 30°C may indicate an err in the
model since blueback herring, a cool water species, would likely
swim towards cooler temperatures first, rather than respond to
dissolved oxygen gradients.

The decision histories for the best simulation mostly
confirmed my intuitive guesses as to the forcing functions behind
blueback herring movement behavior. Decision histories revealed
that for the best parameter set (yielding best simulation results)
horizontal velocity was the dominant physicochemical stimulus in
eliciting longitudinal movement. For vertical movement,
temperature was the dominant physicochemical stimulus.
Interestingly, however, randomization dominated all of the
physicochemical stimuli in determining movement. These results,
however, may be somewhat realistic; Tischendorf (1997) noted that

the movement of organisms lies somewhere between random walk
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and straight movement paths. For blueback herring, it’s possible
that they are attracted to particular stimuli and once this stimulus
is arrived at random movement ensues, until a new stimulus
becomes the focus of movement.

Table 3.1 shows the cumulative decision history for
individuals in the virtual blueback herring population for the best
simulation. Table 3.1 tabulates the influences behind all movement
decisions. Movement decisions are attributable to either a stimulus

response or randomization.

Table 3.1 Cumulative Decision History of Virtual Population.

Physicochemical Longitudinal Vertical
Stimulus or Movement Movement
Randomization Decisions (%) Decisions (%)
Horizontal Velocity 42.7 3.8
Vertical Velocity 0.0 1.1
Temperature 0.0 45.0
Dissolved Oxygen 0.0 _ 6.0
Randomization 57.3 44.2

The dominance of horizontal velocity over vertical velocity,
temperature, and dissolved oxygen in the longitudinal direction is
intuitive since these other stimuli vary negligibly in the horizontal

plane. Stratification patterns within a confined water body, such as
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a reservoir like JST Lake, tend to be strong in the vertical direction
and very weak in the horizontal direction since the patterns are
heavily influenced by air temperature and wind at the water surface.
The dominance of horizontal velocity was so strong, in fact, that
even when vertical velocity, temperature, and dissolved oxygen were
disproportionately weighted virtual fish would still respond to
horizontal velocity.

In the vertical direction, temperature was the dominant
stimulus in eliciting fish movement. Again, the strong stratification
pattern in the vertical direction is probably responsible for this
outcome. Although temperature was singled out as the dominant
stimulus, dissolved oxygen and temperature stratification patterns
are usually heavily correlated in managed reservoirs such as JST
Lake. For this reason, it’s imaginable that scenarios exist where
equally good simulation results can be obtained where dissolved
oxygen plays a much larger role in eliciting vertical movement. For
the most part, both horizontal and vertical velocities varied little in
the vertical direction, which probably explains their lack of influence

in eliciting vertical movement.

3.4.5 Sensitivity Analysis

Sensitivity analyses were performed on the model to gage its
sensitivity to selected input parameters and randomization. Input
parameters selected for the sensitivity analyses included: number of

fish, fish release location, fish release date, time step of the NFS,
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and stimuli weights. In addition, since the NFS contains stochastic
components, a sensitivity analysis was performed to determine the
influence different randomization would have on the best simulation
results. Among other things, analysis of the NFS’s random
component yielded a distribution of model results for the best
parameter set.

Table 3.2 summarizes the results of the sensitivity analyses.
Graphical results, analogous to Figures 3.5 through 3.8, are

presented for the sensitivity analyses simulations in Appendix D.
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Table 3.2 Sensitivity Analyses Results.

R-squared Values

Longitudinal Vertical
Simulation Distribution  Distribution

Best: 0.67 0.93

¢ Number of Fish: 8960

¢ Released: Uniformly

e Released: May 1, 1996

e Time Step: 9 minutes
Number of Fish:

e 5600 0.57 0.88

e 11,200 0.62 0.90
Release Location:

e Upstream 0.58 0.92

e Mid-Lake 0.52 0.92
Release Date:

e March 31, 1996 0.61 0.95

e June 1, 1996 0.57 0.91
Time Step:

e 5 minutes 0.48 0.92

e 15 minutes 0.59 0.89
Stimuli/ Parameter Weights:

e Horiz Velocity (+20%) 0.70 0.94

e Temperature (-30%) 0.61 0.91

e Dissolved Oxygen (-30%) 0.52 0.82

e Randomization (-30%) 0.40 0.75
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3.4.5.1 Best Simulation

The parameter set yielding the best simulation results is listed
in Appendix C. To simulate the large blueback herring population
in JST Lake, 8960 virtual fish were released uniformly throughout
the virtual reservoir in both the longitudinal and vertical directions
on May 1, 1996. Both the number of virtual fish used and the
release date were selected at the outset of calibration based on a
preliminary understanding of the model’s performance. Although
sensitivity analyses proved otherwise, at the outset of calibration it
was thought using fewer fish in such a large virtual system or
releasing fish closer to the August survey dates would result in less
than reliable results.

The flow and water quality module of the CEL Hybrid
Ecological Model (CE-QUAL-W2) runs at time steps averaging 1.5
minutes. During calibration, it was observed that better vertical
and longitudinal fish distributions resulted when the NFS (which
can run at time steps greater than that of the flow and water quality
model) operated at time steps averaging 9 minutes.

Although the parameter set in Appendix C shows the
parameter values used to obtain the best simulation, variability is to
be expected since stochastic processes are used in several portions
of the NF'S. Section 3.4.5.6 discusses the variability of model

results associated with the best parameter set.
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3.4.5.2 Varying the Number of Fish

Analysis investigating whether the number of virtual fish used
influences model results showed that for the population size range
tested no significant difference in model results was evident.
However, during NFS development and calibration it became
apparent that a threshold does exist below which model results
become increasingly unstable and unreliable. As the number of
virtual fish used increased, particularly above 1000, model results
appeared stable. Given the size of the virtual system, it seems
reasonable to conclude that virtual populations of less than 1000
individuals may allow pockets of individuals to influence model

results out of sync with reality.

3.4.5.3 Varying Fish Release Date & Location

As anticipated, neither the location nor the date of release of
the virtual fish population greatly influenced model results. This
would seem to indicate an inherent stability and robustness about
the model as the algorithms have proved to be adapt at accounting
for varying inputs that we know should not influence model
performance or results. On the same token, hoWever, there is
certainly a limit to how far the model can be pushed. For instance,
releasing fish just days or hours before the hydroacoustic surveys
are conducted may not give the virtual population enough time to

disperse and reach some sort of dynamic equilibrium.
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3.4.5.4 Varying the Time Step of the NFS

Although not explicit in the sensitivity analysis, during NFS
development and calibration it became apparent that shorter time
steps, on average, produced better vertical distributions of virtual
fish (r-squared values > 0.98) and much longer time steps, on
average, produced inferior distributions (r-squared values < 0.40).
The reason for this model behavior may also help describe the
apparent ineffectiveness in using the time step to manipulate
longitudinal population dispersion (discussed later). In the vertical
direction where distances are much shorter, doubling the time step
can significantly increase the number and magnitude of overshoots.
Gfadients in the vertical direction are quite strong compared to
those in the longitudinal plane, and this results in an ability in
virtual fish to find optimal habitat in the water column with relative
ease since gradients, which are used to make decisions regarding
movement, are readily noticeable. Since virtual fish can rely heavily
upon these vertical gradients to find optimal positions in the water
column, overshoots tend to disturb rather than enhance the search
for optimal habitat in the water column.

On the other hand, gradients in the longitudinal plane are
quite weak and even though this can be compensated for in the
model, areas of optimum habitat may be long distances from one
another and may not be within the detectability of the virtual fish.
For this reason, overshoots may enhance the search for optimum

habitat in the longitudinal direction since overshoots may cause fish
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to end up in areas near optimum habitat where they otherwise
would not have moved. The sensitivity analysis indicates a decrease
in longitudinal r-squared values when using either longer or shorter
time steps, and although further research is needed, it’s believed the
lower r-squared values occur for different reasons. Lower r-squared
values for time steps less than 9 minutes likely indicate not enough
dispersion via overshoots is occurring, preventing fish from finding
optimum habitat. Adjusting the size of the sensory ovoid is one
means of compensating for this apparent lack of foresight, but
attempts to adjust the ‘sensory ovoid’ to increase foresight proved
ineffective in achieving the appropriate amount of longitudinal
dispersion. Lower r-squared values for time steps much greater
than 9 minutes likely indicate too much overshooting is occurring in
the longitudinal direction. Although distances are large in the
longitudinal direction, it seems too much overshooting can take

place.

3.4.5.5 Varying Stimuli/ Parameter Weights

Of all the stimuli parameter weights, three stimuli weights
were selected along with the randomization weights for sensitivity
analysis. These weights are used, in the NFS, in the comparison of
velocity, temperature, and dissolved oxygen gradients to a scaled
random number, one of which is chosen by the model to elicit a

movement response in the virtual fish. For the analysis, weights
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were either increased or decreased from their value in the best
parameter set (Appendix C).

Analysis revealed the model is robust enough to handle minor
variations in stimuli weights. An increase in the horizontal velocity
weight by 20% actually improved upon the ‘best’ simulation results
while a 30% decrease in the temperature weights also failed to
significantly deteriorate model results. A 30% decrease in the
dissolved oxygen weights seemed to influence model results more so
than variations in the other weights. However, it’s unsure whether
the DO weights actually exceeded some threshold or if the results
can be attributed to model variability (3.4.5.6).

The weights for random movement proved to be more
important as r-squared values, particularly in the longitudinal
direction, suffered significantly when randomization weights
decreased. As randomization decreases, other stimuli play a larger
role in eliciting movement response. Although not explicit in the
sensitivity analysis, perturbations in the randomization weights
degrade model results in the longitudinal direction more so than in
the vertical direction. This may be attributable to the fact
longitudinal movement is more dependent upon randomization and
that perturbations likely impair the harmony between
randomization and horizontal velocity stimulus responses that

dictates much of the longitudinal movement.
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3.4.5.6 Varying the Random Number Generator Seed

The importance of the random number generator seed lies in
its ability to account for, and control for, randomization. The NFS is
designed to output the same results over any number of simulations
when input parameters, and the random number generator seed,
are the same. This allows repeatability of model results. On the
other hand, a distribution of results can be obtained for a single
parameter set if the random number seed is changed, since portions
of the NFS are stochastic. This allows the usef to choose between
model repeatability and model variability for a given analysis.

To estimate the variability of results when using the best
parameter set (Appendix C), the random number seed was varied to
obtain a distribution of r-squared values. A total of 31 simulations
were run, each differing only in the random number generator seed
used. Results of the analysis are shown in Table 3.3 and Figures

3.10 and 3.11.
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Table 3.3 Variability of Model Results Using Best Parameter Set.

R-Squared Value

Longitudinal Vertical
Statistic Distribution Distribution
Median 0.61 0.91
Mean 0.60 0.91
Standard Deviation 0.06 0.03
Maximum 0.70 0.95
Minimum 0.49 0.82

—
o

Frequency
(out of 30 Simulations)
O = N W A 1OV ® O

¥ b O N o O ©

& dS e s Ia s o o o o

Q O O O O O O © O O O O O o
R-Squared Value

Figure 3.10 Frequency histogram of vertical distribution r-squared
values. A total of 31 simulations were run using the best parameter

set in which only the random number seed was varied.
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Figure 3.11 Frequency histogram of longitudinal distribution r-
squared values. A total of 31 simulations were run using the best

parameter set in which only the random number seed was varied.

The figures indicate less variation in vertical distribution r-
squared values than in r-squared values for longitudinal
distribution. The discrepancy is likely due to the strength of
physicochemical gradients in the vertical direction and the heavy

reliance of longitudinal movement/dispersion on randomization.
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3.5 Discussion

Using dynamic flow and water quality simulations as a
surrogate for the actual physicochemical regime of JST Lake, the
CEL Hybrid Ecological Model performed well in simulating the
location and distribution of blueback herring for days in August
1996 when field data existed. Distributions of virtual fish in both
the longitudinal and vertical directions indicate substantial
similarities to the distributions as detected by actual hydroacoustic
surveys. To increase the statistical rigor of the results, the virtual
population was sampled in a manner comparable to that used for
obtaining the actual field estimates of the blueback herring
population distribution.

CEL Hybrid Ecological Models can be used to investigate field
observations and hypothesized behaviors for which little or no field
data exists. For instance, some literature (e.g., Thomas et al., 1992;
Osteen et al.,, 1989; West et al.,, 1988; Dadswell, 1985; Meador et al.,
1984; Skjeveland, 1982; Loesch and Lund, 1977) suggests that
blueback herring are attracted to fast-flowing water, particularly for
spawning. High water velocities can be found, among other places,
in areas adjacent to intersecting tributaries and where the cross-
sectional area changes drastically. The CEL Hybrid Ecological
Model developed for this project indicates that blueback herring
congregate at six primary locations. Of these locations, four are

areas adjacent to intersecting tributaries, one is where lake width
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and cross-sectional area changes most drastically, and the last
location is the tailrace of RBR Dam.

The tailrace of RBR Dam, in particular, is a place where an
increased understanding of blueback herring movement behavior
would have immediate ecological, and economic, implications.
Blueback herring are observed in the tailrace of RBR Dam in great
numbers during pump and/or release operations (Isely, 1996), and
blueback herring entraption is a primary concern that impacts the
operation of the dam for hydropower generation. The CEL Hybrid
Ecological Model provides an-opportunity for systematic
investigation of the specific flow characteristics that produce
unwanted numbers of blueback herring at the dam.

With an increased understanding of the factors influencing
blueback herring movement, release strategies, for instance, could
be developed that mitigate the flow characteristics, such as flow
duration, magnitude, and timing, that attract blueback herring
throughout the reservoir to the tailrace. For instance, during warm
stratified periods in JST Lake, it may be better to release water from
RBR Dam during the day than at night since more tailrace blueback
herring could be expected after nighftime releases. This is due to
the diel movement of blueback herring and the impact cool water
discharge from RBR Dam has on the temperature stratification of
JST Lake. Cool water discharge from RBR Dam initially displaces
water in the tailrace and replaces it with much cooler water. At

some point downstream, however, warmer water creeps to the top of
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the displacing cooler water and moves quickly back to the dam
displacing cooler water downward. Nighttime releases may result in
more blueback herring in the tailrace since blueback herring are
nearer the water surface at night and would be more susceptible to
transport along with this warm water “kickback”. Daytime releases,
on the other hand, may catch blueback herring deeper in the water
column and move the fish downstream along with the cool water

discharge.

3.5.1 Model Critique

Given all the assumptions necessary to construct the NFS
prototype, I believe the results of the application are very promising.
At the same time, however, I acknowledge the apparent complexity
of the model and the need for future research and development.
Towards this effort, several interesting characteristics of the model’s
behavior deserve special attention, as I believe these characteristics
lend insight into the algorithm enhancements most likely to produce
better simulation results. Of model characteristics observed, two
deserve attention: the way the model handles longitudinal
population dispersion and the interplay between.longitudinal and
vertical movement.

Currently, the NFS is designed to handle longitudinal
population dispersion through the use of random‘movement. As
discussed in Chapter 2, the direction of random movement may

change for each fish at every time step depending on the sign of the
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random number calculated; both the magnitude and sign of the
random number are random. Although only future research into
model behavior will tell for certain, I believe this method of achieving
longitudinal population dispersion is both insufficient and
unrealistic. Under the current mechanics, longer time steps (i.e.,
much larger than 9 minutes) serve to supplement longitudinal
dispersion, which is supposed to be handled exclusively by random
movement. At time steps shorter than 9 minutes, fish often
congregate near high velocity areas leaving all but a few areas of the
virtual reservoir unpopulated. Since distance traveled by the virtual
fish is equal to the speed of the fish multiplied by the time step,
increasing the time step causes the virtual fish to overshoot optimal
habitats at times, resulting in pseudo-dispersion. Modifying the
model so random movement is in one direction until a
physicochemical stimulus becomes the focus of movement (although
swimming velocity may change) is likely to produce the longitudinal
population dispersion needed, without the need to manipulate the
time step. Most importantly, however, support for enhancing the
model’s handling of horizontal random movement comes from the
field. Field research indicates that the movement of organisms lies
somewhere between random walk and straight movement paths
(Tischendorf, 1997). For blueback herring, a pelagic species, this is
probably particularly true. In addition, Janssen (1982) compared
the search behavior of bluegills (Lepomis machrochirus) and

blueback herring and found that blueback herring swim as they
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search while bluegills searched from a stationary location. The
random movement (or search behavior) of blueback herring is, thus,
probably an important dynamic to capture realistically.

The interplay between horizontal and vertical movement is
complex, probably due to the long time steps required for
supplementing longitudinal dispersion under the current algorithm.
The long time steps needed work in opposition to the shorter time
steps that produce excellent distributions in the vertical direction.
Although not explicit in the sensitivity analysis, shorter time steps
were often associated with exceptional vertical distributions of the
virtual population, sometimes garnering r-squared values as high as
0.98 when compared to the actual vertical distribution. Attempts to
mitigate the negative impact longer time steps have on the vertical
distribution through the use of slower vertical swim speeds proved
ineffective. Likewise, increasing the longitudinal axis of the sensory
ovoid (Chapter 2) to increase/maintain longitudinal foresight while
setting the time step near the optimum of 5 minutes for vertical
movement also proved ineffective at reconciling the negative
interplay between longitudinal and vertical movement. Investigating
the nonharmonious relationship between longitudinal and vertical
movement and the time step would prove beneficial. On the other
hand, this problem may fade with the advent of a solution to
achieving better longitudinal population dispersion using random

movement.
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3.6 Conclusion

The CEL Hybrid Ecological Modeling System provides a
systematic framework for integrating biological knowledge and field
experience into engineering physicochemical simﬁlation models. In
the model, a Numerical Fish Surrogate was used to translate
existing field knowledge into an algorithm capable of being
integrated into a hydrodynamic and water quality model. The CEL
Hybrid Ecological Model that resulted reproduced the distribution of
blueback herring in J. Strom Thurmond Lake for dates when field
data existed.

While realism of the predictions was of primary focus in
developing the model, I believe that concentrating on the inevitable
shortcomings short circuit the overall effort. To this end, [ believe
that additional research and further application of the model will
result in relatively quick resolution of many of the shortcomings.
My goal was to develop a framework that possesses real
opportunities for simulating population processes in a realistic
context and a framework that can be readily enhanced with further
research. Representing an infinitely complex dynamic behavioral
system using finite means will always result in shortcomings and
inaccuracies. However, I believe the results obtained from this CEL
Hybrid Ecological Model application provide promise that systematic
and realistic simulation of many population processes, particularly

movement behavior, is possible.
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APPENDIX A

Input Variables for Numerical Fish Surrogate

A.1 Parameters Needing Calibration
NFSFREQ = The number (or fraction thereof) of days
between successive runs of the Numerical Fish

Surrogate (NFS) module.

A.1.1 Sensory Weight and Scaling Parameters

MULTIPLERESPONSE = If TRUE, the URGENCY variable is
calculated as a weighted average of
the selected scaled horizontal
velocity, vertical velocity, dissolved
oxygen, and temperature gradients.
If FALSE, the URGENCY variable is
calculated as the maximum of the
following: horizontal velocity, vertical
velocity, dissolved oxygen, and

temperature gradients.

A.1.1.1 Horizontal Gradient Parameters: (Range: O to 1)

HVXWEIGT = Weight for x-directional horizontal velocity
gradient.
VVXWEIGT = Weight for x-directional vertical velocity
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TPXWEIGT

DOXWEIGT

1l

134

gradient.

Weight for x-directional temperature
gradient.

Weight for x-directional dissolved oxygen

gradient.

A.1.1.2 Vertical Gradient Parameters: (Range: O to 1)

HVZWEIGT

VVZWEIGT

TPZWEIGT

DOZWEIGT

I

i

i

Weight for z-directional horizontal velocity
gradient.

Weight for z-directional vertical velocity
gradient.

Weight for z-directional temperature
gradient.

Weight for z-directional dissolved oxygen

gradient.

A.1.1.3 Stepwise Linear Gradient Function Parameters:

TEMPTHRES

TSTEP1

TSTEP1IMULT

Temperature threshold (°C), above which
fish will swim with maximum URGENCY
toward cooler water.

= Temperature difference (°C) above and
below the optimum, beyond which

URGENCY is multiplied by TSTEP1MULT.

Il

Increase/decrease multiplier in URGENCY
when fish is located beyond TSTEP1 from



TSTEP2

TSTEP2MULT

DOTHRES?2

DOSTEPIMULT

I

I
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optimum temperature.

Temperature difference (°C) above and
below the optimum, beyond which
URGENCY is multiplied by TSTEP2MULT.
Increase/decrease multiplier in URGENCY
when fish is located beyond TSTEP2 from
optimum temperature.

Dissolved oxygen threshold (mg/L), above
which fish will swim with less URGENCY.
Increase/decrease multiplier in URGENCY
when fish is located in dissolved oxygen

concentrations greater than DOTHRES?2.

A.1.1.4 Primary Random Displacement Parameters: (Range: O to 1)

RDXWEIGT
RDYWEIGT
RDZWEIGT

It

I

I

Weight for x-directional random movement.
Weight for y-directional random movement.

Weight for z-directional random movement.

A.1.1.5 Other Random Displacement Parameters:

EPSILONRD

Random Parameter Epsilon - Used only to keep
RDX, RDY, and RDZ from getting stuck on
zero when UFISH, VFISH, or WFISH = O,

respectively.
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A.1.1.6 The following values are used to scale the gradients each
fish detects within its sensory sphere. The parameters immediately
below should be valued according to the gradient likely to induce
the maximum fish response; with higher magnitude gradients not
inducing any more of a response from the species of fish under
study. The following parameters define a representative example of
the practical maximum gradient likely to induce the greatest fish
response/reaction/movement. ALL NUMBERS MUST BE POSITIVE.
Horizontal Velocity

X-directional Gradient

I

MAXREACTXHV For example gradient, the higher
horizontal velocity value (m/s) in

x-direction.

Il

MINREACTXHV For example gradient, the lower
horizontal velocity value (m/s) in
x-direction.

DISTREACTXHV

Il

For example gradient, the distance
between MAXREACTXHV and
MINREACTXHV (m).

Z-directional Gradient

MAXREACTZHV = For example gradient, the higher
horizontal velocity value (m/s) in
z-direction.

MINREACTZHV = For example gradient, the lower

horizontal velocity value (m/s) in



DISTREACTZHV

Vertical Velocity

]

X-directional Gradient

MAXREACTXVV

MINREACTXVV

DISTREACTXVV

Z-directional Gradient

MAXREACTZVV

MINREACTZVV

DISTREACTZVV

]

Il

It
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z-direction.

For example gradient, the distance
between MAXREACTZHV and
MINREACTZHV (m).

For example gradient, the higher
vertical velocity value (m/s) in
x-direction.

For example gradient, the lower
vertical velocity value (m/s) in
x-direction.

For example gradient, the distance
between MAXREACTXVV and
MINREACTXVV (m).

For example gradient, the higher
vertical velocity value (m/s) in
z-direction.

For example gradient, the lower
vertical velocity value (m/s) in
z-direction.

For example gradient, the distance

between MAXREACTZVV and



Temperature

X-directional Gradient

MAXREACTXTP

MINREACTXTP

DISTREACTXTP

Z-directional Gradient

MAXREACTZTP

MINREACTZTP

DISTREACTZTP

Dissolved Oxygen

Il

I

X-directional Gradient

MAXREACTXDO
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MINREACTZVV (m).

For example gradient, the higher
temperature value (°C) in
x-direction.

For example gradient, the lower
temperature value (°C) in
x-direction.

For example gradient, the distance
between MAXREACTXTP and
MINREACTXTP (m).

For example gradient, the higher
temperature value (°C) in
z-direction.

For example gradient, the lower
temperature value (°C) in
z-direction.

For example gradient, the distance
between MAXREACTZTP and
MINREACTZTP (m).

For example gradient, the higher



MINREACTXDO

DISTREACTXDO

Z-directional Gradient

MAXREACTZDO

MINREACTZDO

DISTREACTZDO

I

]

I
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dissolved oxygen value (mg/L) in
x-direction.

For example gradient, the lower
dissolved oxygen value (mg/L) in
x-direction.

For example gradient, the distance
between MAXREACTXDO and
MINREACTXDO (m).

For example gradient, the higher
dissolved oxygen value (mg/L) in
z-direction.

For example gradient, the lower
dissolved oxygen value (mg/L) in
z-direction.

For example gradient, the distance
between MAXREACTZDO and
MINREACTZDO (m).

A.1.2 Sensory Sphere Parameters

FBDYSEARCH

BBDYSEARCH

Il

The number of body lengths (FSIZE) in front
of the fish the fish will likely search during
each time step to determine

conditions/gradients.

The number of body lengths (FSIZE) behind
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the fish the fish will likely search during
each time step to determine
conditions/gradients.

UBDYSEARCH The number of body lengths (FSIZE) above

1l

the fish the fish will likely search during
each time step to determine
conditions/gradients.

DBDYSEARCH

il

The number of body lengths (FSIZE) below
the fish the fish will likely search during
each time step to determine

conditions/gradients.

A.1.3 Miscellaneous Parameters
TEMPOPTD = Optimum temperature for fish species
during the day (°C). |
TEMPOPTN

il

Optimum temperature for fish species at

night (°C).

MXXSPDL Number of fish lengths (FSIZE) covered in
x-direction per second at maximum fish
speed under perfect conditions.

MXZSPDL

Il

Number of fish lengths (FSIZE) covered in
z-direction per second at maximum fish
speed under perfect conditions.

DOTHRES

I

Dissolved oxygen threshold below which fish



XREFL

YREFL

ZBOTREFL

ZSURREFL
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swimming speed suffers.

Fish reflected this percentage of segment
length when fish encounters horizontal
boundary.

Fish reflected this percentage of cell width
when fish encounters lateral boundary.
Fish reflected this percentage of bottom
layer height when fish encounters bottom.
Fish reflected this percentage of surface
layer height when fish encounters water

surface.

A.2 Parameters Not Needing Calibration

A.2.1 Virtual Sampling Parameters

A.2.1.1 Virtual Gillnets

GILLNETSAMPLING = If TRUE, virtual gillnet sampling is

DEPTHINT
GILLNETS(#,1)
GILLNETS(#,2)

GILLNETS(#,3)

GILLNETS (#,4)

il

permitted.

Depth interval (m) used to display
gillnet results; (positive number).

Day (INTEGER) to start gillnet sampling.
Day (INTEGER) to end gillhet sampling.
Hour (Military Time) to start gillnet
sampling.

Hour (Military Time) to end gillnet

sampling.



GILLNETS(#,5)

GILLNETS (#,6)

GILLNETS(#,7)

GILLNETS(#,8)

GILLNETS(#,9)

GILLNETS(#,10)

GILLNETS(#,11)
GILLNETS(#,12)

I

Il
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X-location (m) downstream from upstream
end of water body where gillnet is placed.
Width (meters from center of water body)
that the gillnet extends towards left bank;
(negative number).

Width (meters from center of water body)
that the gillnet extends towards right bank;
(positive number).

Depth below water surface (m) to top of
gillnet; (positive number).

Depth below water surface (m) to bottom of
gillnet; (positive number).

Gillnet #.

Gillnet active: [0 = No, 1 = Yes].

Water body branch number where gillnet

is placed.

A.2.1.2 Virtual Hydroacoustics

ACOUSTICSAMPLING = If TRUE, virtual hydroacoustic

HADEPTHINT

HAOPERAT(#,1)

il

sampling is permitted.

Depth interval (m) used to display
hydroacoustic sampling results;
(positive number).

Day (INTEGER) to start hydroacoustic



HAOPERAT(#,2)

HAOPERAT(#,3)

HAOPERAT (#,4)

HAOPERAT(#,5)

HAOPERAT(#,6)

HAOPERAT(#,7)

HAOPERAT (#,8)

HAOPERAT(#,9)
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survey.
Day (INTEGER) to end hydroacoustic
survey.

Hour (Military Time) to start
hydroacoustic survey.

Hour (Military Time) to end
hydroacoustic survey.

X-location (m) of upstream end of
hydroacoustic sampling 'box' at start of
survey.

X-location (m) of downstream end of
hydroacoustic sampling 'box' at start of
survey.

Speed (m/s) of hydroacoustic sampling
'‘box":

(-) = moves upstream

(+) = moves downstream

Width (meters from center of water body)
that the hydroacoustic sampling ‘box’
extends towards the left bank;

(negative number).

Width (meters from center of water body)
that the hydroacoustic sampling ‘box’

extends towards the right bank;



HAOPERAT(#,10)

HAOPERAT(#,11)

HAOPERAT(#,12)
HAOPERAT (#,13)

HAOPERAT(#,14)

1l

i

Il
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(positive number).

Depth below water surface (m) to top of
hydroacoustic sampling ‘box’;

(positive number)

Depth below water surface (m) to bottom
of hydroacoustic sampling ‘box’;
(positive number).

May overestimate depth in order to cover the
entire water column, if so desired.
Hydroacoustic sampling operation #.
Hydroacoustic sampling active:

[0=No, 1 =Yes].

Water body branch number where

hydroacoustic survey is conducted.

A.2.2 Output frequency from Numerical Fish Surrogate for graphics

post processing. May enter 99’ in order to skip output for a

particular month altogether:

OUTFREQJAN
OUTFREQFEB
OUTFREQMAR
OUTFREQAPR
OUTFREQMAY
OUTFREQJUN
OUTFREQJUL

1l

il

for January
for February
for March
for April

for May

for June

for July



OUTFREQAUG
OUTFREQSEP
OUTFREQOCT
OUTFREQNOV
OUTFREQDEC
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for August
for September
for October
for November

for December

A.2.3 Activation of Stimuli-Response Rules

STIMULIRULES

VELOCITYRULES

TEMPRULES

If TRUE, stimuli-response rules
(excluding passive transport which is
specified separately) contribute to

fish movement.

If FALSE, stimuli-response rules
(excluding passive transport which is
specified separately) do not contribute to
fish movement.

If TRUE, velocity stimuli-response rules
contribute to the movement of fish.

If FALSE, velocity stimuli-response rules
do not contribute to the movement of
fish.

If TRUE, temperature stimuli-response
rules contribute to the movement of fish.
If FALSE, temperature stimuli-response

rules do not contribute to the movement
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of fish.

It

If TRUE, dissolved oxygen stimuli-
response rules contribute to the
movement of fish.

If FALSE, dissolved oxygen stimuli-
response rules do not contribute to the

movement of fish.

RANDOMIZATION = If TRUE, random displacement terms

PASSIVETRANSPORT

(i.e., RDX, RDY, RDZ) are calculated.
If FALSE, random displacement terms

(i.e., RDX, RDY, RDZ) are set to zero.

I

If TRUE, passive transport
contributes to the displacement of fish.
If FALSE, passive transport does not

contribute to the displacement of fish.

A.2.4 Miscellaneous Parameters

DEBUG

WBSKIP

I

1l

If TRUE, user informed when important steps
are completed successfully.

If FALSE, no extra output generated that may
assist in debugging the Numerical Fish
Surrogate.

If TRUE, output files will be generated for water
body WBRUN only.

If FALSE, output files will be generated for all



WBRUN

LINEAR

il
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water bodies. This requires much more
computer disk space.

If WBSKIP = TRUE, output files will be
generated for this water body only.

If TRUE, velocity interpolation scheme is linear
interpolation.

If FALSE, velocity interpolation scheme is 3td

Order Newton interpolation.

PREVENTBRCHSWITCH =  If TRUE, fish are prevented from

UNBP

DNBP

SEED

I

Il

swimming upstream into another branch.
If FALSE, fish may swim upstream into
other branches.

The branch at who's upstream end fish

are collected.

The branch at who's downstream end

fish are collected. This must be the branch
which has no branch downstream of it.

Seed for the random number generator.

A.2.5 Graphics Post Processing Parameters

ASPRATIO

SHOWSKY

]

Scaling coefficient for vertical velocity vectors;
velocities only scaled for graphical display.

If TRUE, cells above the water surface will be
colored according to the time of day.

If FALSE, cells above the water surface will be



SKYNIGHT

SKYDAWN

il

SKYDAY

il

SKYDUSK

I
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blank (i.e., colored white).

The time of day when night begins; after which
sky is black (military time).

The time of day when morning begins; after
which sky is yellow (military time).

The time of day when 'day’ begins; after which
sky is blue (military time).

The time of day when evening begins; after

which sky is orange (military time).

A.2.6 Fish Parameters

DELAYDATE

FISHES(#,1)
FISHES(#,2)

FISHES (#,3)
FISHES (#,4)

FISHES (#,5)

FISHES (#,6)
FISHES (#,7)

FISHES(#,8)

I

Date (JDAY) to begin modeling fish
movement (i.e., date to ‘release’ fish).
Initial segment IMP where fish is placed.
Location of fish within segment IMP from
upstream end (m).
Initial layer KMP where fish is placed.
Location of fish within layer KMP from top
(m).
Lateral location in channel of fish placement
(m) (from left bank in plan view).

~ Branch where fish is placed.
Size (i.e., length) of fish (m)
(1 inch = 0.0254 meters).

Age of fish (info not currently used in



FISHES (#,9)

FISHES(#,10)

FISHES(#,11)

FISHES(#,12)
FISHES(#,13)
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NFS).

Initial longitudinal swimming velocity (m/s)
of the fish relative to water:

(-) = swimming upstream

(+) = swimming downstream

Initial lateral swimming velocity (m/s) of the
fish relative to water:

(-) = swimming towards left bank

(+) = swimming towards right bank

Initial vertical swimming velocity (m/s) of the
fish relative to water:

(-) = swimming towards the water surface
(+) = swimming towards the water bottom

Is fish still in system: [0 =Yes, 1 = No]
Gillnet # fish is snagged in; = O if fish not in

a gillnet.



APPENDIX B

FORTRAN Subroutines Comprising

the Numerical Fish Surrogate

SUBROUTINE FISH

This is the only subroutine called from the CE-QUAL-W2
main program. All other subroutines that comprise the Numerical
Fish Surrogate are called from this subroutine. This subroutine
contains the equations discussed in Chapter 2 and checks to make

sure all fish stay within the boundaries of the system.

SUBROUTINE RANDOM
This subroutine calculates a random number between O and

1, which is later used in determining random movement.

SUBROUTINE FIMPBR

This subroutine is run only once and determines the
longitudinal segments within the system grid that have incoming
branches (i.e., tributaries). This alerts the main subroutine (FISH)
to pay careful attention to virtual fish within these segments, as
pseudo lateral forcing functions are created to allow fish to move

upstream and downstream into adjoining branches.

150
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SUBROUTINE FINDNEWBR
This subroutine determines what branch the virtual fish is

located in.

SUBROUTINE WHATJR
This subroutine determines what water body the virtual fish is

located in.

SUBROUTINE TAG124578

This subroutine calculates pseudo lateral forcing functions
(i.e., lateral flow values) in segments where there is one incoming
branch and determines if the virtual fish is swept upstream or

downstream into the adjoining branch.

SUBROUTINE TAG369

This subroutine calculates pseudo lateral forcing functions
(i.e., lateral flow values) in segments where there are two incoming
branches and determines if the virtual fish is swept upstream or

downstream into either of the adjoining branches.

SUBROUTINE GRIDPLOT

This subroutine converts the structured grid of CE-QUAL-W2
into a finite-difference grid, which is then used by the Numerical
Fish Surrogate. The subroutine also outputs flow and water quality

information over time to files used in graphics post processing.
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SUBROUTINE INTERCONST
This subroutine ‘moves’ water quality information from the
cell centers to the cell nodes by interpolating the constituent values

using a bilinear spline method.

SUBROUTINE INTERFLOWF
This subroutine ‘moves’ hydraulic information from the cell
faces to the cell nodes by interpolating the flow values using a 3rd

Order Newton interpolation polynomial.

SUBROUTINE FISHPLOT
This subroutine outputs fish positions over time to files used

in graphics post processing.

SUBROUTINE SPLINE
This subroutine calculates the flow and water quality values
at each of the four cardinal locations of the fish sensory sphere

using a bilinear spline interpolation method.

SUBROUTINE VGILLNETS

This subroutine samples the simulated system with virtual
gillnets. Fish caught in virtual gillnets are summarized in the end
as the number of fish caught per depth interval. Fish caught in the -
virtual gillnets are stuck and cannot move until the virtual gillnet is

removed.
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SUBROUTINE ACOUSTICS

This subroutine samples the simulated system with
hydroacoustics. Fish that cross the hydroacoustic beam (simulated
as a 3-D column) are tallied and summarized in the end as the

number of fish detected per depth interval.



APPENDIX C

Parameter Set for Best Simulation Run

Numerical Fish Surrogate Diagnostic Output

Null Water Quality Field: OFF
Null Hydrodynamic Field: OFF
Passive Transport: ON
Schooling Behavior: OFF
Multi-Response Behavior: OFF
Stimuli-Response Rules: ON
- Velocity Rules: ON
- Temperature Rules: ON
- Diss Oxygen Rules: ON
- Randomization: ON

Numerical Fish Surrogate Timestep (JDAY)
NFSFREQ = 0.00625 (9 minutes)

Weights of Influence Parameters (Range: 0 --> 1)
Horizontal Velocity Parameters
HVXWEIGT = 1.0
VVXWEIGT = 0.3
Vertical Velocity Parameters

HVZWEIGT = 0.2

154
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VVZWEIGT = 0.1

Temperature Parameters

TPXWEIGT = 0.90

TPZWEIGT = 0.75

TEMPTHRES = 26.0
TSTEP1 = 1.5
TSTEPIMULT = 0.0
TSTEP2 = 3.5
TSTEP2MULT = 0.5

Dissolved Oxygen Parameters
DOXWEIGT= 0.76
DOZWEIGT = 0.12
DOTHRES2 = 6.5
DOSTEPIMULT= 0.10

Random Displacement Parameters
RDXWEIGT = 0.999
RDYWEIGT = 0.5
RDZWEIGT = 0.47
EPSILONRD= 1.0E-09

Values Used to Scale the Influence Parameters Gradients
Horizontal Velocity
X-direction

MAXREACTXHV 0.035

MINREACTXHV 0.0

i



DISTREACTXHV
Z-direction
MAXREACTZHV
MINREACTZHV
DISTREACTZHV
Vertical Velocity
X-direction
MAXREACTXVV
MINREACTXVV
DISTREACTXVV
Z-direction
MAXREACTZVV
MINREACTZVV
DISTREACTZVV
Temperature
X-direction
MAXREACTXTP
MINREACTXTP
DISTREACTXTP
Z-direction
MAXREACTZTP
MINREACTZTP
DISTREACTZTP
Dissolved Oxygen

X-direction

156

0.01
0.001
0.135

0.01
0.001
3000

0.01
0.001
110

30
15
1700

30
15
3.80
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MAXREACTXDO = 8

MINREACTXDO = 4

DISTREACTXDO = 7000
Z-direction

MAXREACTZDO = 8

MINREACTZDO = 4

DISTREACTZDO = 3.80

SENSORY SPHERE Parameters
FBDYSEARCH = 7500
BBDYSEARCH= 7500
UBDYSEARCH= 100
DBDYSEARCH= 100

MISC Parameters
TEMPOPTD = 17.0
TEMPOPTN = 22.5

MXXSPDL = 12.0
MXZSPDL = 0.13
DOTHRES = 6.0
XREFL = 0.1
YREFL = 0.1
ZBOTREFL = 2.0
ZSURREFL = 0.5

FSIZE

I

0.178
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Graphs of Sensitivity Analysis Simulation Results
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Figure D.1 Vertical distribution of blueback herring as given by
both actual and virtual hydroacoustic surveys. This simulation
used 5600 virtual fish instead of the 8960 used for the best

simulation.
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Actual Survey
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Figure D.2 Cumulative Distribution Function (CDF) showing the
amount of the survey sample detected by depth. This simulation
used 5600 virtual fish instead of the 8960 used for the best

simulation.
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Figure D.3 Longitudinal distribution of blueback herring as given
by both actual and virtual hydroacoustic surveys. This simulation
used 5600 virtual fish instead of the 8960 used for the best

simulation.
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Figure D.4 Cumulative Distribution Function (CDF) showing the
amount of the survey sample detected by distance downstream from
RBR Dam. This simulation used 5600 virtual fish instead of the

8960 used for the best simulation.
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Figure D.5 Vertical distribution of blueback herring as given by
both actual and virtual hydroacoustic surveys. This simulation

used 11,200 virtual fish instead of the 8960 used for the best

simulation.
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Actual Survey
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Figure D.6 Cumulative Distribution Function (CDF) showing the
amount of the survey sample detected by depth. This simulation
used 11,200 virtual fish instead of the 8960 used for the best

simulation.
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Figure D.7 Longitudinal distribution of blueback herring as given
by both actual and virtual hydroacoustic surveys. This simulation

used 11,200 virtual fish instead of the 8960 used for the best

simulation.
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Figure D.8 Cumulative Distribution Function (CDF) showing the
amount of the survey sample detected by distance downstream from
RBR Dam. This simulation used 11,200 virtual fish instead of the

8960 used for the best simulation.
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Figure D.9 Vertical distribution of blueback herring as given by
both actual and virtual hydroacoustic surveys. Instead of releasing
fish uniformly throughout the lake as was done for the best
simulation, this simulation released all fish near the upstream end

of the lake.
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------ Virtual Survey Actual Survey
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Figure D.10 Cumulative Distribution Function (CDF) showing the
amount of the survey sample detected by depth. Instead of
releasing fish uniformly throughout the lake as was done for the
best simulation, this simulation released all fish near the upstream

end of the lake.
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Figure D.11 Longitudinal distribution of blueback herring as given
by both actual and virtual hydroacoustic surveys. Instead of
releasing fish uniformly throughout the lake as was done for the

best simulation, this simulation released all fish near the upstream

end of the lake.
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----- Virtual Survey Actual Survey
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Figure D.12 Cumulative Distribution Function (CDF) showing the
amount of the survey sample detected by distance downstream from
RBR Dam. Instead of releasing fish uniformly throughout the lake
as was done for the best simulation, this simulation released all fish

near the upstream end of the lake.
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Figure D.13 Vertical distribution of blueback herring as given by
both actual and virtual hydroacoustic surveys. Instead of releasing
fish uniformly throughout the lake as was done for the best
simulation, this simulation released all fish near the middle of the

lake.
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------ Virtual Survey Actual Survey
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Figure D.14 Cumulative Distribution Function (CDF) showing the
amount of the survey sample detected by depth. Instead of
releasing fish uniformly throughout the lake as was done for the

best simulation, this simulation released all fish near the middle of

the léke.
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Figure D.15 Longitudinal distribution of blueback herring as given
by both actual and virtual hydroacoustic surveys. Instead of
releasing fish uniformly throughout the lake as was done for the
best simulation, this simulation released all fish near the middle of

the lake.
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------ Virtual Survey Actual Survey
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Figure D.16 Cumulative Distribution Function (CDF) showing the
amount of the survey sample detected by distance downstream from
RBR Dam. Insfead of releasing fish uniformly throughout the lake
as was done for the best simulation, this simulation released all fish

near the middle of the lake.
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Figure D.17 Vertical distribution of blueback herring as given by
both actual and virtual hydroacoustic surveys. This simulation
released fish on March 31st (JDAY 91), as opposed to the best
simulation, which released fish on May 1st (JDAY 122).
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Actual Survey
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Figure D.18 Cumulative Distribution Function (CDF) showing the
amount of the survey sample detected by depth. This simulation
released fish on March 31st (JDAY 91), as opposed to the best
simulation, which released fish on May 1st (JDAY 122).
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Figure D.19 Longitudinal distribution of blueback herring as given
by both actual and virtual hydroacoustic surveys. This simulation
released fish on March 31st (JDAY 91), as opposed to the best
simulation, which released fish on May 1st (JDAY 122).
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----- Virtual Survey Actual Survey
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Figure D.20 Cumulative Distribution Function (CDF) showing the
amount of the survey sample detected by distance downstream from
RBR Dam. This simulation released fish on March 31st (JDAY 91),
as opposed to the best simulation, which released fish on May 1st

(JDAY 122).
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Figure D.21 Vertical distribution of blueback herring as given by
both actual and virtual hydroacoustic surveys. This simulation
released fish on June 1st (JDAY 153), as opposed to the best
simulation, which released fish on May 1st (JDAY 122).
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Figure D.22 Cumulative Distribution Function (CDF) showing the

amount of the survey sample detected by depth. This simulation

released fish on June 1st (JDAY 153), as opposed to the best

simulation, which released fish on May 1st (JDAY 122).
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Figure D.23 Longitudinal distribution of blueback herring as given
by both actual and virtual hydroacoustic surveys. This simulation
released fish on June 1st (JDAY 153), as opposed to the best
simulation, which released fish on May 1st (JDAY 122).
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Figure D.24 Cumulative Distribution Function (CDF) showing the
amount of the survey sample detected by distance downstream from
RBR Dam. This simulation released fish on June 1st (JDAY 153), as
opposed to the best simulation, which released fish on May 1st

(JDAY 122).
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Figure D.25 Vertical distribution of blueback herring as given by
both actual and virtual hydroacoustic surveys. This simulation
used a NFS time step averaging 5 min, as opposed to the best

simulation, which used a NFS time step averaging 9 min.
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Figure D.26 Cumulative Distribution Function (CDF) showing the
amount of the survey sample detected by depth. This simulation
used a NFS time step averaging 5 min, as opposed to the best

simulation, which used a NFS time step averaging 9 min.
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Figure D.27 Longitudinal distribution of blueback herring as given
by both actual and virtual hydroacoustic surveys. This simulation
used a NFS time step averaging S min, as opposed to the best

simulation, which used a NFS time step averaging 9 min.
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Figure D.28 Cumulative Distribution Function (CDF) showing the
amount of the survey sample detected by distance downstream from
RBR Dam. This simulation used a NFS time step averaging 5 min,
as opposed to the best simulation, which used a NFS time step

averaging 9 min.
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Figure D.29 Vertical distribution of blueback herring as given by
both actual and virtual hydroacoustic surveys. This simulation
used a NFS time step averaging 15 min, as opposed to the best

simulation, which used a NFS time step averaging 9 min.



Depth (m)

I||J“uu

195

B Actual Survey

EVirtual Survey

No Actua\il Survey Data Exists

TS :

|
1

—— .

T

10 15
% of Fish Sample Detected

o

20

25



196

Actual Survey
100 -

80

60 {No Actual

CDF (% of Fish Sample Detected)

Survey +2 = 0.89
rData
40 | Exists- i
20 - = -
P esen . i
0 -5 -10 -15 -20 -25 -30 -35

Depth (m)

Figure D.30 Cumulative Distribution Function (CDF) showing the
amount of the survey sample detected by depth. This simulation
used a NFS time step averaging 15 min, as opposed to the best

simulation, which used a NFS time step averaging 9 min.
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Figure D.31 Longitudinal distribution of blueback herring as given
by both actual and virtual hydroacoustic surveys. This simulation
used a NFS time step averaging 15 min, as opposed to the best

simulation, which used a NFS time step averaging 9 min.
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Figure D.32 Cumulative Distribution Function (CDF) showing the
amount of the survey sample detected by distance downstream from
RBR Dam. This simulation used a NFS time step averaging 15 min,
as opposed to the best simulation, which used a NFS time step

averaging 9 min.
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Figure D.33 Vertical distribution of blueback herring as given by
both actual and virtual hydroacoustic surveys. This simulation
used weights for responding to horizontal velocity stimuli that were

20% stronger than the weights used to obtain the best simulation.
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Figure D.34 Cumulative Distribution Function (CDF) showing the
amount of the survey sample detected by depth. This simulation
used weights for responding to horizontal velocity stimuli that were

20% stronger than the weights used to obtain the best simulation.
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Figure D.35 Longitudinal distribution of blueback herring as given
by both actual and virtual hydroacoustic surveys. This simulation
used weights for responding to horizontal velocity stimuli that were

20% stronger than the weights used to obtain the best simulation.
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Figure D.36 Cumulative Distribution Function (CDF) showing the
amount of the survey sample detected by distance downstream from
RBR Dam. This simulation used weights for responding to
horizontal velocity stimuli that were 20% stronger than the weights

used to obtain the best simulation.



204

Figure D.37 Vertical distribution of blueback herring as given by
both actual and virtual hydroacoustic surveys. This simulation
used weights for responding to temperature stimuli that were 30%

weaker than the weights used to obtain the best simulation.
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Figure D.38 Cumulative Distribution Function (CDF) showing the
amount of the survey sample detected by depth. This simulation
used weights for responding to temperature stimuli that were 30%

weaker than the weights used to obtain the best simulation.
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Figure D.39 Longitudinal distribution of blueback herring as given
by both actual and virtual hydroacoustic surveys. This simulation
used weights for responding to temperature stimuli that were 30%

weaker than the weights used to obtain the best simulation.
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Figure D.40 Cumulative Distribution Function (CDF) showing the
amount of the survey sample detected by distance downstream from
RBR Dam. This simulation used weights for responding to
temperature stimuli that were 30% weaker than the weights used to

obtain the best simulation.
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Figure D.41 Vertical distribution of blueback herring as given by
both actual and virtual hydroacoustic surveys. This simulation
used weights for responding to dissolved oxygen stimuli that were

30% weaker than the weights used to obtain the best simulation.
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Figure D.42 Cumulative Distribution Function (CDF) showing the
amount of the survey sample detected by depth. This simulation
used weights for responding to dissolved oxygen stimuli that were

30% weaker than the weights used to obtain the best simulation.
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Figure D.43 Longitudinal distribution of blueback herring as given
by both actual and virtual hydroacoustic surveys. This simulation
used weights for responding to dissolved oxygen stimuli that were

30% weaker than the weights used to obtain the best simulation.
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Figure D.44 Cumulative Distribution Function (CDF) showing the
amount of the survey sample detected by distance downstream from
RBR Dam. This simulation used weights for responding to dissolved
oxygen stimuli that were 30% weaker than the weights used to

obtain the best simulation.
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Figure D.45 Vertical distribution of blueback herring as given by
both actual and virtual hydroacoustic surveys. This simulation
used weights for randomization (to elicit both longitudinal and
vertical volitional swimming) that were 30% weaker than the weights

used to obtain the best simulation.
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Figure D.46 Cumulative Distribution Function (CDF) showing the
amount of the survey sample detected by depth. This simulation
used weights for randomization (to elicit both longitudinal and
vertical volitional swimming) that were 30% weaker than the weights

used to obtain the best simulation.
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Figure D.47 Longitudinal distribution of blueback herring as given
by both actual and virtual hydroacoustic surveys. This simulation
used weights for randomization (to elicit both longitudinal and
vertical volitional swimming) that were 30% weaker than the weights

used to obtain the best simulation.



218

100

» o) (0}
o o o

CDF (% of Fish Sample Detected)
)
o

Hydroacoustics Survey Location

Figure D.48 Cumulative Distribution Function (CDF) showing the
amount of the survey sample detected by distance downstream from
RBR Dam. This simulation used weights for randomization (to elicit
both longitudinal and vertical volitional swimming) that were 30%

weaker than the weights used to obtain the best simulation.
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