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Abstract:

Let X and Y be two quaternions over an arbitrary ring.
Eight gultiplications are necessary and sufficient for computing
the product XY. 1If the iing is assumed to be commutative, at
least seven multiplications are still necessary and eight are

sufficient.
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1. Introduction

Real quaternions are elements of

reals generated by the

ij = =ji = k, jk = -kj = i and ki =

Xl + x21 +

n=1, 2, 3, 4, then X

are quaternions

XY =
+ gy,

+ (x1y3

+ (xly4 +

Real quaternions satisfy N(X) = i

and N(XY) = NJ(X)N(Y).

elements i, j, k

(x)¥) = X¥, = X3¥3 =

X, + x

the division ring over the
2

= —]_,

satisfying i = 32 = k

-ik = j. If Xpr Y, € R for

X3]

+ x4k and Y = ¥y + yoi + Y33 +

and their product is:

X,¥,)

- Xyy)i
X,¥5)3
x4yl)k

2 2 2 .
5 * X3 + x4>0 ifX#0

They are important because of their usefulness

in calculations arising in physics and mathematics.

Although real quaternions are most often used, the quaternion

product as defined above can be computed when the xn's and,yn's

are elements of an arbitrary ring.
complexity of this computation.
is measured by the
The obvious algorithm for computing
16 multiplications. The complexity
the complexity of the least complex

Two cases must be considered
of quaternion multiplication over a

commutative case. The general case

We are interested in the

The complexity of an algorithm

number of ring multiplications it requires.

the quaternion product uses

of the quaternion product is
algorithm computing it.

when discussing the complexity
ring, the general case and the

considers only those algorithms

which correctly compute the quaternion product over any ring.



The commutative case allows, in addition to these, algorithms
which work only in commutative rings. Commutative algorithms are
important because the real numbers are commutative. Clearly the
complexity of the quaternion product, or any computation, in the
commutative case is not greater than the complexity of the same
computation in the general case.

The problem of determining the complexity of the quaternion
product is a special case of the problem of determining the
complexity of a set of biliear forms. A number of other special
‘cases appear in the literature. For example, Strassen [1] shows
that seven multiplications are sufficient for the product of 2x2
matrices. Hopcroft and Kerr .[2] and Winograd [3] show that seven
multiplications are also necessary in the general and commutative
cases, respectively. Fiduccia [4] mentions that ten multiplications
are sufficient for the quaternion product. It has been shown by
de Groote that ten are necessary and sufficient to compute the
quaternion products XY and YX simultaneously. The complexity
of arbitrary sets of bilinear forms has been studied by Gastinel
[6] and Musinski [7], but useful results are known only for sets
of size one or two.

The purpose of this paper is to show that eight multiplications
are necessary and sufficient for the quaternion product in the
general case, and that at least seven multiplications are necessary

in the commutative case.



2. Model of Computation

The following definitions make precise the notion of an

algorithm and its complexity.

Definition ILet F be a field and {xl, Kyrenes xn}'
be a set of indeterminates. An algorithm is a
finite sequence of steps, a = {al, az,..., aS},

where each step, ajr is of one of three forms:

(1) g «x; . lcjcn
(ii) g; v a , a€F
(iii) 9; * gj ] 9y v j <i, k < i and 6 € {+, -, x}L

Note that each 93 is an element of F[xl,..., xn], the ring of
polynomials in Xyreoor X with coefficients from F. An algorithm

a is said to compute a set E gF[xl,..., xn] if E< {gl,..., gs).

Definition The complexity of an algorithm is

equal to the number of steps of the form

g9; * gj X gy where gj ¢ F and 9 € F. Such

steps are called active multiplications.

The xi's are the input data to the algorithm. Only multiplications
which depend on the data are counted. Multiplications by scalars
(elements of F) are ignored.

The complexity of a computation may depend on the choice of
F, the field of scalars. For example, xi + xg requires two active
multiplications when F is the reals. When F:is the complex

numbers, xi + xg = (x1+ix2)(xl-ix2) requires just one active




multiplication. Throughout this paper F is assumed to satisfy

the following condition: For all a, b, c,d, er

2 2 2

a®+b? +c?+a® =0 ifandonlyif a=b=c=d-=o, (*)

The reals and the rationals satisfy (*), but the complex numbers
and.all finite fields do not. A counterexample will show that

our theorems do not hold when F is the complexes.

3. Tensor Rank

y P i . t_ R

t Let {Mk}k=l be a set of mxn matrices over F. Let x [xl,...,xm]
and yt = [yl,...,yn] be the vectors of indeterminates. Let fk be
the bilinear form represented by Mk : fk = xthy for x = 1,...,p.

The following theorem is known [81, f9].

Theorem 1 If o is an algorithm of complexity q computing fl,...,fp

in the general case (commutativity is not assumed) then there is

an algorithm a' of complexity q computing fl""’fp in which all
active multiplications are the form (uzx)'(vfy) where u, € Fm,

v, € F" for ¢ = 1, 2, «ees Q. Then

(‘fl 1 (uix)(vfy)
£ | (ugx) (viy)
L
B )
Lt J (ugx) (viy)

where W is a pxq matrix over F.

Let zt = [zl,...,zp] be another vector of indeterminates.



The trilinear form

P
T= I f 2 = I m,. X.Y.2
k=1 k“k i3,k ijk Ti¥3%k

is represented by M = (mi.k)m n p erffor e FP, Note that
I i=1 =1 k=1

m is the i,j, element of Mk'

15k

P
Definition The tensor rank of the set {Mk}k=l
" (or simply of M) is the smallest integer q for

which

where-u2 e Fm, vy € Fn, wl € Fp for 2=1,...,q,

and O denotes tensor product (outer product).

When p=1, the tensor rank of the set {Ml} is equal to the

rank of the matrix Ml' The next theorem shows the importance of

tensor rank.

P

Theorem 2 The tensor rank of the set {Mk} is equal to the
k=1

minimum number of active multiplications required to compute the

bilinear forms fk = xthy, k=l,...,P, in the general case.

Proof Assume q active multiplications suffice. By Theorem 1

q
_ t t
fk = 151 wkz(ulx)(vly).

let wt = [w

1y Then

ll""’wpll'



P
T = T X.y.z2, = L f 2z
i3,k ijk "if37k k=1 k“k
q
= I (u x)(vRY)(w z),
2=1
which implies
M g <] (o]
= u v w,.
g1 &0 VR L

Hence the tensor rank of M is at most q. The reverse argument

shows that if the tensor rank of M is g then g active multiplications
suffice to compute fl' e ,fp.
It will oft_en be more convenient to represent the three-

. s v . : : N p
dimensional object M in two dimensions as M(z) = I Mkzk. Then

Theorem 2 says that the complexity of the set of bilinear forms

f-l,...,'f is equal to the smallest g such that

M(z) =

)
hQ ©
o

q
uy ] vl(wgz) = Eil u VR. (w z) ([10]).

Thus, q is the minimum number of rank-one matrices (dependiﬁg on
z) into which M(z) can be decomposed. This will be referred to

as the tensor rank of M(z).

10! o 1)
Example let M1=o-1_'3 My =iy o,. Then
D zy-z, 0 [0 0
M(z) = l+l ‘+j ;
-2 | z 0 0; |0 -2,-2,;
l_J ‘ 2 L BRSNS
M N 8
181 1)1 0 0,0 _
'[:IJE ] (z,) +‘(j ](zl-zz) +[1JL :] ( z; zz)



hence the tensor rank of M(z) is at most three.

T

(x1¥)-%y¥5)2) + (X,¥,+x,5, )2,

(xl+x2)(yl+y2)zz + xlyl(zl-zz) + xzyz(-zl-zz)

This leads to
(x1+x2)(yl+y2)
X

X)¥17X5Y) 1 Yy

M= o
]
-
] !
= =)

+x X

2¥1 2 Y,

i
—

K1¥2

which is of the form given in Theorem 1.

For the general case, Theorem 2 has characterized the
complexity of a set of bilinear forms in terms of the tensor rank
of the coefficients. The same can be done for the commutative case.

Let M(z) be as above.

Theorem 3 The commutative complexity of:the bilinear forms
fl""'fp is equal to the minimum possible tensor rank of N(z)
where

fo mq

N(z) + N(z)°© =k
ti(z) 0 _J

This follows from a theorem analogous to Theorem 1, which states
that in the commutative case there is a minimal complexity algorithm
in which the active multiplications have the form (utx+v§y)(ﬁ§x+§§y)

where U, ﬁl € R® and Vor 62 e R?. see Lafon [9] for a proof.




Note that the choice

. I

i M(z
N(z) =

@ 0

is possible, hence the commutative complexity is not greater than

the general complexity of a set of bilinear forms.

4. Upper Bound

In this section an algorithm will be given which computes the
quaternion proéuct in the general case using eight active multiplications

.The quaternion product consists of four bilinear forms:

R = - - -

£1 = xMY = X1¥) T X¥) T X3¥y T Xy¥,
- ot = ) -

£u = x My = x3¥, + X5 + XY, - Xg¥q
- Lt _ -

£3 = x M3y = x)¥3 = X¥, + X3y) + X,

. = -
£ = x My = x ¥y * Xo¥3 - X3¥p *oxgy,

By the results of section 3, the desired algorithm corresponds to

a decomposition of M(z) as a sum of eight rank-one matrices, where

{
’ |
4 z, -2 2, =2,1
Mz) = I mz = 2 7R % TR
k=1 jz3 =24 "2y 2,
| |
| - -
(%4 %3 7% TP
—~ J

Pirst, write M(z) = M'(z) + M"(z) where



9
|:zl 2 %3 %4
M'(z) = z2y =2y 2z, 2,4
23 %24 7% %
24 23 22 -zl-J -
r -
zy 0 0 0
M"(z) = 2’0 0 0 ~zy
i
|0 -z, 0 0
IO 0 -z 0
2
L J

Obviously, M"(z) is representable as a sum of four rank-one matrices.

so is M'(z):

M'(z) = 1/4 f
[‘1 11 ﬂ [-l 1 -1 -1)
| , :
(-zl+zz+z3+z4) ‘1 1 1 1 + (-zl+22-z3-z4) i 1 1-1-1
111 1 1 !-1-1 11
| i
l} 11 1 -1 -1 1 1]
T1-1 1-1 irl—l-l 1)
t
(-2)=2,%25=2,) =1 1 -1 1 + (-2)-2,-2z54z,) ;-; 1 1-1 ]
1-1 1 -1} i1 1 1 -1
|
=1 1-1 1] Ll-1-1 1_J
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The corresponding algorithm is :

[1] = XY, [1I]) = X4¥3 [III] = x,y, (V] = X3Y,
vl = (xp + X, +xy 4 x,) (v, 4 y2'+ vyt y,)

VI = (%) +x, - %3 = x,)(y; +y, - ¥3 - Y,)

[VII] = (x1 - Xyt Xy = x4)(y1 =Y, tyy - Y4)

IVIII] = (x; = X, = X3+ x,)(y; =¥, =¥ 3 +Y,)
£, 0= 2[I] - 1/4(IV]) + [VI] + [vII] + [VIII])

fz = =2[II] + 1/4([V] + [VI] - [VII] - [VIII])

£, = -2[III] + 1/4([V] - [VI] + [VII] - [VIII])

£, = -2[IV] + 1/4([V] - [VI] - [VII] + [VIII])

This shows that the complexity of the quaternion product is at

most eight in both the general case and the commutative case.
5. Transformations

An algorithm computing the bilinear forms, S = {xthy : k=1,...,p},
can often be transformed into a new algorithm computing the same
forms by substituting for each x; a linear combination of the xi's
and for each yj a linear combination of the yj's and then taking

new linear combinations of the resulting active multiplications.

Definition Let A, B, and C be nonsingular matrices

over F of order m, n and p, respectively.




P

The ordered triple, (A,B,C), is a transformation
on the set S if it leaves the trilinear form
representing S invariant:

I m..k(Ax)i(By)j(Cz)k = b

M., X.¥Y.2, .
i,k I i3, Ik T3k

The transformations on a given set of forms form a group under
composition.

Given an algorithm computing S and a transformation, (A,B,C),
a new algorithm of the same coﬁplexity can be formed by first
computing x' = AX and y' = By using no active multiplications. The
original algorithm applied to x' and y' computes the coefficients

f' = [f',...,f']t of z' = Cz in the expression z
1 P

m,., x!ylz'.
i3,k ijk lyj k

The desired forms, S, which are the coefficients, f = [fl,...,fp],

of z are recovered by computing f'tc = fF using no active

multiplications.

fxamgle ) _

et A=[11 00 B=|110 0 C = 1/4aB
-11 00 -110 oi
00 11 001 -1
00-11 001 1

The reader can verify by direct computation that (A,B,C) is a
transformation on the quaternion product. When applied to the

algorithm of section 4, it yields the following algorithm:
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I = (x) + %) y; +y,) (vi = (% + %) (y, +yy)
(1 = (x, - x3) (¥3 = v,) vi] = (x, - Xg) vy = y,y)
[III] = (x2 - x‘l) (y3 - ¥,) [VII] = (xl + x3) (y1 - y4)
(vl = (x3 + x,)(y, - ¥y) [VIII] = (x; - X3) ly; +y,)
£,= [II] + 1/2(-(V] - [VI] + [VII] + [VIII])
f,= [11 - 1/2( [Vl + [VI] + [VII] + [VIII])
£ = -lII1) + 1/2( [V] - [VI] + (VII] - (VIII])
f4 = =[1Vv] o+ 1/2( [v] - [VI] - [VII] + [VIII])

6. Lower Bound : General Case

The purpose of this section is to prove the following

theorem.

Theorem 4 Any algorithm which computes the quaternion product
over arbitrary rings using scalars from F requires at least eight

active multiplications.

bRecall the assumption (*) ébout F: for all a,b,c,d, € F,

2 2 2 2

a + b"+ c"+d° =0 ifandonly ifa=b=c=4g = 0. The proof

will use this assumption in several places. Two lemmas contain

most of the proof.

lemma 1 If there is an algorithm which computes the quaternion
product using g active multiplications, then there is also an
algorithm of the same complexity in which one active multiplication

is by Xy and another is by Yy
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Proof Let al, ay, ay, a4 be elements of F, not all zero. Let

2 2 2 2

+a, +aj+a, # 0 and

d(a) = a; 2

[51 -a; Ta3 tay
‘a

' a -a a
A=1l/d(a) 1 2 1 4 3
. 53 34 al -a2
a4 "33 2

Let I be the 4x4 identity matrix. A direct computation shows that
TA = (A,I,d(a)A) is a transformation on the quaternion product.

If there is an algorithm computing the gquaternion product
using g active multiplications, then by Theorem 1 there is also

one of the form

J

toy. t
(uyx) - (vyy) fl%
w 1 . . =
. . f2
. . f3
toy .ot
uuqx) (vqy) f4

Call this algorithm o. Note that no u; or v, can be the zero

vector, otherwise the corresponding multiplication would not be

active.
T _ . .
let u, = [ull Uy U3y u41]' Then the transformation TA with
[al a, a, a4] = [ull Uy u3l,u4l] when applied to a produces a new

algorithm a' in which the first multiplication is ui(Ax) . vi(Iy) =

X 'Vt
1 1Y



L%

Similarly, TB = (I, B, d(b)B)is a transformation if

- !
b) =by ~by b,
B = 1/d(b) lb2 bl b4.-b3
Py “by by by
§b4 by -b, b,
C
and bl' b2, b3, b4 € F are not all zero. When [bl b2 b3 b4] = vg,

TB transforms a' into a" in which the first two multiplications

ére b3 ~v'ty and u'tx-yl, where vit =v tB and u't = u2t

1" 2 1 2 A.

Lemma 2 Any algorithm which computes the quaternion product of

xzi + x3j + x4k and yzi + y3j + y4k in the general case, using

scalars from F requires at least six active multiplications.
Proof The trilinear form T' associated with this computation is:
THo= XY,y - Xg¥y - xa¥)zy b (Xgy, - xuv3)z,
txYy Fxg¥y)2g Koy - XyYy)zy
By Theorem 2, the least number of active multiplications needed to

compute this product is equal to the tensor rank of the matrix

]

- [-zl z, =24
M'(2) = -z, -z zz‘
zy -2, -za

) - L]



2

As the determinant of this matrix is equal to —zl(zi + z2 + z3 + zi),

2
M' (z) is of rank three if z; # 0.

Let q be the tensor rank of M'(z). M'(z) =

o
Il &1.Q
[

t, t
ulvl(wzz)

u, € F3, Ve € F3, L) e F4. There must exist four linearly independent

vectors among the wl,(2=1,...,q), as M'(z) depends on four independent

parameters. Assume Wis Wy, Wi, W, are linearly independent.

4
There exists z° with zi # 0 such that:

For this choice of z°,

q
M'(z°) = I uzv;(w:z°)

=4

Since zi # 0, M'(z°) is of rank three and therefore 3 < q - 3 which

implies q > 6.

Proof of Theorem 4 Suppose that there is an algorithm computing

the quaternion product with only 7 active multiplications. By

Lemma 1 there is another algorithm requiring only 7 in which 6né
active multiplication is by X and one is by Y- Setting Xy =vy1 =0
in this algorithm produces a new algorithm computing the product of
xéi + x3j + x4k and yzi + y3j + y4k with only 5 active multipIidationg.

By Lemma 4 this is impossible.

The algorithms given in sections 4 and 5 attain the lower
bound given by Theorem 4. Thus, the complexity of the quaternion

product in the general case is exactly eight. Combined with Theorem
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2 this fact can be restated in the following way:

Corollary The tensor rank of

rzl z, 2z, 2z,
. M(z) =% z, -z z, -~z
| |
% 2y =2, -z ziJ
24 23 "2; "2

is eight.

7. Lower Bound : Commutative Case

Theorem 5 Any algorithm which computes the quaternion product
over commutative rings using scalars from F requires at least

seven active multiplications.

Proof 1ILet g be the minimum number of active multiplications

required. Theorem 3 states that g is the minimum tensor rank of

any N(z) satisfying
f 0 M(zﬂ
[

N(z) + N(2)E = | ' (1)
Mzt o )

(M(z) is defined in section 4). Then we can write

Q

N(z) = I uzvz(wzz), u, € Fa, vy € Fs, w, € F4 for 2=1,...,q9. (2)

L

The matrix N(z) depends on four independent parameters

ZyreeerZy (from (1)). Therefore we must have four vectors W
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linearly independent in the expression (2) for N(z). Assume wl,

Wor Wy and w, are linearly independent. The components of z can

be assigned values from F to satisfy the following system of

equations: -
wyz =0 wtz =0 w,z =0
’ 2 ’ 3 .
Let z° € F4 be a nontrivial solution of this system (z° # 0):
zot = [zo 29 z2° 2°]
1 %2 %3.74°°

For this choice of z,

_ t,. t
N(z°) = “1V2(Wgz°)-

I ~Q

=4

N(z°) is expressed as a linear combination of g-3 rank-one matrices,

therefore
Rank (N(z°)) < g-3.
But we have also: 1
i’ 0 M(z°)
N(z°) + N(z°)F =
t
M(z°) 0 .
J
A brief calculation shows that
geem(z)) = (2% + 2p? + @p? + @phH

From the fact that z° is an element of F4 not equal to zero and

assumption (*), we deduce that det(M(z°)) # 0, and therefore

Rank (N(z°) + N(2°)t) = 8.
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But Rank (N(z°) + N(z°)%) < 2 Rank(N(z°)) < 2 (q-3),
50 8 < 2 (g-3) implies q > 7.

8. A Counterexample

The proofs of the lower bounds in both the general and
commutative cases depend on the assumption (*) that the equation,
a2 + b2 + c2 + d2 = 0, has no nontrivial solutions in F. For
example, (*) does not hold if F is the complex numbers. The
following example will show that Theorem 4 is not true with this
choice of F.

With the real quaternion X = X, + xzi + x3j + x4k we can

associate the following 2x2 complex matrix.

1 % X =

2 % X

This mapping is an isomorphism between quaternions and the set of
matrices of this type. The product of two quaternions can be
viewed as the product of two such complex matrices. From the
result of Strassen [1], tﬁis product can be performed in seven
complex multiplications (in fact, six complex and one real
muliiplication).

The same construction yields an algorithm for multiplying

quaternions over an arbitrary ring with seven "complex" multiplications,
g P P

where a "complex" multiplication means the construction of



(xlyl - xzyz) + (xly2 + xzyl)l from Xy + x,1 and ¥y + ¥oi, and

X and y, are ring elements.

1 *2r Yy
9. Conclusion

For the general case the complexity of the gquaternion product
is exactly eight. For the commutative case the complexity is either
seven or eight. No algorithm is known which uses commutativity to
advantage in computing the quaternion pro?uct. Such an algorithm
or a proof that none exists would eliminate the gap between the -
upper and lower bounds in the commutative case.

It has recently come to the authors' attention that some
of the results reported here have been previously obtained. The
upper boﬁnd of section 4 appears in Dobkin [11]. The lower bound

for the general case has been proven by de Groote [12].
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