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Accurately predicting the effects of correlations caused by strong interactions

between electrons represents one of the key unsolved challenges in quantum

chemistry. This thesis details theoretical developments addressing two aspects

of this challenge. First, advances in Canonical Transformation (CT) theory

address the task of describing weak interactions between the chemically ac-

tive valence electrons and the chemically inert core electrons when the valence

electrons are strongly correlated. Second, new methodologies for Jastrow fac-

tor wavefunctions are explored in an attempt to describe strong interactions

amongst the valence electrons.

In its original form, CT theory suffered from poorly understood numerical

instabilities in strongly interacting systems and poor accuracy relative to cou-

pled cluster theory in weakly interacting systems. Here the numeric issues are

identified as consequences of CT theory’s central approximation and shown to

be similar to the intruder states of many-body perturbation theory. It is demon-

strated that these instabilities can be avoided by placing particular restrictions

on the theory’s degrees of freedom. In weakly interacting systems, we show

that using a quadratic, rather than linear, commutator approximation improves

accuracy, and that the accuracy in any system can be improved by making use of

the system’s 3-body reduced density matrix. These improvements are demon-

strated in a variety of systems, including N2, H2O, NiO, and free base porphin.

Jastrow factor wavefunctions have traditionally been handled using quan-



tum Monte Carlo techniques such as variational Monte Carlo (VMC). Here we

explore how VMC can be made to accommodate the unconventionally large

numbers of variational parameters present in many-body Jastrow factors and

show that the stochastic reconfiguration algorithm can be thus improved by

employing the method of conjugate gradients to solve its central linear equa-

tion. In addition to extending the reach of VMC, we have also developed non-

stochastic methods for working with Jastrow factor wavefunctions that do not

rely on random sampling. These methods, similar in design to those used with

the coupled cluster wavefunction, produce energies very close to those of VMC

in applications to the Heisenberg, spinless Hubbard, and full Hubbard model

Hamiltonians.
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CHAPTER 1

INTRODUCTION

The ability to predict the behavior of physical systems from first principles is

the ultimate test of scientific understanding. The first step towards meeting this

challenge is the cyclical process of making observations and refining hypothe-

ses. Eventually, these hypotheses will be sufficiently accurate to form a theory,

at which point the system is often regarded as understood barring any new or

unexpected observations. However, distilling the rules governing the system’s

behavior into a coherent theory is not always sufficient to make accurate pre-

dictions about the system, and so the discovery of the correct theory does not

necessarily represent a complete understanding. This state of affairs is exempli-

fied in quantum chemistry, where the rules governing electron behavior have

been clear for over half a century but have not yet yielded an entirely satisfac-

tory mechanism for predicting the behavior of molecules. In order to effect a

complete understanding of quantum chemistry it is therefore necessary to con-

struct such a mechanism, which represents the central task in a field known as

electronic structure theory.

Electronic structure theory is the theory of electron behavior in molecules

and materials. It can be seen as one corner of the larger realm of quantum

physics, in which relativistic effects are ignored due to the relatively slow mo-

tion of chemically relevant electrons and atomic nuclei are assumed to be so

massive that they can be treated classically. These approximations reduce the

mathematics of quantum physics into the non-relativistic Schrödinger equation

under the Born-Oppenheimer approximation, which is the foundation upon

which electronic structure theory is built. The only variables in this equation
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are the coordinates of the electrons, hence the name electronic structure theory.

The Hamiltonian operator defining the electronic Schrödinger equation consists

of three components: (a) the kinetic energy operator for each electron, (b) the

coulombic attraction between electrons and the nuclei, and (c) the coulombic

repulsion between each pair of electrons. This final component of the Hamil-

tonian creates non-trivial many-body correlations in the electronic wavefunc-

tion and prevents analytic solutions to the Schrödinger equation for all but the

simplest systems. For systems containing significant correlations between elec-

trons, which include high-temperature superconductors, transition metal cata-

lysts, and some light harvesting molecules, even numeric techniques are cur-

rently unable to derive accurate predictions from the Schrödinger equation.

Fundamentally, it is the interactions between electrons in the form of the

coulomb repulsion that prevents an exact solution to the Schrödinger equation.

If these interactions were not present, or if they could be replaced by an av-

erage in the form of a repulsive background potential, then the wavefunction

would be exactly equal to an antisymmetrized product of single-electron wave-

functions known as a Slater determinant. These one-particle wavefunctions are

the ubiquitous orbitals found in chemistry textbooks. In molecular orbital the-

ory, the familiar procedure of creating molecular orbitals through linear com-

binations of atomic orbitals and then filling them with electrons in the order of

increasing energy, the wavefunction is implicitly assumed to be a Slater deter-

minant. Thus molecular orbital theory, and with it a large fraction of chemists’

understanding of electronic structure, derives directly from the assumption that

electrons can be approximated as non-interacting particles by replacing their

coulomb repulsions by some average electrostatic potential.
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Is this view valid? From one perspective, the assumption of non-interacting

electrons seems absurd. As a thought experiment, consider the probability den-

sity for spin-down electrons in a molecule if a spin-up electron has been fixed

at some arbitrary point in space. We expect that the probability of finding spin-

down electrons in the vicinity of the spin-up electron will be suppressed due to

coulombic repulsion, and indeed this is what occurs in nature. This suppres-

sion represents a correlation between electrons. However, one can show that in

a Slater determinant, there is no correlation between the positions of electrons

with opposite spin. Thus this wavefunction will show no suppression of prob-

ability density in the vicinity of the fixed electron, which is clearly incorrect

and casts doubt on the validity of molecular orbital theory and by extension

the chemists’ view of electron behavior. However, the success of molecular or-

bital theory in providing qualitative explanations for many chemical phenom-

ena, such as the all-important formation of chemical bonds, testifies that there

must be something to the notion that electrons can be approximated as non-

interacting particles.

The resolution to this riddle lies in the relative importance of the three com-

ponents of the electronic Hamiltonian. In a molecule at equilibrium, the kinetic

energy and the strength of the coulombic attraction to the nuclei are so much

more favorable in the bonding orbitals than in the anti-bonding orbitals that

these two effects overwhelm the repulsive interactions between electrons and

yield a wavefunction that for qualitative purposes behaves as if the electrons did

not interact with each other at all. Put another way, the energetic separation be-

tween the highest occupied and lowest unoccupied orbital (the HOMO/LUMO

gap) is often so large that any coulombic repulsion created by doubly occupy-

ing the bonding orbitals is negligible compared to the cost of occupying the
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LUMO, and so the electrons fill the orbitals according to the Aufbau principle

with no regard for electron-electron interactions. The electrons are, however,

indistinguishable fermions and thus obey Fermi statistics. The result, for a large

HOMO/LUMO gap, is a wavefunction in which the orbitals below the LUMO

are placed in a Slater determinant, which creates only the correlations neces-

sary to satisfy Fermi statistics and neglects all other correlations between the

electrons. The exact wavefunction could be written as a superposition of all

possible Slater determinants (i.e. also those with other choices of which orbitals

the electrons occupy), but for systems with a large HOMO/LUMO gap the only

determinant in the superposition with any significant weight is the Aufbau de-

terminant. Thus for most molecules at equilibrium, where the bonding and anti-

bonding orbitals are well separated in energy, the Slater determinant approxi-

mation in which electrons behave as non-interacting fermions is qualitatively

correct.

In general, however, the interactions between electrons and the correlations

they produce cannot be neglected. At the very least, making quantitatively ac-

curate predictions about molecular properties requires the inclusion of the cor-

relations that suppress the probability of opposite-spin electrons coming near

one another (same-spin electrons are kept apart automatically by the Pauli ex-

clusion principle arising from Fermi statistics). As we have seen, these correla-

tions represent a small correction for molecules with large HOMO/LUMO gaps,

and so in these cases it is appropriate and accurate to include them through per-

turbation theory. One can say that these systems have a simplifying structure

(specifically the large HOMO/LUMO gap) that allows their properties to be

teased out of the Schrödinger equation through the use of a Slater determinant

wavefunction. The pursuit of accurate predictions for the behavior of other sys-
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tems can likewise be framed as a search for simplifying structures that can be

exploited to extract predictions from the Schrödinger equation. Two types of

simplifying structures that are commonly exploited in electronic structure the-

ory are energetic structure and spatial structure.

Most traditional approaches in quantum chemistry take advantage of an

underlying energetic order present in the true wavefunction. In the case of

molecular orbital theory and large HOMO/LUMO gaps, this order arises from

the dominance of the kinetic energy and electron-nuclear attractions over the

electron-electron repulsions, which forces the wavefunction to abide by an en-

ergetic ordering that dictates the occupation of the molecular orbitals. Improve-

ments to this approach are also based on energetic structure. For example, in

practical applications of perturbation theory the perturbed wavefunction is usu-

ally written as a linear combination of the Aufbau determinant and all determi-

nants that can be produced by single and double orbital replacements. While

the exact wavefunction is a superposition of all possible determinants, the large

energetic separation between the bonding and anti-bonding orbitals means that

the more electrons that are excited into anti-bonding orbitals, the less energeti-

cally favorable and therefore less important the determinant will be. This rea-

soning is sound for molecules with large HOMO/LUMO gaps, and perturba-

tion theory with single and double replacements typically captures most of the

effects of electron correlation in such systems.

Another popular approach based on exploiting energetic structure that is

more accurate than molecular orbital theory is the use of an active space. In

quantum chemistry, the active space is typically defined as all of a system’s

valence electrons and orbitals. For example, the active space for the water
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molecule could consist of the hydrogen 1s and oxygen 2s and 2p orbitals and

the eight electrons that are left over after filling the oxygen 1s orbital, which is

called the core. In the active space approach, the wavefunction is not assumed

to be dominated by a single determinant, but rather to consist of a superposition

of determinants in which the core orbitals are always present and the remaining

orbitals are chosen in all possible ways from the active orbitals. This approach

exploits the energetic structure deriving from large energy differences between

atomic orbitals of different principle quantum numbers. In molecular orbital

theory, it was assumed that the behavior of all the electrons was dominated

by kinetic energy and electron-nuclear attraction, while in the active space ap-

proach only the core electrons are assumed to act in this way. This distinction is

critical, as it allows for accurate descriptions of bond dissociation, where there

is no longer a large energetic separation between bonding and anti-bonding or-

bitals to force the electrons into a single determinant. The energetic separation

between principle quantum numbers is less dependent on the chemical envi-

ronment, and so the active space approach is more generally applicable than

molecular orbital theory.

The small correlations between the active and core electrons are neglected in

the active space wavefunction and usually do not affect the qualitative behavior

of a molecule, but they must be accounted for if quantitatively accurate predic-

tions are to be made. Perturbation theory is again a natural approach given

that the correlations in question are small. However, the zeroth order wave-

function is now much more complicated than a single Slater determinant, and

this complexity limits the applicability of perturbation theory. Unlike a single

Slater determinant, the linear combination of determinants that constitutes the

active space wavefunction contains non-trivial correlations between the valence
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electrons. Thus the probability of simultaneously finding two electrons in two

specific positions is no longer a product of two independent probabilities but a

non-separable function of the two positions. The same non-separability is true

for three and higher particle number probabilities as well. A straightforward

application of perturbation theory to an active space wavefunction requires the

use of the probability functions for one, two, and three electrons. The fact that

these functions do not factorize into one particle functions makes perturbation

theory (and most other theories that seek to correct for small correlations be-

tween core and active electrons) prohibitively complex for molecules with more

than about 20 active valence electrons.

One recent approach to capture the effects of core-active correlations more ef-

ficiently is Canonical Transformation theory, which attempts to approximate the

troublesome 3-particle probabilities as separable products of 1- and 2-particle

probabilities. This approach is a compromise between the exact approach, in

which many-particle probabilities do not factorize, and the independent parti-

cle approximation, in which they factorize into products of 1-particle probabil-

ities. The theory is written in terms of fermionic quasi-particles that have no

correlations between the core and active particles, and thus can be represented

exactly using an active space wavefunction. In order for the properties of the

quasi-particle system to match those of the electronic system, many-body in-

teractions must be introduced into the quasi-particle Hamiltonian. These inter-

actions are evoked through a unitary (canonical) transformation between elec-

trons and quasi-particles that maps the electronic Hamiltonian onto the quasi-

particle Hamiltonian. To make the theory computationally efficient, the quasi-

particle Hamiltonian is then simplified by approximating the many-body inter-

actions as products of one and two-body interactions, a process that is closely
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related to the factorization of many-body probability functions. While early

work on Canonical Transformation theory established that it is capable of pro-

viding accurate predictions for systems beyond the reach of more traditional ap-

proaches, the original theory was encumbered with numeric difficulties whose

origins were not clear. More recently, these subtle difficulties have been shown

to arise directly from the theory’s central approximation and to correspond

broadly with the nefarious intruder states of perturbation theory. Techniques

for stabilizing the method’s numerics have since been substantially improved,

allowing for the theory to be applied to even larger and more complicated sys-

tems than its original design allowed.

Although energetic structure is more commonly exploited, a number of ap-

proaches to extracting predictions from the Schrödinger equation assume that

the wavefunction exhibits a spatial structure instead. One approach has been to

assume the opposite extreme from molecular orbital theory: that the coulomb

repulsion between electrons dominates over the kinetic energy and electron-

nuclear attraction. In a system where this is true, the electrons will localize into

different regions of space in order to minimize their repulsion from each other,

which creates a wavefunction with significant spatial structure. An example

of this localization can be seen when the hydrogen molecule is dissociated: the

two nuclei are separated and one electron localizes on each, since the electron re-

pulsion created from placing both electrons between the nuclei outweighs any

kinetic or nuclear attraction energy benefits. Wavefunctions known as tensor

networks have been developed in the solid state physics and quantum infor-

mation communities to address systems with this type of spatial structure. The

most successful of these wavefunctions, the matrix product state of density ma-

trix renormalization group (DMRG) theory, has also been applied to quantum
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chemistry and has proven remarkably effective in systems where the assump-

tions of molecular orbital theory break down. The DMRG algorithm is able to

take special advantage of localization in one spatial dimensional, but is limited

when a system extends in two or three dimensions.

Tensor network methods do include generalizations of the matrix product

state into more than one dimension, although the topology of these general-

izations is fundamentally more complex and precludes the simplifications that

make the DRMG algorithm so efficient. Methods such as the pair entangled

product state and the multiscale renormalization group ansatz have nonethe-

less been developed for working with two-dimensional tensor networks, but

these methods have so far been too expensive for use in quantum chemistry,

with cost-scalings as high as the twelfth power of the system size. For compar-

ison, the cost of the DMRG algorithm scales as the third power of the system

size. A relatively simple ansatz, referred to in this thesis as the correlator prod-

uct state (CPS), has recently been proposed as an alternative to traditional ten-

sor networks for exploiting local structure in the wavefunction. Rather than a

tensor contraction algorithm, which forms the basis for most other tensor net-

work methods, correlator product states rely on Monte Carlo methods for their

optimization and the evaluation of expectation values. Together, these vari-

ous tensor network wavefunctions represent attempts to exploit localized spa-

tial structure, which will occur when electron-electron repulsion dominates the

other terms in the Hamiltonian.

Naturally, one would like a general method that performs well regardless

of what type of underlying structure the Hamiltonian imparts on the system’s

wavefunction. One way to approach this ideal is by combining traditional
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quantum chemistry wavefunctions with tensor networks. The most straight-

forward such combination has been around for some time and is the Jastrow-

Slater wavefunction, in which a Slater determinant is modified by applying Jas-

trow factors to penalize spatial configurations in which electrons come too close

to one another. These Jastrow factors have traditionally been functions of the

coordinates of just two electrons, but if they are generalized to functions of mul-

tiple electrons’ coordinates, they correspond directly to the correlators in the

correlator product state. One way forward is therefore to combine the correla-

tor product state, which is designed to efficiently encode spatial structure, with

quantum chemistry wavefunctions capable of exploiting energetic structure.

While Jastrow factor wavefunctions have traditionally been optimized using

variational Monte Carlo techniques, one must be careful when generalizing to

many-body Jastrow factors due to the large increase in the number of wave-

function parameters caused by this generalization. Variational Monte Carlo

uses stochastic sampling to construct the energy gradient and possibly the Hes-

sian matrix with respect to the wavefunction’s variables. However, many-body

Jastrow factors can contain millions of variables, which makes the explicit con-

struction of matrices like the Hessian infeasible and gradient-only techniques

such as steepest descent less efficient. Recent research has addressed this dif-

ficulty in two ways. First, the approach taken by coupled cluster theory, in

which the full Schrödinger equation is projected onto a small but physically

important subsection of Hilbert space, was applied to create an optimization

algorithm that does not rely on stochastic Monte Carlo techniques. This ap-

proach was shown to be highly efficient when the many-body Jastrow factors

are local and modest in size. Second, the variational Monte Carlo technique

known as stochastic reconfiguration was improved in order to handle much
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larger sets of variational parameters. This improvement was achieved by solv-

ing the method’s central linear equation iteratively using the conjugate gradient

algorithm in order to avoid explicitly constructing the respective matrix, which

for many-body Jastrow factors is too large to store on a computer. Together,

these new optimization strategies have allowed for the successful evaluation of

generalized Jastrow factor wavefunctions, delivering a superior ability to simul-

taneously capture energetic and spatial structure.

As its title suggests, this thesis is focused on capturing the effects of electron

correlation on quantum chemistry. This topic is of course much too broad to

cover exhaustively, and the discussion will therefore be limited to two particu-

lar examples of how correlation is accounted for. In Chapter 2, we will explore

Canonical Transformation theory and how to account for the small correlations

between core and active electrons that are essential in making accurate quantita-

tive predictions about molecular properties. In Chapter 3, we will consider the

many-body generalization of Jastrow factor wavefunctions in order to describe

the correlations between valence electrons that alter the qualitative structure of

the electronic wavefunction. Together, these chapters will cover both halves of

the traditional division of correlation in quantum chemistry.
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CHAPTER 2

CANONICAL TRANSFORMATION THEORY

2.1 Introduction

In this chapter we shall explore Canonical Transformation (CT) theory. The pre-

sentation is of CT theory as a whole, with the contributions of the current au-

thor interspersed throughout the discussion. This approach is taken to provide

a holistic perspective of the quadratic commutator approximation, the use of

the 3-body RDM, automated derivations, the role of intruder states, and the

use of strongly contracted excitations, which together represent the main con-

tributions of the current author. We begin with a relatively broad overview of

the difficulty of treating dynamic electron correlation in systems with strongly

interacting valence electrons (e.g. multi-reference systems), followed by the mo-

tivation behind CT theory and its connections to earlier work. We then proceed

to develop the theory in full, exploring its construction as both a theory and a

working computational method. Finally, we survey numerical results and com-

pare CT theory to a number of other theories used for multi-reference dynamic

correlation.

2.1.1 Dynamic correlation in multi-reference systems

Although accurate descriptions of multi-reference systems’ strongly interacting

valence electrons are by no means trivial and represent an interesting challenge

in their own right (see Chapter 3), such pure-valence descriptions are not suffi-

cient to achieve a quantitatively accurate description of chemical systems. In the
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context of quantum chemistry, quantitative accuracy is typically considered to

be about 1 kcal mol−1 for reaction energies and 0.1 eV for excitation energies. To

reaching these exacting accuracies it is critical to capture the electrons’ dynamic

correlation, which requires a much larger orbital space than the valence-only

problem. Indeed, both atomic orbitals with high angular momentum and dif-

fuse Rydberg-like functions are necessary, a requirement that can be understood

in several ways. First, the shapes of orbitals should depend on their occupan-

cies: in a configuration where a valence orbital is doubly occupied, we would

expect electrons to sit in somewhat different orbits than in the case of single

occupancy, reflecting radial and angular correlations. Second, coulomb repul-

sion can lead to a small probability of electronic configurations with occupancy

of non-valence orbitals, so that electrons can better avoid each other. Third, it

takes a large number of Gaussian-type functions (quantum chemistry typically

uses a Gaussian-type rather than a Slater-type orbital basis) to approximate the

sharp wavefunction cusps that occur when two electrons coalesce. These kinds

of adjustments to the valence electronic structure constitute “dynamic” correla-

tion, which is not captured by either the Hartree-Fock wavefunction or valence-

only wavefunctions such as CASSCF. The quantitative description of electronic

structure therefore requires additional theoretical models for dynamic correla-

tion, which can be separated into two groups: those for single-reference systems

and those for multi-reference systems. As we shall see, multi-reference dynamic

correlation theories have so far been less successful than their single-reference

counterparts.

When the valence electronic structure is qualitatively captured by a single

electronic configuration, the description of dynamic correlation is well under-

stood. We shall refer to this limit as the single-reference dynamic correlation
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problem. Within a wavefunction setting, three common single-reference ap-

proaches include

• Møller-Plesset perturbation theory, a Rayleigh-Schrödinger perturbation

theory where the Fock operator is the zeroth order Hamiltonian [81]. The

perturbation series is usually truncated at second-order (MP2). MP2 cal-

culations have a formal computational scaling of n5 with the molecular

size n.

• Configuration interaction, a variational ansatz formed by a linear combi-

nation of configurations including excitations from the reference up to a

given excitation rank, typically singles and doubles replacements (CISD)

[81]. CISD is not size consistent and is not usually used without a size

consistency correction. Approximate size consistent CI theories can be ob-

tained in various ways, such as through the Davidson correction [55, 28],

or through the coupled-pair functional [1]. CISD has a formal computa-

tional scaling of n6 with molecular size.

• Coupled cluster theory, which uses an exponential form for the excitation

operator [81, 15]. Formally, coupled cluster theory sums many terms in

perturbation theory to infinite order, and most importantly all those terms

which are necessary for exact size consistency. The most common coupled

cluster theory uses singles and doubles excitation operators (CCSD) and

has an n6 computational scaling with molecular size.

Out of these three approaches for single-reference dynamic correlation, coupled

cluster theory has established itself as the most satisfactory, both formally and

in terms of numerical performance. It is sometimes referred to as the “gold-

standard” of dynamic correlation methods [15].

14



However, this thesis is concerned primarily with systems in which the va-

lence electrons interact strongly, which necessitates a multi-reference wavefunc-

tion description. We shall refer to the dynamic correlation in this limit as multi-

reference dynamic correlation. The process of including corrections for dynamic

correlation is now made much more complicated as one cannot exploit the many

simplifications that arise from a single-reference starting point. Nonetheless,

multi-reference analogues of the single-reference dynamic correlation theories

have been considered, including

• Multireference perturbation theory, such as the complete active space per-

turbation theory (CASPT) [5], multi-reference Møller-Plesset (MRMP) [44],

and n-electron valence perturbation theory (NEVPT) [6, 7]. These consti-

tute the most widely applied multi-reference dynamic correlation theories.

Unlike in the single-reference limit, some formulations of multi-reference

perturbation theory are not exactly size consistent. The computational

scaling of multi-reference perturbation theory depends on the specific for-

mulation, but is generally higher than Møller-Plesset theory, with a scaling

of at least n7 for the fully internally contracted variant.

• Multireference configuration interaction (MRCI) [19, 80, 85] with approx-

imate size consistency corrections (MRCI+Q) and averaged coupled pair

functionals (MRACPF, MRAQCC) [37, 82]. These are divided into two

types: internally contracted (the variational space is formed from excita-

tion operators acting on a single starting multi-reference wavefunction) or

externally contracted (the variational space is formed by excitations from

all determinants in the active space). The computational scalings are for-

mulation dependent but are typically n10 and en, respectively.

• Multireference coupled cluster theories (MRCC) [74]. There are many vari-
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ants of MRCC which reflects the mathematical difficulties in extending the

CC formalism beyond a single-reference starting point. In general, MRCC

theories have computational costs that are even higher than MRCI theory.

While there is much activity in this field, MRCC methods have yet to be

applied to realistic problems.

From this brief analysis, it is clear that the description of dynamic correlation

with multi-reference wavefunctions is much less satisfactory than in the single-

reference case. Because of this handicap, in certain situations using a multi-

reference (e.g. complete active space) description of the valence electrons - in

principle a more flexible theoretical framework - can lead to a poorer quan-

titative accuracy than a single-reference description. Consider, for example,

a chemical transformation where the electronic structure changes from single-

reference to multi-reference in character. A typical multi-reference description,

e.g. through CASPT2, obtains the static correlation of the active valence or-

bitals exactly (by virtue of the CASSCF treatment) but recovers only a small

portion of the dynamic correlation of the external orbitals. This is appropriate

when the pure-valence static correlation is larger than the external contribu-

tions, but in the single-reference limit all the correlation is dynamic, and the

external contributions may in fact be larger, given that there is no degeneracy in

the valence space and there are many more external orbitals. A single-reference

coupled cluster description provides a (perturbatively) high-order description

of dynamic correlation for all degrees of freedom. It is likely that in the single-

reference limit of the chemical transformation, the coupled cluster treatment

would capture a larger portion of the correlation energy than the CASPT2 de-

scription, unless a very large active space were to be used. We see that CASPT2

is, in essence, biased against the single-reference limit, due to the inadequate
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treatment of dynamic correlation. This problem has recently been demonstrated

in studies on the [Cu2O2]
2+ isomerization curve, where CASPT2 predicts an un-

physical energy minimum [26, 32, 77, 90]. Even when such behavior is not

of concern, multi-reference dynamic correlation theories are much more costly

than their single-reference counterparts, limiting their application to very small

systems. These various unsatisfactory aspects of existing multi-reference dy-

namic correlation theories clearly motivate the development of a new theoreti-

cal model.

2.1.2 Desirable features for a dynamic correlation theory

Before considering the specifics of canonical transformation theory, we should

first consider what features one desires in a multi-reference dynamic correlation

theory. Such a theory should

• be size consistent (to allow meaningful calculations on large systems),

• not bias the chemistry towards multi-reference electronic structure by un-

derestimating the dynamic correlation in single-reference settings,

• reduce in single-reference settings to a coupled-cluster like theory,

• have a reasonable scaling with system size, such as CCSD’s n6 scaling.

The canonical transformation theory of dynamical correlation is designed to ob-

tain these features. In particular, it

• uses an exponential excitation operator that preserves size consistency.
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• provides a coupled cluster-like description of dynamic correlation, guar-

anteeing an accurate description in single-reference systems.

• has a favorable computational scaling of n6 in the system size that is

achieved through the use of operator and cumulant decompositions.

2.1.3 Connections to earlier work

Canonical transformation theory derives from several earlier theoretical devel-

opments. The main ingredients of canonical transformation theory are (i) a

unitary exponential form for the dynamic correlation, (ii) operator and cumu-

lant decompositions to simplify the energy and amplitude equations, and (iii)

an emphasis on an effective Hamiltonian picture of the dynamic correlation.

The theory’s initial motivation came from White’s work on numerical canonical

transformations [86]. When rewritten in an appropriate form this can be seen

to contain both (i) and (iii) above, but without the systematic simplifications

presented by operator and cumulant decompositions. However, there are many

other developments in quantum chemistry with a direct connection to canonical

transformation theory, including

• Coupled cluster theory. While the exponential operator in ordinary CC

theory is not unitary, unitary variants of coupled cluster theory were

explored in a single-reference setting by Kutzelnigg [51, 52], Bartlett

[13, 84, 83], and Pal [73, 72]. Multireference unitary coupled cluster the-

ory was developed by Simons [10, 11, 46].

• Operator decompositions and the generalized Wick’s theorem, introduced

by Mukherjee and Kutzelnigg [63, 64, 53].
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• Density matrix and cumulant decompositions [25, 68, 58, 53, 54]. While

their most widespread use in conjunction with the density equation,

also known as the contracted Schrödinger equation [25, 68, 58], is quite

different from their use in canonical transformation theory, there is a

close connection to Kutzelnigg and Mukherjee’s irreducible contracted

Schrödinger equation theory [65] and the related anti-hermitian con-

tracted Schrödinger equation theory introduced by Mazziotti [59].

• There is much earlier work on effective Hamiltonians, including Freed’s

effective valence Hamiltonian theory [35], Kirtman and Hoffmann’s gen-

eralized van Vleck theories [49, 45], and the equation-of-motion coupled

cluster theory and symmetry-adapted cluster configuration interaction

theory [67, 38].

2.2 Constructing canonical transformation theory

2.2.1 Basic formalism

CT theory seeks to find the unitary transformation that maps a reference wave-

function |Ψ0〉 onto the true wavefunction |Ψ〉, as shown in Eq. (2.1).

|Ψ〉 = eA|Ψ0〉 (2.1)

The reference function is usually assumed to contain the correct static correla-

tion for the problem and thus the transformation operator eA is thought of as

introducing the dynamic correlation. The transformation in Eq. (2.1) is of the

coupled cluster form, but unlike in CC theory, CT theory is constructed in such

a way that the only information we require from the reference function is its

19



1- and 2-body reduced density matrices (RDMs). This allows CT theory to ef-

ficiently treat dynamic correlation not only for the Hartree-Fock reference but

also for multi-configurational references, such as GVB, CASSCF, and DMRG-

SCF wavefunctions. In singles and doubles CT, the unitary transformation is

built from the exponential of some combination of anti-symmetric single and

double excitation operators ô,

A = −A† =
∑

i

Ciôi. (2.2)

These operators can in principle be any set of one and two body excitation op-

erators (a†paq − a†qap) and (a†pa
†
qasar − a†ra

†
saqap). However, if we assume that the

reference |Ψ0〉 correctly describes the static correlation in some complete active

space, it is natural to consider only those excitations which change the occupan-

cies of at least 1 external (non-active) orbital. Denoting core orbitals by c, active

by a, and virtual by v, and using the notation ap
q = a†paq and apq

rs = a†pa
†
qasar, the

full set of possible singles and doubles excitations are given by the following, in

which all indices are implicitly summed over.

A = Aa1a2
c1c2

(aa1a2
c1c2

− ac1c2
a1a2

) + Aa1a2
a3c1

(aa1a2
a3c1

− aa3c1
a1a2

) core-active

+ Aa1
c1

(aa1
c1
− ac1

a1
) core-active

+ Av1v2
a1a2

(av1v2
a1a2

− aa1a2
v1v2

) + Aa3v1
a1a2

(aa3v1
a1a2

− aa1a2
a3v1

) virtual-active

+ Av1
a1

(av1
a1
− aa1

v1
) virtual-active (2.3)

+ Aa2v1
a1c1

(aa2v1
a1c1

− aa1c1
a2v1

) + Av1v2
a1c1

(av1v2
a1c1

− aa1c1
v1v2

) core-virtual-active

+ Aa1v1
c1c2

(aa1v1
c1c2

− ac1c2
a1v1

) core-virtual-active

+ Av1v2
c1c2

(av1v2
c1c2

− ac1c2
v1v2

) + Av1
c1

(av1
c1
− ac1

v1
) core-virtual

Note that each excitation operator (e.g. av1
a1

) must be accompanied by a de-

excitation operator (aa1
v1

) in order to make CT theory unitary. We will typically
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refer to the combined operators (av1
a1
−aa1

v1
) as excitation operators, but the reader

should remember that they are really anti-symmetrized excitation operators that

contain a de-excitation component. In practice, further restrictions of the oper-

ators are used to simplify their optimization (see Sec. 2.4).

Instead of solving the electronic Schrödinger equation in the direct form,

HeA|Ψ0〉 = EeA|Ψ0〉, (2.4)

CT theory works with a quasi-particle Schrödinger equation with an effective

Hamiltonian,

e−AHeA|Ψ0〉 = H̄|Ψ0〉 = E|Ψ0〉. (2.5)

Eq. (2.5) is interpreted as saying that there exists a reference function of quasi-

particles, interacting via the effective quasi-particle Hamiltonian H̄ , which has

the same energy as the original system of electrons interacting through the bare

Hamiltonian H . This canonical (unitary) transformation from electrons to quasi-

particles moves the complexity of the correlation problem from the wavefunc-

tion to the Hamiltonian. For electrons, the known Hamiltonian has a number

of integrals proportional to the fourth power of the number of electrons, while

the exact wavefunction (which must be determined) has a complexity in its de-

terminantal expansion that is exponential in the electron number. For quasi-

particles, the exact wavefunction |Ψ0〉 is the comparably simple reference wave-

function (which is known) while the unknown effective Hamiltonian has expo-

nential complexity. This complexity of the effective Hamiltonian is revealed by

the Baker-Campbell-Hausdorff (BCH) expansion,

H̄ = H + [H, A] +
1

2!
[[H, A], A] +

1

3!
[[[H, A], A], A] + . . . , (2.6)

where each commutator creates a successively higher particle rank operator. We

therefore see that the effective Hamiltonian can in general contain interactions
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between any number of quasi-particles (up to the maximum number present in

the system). In contrast, electrons only interact pairwise in the bare Hamilto-

nian.

So far in our development, the canonical transformation has only accom-

plished a transfer of complexity from the wavefunction to the Hamiltonian.

Where this conversion becomes useful is in devising approximations based on

our intuition about electrons and quasi-particles. For a sufficiently accurate

reference wavefunction, A will be small and electrons and quasi-particles will

have similar physics. We can therefore make an approximation that the quasi-

particles, like electrons, have no direct interactions more complex than pairwise

interactions, which ensures that the effective Hamiltonian H̄ has the same quar-

tic complexity as the original Hamiltonian. This is the defining approximation

of CT theory.

Naturally, we want to retain the effects of the higher than pairwise inter-

actions in some average way. We achieve this in the effective Hamiltonian by

approximating 3- and higher-body interactions (operators) with products of 1-

and 2-body interactions, a procedure we refer to as operator decomposition. In

a similar manner, the 3- and higher-body RDMs that arise in expectations values

of the effective Hamiltonian are approximated by neglecting 3- and higher-body

cumulants, which can be seen as the deviations from effective 2-body correla-

tions. We will delay discussion of the details of operator and cumulant decom-

positions until later sections. For now, the reader should understand that these

approximations retain the average effects of many-particle interactions and that

they are essential for achieving an n6 cost scaling.

How do we obtain the optimal canonical transformation to H̄? To answer
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this question, we return to the quasi-particle Schrödinger equation. Recalling

that A is parameterized in terms of a set of coefficients Ci, we require that these

satisfy Eq. (2.5) in a projective sense with respect to the first-order interact-

ing space {ôi|Ψ0〉}. This yields the coupled cluster style amplitude equations

〈Ψ0|ô†iH̄|Ψ0〉 = 0, which we rearrange to form the CT amplitude equations,

〈Ψ0|[H̄, ôi]|Ψ0〉 = 0, (2.7)

which take the form of generalized Brillouin conditions [50]. In practice, solving

these equations is not trivial and requires additional restrictions on the opera-

tors ôi, which we discuss in detail in Sec. 2.4.

Once the amplitude equations have been solved, the amplitude operator A

is used to construct the effective Hamiltonian using the BCH expansion, Eq.

(2.6), modified by operator decompositions as explained in later sections. The

CT energy is then defined by tracing the (approximate) effective integrals with

the reference function’s RDMs,

E = 〈Ψ0|H̄|Ψ0〉. (2.8)

To summarize, the CT energy is found by first solving Eq. (2.7) for the optimal

transformation, and then evaluating the trace of the effective Hamiltonian with

the reference wavefunction’s RDMs. By employing the operator and cumulant

decompositions, these steps may be completed in n6 time using only the ref-

erence function’s 1- and 2-body RDMs and the 1- and 2-body operators of the

electronic Hamiltonian. The details of how this is achieved are the subject of the

next several sections.
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2.2.2 Operator decomposition

As discussed above, the central approximation in CT theory is to replace the

quasi-particles’ effective Hamiltonian with an approximation containing only

1- and 2-body operators. Using Mukherjee and Kutzelnigg’s formalism of ex-

tended normal ordering (ENO) [63, 64, 53], it is possible to construct an approxi-

mation for a 3-body operator that has the same expectation value as the original

operator. Just as a traditionally normal ordered operator has a zero expectation

value with respect to the true vacuum, an ENO operator has a zero expectation

value with respect to a general (possibly multi-configurational) reference state.

In extended normal ordered theory, a 3-body operator may be written as the

sum of an ENO 3-body operator, a combination of ENO 1- and 2-body opera-

tors, and the expectation value of the original operator in the form of a 3-body

RDM element. This can be seen through the following definitions of the 1-, 2-,

and 3-body ENO operators ãp1
q1

, ãp1p2
q1q2

, ãp1p2p3
q1q2q3

, in which γ represents the reference

function’s RDMs, e.g. γp
q = 〈Ψ0|ap

q|Ψ0〉.

ãp1
q1

= ap1
q1
− γp1

q1
(2.9a)

ãp1p2
q1q2

= ap1p2
q1q2

−
∑

(−1)xγp1
q1

ãp2
q2
− γp1p2

q1q2
(2.9b)

ãp1p2p3
q1q2q3

= ap1p2p3
q1q2q3

−
∑

(−1)xγp1
q1

ãp2p3
q2q3

−
∑

(−1)xγp1p2
q1q2

ãp3
q3
− γp1p2p3

q1q2q3
(2.9c)

These equations make use of the notation
∑

(−1)xAp1p2...
q1q2...B

pkpk+1...
qkqk+1... . . ., which im-

plies that there is one term for each unique partitioning of the indices among

the objects (A, B, . . .) in which pi are kept on top and qi on bottom. For each

permutation of the indices from their original positions, a factor of (−1) is ap-

plied. (See Ref. [69] for some examples of this rule.) We recognize that the 3-

body ENO operator represents 3-body fluctuations from the operator’s average

1- and 2-particle like behavior, represented by the RDM element and the 1- and
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2-body ENO operators. If the final wavefunction is close to the reference func-

tion (which is our working assumption in CT theory), we hope that the effect

of neglecting these 3-body fluctuations is small as their expectation value with

respect to the reference is zero. Thus we may approximate a 3-body operator by

neglecting its 3-body ENO component as follows,

ap1p2p3
q1q2q3

≈
∑

(−1)xγp1
q1

ãp2p3
q2q3

+
∑

(−1)xγp1p2
q1q2

ãp3
q3

+ γp1p2p3
q1q2q3

. (2.10)

Now only constants and 1- and 2-body operators remain, as originally desired.

This decomposition will be used in order to create efficient approximations to

the BCH expansion and amplitude equations. Before we do so, however, we

must deal with the remaining 3-body RDM elements, which must be removed

if we wish to achieve an n6 cost scaling.

2.2.3 Cumulant decomposition

So far, our commutator approximation requires the use of the reference func-

tion’s 3-body RDM. In systems with large numbers of strongly interacting va-

lence electrons, the reference wavefunction’s 3-body RDM is not always readily

available. we would like to limit ourselves to using only the reference’s 1- and

2-body RDMs. To avoid using it and to achieve n6 cost scaling, we turn to the

theory of density matrix cumulants, [25, 54, 68] which represent the irreducible

correlations of a given particle rank present in the RDMs. If n-body interactions

are unimportant, then neglecting the n-body cumulant creates a reasonable ap-

proximation for the n-body RDM consisting of antisymmetric products of lower

particle rank RDMs. This approximation technique has been most widely used

in contracted Schrödinger equation (CSE) theories [58, 23, 66, 25, 59] where the

25



1- and 2-body RDMs are optimized directly and the 3- and possibly 4-body

RDMs are approximated by neglecting the 3- and 4-body cumulants. In CT the-

ory, we neglect the 3-body cumulant in the same manner, reducing the 3-body

RDM that arises from the 3-body operator decomposition to a collection of an-

tisymmetric products of 1- and 2-body RDMs. Therefore, the approximation of

the 3-body operator shown in Eq. (2.10) becomes [69]

(
ap1p2p3

q1q2q3

)
1,2

=
∑

(−1)xγp1
q1

ap2p3
q2q3

( 9 terms)

+
∑

(−1)xγp1p2
q1q2

ap3
q3

( 9 terms)

−2
∑

(−1)xγp1
q1

γp2
q2

ap3
q3

(18 terms) (2.11)

−
∑

(−1)xγp1
q1

γp2p3
q2q3

( 9 terms)

+4
∑

(−1)xγp1
q1

γp2
q2

γp3
q3

, ( 6 terms)

where the number of terms in each sum is given at the right. In this thesis we

will make extensive use of the notation X1,2 to denote the approximation of X

in which all 3- and higher-body cumulants and ENO operators have been ne-

glected. This decomposition now allows us to approximate any 3-body operator

as a sum of 0-, 1-, and 2-body operators using only the 1- and 2-body RDMs of

the reference function. The analogous approximation for spin free operators

can be arrived at in the same manner by neglecting the spin free 3-body ENO

operator and cumulant.

While the use of cumulants in CT theory is similar to that in CSE theory,

there are some important differences that help CT theory avoid common pit-

falls associated with CSE methods. One such issue is the dependence of N-

representability error in the approximated 3-body RDM on basis set size, as

explored by Harris [41] and Herbert [43]. As opposed to CSE methods, which

approximate the final wavefunction’s 3-body RDM in the entire orbital space,
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CT theory approximates only the reference wavefunction’s 3-body RDM in the

active space. This greatly reduces the problem of basis set dependence, as the

reference wavefunction’s active space RDMs change little with the basis set. In-

deed, Yanai and Chan [89] showed that CT theory’s accuracy is not affected

when changing from a double- to triple-zeta basis set in the nitrogen dimer.

An additional difference from CSE methods is that CT theory optimizes an ex-

citation operator (as in CC theory) that can modify the active space correla-

tion only indirectly via its coupling to the external space, rather than the active

space RDMs directly, as is done in CSE. It is therefore reasonable to expect N-

representability problems to be less prevalent in CT theory, and indeed this is

found to be the case in practice.

2.2.4 An efficient commutator approximation

Our strategy for simplifying the equations of CT theory will be to replace the

commutator [H, A] with the approximation [H, A]1,2 , in which we have decom-

posed all 3-body operators using Eq. (2.11). The upshot is that [H, A]1,2 contains

only 0-, 1-, and 2-body operators and can be evaluated in n6 time. We will now

take advantage of this commutator approximation by inserting it into the BCH

expansion and amplitude equations. If we apply our approximation to every

commutator in Eq. (2.6), we will have

H̄ ≈ H + [H, A]1,2 +
1

2!
[[H, A]1,2 , A]1,2 +

1

3!
[[[H, A]1,2 , A]1,2 , A]1,2 + . . . . (2.12)

Notice that this approximate expansion can be evaluated recursively by reusing

the result of each term when evaluating the next higher term in the series.

Specifically, if we let H̄(n) represent the approximation to the nth term in the
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expansion, then we have the recursive formula H̄(n) = 1
n
[H̄(n−1), A]1,2 . The total

effective Hamiltonian is then approximated as

H̄ ≈
∞∑

n=0

H̄(n), (2.13)

with H̄(0) equal to the unmodified electronic Hamiltonian H . While this sum is

formally infinite, the amplitude operator A is assumed to be small and in prac-

tice the terms decay quickly enough that only a finite number need to be eval-

uated (typically 8 to 10 for a precision of 10−9 Hartrees). As each approximate

commutator evaluation takes n6 time, the entire evaluation of the approximate

effective Hamiltonian using Eq. (2.13) has a cost scaling of n6. With a 1- and

2-body approximation to the effective Hamiltonian now in hand, the amplitude

equations can be evaluated in n6 time as well by approximating the commutator

in Eq. (2.7) as [H̄, ôi]1,2 . Thus by a recursive application of the commutator ap-

proximation we see that the working equations of CT theory can be evaluated

in n6 time using only the 1- and 2-body RDMs of the reference wavefunction

and the 1- and 2-body operators of the bare electronic Hamiltonian.

2.2.5 The quadratic commutator approximation

A natural question when studying CT theory is whether a superior operator de-

composition exists. One may expect the recursive use of the 3-body operator

decomposition in Eq. (2.11) to produce additional error beyond that of the de-

composition itself, leading one to wonder if a quadratic commutator approxima-

tion, in which the decomposition is delayed until after the second commutator,

would be more accurate. This approximation could be denoted by [[H, A], A]1,2 ,

where we decompose both the 3- and 4-body operators resulting from the dou-
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ble commutator into 1- and 2-body operators. The hope is that by delaying the

decomposition error to a higher order in A, the effect on the CT energy would

be reduced. Testing this hypothesis requires developing a 4-body operator de-

composition akin to Eq. (2.11), which we will arrive at in the same way. If one

writes a 4-body operator as a sum of 1-, 2-, 3-, and 4-body ENO operators and

a 4-body RDM (which involves no approximation) then the natural approach

would be to neglect the 3- and 4-body ENO operators and the 3- and 4-body

cumulants. Doing so results in the following decomposition [69]

(
ap1p2p3p4

q1q2q3q4

)
1,2

=
∑

(−1)xγp1p2
q1q2

ap3p4
q3q4

(36 terms)

−2
∑

(−1)xγp1
q1

γp2
q2

γp3
q3

ap4
q4

(96 terms) (2.14)

−
∑

(−1)xγp1p2
q1q2

γp3p4
q3q4

(18 terms)

+6
∑

(−1)xγp1
q1

γp2
q2

γp3
q3

γp4
q4

(24 terms),

which we see is significantly more complex than the 3-body operator decom-

position of Eq. (2.11). Nonetheless, one may proceed by approximating all 3-

body operators resulting from [[H, A], A] using Eq. (2.11) and all 4-body oper-

ators using Eq. (2.14), which defines the quadratic commutator approximation

[[H, A], A]1,2 .

Applying the quadratic commutator approximation to the BCH expansion is

not as straightforward as with its linear counterpart. Our general strategy will

be to delay as far as possible the operator decompositions to higher orders of A,

in the hopes that increasing orders of A (which we assume is small) will miti-

gate any decomposition error. Following this strategy results in the following
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approximate BCH expansion,

H̄ ≈ H + [H, A]1,2 +
1

2!
[[H, A], A]1,2 +

1

3!
[[[H, A], A]1,2 , A]1,2

+
1

4!
[[[[H, A], A]1,2 , A], A]1,2 + . . . (2.15)

where we have employed the linear commutator approximation to deal with

terms having an odd power of A. We must also modify the approximation to the

amplitude equations in order to benefit from using the quadratic commutator.

By substituting the BCH expansion into Eq. (2.7) and delaying decompositions

to the highest possible order in A, we arrive at the following modified amplitude

equations,

0 = 〈[H, ôi]1,2〉+ 〈[[H, A], ôi]1,2〉+
1

2!
〈[[[H, A], A]1,2 , ôi]1,2〉

+
1

3!
〈[[[[H, A], A]1,2 , A], ôi]1,2〉 (2.16)

+
1

4!
〈[[[[[H, A], A]1,2 , A], A]1,2 , ôi]1,2〉

+ . . . ,

where we have used the notation 〈X〉 as a shorthand for 〈Ψ0|X|Ψ0〉. As with

their linear counterparts, the quadratic approximations in Eqs. (2.15) and (2.16)

can be evaluated recursively, although the recursion is not as simple as the one

from Eq. (2.13). Somewhat surprisingly, the quadratic commutator approxima-

tion [[H, A], A]1,2 has an evaluation cost that scales as n6, although the num-

ber of tensor contractions involved is far higher than for the linear commutator

[H, A]1,2 (see Sec. 2.2.7). Thus the cost of quadratic CT theory (denoted QCTSD

when using singles and doubles) is only a constant factor higher than that of

linear CT theory (denoted LCTSD).

One still must answer the question of whether QCTSD delivers superior ac-

curacy over LCTSD. We shall see in our results that the relative accuracy of the
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two methods is system dependent, and that for strongly multi-reference sys-

tems QCTSD does not improve on LCTSD and therefore is probably not worth

the extra cost. Furthermore, the use of the quadratic commutator does not re-

move the intruder states that arise when solving the CT amplitude equations,

which was is some senses the primary motivation behind the development of

QCTSD. For more on the intruder state problem, the reader is referred to Sec.

2.4. In single-reference systems QCTSD is clearly superior to LCTSD, as pre-

dicted in the perturbative analysis of Sec. 2.3.2. Specifically, QCTSD is accurate

to the same order of perturbation theory as coupled cluster with singles in dou-

bles (CCSD), while LCTSD is accurate to one lower order in the perturbation.

Thus with QCTSD, we can realize the goal that CT theory reduces to something

comparable to coupled cluster theory in single-reference systems.

2.2.6 Incorporating the 3-body RDM

For systems in which it is feasible to construct and work with the reference

wavefunction’s 3-body RDM, both the linear and quadratic commutators can

be made more accurate. We do so by defining new decompositions for 3- and

4-body operators in which the 3-body cumulant is retained. We will continue

to neglect the 4-body cumulant and 3- and 4-body ENO operators. By this pre-
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scription, the decompositions become

(
ap1p2p3

q1q2q3

)
1,2,(3)

=
∑

(−1)xγp1
q1

ap2p3
q2q3

( 9 terms)

+
∑

(−1)xγp1p2
q1q2

ap3
q3

( 9 terms)

−2
∑

(−1)xγp1
q1

γp2
q2

ap3
q3

(18 terms) (2.17)

−2
∑

(−1)xγp1
q1

γp2p3
q2q3

( 9 terms)

+6
∑

(−1)xγp1
q1

γp2
q2

γp3
q3

( 6 terms)

+ γp1p2p3
q1q2q3

,

(
ap1p2p3p4

q1q2q3q4

)
1,2,(3)

=
∑

(−1)xγp1p2
q1q2

ap3p4
q3q4

( 36 terms)

+
∑

(−1)xγp1p2p3
q1q2q3

ap4
q4

( 16 terms)

−
∑

(−1)xγp1
q1

γp2p3
q2q3

ap4
q4

(144 terms) (2.18)

−
∑

(−1)xγp1p2
q1q2

γp3p4
q3q4

( 18 terms)

+6
∑

(−1)xγp1
q1

γp2
q2

γp3
q3

γp4
q4

, ( 24 terms)

where the notation X
1,2,(3)

denotes the approximation to X in which all 4- and

higher-body cumulants and 3- and higher-body ENO operators have been ne-

glected. We are now in a position to define two further variants of CT theory,

L3CTSD and Q3CTSD, that make use of the reference function’s 3-body RDM

in order to decrease the decomposition error. These variants are constructed

by replacing the linear and quadratic commutator approximations with more

accurate approximations based on Eqs. (2.17) and (2.18) as follows

[H, A]1,2 → [H, A]
1,2,(3)

(2.19)

[[H, A], A]1,2 → [[H, A], A]
1,2,(3)

. (2.20)

With these replacements, the L3CTSD and Q3CTSD methods derive directly

from LCTSD and QCTSD, respectively. In practice, the inclusion of the exact
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3-body RDM is found to improve the accuracy of the CT energy, as shown in

Sec. 2.5.

2.2.7 Automatic derivation and code generation

The most difficult task when implementing CT theory is deriving and encoding

the tensor contractions necessary to compute the commutator approximations.

The scale of this task becomes clear when one considers that the approximate

quadratic commutator [[H, A], A]1,2 (see Sec. 2.2.5) contains over 16,000 unique

terms, as shown in Table 2.1. For many of the expressions present in CT the-

ory, we therefore use a computer program to automate the derivation process.

This program was developed by the present author and may be found in the

erratum of Ref [69]. The central tasks necessary to implement a commutator

approximation for use in a CT computer program are:

1. expand all commutators

2. normal order creation and destruction operators

3. replace 3- and/or 4-body operators by their decompositions

4. combine like terms

5. choose an efficient tensor contraction order for each term

All of these tasks were automated to allow for the efficient and accurate imple-

mentation of quadratic CT theory.

The most difficult step in deriving the terms involved in a commutator ap-

proximation is comparing terms to determine if they may be combined. Term
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Table 2.1: Commutators in CT Theory

Commutator # Unique Terms Evaluation Cost

[H, A]1,2 298 O(n6)

[H, A]
1,2,(3)

314 O(n7)

[[H, A], A]1,2 16,935 O(n6)

[[H, A], A]
1,2,(3)

23,245 O(n8)

comparison is made difficult by the symmetry of the tensors and the freedom to

rename dummy indices. As an example, consider the term∑
a1a2a3

i1i2i3i4i5

γa3
i3

γi4a1
i1i5

vi2i4
i3i5

Aa1
a2

Aa2a3
i2i1

(2.21)

which occurs when deriving the explicit expression for [[H, A], A]1,2 . The tensors

in this term have 2-, 8-, 8-, 1-, and 4-fold symmetries for a total of 512 equiva-

lent index arrangements. Further, because of the summation, all the indices are

dummy indices. In order to combine like terms, the program first transforms

each term into a unique canonical form (here the word canonical has no relation

to CT theory). The rules for writing a term in canonical form are based on a lex-

icographic ordering of the tensors and their indices, with some special rules in

the case of a repeated tensor name. This definition of canonical form is arbitrary.

The key is to choose a form such that for each term encountered in CT theory,

there is only one unique way to write it in canonical form. The canonical form

for our example term is ∑
abcd
efgh

Aa
bA

bc
deγ

c
fγ

ag
dhv

eg
fh. (2.22)

The comparison of terms may be seen as a problem of graph isomorphism in

which the tensors represent labeled vertices and the summation indices labeled
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edges. As the general problem of graph isomorphism has no known solutions

of polynomial complexity, we expect that our problem of term combination will

become unmanageable for a sufficiently large number of tensors. However, the

terms involved in CT theory are simple enough that the cost of converting them

to canonical form is not prohibitive. We do note, though, that term comparison

is the most expensive step in the automatic derivation process.

After all of the necessary terms have been derived, it is important to choose

an efficient order in which to carry out the contractions for a specific term.

In our example term, one must be careful not perform the n7 cost contraction∑
e Abc

dev
eg
fh. Instead, by first contracting Aa

b and γc
f with Abc

de, the contractions with

γag
dh and veg

fh can be completed for only an n6 cost. While one could exhaustively

search all possible contraction orders to guarantee maximal efficiency, this pro-

cess has a potentially unaffordable N ! cost for N tensors. Instead, our program

looks for the least expensive contraction pair out of all the tensors and chooses

it as the first contraction, then repeats this process until all tensors have been as-

signed a position in the contraction ordering. While this process is not guaran-

teed to find the most efficient contraction ordering, it can be completed quickly

as it has only an N3 cost. In practice, we tell the program to warn us if it finds

a term for which this ordering would produce a contraction cost higher than

n6, which is our target cost for CT theory. Such terms occur infrequently and

are inspected manually in order to find a more efficient contraction ordering.

After all terms are derived and all contraction orderings chosen, the necessary

cache-optimized FORTRAN code is written automatically by the program.
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2.3 Formal properties

In this section we will explore some of the desirable formal properties of CT

theory. For a survey of CT theory’s numerical results and comparisons to other

methods, see Sec. 2.5.

2.3.1 Size consistency

CT theory is rigorously size consistent, which we shall now demonstrate. Con-

sider two non-interacting systems X and Y , for which the electronic Hamil-

tonian can be written as H = HX + HY . Treating the systems separately, CT

theory will produce two amplitude solutions AX and AY as well as two effec-

tive Hamiltonians H̄X = e−AXHXeAX and H̄Y = e−AY HY eAY . These solutions

satisfy the amplitude equations for the systems individually:

〈ΨX0|[H̄X , ôi]1,2|ΨX0〉 = 0, (2.23)

〈ΨY0 |[H̄Y , ôi]1,2|ΨY0 〉 = 0. (2.24)

The total energy for the two systems is simply the sum of the expectation values

of their effective Hamiltonians,

E = 〈ΨX0|H̄X |ΨX0〉+ 〈ΨY0|H̄Y |ΨY0〉 = EX + EY . (2.25)

If we instead treat the systems together, choose A = AX + AY , and make use of

the fact that operators from different systems commute, we find that the effec-

tive Hamiltonian is the sum of the separate systems’ effective Hamiltonians,

H̄ = e−(AX+AY )He(AX+AY ) = e−AXHXeAX + e−AY HY eAY = H̄X + H̄Y . (2.26)

36



This separation allows the amplitude equation,

〈ΨX0|〈ΨY0|[H̄X + H̄Y , ôi]1,2|ΨX0〉|ΨY0〉 = 0, (2.27)

to be satisfied for the two possible types of excitation operators ôi. If ôi operates

entirely in system X or entirely in system Y , then Eq. (2.27) is satisfied due to

Eqs. (2.23-2.24) and the fact that ôi commutes with the effective Hamiltonian

of the other system. If ôi operates on both systems X and Y simultaneously,

it either changes the particle number in each system or simultaneously excites

into both systems’ external spaces. In this case Eq. (2.27) is satisfied because the

effective Hamiltonian H̄X + H̄Y cannot transfer particles between the systems

and cannot simultaneously de-excite from both systems’ external spaces. Thus

we see that the solution A to the CT equations for the combined system is simply

the sum of the solutions AX and AY of the separate systems. Finally, by taking

the expectation value of the combined system’s effective Hamiltonian, we see

that the energy is the same as for the separate systems and that CT theory is

rigorously size consistent.

〈Ψ0|H̄|Ψ0〉 = 〈ΨY0|〈ΨX0|(H̄X + H̄Y )|ΨX0〉|ΨY0〉

= 〈ΨX0|H̄X |ΨX0〉+ 〈ΨY0|H̄Y |ΨY0〉 (2.28)

= EX + EY

2.3.2 Perturbative analysis

In this section we analyze the CT energy perturbatively first for the case in

which the reference function is a single Slater determinant, and later for the

general case of a multi-configurational reference function. This analysis is in-

structive as it provides insight into the similarities and differences between CT
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theory and Coupled Cluster (CC) theory. This section follows the analysis of

Bartlett et al in Refs [13, 84, 14]. For the purposes of this section, we separate the

CT amplitude operator into its 1- and 2-body components via A = A1 + A2.

First consider a Hartree-Fock reference function and transform to the Fermi-

vacuum (all occupied orbitals are in the vacuum). Then all Fermi-vacuum par-

ticle density matrices are zero and the linear commutator approximation corre-

sponds to simply neglecting all 3-body operators. This type of operator trunca-

tion is used in the canonical diagonalization theory of White [86].

Now write the Hamiltonian as H = EHF +F +W , where F is the 1-body Fock

operator and W is the 2-body fluctuation potential. From Brillouin’s theorem,

we recognize that A2 is first order in W , while A1 is second order in W . (To make

contact with the analysis of unitary coupled cluster theory in Refs. [13, 84],

write A1 as (T1 − T †
1 ) and A2 = (T2 − T †

2 ).) Consider now the expectation value

of the energy E = 〈e−AHeA〉 without using any commutator approximations.

Expanding in powers of the fluctuation operator we have

E = E0 + E1 + E2 + E3 + E4 + . . . , (2.29)

where the different order energies are defined as

E0 =〈EHF 〉+ 〈F 〉 (2.30a)

E1 =〈W 〉 (2.30b)

E2 =〈[W, A2]〉+ 〈[F, A1]〉+ 〈[[F, A2], A2]〉 (2.30c)

E3 =
1

2
〈[[W, A2], A2]〉+ 〈[W, A1]〉+

1

2
〈[[F, A2], A1]〉+

1

2
〈[[F, A1], A2]〉 (2.30d)

E4 =
1

6
〈[[[W, A2], A2], A2]〉+

1

2
〈[[W, A1], A2]〉+

1

2
〈[[W, A2], A1]〉

+
1

2
〈[[F, A1], A1]〉+

1

24
〈[[[[F, A2], A2], A2], A2]〉 (2.30e)
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Now consider the effect of the commutator approximation on the different or-

ders of energy contribution. Firstly, no approximation is involved in computing

E0 or E1, since these do not involve any commutators. For E2, the approxima-

tion corresponds to

E2 ≈ 〈[W, A2]1,2〉+ 〈[F, A1]〉+ 〈[[F, A2], A2]1,2〉 (2.31)

Note that no approximation is made for commutators like [F, A2] which gen-

erate only 2- and lower-body operators. We see that 〈[F, A1]〉 vanishes due to

Brillouin’s theorem, while both [W, A2] and [[F, A2], A2] generate 3-body opera-

tors that are neglected but have no expectation value with the Fermi vacuum

and thus would not contribute to the energy. Thus no error is made in Eq. (2.31)

for E2.

In the expression for E3, we apply the commutator approximation twice

for the double commutator [[W, A2]1,2 , A2]1,2 . Once again, only fully contracted

terms contribute to the energy. The only way fully contracted terms arise is

from double contractions in [W, A2] to produce a two-particle operator, which

then fully contracts with A2 in the outer commutator and contributes to the

energy. Since double contractions are involved in each step, the commutator

approximation does not affect this term. There is no contribution from the 3-

body operators generated by either commutator, and so CT theory evaluates E3

correctly also.

In the expression for E4 we find our first error due to the commutator ap-

proximation. Here the 3-body operator arising from the inner commutator

[W, A2], which is neglected in the commutator approximation, can contract suc-

cessively with two other A2 terms in [[W, A2], A2], A2] to yield a fully contracted

term and thus a contribution to the energy. Although CT theory misses this con-
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tribution, it does contain the contribution that arises from contracting the two-

particle operators generated in the inner commutator [W, A2]. By a similar anal-

ysis, we find that the commutator approximation also provides an incomplete

evaluation of [[[[F, A2], A2], A2], A2], arising from intermediate 3-body operators.

Can this error in E4 be avoided? It turns out that we can by using the

quadratic commutator approximation [[W, A2], A2] → [[W, A2], A2]1,2 , in which

3- and 4-body operators are approximated by 1- and 2-body operators after

the second commutator. This approximation, while more complicated, does not

change the computational scaling of the theory. Here the two offending terms

are approximated as [[W, A2], A2]1,2 , A2]1,2 and [[[[F, A2], A2], A2]1,2 , A2]1,2 , where

we neglect only the 3- and 4-body operators that result from the outer two com-

mutators. As these operators do not contribute to any full contractions, they

have no energy contribution. Thus by using the quadratic commutator approx-

imation, CT theory’s energy can be made correct through fourth order in the

perturbation (although errors will appear at fifth order). This version of CT the-

ory, termed QCTSD and discussed in detail in Sec. 2.2.5, is preferable when a

single-determinant reference is employed.

In the usual coupled cluster hierarchy
∑2

i=0 Ei is the MP2 energy functional,

while
∑3

i=0 Ei is the linearized coupled cluster single-doubles (L-CCSD) energy

functional.
∑4

i=0 Ei is the unitary CCSD energy functional. The CTSD (by which

we mean LCTSD) energy is correct up to third order in perturbation theory (like

linearized CCSD theory), while the QCTSD energy is correct up to fourth order

(like CCSD). Unlike linearized CCSD theory, however, fourth order terms are

not completely neglected in CTSD but are partly included as discussed above.

From this, we might expect the single-reference CTSD theory to perform inter-
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mediate between linearized CCSD and the full CCSD theory. But in fact there

are an infinite number of additional diagrams that are included in CTSD theory

as compared to the usual CC and UCC(n) theories, because the energy func-

tional does not terminate at finite order but contains further partial contribu-

tions from E5, E6, . . . , E∞. For example, all terms involving pure orbital rota-

tions (i.e. A1) are included to all orders in the energy functional. Terms involving

A2, where all A2 operators are at least doubly contracted with one other oper-

ator, are also included to all orders. One might speculate that these additional

diagrams would yield an improved theory, but in the general case, and certainly

when we extend the discussion to cases where a multi-determinantal reference

wavefunction is used, the significance of the additional contributions present in

CTSD (and QCTSD) can only be assessed numerically.

Finally we briefly analyze the case where the reference function is no longer

a single Slater determinant. In this case errors arise not only from neglected

operators, but also from neglected cumulants, the most significant being the 3-

particle cumulant. The nature of the error arising from neglecting the 3-particle

cumulant can be somewhat illuminated by assuming that the reference function

itself admits a perturbation expansion in the active space. The corresponding

fluctuation operator in the active space we will denote by Wact. Then

|Ψ0〉 = |Φ0〉+ |Φ1〉+ |Φ2〉+ . . . , (2.32)

in which the zeroth order wavefunction |Φ0〉 is the Hartree-Fock solution. As the

zeroth order wavefunction contains no correlation between electrons, it makes

no contribution to the 3-body cumulant. The structure of |Φ1〉 in Møller-Plesset

theory is a sum of doubly excited determinants, which also gives no contribu-

tion to the 3-body cumulant. In fact, it is not until we consider |Φ2〉, contain-

ing determinants with 1-, 2-, 3-, and some 4-body excitations, that we find a
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contribution to the 3-body cumulant. We therefore see that if the Møller-Plesset

expansion is a valid representation of our multi-configurational reference wave-

function, the 3-body cumulant is of order W 2
act.

Let us now examine the contribution of the 3-body cumulant to the energy.

The 3-body cumulant contribution arises in the following component of the first

commutator of the BCH expansion, 〈[Wext, A2]〉, where Wext reflects the fluctu-

ation potential between the active and external spaces. The operator A2 is of

order Wext, so the product of amplitudes and integrals appearing in 〈[Wext, A2]〉

is of order W 2
ext, and its trace with the 3-body cumulant yields an energy contri-

bution of order W 2
actW

2
ext. We see therefore that even in the multi-configurational

case (at least in the case where the reference function itself admits a meaningful

perturbative expansion), the error in the CTSD energy appears at fourth order

in the fluctuation potentials.

2.4 Optimizing the transformation

The excitation operator coefficients Ci that define the CT effective Hamiltonian

are optimized by solving the CT amplitude equations, Eq. (2.7). This set of non-

linear equations is analogous to the amplitude equations encountered in single-

reference coupled cluster theory. While there are many methods available for

solving sets of nonlinear equations, we employ the iterative Newton-Raphson

(NR) method in CT theory for two reasons: first, the structure of the CT equa-

tions allows for a particularly efficient solution of the linear equation that de-

fines the step in each NR iteration, and second, because the NR Jacobian matrix

provides physical insight into why the CT equations are hard to solve and how
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they may be simplified. As mentioned in Sec. 2.2.1, the operators ôi that define

our amplitude operator A =
∑

i Ciôi are not simply taken to be the complete set

of singles and doubles antisymmetric excitation operators given in Eq. (2.3). For

reasons explained below, the amplitude equations are unsolvable for this set of

operators and so we employ more structured definitions of ôi instead.

2.4.1 The Newton Raphson algorithm

When solving for the root of a single nonlinear equation f(x), the NR approach

is to make an initial guess x(0) and then extrapolate to the solution by following

the function’s slope f ′(x). This procedure leads to an iterative method in which

the current solution is updated by the equation

x(i+1) = x(i) − f(x(i))

f ′(x(i))
. (2.33)

This equation is evaluated repeatedly until the value of the function f(x) is suf-

ficiently small. The procedure for solving a system of nonlinear equations is

analogous, except that now extrapolating to the solution using the functions’

first derivatives requires solving a linear equation. The matrix in this equation,

known as the Jacobian, consists of the derivative of each function with respect

to each variable. In CT theory, our nonlinear equations are

Ri = 〈Ψ0|[H̄, ôi]1,2|Ψ0〉 = 0, (2.34)

and so the Jacobian matrix is

Jij =
∂Ri

∂Cj

= 〈Ψ0|[[H̄, ôj]1,2 , ôi]1,2|Ψ0〉+ O(A). (2.35)

Given an initial guess C
(0)
i for the excitation operator coefficients, one first eval-

uates the effective Hamiltonian H̄ (using a BCH expansion approximated by op-

erator decomposition) and determines the values Ri of the amplitude equations,

43



which we often refer to as the residuals. An improved guess for the coefficients,

C
(1)
i , is then found by solving the linear equation

∑
j

JijC
(1)
j = −Ri, (2.36)

which extrapolates along the functions’ derivatives in an analogous manner to

Eq. (2.33). Solving this linear equation is not trivial, however. Building the Ja-

cobian is infeasible for all but the smallest systems, because it has a number of

elements that scales as n8 when the number of core, active, and virtual orbitals

are assumed to be proportional to n. Instead we solve Eq. (2.36) iteratively using

a Krylov subspace method, which requires only the ability to compute the Ja-

cobian matrix’s action on a trial vector. This action can be evaluated efficiently

if we neglect the last term of Eq. (2.35), whose magnitude is linear in A and

therefore should be small. Note that approximating the Jacobian in this way

introduces no errors into the CT energy so long as the NR iteration leads to the

solution of the amplitude equations. The NR equation can now be rewritten as

〈Ψ0|[[H̄,
∑

j

C
(1)
j ôj]1,2 , ôi]1,2|Ψ0〉 = −Ri. (2.37)

This form reveals how the Jacobian’s action on the vector C
(1)
j can be computed

efficiently. The inner commutator of Eq. (2.37) has the same form as the ap-

proximate commutator [H, A]1,2 used to evaluate the BCH expansion and can

therefore be evaluated in n6 time. The result of this inner commutator is a 2-

body operator with the same symmetries as the electronic Hamiltonian, and so

the outer commutator has precisely the same form as the amplitude equations,

Eq. (2.7), which can also be evaluated in n6 time. Thus by evaluating and storing

the intermediate operator resulting from the inner commutator of Eq. (2.37), the

action of the Jacobian on a trial vector can be evaluated efficiently and a Krylov

subspace method can be used to solve Eq. (2.36) in n6 time.
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A difficulty arises if any of the Jacobian’s eigenvalues vanish or are very

small, because linear equations involving singular or near singular matrices

cannot in practice be solved using a Krylov subspace. Even if we could in-

vert such a Jacobian, the result would not be physically meaningful, as one or

more excitation operators would acquire a near-infinite coefficient. Recall that

the working assumption for CT theory is that the reference function is close to

the true wavefunction, which means that the excitation operators’ coefficients

should be small. As long as this assumption is satisfied (i.e. for a sufficiently

large active space), any small eigenvalues in the Jacobian matrix are unphysi-

cal in nature and must be artifacts of CT theory’s approximations. We call such

eigenvalues and their corresponding excitation operators intruder states, be-

cause they are closely related to the intruder states encountered in second order

perturbation theory (PT2) [33]. To see how, replace the effective Hamiltonian

on the left hand side of Eq. (2.37) with a zeroth order Hamiltonian satisfying

H0|Ψ0〉 = E0|Ψ0〉. By ignoring the commutator approximations, setting C
(0)
i = 0,

and recalling that ô†i = −ôi, we may simplify the resulting equation to obtain

∑
j

〈Ψ0|ô†i (H0 − E0)ôj|Ψ0〉C(1)
j = 〈Ψ0|ô†iH|Ψ0〉. (2.38)

This is the defining equation for the coefficients C
(1)
j of the perturber states

ôj|Ψ0〉 that appear in the first order wavefunction of PT2 theory. Traditional

intruder states in perturbation theory are those with unphysically large coeffi-

cients, and so we see that there is a strong analogy between intruder states in

CT and PT2.

The key difference between intruder states in CT and PT2 theory is what

causes them. For perturbation theory, Eq. (2.38) tells us that intruder states will

occur for inaccurate zeroth order Hamiltonians for which a state in the basis
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of perturber functions has an energy close to the reference state. In CT the-

ory, Eq. (2.35) contains no zeroth order Hamiltonian and so the origin of in-

truder states must be different. The three possibilities are errors in the effective

Hamiltonian H̄ , neglecting the O(A) terms present in Eq. (2.35), and the com-

mutator approximations present in Eq. (2.35). The first two possibilities can be

ruled out if we consider the initial guess C
(0)
i = 0 (this is a reasonable guess for

the coefficients as they should be small). For this guess the O(A) terms vanish

and the initial effective Hamiltonian H̄ is exactly equal to the bare electronic

Hamiltonian H , which should give correct energies for states in the first order

interacting basis. As CT theory typically uses Ci = 0 as its initial guess, any

intruder states encountered are therefore caused by the commutator approxi-

mations present in Eq. (2.35). Unfortunately, if one formulates CT theory using

a multi-configurational reference function and the full set of excitation opera-

tors given in Eq. (2.3), these commutator approximations create intruder states

for all but the simplest systems. In the next two sections we discuss alternative

choices for the excitation operators that are more successful at avoiding intruder

states.

2.4.2 Overlap matrix truncation

To address the problem of intruder states in CT theory, one must first rec-

ognize that for the standard choice of single and double excitation operators

p̂i ∈ {ap
q , a

pq
rs . . .}, the first order interacting basis {p̂i|Ψ0〉} is not orthogonal if the

reference is multi-configurational. Instead there is a dense, non-diagonal over-

lap matrix Sij = 〈Ψ0|p̂†i p̂j|Ψ0〉. The eigenvalues of the Jacobian defined in Eq.

(2.35), which govern the presence of intruder states, are therefore represented
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by a generalized eigenvalue equation in which the overlap matrix appears:

∑
j

JijBjk =
∑

l

SilBlkεk. (2.39)

Here εk are the Jacobian eigenvalues and B is the matrix whose columns are

the Jacobian eigenvectors. In order to improve the conditioning of the Newton-

Raphson equation and remove linear degeneracies from the first order inter-

acting basis, we can transform to the set of “orthonormal” excitation operators

ôi =
∑

j(S
−1/2)ij p̂j that generate an orthonormal first order interacting basis

{ôi|Ψ0〉}. For these operators the Jacobian eigenvalues εk are defined by the sim-

ple eigenvalue equation

∑
j

J̃ijB̃jk = B̃ikεk, (2.40)

in which J̃ = S−1/2JS−1/2 and B̃ = S1/2B are the Jacobian and its eigenvectors

in the orthonormal basis {ôi|Ψ0〉}. To prevent intruder states, the small eigen-

values present in S and J must cancel in the product S−1/2JS−1/2. Errors in the

eigenvalue spectrums of either S or J can disrupt this cancellation and produce

unphysically small values for εk, which as described in the previous section will

correspond to intruder states. There are two possible sources for such errors.

First, for semi-internal excitation operators (double excitations that involve one

excitation into or out of the active space and one excitation within the active

space) the overlap matrix S depends on the reference function’s 3-body RDM.

If we approximate S by neglecting the 3-body cumulant in order to avoid using

the 3-body RDM, then we introduce errors in S that can lead to intruder states.

Second, the commutator approximations present in the definition of J create

errors in its eigenvalue spectrum. In practice we find that even if the exact 3-

body RDM is used to avoid errors in S, the errors in J are sufficient to produce

intruder states for most multi-configurational references. Therefore, in order to
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circumvent the need for a delicate cancellation of small eigenvalues in the prod-

uct S−1/2JS−1/2, we restrict our operators ôi by discarding the eigenvalues of

S below some threshold τ . In practice we use two thresholds, τ1 for the single

and semi-internal excitations’ overlap matrices and τ2 for the double excitations’

overlap matrices. While all multi-configurational dynamic correlation methods

employing an internally contracted form must truncate the overlap matrices to

some extent (e.g. τ = 10−6) in order to remove true linear degeneracies from the

first order interacting basis, CT theory requires a much larger truncation thresh-

old (e.g. τ = 10−2) in order to prevent intruder states. Because of the importance

of accurately truncating the overlap matrices, the standard CTSD version of CT

theory, reported previously as L-CTSD(MK) [89] and LCTSD [69], uses the exact

3-body RDM in order to compute the semi-internal overlap matrices. We note

that CTSD does not, however, use the 3-body RDM anywhere else.

The use of overlap truncation in CT theory has been very successful, produc-

ing accuracies competitive with expensive methods such as MRCI+Q. However,

the need to accurately truncate the overlap matrices creates three significant dis-

advantages. First, the choice of the truncation thresholds is arbitrary and in dif-

ficult systems can affect the CT energy, as seen in the results for NiO in Sec. 2.5.5.

Second, constructing the overlap matrices exactly with the reference wavefunc-

tion’s 3-body RDM is necessary to achieve these accuracies. While overlap trun-

cation can use the cumulant-approximated overlap matrices, the accuracy suf-

fers because higher truncation thresholds are necessary to prevent the errors in

S from creating intruder states. Finally, diagonalizing the semi-internal overlap

matrices to produce S−1/2 has a cost that scales as n9
act, where nact is the number

of active orbitals. This cost is trivial for small active spaces, but will become

infeasible for the very large active spaces accessible with DMRG theory. There

48



is another way to construct the operator set {ôi} that avoids these issues at the

cost of further limiting the ansatz’s freedom, which we shall now discuss.

2.4.3 Strong contraction

Strongly contracted (SC) excitation operators were first introduced by Malrieu

et al in the context of n-electron valence perturbation theory (NEVPT2) [6, 7].

They consist of a drastic simplification of the first order interaction basis in

which each external orbital (for singles) or orbital pair (for doubles) has only

one excitation operator that connects it to the active space. Such an operator is

of course a linear combination of many of the basic excitation operators, but all

terms in the combination involve the same external indices. An immediate con-

sequence of this formulation is that the SC operators are mutually orthogonal.

These operators thus avoid completely the difficulties of building, diagonaliz-

ing, and truncating overlap matrices and therefore require neither the n9
act cost

diagonalization step nor the reference function’s 3-body RDM. While SC oper-

ators are certainly simple to work with, one must construct them carefully in

order to retain accuracy in such a restricted set of excitations. Each SC operator

is therefore formed as the sum of all contracted operators of its type (e.g. double

excitations from the active space into the virtual orbitals v1 and v2) weighted by

their coefficients in the electronic Hamiltonian H . For the example of double

excitations between the active and virtual orbitals, the operator corresponding

to the pair of virtual orbitals (v1, v2) is

ôv1v2 =
∑
a1a2

gv1v2
a1a2

(av1v2
a1a2

− aa1a2
v1v2

), (2.41)
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where g is the usual 2-body integral tensor. In total there are eight types of SC

operators, the precise definitions for which are given in Appendix A. The jus-

tification for weighting the operators based on their Hamiltonian coefficients is

that it makes the states ôi|Ψ0〉 components of the system’s first Krylov vector,

H|Ψ0〉. The operation of H on the reference function emphasizes the eigenstates

of H in |Ψ0〉 with the largest magnitude eigenvalues. As states with large pos-

itive eigenvalues will not be present in |Ψ0〉, the emphasis will be put on those

eigenstates with large negative eigenvalues, namely the ground state and low-

lying excited states. Thus the choice of Hamiltonian coefficients for constructing

a SC excitation operator is good in the sense that it is tailored towards describ-

ing the system’s lowest eigenstates. Even with this intelligent choice for the

form of the SC operators, they offer far less freedom than is available through

the overlap truncation method, and the accuracy of CT suffers as a result. The

motivation for using SC operators is of course not to improve accuracy (which

for CTSD was already excellent) but to avoid intruder states.

In practice, the orthogonality of the SC operators is sufficient to prevent in-

truder states in many systems. To detect and remove any remaining intruder

states, we construct an approximation of the CT Jacobian and inspect it for any

unphysically small eigenvalues. This approximation consists of neglecting the

last term in Eq. (2.35) and replacing the effective Hamiltonian with Dyall’s ze-

roth order Hamiltonian [31],

H0 = C +
∑
c1

t̄c1c1a
c1
c1

+
∑
v1

t̄v1
v1

av1
v1

+
∑
a1a2

t̄a1
a2

aa1
a2

+
1

2

∑
a1a2
a3a4

ga1a2
a3a4

aa1a2
a3a4

, (2.42)

in which C is a constant, t̄ is a set of effective 1-body integrals, and g is the usual

2-body integral tensor. Note that C and t̄ are defined such that H0|Ψ0〉 = E0|Ψ0〉.
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Our approximation for the CT Jacobian is now

Jij = 〈Ψ0|[[H0, ôj]1,2 , ôi]1,2|Ψ0〉, (2.43)

which is a diagonal matrix because the Dyall Hamiltonian cannot connect op-

erators that excite into different external orbitals (recall that each SC operator

corresponds to a different set of external orbitals). As in the previous section,

we desire the Jacobian eigenvalues in an orthonormal basis of excitation opera-

tors, and although the SC operators are orthogonal by construction they are not

normalized. We therefore evaluate their norms approximately via

||ôi||2 ' 〈Ψ0|ô†i ôi|Ψ0〉1,2 , (2.44)

where we neglect the 3-body cumulant to avoid using the 3-body RDM. With

these approximate norms, we may evaluate the approximate eigenvalues of the

orthonormal Jacobian as

εi =
1

||ôi||2
〈Ψ0|[[H0, ôi]1,2 , ôi]1,2|Ψ0〉. (2.45)

After obtaining these approximate Jacobian eigenvalues (which can be done in

n6 time), we inspect them and remove from our excitation operator basis any

operators with unphysically small values for εi. These eigenvalues should be

bounded from below by the Dyall Hamiltonian’s smallest excitation energy be-

tween the reference state and states in the first order interacting basis. For a

sufficiently large active space, these excitation energies will be quite sizable as

the cost to occupy a virtual orbital or create a hole among the core orbitals will

be high. In practice, we typically discard operators with εi below a threshold

of τε = 0.1 Hartrees. This truncation threshold is more physically intuitive than

the overlap truncation thresholds presented in the previous section, and in large

active spaces the CT energy is insensitive to its value (e.g. all excitation opera-

tors have εi much larger than 0.1 Hartrees). In summary, SC operators prevent
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intruder states in CT theory without building or diagonalizing overlap matrices

or using the 3-body RDM.

2.5 Applications and comparisons to other methods

In this section we will review the results of applying CT theory to a num-

ber of chemical systems. In particular, we will investigate the effects of using

the quadratic commutator, the 3-body RDM, and strongly contracted excita-

tion operators. As CT theory is meant to capture dynamic correlation in or-

der to achieve chemical accuracy, it is helpful at this point to explain precisely

what is meant by chemical accuracy. When breaking a chemical bond, moving

along a chemical reaction coordinate, or studying the excitation spectrum of a

molecule, one is always considering energy differences between one or more

states. Chemical accuracy is commonly regarded to imply an error in these en-

ergy differences of less than 1 kcal/mol for bond breaking and reactions and

0.1 eV for excitations. As quantum chemistry is chiefly concerned with energy

differences, it is more important for a method to have the correct relative ener-

gies between states than to have the correct absolute energy for any given state

taken alone. As such, a useful measure for a method’s accuracy is its relative

error, which in bond stretching is defined as (the absolute value of) the worst

possible error for the difference between the energies of any two geometries.

The results below will make heavy use of relative error when comparing the

accuracies of different methods.
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Figure 2.1: BH ground state energy errors relative to FCI.

2.5.1 Boron hydrogen

The first molecule we study is BH, which is treated in the Dunning double zeta

with polarization (DZP) basis [29] using Cartesian d orbitals, with the boron d

orbital exponent changed to 0.5 as in Ref. [88]. We have carried out two types of

CT calculations, one using the Hartree-Fock determinant as the reference func-

tion and the other using a 4-electron 3-orbital (4e,3o) CASSCF reference. In both

cases, all electrons were correlated. Notice that when a single determinant is

used as the CT reference function, the large truncation thresholds discussed in

Sec. 2.4.2 are unnecessary as the overlap matrices’ eigenvalues are either 0 or

≥ 1. Also recall that the cumulant approximation is exact for a single determi-
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nant, so the L3CTSD and Q3CTSD methods become redundant.

One reason for developing the QCTSD method was to improve accuracy

when the reference function is a single electronic determinant. Fig. 2.1 and

Table 2.2 show that QCTSD is indeed an improvement over LCTSD when the

Hartree-Fock reference is used. QCTSD is also an improvement when starting

from the CASSCF solution, although this behavior appears to be unique to the

BH molecule. In our other systems, QCTSD appears to be less accurate than

LCTSD when a CASSCF solution is used as the reference function. We also

note that QCTSD behaves similarly to CCSD when the Hartree-Fock reference

is employed, as may be expected from the fact that their energies are formally

accurate to the same order in the fluctuation potential. This similarity is most

pronounced near the equilibrium geometry. As the bond is stretched, QCTSD

shows a larger relative error. Overall, the BH molecule supports the analysis

that QCTSD should be more accurate than LCTSD in single-reference systems.

2.5.2 Hydrofluoric acid

HF is treated in the Dunning DZP basis [29] using spherical d orbitals, with the

hydrogen p and fluorine d orbital exponents changed to 0.75 and 1.6, respec-

tively, as in Ref. [88]. We carried out CT calculations using both Hartree-Fock

and (2e,2o) CASSCF solutions as reference functions. All orbitals were corre-

lated.

QCTSD again makes an improvement on LCTSD when using the Hartree-

Fock reference, as shown in Fig. 2.2 and Table 2.3. Its energy is also again very

similar to CCSD, although it fails to converge for bond lengths greater than
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Figure 2.2: HF ground state energy errors relative to FCI.

150% of the equilibrium distance (both CT methods converge across the entire

dissociation curve when using the CASSCF reference).

The main difference from BH can be seen when using a CASSCF refer-

ence function where, unlike in the Hartree-Fock case, QCTSD is less accurate

than LCTSD. This unexpected behavior is also displayed in the H2O and N2

molecules. While LCTSD and QCTSD both enjoy improvements in absolute er-

ror when moving from a Hartree-Fock to CASSCF reference, the improvements

in LCTSD produce better parallelity with the FCI bonding curve.
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Figure 2.3: Quadratic commutator and 3-body RDM results in H2O.

2.5.3 Water

The H2O molecule was used as a benchmark system for evaluating the perfor-

mance of both alternative commutator approximations and strongly contracted

excitation operators. In both cases, the symmetric stretch of the two O-H bonds

was studied, with the bond angle fixed at 109.57◦ and the equilibrium bond dis-

tance Req taken to be 1.876 Bohr (0.9929 Angstroms). The basis set used for both

studies was the Dunning cc-pVDZ basis set [30] with spherical d orbitals. Note,

however, that the oxygen 1s orbital was frozen for the quadratic commutator

study but not for the strong contraction study. We will review the results of

both studies in this section, beginning with the results for alternative commuta-

tors.
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In studying the quadratic commutator and the inclusion of the 3-body RDM,

all dynamic correlation methods used as a reference the (6e,5o) CASSCF wave-

function, in which the oxygen 1s orbital was frozen after the CASSCF orbital

optimization. The results of the different methods’ performance can be found

in Figs. 2.3 and Table 2.4.

The most notable result is that Q3CTSD and QCTSD, which use the

quadratic commutator approximation with and without the exact 3-body RDM,

have larger relative errors and are therefore less accurate than L3CTSD and

CTSD, which use the linear commutator approximation. This result shows

that the (single-reference) perturbative arguments advocating the use of the

quadratic commutator break down for the multi-reference case of the symmet-

ric stretching of H2O. As seen in Fig. 2.3, the deviation from FCI in QCTSD, and

to a lesser extent Q3CTSD, increases as the bonds are stretched up to 150% of

their equilibrium distances, beyond which the error diminishes. This behavior,

which is similar to that of CASPT3, is not present in CTSD or L3CTSD, which

produced potential energy curves significantly more parallel to that of FCI.

A less surprising result is that the use of the exact 3-body RDM reduced CT

theory’s relative error for both the linear and quadratic commutator formula-

tions of the theory. L3CTSD was more accurate than CTSD, and Q3CTSD was

more accurate than QCTSD. This improved accuracy is to be expected, as the

use of the exact 3-body RDM removes the portion of the decomposition error

due to the neglect of the 3-body cumulant.

Compared to CASPT2, all of the CT variants showed superior accuracy. This

comparison is especially significant for CTSD, as it has a lower cost scaling than

multi-reference perturbation theory. Furthermore, CTSD and L3CTSD were
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Figure 2.4: Relative energy results for strongly contracted CTSD in H2O.

comparable in accuracy to the expensive corrected MRCI methods. In fact, both

CTSD and L3CTSD were superior in accuracy to AQCC.

The study of strongly contracted excitation operators used the same geom-

etry and basis set as noted above, but no orbitals were held frozen during the

dynamic correlation calculations. Comparisons between strongly contracted CT

theory (SC-CTSD) and other methods can be found in Fig. 2.4 and 2.5 and Table

2.5.

The CTSD method shows a relative error of 1.5 mEh when the semi-internal

overlap matrix Sint is evaluated exactly using the 3-body RDM. (Note that other

than for the truncation of Sint, all other terms in CTSD use only the 1- and 2-body
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Figure 2.5: Absolute energy results for strongly contracted CTSD in H2O.

RDMs.) However, when Sint is approximated with the cumulant decomposition,

CTSD has a significantly larger relative error of 5.0 mEh. The accuracy suffers

because the truncation thresholds τ1 and τ2 must be increased to prevent the

cumulant decomposition approximations in Sint from creating intruder states.

This more aggressive truncation results in a more limited first order interacting

basis which reduces accuracy. The SC-CTSD method, which does not require

the 3-body RDM, shows relative error of 4.9 mEh. All of the CT methods are

more accurate than CASPT2, whose relative error is 5.1 mEh. The discontinuity

problem discussed above is more severe for SC-CTSD than for CTSD, although

this is a somewhat unfair comparison as the latter uses the exact 3-body RDM to

evaluate its overlap matrix. Indeed, the SC-CTSD discontinuities are less severe
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than those that occur in CTSD when the cumulant-approximated overlap matrix

is used. Fortunately, as shown in Fig. 2.5, the discontinuities present in SC-CTSD

are small enough that they do not affect the shape of the potential energy curve.

2.5.4 Nitrogen

Correctly breaking the bond of the nitrogen dimer is a particularly challenging

problem for quantum chemical theories due to the strong role of static corre-

lation. Near equilibrium, the N2 wavefunction is dominated by a single con-

figuration in which the bonding π orbitals are doubly occupied. However, as

the bond is broken, excited configurations play an increasingly important role,

leading to the qualitative failure of single-reference methods. The use of a mul-

tireference method such as CASSCF, which includes all possible configurations

of the electrons in the 2p orbitals, restores qualitative agreement with the exact

theoretical (FCI) result, but still fails to achieve quantitative agreement due to

the omission of dynamic correlation.

In this section we discuss the results from applying a number of different dy-

namic correlation methods to the stretching of the N2 bond. In all calculations

we employ Dunning’s [30] cc-pVDZ basis set with spherical d orbitals. The

reference function is a (6e,6o) CASSCF wavefunction, with the active space con-

sisting of the 2p orbitals. After the CASSCF orbital optimization, the 1s orbitals

were held frozen.

Significantly, not all multireference dynamic correlation theories are able to

achieve chemical accuracy in the N2 binding curve, despite its small size and the

affordability of constructing and diagonalizing its 3-body RDM. Most notable is
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the failure of perturbation theory, which for example produces a 5.2 kcal/mol

relative error when implemented as CASPT2, as shown in Table 2.6 and Fig.

2.6. In contrast, the two standard CT methods, CTSD with exact overlap and

SC-CTSD, have relative errors of 0.6 and 1.0 kcal/mol, respectively. Both of

these methods have lower cost scalings than CASPT2 and can therefore be ap-

plied to much larger systems. Of particular note is that the SC-CTSD method

achieves chemical accuracy in N2 using only the 1- and 2-body RDMs of the ref-

erence wavefunction, an unprecedented feat. Other methods with comparable

accuracy, such as MRCI+Q and CASPT3, require access to either the CASSCF

wavefunction’s CI coefficients or the 3-body RDM.

The breaking of the N2 bond has been extensively studied with CT the-

ory and provides an excellent pedagogical example of the theory’s strengths

and weaknesses. The relatively poor performance of CTSD when using the

cumulant-approximated overlap matrices is a reminder of CT theory’s intruder

states (Fig. 2.6 and Table 2.6). The accuracy is damaged in this case by the neces-

sity of using larger truncation thresholds to prevent errors in the overlap matri-

ces from creating intruder states. The result is a relative error of 3.4 kcal/mol,

more than five times larger than the 0.6 kcal/mol error produced when the exact

3-body RDM is used to construct the overlap matrices. Strongly contracted op-

erators restrict the ansatz’s freedom in a more intelligent way than the approx-

imate overlap truncation and are effective at removing intruder states without

using the 3-body RDM. SC-CTSD’s relative error of 1.0 kcal/mol is a significant

improvement versus 3.4 kcal/mol and is almost as good as the 0.6 kcal/mol

achieved by using the exact 3-body RDM. This hierarchy of accuracy (CTSD

with 3-body RDM > SC-CTSD > CTSD without 3-body RDM) is typical and

has also been observed in H2O and NiO.
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The results of alternative commutator approximations in N2 are shown in

Table 2.7 and Fig. 2.7, and are broadly similar to the case of H2O. As in H2O,

the QCTSD method is less accurate than standard CTSD, and using the exact

3-body RDM to improve the commutator approximation results in an improve-

ment in accuracy. Unlike in H2O, the Q3CTSD method was the most accurate

of the CT methods, and in fact the most accurate of all the dynamic correlation

methods tested. While Q3CTSD’s accuracy is not as reliable as that of the less

expensive CTSD (it performed poorly for H2O), it is nonetheless interesting that

Q3CTSD outperforms MRCI+Q. This is significant because although Q3CTSD

has a higher cost scaling than CTSD and CASPT2, its cost scaling is lower than

MRCI+Q.

2.5.5 Transition metal oxides

One area in which CT theory can make important contributions is the quanti-

tative study of transition metal chemistry. Transition metal electronic structure

is in general difficult to treat with single-reference methods due to the strong

correlations associated with the locality of the d orbitals. It also poses a signifi-

cant problem for traditional multireference techniques due to the large number

of valence orbitals involved. To explicitly correlate the 4s, 3d, and 4p orbitals

of just two transition metals requires 18 active orbitals, which is already be-

yond the reach of CASSCF, CASPT2, and MRCI. Some interesting enzyme ac-

tive sites, such as that found in aconitase, contain four or more transition metals,

not to mention neighboring O and S atoms. Although advanced static correla-

tion methods such as DMRG cannot yet treat such large active sites, they have

been applied to [Cu2O2]
2+ clusters containing 32 active orbitals [90]. CT the-
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ory is the only feasible method for treating dynamic correlation on top of such

large active spaces. To assess the capabilities of CT theory for transition metal

chemistry, it has been applied to both FeO by Yanai and Chan [89] and to NiO

by the present author [70]. These single-metal oxides were chosen because they

are small enough to allow a comparison with traditional dynamic correlation

methods. The active spaces for both systems consisted of the O 2p and metal 4s,

4p, and 3d orbitals.

In both FeO and NiO, the CTSD method with exact overlap had a relative er-

ror of less than 2 kcal/mol when compared to MRCI+Q, as shown in Table 2.8.

For comparison, CASPT2 had a 5.5 kcal/mol error in FeO and a 1.8 kcal/mol er-

ror in NiO. SC-CTSD, which unlike CTSD and CASPT2 does not use the 3-body

RDM, was also applied to NiO and produced a relative error of 3.7 kcal/mol.

These results suggest that CTSD is more reliable in metal oxides than CASPT2

and give hope that it will be effective at describing larger transition metal clus-

ters. While SC-CTSD was not as accurate as CTSD, it has an even greater poten-

tial to treat large clusters by avoiding the use of the 3-body RDM. The study of

NiO also revealed the importance of using the full set of valence orbitals, which

becomes difficult when more than one transition metal is present. When the Ni

4p orbitals were excluded from the active space, the relative error of CASPT2

increased to 10.1 kcal/mol. In multi-metal clusters, methods such as CASPT2

and CTSD which require the 3-body RDM will typically be forced to use an

active space smaller than the full valence space and will likely suffer similar

accuracy penalties. Another advantage of CT theory is its relatively low cost

scaling, which in metal oxides begins to have a significant effect. The CASPT2

and CTSD calculations on FeO required a comparable amount of computation

time, while MRCI+Q was more than an order of magnitude more expensive. In
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NiO, the MRCI+Q calculations were more than 50 times more expensive than

those for SC-CTSD. In summary, CT theory has proven both affordable and ac-

curate in initial studies on transition metal systems.

2.5.6 Effect of truncation thresholds

As described in Sec. 2.4.2, the standard CTSD method requires the choice of

overlap matrix truncation thresholds τ1 and τ2 in order to prevent intruder

states. Unfortunately, there is no way of knowing good values of these thresh-

olds a priori, and in some systems good values may not exist at all. It is therefore

important to analyze the effect of these thresholds on the CT energy to avoid

creating artificially accurate or inaccurate results. In what we term a well be-

haved system, there is a range of values for both thresholds over which the CT

energy changes little or not at all. We say that the energy of such a system is

independent of the truncation thresholds. In some difficult systems, there may

be no obvious choice for the thresholds (especially for τ1), and one then has to

investigate the effect of thresholds on the potential energy surface and report

the results. This problem arose when applying CTSD to NiO, where we found

that there was no region of values for τ1 over which the CT energy was stable.

We therefore produced three potential energy curves for three different choices

of τ1 so as to assess the effect of the threshold. These curves can be seen in

Fig. 2.8, where the curves have been shifted so that the energies are equal at

1.5 Angstroms. In this case it happened that all three choices gave results with

relative errors of less than 2 kcal/mol when compared to MRCI+Q, so although

absolute energies were sensitive to the threshold, relative energies were not.
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A typical approach for analyzing the threshold-sensitivity of the CTSD en-

ergy is shown in Fig. 2.9, where we have plotted the energy of the N2 dimer

against both thresholds. Our technique is to hold one threshold fixed while

varying the other, and to repeat this process until a region of stability is found

for both thresholds. The bond length used is 1.1208 Angstroms, and the basis

set and CASSCF reference function are the same as those used in Sec. 2.5.4. We

see that τ2 has a region of stable energy between 0.01 and 0.002, below which

the CT equations are too poorly conditioned to solve numerically. Thus we say

that the double excitations necessary to describe dynamic correlation have all

been included at a threshold of 0.1. For τ1 , there is a region of stability between

0.2 and 0.09, below which the energy fluctuates until the amplitude equations

become unsolvable at 0.008. We are therefore justified in the choices τ1 = 0.1

and τ2 = 0.01 used in the strong contraction study of Sec. 2.5.4. Were we instead

to choose τ1 in the fluctuating region, say 0.03, we would introduce unneces-

sary error in our bonding curve due to the fact that the intruder states causing

the fluctuations change with geometry. The necessity of validating the choice of

τ1 and τ2 is bothersome in small systems and potentially unaffordable in large

ones. In these cases it becomes desirable to first attempt the SC-CTSD method,

whose energy is much less sensitive to changes in its single τε threshold [70].

2.5.7 Free base porphin

Strongly contracted CT theory was used to evaluate the singlet-triplet gap of

free base porphin (C20H14N4) in two basis sets: 6-31G [42] and an ANO basis

[87, 76] with spherical d orbitals and contractions of (3s,2p,1d) for C and N and

(2s) for H. The active space was taken as the 24 out-of-plane 2p orbitals of C and
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Figure 2.10: Ordering of porphin 2p orbitals on the DMRG orbital lattice.

N, necessitating a DMRG-SCF reference function in place of the usual CASSCF

reference. For the DMRG-SCF calculations, a Pipek-Mezey [75] localization was

applied to the out-of-plane 2p orbitals obtained from a Hartree-Fock calculation

in PSI3 [27], which were then arranged on the orbital lattice as shown in Fig.

2.10. The orbitals were then optimized using 1200 DMRG states, after which

the final energies and 1- and 2-body RDMs were evaluated using 2400 states. In

the SC-CTSD calculations, the C and N 1s orbitals were not correlated, and the

strongly contracted excitation operators were defined using the Hamiltonian in

the DMRG-SCF natural orbital basis. A threshold of τε = 0.1 Eh was employed,

although it proved unnecessary as none of the strongly contracted excitation

operators displayed intruder state character (their approximate Jacobian eigen-

values were all larger than the threshold). In both the SC-CTSD and CASPT2

results discussed, the lowest lying triplet state was of B2u symmetry.
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Table 2.9: Singlet-triplet gaps for free base porphin.

Method DMRG States Basis Set Gap (eV)

Vertical Gaps

DMRG-SCF 1200 6-31G 1.56

SC-CTSD 1200 6-31G 1.85

DMRG-SCF 2400 6-31G 1.57

SC-CTSD 2400 6-31G 1.87

DMRG-SCF 1200 ANO 1.63

DMRG-SCF 2400 ANO 1.65

SC-CTSD 2400 ANO 1.95

CASPT2a - ANO 1.52

B3LYP - 6-31G* 1.74

Non-Vertical Gaps

SC-CTSDb 2400 6-31G 1.65

SC-CTSDb 2400 ANO 1.73

CASPT2ab - ANO 1.30

B3LYP - 6-31G* 1.53

Experimentc - - 1.58

a Ref. [79].

b Approximated using the B3LYP geometry relaxation.

c Ref. [39].
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The DMRG and SC-CTSD calculations were performed using the geometry

optimized by Haeser et. al. through density functional theory [3]. These cal-

culations, like the CASPT2 results of Roos et. al. [79], correspond to a vertical

excitation in which the triplet state’s geometry is not allowed to relax. How-

ever, the measurement of the experimental gap was performed by observing

phosphorescence emission [39], which, due to the millisecond time scale sepa-

rating excitation and emission, measures the non-vertical gap (the gap after the

triplet geometry has relaxed). Therefore, to compare to experiment, it would

have been more appropriate to calculate the non-vertical singlet-triplet gap. To

approximately correct for this disparity, we optimized the geometry of both the

singlet and triplet states with spin-unrestricted B3LYP density functional the-

ory [16] in the 6-31G* basis set [40] using the GAUSSIAN-03 program package

[36]. The change in the B3LYP singlet-triplet gap due to geometry relaxations

was then combined with the vertical gaps of the other methods to produce ap-

proximate non-vertical gaps, which can be more appropriately compared with

experiment. The results of these calculations are shown in Table 2.9, while the

geometries involved can be found in the supplemental information of Ref. [70].

The approximate non-vertical SC-CTSD singlet-triplet gaps were 1.65 and

1.73 eV for the 6-31G and ANO basis sets, respectively. These gaps are both

within 0.15 eV of the 1.58 eV experimental value. After accounting for geome-

try relaxation, the CASPT2 gap is 1.30 eV, which has an error of 0.28 eV when

compared to experiment. Finally, B3LYP density functional theory produced a

1.53 eV non-vertical gap, in error by only 0.05 eV. Note that none of the theo-

retical methods account for solvent effects, which should be kept in mind when

comparing to the experiment.

77



Table 2.10: Orbital occupations for porphin’s active space natural orbitals.

Orbital Singlet Occupation Triplet Occupation

1 1.9859 1.9877

2 1.9854 1.9876

3 1.9636 1.9567

4 1.9612 1.9548

5 1.9488 1.9427

6 1.9456 1.9393

7 1.9405 1.9369

8 1.9301 1.9238

9 1.9167 1.9069

10 1.9149 1.8933

11 1.9147 1.8754

12 1.8197 1.7229

13 1.7955 1.1608

14 0.2286 0.8502

15 0.2069 0.3104

16 0.1075 0.1436

17 0.0779 0.1013

18 0.0649 0.0724

19 0.0620 0.0719

20 0.0591 0.0625

21 0.0444 0.0504

22 0.0429 0.0498

23 0.0424 0.0497

24 0.0407 0.0490
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Figure 2.11: Isosurface plots of eight porphin orbitals.

An important difference between the SC-CTSD and CASPT2 results is found

in the role of intruder states. Limited to a 14-orbital active space, the CASPT2

calculation required a 0.4 Hartree level shift in order to avoid intruder states,

which the authors cautioned could produce up to 0.2 eV of error in the excita-

tion energy [79]. In contrast, the strongly contracted operators used in CT the-

ory showed no intruder state characteristics, allowing an unambiguous singlet-

triplet gap to be obtained.

We have included in Table 2.10 the singlet and triplet natural orbital occupa-

tions for the 2400 state DMRG solutions in the ANO basis set. All orbitals of the

singlet and triplet states had occupations differing from single reference behav-

ior by more than 0.01, while 16 of the singlet and 17 of the triplet orbitals had
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occupations differing by more than 0.05. Isosurface plots of eight of the singlet

state’s orbitals are shown in Fig. 2.11, along with the orbital occupations in the

single/triplet states (the triplet orbitals were of the same qualitative shapes as

the singlet orbitals). As a final note, we observe that the contribution of corre-

lations between the active (out-of-plane 2p) and external (everything else) or-

bitals to the SC-CTSD singlet-triplet gap was not sensitive to either the number

of DMRG states retained or the presence of polarization functions in the basis

set. This can be seen by recognizing that the difference between the DMRG-SCF

and SC-CTSD vertical energy gaps (0.30 eV) changes by less than 0.01 eV across

the three SC-CTSD calculations that were performed.

2.6 Conclusion

Canonical transformation (CT) theory is a dynamic correlation theory formu-

lated for efficient application to multireference systems. As we have seen, the

theory achieves many of the desirable properties that one looks for in a mul-

tireference dynamic correlation theory, including size consistency, the ability to

treat large active spaces, and an n6 cost scaling proportional to that of CCSD. In

addition to these good formal properties, CT theory has demonstrated good per-

formance in both benchmark systems, such as N2, FeO, and NiO, and systems

at the limits of multireference quantum chemical description, such as [Cu2O2]
2+

and free base porphin, with a typical accuracy significantly exceeding that of

multireference perturbation theory. CT theory is a relatively young theory, how-

ever, and there remain a number of unanswered questions and possible im-

provements.
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1. Two improvements that can be made to a dynamic correlation theory are

the use of explicit correlation and density fitting techniques. While we

foresee no fundamental difficulties in augmenting the theory with an ex-

plicit correlation method, the use of density fitting is not so straightfor-

ward. Initial investigations on the N2 molecule have revealed that the CT

effective Hamiltonian may lack the considerable 2-body integral sparsity

that is typically exploited by density fitting techniques. It is therefore not

obvious how to employ density fitting in CT theory, but we believe the

topic to be of significant research interest because it may simplify the chal-

lenge of constructing and storing the effective Hamiltonian.

2. Another common feature of dynamic correlation theories is the ability to

evaluate analytic derivatives. This capability is under development for

CT theory, which will allow the evaluation of nuclear gradients as well as

response properties like polarizabilities.

3. A less well understood but no less interesting topic is whether the canon-

ical transformation can be optimized simultaneously with the underlying

static correlation wavefunction in order to better capture the effect of ac-

tive space relaxations that result from the inclusion of dynamic correla-

tion. This simultaneous procedure would also eliminate the dichotomy

between the “diagonalize and perturb” and “perturb and diagonalize”

approaches to multireference models. However, little is understood as to

how the cumulant and operator decompositions would affect the stability

of such an optimization. As we have seen, great care is required to pre-

vent these approximations from undermining the stability of CT theory

itself, so it is natural to be cautious when entangling them with a static

correlation method.
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4. Although CT theory is primarily intended for application to large mul-

tireference systems that are out of reach of traditional methods, it has

proven remarkably competitive with existing methods in small molecules

such as N2 and H2O. It would therefore be prudent to formulate a ver-

sion of the theory that can make use of not only the exact 3-body RDM

but also a pre-contracted 4-body RDM of the sort that is commonly em-

ployed in multireference perturbation theory. This would create a more

accurate and robust method for small systems, and perhaps even large

systems with small active spaces. Along similar lines, it would be inter-

esting to develop a single-reference version of CT theory, in which many

simplifications and efficiency gains should be possible. Research in these

directions would allow theorists to select the type of canonical transfor-

mation theory most suitable to their specific application. It would also

allow for more direct and informative comparisons between the behavior

of CT theory, single-reference coupled cluster theories, and multireference

theories that make use of higher order wavefunction information.

5. Another area in which CT theory should be more extensively studied is

the modeling of excited states. Preliminary investigations into this topic

have produced promising results but have also raised a number of ques-

tions about how best to approach the problem. For example, should one

canonical transformation be defined for all excited states, akin to the sim-

ilarity transform in equation-of-motion coupled cluster theory, or should

each excited state be modeled with its own transformation that is specifi-

cally tailored to its reference wavefunction? In addition to answering such

questions, the more basic question of how well CT theory performs for

excited states has yet to be systematically investigated. In short, more ex-
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tensive studies of excited states using CT theory are called for.

6. Finally, we would like to raise the question of whether there is a better

way to formulate efficient models for multireference dynamic correlation

than through the use of internally contracted excitations. In this review

we have advocated the use of even more restricted formulations, such

as strong contraction, that increase the stability of CT theory. However,

these excitations are still ultimately based on the internally contracted ex-

citations employed in perturbation theory and configuration interaction.

The usual justification for using internal contraction is that the obvious

alternative of considering excitations from individual determinants in the

active space becomes impractical for large active spaces, as the number

of such determinants grows exponentially. However, the advent of ad-

vanced wavefunctions such as DMRG’s matrix product state allow the

active space wavefunction to be expressed in forms that require only a

polynomial amount of information. It would be interesting to search for

external excitations that are more suitable for use with the matrix product

state and other advanced wavefunctions, for which the “natural” starting

point is something other than the uncontracted excitations that arise from

a CASSCF wavefunction. Such excitations could have important implica-

tions for CT theory, but also for the general problem of modeling dynamic

correlation in multireference systems.
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CHAPTER 3

JASTROW FACTOR AND CORRELATOR PRODUCT STATE

WAVEFUNCTIONS

3.1 Introduction

Describing the qualitative electronic structure of molecules and materials con-

taining large numbers of strongly interacting valence electrons represents one

of the key unsolved challenges in quantum chemistry and electronic structure

theory. In the previous chapter, we assumed that the qualitative behavior of the

valence electrons was known, and focused instead on the effects of strong inter-

actions on the fine details of the wavefunction known as dynamic correlation.

In this chapter, we will address the equally essential task of describing the static

correlation between valence electrons responsible for their qualitative behavior.

Before describing how we will address the challenge of modeling static cor-

relation, it is useful to create a clear view of exactly what is meant by the phrase

“strong interactions”. In the absence of any interactions between electrons, a

quantum system will populate its low-lying single-particle eigenstates (orbitals)

according to the Aufbau principle. The result, for fermions, is a Slater deter-

minant consisting of the N orbitals with the lowest single-particle energies, N

being the number of electrons present. We see that the lack of any interactions

gives rise to a type of energetic order. When electron interactions are very weak

compared to the single particle energetics, the wavefunction will be dominated

by a single, energetically structured Slater determinant (hence the name single-

reference) and will behave qualitatively like a system without any interactions

at all.
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A strongly interacting system can be defined as one whose interactions be-

tween electrons are large enough to qualitatively disrupt this energetic order. In

such systems, the single-particle orbitals do a very poor job of keeping the elec-

trons away from each other, leading to large coulomb repulsions (interactions)

between electrons in the low-lying orbitals. From the standpoint of minimizing

the system’s energy, these interactions make it desirable to separate electrons

by placing them in configurations other than the one prescribed by the Auf-

bau principle. Indeed, keeping electrons away from each other often requires

the wavefunction to be a linear combination of many Slater determinants with-

out any one being dominant, and so strongly interacting systems are commonly

called multi-reference systems. In the extreme case, known as the strongly in-

teracting limit, the coulomb repulsion is so much larger than any one-particle

energy that the energetic order gives way completely to a spatial order in which

the electrons are separated by being localized in different regions of space. Most

multi-reference systems are not so strongly interacting as this, however, and so

neither spatial nor energetic order dominate their electronic structure.

Traditional approaches in quantum chemistry have focused on exploiting

energetic order and are most reliable in weakly interacting, single-reference sys-

tems. More recently, a class of wavefunctions known as tensor networks has

been developed to exploit the spatial order present in very strongly interacting

systems. The approximations made by these two approaches bias them towards

either spatial or energetic structure, however, and so they are often unable to ac-

curately model systems that transition from one structure to the other. A very

common example of this transition in chemistry is the breaking of a chemi-

cal bond, in which the system moves from a bonding geometry whose wave-

function is dominated by energetic structure to the dissociation limit in which
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electrons are localized on their respective atoms. Another common example is

found in excitation processes in which the ground state is single-reference but

the excited state is multi-reference. To provide an unbiased prediction of energy

differences during such processes, a method should be capable of describing

both energetically and spatially structured wavefunctions. One common ap-

proach to this challenge is to augment an energetically structured wavefunction

such as a Slater determinant with a set of Jastrow factors, which work to add

spatial structure.

In this chapter we will explore a generalization of the traditional Jastrow

factor wavefunction. The vast majority of Jastrow factors used in electronic

structure theory have been of a pairwise form, meaning that they only take into

account the relative positions of two electrons at a time. While this type of Jas-

trow factor is undoubtedly the most important, the spatial structure of strongly

interacting systems is not limited to creating only pairwise correlations. One

may therefore attempt to augment the wavefunction’s spatial structure based

on the relative positions of more than two electrons at a time, at which point

the Jastrow factors begin to resemble the tensor network wavefunction known

as the correlator product state. As we will show in Sec. 3.2.1, Jastrow factors

and correlators are mathematically identical, and the generalization to many-

body Jastrow factors can be seen as a fusion of a tensor network wavefunction

that exploits spatial structure with a more traditional wavefunction designed to

exploit energetic structure.

While the combination of Jastrow factors and a more traditional wavefunc-

tion such as a Slater determinant allows one to exploit both spatial and ener-

getic structure, working with these constructions is not trivial. Traditionally,
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Monte Carlo integration has been required to extract information from Jastrow

factor wavefunctions, because the sums and integrals involved do not simplify

to a tractable closed form. For example, while a Slater determinant can be ma-

nipulated and optimized efficiently, by which we mean in a time that scales

polynomially with the size of the system, the addition of Jastrow factors creates

non-trivial correlations between electrons, preventing the usual simplifications

associated with Slater determinants.

While Monte Carlo techniques remain applicable when the Jastrow factors

are generalized into a many-body form, one must be careful to formulate them

in order to accommodate the much larger number of variational parameters

that result from this generalization. We will explain how two particular Monte

Carlo based approaches, steepest descent and stochastic reconfiguration, can be

efficiently applied to generalized Jastrow factor wavefunctions. Furthermore,

we will show that it is possible in some cases to avoid the use of stochastic

techniques entirely. This approach, detailed in Sec. 3.4, creates a new set of

criteria for identifying efficient wavefunctions, and in some cases proves to be

more efficient than the use of stochastic sampling.

3.2 Ansatz

3.2.1 Jastrow factors

Consider an orthonormal one-particle basis of size k. As the applications in this

chapter are to lattice models, we will call this basis the lattice basis, although

the formalism generalizes directly to a basis of orthonormal orbitals. In this
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case the orbitals would typically be chosen to be localized, so that the Jastrow

factor takes on a spatial meaning, although localized orbitals are not strictly

required. In our lattice (one-particle) basis, an arbitrary quantum wavefunction

can be written as

|Ψ〉 =
∑

n1n2...nk

Ψn1n2...nk
|n1n2...nk〉 =

∑
n

Ψn|n〉, (3.1)

where n denotes the vector of occupancies n1n2 . . . nk. In a spin 1/2 system,

|ni〉 ∈ {| ↑〉, | ↓〉}, (3.2)

while in a fermion system,

|ni〉 ∈ {|−〉, | ↑〉, | ↓〉, | ↑↓〉}. (3.3)

In order to describe how we will approximate |Ψ〉, we must first define a

Jastrow factor. A Jastrow factor is an operator that is diagonal in the lattice basis

|n〉. It is usually written as an exponential of an expansion in number operators,

Ĵ = exp(j +
∑

i

jin̂i +
∑
ij

jijn̂in̂j + . . .). (3.4)

In most applications, the Jastrow amplitudes j, ji, jij . . ., are restricted to be real

numbers, which makes the Jastrow factor Ĵ positive definite. For full generality,

however, we should regard the amplitudes as possibly being complex.

A correlator, the building block of the correlator product state, is also an

operator that is diagonal in the lattice basis and can be viewed as a Jastrow

factor written in non-exponential form. A single correlator acts on a domain of

sites. For example, a correlator on sites i, j takes the form

ĉij =
∑
ninj

|ninj〉 cninj
〈ninj| =

∑
ninj

cninj
P̂ninj

, (3.5)
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Figure 3.1: Examples of correlators on the square lattice. A: a 1-site corre-
lator, similar to a Gutzwiller factor. B: a nearest-neighbor 2-site
correlator. C: a 3-site line correlator. D: a 4-site line correlator.
E: a 4-site square correlator. F: a 9-site square correlator. G: a
5-site cross correlator.
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Figure 3.2: Examples of correlators on the triangular lattice. A and B: the
two orientations of 3-site triangle correlators. C and D: the two
orientations of 6-site triangle correlators. E, F, and G: the three
orientations of 4-site rhombus correlators. H: a 7-site hexagon
correlator.
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where cninj
are the correlator amplitudes, and we have introduced the projec-

tion operator P̂ninj
= |ninj〉〈ninj|. The equivalence of the correlator and Jastrow

factor is seen by recognizing that a two-site correlator ĉij is exactly representable

by a two-site Jastrow factor exp(j + jin̂i + jijn̂in̂j), so long as the Jastrow ampli-

tudes are allowed to be complex. The choice of using the exponentiated Jastrow

representation or the correlator representation is a matter of numerical expedi-

ency. In the current work, we henceforth use the term “correlator” to refer to

both representations.

A correlator can be chosen to act on an arbitrary number of sites (see Figs.

3.1 and 3.2). Such a general correlator is written as

ĉλ =
∑
nλ

cnλ
P̂nλ

, (3.6)

where nλ is the occupancy vector of the sites in the domain of the correlator, and

P̂nλ
is the corresponding projector.

3.2.2 Reference functions

Both Jastrow factors and correlators can be applied to reference wavefunctions

|Φ〉 to generate approximations to |Ψ〉. For the overall wavefunction to be use-

ful, the reference function must be chosen such that expectation values and any

information necessary for the wavefunction’s optimization can be extracted ef-

ficiently. For the purposes of variational Monte Carlo, it is sufficient that the

overall wavefunction’s coefficient Ψn can be evaluated efficiently for any lattice

configuration n. All of the reference functions described below meet this crite-

rion. For use with the non-stochastic algorithms described in Sec. 3.4, there is a

more stringent requirement that prevents some of these references below from
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being employed. The references that are compatible with the non-stochastic

methods are the uniform reference and the Slater determinant, as well as the

BCS (but not AGP) wavefunction.

The uniform reference

The correlator product state (CPS) [22], also called the entangled plaquette state

[61, 62] and the complete graph tensor network [57], is defined by applying

a product of correlators to the uniform reference |ΦU〉, which is an equally

weighted sum over the lattice quantum basis,

|ΦU〉 =
∑
n

|n〉. (3.7)

The summation in Eq. (3.7) may be chosen with symmetry constraints. For ex-

ample, in this thesis, we always use a uniform reference such that for spin sys-

tems, the summation in Eq. (3.7) refers to states only with given Sz, while for

fermionic system, to states with only given N and given Sz.

The CPS is then obtained by applying a product of correlators to |ΦU〉,

|Ψ〉 = Ĉ|ΦU〉 =
∏
λ

ĉλ|ΦU〉. (3.8)

The correlator amplitudes cnλ
provide a product approximation to the wave-

function amplitudes Ψn in Eq. (3.1)

Ψn =
∏
λ

cnλ
, (3.9)

and this expression can be evaluated efficiently in a time proportional to the

number of correlators. Note that the domains λ of the different correlators will
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usually contain overlapping sites. For example, for a CPS wavefunction in one-

dimension with nearest neighbor correlators, we have

|Ψ〉 = ĉ12ĉ23ĉ34 . . . ĉk−1k|ΦU〉. (3.10)

By using correlators that cover increasingly larger numbers of sites, CPS become

an exact family of states.

Slater determinants

The most common reference function used in conjunction with Jastrow factors is

a Slater determinant [34], a formulation originally introduced by Robert Jastrow

[48]. The determinant is defined by a set of orbitals {φ1, φ2, . . . , φN} as

|ΦD〉 = det |φ1φ2 . . . φN |, (3.11)

which may be expressed in our lattice basis as

|ΦD〉 =
N∏

i=1

(
2k∑

j=1

Xija
†
j

)
|0〉, (3.12)

where a†j is the creation operator for the jth one-particle state, |0〉 is the true vac-

uum, and X is the matrix of orbital coefficients whose ith row defines the orbital

φi. Note that here j indexes spin-labeled one-particle states, with j ≤ k referring

to spin ↑ states and j > k referring to spin ↓ states. This form gives us a gen-

eral determinant, from which spin-restricted determinants can be constructed

by placing the relevant restrictions on the matrix X.

The overall Jastrow-Slater wavefunction is |Ψ〉 = Ĉ|ΦD〉, and the coefficients

Ψn = 〈n|Ψ〉 can be evaluated efficiently as a product of the correlators’ contri-

butions, Eq. (3.9), and the Slater determinant contribution, 〈n|ΦD〉. The latter
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contribution is equal to a determinant of orbital coefficients,

〈n|ΦD〉 = 〈0| ap
N

. . . ap2
ap1

N∏
i=1

(∑
j

Xija
†
j

)
|0〉

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

X1p1
X1p2

· · · X1p
N

X2p1
X2p2

...
... . . . ...

XNp1
· · · · · · XNp

N

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (3.13)

where {p1 , p2 , . . . , pN
} are the occupied one-particle states in |n〉. This deter-

minant can be evaluated efficiently in O(N3) time via the LU decomposition or

other matrix factorizations.

Singlet pairing functions

Jastrow factors are also commonly used in conjunction with pairing wavefunc-

tions. A singlet pairing wavefunction can be written in the form of the Bardeen

Cooper Schrieffer (BCS) wavefunction [12],

|ΦBCS〉 = exp(F̂ )|0〉, (3.14)

where the pairing operator F̂ creates a linear combination of all possible singlet

pairings of the one-particle states,

F̂ =
k∑

i,j=1

fija
†
i↑a

†
j↓. (3.15)

Note that here our labels i and j refer to spin-independent one-particle states, to

which we add the spin label explicitly. For example, a†i↑ creates a spin ↑ electron

in state i. In order for the pairing to be made of singlets, the pairing matrix must

be symmetric, fij = fji.
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One aspect to note about the BCS wavefunction is that it contains compo-

nents with all possible even particle numbers up to the maximum number al-

lowed by our one-particle basis. This superposition of states with different par-

ticle numbers is reasonable for a bulk system connected to an electrode, but is

not appropriate in isolated systems like molecules. In the latter case, we may

force the system to have a specific number of electrons by applying the parti-

cle number projectors P̂ ↑
N/2

and P̂ ↓
N/2

, which project to the subspace of the sys-

tem’s Hilbert space with the appropriate number of ↑ and ↓ electrons. The result

of this projection is the Antisymmetrized Geminal Power (AGP) wavefunction

[47, 24, 4],

|ΦAGP 〉 = P̂ ↑
N/2

P̂ ↓
N/2
|ΦBCS〉 =

1

(N/2)!
F̂N/2|0〉. (3.16)

Both the BCS [18] and AGP [21] wavefunctions have seen use in conjunc-

tion with Jastrow factors in the context of quantum Monte Carlo. Similar to the

Slater determinant, the coefficient Ψn of these wavefunctions can be evaluated

efficiently as the product between the correlator contribution, Eq. (3.9), and the

BCS/AGP contribution, which takes the form of a determinant of pairing matrix

elements,

〈n|ΦAGP 〉 = 〈n|ΦBCS〉 =
1

(N/2)!
〈0|

N/2∏
l=1

ap
l
↑aq

l
↓

(
k∑

i,j=1

fija
†
i↑a

†
j↓

)N/2

|0〉

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

fp1q1
fp1q2

· · · fp1q
N/2

fp2q1
fp2q2

...
... . . . ...

fp
N/2

q1
· · · · · · fp

N/2
q
N/2

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (3.17)

where {p1 , p2 , . . . , pN/2
} and {q1 , q2 , . . . , qN/2

} are the positions in |n〉 of the ↑ and

↓ electrons, respectively.
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General pairing functions and pfaffians

For systems whose ground states are not singlets or which display significant

spin-polarization, the singlet pairing operator that defines the BCS and AGP

wavefunctions is no longer adequate. Instead, we can employ a generalized

pairing operator

Ĝ =
2k∑
i=1

2k∑
j=i+1

gija
†
ia

†
j, (3.18)

where i, j ≤ k refer to spin ↑ and i, j > k refer to spin ↓ one-particle states.

While F̂ creates a linear combination of all singlet pairings, Ĝ creates a linear

combination of all singlet (↑↓ − ↓↑) and triplet (↑↓ + ↓↑, ↑↑, ↓↓) pairings.

For the ↑↓ − ↓↑ and ↑↓ + ↓↑ pairings, whether the singlet or triplet version is

created depends on the values of the pairing matrix elements. For example, the

pairing of the one-particle states 1 and 2 through the operator a†1a
†
k+2 ± a†2a

†
k+1

(i.e. a†1↑a
†
2↓ ± a†2↑a

†
1↓) is a singlet for + and a triplet for −. If the pairing matrix

elements g1,k+2 and g2,k+1 are real and equal in magnitude, then the singlet pair

will be created if their signs are equal and the triple pair if they are not. If the

magnitudes differ, or if g is allowed to be complex, then in general a linear

combination of the singlet and triplet pairings will be created.

Unlike the Slater determinant, BCS, and AGP wavefunctions, the wavefunc-

tion coefficients Ψn of the generalized pairing wavefunction do not work out

to be a determinant. Instead, the reference function’s contribution to the wave-

function coefficient will be a pfaffian [17, 8, 9], which is a generalization of a

determinant. We therefore denote the generalized pairing reference as |ΦPF 〉

and define it as

|ΦPF 〉 = exp(Ĝ)|0〉. (3.19)
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The coefficient of this wavefunction for a given lattice configuration |n〉 is

〈n|ΦPF 〉 =
1

(N/2)!
〈0| ap

N
. . . ap2

ap1
ĜN/2 |0〉, (3.20)

where {p1 , p2 , . . . , pN
} are the occupied one-particle states in |n〉. Note that our

definition of |ΦPF 〉 only makes use of the upper triangle of the pairing matrix

(i.e. gij for i < j), and so we are free to assign whatever values we want to the

lower triangle without affecting |ΦPF 〉. The choice gij = −gji is expedient, for it

allows us to write Eq. (3.20) as

〈n|ΦPF 〉 =
∑
α,β

sign(α, β) gpα1
pβ1

gpα2
pβ2

· · · gpα
N/2

pβ
N/2

. (3.21)

Here the sum is over all (N − 1)!! partitionings of the numbers {1, 2, . . . , N} into

two series α = {α1 , α2 , . . . , αN/2
} and β = {β1 , β2 , . . . , βN/2

} such that αi < βi.

The function sign(α, β) is equal to the sign produced by permuting {1, 2, . . . , N}

into the order {α1 , β1 , α2 , β2 , . . . , αN/2
, β

N/2
}. Up to a factor of (N/2)!, Eq. (3.21) is

the defining equation for the pfaffian of what we will call the occupied pairing

matrix,

〈n|ΦPF 〉 = pf



0 gp1p2
gp1p3

· · · gp1p
N

gp2p1
0 gp2p3

gp3p1
gp3p2

0

... . . .

gp
N

p1
0


. (3.22)

As explained in Ref. [9], this pfaffian can be computed in O(N3) time by trans-

forming the matrix into a block diagonal form. We therefore see that the general

pairing reference, like the Slater determinant and the singlet pairing reference,

can be efficiently manipulated through variational Monte Carlo techniques.

One can easily see that |ΦPF 〉 contains |ΦBCS〉 by constraining the pairing

matrix to satisfy gi,j+k = gj,i+k and gi,j = gi+k,j+k = 0 for all i, j ∈ {1, 2, . . . , k}.
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Less obviously, |ΦPF 〉 also contains all Slater determinants |ΦD〉 of the form

given in Eq. (3.12). This includes both the restricted and unrestricted Hartree-

Fock determinants, as well as more general determinants whose orbitals mix

the spin ↑ and ↓ one-particle states. To see how, consider the following pfaffian

identity [9],

pf[BT AB] = det[B]pf[A], (3.23)

in which B is any square matrix and A is a skew-symmetric matrix of the same

dimension. By choosing A as the block diagonal matrix

A =



0 1 0 0 · · ·

− 1 0 0 0

0 0 0 1

0 0 − 1 0

... . . .


, (3.24)

we have pf[A] = 1 and can thus write the determinant of any square matrix

as det[B] = pf[BT AB]. If we can arrange for our occupied pairing matrix,

Eq. (3.22), to be equal to BT AB, with B now the matrix from Eq. (3.2.2), then

the coefficients 〈n|ΦPF 〉 and 〈n|ΦD〉 will be equal. We can accomplish this by

choosing our pairing matrix as g = XT AX , and thus we see that any Slater de-

terminant of the form given in Eq. (3.12) can be written as a generalized pairing

wavefunction.

3.3 Variational Monte Carlo

Jastrow factor wavefunctions, both of the CPS and more traditional Jastrow-

Slater and Jastrow-AGP varieties, have so far been used almost exclusively in
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conjunction with Monte Carlo algorithms. The reason for this state of affairs is

relatively simple: many of the integrals (when working in real space) and sum-

mations (when working in Fock space) that arise in computing expectation val-

ues for these wavefunctions can only be practically evaluated by using stochas-

tic sampling. In this section we will overview the use of variational Monte Carlo

[60, 71], which uses stochastic sampling to compute and minimize the energy of

the chosen wavefunction.

3.3.1 Variational energies

The energy of any wavefunction can be written as

E =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

=
∑
n

|Ψn|2

〈Ψ|Ψ〉
EL(n), (3.25)

where the local energy EL(n) is defined by

EL(n) =
∑
n′

Ψn′

Ψn

〈n|H|n′〉. (3.26)

As long as Ψn can be evaluated efficiently, which is the case when combining

Jastrow factors with any of the reference functions in Sec. 3.2.2, a Markov chain

can be used to sample the probability distribution |Ψn|2/〈Ψ|Ψ〉 and to efficiently

compute the overall energy as an average of the sampled local energies.

In addition to computing the energy, stochastic sampling can be used to

minimize the energy by optimizing the wavefunction’s variational parameters.

One approach is to use a stochastic estimate of the energy gradient to perform

a steepest descent optimization. Alternatively, one may minimize the energy

by using stochastic sampling to approximately project onto the Hamiltonian’s

ground state, a procedure known as stochastic reconfiguration. In either case,
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one must take care that the optimization procedure can handle the large num-

bers of variational parameters that are introduced by many-body Jastrow factors

and correlators. Traditionally, variational Monte Carlo techniques have been

applied to wavefunctions with at most a few thousand variational parameters.

In contrast, many-body correlators can contain hundreds of thousands or even

millions of parameters. While applying the steepest descent method for such

large parameter sets is relatively straightforward, the use of stochastic reconfig-

uration is less so. We will therefore devote the next section to explaining the

stochastic reconfiguration method and how it can be formulated to tackle large

parameter sets.

3.3.2 Stochastic reconfiguration

Stochastic Reconfiguration (SR) [20, 21] is an optimization method that attempts

to project an initial guess for the wavefunction onto the ground state. The pro-

jection operator used for the optimization is the difference between a diagonal

shift Λ and the Hamiltonian,

P̂ = Λ− Ĥ. (3.27)

For a sufficiently large shift, the Hamiltonian’s ground state will be the eigen-

state of the projector with the largest magnitude eigenvalue, so that repeated

applications of the projector will yield the ground state. If the shift is large, the

change to the wavefunction from a single application of the projector will be

small. In this case, it is reasonable to approximate the result of the projection as
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a linear combination of the current wavefunction and its first derivatives,

(Λ− Ĥ)|Ψ〉 ≈
nv∑
i=0

zi|Ψi〉, (3.28)

|Ψ0〉 ≡ |Ψ〉, (3.29)

|Ψi〉 ≡ ∂

∂xi

|Ψ〉 i = 1, 2, . . . , nv, (3.30)

where nv is the length of the vector of variable parameters x. If we now left-

multiply by each state 〈Ψj|, we arrive at a system of linear equations that may

be solved for the values of z,

〈Ψj|(Λ− Ĥ)|Ψ〉 =
nv∑
i=0

〈Ψj|Ψi〉zi. (3.31)

Once we have obtained the expansion coefficients zi, we use them to update

the wavefunction’s variables as follows,

xi → xi +
zi

z0

i = 1, 2, . . . , nv. (3.32)

The wavefunction based on these updated variables is equivalent to the right

hand side of Eq. (3.28) up to order Λ−2 by virtue of the fact that the states |Ψi〉

are the wavefunction’s first derivatives. In summary, the SR method is defined

by projecting by P̂ , solving for z, updating the wavefunction’s variables via Eq.

(3.32), and then repeating these steps until the energy has converged.

The method is called stochastic reconfiguration because for Jastrow factor

wavefunctions, Monte Carlo sampling is the only way to evaluate the expecta-

tion values in Eq. (3.31). Traditionally, the overlap matrix 〈Ψj|Ψi〉 and the vector

〈Ψj|(Λ − Ĥ)|Ψ〉 are constructed explicitly via stochastic sampling, after which

Eq. (3.31) is solved by direct inversion. Let us inspect the stochastic construc-

tion of the overlap matrix, which may be written as

〈Ψj|Ψi〉 =
∑
n

|Ψn|2∑
n′ |Ψn′|2

(
Ψj

n

Ψn

)∗(
Ψi

n

Ψn

)
, (3.33)
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where Ψn and Ψi
n are the wavefunction’s coefficient for configuration n and the

derivative of this coefficient with respect to xi. The cost to construct the overlap

matrix in this way is n2
vns, where ns is the number of configurations visited

during the stochastic sampling process.

We seek to increase the number of variational parameters that can be op-

timized by stochastic reconfiguration by solving the linear equation more effi-

ciently. To do so, we will rely on an iterative solver (in our case the conjugate

gradient method), which requires only that we compute the overlap matrix’s

action on a trial vector. While this can be accomplished by building the matrix

and multiplying by it explicitly, there is a more efficient way. By inserting the

stochastic formula for the overlap matrix, Eq. (3.33), into the right hand side of

Eq. (3.31), we see that the overlap matrix’s action is

nv∑
i=0

〈Ψj|Ψi〉zi =
nv∑
i=0

∑
n

|Ψn|2∑
n′ |Ψn′|2

(
Ψj

n

Ψn

)∗(
Ψi

n

Ψn

)
zi (3.34)

=
∑
n

|Ψn|2∑
n′ |Ψn′|2

(
Ψj

n

Ψn

)∗
[

nv∑
i=0

(
Ψi

n

Ψn

)
zi

]
.

By exchanging the orders of summation, we see that the overlap matrix is just

a sum of outer products and that its action can be computed at a cost of nvns,

which is a factor of nv less than the traditional approach. Note that this as-

sumes that the ratios Ψi
n/Ψn have been computed in advance and stored either

in memory or on disk. As the sampling procedure is perfectly parallel, very

large sample lengths can be accomplished by dividing the sampling over many

processors. After each processor computes its contribution to the matrix’s ac-

tion, the results can be combined at a cost of only nv ln ns. Using this approach,

we are able to optimize by SR the large numbers of variational parameters in-

herent to many-body correlators and Jastrow factors.
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3.3.3 Efficient wavefunction ratios

While the descriptions of the various reference functions in Sec. 3.2.2 and the

simple form of Jastrow factors make clear that the coefficients of the wavefunc-

tions we are considering can be computed in polynomial time for arbitrary con-

figurations of the system, there is a clever technique for speeding up these cal-

culations in the context of quantum Monte Carlo. Typically during a Monte

Carlo calculation, one deals with a walker that moves from one system config-

uration to another as part of a stochastic process such as a Markov chain. In

quantum chemistry, the walker’s moves are usually restricted to changing the

position of a single electron, because this simplifies the procedure of updating

the wavefunction’s coefficient for the new configuration. Specifically, when one

electron’s position changes, only one column or row of the matrix whose deter-

minant defines the reference function’s coefficient will change. Evaluating the

ratio of two determinants differing by only one row or column can be accom-

plished quickly through the use of the matrix determinant lemma,

det(A + uvT)

det(A)
= 1 + vTA−1u, (3.35)

where uvT is the outer product of the vectors u and v. By choosing u and v

correctly, this formula can be made equal to the ratio of two determinants dif-

fering by one row or one column. In that case, the right hand side of Eq. (3.35)

becomes the dot product of the row or column difference and the appropriate

column or row of A−1. This operation’s cost is linear in the dimension of the

matrix, as opposed to the cubic cost of directly re-evaluating the determinant

through matrix factorization. This speedup is of course only possible if the ma-

trix’s inverse is known, but the inverse need only be directly computed once,

as it too can be efficiently updated when one row or one column of the matrix
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changes by using the Sherman-Morrison formula,

(A + uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
. (3.36)

When changing a single row or column of the matrix, the right hand side of Eq.

(3.36) has an evaluation cost that scales as the square of the matrix dimension,

which is again significantly faster than the cubic cost of direct matrix inversion

through matrix factorization. Thus by having each Monte Carlo walker carry

with it the inverse of its reference function’s matrix, the cost of computing the

wavefunction coefficients during a random walk can by significantly reduced.

For the case of the generalized pairing reference, Ref. [9] shows that the same

speedup is possible using the pfaffian relations analogous to Eqs. (3.35) and

(3.36).

3.4 Non-stochastic methods

While the form of the Jastrow-Slater and CPS wavefunctions make them a nat-

ural fit for Monte Carlo algorithms, it is interesting to ask whether or not sta-

tistical algorithms, with their associated drawbacks of statistical error, are the

only way to manipulate these states. We will now show that efficient non-

stochastic algorithms exist both to evaluate observables and to optimize the CPS

and Jastrow-Slater wavefunction, so long as we are willing to sacrifice the strict

variational principle. The non-stochastic algorithms rely on the common struc-

ture of the Jastrow-Slater and CPS wavefunctions, namely that they are a prod-

uct of commuting invertible operators acting on a simple reference state. Other

wavefunctions, such as the coupled cluster wavefunction, also take this form,

and the algorithms we describe are similar to the techniques used for observ-
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able evaluation and wavefunction optimization in the coupled cluster literature

[15].

3.4.1 Non-stochastic energy evaluation

The idea behind non-stochastic energy evaluation is the following. First, we

assume that the CPS or Jastrow wavefunction |Ψ〉 = Ĉ|Φ〉 (here we use |Φ〉 to

refer to either the uniform or Slater determinant reference) is an eigenstate of

the Hamiltonian H ,

HĈ|Φ〉 = EĈ|Φ〉. (3.37)

The energy is then obtained as the asymmetric expectation value

E = 〈Φ|Ĉ−1HĈ|Φ〉 = 〈Φ|H̄|Φ〉, (3.38)

where we define the similarity transformed effective Hamiltonian, H̄ = Ĉ−1HĈ.

Efficient non-stochastic energy evaluation now reduces to whether or not

〈H̄〉 can be efficiently obtained with the reference state |Φ〉, where |Φ〉 is a uni-

form reference in the case of CPS, or a determinant in the case of the Jastrow-

Slater wavefunction. By efficient, we mean that the cost is polynomial in the

lattice size. The standard expectation value 〈Φ|H|Φ〉 can be efficiently evaluated

in either case because the individual terms in the Hamiltonian act on a small

number of sites, independent of lattice size. For example, the Heisenberg and

Hubbard model Hamiltonians contain terms which only act at most on a pair

of sites. The corresponding terms in the effective Hamiltonian H̄ act on a larger

number of sites due to the similarity transformation by the correlators. How-

ever, if the size and range of the correlators are independent of lattice size, then
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even after similarity transformation, the terms in H̄ still act on a number of sites

that will be independent of lattice size. Consequently, the expectation value 〈H̄〉

can still be efficiently evaluated.

More concretely, consider the energy contribution Exy from a hopping oper-

ator a†xay associated with sites x and y,

Exy = 〈Φ|Ĉ−1a†xayĈ|Φ〉. (3.39)

We can divide the correlators in Ĉ (and their inverses in Ĉ−1) into two classes:

those which involve (touch) sites x or y and those which do not. Denote the

product of all the correlators which involve x or y as Ĉxy, and the product of the

remaining correlators as Ĉxy. Then we have

Ĉ = Ĉxy Ĉxy. (3.40)

As an example, consider the hopping operator a†3a4, and the one dimensional

CPS in Eq. (3.10). Then, Ĉ34 is given by

Ĉ34 = ĉ23ĉ34ĉ45. (3.41)

Because Ĉxy only contains correlators which do not involve sites x or y, it can

be commuted past a†xay in Eq. (3.39) to cancel with its corresponding inverse

Ĉ−1
xy ,

Exy = 〈Φ|Ĉ−1
xy Ĉ−1

xy a†xay Ĉxy Ĉxy|Φ〉 = 〈Φ|Ĉ−1
xy a†xay Ĉxy|Φ〉. (3.42)

Thus, the similarity transform of a†xay involves only Ĉxy, not the whole Ĉ oper-

ator. The correlators in Ĉxy define a cluster of kxy sites, where the size depends

on the sizes and ranges of the correlators and the geometry of the cluster, but is

independent of lattice size as long as the correlators are local. The transformed
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hopping operator Ĉ−1
xy a†xayĈxy now acts on kxy sites. The energy contribution

Exy thus requires evaluating the expectation value of a kxy site operator with

the reference function |Φ〉.

To see the explicit dependence of the evaluation of 〈a†xay〉 on the reference

function, we separate Ĉxy into its amplitude and projection operator compo-

nents

Ĉxy =
∑
nxy

Cnxy P̂nxy , (3.43)

where nxy is the occupancy vector for the cluster of sites defined by Ĉxy. The

expectation values of the projection operators define a many-body reduced

density-matrix (RDM) γ on kxy sites,

γnxy ,n′
xy

= 〈Φ|P̂nxya
†
xayP̂n′

xy
|Φ〉. (3.44)

The evaluation of γ depends on the form of the reference function |Φ〉. In the

case of the CPS, each element of the RDM is obtained in O(1) time (even with

particle number and Sz restrictions). For a Jastrow-Slater wavefunction, the cor-

responding RDM element can be evaluated as a determinant of one-body RDM

elements in O(k3) time. Once the RDM is obtained, the combination with the

amplitudes is independent of the reference. The expectation value Exy becomes

Exy =
∑

nxy n′
xy

C−1
nxy

γnxy ,n′
xy

Cn′
xy

. (3.45)

Due to the summation over the occupancy vector, the cost of Eq. (3.45) is expo-

nential in the cluster (but not lattice) size, kxy. Note that the cost is effectively

the cost of a single summation over nxy, rather than the formal double summa-

tion shown above, because the sparsity of γ means that it has O(dkxy) non-zero

elements, where d is dimension of a single site. For sufficiently small correla-

tors, which lead to small clusters, the summation can be carried out affordably.
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As each operator in the Hamiltonian involves a similar contribution, the entire

energy may be efficiently evaluated.

The non-stochastic energy evaluation algorithm relies on little of the detailed

structure of the Jastrow-Slater and CPS wavefunctions. The key steps require

only that (i) Ĉ is made of a product of commuting invertible operators, (ii) only

a small number of these operators do not commute with a given term in the

Hamiltonian, and (iii) the reference function |Φ〉 is sufficiently simple that the

expectation values in Eq. (3.44) can be efficiently obtained. This structure is

obeyed by many other wavefunctions, such as the coupled cluster wavefunc-

tion [15], and indeed for any wavefunction with this structure, an efficient non-

stochastic energy evaluation algorithm may be formulated.

3.4.2 Non-stochastic optimization

Above we showed that we can evaluate the approximate energy of a CPS or

Jastrow-Slater wavefunction in a non-stochastic way, as long as the individual

correlators or Jastrow factors do not cover too many sites. For a complete cal-

culation, we need to also determine the correlator or Jastrow amplitudes. Since

the non-stochastic energy is not variational, we cannot obtain the optimal pa-

rameters by minimizing the energy. Instead, we require that the CPS or Jas-

trow wavefunction satisfies a set of non-linear projected Schrödinger equations.

Solving these equations yields exactly the same solution as the minimum of the

variational energy if the wavefunction provides an exact parameterization, al-

though this is not the case for approximate CPS and Jastrow wavefunctions.

As in the previous section, we assume that the CPS or Jastrow wavefunc-
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tion is a true eigenstate of the Hamiltonian, Eq. (3.37). From the Schrödinger

equation, we need to obtain a set of non-linear equations equal in number to

the number of amplitudes in Ĉ. We obtain sufficient equations by projecting

with the bras 〈Φ|P̂nλ
, where P̂nλ

are the projectors used to define the correlator

operators in Eq. (3.6). Applying these bra states gives us

〈Φ|P̂nλ
(H̄ − E)|Φ〉 = Rnλ

= 0. (3.46)

By requiring the residuals Rnλ
to vanish we determine all the correlator ampli-

tudes cnλ
. As with energy evaluation, the expectation value in Eq. (3.46) can be

obtained in a non-stochastic manner by tracing over clusters of sites associated

with each similarity transformed term in the effective Hamiltonian H̄ .

In order to solve the simultaneous set of equations (3.46), we have taken

two approaches. In the first case, we use a standard Newton-Raphson proce-

dure to find the simultaneous zeroes of the residuals Rnλ
. This requires evalu-

ating the Jacobian matrix ∂Rnλ
/∂cnµ . Alternatively, we may take the approach

of constructing and diagonalizing a local Hamiltonian for each correlator’s am-

plitudes. The local Hamiltonian and overlap matrices that determine cnλ
are

defined as

H̄nλ,n′
λ

= 〈Φ|P̂nλ
cnλ

H̄ c−1
n′

λ
P̂n′

λ
|Φ〉, (3.47)

Snλ,n′
λ

= 〈Φ|P̂nλ
P̂n′

λ
|Φ〉. (3.48)

The correlator amplitudes are obtained from solving an eigenvalue problem for

each correlator ĉλ, ∑
n′

λ

H̄nλ,n′
λ
cn′

λ
= E

∑
n′

λ

Snλ,n′
λ
cn′

λ
. (3.49)

The local Hamiltonian matrix H̄nλ,n′
λ

depends on the amplitudes of all the cor-

relators, ĉµ 6=λ. Thus after each correlator amplitude is obtained from the respec-
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tive eigenvalue problem, Eq. (3.49), the local Hamiltonians are updated, and the

procedure is iterated until convergence is achieved.

Much as in the case of energy evaluation, the formulation of the amplitude

equations relies only on generic elements of the product structure of the Jastrow-

Slater and CPS wavefunctions. By analogy with methods for the coupled cluster

wavefunction, we can also write down a non-stochastic algorithm to obtain ex-

pectation values of arbitrary operators. Starting from the amplitude equations,

we first define a Lagrangian as

L = 〈Φ|H̄ +
∑
nµ

ΛnµP̂nµ

(
H̄ − 〈Φ|H̄|Φ〉

)
|Φ〉, (3.50)

from which the amplitude equations arise from the stationary conditions

∂L

∂Λnµ

= 0. (3.51)

The values of the Lagrange multipliers Λnµ are found by requiring the La-

grangian to be stationary with respect to the correlator variables cnµ ,

∂L

∂cnµ

= 0. (3.52)

Then, derivatives of the Lagrangian with respect to the Hamiltonian’s parame-

ters define reduced density matrices as

Γij = 〈Φ|a†iaj +
∑
nµ

ΛnµP̂nµ

(
a†iaj − 〈Φ|a†iaj|Φ〉

)
|Φ〉, (3.53)

where a†iaj = Ĉ−1a†iajĈ. The two body reduced density matrix Γijkl is defined

likewise using a†ia
†
jalak. These density matrices allow us to obtain expectation

values of arbitrary one and two body operators.
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3.4.3 Heisenberg model with non-stochastic methods

We have applied the correlator product state to the antiferromagnetic spin-1
2

Heisenberg model on a periodic 8x8 square lattice and a periodic 6x6 triangu-

lar lattice using both the non-stochastic and variational MC frameworks. The

Hamiltonian is written as

H = J
∑
〈ij〉

~Si · ~Sj, (3.54)

where 〈ij〉 indicates nearest neighbor pairs and J > 0. The results are sum-

marized in Tables 3.1 and 3.2. In the case of the square lattice, we have essen-

tially exact stochastic series expansion (SSE) results with which to compare [78].

While the accuracy of the CPS ansatz is not the main question we are studying

here (such studies can be found in Refs. [22, 61, 62]), we see that both the non-

stochastic and variational Monte Carlo energies are within 2% of the SSE result

for 4-site square correlators and about 1% for 9-site square correlators. The more

central question is the relative difference between the non-stochastic and vari-

ational Monte Carlo energies. We see that in all cases, the relative difference is

comparable to the intrinsic energy error associated with the wavefunction, and

in one case it is significantly smaller.

As expected, the non-stochastic energy is not variational, and for small cor-

relators it tends to be slightly below the variational energy. More surprisingly,

the convergence in accuracy for the non-stochastic energy is not monotonic

with correlator size. We see both larger deviations from the variational Monte

Carlo results, as well as lower accuracy in the total energy, for 5-site crosses (in

the square lattice) and 6-site triangles (in the triangular lattice), than for some

smaller correlators. We find that square and rhombus correlators do particularly

well on the square and triangular lattices, respectively, with relative differences
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from the variational energy all within 1%. We speculate that these correlators

success is due in part to the fact that the amplitude equations used in their opti-

mization (Eq. (3.46)) are constructed using projectors that share the translational

symmetry of the underlying lattice.

One appealing aspect of the non-stochastic method for CPS on periodic

spin lattices is that the cost of the method can be made independent of the

lattice size by using translationally invariant correlators and by taking advan-

tage of the uniform reference’s particularly simple RDM elements (Eq. (3.44)).

In both the 8x8 square and 6x6 triangular lattice, we found that the non-

stochastic method was much faster than variational MC for small correlators

(4-site squares/rhombuses and smaller), while being slower for larger correla-

tors due to the exponential increase of the cost with correlator size.

3.4.4 Spinless Hubbard model with non-stochastic methods

We have studied a 20-site (4x5) spinless Hubbard lattice with open boundary

conditions using the Jastrow-Slater wavefunction and the non-stochastic algo-

rithms. We have also performed variational Monte Carlo calculations for com-

parison. While we could treat much larger lattices, we chose this lattice size in

order to compare to exact results. The Hamiltonian for the spinless Hubbard

model is

H =
∑
〈ij〉

−t(a†iaj + a†jai) + Ua†iaia
†
jaj, (3.55)

in which a†i and ai are the fermionic particle creation and destruction operators

on site i, and 〈ij〉 represents nearest neighbors.

113



Ta
bl

e
3.

3:
4x

5
sp

in
le

ss
H

ub
ba

rd
la

tt
ic

e
at

ha
lf

fil
lin

g

U
/

t
N

on
-S

to
ch

as
ti

c
V

ar
ia

ti
on

al
M

C
%

D
iff

er
en

ce
H

ar
tr

ee
Fo

ck
Ex

ac
t

0.
1

-1
3.

81
57

-1
3.

81
58

(1
)

0.
00

-1
3.

81
17

-1
3.

81
66

0.
2

-1
3.

24
37

-1
3.

24
38

(2
)

0.
00

-1
3.

22
76

-1
3.

24
75

0.
4

-1
2.

13
67

-1
2.

13
68

(4
)

0.
00

-1
2.

07
09

-1
2.

15
44

0.
6

-1
1.

05
91

-1
1.

06
11

(2
)

0.
02

-1
0.

95
39

-1
1.

12
67

0.
8

-1
0.

08
50

-1
0.

08
84

(2
)

0.
03

-9
.9

59
8

-1
0.

17
37

1.
0

-9
.2

23
0

-9
.2

27
3(

2)
0.

05
-9

.0
91

7
-9

.3
06

6

1.
2

-8
.4

66
0

-8
.4

71
2(

2)
0.

06
-8

.3
38

2
-8

.5
32

6

1.
4

-7
.8

02
2

-7
.8

07
2(

2)
0.

06
-7

.6
82

7
-7

.8
50

7

2.
0

-6
.2

49
1

-6
.2

52
9(

2)
0.

06
-6

.1
62

2
-6

.2
65

8

4.
0

-3
.6

13
9

-3
.6

14
1(

1)
0.

00
-3

.5
88

5
-3

.6
15

1

6.
0

-2
.4

98
9

-2
.4

98
8(

1)
-0

.0
1

-2
.4

89
5

-2
.4

99
1

8.
0

-1
.9

00
7

-1
.9

00
0(

1)
-0

.0
3

-1
.8

96
3

-1
.9

00
7

10
.0

-1
.5

30
8

-1
.5

30
4(

1)
-0

.0
3

-1
.5

28
5

-1
.5

30
8

To
ta

lg
ro

un
d

st
at

e
en

er
gi

es
,i

n
un

it
s

of
t,

fo
r

th
e

4x
5

sp
in

le
ss

H
ub

ba
rd

la
tt

ic
e

at
ha

lf
fil

lin
g

w
it

h
op

en
bo

un
da

ry

co
nd

it
io

ns
.B

ot
h

th
e

no
n-

st
oc

ha
st

ic
an

d
va

ri
at

io
na

lM
C

m
et

ho
ds

us
e

4-
si

te
sq

ua
re

Ja
st

ro
w

fa
ct

or
s

(c
or

re
la

to
rs

).
Ex

ac
t

re
su

lt
s

w
er

e
co

m
pu

te
d

us
in

g
th

e
A

LP
S

pr
og

ra
m

[2
].

N
um

be
rs

in
pa

re
nt

he
se

s
re

pr
es

en
tt

he
un

ce
rt

ai
nt

y
in

th
e

fin
al

di
gi

t.

114



Ta
bl

e
3.

4:
4x

5
sp

in
le

ss
H

ub
ba

rd
la

tt
ic

e
w

it
h

si
ng

le
ho

le
do

pi
ng

U
/

t
N

on
-S

to
ch

as
ti

c
V

ar
ia

ti
on

al
M

C
%

D
iff

er
en

ce
H

ar
tr

ee
Fo

ck
Ex

ac
t

0.
1

-1
3.

85
54

-1
3.

85
54

(1
)

0.
00

-1
3.

85
22

-1
3.

85
58

0.
2

-1
3.

43
41

-1
3.

43
39

(1
)

0.
00

-1
3.

42
14

-1
3.

43
59

0.
4

-1
2.

61
95

-1
2.

61
94

(4
)

0.
00

-1
2.

56
85

-1
2.

62
68

0.
6

-1
1.

84
10

-1
1.

84
11

(2
)

0.
00

-1
1.

72
62

-1
1.

85
83

0.
8

-1
1.

09
76

-1
1.

09
85

(3
)

0.
01

-1
0.

89
40

-1
1.

13
03

1.
0

-1
0.

38
86

-1
0.

39
21

(3
)

0.
03

-1
0.

07
18

-1
0.

44
34

1.
2

-9
.6

45
6

-9
.6

57
9(

4)
0.

13
-9

.2
97

1
-9

.7
98

3

1.
4

-8
.9

32
2

-8
.9

48
3(

4)
0.

18
-8

.6
41

1
-9

.1
95

8

2.
0

-7
.4

35
6

-7
.4

48
6(

3)
0.

17
-7

.1
97

4
-7

.6
47

3

4.
0

-4
.9

01
9

-4
.9

10
5(

3)
0.

18
-4

.7
70

7
-4

.9
95

9

6.
0

-3
.8

20
9

-3
.8

23
8(

2)
0.

08
-3

.7
37

4
-3

.8
79

3

8.
0

-3
.2

43
0

-3
.2

44
(1

)
0.

03
-3

.1
82

0
-3

.2
84

6

10
.0

-2
.8

86
5

-2
.8

85
(1

)
-0

.0
5

-2
.8

38
4

-2
.9

18
5

To
ta

lg
ro

un
d

st
at

e
en

er
gi

es
,i

n
un

it
s

of
t,

fo
r

th
e

4x
5

sp
in

le
ss

H
ub

ba
rd

la
tt

ic
e

w
it

h
si

ng
le

ho
le

do
pi

ng
an

d
op

en
bo

un
da

ry

co
nd

it
io

ns
.B

ot
h

th
e

no
n-

st
oc

ha
st

ic
an

d
va

ri
at

io
na

lM
C

m
et

ho
ds

us
e

4-
si

te
sq

ua
re

Ja
st

ro
w

fa
ct

or
s

(c
or

re
la

to
rs

).
Ex

ac
t

re
su

lt
s

w
er

e
co

m
pu

te
d

us
in

g
th

e
A

LP
S

pr
og

ra
m

[2
].

N
um

be
rs

in
pa

re
nt

he
se

s
re

pr
es

en
tt

he
un

ce
rt

ai
nt

y
in

th
e

fin
al

di
gi

t.

115



0.0

0.5

1.0

1.5

2.0

2.5

 1  2  3  4  5  6  7  8  9  10

%
 E

rr
or

U / t

Hartree-Fock
Non-Stochastic
Variational MC

Figure 3.3: 4x5 spinless Hubbard lattice at half filling
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Figure 3.4: 4x5 spinless Hubbard lattice with single hole doping
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Results for half-filling and single hole doping are presented in Figs. 3.3 and

3.4 and Tables 3.3 and 3.4, respectively. We find that the difference between

the non-stochastic and variational Monte Carlo energies is small for all ratios

of U/t at both half-filling and single hole doping. At half-filling, the largest

difference is 0.06%, while for single hole doping, it is 0.18%. The energy errors

of the Jastrow-Slater form (compared to the exact energy) are less than 1% for

all values of U/t at half-filling, and below 3% for single hole doping. We see that

the difference between the non-stochastic and variational Monte Carlo energies

is here much smaller than the intrinsic error associated with the quality of the

wavefunction.

3.4.5 Full Hubbard model with non-stochastic methods

We have also studied the Hubbard model at half filling with open boundary

conditions, in one and two dimensions, using the non-stochastic and varia-

tional Monte Carlo algorithms for the Jastrow-Slater wavefunction. The Hub-

bard Hamiltonian is

H = −t
∑
〈ij〉

∑
σ=↑,↓

(a†iσajσ + a†jσaiσ) + U
∑

i

a†i↑ai↑a
†
i↓ai↓, (3.56)

in which a†i↑(↓) and ai↑(↓) are the fermionic creation and destruction operators for

particles with spin ↑ (↓), and 〈ij〉 refers to nearest neighbors.

Since the fermions have spin, there are several choices of Slater determi-

nant possible. We use as our Slater determinant the restricted Hartree-Fock

(RHF) Slater determinant. While better energies could be obtained with an unre-

stricted or generalized Slater determinant, the restricted Hartree-Fock determi-

nant is sufficient for the comparison between the non-stochastic and variational
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Figure 3.5: Energy errors in a 1x22 Hubbard lattice at U/t = 4

Monte Carlo algorithms that is our primary concern.

Results for the ratios U/t = 2 and U/t = 4 are presented in Table 3.5. For

U/t = 2, the RHF Slater determinant alone produces energies in error by 6-10%,

which are reduced to 1% or less after the inclusion of Jastrow factors, optimized

either through the non-stochastic or variational Monte Carlo algorithms. Impor-

tantly, the non-stochastic and variational CPS energies differ from each other by

less than 0.02% for both the one and two dimensional lattices. For the case of

U/t = 4, the RHF reference is qualitatively incorrect with relative errors as high

as 60%. The inclusion of Jastrow factors reduces the error to 2% and 7% in one

and two dimensions, respectively. Despite the poor quality of the wavefunction

in this problem, the non-stochastic energy reproduces the variational CPS en-

ergy quite well, with the relative differences in Table 3.5 never exceeding 1%.

This is much less than the intrinsic error due to the quality of the wavefunction.

Finally, for the 22-site chain with U/t = 4 and open boundary conditions,
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we investigated the effect of varying the size of the Jastrow factor. As shown

in Fig. 3.5, both the non-stochastic and variational energies improve when ex-

tending the Jastrow factor from one to four sites. We observe in all cases that

the non-stochastic and variational energies differ by an amount significantly

less than the intrinsic energy error of the wavefunction, except for the 4-site

Jastrows, where the non-stochastic energy lies slightly below (-0.1%) below the

true energy, while the variational energy is above (1.2%) and thus the difference

between the non-stochastic and variational energies is almost exactly the same

as the intrinsic variational energy error.

3.5 Conclusions

Jastrow factor wavefunctions offer a powerful framework for describing both

weakly and strongly interacting systems. A reference function such as a Slater

determinant or one of a number of pairing functions captures the mean-field

behavior of weakly interacting electrons, while many-body Jastrow factors han-

dle strong interactions in a robust, non-perturbative manner. While the use

of many-body Jastrow factors improves the wavefunction’s ability to handle

strong interactions, it also greatly increases the number of variational parame-

ters in the wavefunction. We have discussed how to accommodate this increase

in variational Monte Carlo simulations and have shown that the stochastic re-

configuration method in particular can be improved in this context by introduc-

ing an iterative solver for its linear equation.

We have also shown that efficient non-stochastic algorithms exist both to

evaluate the energy and expectation values of Jastrow-Slater and correlator
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product state wavefunctions, as well as to optimize the wavefunction param-

eters. We have applied the non-stochastic methods to three model systems: the

spin-1
2

antiferromagnetic Heisenberg model, the spinless Hubbard model, and

the full Hubbard model. While unlike the variational Monte Carlo energy, the

non-stochastic energy is not a strict upper bound, the difference between the

two energies is comparable to and often significantly less than the intrinsic er-

ror associated with the quality of the wavefunction. In practice we find that

the non-stochastic algorithms are faster than the variational Monte Carlo algo-

rithms for small correlator (or Jastrow) sizes, but become more expensive for

larger correlators.

The non-stochastic algorithms we have described rely on the mathemati-

cal form of the Jastrow-Slater and correlator product state wavefunctions as a

product of commuting invertible operators acting on a simple reference wave-

function. Any wavefunction with this mathematical form may be studied with

analogous efficient non-stochastic techniques. This possibility can guide the

construction of efficient new classes of wavefunctions in the future.
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CHAPTER 4

CONCLUSION

Explicit approximations of a molecule’s wavefunction offer a powerful tech-

nique for extracting information from the Schrödinger equation. By exploiting

the underlying energetic and spatial structures present in molecular physics,

these approximations simplify the wavefunction in order to permit the effi-

cient calculation of molecular properties. Here we have considered two spe-

cific wavefunction approximations intended to tackle separate aspects of the

challenge of describing correlation between electrons. First, Canonical Trans-

formation theory was explored as a way to approximate the effects of small cor-

relations between the strongly interacting valence electrons and the weakly in-

teracting core electrons. Through an approximate canonical transformation to a

system of quasi-particles, in which many-body interactions are reduced to com-

binations of 1- and 2-body interactions, this technique achieves a remarkably

efficient treatment of multi-reference dynamic correlation. Second, the theory

of Jastrow factor wavefunctions was generalized to include many-body Jastrow

factors, improving the ability of the ansatz to capture strong static correlations

between spatially localized electrons. To overcome the substantial increase in

wavefunction complexity associated with many-body Jastrow factors, two new

optimization algorithms were introduced. Together, these advances in Canon-

ical Transformation theory and Jastrow factor wavefunctions bring electronic

structure theory one small step closer to a complete, predictive understanding

of molecular behavior.
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APPENDIX A

STRONGLY CONTRACTED EXCITATION OPERATORS

Here we present definitions for the 8 types of strongly contracted excitation

operators in terms of the spin free excitation operators Ep
q =

∑β
σ=α a†pσ

aqσ and

Epq
rs =

∑β
σ,τ=α a†pσ

a†qτ
asτ arσ . See Sec. 2.4.3 for a description of how we arrive at

these definitions.

ôv1v2 =
∑
a1a2

gv1v2
a1a2

(Ev1v2
a1a2

− Ea1a2
v1v2

) (A.1)

ôc1c2 =
∑
a1a2

ga1a2
c1c2

(Ea1a2
c1c2

− Ec1c2
a1a2

) (A.2)

ôv1
c1c2

=
∑
a1

gv1a1
c1c2

(Ev1a1
c1c2

− Ec1c2
v1a1

) (A.3)

ôv1v2
c1

=
∑
a1

gv1v2
a1c1

(Ev1v2
a1c1

− Ea1c1
v1v2

) (A.4)

ôv1v2
c1c2

= gv1v2
c1c2

(Ev1v2
c1c2

− Ec1c2
v1v2

) (A.5)

ôv1
c1

=

(
tv1
c1

+
∑
c2

(
2gv1c2

c1c2
− gc2v1

c1c2

)) (
Ev1

c1
− Ec1

v1

)
(A.6)

+
∑
a1a2

gv1a2
c1a1

(
Ev1a2

c1a1
− Ec1a1

v1a2

)
+
∑
a1a2

ga2v1
c1a1

(
Ea2v1

c1a1
− Ec1a1

a2v1

)
ôv1 =

∑
a1

(
tv1
a1

+
∑
c2

(
2gv1c2

a1c2
− gc2v1

a1c2

)) (
Ev1

a1
− Ea1

v1

)
(A.7)

+
∑

a1a2a3

gv1a3
a1a2

(
Ev1a3

a1a2
− Ea1a2

v1a3

)
ôc1 =

∑
a1

(
ta1
c1

+
∑
c2

(
2ga1c2

c1c2
− gc2a1

c1c2

)) (
Ea1

c1
− Ec1

a1

)
(A.8)

+
∑

a1a2a3

ga1a2
c1a3

(
Ea1a2

c1a3
− Ec1a3

a1a2

)
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U. Schollwöck, S. Todo, S. Trebst, M. Troyer, P. Werner, S. Wessel, and the
ALPS collaboration. The ALPS project release 1.3: open-source software
for strongly correlated systems. J. Magn. Magn. Mater., 310:1187, 2007.

[3] Jan Almlof, Thomas H. Fischer, Paul G. Gassman, Abhik Ghosh, and Marco
Haeser. Electron correlation in tetrapyrroles: ab initio calculations on por-
phyrin and the tautomers of chlorin. J. Phys. Chem., 97:10964, 1993.

[4] P. W. Anderson. The resonating valence bond state in La2CuO4 and super-
conductivity. Science, 235:1196, 1987.

[5] K. Andersson, P.-Å. Malmqvist, B. O. Roos, A. J. Sadlej, and K. Wolinski.
Second-order perturbation theory with a CASSCF reference function. J.
Phys. Chem., 94:5483, 1990.

[6] C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger, and J.-P. Malrieu. In-
troduction of n-electron valence states for multireference perturbation the-
ory. J. Chem. Phys., 114:10252, 2001.

[7] C. Angeli, R. Cimiraglia, and J.-P. Malrieu. J. Chem. Phys., 117:9138, 2002.
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