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A GENERALIZED METHOD OF ANALYSIS OF FACTORIAL EXPERIMENT WITH
UNEQUAL NUMBER OF OBSERVATIONS*

U. B. Paik and W. T. Federer

Cornell University, Ithaca, New York
Abstract

A calculus of factorials was developed by Kurkjien and Zelen [1962]. A
series of papers on the application and extensions were presented by M. Zelen
and co-workers [1963-66]. One of the remaining problems associated with the
application of the calculus for factorials is to relate standard contrasts in
factorials to the calculus for both equal and unequal numbers of observations
on each treatment or combination. This problem is resolved in the present
paper. A computing procedure using the calculus is presented for any estimable
linear contrast or any set of estimable linear contrasts. A Kronecker product
representation of the v-1 single degree of freedom contrasts is given wherein
the linear contrasts of the levels of each effect are utilized. A new operation
is introduced which simplifies the method of construction of contrasts and com-

putation thereof. A numerical example 1s used to illustrate the procedure.

A second unsolved problem in the analysis of factorials pertains to less
than full model situations. E.g., consider the situation wherein a set of

factorial treatments is designed in a randomized complete block design. Also,
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suppose that no observations are present for a treatment in some but not all
of the blocks. This problem is resolved in the present paper and a numerical
example is used to illustrate the ccmputations. Other related results are

obtained in connection with the above two main problems.
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l. Introduction

A calculus of factorials was developed by Kurkjian and Zelen [1962]. A
series of papers on the applicaticn and extensions was presented by M. Zelen
and co-workers. The first paper on applications (Kurkjian and Zelen [1963])
was devoted to analyses of a large class of experimental designé with one-way
elimination of heterogeneity which included b.i.b. end pe.b.i.b. designs and
designs obtained as direct products of these designs. The secdﬁdxbéper on
application (Zelen and Federer [1964]) dealt with the analyses of a large class
of experimental designs for two-way elimination where the fgw;freétﬁénf and
the column-treatment associations were each of the type diééusséd.bﬁ Kurkjian
and Zelen [1963]. The third paper (Zelen and Federer [1965]) dealt ﬁitﬁ&tﬁe
analysis of an n-factor factorial treatment design with unequal numbers'(non-
zero) of observations. The princiﬁal theoretical result of this paper ehébles
the sums of squares for any main effect or interaction to be written as a
simplified explicit form. Utilizing this form the necessary calculééions for
interaction sums of squares in an analysis of variance may Be performé& by
inverting relatively small matrices. The main effect sums of squares are ob-
tained without inverting a matrix. A two-factor interaction sum of squares

associated with q levels of one factor and % levels of the second factor for

% Paper No. BU-151 in the Biometrics Unit series and No. P.B.-539 in the Depart-
ment of Plant Breeding and Biocmetry series.
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4 z 4, requires the inversion of a (q2—l) X (q2-l) matrix. A three factor
interaction sum of squares with the three factors at levels ql, q2, and q3

(ql 2q,2 q3) requires the inversion of g, + g, (q3-l) X (q3-l) matrices and

an additional square matrix of side (qe-l)(q3-l); etc. In a fourth paper Federer
and Zelen [1966] applied the theory of the third paper to the analysis of multi-
factor (factorial) experiments; a 4 X 3 X 2 factorial with unegual numbers of
observations and a method of procedure were utilized to illustrate the computa~

tions.

One of the remaining problems associated with the application of the calcu~-
lus for factorials is to relate standard contrasts in factorials to the calculus
for both equal and unequal numbers of observations on each treatment or combina-
tion. This problem is resolved in the present paper. A computing procedure
using the calculus is presented for any estimable linear contrast or any set of
estimable linear contrasts. (The single degree of freedom contrast procedure
is given by Zelen and Federer [1965]). In presenting the procedure, heavy use
was made of the results and notations in the third and fourth papers. A Kronecker
product representation of the v-1 single degree of freedom contrasts is given
wherein the linear contrasts of the levels of each effect are utilized. A new
operation is introduced which simplifies the method of construction of contrasts

and computation thereof. A numerical example is used to illustrate the procedure.

. A second unsolved problem in the analysis of factorials pertains to less
than full model situations. E.g., consider the situation wherein a set of
factorial treatments is designed in a randomized complete block design. Also,
suppose that no observations are present for a treatment in scme but not all of

the blocks. This problem.is resolved in the present paper and a numerical



example is used to illustrate the computations. Other related results are

obtained in connection with the above two main problems.

2. Notations and Operations

2.1. Introduction.

Consider a factorial experiment with n factors {Ah} such that the h*® factor

: n
Ah has 9 levels. Then the number of treatment combinations is v = 0l g . Let
h =1

the i'® treatment cambination be denoted by the n-tuple
i= (il)ig:"':in) ’

where ih denotes a parameter level from factor Ah and ih=0,l,"',qh—l.

Let y..=v.rs . be the j'" observation made on the treatment com-
Ji 3(11:12:"')1n)

bination (il,iz,"-,in), where j=1,2,*<*r,, (ri 2 1) and let N be the total

number of observations. Furthermore, we assume that the )} are

{yj(il,ie,--',i,
to be independently distributed following a normal distribution with

Ey.,. . . = T, . .
yJ(ll)lgy"':ln) (11)12)"')1n)

2

var y. o

J(iliizi..'}in) -

We shall denote the main effect, two factor interaction, °**°*, n-factor

interaction parameter by

ah(ih)’ ahk(ih’ik)’ M) a1,2,"’,n(il’12"..’in) ’



furthermore, because of the factorial structure of the experiment for i‘®t

treatment combination i=(il,ie,'"‘,in), we have

n

T(iyyigyeeyiy) “H Y Zah(ih) * 2 iahk(ih’ik) o
hel bk
1<h<k<n

+ al,2,"',n(1l’l2’“.’ln)

We may assume the following without loss in generality:

Q-1
A Zo’h(ih) =0

ih=0
Qn-1 k-1

) (i) = ) oy (5 = 0
ih=0 ik=0

‘ (2.1)
q-1 qp-1

al,2,°“,n(ll,12’.."ln) = zal,2,"',n(il’12’...’ln) = seoe

i,=0 i,=0 :

Qn-1 |

= 2al,e,"‘,n(ll,lg,...,ln) = O
i,=0




2.2. Vectors, Matrices and Kronecker product.

We shall write the model in matrix notation. For this purpose define

I = (yll’le"'.’yrl,l""’yrv,v>

I o= (71)72)"’:Tv)
where T. = T,, . ¢ Then the model may be written as
1 (11)12:"')1n)
EY = X1

(2.2)

var Y = Io°

where X is an N X v design matrix and I is an N X N identity matrix. Let

i

Qﬁ [ah(o):ah(l)}°":ah(qh"l)]

1l

Yk [, (0,0) 0, (0,1), % y0q, (9 -1, -1)] (2.3)

(0,0,";,O),Gl (0,0,°°,1),°"*,

al = (a
-1,2,***,n [ 1,2,***,n 325%%°,n

al’2’ s e o,n(qlnl, .‘.’qn-.l) ]

and let Eh(ih) be a unit coordinate row vector in a q -dimensional vector space

such that



Eh(O) = (1,0,***,0)
E (1) = (0,1,°*",0) (2.4)
Eh(qh-l) = (O:O)”°:l) )
then
n .
T(il:ie:"':in) L Z%(lh)-qh * Z ZEhk(ih’ik)-qhk +oeee
h=1 h k
1sh<k<n
(2.5)
+ El,2,"',n(il’i2’“.’in)gl,Q,'",n
where

B (i) = Bp(dy) @ Ep(3))

) B n
3 3 eve 3 = R s
El,g’.'o,n(ll’le, ’ln) hEl Eh(1h>

where ® refers to the Kronecker product and define the product order as follows:

® { I ))
I E] i E (i i
;h‘,—. ]. ( h) l( l) (h 5 Eh(lh

1

E (i) @ (Ee(ia) ® (h§3® Eh(ih)»



. Assumption (2.1) may be represented as

Q-1
E.Eh(ih)gh =0

ih =0

Q.h‘l qx_l
Y (i), = ) B (i, )e, =0

ip=0 1 =0
q; -1
2E]_’E,'",n(ll’l?’.”’ln)"a'lre)“.’n
1, =0
;-1
° T B iy
1’2, ,n l 2 n—l,g) )n
in=0
Qn"l
= ees — ZEl,e’...,n(ll}l2)"0,ln>gl’2,to.,n = O

i,=0

2.3 Orthogonal Contrast Matrix
If we denote the contrast matrix K, for the h*® factor having q levels,
the representation of contrast matrix among n factors is:
n

= I ® 2.6
¢ h=1 Kh ( :

where



l 'YOl see Yo,q.b_l
Kh = 1 Yll vee Yl,qh_l (2.7)
l Yqh_l,l LN ) Yqh-l’qh-l
- ; |
where
Qp=-1
2 Yi0,3s 0 for §j =1,2,°**,q-1
ih =0
and
Qn-1
2 Yih }jh Yih )kh =0 for Jh ’é k‘h and Jh)kh=l, 2, e ,qh—l .
ih =O

The treatment combination order corresponding to the row order of X is
regarded as an n-tuple i=(il,i2,--',in), the ordering is to fix all levels at
the first level (ih=0, h=1,2,***,n) and run through the q, levels A ; then put
n-1

running through these qn_lqn ccmbinations, change in_2=l and continue as before.

=1 and run through the levels of An_l; repeat for in_l=2,3,"',qn-1. After

After disposing of QoL 19 combinations, change in_3=l and this process con-

tinues until all combinations have been enumerated.

In (2.7), let

[}

K o= Ko D
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. where _15;“ and 3;“ are qy X 1 column vector and 1 X q, row vector respectively.

. i J(iy,1,,000,1 .
Then the i'" column vector f =f:"1/727 > ) and i*" row vector t.=t,. . .
- - -1 (11}12)"°’1n)

in K may be represented respectively as:

i (il:i ,"‘:in) - iy
£ =£ 2 o= I ®}_§_h

o
®
Jct

Particularly,

fih = f(o’o,...,ih,'.',o)

Yqb-l,ih 1u

where 11: and 1u are t X 1 and u X 1 column vectors with all elements equal to

h-1 n

one and where t = X q., u = . e
j=lq3, q

z
Jj=h+1
If we define a product of two matrices A = (ai,j) end B = (bij) such

as
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@ X s e ® =]
[ a, @by 8, 8Dy, 2m © Py
3 By 8y ®by,  cera, O,
A:B = (2.8)
B aml®bml _,_am2®bm2 o amn®bmn_d

sy s (in,inex) _ (0,0 5ig,** yinax,0*,0)
where unit is aij and bij then Eh,h+k =T | may be
represented as
(in,inex)_ odn , olnsx
Lnonax  “in ¢ vt (2.9)

where unit is J; 5 Equation (2.9) follows from the fact that
hJdh

(ih ;ith)_~ ih ih+k
L ‘—1s®-}5h ®1t®5h+k®1u

"'h,k+k
where
h-1 htk-1 n
= ' . t = Z . and u = Z . e
S Z q'J ) qJ q'J
Jj=1 J=h+l j=h+k+1
While
1o lnix g9 = iy . S AnE @
1s®-}5'h ®1t®-]£h+k 1u 1s®l-<hlu' '1t'®-+k 1u
where

ut =v/sqh and t! =v/uqh+k .
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In general,

2(11}129"')in) =Y ER e s £ (2.10)

where unit is Yy 3y * The representation in (2.10) is useful for constructing
h Jh

the contrast matrix K.

Using (2.4) and (2.8) defining

Ey = [B,(0),E (1), (q-1)]

and defining

Zh =1t®Eh®1u 3
th =Zh S Zk »
and
Zl,2,“’,n =Zl : 22 R Zn ’

where unit is Eh; then (2.5) may be represented as

n

= + LI N ]
Tl b ) B@ b ) ) Ty T AL o @,
h=1 h k
1<h<k<n

0 _
Now, define the g X (qh-l), QG X (qh-l)(qk-l),"',v X hgl(qh-l) and
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n
v X (hglqh-l) submatrices Py, Ppys ©*s Py o i g @A C LK K, BHK, oy

and K respectively as follows:

1.2 -1
Ph = [_}_S.hy_l‘_i_h:”’:_q'h ]
crle il il @i eee Il g G-l
Pk "[.lfh®-’]—sh®5h’ ) Ky ®:k-h ]
lg .1 1 1,1 2
= LK N ® e e 0 L N
Pl,2,ovo,n [}_{]_®2.<2® ®§n, I.El §2® ®l{-n’ ’
q; -1 %-lg... Qp~1
k ®k2 " ® ®k" ] (2.11)
C = [&l(l))_z_l(‘?))'..,_&l(ql'l))_&z(l)}.")
&1’2’...,n(q-l‘l)"')qn‘l)]
= [cl’c2’".’cl,2,"',n]
where
R iy ,% .
.‘.(".h(lh) =.f..(’h3 ) » 4 =1,2,000,0, -1
4, (1, ,1,) = el pcyg g =1,2,°**,q ~1; i =1,2,***,q -1
Znk\ etk Zh,x 2 i =he " G-l =100t a0
X - - (%-l)qz-l veq -1)
&l’2’c.-’n(ql-l’ )q-n' l) -_f: ’ ?Ha
and
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“n = [4,(1),4,(2), "4, (4 -1)]
Cnx B [ﬁhk(l’l)’éhk(l’g)’""!ihk(qh"lqu'l)]

Cl,a,-on)n = [ﬁl’e,.oo,n(l'l,...’l),_z_l’e’...,n(l)l’...,2))".

-&1,2,“',n(q1-_1’.“’qn—l)] .

It is understood that C'C is (v-1l) x (v-1) diagonal matrix from the defini-

tion of the contrast matrix K ; from (2.9) and 2.10) we obtain

Ly (o) = £, Gp) ¢ 2, (5))

(2.12)

ﬁliz:"':n(ll’le’”"ln) =.-’e’-l<il) :£2(in) toees 2 4 (1)

where unit is vy, ; and 1,=1,2,°07,q -1 .
o

3. Estimation of Interactions and Variances of Contrasts

From (2.2) and the least squares method

X'X® = X'y .
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Since X'X is invertible

i

where S = X'X.

We know that C'_’E is estimable and its unbiased linear estimator is C'i and

also

var ¢17 = c's7t

Theorem 1. Under assumption (2.1), using notations (2.3) and (2.11), the linear

contrast C'T may be represented as

Q

[
|

w-
I

T
1,2,***,n -

Co®

[ (v/q,) Ploy
(v/ap) BY,
(v/9,) B,
/99) 7

! Q
Pl:g:"')n‘l:e)"':n
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Proof':
PN~~~

EANED 1

AN

[ 0

1 -1)-
(g -1)x

n
G =G0+ Zzﬁh + Z Zzhk-o-‘hk +oe
h=1 h ok
1<h<ksn

* Zl,2,"‘,n-ql,2,-",n]

2 (4,) (1) =0 from the definition of ciliy) .

= ih 1
2y =, Oxr 01, )00, S 01, )

( ]
vy ih) . s -
thbh % asn
Q-1 gq;-1
= = if j<h
{ P1 ZYgih (Zaj(s)> ©
g=0 s=0
g;-1 an-1
LA 2%-@( ZYgih) =0 ifj>h
N s=0 g=0
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where bl and b2 are constants.

(
(0] = 3
dliyrih z gj(rss) 0 ifh<g
by S

0 ifg<h<j

2 (a2 25 =9 d2Z Zyuih Zagj(r’s)

r u S

d32 thtgj(r,s)zyuih =0 if J<h
L r s u

where d‘J_’ d2, and d3 are constants. Similerly

| N —
£h(3h)zl,2,'",rgl,2,"-,n =0 .
Then
i t
! (4 = _!.)( h)
-&h(:“h)I (qh ) %
Hence

ox () By, -

Other situations are similarly proven.

From this Theorem, we obtain the following:

£ =0 tmites (52)'s, = 0
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: = i i } = .oo
Chz 0 implies Pl'&h 0 , 1i.e.,

2, (0) =0 (1) = +++ =q (g-1)

t - % s ]
01,2,“' T =0 implies P

o = il.e
= 1,2,*¢*,n =1,2,***,n 0 s deew

al’g’...’n(o,o’.'o’o) = al’e,cco,n(o)o,.."l) = eece

= al,2,"‘,n(q’l-l"";qn"l) .

L. Sums of Squares for Factorial Effects

We shall present the following well known Lemma without proof.

Lerms 1. If Y is distributed N(p,I0®), then Y'Ac™%Y is distributed as X2 with k

degrees of freedom if and only if p'Ap = 0 and A is an idempotent matrix of

rank k.

- -1 =2 A
. ' 3 ' - . ' -
Theorem 2. The quadratic forms ¥ &h(lh) {&h(lh)s _,?_,h(n.h)] o &h(:_h)_'_r_ ,

B (o 1) T (4,387 0 (03 170720 (4,408 5 o

o R R R -1 . . v=1 =2
aee 4 cea X
1'.&1,2,""}1(11’ }ln) [&1,2’000)11(11, ’1n)s ’&1,2,“',11(11’ ’11'2] ag

? 3 eese 4 T 1 3 3 2 (3 = ? = ees
_,6_1’2’“,’11(11, ’ln)l subject to restrictions &h(lh)f_ 0, £, =0, ,

Lt (i,5°**,1 )T = 0 are distributed as X2 with one degree of freedom
—-— 1’2,"’,11 l n'—~

A -] -] =2 . ~ -1 -1 =2 A
3 t 1 1 % 1 t
respectively and quadratic forms 7T Ch[ChS Ch] o C] T, 9 C]] {C“ S C] } 1 "o C] kL

coo, -/;:! c S"lc n]“lo-"gct

¢ T subject to restrictions
1’2,...,1'1{ 1,2,"',1‘1 1,2’003’ 1,2’...,n_. a
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crT -\/2

}]_"'-'O’ C'T=0, ‘..,C'

hk— 1,2,°°°, n— = 0 are distributed as

with q -1,
%
(qh-l) (q -1), *°°, h1;(qh-l) degrees of freedom respectively.

20' T. The other

~ _l e
. ' '
Proof: We shall prove only one case, €.g8., T Ch[ChS Ch] o By

caeses can be proven similarly.

Since
7= sty
A -1, 1 .-2 T S T
b § l 1 1 % 4
7o fers™he, 17hom%ed = vrxs™ie [ops™ie 1Thors ™oy
Let
A =xs™Tc, [c18” "c's]x' .
then
- -1, =1, .- - o1, =l -
t | 4 4 4 3
A = xs™'c, Jegs™ie, 17l s Iyrxs o [eis™re, 1™ers 1y
= -1 -l"l “Llrayam 1q” =l\=lq=1.,
xs™c, [e3s™e, 17 e s™ e, (et s lch] c-ts e
= xs™c, [efs™c, I™ers x
=A
and

“r(A) =q. -1 .

Next, since EY = X%
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(EY)'A(EY) = $'xrxs™H(cis e, 7o s e

=1 =1
1 4 1
I Ch[chS h] Chz

]
O

because

$
ch

i
o
L]

This proves that the quadratic form T'C,[c!s™'c, 1™ -2

-

tion C!T = 0 is distributed as X2 with (qh-l) degrees of freedom.

C‘T subject to restric-

. From this theorem, the sums of squares for each factorial effect may be

represented as follows:

—_ AI' 1 -1 -1 1
SS(Ah) =1 ch[chs ch] it

ss(am) = Fra, (1) (41 (5)8™ e (1) 1718 (1,3

ss(aA) = T'c, [c} 8 chk] chk"

1«

S0 A") = By (i) (8l ()87, (0,50 T8 (1,103

SS(A, A,,eee A) = 7'C [c s~ Tt
A.l 2, n = l’g,ouo’n l,e,oon’n 1,2,...,1'1
? A
01’2 ooo »T

SS(A]_ Aie ln) —I_l 2 see n(ll, ,l )[ﬂpl 2 eve n(ll,-on,in)

g1 3 ees 14 -1
S ﬁl,z,"',n(ll’ ,111)]

X 2 )T
_2.1,2’000 n(ll’ )1n)I

d.f.

Q-1

(q,-1)(q,~1)

ﬂ (g -1)
h=1 B



5 DNumerical Example 1

Table 1
Data for Example

Al X 3 X 2 factorial experiment for four levels of lysine, A, three

levels of methionine, A2, and two levels of protein, A

g+ The data (average

deily gains, in pounds, of swine) are selected frecm Table 1 of Federer and

Zelen [1966].

Level of Methiocnine

a, (2),0.050

a,(0),0 ae(i),0.025
Level of Protein Level .of Protein Level of Protein

Level of Lysine a5 (0),12 | a5 (1),14 2, (0),12 | a5 (1),1% | a3(0),12] ag (1),14

1.11 1. 52 1. 09 1027 - -

a'}:(o) »0

0.97 1.45 0.99 1.22 1.21 1.4

1.30 1.55 1.03 1.24 1.12 -
a, (1),0.05 . .

1.00 1.53 1.21 1.3 0.96 1.27

1.22 1.38 1.34 1.40 1.34 1.46
aq (2)»,0.10

1.13 1.08 141 l.21 1.19 1.39

l. 19 - l. 36 l.)+2 loh‘6 1062
2, (3),0.15

1.03 1.29 1.16 1.39 1.03 -

In this example

st = agiag

11221
2

I W T P S N e s P
(’512;2;2:111;z;?:a:e:erlyz:zru

T o= (sTIX'y)t = (1.040, 1,485, 1,040, 1.245, 1,210, 1.240, 1.150, 1.540



1.120, 1.290, 1,040, 1.270, 1.175, 1.230, 1.375, 1.305

1.265, 1l.k25, 1,110, 1.290, 1.260, 1.405, 1.245, 1.620)

Define the following orthogonal contrest matrices (in the sense of K} Ky

= diagonal) for A, Ay, A3.

2

From (2.,11) and (2.12), we obtain the following orthogonal contrast maetrix C:

-3 1 -1
-1 -1 3
1 -1 -3
31 1

1
1
1
1

-
=

el

NONNON

C,o(*)

Cl(.)

A A QTR QM AGE MDA o o
PG R UGG g g g

l..M.OO.-.._lwu...ﬂ*OOldleOl.u.,..,l.u...OOwul

1

MO OPAGG UGN Ao Qo

41241...14129..41&12%1.*1._412‘,9..41
l4004114004111._001..1:14001..1
HHAAAAOOOO NN NN A A~
t ! 11 1 1 1 1 1t t 1
Ciaicialriatairialr Saicialrinls Rk drialcinicde
mvomomnmn oM A A A A A AA A AN
' 1 ' ] 1 1 1 1 ' 1 [
GO RCir b R i i ialal & el
110044860033330066440011
alab & el i b i i
ddOOllllOOd.l..llOO.....d.l..dOOll
TRV RAAGYAAOOGY O
33006%110044440011%80033
A AA~AAAAAAAAAAAAAAAAAAAA
|} I [} 1 t 1 ] ] ] ] 1 ]
llo_:/__lllléo.hllllﬁw_a._llllnmn“_ll
1._400111_*40011440011440011
| I } f 1
AAAAdtAAdAAdAAdAdAAAAAAAAA~AA
[ 2 T R S R R S AR R B |
]
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2 p2
Ss(A,), SS(A' or LAi), SS(AjA,) and SS(A] A5 A} or %,

example, are as follows:

: SS(Al):
3‘01 = (2.375, 0.005, -0.425
8.5 0.5 h,5
-1, _
cis C, = 0.5 14,5 -1.5
)"‘.5 -105 66.5
0.0127925  ~-0.0005319
[cis'lcl]‘l = | -0.0005319  0.0691489
~0.000877T  0.0015957
Then
~ -] -1 .,N
ss(a,) = x'c (e s7C ITeix
= 0.076645 .
SS(LAI):

T12,(1) = 2.375
£1(1)s™1e. (1) = 78.5
4 L2

[41(1)s™, (1)1 = 0.0127389 .

X Q‘A2 X LAG)’ for

-0.00087T77
0.0015957

0.01513298




Then
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85(1, ) = £14 ()14 (V8™ (V17 ()2

= 0.071855

SS(AJA,):

L]

3'012 = (2.285, -1.855, 0.485, 0.425, -1.455, 0.865)

~—

(8.5 9.5 . 0.5 =2.5 k.5 1.5]
905 13805 -205 005 115 ,4‘05
-l 005 -205 1005 105 -105 ) "2.5
€18 Cip =
-205 005 105 26-5 -205 '105
L.5 1.5 =l5 -2.5 L6.5 5.5‘
| 1.5 k5 -2,5 -L5 5.5 126.5]
™ 0.,0175000 -0.0012143 -0,0016071
~0,0012.43 0.007 3449 0.0018010
sl 172 - -0,0016071  0.0018010  0.0973023
12 e 0.001607L  =0.0003724  =0,0053380
~-0,00160T1 =-0.0000561  0.0027487
| -0,0001071  -0.0002133  0.0016952
0.0016071 =0.0016071 =0.00010T1 |
-0.0003724  -0.0000561 -0.0002132
-0.0053380 0.0027487 0.0016952
0.0383737  0.0017156  0.0002691
0.0017155 0.0219452  -0.0008584
0.0002691  -0.0008584 0.0079880 |
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Then
85(A)A,) = 17C1,[C] 8" 12] C1:2--
= 0.212323
SS X XL, ):
(Qq % @y X Ty )
2123(2,2,1) = =0.305
.&i23(2:2)1)8-lc_123(2:2:1) = 26.5
[£55(2,2,1)8 2123(2 2,1)77t = 0,0377358
Then

= A -l
S5(Q, X @y X Iy ) = T4 54(2,2,1) [£1,5(2,2,1)87 8, 1 (2,2,1)]
2105(2,2)1)%

Thus we obtain the follewing Table 2.




Anelysis of Variance.
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Table 2.

Source of variation d.f. SeS,
Total 43 69.3586
CFM 1 68.115684
Among groups 23 0.936266
Within groups 19 0.306650
A 3 0.076645
Ly 1 0.071855
Q, 1 0.000002
Cp, 1 0.002716
A, 2 0.010012
Ly | 1 o.¢q§288
QAQ 1 0.0024 54
Ag 1 0.369602
A, X A, 6 0.212323
LA,lx LAz 1 0.089252
LAQX QA2 1 0.024845
QAIX LAz 1 0.022402
QA1X QAQ 1 0.906816
cAl X LAg 1 0.045527
CAqX QA2 1 0.005915
Ay X Ag 3 0.080971
LA1>< L, 1 0.004 360
QAlx Ly, 1 0.013657
C, X L 1 0.0574T4
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Table 2. Continued

Source of variation d.f,. SeSe

Ay X By 2 0.045573
LAQX Ly, 1 0.007202
QA2>§ Ly, 1 0.035141

A X Ay X A3 6 0.083617
LAIX LAQX LA3 1 0.075026
LAlx QAzx Ly, 1 0.003290
QA.,_x LAQX Ly, 1 0.002593
QAlx QAzX LAﬁ 1 0.003510
cAlx LABX LAG 1 0.000736
cAlx QAQX Ly, 1 0.000005

6. Randomized Ccmplete Block Design with Missing Plots

Let vy, be the j'* observation made on the treatment

jei = Yie(dy,ig,eee,iy)

(r . #0 for

cambination (il,ia,-u,in) in the g'" block, where 321’2""'rgi oi

scme g); g=1,2,***,b; i=1,2,***,v and let N be the total number of observations.

6.1ls Block Effect is Fixed

Assume the {ngi} are assumed to be independently distributed following a

normal distribution with
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Ey. . .y = + T . . 6.
ng(ilyle)"')ln) Bg (11)12;"')1n) ( 1)
var y. . = o . (6.2)
Jel
Using the same notation as section 2
n
Tre Ly =R+ i) + i ,1, ) + e
(iy,ip,00%,10) H Zah(l'h) 2 iahk(]'h’ k),
=] h k
1<h<k<n
+ al’e’oo',n(ll’lgl.’.}in)
where
-1 an-1 Qx-1
L %(i,) =0 ’ ) o) = L g lipty) = 0
i, =0 i,=0 ix=0
: f:h‘jl Q-1
z.al,2,°°',n(il’12""’ln) = 2al,e,"’)n(il’iQ'...’in)' =0
i1=o in=O
By matrix notation
E . .
er=x( ;) (6.3)
var Y = IoZ (6.4)

where X is an N X (b+v) matrix and I is an N X N unit matrix.
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Let X = [Xl X,1, where X, is an N % b matrix end X, is an N X v matrix,

then by the least squares method

Fal
13 1 b
XIX, XX, B X1Y
1 1 2 = b 4
XX, XXp I X5y

- ! = ! T = X? - ! ! -
(X3X, - X5X, (X1X,) lxlxz)x X3Y - XIX, (0X)) lx'lY
- ! “x1 7 = X! - 1 “x

X4[T - X, (XIX,) lxl]XZT X5IT - X, (XIX;) lXi]Y

s 1 - 1 '
Let G be a g-inverse of XA[T - X, (X!X,)™'X!IX,, then

T = oxt - ' =Ly -
T = @Al - X (XX, lxl]Y+ (H -1z ,

where H = GX3[I - xl(xixl)'lxi]x2 and 7 is an arbitrary v X 1 column vector of

canponents ZysZpy Ty

Searle [1965] proved the following Lemma.

Lemme 2, FBach of .%fl(ih)G.’:h(ih):ﬁﬁk(ih’ik)‘*ﬁhk(ih'ik):"”é’l,e,o.-,n(iy“‘:

in)G.%

3 3 see i 1 1
21 o ves,nlipsips®e*1),C100,,CL, GO

hk hk’...’c

t
l’g’oon’nGCl’g’ooc,n’ end

C!'GC is a non-singular matrix.
Corollary: In Theorem 2 we can replace S'l by G.
Lo o 2V N oV W S )

Proof: Since CI;I is estimable C!H = Cl',l then

h
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Cp(H-I) =
then
cit = C@XA[T - X, (XIX )‘lxi]y .
Hence
are lerae, 17N %crs
=Y'[I-X] x’x ) 1 ]x C'GCh)'lCI'_lGX’a[I - xl(xixl-)'lxi]cfey .
Let
A= [I-X(X )lx]xech(c )1cc;x[1-x(x )]x] ,
then

AA = [T - XI(XIX )lx]x2 L(crac ) elac, (crae,)” CGX'[I-

X, (xtx )]x'

= [T - X!(x} l)lx]xeach(c'c;c) GX, [T -~ X, (XIX )]x

(EY)'A(CY) = (p_'x' + T'X')A(X B +X 1')
= B'XIAX.B + BXIAX T + T'XLAX.B + T'XJAX T

BIXIAXp  =p'XI[I - x' (x1x,) 1y LI 60, (o C'GX'[I -

h)

X, (%)) I8
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1l

BXI [T = X} (X3X, )7, IX6¢, (C16e, ) e, GXATX X, I

2
=0
Similarly
XX = 0
BYRIAX,T = AU [T - XY (X1X,) 7K, W60, (choc, ) opme

= R! - X1 1
Bxl(I xl(xlx

- -1
2 1) lxl X 60, (Cpac,) eyt

since CﬁT = Q. Similarly

_';_'XéAXB'E = 0 .
Hence

(EY)'A(EY) =0
and

r(A) =q-~-1 .

Oy
This proves the corollary,

6.2. Block Effect is Random

Assuming EBg = 0 and var Bg = g2

B

for g=1,2,***,b, we obtain
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E Vg =%

var y. . = 0= + 0%

jgi B

COV(ngi,yj,gi,) = cg for j A& J' or i fF i
and

= 1
cov(ngi,yjtg! it ) 0 for g ﬁ g

By matrix notation

0

EY = X (6.5)
I

cov Y = Io® + X X!'o2 (6.6)

11lp

Now we need the following Lemma 3.

Lemma 3: If Y is distributed N(u,V), then Y'BY is distributed as X2 with k
degrees of freedom if and only if p'Bp = O and BV is an idempotent matrix of

rank ke

In our case,

<3
1}

I0® + Xf‘iUE' (6.7)

lB = AO'-2 A. (6.8)

. Then, since BV = A, clearly the corollary in 6.1 holds in our case.
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Numerical Example 2

Suppose in the Example 1 the factor Al is a block factor, and suppose we

missed the observation vy (3
2 )

10

¢
X%

)]

[}

Xo

12.07

13.55

15.55
11.33

L] - '
X3[1 xl(xix

[ 6.458586
-1.319192
-1.5414 10
~1.541414
-1.381k1k
| -0.715152

]

)X,

~1.319192

2791939
~1.319192
-1.319192
-1.119192
-0,715152

2,1)

; then we shall obtain

2 2 2 2 1
2 2 2 2 2
XX, =
2 2 2 2 2 2
2 1 2 2 2
8.95
9.80
XLY = 9.59
10.49
8.31
5.36 _
~1.541410 10545414 <1.341404
~1.319192 -1.319192 -1.119192
6.458586 01.54141% -1.341424
-1.5414%1%  6.458586 o01.341414
~1.31kah ~1.3431414 5,758586
~0.T15152 =0.T15152 =0.615152

~0.615152

o M H M

-0.715152 ]
-0.715152
-0.715152
-0.715752

3.475758 ]




XTI - X (KX )KL IY =

e
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-1.037081
1.071808
-0.397081
0.502919
~0.470081
0.329515 _

) 0 0 0 0 )
0 0.269550 0.125 0.125 0.12439% 0.128915
6= |0 0.125 0.25 0.125 0.125 04125
0 0.125 0.125 0425 0.125 0.125
0 0.1243%% 0.125 0.125 0.269387 0.124710
0 0.128915 0.125 0.125 0.124710 0.387742_
0 o 0 0 O]
-1 1 o
H= |1
-1 1
-1, 1
-1 1]
1 €2 PE
Q) 4 200 E 0,1y 4,020
] 1 -1 1 -1
-1 1 1 -1 1
¢ = 0 -2 -1 0 2
0 -2 1 0 -2
1 1 -1 -1 -1
1 1 1 1 1]

Then we obtain the following analysis of variance.
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Table 3.

Analysis of Variance

Source of variation d.f. SeSe
Total Lo 66.TH2
C «F,M. 1 65 . 625
Block (ignoring
treatment effect) 3 0. 04805
Among treatment
(eliminating block effect) 2 0.k15723
Remainder 33 0. 6)+5327
Ay 2 0.000369
L 1 0.000031
Ay 3
QA1 1 0.000306
Ay 1 0.332748
A XA, 2 0.060747
L XL 1 0.023990
A OTA, 399
XL 1 0.0288
U, " Ia, 7
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