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ABSTRACT 

Medians of 1000 equi~probable intervals of the standardized normal 

distribution were referenced by randomly generated indices to generate 

approximately normal random variables. Five simple statistical tests were 

made on a series of variables simulated by this means. 
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Introduction 

Suppose that wi fori= 1,2, •.• ,N-l is defined by the equation 

- ,;. ... (1) 

with w0 defined as zero. Then the 2N-l values w0 and ±wi fori= 1,2, •.. ,N-l 

are abscissae of the normal distribution N(O,l) having zero mean and unit 

variance, abscissae that divide this distribution into 2N areas of equal 

probability l/2N. Furthermore, for N being an even number the N values 

±w1,±w3, •.• ,±wN_3,±wN-l are medians of N intervals of equal probability 1/N. 

The relationship of the first 8 moments of 1000 such medians (N = 1000) to 

those of the N(011) distribution are discussed in paper BU-228-M of the Bio­

metrics Unit. The agreement is sufficiently close that the medians appear to 

~e a reasonably good approximation to the standardized normal distribution. 

This being so 1 computer simulation of random normal deviates can be made from 

these medians by storing them in a table and referencing them via an integer 

index randomly generated from the first 1000 integers. This note summarizes 

four simple statistical tests carried out on pseudo random normal deviates 

simulated in this manner. Their properties do, of course, depend upon the 

random number generator used, namely that provided in the FORTRAN compiler 

for the CDC 1604 computer. This multiplicative congruential generator, of 

the form ui + 1 = aui + c modulus 24 7-1, is a standard type of random. number 

generator whose properties are given in rru~ (1959). Although improvements 

·upon it have recently been suggested by MacLaren and Marsaglia (1965) 1 it has 

been tested and used extensively in simulation work (Hill and Debell (1962)]. 
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The representation of the normal distribution by the medians of 1000 

equi-probable areas was tested by carrying out 100 'experiments' of 1000 

samples each, for sample sizes of n = 41 6, 8 and 10 simulated normal deviates. 

In generating each of the 1001 000 samples for the four different sample sizes 

a new 'seed' was used for the random number generator in order to ens~e no 

·re-cycling of the generator. For each set of 100 "experiments11 (of 1000 sam­

ples) ¥ith each of the four sample sizes five tests were made. 

Test l 

In this the 1000 means x, based on sample size n, were computed. Since, 

if x is. N(O,l), the mean, x1 is N(011/n) 1 a frequency distribution was ob­

tained over the 1000 samples, of x according into which of 10 equi-probable 

regions of N(O,l/n) it fell. A x2 goodness-of-fit value on 9 degrees of free­

dom was then calculated to test the deviations of these frequencies from their 

expected value of 100 (= 1000/10). The number of occasions on which this 

computed xg value was significant at the 5% level in the 100 experiments is 

shown in_ the first section of Table 1. It is seen that significance was ob­

served about as frequently as one would expect. Such a test is, of course, 

not very sensitive to normality because of the Central Limit theorem. 

Test 2 
n 

On the hypothesis that X is N(O,l) then ~ x2 - nx2 has a x2 -distribution 
l n 

with n-1 degrees of freedom. For each sample t x2 - nx2 was therefore com-

puted and a frequency distribution obtained of its values relative to 4 equi­

probable regions of the ~-l distribution. A x~ goodness-of-fit statistic 

was then computed for these 4 regions to test for deviations from an expected 

value of 250 sample ~-l -values in each region. The number of experiments in 

which this X~ valuewas significant at the 5% level is shown in the second 

section of Table ·1. 

Test 3 

The distribution of ~2 ~ nx2 is ~-l regardless of the mean of x. But 

Zx2 has a x2 distribution only if x is N(011). A third test therefore con­
n 

sisted of testing IX2 against ~ in exactly the same manner as test 2 was ~ 

carried out for ~2 - ni2 • The results are shown in the last part of Table J_. 
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The results of Tests 2 and 3 are not quite as good as those of Test 1, 

although they are well within the bounds of reasonableness, especially since 

only four equi-probable regions of the ~"l and x~ distributions wer~ used. 

The most efficient is ~robably Test 3 because it is appropriate for the normal 

distribution of interest, N(O,l), whereas Test 2 pertains to N(~ 1 1) for any 

mean ~· Test 1 is the least effective because of its insensitivity to nor­

mality resulting from the Central Limit Theorem. 

Test 4 

For samples of size n the total number of random normal deviates simu­

lated in each of the 100 experiments was lOOOn. On the hypothesis that the 

simulated values are N(0 1 l) the 95% confidence interval for each experiment 

mean is therefore 0 ±1.96/llOOOn • Table 2 shows the numbers of experimental 

means that lay outside this interval. The numbers are a little less than one 

wbuld expect - a total of 13 compared to expectation of 20, The reason for 

this undoubtedly lies in the fact that the method of simulation being tested 

' ·. ···is poor for the tails of the distribution in that no values exceedingly far 

from the mean can ever be obtained. 

Test 5 

In Table 3 are shown the first 8 moments about zero of the N(O,l) dis­

tribution and of the 1000 medians, together with the sample moments calculated 

from a sample of half a million deviates simulated from the 1000 medians. 

With both the N(O,l) distribution and the 1000 medians the odd-order 

moments are, of course, zero. And with the even-order moments those of the 

1000 medians are biased downward from those of the N(O,l) distribution. This 

arises, in part at least, from the poor representation given to the tails of 

the.~( 0 11) distribution by the 1000 medians. In this discrete approximation 

the .. point farthest from the mean on the positive side is w999 which has, from 

eq~tion (1) with N = 1000, a value of 3·29053; and w998 = 3.09023. Hence, in 

the 1000 medians the value 3.29053 represents all that portion of the N(011) 

distribution from 3.09023 to infinity. Thus in sampling the discrete series 

no value greater than 3.29053 is ever obtained; whereas in sampling the normal 
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distribution such values would (with small but non-zero probability) be ob­

tained. This accounts, in part at least, ~or the downward bias evident in 

Table 3, and ~or the diminished number o~ means lying outside the 5% confidenee 

intervals in Table 2. Methods of correcting these discrepancies to some ex-

, tent are discussed in BU-228-M. 

The sample moments shown in Table 3 are all reasonably close to the 

corresponding moments of the 1000 medians. The odd~order sample moments are, 

of course, not zero, although they d~fer from it by very little, the value of 

the 71th moment being only 0.28345; and the even-order sample moments are all 

within 0.15 of the corresponding moments of the 1000 medians. This appears to 

indicate that the random number generator is per~orming satisfactorily. 

Approximations using fewer intervals 

Initial areas of equal probability l/2N yield N medians of N areas of 

equal probability 1/N. The same initial areas can also be used to yield N/k 

medians representing areas having probability k/N. In such a formulation N/k 

must be an even integer in order to retain symmetry about the mean. On the 

positive side of the mean the N areas of equal probability l/2N will then be 

grouped into N/2k areas of equal probability k/N with medians 

wk,w3k,w5k, ••• ,wN-5k,wN-3k' and wN-k. The same medians taken negatively will 
represent the distribution below the mean. In this way the general procedure 

o~ representing the normal distribution by a finite series of medians can be 

established, using any appropriate number of equi-probable areas. In all 

cases N must be an even number and so must N/k, with k being an integer. 

All possible sets of medians of the above form that can be derived from 

the initial 1999 abscissae w0,±w11±w2, ••• 1±w999 are indicated in Table 4. With 

all of them the odd-order moments are zero; the first four even-order moments 

are shown in Table 5. They exhibit the same evidence of downward bias as seen 

in Table 3, this bias increasing both as the order of the moment .increases 

and; even·more quickly, as the number of medians decreases. It is noticeable 

that for the second moment the downward bias is quite small1 .even ~or as few 

as 100 medians (a bias of 2.)%). This would seem to indicate that for problem~ 

relating only to means s'imulation procedures based on such a small discrete 
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series might not be unduly inadequate. Even in the fourth moment the down­

ward bias for 100 medians is only 8.2%; but it is 23% fg~ the sixth moment and 

44% for the eighth moment. In situations where these ?igher-order moments are 

of importance an approximation with as few as 100 medians would be inadequate. 

In all cases, of course, this downward bia,s could be reduced by using means 

rather than medians to represent the equi-probable areas (see BU-228-M). 

One notes that when, in Table 5, the normal distribution is approximated 

to by only 2 medians they are ±0.6745, and the non-zero moments are the first 

four even powers of 0.6745. These are the values shown in the last line of 

Table 5. 

Table 1 

Sample 

Size 

n 

4 

6 

8 
10 

100 Experiments Each of 1000 Samples 

Number of experiments (out of 100) in which 

the x2 goodness-of-fit value was 

significant at the 5% level 

Test 1 

Distribution of x 
against N(O,l/n). 

x9 - using 10 regions 

5 

7 
5 

3 

Test 2 

Distribution of 
n -
E x2 - nx2 against ~-l· 
1 
x3 - using 4 regions 

9 

6 

6 

4 

Test 3 

Distribution of 
n 
E x2 against ~. 
1 

x3 - using 4 regions 

6 

9 
4 

6 



Table 2 

Sample 

Size 

4 

6 

8 
lO 

Table 3 

Distribution 

N(O,l) 

Discrete 
approximation 
of 1000 points 

Sample moments 
of 500,000 
taken from 
discrete 
approximation 
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Test 4: Confidence intervals for experiment means 

Confidence Interval 

= ± 1.96f/1oo0n 

± .0309901 

± .0253034 

± .0219133 

± .019600 

Number of experiments 

(out of 100) for which 

experiment mean lay 

outside confidence interval 

3 

1 

6 

3 

Test 5: Moments about zero 

Moments 

1 2 3 4 5 6 7 8 

0 l.O 0 3-0 0 15.0 0 105.0 

0 ·99869 0 2.96454 0 14.2663 0 91.2445 

-.00030 1.00108 .00525 2.97418 .03786 14.30140 .28345 91.38290 



k 

1 

2 

4 

5 
10 

20 

25 

50 

100 

125 

250 

500 

Table 4 
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Discrete approximations to the standardized 

normal distribution using s~etric abscissae that 

are medians of equi-probable areas. 

(Each approximation is derived from 

1999 abscissae wo = o,±wl,±w2, •.• ,±w999' 
that define 2000 areas of equal probability 1/2000) 

Equi-pr<>bable areas Positive half of distribution 

Number Probability Number of Subscripts of abscissae wi 

representing attached equi-probable representing medians 

whole to each areas of equi-probable areas 

distribution area 

1000/k k/1000 500/k k,3k,5k, •.• ,l00-5k,l000-3k,l000-k 

1000 1/1000 500 1, 3, 5, ••. ,995,997,999 

500 1/500 250 2, 6, 10, •.• ,990,994,998 

250 1/250 125 4, 12, 20, ••• ,980,988,996 

200 1/200 100 5, 15, 25, •.. ,975,985,995 

100 1/100 50 10, 30, 50, ••• ,950,970,990 

50 1/50 25 20, 6o,1oo, •.• ,9oo,94o,980 

40 1/40 20 25, 75,125, •.• ,875,925,975 

20 
; 1/20 10 50,150,250, •.• ,750,850,950 

10 1/10 5 100,300,500,700,900 
'· 

8 1/8 4 125,375,625,875 

4 1/4 2 250,750 

2 1/2 1 500 
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Table 5 

Moments about zero 
of the N(O,l) distribution and 

discrete approximations 
thereto (see Table 5) 

Distribution Moments 

2 4 6 8 

N(0 11) 1.0 3·0 15.0 105.0 

A;eJ2roximations 
No. of medians 

1000 ·9987 2.9645 14.2663 91.2445 
500 ·9974 2.9362 13.8023 84.5306 
250 .9948 2.8866 13.0852 75·3944 
200 -9936 2.8639 12.T$43 71.8885 
100 .9873 2.7626 11.5782 59.2593 
50 .9749 2.5940 9.8900 44.4530 
40 .9688 2.5199 9·2353 39.4196 
20 ·9385 2.2072 6.8811 23.9973 
10 .8798 1.7406 4.2282 10.9911 
8 .8510 1.5540 3-3844 7·7670 
4 ·7124 .8807 1.1591 1.5332 
2 .4549 .2070 .0947 .0428 



- 9 -

References 

MacLaren, M. D., and Marsaglia, G. (1965). Uniform random number generators. 
J. Assoc. Comp. Mach. 121 83-89. 

ITh~ (1959). Random number generation and testing. Reference Manual C20-8011, 
International Business Machines, White Plains, N.Y. 

Hull, To E., and Debell, A. R. (1962). Random number generators. SIAM Review 
4, 230"254. 

Searle, s. R. (1966). Properties of certain discrete distributions suitable 
for generating approximately normal variables. BU-228-M of the Biometrics 
Unit, Cornell University, Ithaca, N.Y. 


