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Reference oscillators are ubiquitous elements used in almost every electronics sys-

tem today. The need for miniaturized, batch manufacturable oscillators as chip-

scale timing references arises from the quest to replace the well-established, high

performance yet expensive quartz-based oscillators, without compromising perfor-

mance. The electrical specifications of an oscillator depend on the application it

serves, which has resulted in a variety of different mainstream oscillator technolo-

gies. Consumer RF applications can broadly be classified mechanical oscillators

and electrical oscillators. In mechanical oscillators, the frequency selective ele-

ment is a mechanical resonator, and typically quartz is the material of choice

for high-end applications. For less demanding and cost-sensitive applications,

micro-electromechanical (MEMS) resonators, being CMOS compatible and high

quality factor resonators, offer a unique set of parameters well-suited for oscilla-

tor design. Electrostatic capacitive transduced silicon resonators and piezoelectric

transduced thin film bulk acoustic resonators (FBARs) are commercially available

for MHz range and GHz range applications respectively. Scaling MEMS oscillators

to higher frequencies presents challenges in terms of reduced transduction efficien-

cies and material limitations on quality factors. Opto-mechanical transduction

offers higher sensitivity and opens up possibilities to interrogate high frequency

mechanical resonances hitherto inaccessible. The focus of this thesis is to leverage

opto-mechanical transduction to design high frequency high performance MEMS



oscillators and exploring various designs and fabrication techniques to realize these

devices.

This disertation explores two classes of oscillators, namely the opto-mechanical

and opto-acoustic oscillators. The former oscillator type exploits parametric am-

plification and does not require external electrical feedback to sustain oscillations,

thus doing away with a dominant noise source. To eliminate coupling environmen-

tal noise to the oscillation signal, the opto-mechanical resonator was fabricated on

a silicon nitride chip with waveguides and grating couplers integrated on to the

same chip. The device was used to demonstrate self-sustained mechanical oscil-

lations at 41MHz with phase noise -91dBc/Hz at 1kHz offset from carrier. The

integrated design results in immunity of the oscillation signal from environmental

flicker noise. Designing low phase noise opto-mechanical oscillators for GHz range

frequencies is very challenging, the limitations being mainly imposed by the effi-

ciency of the optical drive scheme. A design worth exploring to overcome this lim-

itation is the acousto-optic modulator designed and developed in the OxideMEMS

lab, which marries the highly sensitive optical sense scheme with electrostatic ca-

pacitive transduced drive scheme. Operating the modulator in a feedback loop as

an opto-acoustic oscillator has been realized by using the device as an intensity

modulator. However the two-coupled opto-mechanical resonator design cannot be

successfully scaled to design an oscillator at frequencies beyond GHz. An alter-

native efficient transduction scheme of interest for GHz range MEMS resonators

is partial air gap capacitive transduction. Exploiting partial air-gap transduction

using alumina in addition to designing an array of resonators employing a micro-

mechanical displacement amplifier, an opto-acoustic oscillator employing a higher

order radial mode at 2.1GHz was demonstrated. The oscillator has RF output

power of +18dBm and phase noise -80dBc/Hz at 10kHz offset from carrier. The



inherent non-linearity of the opto-mechanical modulation based sensing generates

oscilllation harmonics all the way up to 16.4GHz with greater than -45dBm signal

power. A detailed phase noise model for such oscillators was derived and insights

derived from the model were followed to identify appropriate photo-detectors to

lower the far-from-carrier phase noise by 15dB. Fabrication techniques developed

along the way were also used to design other interesting opto-mechanical devices for

electromechanical detection of optical modulation and to study acousto-optic fre-

quency modulation. In summary, the overall focus of this work is to bring together

MEMS and photonics techniques and devices in ways that address long-standing

needs in both communities.
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CHAPTER 1

INTRODUCTION

1.1 Chip-Scale Oscillators and Time-Keeping

Reference oscillators are ubiquitous elements used in almost any electronics system

and constitute a multi-billion dollar market in today’s electronic industry. These

oscillators are used for a wide range of applications varying from keeping track of

real time, setting clock frequency for digital data transmission, frequency up- and

down-conversion in RF transceivers and clocking of logic circuits. Obviously, the

electrical specification of the oscillator depends on the application it is being used

for. As a result, a variety of oscillator technologies exist today, each technology

suiting a specific need.

For mainstream consumer applications, two technology families are distin-

guished: mechanical and electrical oscillators. In mechanical oscillators, the fre-

quency selective element is a mechanical resonator made from quartz for high-end

applications (e.g. wireless communication, realtime clocks, high-speed digital in-

terfaces) [1], or silicon or other type of bulk piezoelectric material, such as barium

titanate or lead-zirconium titanate, for less demanding and cost-sensitive applica-

tions (e.g. digital audio, video, household appliances) [2]. In electrical oscillators,

the frequency-selective element is integrated on the chip and comprises a resistor-

capactior (RC) or a gmC filter for low-end applications (e.g. clocking of logic) or an

inductor-capacitor (LC) filter for more demanding applications (e.g. in frequency

synthesizers for wireless communication and digital interfaces).

Although the electrical performance of high quality factor (Q) mechanical os-
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cillators cannot be met by electrical oscillators, conventional mechanical oscillators

show some important drawbacks that prevent their use in any application [3]. Con-

ventional mechanical resonators are relatively bulky and cannot be integrated on

a CMOS die. Thus it is difficult to integrate such resonators into the same pack-

age that contains the CMOS die without increasing the manufacturing complexity

and cost. Therefore, mechanical resonators have to interface with other circuit

components on board level and hence they form a bottleneck for the ultimate

miniaturization of micro-electro-mechanical systems (MEMS). In contrast, the use

of low-Q electrical oscillators is limited to applications where accuracy and noise

specification is relaxed. Their stability and phase noise can be improved by design-

ing arrays of such oscillators to boost the signal-to-noise ratio (SNR), or by locking

them to mechanical oscillators using a phase-locked loop (PLL) [4]. However, this

again requires a bulky off chip component adding to the total size and cost of the

system.

1.2 Micromechanical Oscillators

An emerging class of mechanical oscillators is based on MEMS technology [3, 5, 6].

The extraordinary small size, high level of integration, low cost and high volume

manufacturing capability that is possible with MEMS appear to open exceptional

possibilities for creating miniature-scale precision oscillators at low cost. MEMS

oscillators can be integrated either on the CMOS die or as a separate die combined

with a CMOS die in a single package using a standard low cost plastic package. It

can be expected that a MEMS-based oscillator has a superior noise performance

and frequency stability compared to electrical oscillators, since the MEMS-based

oscillator is based on mechanical resonance exhibiting a high Q factor, typically
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on the order of tens of thousands at microwave frequencies. At the same time, it is

expected that the use of MEMS reduces the size and cost and increases the level of

system integration compared to the more conventional mechanical resonators, since

the processes and materials being used are often CMOS compatible and use the

CMOS manufacturing infrastructure. MEMS oscillators are powerful contenders to

fill the gap between high-performance, non-CMOS compatible technologies on the

one hand, and low-performance CMOS compatible technologies on the other hand.

The replacement of a quartz resonator with a MEMS resonator and integrating the

MEMS resonator with the CMOS in a single package or a single die will lead to

a reduction in the form factor, board complexity and cost of electronic systems

[7]. Simultaneously, a MEMS implementation will have an improved electrical

performance compared to LC, RC or other types of oscillators based on electrical

rather than mechanical resonance. These unique attributes could also potentially

open up new application domains requiring extreme form factor such as wireless

sensor nodes [8], SIM and smartcards, and cell phone base stations [9].

1.2.1 Micro-electro mechanical (MEMS) oscillator tech-

nology

MEMS-based realizations of timing and frequency control functions, including

0.09% bandwidth filters with less than 0.6-dB insertion loss, GSM-compliant low

phase noise oscillators and miniature atomic clocks have been demonstrated, with

competing power consumption and performance benefits afforded by scaling to

micro dimensions [6, 8]. In particular, via scaling, vibrating RF MEMS devices

have now reached frequencies commensurate with critical RF functions in wireless

applications and have done so with previously unavailable on-chip quality factors.
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MEMS oscillator technology is making its way into commercial markets through

several companies (e.g., Discera, IDT, Silicon Labs and SiTime) which are now

sampling low-end timekeeper products based on this technology [3]. Meanwhile,

on the high-end front, the success of efforts to scale atomic clocks down to 10cm3

volume package strongly encourages ongoing efforts bent on shrinking them even

further, down to 1cm3 volume, while still posting superior phase noise and power

consumption numbers [5]. However, scaling MEMS technologies to higher fre-

quencies in the range of 5-10GHz presents trememdous fundamental and practical

challenges. Direct conversion radio architectures require oscillators operating at

GHz rate frequencies with good phase noise performance. Oscillators based on

electrostatically actuated MEMS resonators have been demonstrated in the few

MHz-GHz frequency range [9, 10, 11]. As we describe in detail in section 4.5,

at higher frequencies, the motional impedance of electrostatically transduced res-

onators is very large, and hence it is difficult to operate such a resonator in feedback

as an oscillator. Piezoelectric transduction presents lower motional impedances at

these frequencies, and piezoelectrically transduced Film Bulk Acoustic wave Res-

onator (FBAR) [12, 13, 14] and Contour Mode Resonator (CMR) [15, 16] based

oscillators operating at few GHz frequencies have been demonstrated. Scaling these

piezoelectric oscillators to even higher frequencies necessitates a thinner piezoelec-

tric film, which leads to mass-loading of the resonator due to the metal electrodes

atop used to drive motion. This reduces the k2
t − Q (electromechanical coupling

constant-quality factor product).

4



1.2.2 Hybrid MEMS oscillators

Recent research efforts in the MEMS community were focused on developing novel

transduction schemes with reduced motional impedances at beyond GHz frequen-

cies [17]. Building on initial pioneering work at UC Berkeley and Delft, solid-

dielectric transduced thickness shear mode MEMS resonators with 807MHz center

frequency, and motional impedance Rx <100Ω and Qs>7,000 [18] were devel-

oped. Recently, resonators with center frequency of 3.3GHz and with mechanical

quality factor of 2,057 were shown using unreleased deep-trench capacitors [19].

A resonant body transistor, which integrates a sense transistor directly into the

resonator body, was also developed with center frequencies at 11.7GHz [20] and

39GHz [21]. Junction field effect transistor (JFET) [22] and PN-diode [23] based

sensing schemes also led to realization of silicon resonators with f-Q product values

close to the theoretical material limit for Si. However, these resonators cannot be

easily integrated into oscillators due to the large parasitics that hinder signal sense

at these frequencies.

1.3 Cavity Opto-Mechanics

That light can be used to sense displacements on the order of few nano meters

or lesser was well known in the MEMS community, via stroboscopic interferom-

etry [24], homodyne Michelson interferometry [25] and heterodyne laser-Doppler

interferometry [26]. In the past few years, the fields of optical microresonators

and mechanical resonators have seen a lot of research activity independently for a

variety of applications. While electromagnetic radiation pressure force was well un-

derstood earlier, the dynamic effect of light exciting a mechanical resonator mode
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first demonstrated in ultra high quality factor silica micro toroids [27, 28] brought

the two fields together to establish the field of cavity optomechanics. Progress

made in this field with applications to displacement sensitivity at multi-GHz fre-

quencies will be explored in subsequent chapters.

1.4 From Opto-Mechanics to Mechano-Optics

The interplay between acoustics and photonics in opto-mechanical systems goes

beyond mere motion sensing based applications. Conventional research efforts in

opto-mechanics have been directed towards pushing the state of the art in dis-

placement and force sensitivity using light, and mechanical oscillations as well as

light induced cooling or damping of mechanical motion [28, 29]. The mechanical

back-action force, which denotes the force acting on the light due to mechanical

motion can be used to realize applications of interest to the photonics community.

The focus of this work is primarily directed towards realizing multi GHz mechani-

cal oscillators using photonics, and constitutes part I of this thesis. In addition to

this, the technology developed for designing these oscillators was leveraged to de-

velop theoretical and experimental demonstrations of photonics applications using

MEMS. This work culminated in the first ever reported acousto-optic frequency

modulator and an electro-mechanical photodetector, which are covered in part II

of this thesis.

6



CHAPTER 2

OPTO-MECHANICAL MODULATION

2.1 Opto-Mechanical Resonators

An opto-mechanical resonator is a resonating structure harboring co-existing me-

chanical and optical degrees of freedom, or ‘resonance modes’. The interplay be-

tween the mechanical and optical resonances can lead to interesting applications

for motion sensing using light. Strong coupling also opens up a path for energy

transfer between the optics and the acoustics. One such interaction will be dealt

with in significant detail in the next chapter. This chapter presents more under-

standing into the most commonly exploited feature of opto-mechanical systems,

namely displacement sensing using photonics.

2.1.1 Dynamics in opto-mechanical systems

R-r

R+r

R

Laser 
input

Modulated 
Intensity 
Output 

λin

Figure 2.1: Illustration an opto-mechanical resonator interrogated with a
waveguide.

Figure 2.1 shows a schematic of an opto-mechanical resonator interrogated with
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a waveguide. The illustration shows the resonator vibrating in the fundamental

radial expansion “breathing” mode. By carefully designing the waveguide and en-

gineering the resonator-waveguide gap, the evanescent light field in the waveguide

can couple to the opto-mechanical resonator, provided the wavelength of light lies

in the full-width-at-half-maximum (FWHM) linewidth of the optical resonance of

the cavity. The optical resonance wavelength for the resonator λopt, is specified by

the equation mλopt = 2πRneff , where R is the radius of the ring resonator, neff is

the effective refractive index for light circulating inside the resonator, and m is an

integer. Intuitively, we can interpret the equation as a condition for constructive

interference between the photons coupling from the waveguide to the resonator

with photons previously coupled that execute a round trip inside the resonator.

The RHS in the equation above is the optical path length traversed by the pho-

tons in one round-trip. For constructive interference, this path length must be an

integer multiple of the wavelength of light. The FWHM linewidth is specified by

the total loaded optical quality factor of the optical resonance, Qtot.

The dynamics of the mechanical resonance can be specified by the conventional

second order differential equation for a moving mass:

d2r

dt2
+

Ωmech

Qmech

dr

dt
+ Ω2

mechr =
F

meff

(2.1)

where r is the radial displacement of the resonator, Ωmech and Qmech are the me-

chanical resonance frequency and quality factor, F is the force acting on the me-

chanical resonator in the radial direction, and meff is the effective mass of the

mechanical mode.

The equation describing the dynamics of the optical resonance can be specified

by the following equation [28]:
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da

dt
= − (j∆ + Γext + Γint) a− js

√
2Γext (2.2)

Here, Γext is the decay rate associated with coupling of photons to the optical

cavity, and Γint is the intrinsic cavity photon decay rate. s is the input laser field

normalized to power
(
|s|2 = Plaser

)
and ∆ is the detuning of the laser frequency

from the optical resonance frequency, ∆ = ωlaser − ωopt. The two equations are

coupled via the detuning term, since the radial motion amounts to changes in the

optical path length, which affects the optical resonance frequency:

ωopt = ωopt,0 + gOMr (2.3)

where ωopt,0 is the static optical resonance frequency in absence of motion, and

gOM is the opto-mechanical coupling constant, which is described in detail in the

next section.

2.1.2 Opto-mechanical coupling constant

Consider the case of the ring resonator discussed above as shown in Figure 2.1.

When the ring expands, the motion leads to a change in the circumference of the

ring and thereby a change in the optical path length for light circulating around

the resonator. Thus a shift in the radius by ∆r amounts to a change in the optical

resonance wavelength, ∆λ:

m (λopt + ∆λ) = 2π (R + r)neff (2.4)
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⇒ ∆λ

λopt
=

r

R
(2.5)

Expressing equation 2.5 in terms of frequency and taking the limit r → 0:

⇒ dω

dr
= −ωopt

R
= gOM (2.6)

The expression in equation 2.6 is a measure of the change of the optical reso-

nance frequency in response to changes in the radius of the resonator, and is termed

as the opto-mechanical coupling constant gOM [13]. A larger gOM translates to

increased displacement sensitivity for an opto-mechanical resonator, thereby ef-

ficiently turning mechanical information into optical information and vice versa,

and is hence beneficial to most applications in opto-mechanics. Equation 2.6 is

valid for a radially symmetric resonator e.g. a ring or a disk resonator, exhibiting

a radial mode of vibration. The general problem of how the eigenfrequency of

the optical resonance (ωopt) depends on the deformation of the resonator (x) can

be solved by a perturbative treatment of Maxwell’s equations [30]. A convenient

approach is to represent the resonator deformation by the displacement, x, of a

chosen point of the resonator having maximum displacement amplitude. If the

normalized displacement profile is known, x suffices to represent the complete res-

onator deformation field. For e.g. the deformation profile for radial and wineglass

modes in a disk resonator is completely determined in [31], and can be normal-

ized to the displacement amplitude at the point of maximum motion. With this

approach gOM is expressed as the integral over the rigid resonator boundaries [30]:

gOM =
ωopt,0

4

∫
(q.n)

[
∆ε
∣∣e||∣∣2 −∆

(
ε−1
)
|d⊥|2

]
dA (2.7)

10



Here q is the normalized displacement profile vector such that max|q(r)|=1,

and n is the normal unit vector on the boundary. The dielectric constant of the

resonator is denoted by ε, ∆ε = ε − 1 and ∆ (ε−1) = ε−1 − 1, e is the electric

complex field vector normalized such that 1
2

∫
ε |e|2 dV = 1, and d = εe [9, good

gom]. Equation 2.7 shows that gOM depends both on the optical and mechanical

mode of the resonator under consideration.

2.2 Analytical Treatment of Opto-Mechanical Modulation

As discussed in the previous section, an optomechanical cavity has coupled optical

and mechanical degrees of freedom. This coupling mechanism is nonlinear [28] and

the non-adiabatic response of the intra-cavity optical field to changes in the cavity

size can lead to interesting opto-mechanical interactions. The opto-mechanical

cavity can be treated as a Fabry-Perot cavity formed by two mirrors, one of which

is fixed and the other is suspended with a mechanical spring. If the mechanical

resonant mode of the cavity is actuated, the cavity executes oscillatory motion at

this frequency which results in Doppler-shift of the circulating intra-cavity optical

field, thus modulating its phase. Figure 2.2 shows an illustration of such a scheme.

In the frequency domain, this frequency modulation manifests itself as sidebands

centered about the input laser frequency line, at a frequency separation that is

equal to the frequency of the actuated mechanical resonance. The cavity density

of states shapes the resultant sidebands leading to enhancement of only those

sidebands that are coupled to the optical cavity, thus causing an asymmetry in

the intensity of the lower and higher frequency sidebands. This asymmetry leads

to an effective amplitude modulation of the laser light, in addition to frequency

modulation. This shall be dealt with in significant detail in chapter 5. For now,

11



ωc

Optical Waveguide

ωl
ωl – Ωm

Ωm

ωc

Optical Waveguide

ωl

Ωm

ωl + Ωm

In phase Out of phase

photon

�xed 
mirror

movable 
mirror

mechanical 
spring

Ωm

{
{

Ωm

Po
w

er

Frequency
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shapes the intensities of the resultant sidebands.
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it suffices to focus on the effect of motion of the resonator on the circulating light

field amplitude.

Assume that the cavity is oscillating such that its radius is sinusoidally displaced

as described in equation 2.8:

u(t) = U0sin(Ωmecht) (2.8)

The intra-cavity field amplitude, ap(t), can be derived as in [3] by introducing

a modulation index, β = U0

R

ωopt

Ωmech
, where ωopt is the frequency of the input pump

laser [32]:

ap(t) =
s
√
τex

+∞∑
n=−∞

(−j)nJn(β)
κ
2

+ j (∆ + nΩmech)
ej[(ωopt+nΩmech)t+βcos(Ωmecht)] (2.9)

Here, s denotes the input pump laser field amplitude, τex is the lifetime due to

coupling between the cavity and the waveguide, κ is the full width at half maximum

(FWHM) linewidth of the optical cavity resonance, and ∆ denotes the detuning

of the laser from the optical cavity resonance, specified in angular frequency. Jn is

the Bessel function of the first kind. Thus, the modulation index determines the

relative weights of the sidebands, whose width is governed by the optical cavity

linewidth.

2.3 Displacement Sensitivity and Bandwidth

Periodic motion of the resonator thus leads to periodic modulation of the optical

power transmitted at the output of the opto-mechanical system. A motion ampli-
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tude of r translates to a shift in the optical resonance frequency by the amount

gOMr, which leads to a modulated power amplitude:

Pmod = gOMS (∆) r (2.10)

where S (∆) is the slope of the optical power transmission spectrum at detuning

∆.

The analysis presented in the sections above, wherein we assume gOM = −ωopt

R
,

is only valid in the case where light responds instantaneously to any changes in

the resonator geometry on account of motion. In reality, the photons coupling to

the resonator from the waveguide have a finite lifetime associated with the cou-

pling. Also the photons have finite intrinsic and loaded decay rates in the optical

resonator. The total cavity lifetime τopt = 2Qtot

ωopt
is a measure of the time taken

by the optical system to respond to changes in the mechanical system. For an

optical resonator with loaded optical quality factor Qtot = 100,000 at a wave-

length of 1,550nm, the cavity lifetime is 0.52ns, which corresponds to a response

bandwidth of 1/0.5ns = 1.9GHz. Thus an opto-mechanical resonator with these

parameters will exhibit a response captured by the equations derived in this section

for mechanical resonance frequencies�1.9GHz. At frequencies above 1.9GHz, the

mechanical system dynamics occur at faster rates than the rate at which the optical

system responds, thereby leading to incomplete modulation. Mani et al. capture

this low-pass frequency response of the opto-mechanical system in the parameter

Γ [33]:

Pmod = ΓgOMS (∆) r (2.11)
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However, this parameter is not easily characterized, both analytically and ex-

perimentally [33, 34]. These high frequency mechanical modes are said to lie in

the resolved sideband regime, since the modulation sidebands generated around the

laser line lie outside the optical cavity linewidth, which also intuitively explains

the incomplete modulation.

2.4 Modulation Non-Linearity

The optical resonance lineshape is a Lorentzian, with the optical transmission

specified by the following equation:

T (ω) =
∣∣∣soutput

s

∣∣∣2 =
4 (ω − ωopt)2 + ω2

opt

(
1

Qint
− 1

Qext

)2

4 (ω − ωopt)2 + ω2
opt

(
1

Qint
+ 1

Qext

)2 (2.12)

The modulation of this lineshape due to motion of the cavity is inherently

nonlinear. This is also evident from equation 2.9, which shows multiple sidebands

spaced from the laser line by frequencies nΩmech (n = 1, 2, 3, ...).

With the basics of opto-mechanical modulation thus established, we shall now

look at two oscillator technologies centered around this basic principle, namely the

opto-mechanical oscillator and the opto-acoustic oscillator in the next two topics.

In part II, we shall view opto-mechanics in a different light, where light does not

merely sense motion, and we explore a reversal of roles between the optics and

mechanics in the context of two applications - acousto-optic frequency modulation

and electromechanical photodetection.
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CHAPTER 3

OPTO-MECHANICAL OSCILLATOR

3.1 Overview of Opto-Mechanical Oscillators

Light can excite oscillations in mechanical resonators in several ways [29] - radia-

tion pressure (RP) driven [28, 33], via the optical gradient force [35, 36] or through

electrostriction [37, 38, 39] and other nonlinear opto-mechanical interactions [40].

RP driven oscillations have been extensively studied [28] and such oscillations have

been observed by various teams [33, 41, 42]. All these demonstrations employ ei-

ther a prism coupler [40] or a tapered fiber [28, 33, 41] to couple light into the

microresonator, and are not integrated solutions. Chip-scale opto-mechanical res-

onators in silicon nitride with integrated waveguides have been shown [43], however

these devices employ inverse fiber taper coupling and no self-oscillations have been

reported. Some solutions also require a CO2 laser reflow step [33] to microfabricate

the resonator, which is a serial process step and is thus undesirable for a high-yield

solution. The phase noise numbers reported for RP driven oscillations [33] are far

worse than those reported for CMOS oscillators in similar frequency ranges. The

phase noise also shows higher order slopes at close to carrier frequencies, that are

unexplained but are often attributed to environmental noise. Theoretical analy-

sis for opto-mechanical oscillators (OMOs) [33, 34] indicates that these problems

can be overcome by having a high optical quality factor, a moderately high me-

chanical quality factor, large power handling capacity, and a robust device that

is immune to environmental disturbances. As such, there is a need for a truly

integrated, monolithic device that can deliver all of these requirements and be

compatible with existing chip-scale laser technology to enable a truly chip-scale
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opto-mechanical oscillator. This chapter presents an integrated OMO fabricated

in silicon nitride that satisfies all of these requirements. The next section presents

an analytical understanding of the radiation pressure force. We then look at the

design and fabrication process flow for the opto-mechanical resonator. The later

sections provide details on experimental characterization and a phase noise model

for the OMO.

3.2 Analytical Treatment of Radiation Pressure Driven

Oscillations

Consider a ring resonator coupled to an optical waveguide as shown in Figure 3.1.

The laser wavelength is blue detuned from the cavity optical resonance wavelength.

To understand how this interacts with the mechanical motion of the ring, we

can treat the optical resonator as analogous to an optical cavity formed by two

mirrors, one fixed and one moving. Some photons from the laser couple into

the resonator and start circulating around the periphery of the resonator. The

circulating photons exert a force on the boundaries of the ring resonator, known

as the radiation pressure force. This force is linearly dependent on the circulating

optical power. Larger the power inside the cavity, greater the force exerted.

Now suppose the ring expands. The optical resonance wavelength now in-

creases, being proportional to the radius of the ring. If the laser wavelength is

lower than the optical resonance wavelength, the circulating photons now leak out

of the resonator back into the waveguide. Thus the radiation pressure force pushing

the ring radially outwards reduces. This is equivalent to a spring effect, caused by

the optical force, that pulls the ring inwards. As the ring contracts due to the me-
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chanical restoring force, the optical resonance wavelength decreases. This causes

more photons to couple into the cavity. The coupling and leakage of photons into

and out of the cavity is not an instantaneous process. When the ring expands, the

radiation pressure force does not reduce instantaneously, and the lingering photons

exert an additional force on the resonator. The delay associated with this adia-

batic behavior gives rise to anti-damping of the mechanical motion, shown here

as negative damping. If the negative damping associated with the optomechanical

interactions are strong enough to over come the intrinsic mechanical damping of

the resonator, the circulating optical field sets off self sustained oscillations of the

mechanical mode, which is sensed as intensity modulation at the output optical

probe.

3.2.1 Mathematical formulation

As intuitively discussed above, the delineation of the response of variation in optical

power to changes in the resonator motion into adiabatic and non-adiabatic contri-

butions leads to two manifestations of the opto-mechanical back action. The adia-

batic component for the back-action force, that is in phase with the displacement,

leads to an optical spring effect that shifts the mechanical resonance frequency by

[28]:

∆Ωmech = F 2 ΓextΓtot
4∆2 + Γ2

tot

8n2
effωopt

Ωmechmeffc2

[
2∆Γtot

4∆2 + Γ2
tot

]
Plaser (3.1)

Here Γtot is the loaded cavity photon decay rate, c is the speed of light and

F = 2π
TrtΓtot

is the cavity finesse, where Trt is the photon round trip time in the

optical cavity.
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The non-adiabatic component of the force gives rise to an optical anti-damping

rate given by [28]:

Γad = −F 3 ΓextΓtot
4∆2 + Γ2

tot

8n3
effωoptR

meffc3

[
16∆Γ3

tot

(4∆2 + Γ2
tot)

2

]
Plaser (3.2)

This radiation pressure induced anti-damping rate modifies the intrinsic me-

chanical damping rate Γmech = Ωmech

Qmech
, yielding an effective damping rate Γeff =

Γad + Γmech. The negative sign in equation 3.2 for positive valued detuning (blue

detuning) leads to a reduced damping rate. When the laser power is sufficiently

large, the effective damping rate is negative, which implies self-sustained mechan-

ical oscillations in the system.

3.3 A Silicon Nitride Opto-Mechanical Oscillator

3.3.1 Opto-mechanical resonator design

We choose Si3N4 as the material to micro-fabricate the opto-mechanical resonator,

as it has been shown to demonstrate high optical [44] and high mechanical [45]

quality factors. We chose a ring geometry for our resonator owing to its simplicity

and the high optical Q it offers [44]. To design for high optical quality factors, we

select a wide ring (6µm) with a large radius (40µm) and narrow spokes (0.5µm).

This ensures that the Si3N4 ring resonator has a high optical Q as the optical

mode is confined inside the ring and experiences low bending loss and scattering

loss from the spokes.
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3.3.2 Optical mode matching

To achieve significant coupling from the light inside the waveguide to the opti-

cal resonator, it is imperative to ensure a large spatial overlap and matching of

the effective refractive index of the waveguide mode and the optical mode in the

resonator. The waveguide-resonator gap is designed to be smaller than 100nm to

ensure spatial overlap. Finite element method (FEM) simulations of the optical

mode [46] in the resonator indicate an effective refractive index of 1.32. To achieve

this index in a silicon nitride waveguide of thickness 300nm, we need a width of

800nm, as obtained from FEM simulations. Figure 3.2 shows screen-shots of the

cross sections for the resonator and waveguide simulated using COMSOL FEM.

Air

Waveguide

Waveguide width = 800nm
neff = 1.29

λopt = 1,558.03nm, ring width = 6µm
neff = 1.32

Figure 3.2: FEM simulations of cross sectional profiles of the waveguide and
resonator to match the effective refractive indices.
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3.3.3 Grating coupler design

Misalignment and mismatch of optical modes between two devices introduces sig-

nificant coupling losses. As we scale down device sizes to the micro- and nanometer

regime, the coupling problems are greatly exaggerated by the small dimensions,

which makes alignment a critical and challenging task. It is very common to em-

ploy prism couplers and tapered fiber coupling to couple light to opto-mechanical

resonators. Due to the lack of integration, these coupling media can introduce en-

vironmental noise into the system. Integrated coupling methods to on-chip waveg-

uides using inverse taper couplers [43] and graded refractive index (GRIN) couplers

[47] introduce very low coupling losses (<1dB), but require precision alignment of

an optical fiber to the on-chip waveguide in case of inverse taper couplers, or com-

plex fabrication processes to obtain a thin film stack in case of GRIN couplers.

Grating couplers allow one to couple from a standard single-mode fiber (SSMF) to

a high-index-contrast waveguide with high efficiency without the need for lenses.

The grating coupler does away with the need for edge facets, allowing for easier

on-wafer testing and simplifying processing [48].

Despite these advantages, reported grating couplers exhibit relatively narrow

bandwidth, require partial etch and/or high resolution lithography, exhibit sig-

nificant temperature dependence, and can exhibit significant back reflections in

the bandwidth of interest. These disadvantages arise mainly because the grating

couplers butt-coupled to SSMF that have been demonstrated so far have been in

semiconductor material, such as Si and InP, with very high refractive indices. Be-

cause of the high index of semiconductors, the grating holes either must be only

partially etched into the waveguide or must be significantly smaller than a wave-

length if they are to be fully etched [49], otherwise the grating strength is too
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strong. For Si3N4, etching grooves with a half-period width completely through a

300-nm waveguide gives an appropriate grating strength, as we see in subsequent

paragraphs. This full etching simplifies the processing. The temperature depen-

dence of semiconductors such as Si and InP is 0.1 nm/◦C. If the grating coupler is

used as an optical filter, this shift can cause problems when the PIC is not temper-

ature controlled. The temperature dependence of Si3N4 is ≈0.02nm/◦C [50], and

thus its wavelength shift is ≈5 times lesser.

The bandwidth of semiconductor grating couplers is narrow because of the high

refractive index of semiconductors. We can make an approximate calculation of

the bandwidth of a grating coupler as follows: The phase matching condition for

the grating is:

−n0

λ
sinθ +

nwg
λ

=
1

Λ
(3.3)

where n0 is the refractive index of the cladding/substrate material, nwg is the effec-

tive refractive index of light inside the waveguide, λ is the free-space wavelength of

light to be guided, Λ is the grating period, and θ is the fiber angle i.e. the angle to

vertical at which light is incident on the grating coupler. By choosing appropriate

values for the angle, the grating period can be estimated for a given wavelength of

light and waveguide mode of interest in a given material medium.

To simulate the grating couplers, we set up a finite difference time domain

(FDTD) simulation in Lumerical FDTD Solutions software. Figure 3.3 shows the

simulation setup and Figure 3.4 shows the simulated insertion loss of the grating

coupler. The simulated 3-dB bandwidth of the coupler exceeds 80nm.
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Figure 3.3: 3D FDTD simulation setup of the grating bars. A plane wave
light source is used to provide the input light field incident at
an angle of 20◦ to the vertical on to the grating bars. A power
meter at the waveguide is used to simulate the optical insertion
loss due to the grating coupler.
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Figure 3.4: FDTD simulated value of the optical insertion loss for the silicon
nitride gratings.
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3.3.4 Fabrication

We start with silicon wafers that have 4µm SiO2 thermally grown and deposit

300nm Si3N4 using low pressure chemical vapor deposition (LPCVD). To define

the resonators, waveguides and grating couplers, ma-N 2403 electron beam resist

is spun on top of the nitride and patterned using electron beam lithography. After

developing the resist in AZ 726MIF, we etch the pattern into the nitride device

layer using CHF3/O2 reactive ion etch (RIE). Then we strip the resist and deposit

SiO2 cladding using plasma enhanced chemical vapor deposition (PECVD) to clad

the gratings and waveguide with oxide. This is done to reduce losses at the grating

couplers. A second mask is then used to pattern release windows near the resonator

using contact photolithography. This is followed by a partial etch into the cladding

using CHF3/O2 RIE. This ensures that we can get away with a relatively shorter

release time and thereby not have a large undercut for the waveguides. We then

perform a timed release etch in buffered oxide etchant to undercut the devices, to

enable opto-mechanics. The samples are then dried using a critical point dryer to

prevent stiction. Figure 3.5 illustrates this process flow schematically.

The resulting devices have cladding over the gratings, and the tapered section

of the waveguide. The resonator is completely released except for a pedestal in the

middle that holds the structure in place. The waveguide is released in the region

around the resonator. Figures 3.6 and 3.7 show an optical micrograph and SEM

of the device respectively.
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E-beam resist 
(maN-2403)

1. E-beam lithography 2. Transfer pattern to Si3N4 3. Deposit oxide cladding 
(PECVD) 

4. Define release window 5. Etch into cladding (RIE) 6. Release in BOE followed 
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Si3N4 SiO2 Photoresist Si

Figure 3.5: Illustration of the process flow to microfabricate grating couplers,
waveguides, and opto-mechanical resonators in silicon nitride

Figure 3.6: Optical micrograph of the integrated device showing the ring
resonator, tapered waveguide and grating couplers
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Figure 3.7: Scanning electron micrograph (SEM) of the ring resonator and
released section of the waveguide

3.4 Experimental Characterization

3.4.1 Optical characterization

We use a tunable diode laser and a power meter to study the optical transmission

spectrum for the silicon nitride opto-mechanical resonator. Light from a tunable

diode laser (Santec TSL 510) is coupled into a polarization maintaining (PM)

fiber. This is then incident on a glass fiber holder in which the PM fiber is held

in a glass plate using V-grooves. The glass plate is polished at an angle of 20◦

at the face. This glass plate is then held vertically at an angle of 20◦ over the

substrate containing the waveguides. The polish ensures that the face of the glass

plate containing the polish fiber end is now flush in line with the substrate. The

PM fibers are aligned such that the light coming out is polarized parallel to the
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substrate, using manual polarization controllers. The input grating coupler couples

this light into the waveguide. At the output grating coupler, the light is coupled

into another fiber in the glass plate. The pitch between the two fibers is 127µm.

The output from the fiber is sent to an optical power meter.

To obtain an optical transmission spectrum, we use an automated testbench

developed using National Instruments (NI) NI Labview software running on a

host computer. The output from the power meter is obtained in the form of

analog voltage which is transmitted to a controlling computer using an NI digital

acquisition card (DAC). The software controls the laser via a GPIB interface. The

laser wavelength is swept via software, while the power meter output is collected

at the computer. A trigger signal from the laser to the optical power meter ensures

that the data from the power meter is recorded with the appropriate wavelength

stamp.

Typical optical transmission spectra for the grating couplers are shown in Fig-

ure 3.8. The gratings were designed for a pitch of 1.5µm with 50% duty-cycling.

The lowest insertion loss (-5.5dB per coupler) is observed for a grating pitch of

1.475µm. Figure 3.9 (a) shows optical transmission spectrum for an unreleased

silicon nitride opto-mechanical resonator. The silica cladding results in very high

intrinsic quality factors in excess of 1 million, as seen in Figure 3.9 (b). The

waveguide-resonator gap for critical coupling to unreleased resonators is experi-

mentally determined to be 1µm.

Releasing the resonator using BOE results in lowering of the optical quality

factor, as the light field is now more tightly confined inside the silicon nitride

device and is more prone to scattering losses at the air-silicon nitride interface. The

mismatch in refractive index for light inside the waveguide at the point where the
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Figure 3.9: (a) Typical transmission spectrum for an unreleased silicon ni-
tride resonator showing coupling to multiple optical modes. (b)
A high Q resonance in a silicon nitride resonator with intrinsic
quality factor in excess of 1 million.
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Figure 3.10: Insertion loss measured for -15dBm laser input power for a high
loaded Q (≈200,000) optical resonance

waveguide cladding material transitions from silica to air also results in additional

coupling losses. The optical loss at each facet is 8dB post release. Typical quality

factors for released silicon nitride resonators are ≈100,000, which is significantly

lower than the quality factors for unreleased resonators. Figure 3.10 shows a high

Q optical resonance in a released resonator with a loaded optical quality factor of

≈200,000. The waveguide-resonator gap for released silicon nitride resonators is

100nm.

33



3.4.2 Optical metrology of mechanical modes

Once we identify a high Q optical resonance, we setup an experiment to measure

the mechanical response of this resonator, as illustrated in figure 4. We use a

New Focus 1647 avalanche photodiode (APD) as the photodetector. The gain

of the APD is 6,000V/W. The laser wavelength is blue detuned with respect to

an optical resonance with optical Q of 200,000. Brownian motion of the opto-

mechanical resonator results in modulation of the light at the output fiber. The

APD converts this modulation into an RF signal at the modulation frequency,

which corresponds to the mechanical resonance frequencies of the device. Various

mechanical modes are observed in the RF spectrum recorded on an Agilent E4445A

spectrum analyzer.

The largest signal power is recorded for the radial expansion mode of the ring

at 41MHz, which corresponds to larger optical path length change in comparison

to a wineglass mode of the ring at 28MHz and azimuthal radial modes at 77 MHz

and 79 MHz, shown in Figure 3.11. The mechanical Q for the radial expansion

mode measured in air is 2,000.

3.4.3 Threshold of radiation pressure oscillations

The optical power threshold for onset of oscillations can be calculated by equating

the anti-damping rate in equation 3.2 to the mechanical damping rate to obtain

the following expression:

Pthresh =
4∆2 + Γ2

tot

ΓextΓtot

Ωmechmeffc
3

8n3
effωoptRF

3Qmech

[
(4∆2 + Γ2

tot)
2

16∆Γ3
tot

]
(3.4)
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Figure 3.11: RF spectrum at the output of the avalanche photodetector.
The peaks observed correspond to the Brownian noise mechan-
ical motion of the micro-ring. The fundamental radial expan-
sion mode of the micro-ring at a frequency of 41.97MHz causes
strong intensity modulation of the laser light as compared to a
a wineglass mode at 28MHz or a group of azimuthal compos-
ite mechanical modes around 77MHz. Insets: FEM simulated
modeshapes of the corresponding mechanical modes.
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Figure 3.12: Variation of RF power at the output of the photodetector with
the input laser power, for the fundamental radial expansion
mode of the micro-ring at 41.97MHz. As the laser power is
increased, self-sustained oscillations are observed for this mode.
The sharp threshold behavior shown is characteristic of radia-
tion pressure induced parametric instability.

Figure 3.12 shows the variation of RF output power at the photodetector with

the input laser power. At low input laser powers, the input light coupled into

the cavity is modulated by the Brownian noise motion of the fundamental ra-

dial expansion mode of the ring. As we increase the laser power, self-sustained

oscillations are observed above the input threshold power. The sharp threshold

behavior is characteristic of radiation pressure induced parametric instability. Fig-

ure 3.13 shows the RF output spectrum measured below and above the optical

power threshold for onset of oscillations.
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Figure 3.13: Variation of RF power at the output of the photodetector with
the input laser power, for the fundamental radial expansion
mode of the micro-ring at 41.97MHz. As the laser power is
increased, self-sustained oscillations are observed for this mode.
The sharp threshold behavior shown is characteristic of radia-
tion pressure induced parametric instability.
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3.4.4 Oscillation phase noise

Figure 3.14 shows the phase noise measured for the oscillation at 41MHz. The

phase noise at 1kHz offset for the 41MHz OMO is -85dBc/Hz. This is better

than the phase noise reported for radiation pressure driven self-oscillations of a

microtoroid [33]. The phase noise varies as 1/f2 below 100kHz offsets as indicated

by the dotted red trend-line implying that the OMO has no flicker noise. The

corner frequency for 1/f2 region is around 20kHz which agrees with the measured

mechanical Q of 2,000 at 41.947MHz. The phase noise is measured with an Agilent

E5052B signal source analyzer.
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Figure 3.14: Phase noise for OMO operating at 41.947MHz with -11.37dBm
output power. The laser input power is +15dBm. It varies as
1/f2 below an offset frequency of 100kHz as indicated by the
dotted red trend-line, implying that the OMO has no flicker
noise. The phase noise is measured with an Agilent E5052B
signal source analyzer.
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3.5 Phase Noise Modeling of Opto-Mechanical Oscillators

The classical Leeson model for electronic oscillators [51] relates the phase noise of

an oscillator to its linewidth. We extend this well established theory to the case

of opto-mechanical oscillators.

3.5.1 Oscillation linewidth

Mani et al. have characterized the mechanical oscillation linewidth as follows [33]:

∆Ω =
1

2π

(
4kBTQ

2
tot

meffΩ2
0R

2
0

)(
Γ2∆Ω0

M2

)
(3.5)

The linewidth is set by kB (Boltzmann constant), T (absolute temperature),

Qtot (total optical Q), meff (effective resonator mass), Ω0 (mechanical resonant

frequency), R0 (disc radius), Γ (optical modulation transfer function) [33], ∆Ω0

(intrinsic mechanical oscillation linewidth) and M (modulation depth). Γ repre-

sents the finite response time taken by the resonator to respond to modulation of

the optical path length. Intuitively, we can guess that Γ is a low pass filter function

of oscillation frequency i.e. at higher mechanical oscillation frequencies its value is

smaller. Γ and M are experimental parameters. However, for reasons we discuss

later, we will write the expression for the linewidth in terms of more fundamental

parameters describing the system:

∆Ω =
1

2π

(
4kBT

meffΩ2
0

)(
∆Ω0

r2

)
(3.6)

where r is the amplitude of radial displacement.
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3.5.2 Phase noise in opto-mechanical oscillators

Phase noise is frequency domain representation of random fluctuations in the phase

of a waveform. An ideal oscillator generates a pure sine wave that can be repre-

sented as a pair of delta functions at the oscillation frequency in the frequency

domain. This just highlights the fact that for an ideal oscillator, all the signal

power is at a single frequency. However, due to presence of various noise sources

within the oscillation loop, real oscillators demonstrate time domain instabilities

i.e. the zero crossings of the waveform are not spaced perfectly at half the period

of the waveform from each other, but exhibit random fluctuations.

Thus, the oscillator’s energy is not located at a single frequency and it spreads to

adjacent frequencies which can be characterized by the linewidth of the oscillator.

Most oscillators have a Lorentzian spectral density distribution characterized by

the following equation

Sv(f0 + ∆f) =
A2

2π

f∆

f 2
∆ + (∆f)2

(3.7)

where A2/2 is the signal power at the oscillation frequency and f∆ is the linewidth.

∆f specifies the offset from oscillation frequency f0. This spread is typically charac-

terized in terms of phase noise which is specified in dBc/Hz (decibels below carrier

per hertz). This way of quantifying phase noise gives a measure of the spread of

oscillation power to frequencies offset from the center (carrier) frequency.

Phase noise is one of the most important characteristics of a self-sustained os-

cillator. For applications such as a frequency reference in communication systems,

the phase noise of the oscillator impacts the bit error rate and security. Also,

oscillators do not have memory of phase of the waveform and as such are unable

40



to restore phase, which leads to accumulation of phase deviations caused by phase

noise. Hence it is crucial to be able to predict phase noise of an oscillator before

we design it.

We can use Leeson’s model to model the phase noise of OMOs using the expres-

sion of linewidth from equation (x). The following equation gives an expression

for phase noise in both 1/f 2 and 1/f 3 regimes. ω1/f3 is the corner frequency for

1/f 3 noise.

L(∆f) = 10log10

(
1

2π
.
∆Ω

∆f 2

)
. . . 1/f 2

= 10log10

(
1

2π
.
∆Ω

∆f 2
.
ω1/f3

∆f

)
. . . 1/f 3 (3.8)

Based on this model, we can draw some insights into designing oscillators with

low phase noise. As can be seen from the equations for linewidth and phase noise,

we see that if there could be a way to increase the effective mass of the system,

meff while ensuring that the amplitude of radial displacement, r does not drop

as much that 1
meff r2

increases, then we can improve the phase noise of the system

i.e. increasing meff perhaps increases the signal power thereby improving far from

carrier phase noise. However, the system becomes stiffer and hence we may need

larger input power to overcome this. We propose a solution to this problem by

using multiple disks mechanically coupled to each other. Also, we can actuate

multiple disks thereby maintaining operating power.
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Figure 3.15: 6dB reduction in phase noise of the oscillator achieved by em-
ploying a lower optical quality factor (84,500) resonance.

3.5.3 Improving phase noise of the opto-mechanical oscil-

lator

The analytical treatment of opto-mechanical oscillations highlighted the strong

dependence of the phase noise on the optical quality factor. As seen in equation 3.4,

choosing a lower optical Q
(
∝ 1

Γtot

)
resonance while achieving complete modulation

can theoretically give better phase noise at a cost of higher threshold power. We

employed an optical mode with a total optical Q of 84,500 (and an intrinsic Q of

200,000) and observed a reduction in phase noise by 6dB as shown in Figure 3.15.
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3.6 Characterization of Opto-Mechanical Oscillations

This section presents characterization experimental data for the RP driven Si3N4

OMO. We perform a wide frequency sweep and observe multiple harmonics of the

fundamental oscillation signal, as shown in Figure 3.16. These harmonics are a

result of non-linear optical modulation as described in section 2.3.
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Figure 3.16: Wide frequency sweep showing various harmonics of the funda-
mental mode for +15dBm laser input power.

Figures 3.17 and 3.18 show the behavior of RF output power and phase noise

for the 41MHz signal as we vary the input laser power, while keeping the relative

laser detuning from the optical resonance fixed at 0.31.

As we see, the RF output power increases as we increase the input laser power

and eventually the rate at which it rises tapers off. The phase noise improves as
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Figure 3.17: Variation of RF output power with input laser power
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Figure 3.18: Variation of phase noise at 1kHz offset with input laser power
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we increase input laser power, eventually following the saturation behavior demon-

strated by the RF outputpower. This trend is in good agreement with predictions

for radiation pressure driven oscillations in microtoroids [33].
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Figure 3.19: Extinction of oscillation waveform at output of the APD mea-
sured for various relative detuning values. As we can see, a
relative detuning of 0.5 enables us to see maximum extinction
of 20dB, which corresponds to extinction at resonance as in Fig-
ure 3.10.

Figure 3.19 shows how the extinction of the oscillator varies with relative detun-

ing. Extinction is defined as E = 10log10
Vmax

Vmin
, where Vmax and Vmin are respectively

the maximum and minimum voltage levels at the output of the photodetector. As

expected [33], we see a maximum extinction of 20dB for relative detuning of 0.5,

which corresponds to extinction at resonance as in Figure 3.10. This implies that

the radial displacement amplitude of the disk at 0.5 relative detuning is sufficient
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for complete modulation of the laser light.

3.7 Challenges in Scaling Opto-Mechanical Oscillators

3.7.1 Oscillation threshold for GHz operation

Recall from equation 3.4 that the optical power threshold for onset of radiation

pressure oscillations scales directly as the mechanical resonance frequency. The

threshold power required for self-oscillation mechanical modes beyond GHz fre-

quency accounting for grating losses is >30 dB. At larger frequencies, the required

power will be even larger, which makes scaling of this oscillation phenomenon

challenging from a pratical perspective.

3.7.2 Nano-opto-mechanical oscillators and phase noise

Following our published work on the integrated silicon nitride opto-mechanical

oscillator, various other groups have pursued designing oscillators with smaller ef-

fective mass to counter the threshold dependence on frequency. Disk resonators

fabricated in GaAs [30] and silicon [42] with oscillation frequencies beyond a GHz

have been shown, with optical quality factors in excess of 350,000. However, the re-

duced effective mass and higher optical quality factor translates directly into larger

phase noise numbers, which is undesirable in practically all oscillator applications.

Opto-mechanical zipper cavities and opto-mechanical crystals [41] fabricated in

silicon have been shown to demonstrate RP oscillations at 2.2GHz and 5.1GHz,

making them the highest frequency opto-mechanical oscillators reported to date.
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However, these nano-mechanical devices also suffer from very low effective masses

on the order of few femto-grams.

Opto-mechanical transduction at frequencies well in excess of a GHz have been

shown using optical excitation via optical gradient forces [41], electrostatic ac-

tuation [11] and piezo-electric actuation [52]. These methods can be employed to

operate the resonator as an opto-mechanical delay element, and an oscillator can be

realized in a delay-line oscillator topology. Careful mechanical and optical design

can enable a beyond GHz opto-mechanical oscillator. The next chapter presents

an oscillator designed using this topology, and rightly termed as the opto-acoustic

oscillator.
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CHAPTER 4

OPTO-ACOUSTIC OSCILLATOR

In previous work, the OxideMEMS Lab has presented a method for driving

motion in an opto-mechanical resonator using the RF MEMS technique of electro-

static capacitive actuation and sensing of mechanical motion in the same resonator

using optical intensity modulation. This was achieved in an opto-mechanical res-

onator all integrated into a monolithic system fabricated on silicon on insulator

(SOI) platform [53]. These resonators were employed in an electrical feedback

loop to realize micro-mechanical oscillators with frequencies in the GHz range.

However, the device and the transduction scheme employed have limitations that

prevent the scaling of this resonator design to realize multi-GHz oscillator im-

plementations. This chapter presents modification to the mechanical design, and

the drive and sense transduction schemes to realize micro-mechanical oscillation

signals beyond GHz.

4.1 Coupled Silicon Opto-Mechanical Resonator

A coupled ring resonator design was employed in [11] to realize a GHz oscillator.

The frequency of compound radial expansion mode of the ring is set mainly by the

width of the ring with little dependence on its radius. Each ring resonator has an

inner radius 5.7µm and width 3.8µm.

The anchoring scheme for the coupled resonator system follows a balanced an-

chor methodology [54], which moves the anchor over to the coupling beam instead

of the resonator boundaries. The coupling beam length corresponds to half the

acoustic wavelength, and the beam thus has a nodal point in the middle (see Fig-
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ure 4.1). Connecting tethers to this point to mechanically anchor the device and

to also route the electrical ground signal to the resonators leads to preservation of

high mechanical Q factors while ensuring mechanical symmetry.

4.1.1 Curbing mechanical self-oscillations of waveguide

The optical gradient force acting on the waveguide due to interaction between

the light in the resonator with light in the waveguide can launch mechanical self-

oscillations in the waveguide. This leads to internal frequency mixing in the opto-

mechanical resonator as also observed by Huang et al. [55]. To curb these me-

chanical oscillations in the waveguide, we intentionally tether the waveguide at

the point of coupling to the optical resonator as shown in Figure 4.1 (b). The

mechanical stub prevents motion at the coupling point thereby leading to a clean

RF transmission comprising solely of the mechanical modes of the coupled ring

resonator.

4.1.2 Fabrication Process

Fabricating the photodetector involves a four mask process flow on a custom silicon-

on-insulator (SOI) wafer (undoped 250 nm device layer for low optical loss and

3µm thick buried oxide for isolation of the waveguides on device layer from the

silicon substrate). The top silicon is thermally oxidized to obtain a thin oxide

hard mask layer of thickness 60nm atop a 220nm thick silicon device layer. ma-N

2403 electron beam resist is spun on top of the oxide and patterned using electron

beam lithography. The patterns are transferred into the silicon dioxide using a

CHF3/O2 based reactive ion etcher and then into the silicon device layer using
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Figure 4.1: (a) Layout depicting the silicon coupled opto-mechanical res-
onator. (b) Zoomed in view of the tether balanced mechani-
cal anchor and the mechanical stub anchor to curb waveguide
motion. FEM simulated mode-shapes of the optimized (c) first
order and (d) second order radial expansion modes of the coupled
ring-resonator at 1.1GHz and 2.2GHz.
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a chlorine based reactive ion etch. A layer of SPR-220 3.0 photoresist is spun

and a second mask is used to pattern windows above the mechanical resonator,

the electrical routing beams and the bond-pads. This is followed by a boron ion

implantation and nitrogen annealing to reduce the resistivity of these structures. A

third mask is then used to deposit metal over the bond pads for improved electrical

contact. A layer of LOR-5A followed by a layer of SPR-220 3.0 is spun and the

bond pads are exposed via contact alignment photolithography. This is followed by

evaporation of 25nm nickel on the sample. Nickel forms a good ohmic contact with

silicon, and is hence chosen as the bottommost metal. After evaporating nickel, we

evaporate 25nm titanium and 50nm platinum. Platinum is used as the top metal as

it makes good electrical contact with the Cascade Air Coplanar Probe (ACP) RF

probe used to interrogate these devices. However platinum does not adhere well to

nickel, and hence titanium is used as an adhesion layer. The photoresist is dissolved

in Microposit remover solvent 1165 to leave metal only atop bond-pads. A fourth

mask is used to pattern release windows near the resonator using SPR-220 3.0

photoresist, followed by a timed release etch in buffered oxide etchant to undercut

the devices. The samples are then dried using a critical point dryer to prevent

stiction. Figure 4.2 shows an illustration of the fabrication process. Figure 4.3

(a) and (b) show scanning electron micrographs (SEMs) of the fabricated devices

and the resonator-waveguide gap respectively. The gap is chosen to be 100nm to

ensure critical coupling to multiple optical modes.
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Figure 4.2: Illustration of fabrication process flow for designing coupled sil-
icon opto-mechanical resonators in a silicon-on-insulator (SOI)
platform
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Figure 4.3: (a) SEM of the fabricated coupled silicon opto-mechanical res-
onator. (b) The waveguide-resonator gap is chosen to be 100nm
to ensure critical coupling to multiple optical modes.
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4.2 Resonator Characterization

4.2.1 Optical characterization

The scheme for optical characterization of the silicon opto-mechanical resonator

is identical to that for the silicon nitride opto-mechanical resonator, as detailed

in section 3.4. Figure 4.4 (a) shows a typical optical spectrum recorded for this

resonator. The waveguide couples to various optical resonances. Figure 4.4 (b)

shows a high Q optical resonance centered at 1557.84nm with a total optical quality

factor of 31,000. The grating couplers introduce a loss of 6dB at each facet, and

have a full width at half maximum (FWHM) bandwidth of 40nm.

4.2.2 Electro-mechanical characterization

To identify the mechanical modes of the resonator, we characterise the RF trans-

mission of the resonator using a network analyzer. Figure 4.5 shows a schematic

of the experimental setup. A bias-tee is used to apply a combination of DC bias

voltage along with AC power from port 1 of an Agilent N5230A network analyzer

at the probe-pads of the electrode with a Cascade GSG RF probe. The tunable

laser is blue detuned to the half maximum point of the optical cavity. Mechanical

motion of the device induced by the applied input voltage translates into intensity

modulation of the laser light, which is picked off and converted into electrical RF

signal by a Newport 1544-A near-IR photoreceiver connected to the optical fiber

output. The output of the photoreceiver is connected to port 2 of the network an-

alyzer. The RF frequency is swept from 100MHz to 10GHz and the transmission

spectrum for the modulator is recorded. Figure 4.6 shows a typical transmission
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Figure 4.4: (a) SEM of the fabricated coupled silicon opto-mechanical res-
onator. (b) The waveguide-resonator gap is chosen to be 100nm
to ensure critical coupling to multiple optical modes.
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Figure 4.5: Experimental setup for characterization of the RF transmission
of the modulator.

spectrum obtained for such a two coupled-ring resonator. These spectra can be

obtained at a variety of DC voltage and laser power combinations.

4.3 f-Q Scaling in Micro-Ring Resonators

MEMS resonators designed for oscillator applications to date have quality factors

lower than the TED limit [56, 57]. For designing high performance oscillators, two

figures of merit that one should maximize are f−Q (mechanical frequency-quality

factor product) and k2
t−Q (electromechanical coupling constant-mechanical quality

factor product), which dictate the close to carrier phase noise and mechanical

energy stored in the resonator respectively. While progress has been made towards

optimizing the latter [58, 59], resonators demonstrating high f-Q products close to

the TED limit have managed to do so at expense of feed-through, thus necessitating

indirect measurement techniques such as local oscillator (LO) mixing [60] or FET-
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Figure 4.6: Wide RF transmission spectrum of the resonator. Various me-
chanical modes of the device are sensed via optical intensity mod-
ulation at the photo receiver. A combination of 0dBm RF power
and 20V DC bias was applied at the electrodes. Insets: COM-
SOL simulations of mode-shapes for fundamental and second or-
der wineglass mode and radial mode. Key modes are indicated
using circles (radial) and triangles (wineglass).
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based sense [22].

The quest for designing a low phase noise opto-acoustic oscillator requires iden-

tifying mechanical modes with high f − Q products. For our integrated silicon

opto-mechanical resonator, we choose a ring geometry over a disk as the former

combines the ability to achieve high mechanical frequencies and high capacitive

actuation area. Wineglass modes of such resonators have been studied previ-

ously from theoretical [31] and experimental [60] standpoints. In case of 4-spoke

supported released ring resonators, wineglass modes have less stress distribution

along the inner perimeter of the ring in the two orthogonal 0◦-180◦ and 90◦-270◦

directions. In comparison, radial mechanical modes can never have zero stress

distribution at the ring perimeter and thus are expected to have lower mechanical

Qs. Moreover higher harmonics of wineglass modes have lesser stress near the

spokes and thus should be more immune to anchor loss [61]. An illustration of

this is shown in Figure 4.7, which compares the stress distribution for two com-

pound wineglass modes. The stress in the orthogonal axes at points on the inner

periphery of the ring resonator is smaller for the higher harmonic as compared

to the fundamental mode. Lower anchor losses at higher frequencies augur well

for designing low phase noise oscillators employing these higher order mechanical

modes.

The integrated electro-mechanical drive and opto-mechanical sense scheme we

have developed offers a direct measurement platform to probe the mechanical

modes of MEMS resonators. Indeed, the high sensitivity provided by this scheme

makes it possible to detect thermal Brownian motion of these resonators. This

chapter uses this scheme to study frequency scaling of quality factors of wineglass

modes and radial modes in ring resonators. The next section provides details on a
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distribution at anchors

Zero stress distribution at anchors

Figure 4.7: Illustration comparing immunity of wineglass mechanical modes
(right) to anchor losses unlike radial modes (left).

qualitative comparison of wineglass and radial modes and trends to expect. Then

we present experimental results to study these trends and derive insights based on

our findings to design higher performance oscillators.

4.3.1 Anchor loss limited quality factor

The measured f-Q product for the mechanical resonance at 1.1GHz is 2.7x1012Hz,

which is far lower than the f-Q product of silicon due to material losses [62]. Demon-

strations of quality factors of 18,000 at 3.72GHz in silicon [22] have been realized,

which approaches values very close to the material limit. To investigate the anchor

losses in the coupled silicon opto-mechanical resonator, we turn to COMSOL finite

element method (FEM) simulations. The technique for estimating anchor losses

uses a perfectly matched layer in COMSOL was explained by Steeneken et al. [63].
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The simulation treats acoustic energy transfered into the substrate through the an-

chors as loss using a matched layer. Figure 4.8 shows the trend in anchor losses

estimated for radial and wineglass modes for the coupled ring resonator. Higher

order radial modes exhibit a saturation of the f-Q product in sharp contrast to

increasing trend observed in higher order wineglass modes. This behaviour is at-

tributable to the increased immunity to anchor losses in higher order wineglass

modes.

4.3.2 Thermo-elastic damping (TED) limited quality fac-

tor

In order to improve the resonator, the designer needs to consider all aspects that

produce damping and noise in the system. For example, resonators are usually run

in vacuum to minimize effects of air and squeeze-film damping.

Thermo-elastic damping (TED) [64, 65] is an important factor that the res-

onator designer needs to address. It is a result of a phenomenon called thermoe-

lastic friction, which takes place when you subject any material to cyclic stress.

The stress results in deformation, and the required energy is mostly stored as in-

ternal potential energy. However, materials heat under compressive stress and cool

under tensile stress. Thus, due to the heat flow from warmer to cooler regions en-

ergy is also lost as nonrecoverable thermal energy. The amount of thermo-elastic

friction and damping depends on the rate of this energy loss. The magnitude of

the energy loss depends on the vibrational frequency and on the structures thermal

relaxation time constant, which is the effective time the material requires to relax

after an applied constant stress or strain. Therefore, the effect of thermo-elastic
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Figure 4.8: Comparison of FEM simulated f-Q products for TED and anchor
loss mechanisms. The TED limited f-Q values are two orders
of magnitude larger than the anchor loss limited f-Q products,
which indicates that anchor loss mechanisms determine the qual-
ity factor in the resonator.

dissipation, and consequently the damping, is most pronounced when the vibration

frequency is close to the thermal relaxation frequency. Analytical expressions for

the TED limited quality factor are possible to be obtained for simple structures

such as uniform beam resonators [66]. However, for complicated structures such

as a coupled ring resonator system, it is preferrable to use finite element method

simulation (FEM) with an eigenfrequency analysis that combines heat transfer and

structural mechanics in one equation system. The eigenmodes thus obtained are

thermo-elastic.

Figure 4.8 shows the FEM simulated TED limited Q values for the device com-
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pared to the anchor loss limited Q values also obtained from FEM simulations.

The net quality factor, Qnet, depends on Qs from all loss mechanisms in the res-

onator, Qi as 1
Qnet

=
∑

1
Qi

. In other words, the loss mechanism with the largest

loss determines the ultimate quality factor of the resonator. The plot clearly shows

that the coupled ring-resonator system is dominated by anchor losses.

4.3.3 Comparison of f-Q product in radial and wineglass

modes

Using the direct acousto-optic characterization scheme, we measure the quality

factor for the different modes belonging to the radial and wineglass mode families.

Figure 4.9 shows the variation of f-Q for these modes. The Q for radial mode

decreases for higher order modes in such a way that the measured f-Q saturates

to a value close to 9x1012Hz. In contrast to the radial mode, the f-Q for the

wineglass mode family increases for higher harmonics. This measured trends are

similar to those obtained via FEM simulations. The highest f-Q is measured to be

5.11x1013Hz at 9.82GHz. These measurements were performed in air and at room

temperature.

4.3.4 Temperature scaling of f-Q product in radial and

wineglass modes

Based on the measurements we perform at room temperature, we believe the qual-

ity factors for the radial modes are limited by anchor losses. To corroborate this

hypothesis, we investigated the variation of quality factors for the wineglass and
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Figure 4.9: f-Q vs f plotted for harmonics of the radial mode and the wine-
glass mode. Unlike the radial mode, the f-Q for the wineglass
mode does not saturate and the value for higher harmonics keeps
increasing. Measurements were carried out at room temperature
and atmospheric pressure.
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Figure 4.10: f-Q vs f plotted for harmonics of the radial mode at various tem-
peratures. At room temperature the f-Q for higher harmonics
of the radial mode saturates at a value close to 9x1012Hz. At
lower temperatures the value of f-Q shows an increasing trend.

radial mode families with temperature. The device was tested in a Lakeshore

TTP4 probe station under 9µTorr pressure, and liquid nitrogen was used to cool

the chamber. A modified optical probe arm was introduced in the probe station

to couple laser light to the devices via grating couplers.

We measured the performance of this modulator at various temperatures down

from room temperature to 80K. The TTP4 optical probe arm connectors introduce

further losses in addition to the losses due to grating couplers. This limits the

highest observable signal frequency to roughly 6GHz, and displacement sensitivity

at frequencies beyond this value is limited by noise.
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Figure 4.11: f-Q vs f plotted for harmonics of the wineglass mode at various
temperatures. The f-Q for higher harmonics shows a rising trend
at all temperatures.

Figure 4.10 shows the variation of f-Q as a function of temperature for the

radial mode family. The saturation in the value of f-Q for higher order modes

seen at room temperature no longer holds and the variation shows a rising trend.

It would be misleading to interpret this as transition from anchor-loss dominated

regime to phonon-phonon dissipation limit. The measured value of f-Q at 5.67GHz

at 80K is 10X lower than the maximum calculated limits for <100> silicon [62].

The wineglass mode family on the other hand, shows an increasing trend in the

f-Q product for higher order modes at all temperatures as seen in Figure 4.11. As

in the case of radial modes, the values measured are far lesser than the theoretical

limit [62]. This implies that higher harmonics of the wineglass mode are more

resilient to anchor losses.
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4.4 Limitations of Two Coupled-Ring Resonator Architec-

ture

Careful design of the coupling spring for a compound radial mode at 1.1GHz

ensures a low insertion loss (<30dB) for the coupled opto-mechanical resonator,

which allows us to operate the resonator as an oscillator in a closed feedback

loop [11]. The insertion loss for higher order radial modes at 2.2GHz (>60dB),

3.3GHz (>80dB) however are significantly higher which makes it difficult to design

oscillators using these mechanical modes (see Figure 4.6). Scaling the design to

a compound radial mode of 2GHz, by resizing the ring width to 2µm and inner

ring radius to 7µm results in significant insertion loss (>40dB) at the frequency of

interest, as shown in Figure 4.12. for the original coupled ring design.

The primary reason for increased insertion loss are 1) inefficient acoustic trans-

duction at higher mechanical frequencies and 2) lesser displacement sensitivity of

the optics due to reduced overlap of the motional sidebands with the optical cavity

resonance lineshape. We first present two solutions to overcome the inefficiency

of the acoustic transduction scheme, elaborated in the next section. The last sec-

tion of this chapter presents a solution to boost the efficiency of the optical sense

scheme.

4.5 Micro-Resonator Arrays

The silicon opto-mechanical resonator system presented in the sections above ex-

hibits very large RF insertion losses at frequencies beyond 1GHz. The transduc-

tion efficiency of electrostatic capacitive actuation at higher frequencies is strongly
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Figure 4.12: RF transmission spectrum for a 2µm wide ring measured using
a network analyzer. The insertion loss for the fundamental,
second order and third order radial expansion modes at 2.1GHz,
4.2GHz and 6.3GHz respectively are too large to operate the
mechanical resonator as an oscillator in a closed feedback loop.
Insets show the corresponding FEM simulated mode shapes for
the three radial modes of vibration.
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determined by the electrode-resonator gap, and consequently higher frequency me-

chanical modes have a large motional impedance due to reduced electrostatic force,

higher stiffness and smaller motion amplitudes. A thorough mathematical treat-

ment is presented in the next section. The smaller motion amplitude also results

in incomplete optical modulation, and thereby the sense scheme displacement sen-

sitivity is also limited.

Among the most direct methods for lowering the motional resistance of capac-

itively transduced micromechanical resonators are: 1) scaling down the electrode-

to-resonator gap, and 2) raising the dc-bias voltage. However, both these methods

come at a cost of reduced linearity of the transduction scheme. It has been shown

in the past that implementing an array of identical mechanical resonators coupled

mechanically helps lower the motional resistance Rx [67] and also achieves larger

displacement [68]. These two schemes are elaborated in the follwoing sub-sections:

4.5.1 Lowering resonator motional impedance

Consider an array of N mechanical resonators coupled mechanically using half-

wavelength coupling beams as shown in Figure x. This system is analogous to N

R-L-C resonators connected in parallel to each other. The composite array has

an effective mass M ′
eff = NMeff and an effective stiffness K ′eff = NKeff , where

Meff and Keff are the effective mass and stiffness for each individual resonator.

By driving all the resoantors in the array, the transducer area A is also increased

to A′ = NA. This results in an N-fold increase in the transduction coefficient

η = Vdcε0
A
g2

, where Vdc, ε0 and g are the applied DC voltage, permitivitty of

air and the resonator-electrode gap respectively. Ideally, this leads to an N-fold

reduction in the motional resistance Rx:
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R′x =

√
K ′effM

′
eff

Qmechη′
2 =

1

N

√
KeffMeff

Qmechη2
=
Rx

N
(4.1)

The above equation assumes perfect matching between the resonator frequen-

cies and quality factors. Even a tiny deviation in frequency from a matched case

leads to spurious modes around the mechanical mode of interest and lead to lesser

than N-fold reduction in the motional resistance [67]. This problem can be over-

come by controlling the phase of the AC voltage drive on each resonator individu-

ally. However, practical implementation of this scheme presents routing challenges

and additional experimental complexity, and hence we choose to use a single phase

drive for subsequent experimental demonstrations.

4.5.2 Displacement amplification

As derived in equation 2.9, if the laser frequency is detuned to the full-width-half-

maximum (FWHM) point of the optical resonance, ωopt, the modulation depth

depends linearly on the motion induced frequency shift. The opto-mechanical cou-

pling coefficient for a micro-ring resonator is given by gom = dωopt

dR
= −ωopt

R
, where R

is the radius of the micro-ring. Thus, larger mechanical displacement translates to

greater shift in the resonance frequency, thereby enhancing the modulation depth.

Hence it is desirable to get large mechanical displacements in addition to operating

in the resolved sideband regime, to achieve efficient modulation.

The acousto-optic modulator presented in section 4.2 is extended to an array of

mechanically coupled ring resonators for large electrostatic driving force. We also

use a mechanical lever system [68] to realize displacement amplification. An array

composite of rings on the input electrostatic side feeds via an acoustic quarter-
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(a)

(b)

20µm

Figure 4.13: (a) Illustration of the micromechanical displacement amplifier.
The three-quarter wavelength coupling beam connecting the
output opto-mechanical resonator on the left to the array com-
posite of drive micro-mechanical resonators on the right ensures
mechanical displacement amplification. (b) Scanning electron
micrograph (SEM) of the fabricated acousto-optic frequency
modulator (AOFM). Insets: Finite element simulation (FEM)
of the mechanical mode shape of the ring at 176MHz (left -
fundamental radial expansion mode) and 1.09GHz (right - com-
pound radial expansion mode).
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wavelength coupling beam into a single output opto-mechanical ring resonator, as

illustrated in Figure 4.13 (a).

Consider a strongly coupled array of N ring resonators strongly coupled to

each other using half-wavelength coupling beams. The effective stiffness of the

composite resonator defined by the array is Keff = NKr, where Kr is the stiffness

of each individual ring. Coupling this array to another ring resonator using a

quarter-wavelength coupling beam results in a mismatch of the stiffnesses on either

side of this coupling beam. A quarter-wavelength coupling beam, by definition,

forces the velocity at both ends of the beam to be the the same. Thus, the kinetic

energy of the moving ends of the coupling beam, and hence the stored potential

energy in the resonators on either end of the beam is the same. Thus, if xo is

the radial displacement of the output opto-mechanical ring resonator, and xarray is

the radial displacement of each ring resonator in the array, the energy constraint

ensures:

1

2
Krx

2
o =

1

2
Keffx

2
array ⇒

xo
xarray

=
√
N (4.2)

Thus, the difference in stiffnesses of the input array and output ring results in

an enhancement of the displacement at the output. Figure 4.13 (b) shows an SEM

of an array of such resonators employing displacement amplification.
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4.6 Partial Air Gap Transduction via Atomic Layer Depo-

sition (ALD)

Conventional air gap capacitively-transduced RF MEMS resonators typically have

high motional impedances on the order of a few kΩ [69, 70, 56]. Sub-GHz par-

tial gap resonators with 10 nanometer air gaps achieving impedances <1kΩ have

been shown [71]. Extending the frequency of these resonators entails scaling of

resonator dimensions, leading to increased motional impedance at higher frequen-

cies. Dielectric electrostatic transduction has several benefits over conventional

capacitive air gap transduction schemes for higher frequencies and smaller dimen-

sions [72]. However, there is no clear understanding on which of these transduction

schemes is better for a given design frequency and desired mode shape of the res-

onator. The following sections discuss integrating a partial air gap transduction

scheme into the fabrication of the coupled silicon opto-mechanical resonator.

Motional impedance models for air gap transducers [73] and internal dielectric

transduced resonators [72] are available in literature. However, partial air gap

transduction lacks a good analytical BVD model in literature that can accurately

predict resonator performance for varied applications. Designers often feel the need

for a complete model for dielectric transduction that can help them determine the

motional impedance for various schemes for their design of choice, thereby enabling

them to pick a scheme that works best. An earlier attempt to model partial

gap beam resonators [71] was limited by distortions of the beam geometry at

the resonator-electrode interface, resulting in significant deviation from measured

results. Appendix D presents a model that is built on the methodology presented

in [73].
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4.6.1 Choosing the right ALD material

Deriving insights from equation D.10, we note that to achieve significant reduction

in Rx, it is desirable to use a material with large dielectric constant (ε2). Intuitively,

this amounts to a net resonator-electrode capacitance comprised of the reduced air

gap capacitor connected in series with the capacitors formed by the dielectric on

the resonator and the electrode. For reduced Rx, it is necessary that the net

capacitance be dominated by the air gap capacitance, since the modulation of this

capacitance with displacement is the prime determinant of the motional current.

Atomic Layer Deposition (ALD) provides a uniform and conformal film depo-

sition with sub nanometer thickness accuracy controlled by the number of reaction

half cycles used. When working with thin film resonators, such as those employed

here for opto-mechanics, it is important to keep in mind the mass loading on the

resonator and coupling beams due to the ALD material, which leads to a degrada-

tion in the mechanical quality factor due to sub-optimal coupling post ALD. For

this reason, it is important to choose an ALD material that is closely matched in

acoustic velocity to the resonator material (Si). Also, it is beneficial to identify an

ALD material that is easy to etch/pattern, in order to get rid of ALD material over

areas of the chip where ALD coating is undesirable e.g. on the bond-pads used to

establish electrical contact with the resonator and electrodes. Keeping these rea-

sons in mind, the prime ALD candidates for s Si resonator are aluminum nitride

(AlN) and alumina (Al2O3), which lead to significantly lower distortions in me-

chanical Q compared to conventionally employed materials with higher dielectric

constants such as hafnia (HfO2) and titania (TiO2) [74].
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4.6.2 Fabrication process incorporating ALD alumina

We transfer the released devices as fabricated in section 4.1 into an ALD chamber

and blanket coat the entire chip with 30nm alumina (Al2O3). We then need to

remove the alumina deposited on the bond pad to be able to make electrical contact

to our device. Also we cannot spin coat photoresist on our sample as the released

devices would then break off due to shear force. Instead we spray coat the sample

with 6µm thick diluted photoresist (1:10 S1805:Acetone) and pattern the resist via

contact photolithography to expose the bond pads. We develop the resist using

tetramethylammonium hydroxide (TMAH) based developer. This developer also

simultaneously etches the exposed alumina without damaging the bond pads. We

then strip the resist in acetone and finally dry the devices using a critical point

dryer. Figure 4.14 shows an illustration of the fabrication process flow. SEM

images show clear reduction in the resonator-electrode gap from 130nm to 70nm

post ALD (see Figure 4.15).

4.6.3 Post-release photolithography on a MEMS structure

Ultrasonic photoresist spray equipment is used in photolithography wafer pro-

cessing, often as an alternative to spin coating or vapor deposition for thin film

processing of MEMS or other semiconductor wafers needing uniform conformal

coating of areas with high aspect ratios. These processes often require ultra pre-

cise uniform thin film coatings of photoresist into difficult areas such a V-grooves

and deep vertical trenches. This same spray-coating technique can be adopted to

obtain photoresist coating on a suspended MEMS structure. Conventional resist

spin coating will damage the suspended structure due to shearing forces encoun-
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2. Spray coat 1:10 
S1805:Acetone

3. Expose photoresist. Develop 
photoresist and dissolve Al2O3 in 

TMAH

ALD alumina
photoresist

1. Deposit 30nm 
thick Al2O3 via ALD

4. Dissolve photoresist in acetone 
and dry sample in critical point dryer

Suspended device

Figure 4.14: Illustration of fabrication process flow on suspended silicon res-
onators to incorporate ALD for reducing the resonator-electrode
gap. The blue ellipse in step 4 highlights the removal of ALD
material from the bond pads, and the red ellipse highlights the
reduced air gap.

resonator
electrode

coupling beam
Pre ALD Post ALD

Figure 4.15: SEM highlighting reduction of the resonator-electrode gap from
130nm to 70nm after depositing alumina. Particles seen on the
resonator are on account of ALD non-uniformity.
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tered at large rotation speeds on the order of thousands of rotations per minute

(RPM). By precisely controlling the amount of photoresist sprayed on to the struc-

ture, repeated spray steps can be employed to obtain a uniform, thick photoresist

coating to protect the device for further photolithography steps.

Spray coating involves the formation of a resist film via millions of µm-sized

resist droplets moving towards the substrate. Each technology for droplet genera-

tion requires a certain low resist viscosity of usually a few cSt. To put this number

in perspective, it is helpful to note that water at 20◦C has a kinematic viscosity

of 1cSt. Varying the resist viscosity impacts the droplet generation rate as well as

the droplet diameter distribution. When diluting resists with a solvent, one has

to consider possible incompatibilities of certain solvents with the resist, as well as

the fact that highly diluted photoresists generally reveal an accelerated ageing of

the resist in the diluted state with particle formation as a consequence. Moreover,

the solvent also evaporates during flight and it affects the resist viscosity landing

on the sample. Thus, there are many parameters that need to be optimized while

developing a recipe for resist spray coating. A common procedure employed to

reduce the size of the variable space to be optimized is to modify an existing well-

developed spray coating recipe to suit the requirements of the problem at hand.

Since the released structures we wish to cover with photoresist have an undercut

of ≈2µm, the resist film thickness deposited in a single spray coating step should

be much smaller than a micron to prevent stiction and damage to the suspended

structures. Repeated spray coating should be performed to obtain a thick re-

sist film with thickness >3µm to obtain a robust film that can withstand contact

stresses experienced during contact photo-lithography. Figures 4.16 (a) and (b)

show photographs of a chip with released devices, and one such coupled-resonator

array respectively spray coated with photoresist.
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(a) (b)

Figure 4.16: (a) Photograph of a 2cm x 2cm chip spray coated with pho-
toresist. The rough texture seen in the photograph results from
the resist being sprayed as a colloidal mixture. (b) Optical mi-
crograph of the released opto-mechanical resonator array spray-
coated with photoresist.

4.7 2GHz Opto-Acoustic Oscillator

This section explores two innovations to the two coupled-ring resonator design to

realize a high frequency opto-acoustic oscillator. The first innovation is to use the

micro-mechanical displacement amplifier design to achieve larger optical modula-

tion. The second innovation is to use the partial air gap capacitive transduction

scheme via ALD alumina to enhance the electromechanical transduction efficiency

at higher frequencies. We incorporate both these ideas into the resonator design

to demonstrate an electrostatically actuated silicon OAO operating at 2.05GHz.

The following sections provide details on the experimental setup and characteriza-

tion of the oscillation signal, along with comprehensive understanding of the noise

mechanism in this oscillator.
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Figure 4.17: FDTD simulated comparison of grating coupler performance

prior to and post the ALD deposition step. The intensities are
normalized to the highest transmitted optical power post ALD
at 1580nm.

4.7.1 Post ALD electro-mechanical characterization

The performance of the grating couplers is simulated with the ALD coating atop

the device. Figure 4.17 shows a boost in the grating transmission simulated using

Lumerical FDTD (see section 3.3 for details).

Figure 4.18 shows the measured enhancment in the optical performance for the

modulator post ALD. The grating transmission is boosted by 3dB, and the half-

width-at-half-maximum bandwidth of the gratings increases from 15nm to 20nm.

We choose a high optical loaded quality factor (Qtot) resonance at 1574nm shown

in Figure 4.19.
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Figure 4.18: Optical transmission spectrum highlighting increase in grating
transmission and bandwidth post ALD. The half-width-at-half-
maximum bandwidth for the grating couplers increases from
15nm to 20nm.
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Figure 4.19: High optical Q resonance for the device coated with 30nm alu-
mina. The total (loaded) optical quality factor of the cavity is
≈62,000. The laser power is set to -15dBm.
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Figure 4.20 shows a comparison for the transmission of the modulator measured

prior to and post the ALD fabrication step. The signal boost at higher frequencies

is clear and the enhancement is most prominent for the mechanical mode with

frequency 2.1GHz, which shows 5 orders of magnitude improvement in insertion

loss (-88dB pre ALD; -41dB post ALD).

Mass loading of the resonator and the coupling beams due to ALD, in addition

to acoustic velocity mismatch between silicon and alumina results in degradation

of the mechanical Q from 2,300 prior to ALD to 800 post ALD. The large boost in

signal power is attributable to 5dB boost in optical power (see Figures 4.4 (b) and

4.19) and reduction in the motional resistance from 1.1MΩ pre ALD to 307kΩ post

ALD (see equation D.23 (11dB reduction). Figure 4.21 shows typical improvements

in insertion loss at 2GHz recorded for 5 devices. The average improvement for

devices in these measurements is obtained to be 30dB.

The large improvement for device 3 is explained by the impact of the ALD on

the resonator radius and the beam length. The coupling beam length is designed

to be 3λa/2, where λa denotes the acoustic wavelength for the radial expansion

mode at 1.1GHz. Fabrication variations across the chip could result in deviations

on the order of the electron beam spot size used in the e-beam lithography step

(≈20-30nm at 5nA beam current) from this ideal value. A half-wavelength coupler

has infinite stiffness and causes no mass loading on the resonator. Deviation from

this length results in the coupler introducing mechanical dissipation in addition to

frequency splitting in the modes of vibrations of the rings [75], as shown in Figure

4.22. With multiple rings coupled in a strongly coupled array, the mismatch is

more pronounced, as different rings experience dissimilar loading from the springs.

Depositing ALD alumina on the device results in increasing the radius of the rings,
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Figure 4.20: Comparison of the modulator transmission spectrum (a) pre
ALD and (b) post ALD. The most pronounced transduction
enhancement is recorded at 2.05GHz (47dB improvement).
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Figure 4.21: Typical improvement in insertion loss at 2GHz recorded for 5
devices pre and post ALD. The average improvement in these
measurements is obtained to be 30dB. Pre and post ALD mea-
surements on each were performed using comparable optical
quality factors. The laser power in each measurement was set
to 15dBm, and a combination of 30V DC and 0dBm RF power
was applied at the electrode.
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∆r = 0

∆r = +60nm

∆r = -60nm

Figure 4.22: FEM simulations highlighting the frequency splitting intro-
duced by changing the resonator radius by ±60nm.The rings
have identical displacement amplitudes when the beam length
is an odd multiple of λa/2. When the beam length deviates
from the ideal value, the displacement amplitudes in both ring
resonators are dissimilar, which translates to impaired trans-
duction and lower quality factor.

thereby reducing the mechanical resonance frequency. Simultaneously the beam

length reduces as the ring radius increases, which increases the resonance frequency

of the coupling beam. Thus, designs with initially unmatched ring and coupling

spring resonance frequencies could be tuned to ideal dimensions via ALD alumina

deposition. This results in the large enhancement in insertion loss recorded for

device 3.

To select the second order compound radial expansion mode at 2.05GHz and
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suppress the other mechanical modes of the device, we use a band-pass filter (Mini-

circuits VBFZ-2000-S+). Figure 4.23 shows the RF transmission spectrum mea-

sured by introducing the filter at frequencies near 2.05GHz. The spectrum shows

8 prominent peaks that arise from the 8-fold symmetry of the mutually coupled

rings in the device vibrating in the second order compound radial expansion mode

(Figure 4.23 inset). The other spurious peaks are attributed to imperfections in

the beam lengths due to fabrication variations. The tallest peak at 2.047GHz

corresponds to the mechanical mode with best momentum balance. The second

tallest peak at 2.067GHz has a frequency separation of 20MHz from this mode and

has 8dB larger insertion loss. Since the oscillator loop locks to a single mechan-

ical mode, an oscillator operating at 2.047GHz will not be affected by the other

mechanical modes.

4.7.2 Delay line oscillator design

The mechanical resonator can be operated as an oscillator in a closed feedback

loop. The condition required for oscillation is set by the Barkhausen criterion,

that requires an overall loop gain of unity, and the phase around the loop an inte-

gral multiple of 2π at the oscillation frequency. To overcome transmission losses in

the opto-mechanical resonator, an amplifier is required that provides unity gain for

the open loop. The other condition is ensured by either choosing an appropriate

feedback circuit or using a phase shifting circuit. A typical electronic circuit to

obtain oscillators using mechanical resonators is the Pierce oscillator circuit which

consists of a transistor to provide the gain and a combination of capacitors in feed-

back for the phase. We operate the 2.05GHz mechanical resonance in a feedback

loop using an amplifier (Mini-circuits ZQL-2700MLNW+) and a phase shifter us-
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Figure 4.23: Transmission spectrum of the device measured with the intro-
duction of a band-pass filter to select mechanical modes around
2GHz. Inset: Finite Element Method (FEM) simulated me-
chanical resonance mode shape at 2.047GHz.
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Figure 4.24: Schematic of the delay line oscillation loop.

ing the oscillator topology outlined in [11]. Figure 4.24 shows a schematic of the

oscillator feedback loop.

4.7.3 Oscillation phase noise

Figure 4.25 shows the RF spectrum and phase noise of the oscillations at 2.05GHz.

The oscillation signal phase noise at 10kHz offset from carrier is -80dBc/Hz. We

measure the phase noise using an Agilent 5052B signal source analyzer. Using a

low noise amplifier results in lack of 1/f3 slopes down to 5kHz offset from carrier

in the phase noise plot unlike [11].
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Figure 4.25: Phase noise of the oscillations at 2.05GHz, with 80dBc/Hz noise
at 10kHz offset from carrier. Inset: RF spectrum of oscilla-
tions at 2.05GHz. The phase noise is measured using an Agilent
5052B signal source analyzer.
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Figure 4.26: Schematic of the OAO loop highlighting the primary noise
sources.

4.7.4 Phase noise model for opto-acoustic oscillators

To model the phase noise of the OAO, we follow a methodology similar to con-

ventional noise analysis in PLL systems [76] and optoelectronic oscillators [77].

The fundamental noise contributions in the OAO arise primarily from the thermal

noise, the photodetector shot noise, noise contributed by the amplifier, and the

laser’s intensity noise. Consider the noise loop shown in Figure 4.26. For the sake

of noise analysis, we can break the loop and write down an expression for the

noise-to-signal ratio at the output of the amplifier.

The power spectral density of the Brownian motion can be written as in equa-

tion 4.3 as follows:
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Sx (Ωmech) =

√
4kBTQmech

meffΩ3
mech

(4.3)

where kB is the Boltzman constant, T is the ambient temperature, and Qmech,meff

and Ωmech are the quality factor, effective mass and frequency of the mechanical

resonance respectively.

The motion of the cavity leads to modulation of the transmitted optical power

at the output of the device,
√
〈P 2

mod〉 = dT
dr
PCWSx (Ωmech). The scale factor, dT

dr
,

denotes the change in optical transmission (T ) with radial displacement (r). Note

that we can express dT
dr

in terms of the opto-mechanical coupling coefficient, gOM

as dT
dr

= dT
dω0

dω0

dr
= HoptgOM . Hopt is the cavity transfer function expressed as in

equation 4.4[32]:

Hopt =

√√√√ 4Γ2
extΓ

2
int∆

2
0[

∆2
0 +

(
Γtot

2

)2
]4 (4.4)

where ∆0 = ω0− ωp is the static detuning of the laser frequency (ωp) with respect

to the optical cavity resonance frequency (ω0), Γext is the decay rate associated

with coupling of photons to the optical cavity, and Γint and Γtot are the intrinsic

and loaded cavity photon decay rates respectively.

The power noise spectral density at the output of the photodetector can then

be expressed as follows:

√〈
P 2
n,PDout

〉
=
√
〈P 2

mod〉G
2
PD = HoptgOMPCWSx (Ωmech)G

2
PD (4.5)

The noise spectral density at the input terminal of the amplifier can then be

written down as (in units of V 2/
√
Hz):
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ρn,in = Sx (Ωmech)HoptPCWgOMG
2
PD + 2eΨPCWRPD +NRINI

2
phRPD (4.6)

The first term in the RHS is the thermal Brownian noise amplified by the

photodetector gain (GPD). The second and third terms are the detector shot

noise and the laser’s intensity noise respectively. For benchtop tunable lasers, the

intensity noise is negligibly small compared to the thermal noise and the shot noise

and can be safely ignored. The optical power at the input of the photodetector is

denoted by PCW , Ψ is the responsivity of the photodetector, Iph = ΨPCW is the

photocurrent across the load resistor of the photodetector, RPD, and NRIN is the

relative intensity noise (RIN) of the input laser. The noise at the output of the

amplifier can then be expressed in terms of the noise factor (F ) and the gain (GA)

as ρn,out = Fρn,outG
2
A. This gives the following expression for noise-to-signal ratio

at the output of the amplifier:

δ =
ρn,out
Psig

(4.7)

Following the derivation in [77], the full width at half maximum (FWHM)

linewidth of the oscillation signal is then obtained as:

∆fFWHM =
δ

2πτ 2
(4.8)

where τ = 2Qmech

Ωmech
+ 2Qopt

ωp
is the delay in the oscillation loop, due to circulation of

photons inside the optical cavity
(

2Qopt

ωp

)
and the filter response of the mechanical

resonance
(

2Qmech

Ωmech

)
. With an expression for the oscillation linewidth in place, we

can model the phase noise [34] for the OAO as below:
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Figure 4.27: Comparison of measured phase noise for oscillation signal at

2.05GHz to phase noise calculated using the model presented
here.

L (∆f) = 10log10

(
1

π

∆fFWHM

(∆fFWHM)2 + (∆f)2

f3

∆f

)
. . .

1

f 3
regime

= 10log10

(
1

π

∆fFWHM

(∆fFWHM)2 + (∆f)2

)
. . .

1

f 2
regime

= 10log10

(
1

π

∆fFWHM

(∆fFWHM)2 + (f0)2

)
. . . noisefloor (4.9)

where f3 is the corner frequency for 1
f3

noise in the phase noise spectrum, and f0 =

fmech/2Qmech is the Leeson corner frequency for the oscillator. The comparison of

the phase noise calculated using this model to measured phase noise is shown in

Figure 4.27.

The Newfocus 1544-A photoreceiver used in the experiments reported in earlier

sections has a Noise Equivalent Power (NEP) of 24pW/
√
Hz. The dominant con-

tribution to the noise spectral density in equation 4.6 comes from the shot noise in

the photodetector. To design an oscillator with lower phase noise, we need to use a
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Figure 4.28: Comparison of measured phase noise for oscillation signal at

2.05GHz to phase noise calculated using the model presented
here. The black curve is the phase noise recorded using a New-
Focus 1544A photoreceiver and the red curve is obtained using a
Discovery Semiconductors R604-APD avalanche photodetector.
The green and blue dashed curves are the calculated phase noise
performance using the phase noise model. The model clearly fits
well to the measured phase noise numbers.

photoreceiver with a lower NEP. Also, it is desirable to have a large gain and an RF

bandwidth >2GHz for the photoreceiver. The R604-APD avalanche photodetec-

tor manufactured by Discovery Semiconductors provides a single ended conversion

gain of 12,000V/W and a 3-dB bandwidth of 7GHz, with an NEP <2.4pW/
√
Hz.

Using this photoreceiver, we obtain a phase noise floor of -137dBc/Hz as seen in

Figure 4.28. However, to provide sufficient gain in the feedback loop, we have to

use an additional amplifier (Minicircuits ZRL-2400LN, alongwith a 20dB attenu-

ator to avoid gain saturation in the amplifier chain), which shifts the 1/f3 corner

frequency to ≈200kHz.

The RF signal generated by the photodetector depends on the detuning of the
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Figure 4.29: Variation of phase noise for the oscillation signal at 2.05GHz for
various relative detuning values. A DC voltage of 35V was used
to operate the oscillator.

laser wavelength from the cavity optical resonance wavelength. As a result, the

phase noise of the oscillation signal also varies with the detuning, as captured in

equation 4.4. Figure 4.29 shows phase noise spectra for the oscillator recorded

at various relative detuning values measured using the R604-APD photoreceiver.

Relative detuning is defined as ∆0

2δ
, where ∆0 = ω0−ωp is the detuning of the pump

laser frequency ωp from the cavity optical resonance frequency ω0, and δ is the full-

width-at-half-maximum (FWHM) linewidth of the cavity optical resonance. Figure

4.30 compares the measured phase noise at 100kHz offset from the carrier with the

calculated value of phase noise based on the model presented here. The measured

trend in phase noise agrees well with the calculated trend, and we conclude that

it is desirable to choose a relative detuning value ≈1 for the best phase noise

performance.

Another interesting observation from equation 4.8 is that increasing the total
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Figure 4.30: Phase noise at 100kHz offset from carrier measured for various
relative detuning values. The measured trend in the phase noise
variation agrees with the calculated trend based on the phase
noise model.
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delay in the loop will lead to reduced linewidth and hence lower phase noise.

Improving the mechanical Q is akin to adding more acoustic delay in the loop.

Optical delay can be introduced by increasing the optical Q. However, a mechanical

Q of 1,000 at 1GHz translates to a mechanical delay of 2µs. An optical Q of

100,000 at 1,550nm (193.5THz) corresponds to an optical delay of 0.5ns. To get

an optical delay comparable to the mechanical delay, the optical Q has to be on

the order of 1 billion, which is not easy to achieve in chip scale silicon photonic

resonators. Off-chip delay can be introduced by integrating an optical fiber spool

in the loop. A 5km long fiber corresponds to an optical delay of 5km
3e8m/s

= 16.6µs.

Figure 4.31 shows 35dB reduction in the close-to-carrier phase noise of the opto-

acoustic oscillator achieved by introducing this fiber spool. However, this increases

the cavity length of the oscillator, making the cavity mode spacing smaller than

the bandwidth of the intracavity mechanical RF filter. This results in generation

of spurs in the output of the oscillation signals [78] as seen in the phase noise plot

in Figure 4.31.

4.7.5 Phase noise of oscillation harmonics

The optical resonance shape is Lorentzian, and therefore opto-mechanical modu-

lation is inherently non-linear as described earlier in section 2.4. When the motion

of the opto-mechanical resonator exhibits oscillations at 2.05GHz, the non-linear

modulation results in generation of multiple harmonics of the fundamental oscilla-

tion frequency, as seen in Figure 4.32. The signals at these frequencies are expected

to have the same noise signature as the fundamental harmonic at 2.05GHz. The

non-linear shape of the optical resonance serves as an ideal frequency multiplier in

this case, and hence the noise of all the higher oscillation harmonics of order n are
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Figure 4.31: Comparison of measured phase noise for oscillation signal at

2.05GHz to phase noise calculated using the model presented
here.

expected to be worse than the phase noise of the 2.05GHz signal by 20log10(n)dB.

The phase noise for the 4.1GHz and 6.15GHz signals follows this trend as seen in

Figure 4.33. We use band-pass filters to select the oscillation harmonics at 4.1GHz

(VBFZ-4000+) and 6.15GHz (VBFZ-6260+) at the input of the Agilent 5052B

signal source analyzer.

4.7.6 Comparison to state-of-the-art

A popular figure of merit (FOM) for oscillators summarizes the important perfor-

mance parameters − phase noise L (∆f), oscillator frequency fosc and DC power

consumption PDC − to make a fair comparison:
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Figure 4.32: Plot showing various harmonics of the fundamental oscillations

at 2.05GHz. The signal power at 16.4GHz is measured to be
-45dBm.
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Figure 4.33: Comparison of phase noise of the oscillations at 2.05GHz,

4.1GHz and 6.15GHz. The phase noise for the higher harmonics
of order n is worse than the fundamental by 20log(n)dB. The
RF oscillation signal power is the same for all curves (-5dBm).

FOM = L (∆f) + 20log10

(
∆f

fosc

)
+ 10log10

(
PDC

1mW

)
(4.10)

The second term neutralizes the effect of the offset frequency ∆f while tak-

ing the oscillator frequency into account. PDC is measured in milli-Watts (mW).

Table 4.1 compares the performance of the OAO presented here to other state-of-

the-art chip-scale oscillator technologies. The phase noise is scaled to an oscilla-

tion frequency of 1GHz for a fair comparison. The FOM for our 2.05GHz OAO

is completely dominated by the oscillator’s DC power consumption. The large

power consumption comprises of the laser power consumption (166mW), photode-

tector (250mW) and RF amplifier (320mW). The Santec TSL-510 laser used in

our experiments has a power efficiency of 6%. Low power laser and photodetector

development is an active area of research, and power scaling of on-chip lasers and
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Table 4.1: Oscillator Figure Of Merit (FOM) comparison

Reference Oscillation
Frequency
(GHz)

Technology Phase noise
at 100kHz off-
set (dBc/Hz)

DC Power
Consump-
tion (mW)

FOM
(dBc/Hz)

[10] 0.06 MEMS -135 0.35 -195

[14] 3.4 FBAR -140 20 -216

[79] 30 OEO -120 1800 -196

[80] 4.936 CMOS -102 2 -162

This
work

2.05,4.1,6.15 OAO -110 740 -167

detectors should enable an OAO with FOM on par with state-of-the-art. Even in

the current form, the OAO outperforms state-of-the-art in high performance high

frequency CMOS oscillators.
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CHAPTER 5

ACOUSTO-OPTIC FREQUENCY MODULATION

Optical frequency modulation has been achieved in microstructures using sur-

face acoustic waves to strain self-assembled InAs/GaAs quantum dots [81]. Photon

generation at >GHz frequency spacing from a single pump laser has been realised

in silicon nitride and silicon dioxide via nonlinear optical processes such as the op-

tical Kerr effect [82] and stimulated Brillouin scattering [37, 38, 39]. It is difficult

to exploit such non-linear optical phenomena in silicon, primarily owing to two-

photon absorption that limits optical power handling. Wavelength conversion in

silicon has been demonstrated using fundamentally all-optical schemes [83, 84, 85]

and via free-carrier plasma dispersion effect [86], making their integration on micro-

electronic chips challenging.

We analyzed opto-mechanical modulation in great detail in Chapter 2. Em-

ploying this scheme at GHz rates will provide valuable narrow-band acousto-optic

modulators for direct conversion of electrical signals to optical intensity modu-

lation that are valuable towards realizing a chip-scale opto-electronic oscillator

(OEO) [77]. In addition to intensity modulation, it is desirable to achieve fre-

quency modulation, which adds variable group delay into the optical field, thus

potentially boosting phase noise performance of the OEO. This chapter presents

an analysis of coincident intensity and frequency modulation in the coupled silicon

opto-mechanical resonator. This design can open up avenues towards realizing a

truly chip-scale OEO and enable on-chip Dense Wavelength Division Multiplexing

(DWDM) using a single input laser. The next section presents the theoretical ba-

sis for the operation of this device. The final section covers experimental results

obtained using our device.
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5.1 A General Treatment of Coincident Amplitude Mod-

ulation (AM) and Frequency Modulation (FM)

Consider a sine wave carrier expressed by the general equation below:

s(t) = Acos(ωct) (5.1)

A is the amplitude and ωc is the frequency of the carrier signal. When the

signal is amplitude-modulated with a modulation index mAM at frequency ωm, the

expression for the modulated signal can be written as follows:

sAM(t) = A[1 +mAMcos(ωmt)]cos(ωct)

= Acos(ωct) +
mAMA

2
cos[(ωc + ωm)t] +

mAMA

2
cos[(ωc − ωm)t](5.2)

Thus, amplitude modulation generates symmetric sidebands around the carrier

at frequencies ωc + ωm and ωc − ωm. For 100% modulation, i.e. mAM = 1, the

amplitude of each band is half that of the carrier, which corresponds to 6dB lower

power than carrier. In amplitude modulation, all the power injected into the signal

via the modulating signal is added at the sidebands, without affecting power at

the carrier frequency.

Consider frequency-modulation of the carrier at frequency ωm with a modula-

tion index mFM . The modulated signal now has multiple frequency components:
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sFM(t) = A[cos(ωct+mFMsin(ωmt))]

= A[cos(ωct)cos(mFMsin(ωmt))− sin(ωct)sin(mFMsin(ωmt))](5.3)

Noting that

cos(mFMsin(ωmt)) =
∑∞

n=0 2nJ2n(mFM)cos(2nωmt) and

sin(mFMsin(ωmt)) =
∑∞

n=0 2J2n+1(mFM)sin([2n+ 1]ωmt), we can express the sig-

nal in terms of all its frequency components:

sFM(t) = A[J0(mFM)cos(ωct) +
∑

∞
n=0(−1)nJn(mFM)[cos((ωc − nωm)t)

+(−1)ncos((ωc + nωm)t)]] (5.4)

The expression highlights the phase relation between all the frequency com-

ponents. Each sideband is characterised by its order n. The vector sums of the

odd-order sideband pairs are always in quadrature with the carrier component

of the signal and the vector sums of the even-order sideband pairs are always

collinear with the carrier component. The phase shift for the odd-order sidebands

arises from the reversal of phase for the lower frequency sidebands with respect

to the higher frequency sidebands. The power in the lower and higher frequency

sidebands is the same for sidebands of all order. Unlike AM, FM affects the power

at the carrier frequency. FM does not involve injecting power into the signal - the

modulating signal results in redistribution of the power at the carrier frequency

into all the sidebands.
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From equations 5.2 and 5.4, it is clear that if a signal has coincidental AM and

FM, the higher and lower frequency sidebands of the first order are asymmetric, i.e.

the power in the higher frequency sideband is different from the power in the lower

frequency sideband. The mismatch in power depends on the phase relationship

between the AM and FM processes. It is also interesting to note the effect of

introducing asymmetry in the intensities of lower and higher frequency sidebands

in equation 5.4. The amplitude of the resulting signal is no longer constant, and

has AM in addition to FM.

5.2 AM and FM in Opto-Mechanical Systems

Silicon opto-mechanical resonators operated in the resolved sideband regime stand

out as strong candidates for optical frequency modulation (FM) owing to their

strongly coupled mechanical and optical degrees of freedom [28]. This coupling

mechanism is nonlinear and the non-adiabatic response of the intra-cavity opti-

cal field to changes in the cavity size can lead to modification of its mechanical

dynamics. On the other hand, if the mechanical resonant mode of the cavity is

actuated, the cavity executes oscillatory motion at this frequency which results

in Doppler-shift of the circulating intra-cavity optical field, thus modulating its

phase. In the frequency domain, this frequency modulation manifests itself as

sidebands centered about the input laser frequency line, at a frequency separation

that is equal to the frequency of the actuated mechanical resonance. The cavity

density of states shapes the resultant sidebands leading to enhancement of only

those sidebands that are coupled to the optical cavity, thus causing an asymmetry

in the intensity of the lower and higher frequency sidebands. This asymmetry

leads to an effective amplitude modulation (AM) of the laser light, in addition to
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frequency modulation.

Recall from chapter 2, the expression for the intra-cavity light field in an opto-

mechanical resonator exhbiting sinusoidal mechanical motion, as derived in equa-

tion 2.9:

ap(t) =
s
√
τex

+∞∑
n=−∞

(−i)nJn(β)
κ
2

+ i(∆ + nΩm)
exp[i(ωopt + nΩm)t+ iβcos(Ωmt)] (5.5)

Of particular interest are the cases where κ/2� (∆+Ωm) and κ/2� (∆+Ωm).

The former case corresponds to unresolved motional sidebands. Noting that

J−n(β) = (−1)nJn(β), it is easy to see that the lower and higher frequency primary

sidebands are in phase with each other, resulting in predominant amplitude mod-

ulation. In the latter case of resolved motional sidebands, the phase relationship is

reversed, leading to predominant frequency modulation. For other detuning values,

the sidebands are highly asymmetric in the resolved sideband regime. When the

detuning is zero, the motion of the optomechanical cavity leads to pure phase mod-

ulation of the laser light. For non-zero detuning, the cavity density of states leads

to an asymmetry in the relative sideband intensities, which results in coincidental

amplitude modulation and frequency modulation of the laser light.

5.3 Experimental Characterization of Optical Sidebands

We use the displacement amplifier array described in chapter 4 for demonstrating

the asymmetry in optical sidebands. A high Q optical resonance with a loaded

total quality factor ≈110,000 (see Figure 5.1) is chosen, which corresponds to a

half width at half maximum linewidth of 881MHz for the optical cavity. This
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Figure 5.1: A high optical quality factor resonance with half width at half
maximum linewidth of 881MHz.

satisfies the resolved sideband regime criterion for the compound radial expansion

mode of vibration for the ring at 1.1GHz.

For observing the motion-generated optical sidebands for the modulator, we use

a Thorlabs SA210-12B scanning Fabry-Perot (FP) interferometer. The confocal

design of this FP Interferometer cavity is relatively insensitive to the alignment

of the input beam. The tunable laser is blue detuned to the optical cavity and

a bias-tee is used to apply a combination of DC bias voltage and AC voltage at

the resonance frequency of the mechanical mode using an Agilent E8257D PSG

Analog Signal Generator. Using an SA201 control box for the FP interferometer,

the wavelength of the FP cavity is scanned across its entire range by sweeping the

voltage on the piezo-controller in the control box. The transmitted light intensity
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is measured using an internal photodiode, amplified by a transimpedance amplifier

inside the control box, and displayed on an oscilloscope. As the FP cavity scans

across wavelengths, its output on an oscilloscope shows a peak whenever it passes

across a sideband. The controller also provides a trigger signal to the oscilloscope,

which allows the oscilloscope to easily trigger at the beginning or the middle of

the scan. The free spectral range (FSR) of the FP interferometer that we use is

1.5GHz, and this information is used to scale the x-axis of the oscilloscope output

from units of time to frequency offset from pump laser. The root mean square

(RMS) noise voltage of the photo-amplifier in the control box is 1.5mV for a gain

setting of 1MV/A. The measured FSR for the cavity is 7.2ms and the full width half

maximum (FWHM) linewidth is 35µs, which correspond to 1.5GHz and 7.2MHz

respectively, and cavity finesse of 205. An illustration of the experimental setup is

shown in Figure 5.2.

Figure 5.3 shows the calculated frequency spectrum showing the intensities of

the sidebands for the modulator normalized to the input pump laser intensity for

operation and 177.75GHz and 1.09GHz using equation 2.9. The relative detuning,

defined as 2∆
κ

, is set to 0.5. The displacement amplitude was calculated by follow-

ing the derivation in section 4.6. A displacement amplification factor of
√

7 was

accounted for displacement at 1.09GHz.

Figure 5.4 shows measured sideband intensities for the two mechanical modes

measured at different relative detuning values. Panels (a)-(b) show recorded op-

tical sidebands at 177.75MHz. As expected, the asymmetry in the sidebands is

very small for this mechanical resonant mode of the opto-mechanical cavity, on

account of unresolved motional sidebands. A combination of 10V DC and 5dBm

AC power was applied at the input electrode of the modulator. Maximum asym-
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Figure 5.2: Experimental setup for characterization of the optical sidebands
of the modulator using a scanning FP interferometer. The fre-
quency of the applied AC voltage corresponds to the resonance
frequency of the mechanical mode of interest.
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Figure 5.3: Calculated spectrum for the modulator response at 177.75MHz
and 1.09GHz for relative detuning of 0.5. A combination of
10V DC and 5dBm AC power was considered at the input elec-
trode for operation at 177.75MHz, and a combination of 20V DC
and 8dBm AC power was accounted for at 1.09GHz. The pri-
mary sideband intensities are highly asymmetric for operation at
1.09GHz. The Y-axis has a break between 0.02 and 0.2 to clearly
show the sideband intensities at both frequencies.
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metry is observed for a relative detuning value of 0.5, which corresponds to the half

maximum point of the optical cavity resonance. This is in sharp contrast to the

highly asymmetric intensities observed in case of the mechanical resonant mode

at 1.09GHz as shown in panels (d)-(e). A combination of 20V DC and 8dBm AC

power was applied at the electrodes in this case. The asymmetry confirms the

co-existence of AM and FM in the light field at the output of the modulator. The

apparent mismatch in frequency of the positive and negative frequency sidebands

is an artifact of the scan rate of the Fabry-Perot interferometer. It is possible

to realize perfect FM with no AM by setting the detuning of the laser with re-

spect to the cavity to zero, but this requires additional feedback loops, such as the

Hansch-Couillaud technique [87]. The frequency modulation factor (modulation

index) for an opto-mechanical cavity was defined in equation 2.9 as β = gom
Ω0

. The

measured frequency modulation factor for our modulator operated at 1.09GHz is

0.067, which corresponds to a greater than 67X improvement over earlier reported

numbers for silicon nanobeams [88]. This large modulation factor is significant for

efficiently generating multiple laser lines in silicon.
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Figure 5.4: Measured optical spectrum at output of the modulator us-
ing a scanning FP interferometer. (a)-(b) When operated at
177.75MHz for relative detuning values 0.5 and 0.375, we ob-
serve almost symmetric lower and higher frequency sidebands in
the optical spectrum on account of amplitude modulation of the
laser light. The distorted shape of the laser line is an artifact of
the scan. (d)-(e) The sidebands are highly asymmetric in the case
of operation at 1.09GHz, which corresponds to resolved motional
sidebands. Relative detuning of 1.5 corresponds to detuning on
the order of the mechanical resonant frequency, resulting in max-
imum asymmetry. The free spectral range (FSR) of the FP in-
terferometer used here is 1.5GHz, which leads to aliasing from
adjacent sweeps and hence we only show the region of interest
around ±1.09GHz.
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CHAPTER 6

ELECTRO-MECHANICAL PHOTODETECTOR

Cavity opto-mechanical systems offer a unique platform wherein the coher-

ent interaction rate is larger than the thermal decoherence rate of the system,

as realized in ground-state cooling experiments [88]. This interplay of light and

motion opens up an array of novel applications in classical and quantum optics

communication [89, 90, 91]. In the classical regime, opto-mechanical systems have

enabled wide-band optical frequency conversion [92] and multi-channel all-optical

radio frequency amplification [93]. Realization of an on-chip silicon communica-

tion platform is limited by photo-detectors needed to convert optical information

to electrical signals for further signal processing.

Classical and quantum information transfer and storage utilize photons for long

range communication [82, 94, 95]. Photons are appealing for such applications on

account of their weak interaction with the environment and resiliency to thermal

noise due to their high frequency. On the other hand, acoustic phonons have lower

bandwidth and experience significantly higher losses associated with transmission,

but can be delayed and stored for longer times and can interact resonantly with

RF-microwave electronic systems. It has been proposed in the past that a hybrid

phononic-photonic system could perform a range of tasks unreachable by purely

photonic and phononic systems [41, 96, 97]. Furthermore, such a system should

also be capable of being directly integrated with electronics used for processing

radio-frequency (RF) signals. Achieving this in an all silicon chip-scale platform

has been pursued with great zest, as silicon processing offers benefits in terms

of lowering manufacturing cost, obtaining high yields, and promises seamless on-

chip integration with electronics. However, as the field of silicon photonics has
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grown, a theme that has emerged is that as a platform, silicon does not provide

best-in-class devices for all tasks [98]. True monolithic integration of photonics

devices with cutting-edge 28nm or smaller CMOS processes is a very challenging

task. Making process modifications to support such integration will fundamentally

change the models for transistors, at the cost of degrading their performance. Not

modifying the process is an option, and recently researchers have shown that some

photonic functionality can be integrated with minimal post-processing in a silicon-

on-insulator (SOI) CMOS process [99]. A key component for CMOS compatible

silicon photonics is a photodiode capable of detecting light in the near infrared.

Various CMOS compatible photodiodes have been demonstrated [100, 101, 102]

but they suffer from complex processing steps to overcome lattice mismatch is-

sues, large area consumption and susceptibility to dark current. In this chapter,

we present an alternate photodetector that responds opto-mechanically to optical

intensity modulation, thus converting the signal from photon→phonon→electron,

instead of depending on an avalanche or photoelectric process in a non-silicon

material. This scheme is universal, and could potentially be of interest to opto-

mechanical resonators fabricated in piezoelectric materials such as aluminum ni-

tride [52], and materials with attractive mechanical and optical properties such

as single crystalline diamond [103]. The experiments and theoretical analysis pre-

sented in this chapter constitute a purely classical demonstration of converting

optical modulation to an RF electronic signal. The device we present here can,

in principle, enable quantum state transfer as proposed in other opto-mechanical

systems [96, 104].

Figure 6.1 shows an illustration showcasing the principle of operation of this

detector using the coupled silicon opto-mechanical resonator. The opto-mechanical

resonator located in close proximity to the waveguide is actuated via optical gra-
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Figure 6.1: Illustration of operation of the electromechanical photodetector.

dient forces generated by the modulated input light field. These mechanical vi-

brations x̃(Ω) are coupled to the other mechanical resonator flanked by electrodes

via the coupling beam. The motion of this resonator is sensed via a high dynamic

range electrostatic capacitive sense scheme, resulting in an AC current (̃iout(Ω))

generated on account of modulation of the capacitance formed by the air gap

between the resonator and the electrode.

6.1 Theoretical Framework

6.1.1 Optical gradient force actuation

Consider an input pump field Ap(t) = Ap0(t) + δAp(t), where the first term

denotes static field amplitude and the second term is a dynamic modulated
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term. Correspondingly the intra-cavity dropped field can be expressed similarly as

ap(t) = ap0(t) + δap(t), where:

ap0 =
j
√

Γex
Γtot

2
− j∆p

Ap0 (6.1)

Here ∆p is the detuning of the laser (ωp) from the cavity resonance (ω0) and

Γin, Γex and Γtot are the intrinsic cavity photon decay rate, photon decay rate

associated with coupling to the cavity, and photon decay rate of the loaded optical

cavity respectively. The intra-cavity field is normalized to the intra-cavity energy,

Up = |ap|2. The optical gradient force acting on the opto-mechanical resonator can

then be expressed as follows [32]:

Fgrad = −gOMUp
ωp

(6.2)

gOM denotes the opto-mechanical coupling coefficient. The gradient force con-

sists of two terms: Fgrad(t) = Fgrad,0(t) + δFgrad(t). The first term is a static

force whereas the second term is the dynamic component related to the laser light

modulation δUp(t), given by:

δFgrad(t) = −gOMδUp
ωp

= −gOM
ωp

[
a∗p0δap(t) + ap0δa

∗
p(t)
]

(6.3)

The mechanical motion (x) of the cavity follows: ẍ + Γmẋ + Ω2
mx =

Fgrad,0(t)+δFgrad(t)+FT

meff
, where meff is the effective mass of the mechanical mode with

frequency Ωm, Γm is the intrinsic mechanical damping rate, and FT is the thermal

Langevin force responsible for the thermal Brownian motion. The dynamic dis-

placement of the resonator is affected largely by the dynamic gradient force, as the

117



thermal Langevin force is relatively much smaller in magnitude. The back-action

of the mechanical motion changes the value of the resonant frequency and damping

rate of mechanical motion. The spectral response of this force is given by [32]:

f0(Ω) = −2g2
OMUp0∆p

ωp

∆2
p − Ω2 +

(
Γtot

2

)2
+ jΓtotΩ[

(∆p + Ω)2 +
(

Γtot

2

)2
] [

(∆p − Ω)2 +
(

Γtot

2

)2
] (6.4)

Define `(Ω) = Ω2
m−Ω2− jΓmΩ− fo(Ω)

meff
. The dynamic mechanical displacement

on account of the optical gradient force is given by:

x̃(Ω) =
j
√

ΓexgOM
meffωp`(Ω)

[
a∗p0δÃp(Ω)

j(∆p + Ω)− Γtot

2

+
ap0δÃ

∗
p(−Ω)

j(∆p − Ω) + Γtot

2

]
(6.5)

Here δÃp is the Fourier domain representation of the modulated input light

field. This expression is complete in the sense that it accounts for motion actuated

due to the optical gradient force acting on the resonator, and also the back-action

induced by the motion on the optical field. Substituting equation 6.1 into equation

6.5 yields:

x̃(Ω) =
−ΓexgOM

meffωp`(Ω)
(

Γtot

2
− j∆p

) [ A∗p0δÃp(Ω)

j(∆p + Ω)− Γtot

2

+
Ap0δÃ

∗
p(−Ω)

j(∆p − Ω) + Γtot

2

]
(6.6)

In the unresolved sideband regime, the equation above reduces to the limit

lim
Ω→0

x̃(Ω):
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x̃(Ω) (6.7)

≈
−ΓexgOM

[
−j∆p

(
A∗p0δÃp(Ω) + Ap0δÃ

∗
p(−Ω)

)]
meffωp`(Ω)

(
Γtot

2
− j∆p

) [
∆2
p +

Γ2
tot

4

] (6.8)

=
j∆pΓexgOMδPin(Ω)

meffωp`(Ω)
(

Γtot

2
− j∆p

) [
∆2
p +

Γ2
tot

4

] (6.9)

The derivation above assumes that the displacement amplitude of the resonator

is small i.e. the perturbation of the detuning on account of mechanical motion is

very small compared to the unperturbed detuning
(
x(t)
R
ω0 � ∆p

)
. In the large

amplitude regime, where the detuning oscillates between large positive and neg-

ative values, the small signal model derived above fails to hold. An extensive

study of opto-mechanical oscillation amplitudes was recently presented by Poot

et al. [105]. The optical backaction on the resonator enables radiation pressure

induced self-sustained oscillations whose limit cycle is set by the dynamic range

of the cavity. This sets a maximum limit on the amplitude of mechanical motion

[105], which would amount to saturation of the motional current generated by the

detector.

6.1.2 Electrostatic capactively transduced sense scheme

If C denotes the capacitance formed by the air gap between the resonator and

the electrode, and g denotes the resonator-electrode gap, the motional current

flowing into the electrode in response to the motion of the resonator and applied

DC voltage, Vdc is expressed as:
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iout(t) = Vdc
dC

dt
= Vdc

dC

dg

dg

dt
(6.10)

The dynamic component of this current can then be written down as:

ĩout(Ω) = Vdc
dC

dg
jΩx̃(Ω) = Vdc

ε0Rhθ

g2
jΩx̃(Ω) (6.11)

Here R, h and θ denote the outer radius of the resonator, device thickness and

the electrode-resonator overlap angle respectively. Substituting equation 6.9 into

equation 6.11, we get:

ĩout(Ω)

δPin(Ω)
=

−∆pΓexgOMVdcε0RhθΩ

g2meffωp`(Ω)
(

Γtot

2
− j∆p

) [
∆2
p +

Γ2
tot

4

] (6.12)

The expression derived above in equation 6.12 can be interpreted as the “elec-

tromechanical responsivity” (<em) of the detector.

6.2 Experimental Characterization

We choose the coupled micro-ring geometry with a resonator-electrode gap of

50nm described in Chapter 3 for the photodetector. Figure 6.2 shows a schematic

of the experimental setup used to characterize the photodetector performance.

Light from a Santec TSL-510 tunable diode laser is modulated with a Photline

MXAN-LN-10 lithium niobate electro-optic intensity modulator (EOM). An Agi-

lent N5230A network analyzer is used to characterize the detector efficiency. The

input laser light is modulated by connecting the RF input of the modulator to port
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Figure 6.2: Schematic of the experimental setup used to characterize the sili-
con detector. Mechanical motion is actuated by modulating con-
tinuous wave laser light coupled into the opto-mechanical res-
onator using a Photline MXAN-LN-10 electro-optic modulator.
The mechanical motion is sensed via electrostatic capacitive actu-
ation by applying Vdc = 40V DC voltage at the electrode using
a bias tee. A network analyzer is used to measure the 2-port
transmission of the device.

1 of the network analyzer. The output power is sensed by connecting the signal

from the metal bond pad to port 2 of the network analyzer.

The silicon opto-mechanical resonator has many optical resonances in the C-

band as seen in Figure 6.3(a). For the purpose of this experiment we choose an

overcoupled resonance at 1,548.9nm, with an extinction of 8dB shown in Figure

6.3(b). As derived in equation 6.12, the motional current amplitude is proportional

to the cavity coupling rate, Γex, and hence operating with an overcoupled resonance
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is desirable. However, this also reduces the loaded optical quality factor, and hence

there is a trade-off associated with overcoupling to the resonator. The rich optical

spectrum of the resonator offers us a wide choice of optical resonances to choose

from.

A DC bias voltage of 40V is applied at the metal bond pad using a bias tee.

We apply an input RF power (Pin,RF ) of 0dBm at port 1 of the network analyzer,

and measure the output RF power (Pout) at port 2. The transmission of the

device operated in this configuration corresponds to the “gain” of the photodetector

(Pout/Pin,RF ). Figure 6.4 shows the measured gain for the detector at various input

laser power levels measured at the resonator (by discounting the coupling loss). The

signals measured correspond to mechanical vibrations of the fundamental radial

expansion mode at 174.2MHz and compound radial expansion mode at 1.198GHz

(panel (a) and (b) respectively). The measured gain depends on the input laser

power, akin to nanomechanical resonator based microwave amplification reported

by Massel et al. [89].

The maximum laser power is set 4dB below the threshold for onset of radia-

tion pressure induced self-oscillations of the fundamental radial expansion mode.

Measurements were carried out at room temperature and 5mTorr pressure. The

minimum detectable signal at the sense port of the network analyzer (port 2) is

set by the receiver’s noise floor at this port, which depends on the averaging factor

used while carrying out the measurement. An averaging factor of 16 was used

in all the measurements to optimize the sensitivity of the network analyzer. The

RF power applied at port 1 of the network analyzer is 0dBm. The input laser

wavelength is set to the 3-dB off resonance wavelength, and the laser is blue de-

tuned with respect to the optical cavity. Measurements were carried out at room
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Figure 6.3: (a) Optical spectrum for the opto-mechanical resonator based
silicon photodetector. The input laser power is +2dBm. The
connectors and grating couplers add 8dB loss at each facet. (b)
High optical Q resonance used to operate the photodetector. We
intentionally choose an overcoupled resonance in order to mea-
sure larger motional current.
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Figure 6.4: Frequency spectra for the detector gain (Pout/Pin,RF ) measured
using network analyzer. Measured detection of optical modula-
tion for (a) fundamental radial expansion mode at 174.2MHz,
and (b) compound radial expansion mode at 1.198GHz. The
insets in panels (a) and (b) show the corresponding finite el-
ement method (FEM) simulated mechanical mode-shapes. (c)
Simulated transmission at frequencies near the fundamental ra-
dial expansion resonance frequency for laser power = +6dBm
and +9dBm. (d) Simulated transmission at frequencies near the
compound radial expansion resonance frequency for laser power
= +6dBm and +9dBm. Simulations for expected gain are based
on equation 6.11. Measurements were carried out at room tem-
perature and a pressure of 5mTorr.
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temperature and a pressure of 5mTorr. The measured mechanical quality fac-

tors at 174.2MHz and 1.198GHz are 8,700 and 6,300 respectively. Substituting all

the experimental parameters into equation 6.11 and calculating the output power,

Pout = |iout|2R
2

, where R = 50Ω is the load resistance, yields a conversion gain of

-97dB at 174.2MHz, and -98dB at 1.198GHz for +9dBm input laser power. The

simulated gain at frequencies near 174.2MHz and 1.198GHz are shown in Figure

6.4(c) and (d), which closely match measured gain values. The shift of the me-

chanical resonance frequency with increasing input laser power is attributed to

thermal heating of the device due to absorption of light coupled into the optical

cavity. Native single crystal silicon resonators have negative temperature coeffi-

cient of frequency (TCF), and hence larger optical power coupling into the cavity

lowers the mechanical resonance frequency. This shift in frequency is negligibly

small compared to the intrinsic mechanical resonance frequency
(

∆Ωm

Ωm
∼ 0.1%

)
and hence this effect is not taken into account in simulation.

The conversion of signal from photons to phonons results in a conversion loss

of Ωm/ωp, which is to be expected, as evident in equation 6.12. The loss values at

174.2MHz and 1.198GHz are -60dB and -52dB respectively. Gaining insights from

equation 6.12, one could envisage a detector design with larger gain that benefits

from higher optical quality factor (Qtot) resonances, smaller resonator-electrode

gaps (g), and smaller detuning (∆p). However, choosing a smaller detuning value

could potentially launch the device into radiation pressure induced self-oscillations

[105], which leads to amplitude saturation.

In conclusion, this constitutes the first experimental demonstration of an on-

chip electro-mechanical detector fabricated on a CMOS SOI platform. The electro-

mechanical sense scheme enables a high dynamic range detection medium, and
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we observe efficient signal detection at 174.2MHz all the way up to 1.198GHz.

The resonant nature of this scheme makes this device a narrow-band detector,

whose bandwidth is limited by the quality factor of the mechanical resonance. The

sense scheme is universal, and can also be used for detection of optical modulation

induced by radiation pressure vibrations, which has successfully been demonstrated

at GHz rates in silicon [41]. This electro-mechanical detector thus introduces a

valuable component in the library of existing novel opto-mechanical devices.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

This thesis focused on scaling conventional electrostatic capacitive MEMS

transduction to frequencies beyond GHz. To this end, an array of coupled sili-

con opto-mechanical resonators was employed in a feedback loop to demonstrate

oscillations at 2.05GHz. The process flow for post-release photolithography on a

MEMS device developed in this thesis will find useful applications across various

areas in MEMS, where the release step was conventionally considered the final pro-

cessing step while fabricating a device. Rayleigh scattering in optical resonators

was explored for boosting the displacement sensitivity at frequencies beyond 3GHz

(see appendix E), and future research efforts could focus on employing a combina-

tion of all the techniques developed here with advances in fabrication technology

to design MEMS oscillators for the microwave X-band, both in silicon and in vari-

ous other materials such as aluminum nitride, lithium niobate and CVD diamond.

A combination of radiation pressure induced oscillations along with closed-loop

forced feedback oscillations in the same opto-mechanical resonator could be in-

vestigated to further lower the phase noise in opto-mechanical oscillators. Both

oscillation phenomena have been well characterized individually [105, 106], and the

technology developed as part of this thesis should enable bringing together both

these phenomena and studying the dynamics involved. Some of the other potential

novel experiments and applications that could benefit from the work presented in

this dissertation are highlighted below.
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7.1 Future Experiments

7.1.1 Unreleased opto-mechanical oscillator (OMO)

Conventional OMO designs have involved fabricating released resonators, that face

problems of thermal optical nonlinearities and are not robust designs. Releasing

such resonators could also present fabrication challenges that make their realiza-

tion in a CMOS compatible process fairly complicated. Unreleased resonators,

on the other hand, demonstrate fairly linear optical resonances over a large range

of input laser power. The cladding surrounding the resonator also enhances the

optical quality factor of these resonators due to reduced surface scattering losses,

as discussed in Chapter 3. Optical frequency comb generation has been demon-

strated in similar silicon nitride micro-ring resonators [107, 108]. Whether unre-

leased resonators are realized in a CMOS or custom process, their implementation

provides high yield, low cost, robustness in harsh environments, and minimal or

no-packaging solutions. As a result of the leakage of acoustic energy by wave

paths into the surrounding medium, the mechanical performance of an unreleased

resonator is degraded relative to its released counterpart. This energy loss can

be mitigated by adding acoustic isolation structures [109]. Integrating acoustic

Bragg reflectors (ABRs) with an unreleased opto-mechanical resonator to design

for simultaneously high optical and mechanical quality factors could potentially

enable realization of an unreleased opto-mechanical oscillator. Moreover it is pos-

sible to design ABRs to realize GHz range frequencies using unreleased micro-ring

resonators, which would otherwise be practically challenging to achieve [19]. The

mechanical resonance frequency depends solely on the width of the ring resonator

whereas the free spectral range of the optical frequency comb depends solely on
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Figure 7.1: Illustration of a silica-cladded silicon nitride micro-ring res-
onator for generation of Kerr and acousto-optic frequency combs.
Acoustic Bragg reflectors help confine the mechanical energy
thereby leading to high mechanical quality factors. Operating
with optical input power beyond the threshold for optical fre-
quency comb generation and radiation pressure induced oscilla-
tions of the mechanical mode could potentially be employed to
generate coincident combs by designing the mechanical resonance
frequency equal to the free spectral range (FSR) of the optical
frequency comb lines.
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the circumference of the ring and not the width. By matching these two frequen-

cies, one could design a hybrid acousto-optic modulated micro-comb that would

open up avenues for frequency comb stabilization via acousto-optic modulation in

a manner similar to recent demonstrations in hycrid electro-optically modulated

micro-combs [110]. Figure 7.1 shows an illustration of such a scheme.

7.1.2 2D Opto-mechanical gyroscope

The state-of-the-art in gyroscopey is the hemispehrical resonator gyroscope (HRG)

manufactured by Northrop Grumman, which is a navigational grade gyroscope

used in inertial navigation units and satellite platform positioning [111]. How-

ever, this gyroscope is expensive, bulky, and laborious to manufacture. Chip-scale

MEMS gyroscopes typically use electrostatic actuation which require metal elec-

trodes to be integrated with the device. On the other hand, dielectric materials

have lesser internal damping, and a gyroscope designed in such a material platform

could benefit from the high mechanical quality factors [112, 113]. Opto-mechanical

transduction could be utilized to both actuate and read off the vibrations. NASA

JPL’s silicon disc resonator gyroscope (Si DRG) is currently being commercialized

and, through independent Army testing, has proven to be the highest performing

MEMS gyroscope in the world [114]. the structure is based on concentric rings with

arcs cut into the rings to provide more flexibility, better accuracy and performance,

and reduced shock sensitivity. Figure 7.2 shows an SEM of a DRG resonator with

outer radius 60µm fabricated in silicon nitride following the process flow detailed

in Chapter 3. A pump-probe setup was used to interrogate the mechanical modes

of this structure.

Figure 7.3 (a) shows a schematic of the experimental setup. A high power pump
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Figure 7.2: SEM of a silicon nitride DRG resonator fabricated in the pro-
cess flow described in Chapter 3. Multiple waveguides can be
employed to probe the motion of the device at various points.
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laser coupled into an optical resonance of the opto-mechanical resonator is modu-

lated using an electro-optic modulator (EOM) to launch mechanical vibrations in

the resonator via optical gradient forces. A low power probe laser is also coupled

into the same waveguide along with the pump using a 50:50 power combiner. The

probe laser is coupled to a different optical resonance of the resonator. As the

resonator vibrates in response to the optical gradient force, the probe laser is mod-

ulated and can be used to sense the vibrations. An optical filter is used to filter

out the pump at the output such that the photodetector converts the modulation

information carried solely by the probe laser into an RF signal. Using a network

analyzer, we can obtain an electro-opto-mechanical transmission spectrum for the

silicon nitride DRG as shown in Figure 7.3 (b). Two pairs of orthogonal wineglass

modes are identified, and one could optimize the mechanical design to obtain high

mechanical quality factors to design an opto-mechanically transduced gyroscope.

Figure 7.2 also shows a DRG integrated with multiple waveguides to probe the

resonator at various points along its circumference.

In addition to designing high performance RF MEMS oscillators, this the-

sis also focused on developing MEMS techniques to realize applications and con-

duct fundamental studies benefitting the photonics community. The displacement

amplifier array of coupled opto-mechanical resonators was employed to demon-

strate acousto-optic frequency modulation. The electro-mechanical photodetector

demonstration using the device developed in this thesis could also potentially be

employed for photon-phonon state transfer [115], and extend the applicability of

opto-mechanics.
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APPENDIX A

PROCESS FLOW FOR FABRICATING SILICON NITRIDE

OPTO-MECHANICAL RESONATORS

The starting substrate for the fabrication of the silicon nitride opto-mechanical

resonator is a silica on silicon wafer with 4µm thermal oxide on silicon substrate.

1. Measure SOI stack

Equipment : Filmetrics

Measure stack height to establish oxide thickness

2. MOS clean

Equipment : MOS clean wet bench

Recipe: 10 minutes dip in 1:1:6 NH4OH:H2O2:H2O at 70◦C

10 minutes dip in 1:1:6 HCl:H2O2:H2O at 70◦C

Rinse in De-Ionized (DI) H2O

3. LPCVD silicon nitride deposition

Equipment : LPCVD nitride furnace - B4

Recipe: 100 minutes standard nitride deposition recipe to obtain 300nm

Si3N4.

4. Surface clean/preparation

Equipment : General chemistry hood

Recipe: 2 minutes dip in Surpass 3000 with ultrasonic agitation

Rinse in DI H2O
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5. Resist spin

Equipment : E-beam resist spinner

Recipe: Spin ma-N 2403 e-beam resist with parameters:

Speed = 3000rpm, ramp = 2000 rpm/s, time = 30s

Hard bake at 90◦C for 1 minute

6. E-beam lithography

Equipment : JEOL 9500 e-beam lithography system

Recipe: Expose at 5nA with dose of 550µC/cm2 using proximity correction.

7. Develop

Equipment : Electron beam resist hood

Recipe : 75s in 726MIF developer

8. Resist height measurement

Equipment: P-10 profilometer

Recipe: Measure step height of the resist across alignment marks

9. Descum

Equipment: Oxford 81 etcher

Recipe:Oxygen plasma clean on empty chamber, time = 10 minutes

Oxygen plasma clean recipe on sample, time = 8s

10. Nitride etch

Equipment: Oxford 100 etcher

Recipe: Oxygen plasma clean on blank Si wafer, time = 10 minutes

CHF3O2 nitride etch season on blank Si wafer for 3 minutes

CHF3O2 nitride etch on sample, time = 4 minutes 7 seconds
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11. Metrology

Equipment : P-10 profilometer and Filmetrics

Recipe: Measure step height on P-10 profilometer and silicon nitride - buried

oxide stack on filmetrics. Use measurements to determine if nitride device

layer is completely etched.

12. Resist strip

Equipment : YES asher

Recipe: Use parameters O2 flow rate = 100ssccm, Power = 1000W, Temper-

ature = 150◦C, Time = 180s.

13. Step height measurement

Equipment : P-10 profilometer

Recipe: Measure step height on P-10 profilometer after resist removal to

obtain depth of over etch into oxide.

14. PECVD oxide deposition

Equipment: GSI PECVD

Recipe: Oxygen plasma clean, time = 15 minutes

Low dep rate PECVD oxide recipe on dummy wafer for 10 minutes,

followed by 10 minutes clean

Low dep rate PECVD oxide recipe on sample for 10 minutes,

followed by 10 minutes clean

15. Metrology

Equipment : P-10 profilometer and Filmetrics

Recipe: Measure step height on P-10 profilometer and oxide - silicon nitride

- buried oxide stack on filmetrics. Use measurements to determine if 1µm

thick oxide cladding is achieved.
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16. Resist spin

Equipment : Photo resist spinners

Recipe: Spin SPR 220-3.0 photoresist with parameters:

Speed = 3000rpm, ramp = 1000 rpm/s, time = 30s

Hard bake at 115◦C for 90s

17. Expose - release mask

Equipment : ABM contact aligner

Recipe: Exposure time of 8s

Post exposure bake at 115◦C for 90s

18. Develop

Equipment : General chemistry hoods

Recipe: 90s in 726MIF developer

19. Partial cladding etch

Equipment: Oxford 82 etcher

Recipe:Oxygen plasma clean on empty chamber, time = 10 minutes

CHF3O2 oxide etch recipe on empty chamber, time = 10 minutes

CHF3O2 oxide etch recipe on sample, time = 10 minutes

20. Hard bake

Equipment : Photoresist/E-beam resist hotplates

Recipe: 20 minutes at 140◦C

21. Timed release etch

Equipment : Acid Hood

Recipe: 36 minutes 30 seconds in BOE 6:1
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22. Resist strip and CPD preparation

Equipment : Base/Solvent Hood

Recipe:10 minutes dip in acetone for resist removal

5 minutes rinse in 1:1 isopropyl alcohol:DI H2O

5 minutes rinse in isopropyl alcohol

23. Critical point drying Equipment : Critical point dryer

Recipe: Transfer samples to critical point dryer without exposing to air and

run standard recipe.
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APPENDIX B

PROCESS FLOW FOR FABRICATING SILICON

OPTO-MECHANICAL RESONATORS WITH ALD PARTIAL AIR

GAPS

The starting substrate for the fabrication of the coupled micro-ring silicon opto-

acoustic oscillator is a silicon on insulator wafer with 250nm thick high resistivity

(10-20 ohm-cm) (100) silicon device layer on 3µm buried oxide.

1. Measure SOI stack

Equipment : Filmetrics

Measure stack height to establish device layer Si and buried oxide thickness

2. MOS clean

Equipment : MOS clean wet bench

Recipe: 10 minutes dip in 1:1:6 NH4OH:H2O2:H2O at 70◦C

10 minutes dip in 1:1:6 HCl:H2O2:H2O at 70◦C

Rinse in De-Ionized (DI) H2O

3. Thermal oxidation : hard mask creation

Equipment : Wet/Dry Oxide furnace - B2

Recipe: 24 minutes at 900◦C using wet HCl oxidation to obtain 60nm oxide

hard mask.

4. Surface clean/preparation

Equipment : Acid chemical hood

Recipe: 2 minutes dip in Nanostrip

Rinse in DI H2O
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5. Resist spin

Equipment : E-beam resist spinner

Recipe: Spin ma-N 2403 e-beam resist with parameters:

Speed = 5000rpm, ramp = 2000 rpm/s, time = 30s

Hard bake at 90◦C for 1 minute

6. E-beam lithography

Equipment : JEOL 9500 e-beam lithography system

Recipe: Expose at 2nA with dose of 1000µC/cm2 for waveguides, 800µC/cm2

for gratings, 600µC/cm2 for the resonators and 500µC/cm2 for the electrical

routing and probe pads. For arrayed resonators, use 550µC/cm2 and for

arrayed electrodes, use 400µC/cm2.

7. Develop

Equipment : Electron beam resist hood

Recipe : 75s in 726MIF developer

8. Resist height measurement

Equipment: P-10 profilometer

Recipe: Measure step height of the resist across alignment marks

9. Descum

Equipment: Oxford 81 etcher

Recipe:Oxygen plasma clean on empty chamber, time = 10 minutes

Oxygen plasma clean recipe on sample, time = 9s

10. Oxide hard mask etch

Equipment: Oxford 100 etcher
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Recipe: Oxygen plasma clean on blank Si wafer, time = 10 minutes

CHF3O2 oxide etch season on blank Si wafer for 3 minutes

CHF3O2 oxide etch on sample, time = 52 seconds

11. Metrology

Equipment : P-10 profilometer and Filmetrics

Recipe: Measure step height on P-10 profilometer and Oxide hard mask -

silicon - buried oxide stack on filmetrics. Use measurements to determine if

oxide hard mask is completely etched.

12. Resist strip

Equipment : Oxford 81

Recipe: Oxygen plasma clean on sample, time = 105s

13. Step height measurement

Equipment : P-10 profilometer

Recipe: Measure step height on P-10 profilometer after resist removal to

obtain depth of over etch into silicon

14. Silicon device layer etch

Equipment : Plasmatherm PT 770

Recipe: Season on dummy silicon wafer using process flow ssridar.prc for 4 minutes

Etch sample using ssridar.prc for 50s

15. Metrology

Equipment : P-10 profilometer and Filmetrics

Recipe: Measure step height on P-10 profilometer and oxide hard mask - sil-

icon - buried oxide stack on filmetrics. Use measurements to verify complete

etch of silicon device layer.
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16. Oxide hard mask removal

Equipment: Oxford 82 etcher

Recipe: Oxygen plasma clean, time = 10 minutes

CHF3O2 oxide etch season on dummy wafer for 3 minutes

CHF3O2 oxide etch on sample, time = 36s

17. Resist spin

Equipment : Photo resist spinners

Recipe: Spin SPR 220-3.0 photoresist with parameters:

Speed = 3000rpm, ramp = 1000 rpm/s, time = 30s

Hard bake at 115◦C for 90s

18. Expose - ion implant mask

Equipment : ABM contact aligner

Recipe: Exposure time of 8s

Post exposure bake at 115◦C for 90s

19. Develop

Equipment : General chemistry hoods

Recipe : 80s in 726MIF developer

20. Ion implantation

Equipment : Eaton Ion Implanter

Recipe : Boron ion implantation at 30keV, Dose = 2e15. Keep current low

to prevent photoresist burning.

21. Resist strip

Equipment : General Chemistry hood
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Recipe:10 mins acetone dip with ultrasonic agitation

5 minutes isopropyl alcohol dip

Rinse with DI H2O

22. MOS clean

Equipment : MOS clean wet bench

Recipe: 10 minutes dip in 1:1:6 NH4OH:H2O2:H2O at 70◦C

10 minutes dip in 1:1:6 HCl:H2O2:H2O at 70◦C

Rinse in DI H2O

23. Furnace anneal

Equipment : MOS clean anneal furnace - B1

Recipe: Load sample at 800◦C

5 minutes 900◦C nitrogen anneal

Unload at 7% unload rate at 650◦C

24. Surface clean/preparation

Equipment : Acid Chemical Hood

Recipe: 2 minutes dip in Nanostrip

Rinse in DI H2O

Dehydration bake at 200◦C for 5 minutes

25. LOR resist spin

Equipment : Photo resist spinners

Recipe: Spin LOR5A photoresist with parameters:

Speed = 500rpm, ramp = 1000 rpm/s, time = 10s
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Speed = 3000rpm, ramp = 500 rpm/s, time = 50s

Hard bake at 170◦C for 5 minutes

26. SPR 220-3.0 resist spin

Equipment : Photo resist spinners

Recipe: Spin SPR 220-3.0 photoresist with parameters:

Speed = 3000rpm, ramp = 1000 rpm/s, time = 30s

Hard bake at 115◦C for 90s

27. Expose - metal mask

Equipment : ABM contact aligner

Recipe: Exposure time of 12s

Post exposure bake at 115◦C for 90s

28. Develop

Equipment : General chemistry hoods

Recipe : 270s in 726MIF developer

29. Metal evaporation

Equipment : SC4500 odd-hour evaporator

Recipe : Evaporate 25nm nickel , followed by 25nm titanium and 50nm

platinum, without exposing the sample to air between steps

30. Lift-off

Equipment : General chemistry hoods

Recipe: 20 mins acetone dip with ultrasonic agitation

5 minutes isopropyl alcohol dip

Rinse with DI H2O
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31. Furnace anneal

Equipment : MOS metal anneal furnace - C2

Recipe: Load sample at 400◦C

30 minutes 400◦C 5% H2/N2 anneal

Unload at 10% unload rate at 400◦C

32. Surface preparation

Equipment : Acid Hood

Recipe: 30s dip in Buffered Oxide Etchant (BOE) 30:1

Rinse in DI H2O

33. Vapor prime Equipment : HMDS Vapor Prime oven

Recipe: Standard HMDS vapor prime recipe

34. Resist spin

Equipment : Photo resist spinners

Recipe: Spin SPR 220-3.0 photoresist with parameters:

Speed = 3000rpm, ramp = 1000 rpm/s, time = 30s

Hard bake at 115◦C for 90s

35. Expose - release mask

Equipment : ABM contact aligner

Recipe: Exposure time of 8s

Post exposure bake at 115◦C for 90s

36. Develop

Equipment : General chemistry hoods

Recipe: 90s in 726MIF developer
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37. Hard bake

Equipment : Photoresist/E-beam resist hotplates

Recipe: 20 minutes at 140◦C

38. Timed release etch

Equipment : Acid hood

Recipe: 23 minutes 30 seconds in BOE 6:1

39. Resist strip and CPD preparation

Equipment : Base/solvent hood

Recipe:10 minutes dip in acetone for resist removal

5 minutes rinse in 1:1 isopropyl alcohol:DI H2O

5 minutes rinse in isopropyl alcohol

40. Critical point drying Equipment : Critical point dryer

Recipe: Transfer samples to critical point dryer without exposing to air and

run standard recipe

41. Atomic Layer Deposition (ALD) of alumina

Equipment: Oxford ALD FlexAL

Recipe: Season ALD chamber by running Al2O3 300◦ plasma recipe for 100 cycles

Al2O3 300◦ plasma recipe on sample for 400 cycles

42. Resist spray coating Equipment : Suss MicroTec Gamma cluster tool

Recipe: Spray coat 1:10 S1818:acetone to a thickness of 7µm using SidTal-

lur S1805 MEMS recipe.

43. Soft bake

Equipment : Photoresist/E-beam resist hotplates

Recipe: 60s at 90◦C
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44. Expose - metal mask (to remove ALD material from bond-pads)

Equipment : ABM contact aligner Recipe: Exposure time of 100s

45. Develop and Al2O3 etch

Equipment : General chemistry hoods

Recipe:6 minutes in 726MIF developer

2 minutes rinse in DI water

46. Resist strip and CPD preparation

Equipment : General chemistry hoods

Recipe:10 minutes dip in acetone for resist removal

5 minutes rinse in 1:1 isopropyl alcohol:DI H2O

5 minutes rinse in isopropyl alcohol

47. Critical point drying Equipment : Critical point dryer

Recipe: Transfer samples to critical point dryer without exposing to air and

run standard recipe
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APPENDIX C

SIMULTANEOUS RADIATION PRESSURE INDUCED HEATING

AND COOLING OF AN OPTO-MECHANICAL RESONATOR

The ultimate sensitivity of optical sensing of mechanical motion is fundamen-

tally set by the Standard Quantum Limit (SQL) [106]. However, well before the

SQL is reached, backaction forces may dominate and severely alter the dynamics

of the intrinsic mechanical motion of the sensor. Due to a combination of large

mechanical oscillations and necessary saturation of amplification, the noise floor of

the opto-mechanical sensor increases, rendering it ineffective at transducing small

signals. Parametric instability is predicted to be a potential problem in the context

of the advanced Laser Interferometer Gravitational Observatory (LIGO) [116] and,

more generally, in many cavity opto-mechanical systems designed for ultra-precise

sensing. This can be controlled by designing elaborate feedback schemes [116, 106].

In this chapter, we demonstrate amplification of one mechanical resonance in a sil-

icon nitride micro-mechanical ring resonator while simultaneously cooling another

mechanical resonance by exploiting two closely spaced optical whispering gallery

mode cavity resonances. The possibility of simultaneous heating and cooling can

open up avenues in studying coherent phonon exchange and phonon dynamics

between different acoustic modes, and be of interest in MEMS gyroscopes and

studying aspects of condensed-matter and many-body physics at the macro-scale.

For this demonstration, we use the silicon nitride opto-mechanical resonator

discussed in chapter 3. We probe the interaction between the optical and me-

chanical modes of the ring resonator using an avalanche photodetector to convert

motion induced intensity modulation into RF signals as described in chapter 3. We

choose an optical mode with an optical quality factor of ≈ 200,000 (and intrinsic
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Q > 500,000) and the laser wavelength is fixed such that it corresponds to a 3dB

drop in optical transmission off-resonance. At low input laser powers (5dBm), the

input light coupled into the cavity is modulated by the Brownian noise motion of

the mechanical modes of the micro-ring as shown in Figure C.1. The fundamen-

tal radial expansion mode of the micro-ring at a frequency of 41.97MHz causes

strong intensity modulation of the laser light as compared to a group of azimuthal

composite mechanical modes around 77MHz. This can be attributed to higher

effective path length change associated with the radial expansion mode, which

causes greater modulation of the laser light [28].

The fundamental radial expansion mode of the ring at 41.97MHz has mechan-

ical Q ≈ 2,000 measured in air. As we increase the laser power, self-sustained

oscillations are observed for this mode above the input threshold power as shown

in Figure C.2. The sharp threshold behavior is characteristic of radiation pressure

induced parametric instability [28]. Figures C.3 and C.4 show heating and cooling

of this mechanical mode obtained by blue detuning and red detuning the laser

with respect to the cavity respectively. The mechanical mode is heated by blue

detuning the input laser light (1550.55nm) with respect to the cavity (1550.6nm).

The linewidth of the peak narrows and the frequency increases, as expected for

heating of the mechanical mode. When the laser is red detuned (1550.672nm)

with respect to the cavity, the mechanical mode is cooled. The linewidth increases

from 42.4kHz to 92.5kHz as the laser power is increased from 10dBm to 14dBm.

This corresponds to an effective temperature of 138K. The effective temperature

is inferred by the linewidth of the mechanical resonance [117].

Interaction of mechanical modes of nanomechanical resonators with multiple

optical modes has been shown before [118], which enables both heating and cool-
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Figure C.1: RF spectrum at the output of the avalanche photodetector. The
peaks observed correspond to the Brownian noise mechanical
motion of the micro-ring. The fundamental radial expansion
mode of the micro-ring at a frequency of 41.97MHz causes strong
intensity modulation of the laser light as compared to a group
of azimuthal composite mechanical modes around 77MHz. Fi-
nite element method (FEM) simulations of the mechanical mode
shapes are shown as insets.
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Figure C.2: Variation of RF power at the output of the photodetector with
the input laser power, for the fundamental radial expansion mode
of the micro-ring at 41.97MHz. As the laser power is increased,
self-sustained oscillations are observed for this mode. The sharp
threshold behavior shown is characteristic of radiation pressure
induced parametric instability.
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Figure C.3: The mechanical mode is heated by blue detuning the input laser
light (1550.55nm) with respect to the cavity (1550.6nm). The
linewidth of the peak narrows and the frequency increases (blue
curve), as expected for heating of the mechanical mode.
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Figure C.4: When the laser is red detuned (1550.672nm) with respect to the
cavity, the mechanical mode is cooled. The linewidth increases
from 42.4kHz to 92.5kHz as the laser power is increased from
10dBm (blue curve) to 14dBm (black curve). This corresponds
to an effective temperature of 138K.
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ing. However, this scheme causes either heating or cooling of the mechanical mode,

depending on which optical resonance is pumped. Here we explore the feasibility

of using two closely spaced whispering gallery modes to simultaneously achieve

heating of one mechanical mode while cooling another mechanical mode using a

single pump laser. The micro-ring resonator heats up due to thermal absorption

as the laser power is increased, which leads to the characteristic shark fin optical

spectrum [119] owing to temperature dependence of the modal refractive index.

Due to the rich mode spectrum of a silicon nitride micro-ring resonator, situations

may arise where the resonator has multiple optical mode families. The modal re-

fractive indices of these mode families may have different temperature dependence.

As shown in Figure C.5, one of the optical modes is far more sensitive to the laser

power. As such, it is possible to fix the laser wavelength such that the pump laser

light is red detuned with respect to one of the cavity modes and blue detuned with

respect to the other in thermal equilibrium [119].

Figure C.6 shows increased RF power for the Brownian noise motion peaks

when the laser power is increased. The laser light (1550.55nm) is blue detuned with

respect to the pair of optical resonances at 1550.6nm. Figure C.7 shows the RF

spectrum when the laser (1550.587nm) is blue detuned with respect to one optical

resonance and red detuned with respect to the other. In this case, the fundamental

radial mode of vibration is heated as the pump laser power is increased while a

group of azimuthal composite mechanical modes is cooled. Figure C.8 shows the

cooling of these modes more clearly, with the linewidth for the mode at 76.7MHz

increasing from 150kHz to 250kHz as the laser power is increased from 10dBm to

11dBm. This corresponds to an effective temperature of 180K.

The possibility of simultaneous heating and cooling of mechanical modes can
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Figure C.5: Optical spectrum of the silicon nitride opto-mechanical resonator
for different input laser powers. The modal refractive indices of
multiple optical mode families have different temperature depen-
dence. The shark-fin shape of the optical resonances is attributed
to thermal absorption.
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Figure C.6: When the laser light (1550.55nm) is blue detuned with respect to
the pair of optical resonances around 1550.6nm, the RF power
for the Brownian noise motion peaks when the laser power is
raised from 10dBm (red curve) to 10.5dBm (blue curve).
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Figure C.7: RF spectrum when the laser (1550.587nm) is blue detuned with
respect to one optical resonance and red detuned with respect to
the other. In this case, the fundamental radial mode of vibration
at 41.97MHz is heated as the pump laser power is increased from
10dBm (red curve) to 10.5dBm (blue curve), while a group of
azimuthal composite mechanical modes centered around 77MHz
is cooled.
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Figure C.8: Increasing the laser input power from 10dBm (blue curve) to
11dBm (black curve) results in cooling of the composite me-
chanical modes of the resonator. For instance, the linewidth
of the mode at 76.7MHz increases from 150kHz to 250kHz by
increasing the laser power. This corresponds to an effective tem-
perature of 180K. The red and green curves are smoothed curve
fits for the blue and black curves respectively.
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open up avenues in studying coherent phonon exchange and phonon dynamics

between different acoustic modes, mediated by an optical media and enable sig-

nificant advances in ultra-precise sensing. Mode-matched MEMS gyroscopes si-

multaneously require high Q along the drive and sense axis for improved sensi-

tivity. However the high Q along sense axis reduces the effective bandwidth of

the sensor. Simultaenously heating (to achieve narrow linewidths along the drive

axis) and cooling (maintaining high signal to noise ratio (SNR) while increasing

bandwidth) promises high sensitivity and high resolution, while maintaining large

bandwidth and high dynamic range. Cooling multiple closely spaced mechanical

modes to groundstate will also provide an exciting toolset for studying aspects of

condensed-matter and many-body physics at the macro-scale.
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APPENDIX D

ANALYTICAL MODEL FOR MOTIONAL IMPEDANCE IN

PARTIAL GAP TRANSDUCTION

Assumptions

This chapter presents an analytical treatment of this problem, and insights derived

from the equations presented here enable the designer to optimize resonator designs

for low motional impedances. The model presented here makes several assumptions

to simplify the derivation. Consider a schematic of a beam resonator shown in Figre

D.1 for illustration. The resonator body comprises of a resonator body of length

L and dielectric of length d2 at both ends. The air gap is d1 and the dielectric on

the electrode has length de. The dielectric constant of the dielectric is ε2 and that

of air is ε1. The various assumptions made are:

1. No acoustic mismatch between dielectric and resonator body

2. Dielectric on the electrode is rigid

3. Expressions for electrostatic forces are independent of the mode shape

4. Sense current calculation requires:

(a) Accounting for both displacement in x (motion at the free end) and

displacement in y (motion at the interface between resonator and di-

electric)

(b) Expressing x displacement in terms of y displacement.
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Figure D.1: Schematic highlighting half the resonator geometry for a beam
resonator for illustrating model assumptions and methodology.

Methodology

The model essentially follows the derivation for motional impedance presented in

[73]. As listed in steps 4-5 below, we need to also account for motion at the

resonator-dielectric interface and air-dielectric interface.

1. Write down the equation for mode shape in the resonator assuming no acous-

tic mismatch

2. Express total capacitance between electrode and resonator body (dielectric

and air gap combination) in terms of displacements.

3. Express forces in the form Fi = V 2

2
∂Ctot

∂xi
where V is the total applied voltage,

Ctot is the total capacitance and xi is the corresponding displacement

4. Write down displacement amplitude, and hence the velocity amplitude at the

free end of the resonator in terms of effective force (sum of individual forces

shaped by the mode shape), stiffness and the quality factor

5. Use these expressions to write down sense current as isense = Vdc
∂Ctot

∂t
=

Vdc
∂Ctot

∂gap
∂gap
∂t

, where Vdc is the DC bias applied across the resonator
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6. Express the motional resistance Rx in terms of the applied RF voltage vac as

Rx = vac
isense

7. Comparing the expression for effective force from step 4 with Fnet = ηvac,

find the effective electromechanical transduction factor η

8. Expressions for the inductance and capacitance are given by Lx = M
η2
, Cx =

η2

K
, where M is the effective mass and K is the stiffness of the mechanical

resonator

Equations for a beam resonator

The equations for a beam resonator can be obtained by following the methodology

presented above. For the schematic presented in fig. 1, the mode shape can be

written as in equation D.1, where U0 is the amplitude of displacement, kn = (2n+1)π
L+2d2

(n = 1, 2, 3, ...) is the wave number and Ω is the angular mechanical resonance

frequency.

u(x) = U0sin (knx) ejΩt (D.1)

The total capacitance, Ctot can be written as

Ctot =
ε2ε1A

ε1de + ε2 (d1 + d2) + x (ε1 − ε2)− ε1y
(D.2)

where A is the cross sectional area across the capacitor plates. The forces acting

on the resonator-dielectric and air-dielectric interfaces can be written as follows,

where V is the voltage applied at the electrode. For our purposes we use expressions

obtained by substituting x = d2 and y = 0. Moreover, we have V 2

2
= Vdcvac.
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F1 =
V 2

2

∂Ctot
∂y

=
V 2

2

ε2ε
2
1A

[ε1de + ε2 (d1 + d2) + x (ε1 − ε2)− ε1y]2
(D.3)

F2 =
V 2

2

∂Ctot
∂x

= −V
2

2

ε2ε1A (ε1 − ε2)

[ε1de + ε2 (d1 + d2) + x (ε1 − ε2)− ε1y]2
(D.4)

Fnet = F1sin

(
knL

2

)
+ F2 (D.5)

The expression for displacement can be written down as in equations D.6 and

D.7 using the expression for stiffness (K) from [72].

U0 =
F

|bΩ0|
=

F

|mΩ2
0/Q|

=
FQ

K
(D.6)

⇒ U0 =
2Q (L+ 2d2)

Y (2n+ 1)2π2

ε1ε2Vdcvac
[
ε1sin

(
knL

2

)
− (ε1 − ε2)

]
[ε2d1 + ε1d2 + ε1de]

2 (D.7)

Then the sense current can be written as

isense = Vdc
∂Ctot
∂t

= Vdc
∂Ctot
∂gap

∂gap

∂t
= Vdc

∂Ctot
∂y

∂y

∂t
(D.8)

While carrying out this derivation, we should express x in terms of y. The

reason for this is that motion at the free end also contributes to the sense current

which would not be captured if we only carry out a partial differentiation of Ctot

with y.

x = d2 +
y

sin
(
knL

2

) , ∂y
∂t

= 2πfnU0sin

(
knL

2

)
(D.9)
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Thus we can get an expression for Rx = vac
isense

as follows:

Rx =
vac
isense

=
(2n+ 1)π

√
Y ρ

2QV 2
dcε

2
1ε

2
2A

[ε2d1 + ε1d2 + ε1de]
4[

ε1sin
(
knL

2

)
− (ε1 − ε2)

]2 (D.10)

We can obtain η from equation D.5, and thus express Lx and Cx as follows:

Lx =
vac
isense

=
ρ (L+ 2d2)

V 2
dcε

2
1ε

2
2A

[ε2d1 + ε1d2 + ε1de]
4[

ε1sin
(
knL

2

)
− (ε1 − ε2)

]2 (D.11)

Cx =
vac
isense

=
2V 2

dcε
2
1ε

2
2A (L+ 2d2)

Y π2(2n+ 1)2

[
ε1sin

(
knL

2

)
− (ε1 − ε2)

]2
[ε2d1 + ε1d2 + ε1de]

4 (D.12)

To establish the validity of this model, let us consider the case for air gap trans-

duction with zero ALD material deposition. In this case, equation D.10 reduces

to

Rx =
vac
isense

=
(2n+ 1)πd4

1

√
Y ρ

2QV 2
dcε

2
1A

(D.13)

which exactly matches the well established analytical expression for conventional

air gap transduction [73]. Similarly, for the case of internal dielectric transduction,

where the gap is completely filled with the ALD material, we obtain the following

expression for Rx:

Rx =
vac
isense

=
π (d2 + de)

4√Y ρ
2QV 2

dcε
2
2A
[
sin
(
k0L

2

)]2 (D.14)

This expression also matches the equation for the fundamental mode for in-

ternal dielectric transduced resonators in literature [72]. Thus our model serves
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as a bridge between the two well established models for air gap transduction and

internal dielectric transduction.

Equations for a disk resonator

Beam resonators have significant mode distortion at the resonator-electrode inter-

face [71] that are not accounted for in this model. However, we can establish the

validity of this model by deriving a similar set of equations for disk resonators

which do not have mode distortion.

Consider the disk resonator geometry in Figure D.2. The mode shape for disk

resonators can be written as follows, where k0 = Ω0 (R + d2)
√

ρ(1−ν2)
E

[13]:

u(r) = A
k0

R
J1

(
k0r

R

)
ejΩt (D.15)

The total capacitance can be written as follows (t denotes thickness of the

device layer):

Ctot =
t

1
θε2
loge

(
r+d2+d1+de
R+d2+d1

)
+ 1

θε1
loge

(
R+d2+d1
R+d2+x

)
+ 1

2πε2
loge

(
R+d2+x
R+y

) (D.16)

One can derive the stiffness (and hence effective mass) from the modeling pre-

sented in [31]

K = πρt (R + d2)2 Ω2
0

J2
2 (k0)

J1 (k0)
(D.17)
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Figure D.2: Schematic for a partial gap disk resonator highlighting (top) the
geometry, (bottom) displacements at various interfaces
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The forces and hence the effective force can be written down following the same

methodology for a beam resonator as follows:

F1y=x=0 =
V 2

2

∂Ctot
∂y

= Vdcvac
∂Ctot
∂y

(D.18)

F2y=x=0 =
V 2

2

∂Ctot
∂x

= Vdcvac
∂Ctot
∂x

(D.19)

Fnet =
F1J1

(
k0R
R+d2

)
J1 (k0)

+ F2 (D.20)

The sense current and displacement terms can similarly be obtained:

isense = Vdc
∂Ctot
∂y

∂y

∂t
(D.21)

x =
yJ1 (k0)

J1

(
k0R
R+d2

) , ∂y
∂t

= Ω0U0

J1

(
k0R
R+d2

)
J1 (k0)

(D.22)

Thus we obtain following expressions for Rx, Lx and Cx:

Rx =
πρt (R + d2)2 Ω0J

2
2 (k0)

QV 2
dcJ1

(
k0R
R+d2

)[
J1

(
k0R
R+d2

)
J1(k0)

∂Ctot

∂y
+ ∂Ctot

∂x

]
x=y=0

[
∂Ctot

∂y

]
x=

yJ1(k0)

J1( k0R
R+d2

)
,x=y=0

(D.23)

Lx =
πρt (R + d2)2 J2

2 (k0)

J1 (k0)

(
Vdc

[
J1

(
k0R
R+d2

)
J1(k0)

∂Ctot

∂y
+ ∂Ctot

∂x

]
x=0,y=0

)2 (D.24)
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Cx =

J1 (k0)

(
Vdc

[
J1

(
k0R
R+d2

)
J1(k0)

∂Ctot

∂y
+ ∂Ctot

∂x

]
x=0,y=0

)2

πρt (R + d2)2 Ω2
0J

2
2 (k0)

(D.25)

Using the equations and methodology developed here, one can choose a suitable

high dielectric constant (ε2) ALD material and deposition thickness (d2, de) to lower

the motional resistance for capacitive air gap transduction. For a more realistic

model, there are many additional factors to be considered for the case of partial

air gap transduced resonators, such as motion of the dielectric, acoustic mismatch

between the dielectric and resonator body, stress in the resonator, to name a few.
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APPENDIX E

RAYLEIGH SCATTERING ENHANCED DISPLACEMENT

SENSITIVITY AT BEYOND GHZ FREQUENCIES

For transduction of signals with mechanical frequencies in the resolved side-

band regime using a singlet WGM optical resonance, we see in Figure E.1, that

both the Stokes and anti-Stokes motional sidebands lie outside the optical cavity

and hence the component of the intra-cavity energy at the mechanical resonance

frequency is diminished, as compared to transduction of signals in the unresolved

sideband regime. To counter this inefficiency, we explore the possibility of exploit-

ing Rayleigh scattering induced optical mode splitting in optical whispering gallery

mode (WGM) resonators [120] to transduce signals in the resolved sideband regime

more efficiently, by using the optical mode doublet to boost the Stokes sideband.

Consider the case of an opto-mechanical transducer sensed using modulation of

CW laser light coupled to a back-scattering induced doublet optical resonance

instead of a single optical WGM resonance as shown in Figure E.1.

E.1 Theoretical Formulation

Back-scattering centers in the resonator cause the degeneracy of the clockwise

(CW) and the counter clockwise propagating modes to be lifted and lead to split-

ting of the otherwise originally degenerate optical modes [120, 121, 122]. The

coupling of the two modes is quantified in terms of a coupling quality factor Qu.

The transmission equation for the single optical resonance in equation 2.12 now

transforms to the following owing to the mode splitting [123]:
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Figure E.1: Illustration of Rayleigh scattering induced optical mode splitting
for enhancement of transduction efficiency of the optical sense
scheme. The Stokes sideband amplitude is boosted by the pres-
ence of the second optical resonance as seen in the right panel.

T (ω) =

∣∣∣∣∣∣1− 1

2Qext

 1

j
(
δ + 1

2Qu

)
+ 1

2Qint
+ 1

2Qext

+
1

j
(
δ − 1

2Qu

)
+ 1

2Qint
+ 1

2Qext

∣∣∣∣∣∣
2

(E.1)

Following a coupled mode approach, the mean field amplitudes of the coupled

CW and CCW modes may be written in terms of the input field, s as follows [122]

(see Figure E.2):

aCW = s
√

Γext
j∆− Γtot

2

∆2 − Γ2
tot

4
− γ2

4
+ j∆Γtot

(E.2)

aCCW =
−j γ

2

j∆− Γtot

2

aCW (E.3)

Here we assume that only the clockwise mode is pumped by the input field.
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Figure E.2: Illustration of clockwise (CW) and counter-clockwise (CCW)
propagating optical modes

This is in turn coupled to the counterclockwise mode via the scattering rate γ.

Γext is the decay rate associated with coupling of photons to the optical cavity

and Γtot is the loaded cavity photon decay rate. The detuning ∆ is specified for

the originally degenerate optical mode, with optical resonance frequency ωopt. We

also assume that γ and Γtot are the same for both optical modes. The CW mode

is coupled to the output field via sout = s − aCW
√

Γext. The coupling of the CW

and CCW modes leads to formation of a mode doublet, which can be transformed

into a pair of symmetric and antisymmetric modes [118], b̂1 = aCW +aCCW√
Γext

and

b̂2 = aCW−aCCW√
Γext

, representing the lower and higher frequency modes respectively.

The frequencies of these modes are ω1 = ωopt− ωopt

2Qu
and ω2 = ωopt+

ωopt

2Qu
respectively.

Thus, the detuning values of the input laser line with respect to these two modes

are ∆1 = ∆ + ωopt

2Qu
and ∆2 = ∆− ωopt

2Qu
respectively.

Following the derivations in [32, 118], we can write down the intra-cavity field

values for b̂1 and b̂2 in presence of mechanical motion x(t) = x0sin(Ωmt), which

corresponds to modulation index β = x0
R

ωopt

Ωm
:
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b̂1,intra = s

√
Γext

[
j∆ + Γtot

2

] [
j
(
∆ + γ

2

)
+ Γtot

2

]
∆2 − Γ2

tot

4
− γ2

4
+ j∆Γtot

+∞∑
n=−∞

(−i)nJn(β1)
Γtot

2
+ j (∆1 + nΩm)

ej[(ωopt+nΩm)t+β1cos(Ωmt)] (E.4)

b̂2,intra = s

√
Γext

[
j∆ + Γtot

2

] [
j
(
∆ + γ

2

)
+ Γtot

2

]
∆2 − Γ2

tot

4
− γ2

4
+ j∆Γtot

+∞∑
n=−∞

(−i)nJn(β2)
Γtot

2
+ j (∆2 + nΩm)

ej[(ωopt+nΩm)t+β2cos(Ωmt)] (E.5)

The total intra-cavity energy is given by |aCW |2 + |aCCW |2. In Figure E.3, we

plot the total intra-cavity energy in the case of an optical doublet, and compare

it to
∣∣∣̂b2,intra

∣∣∣2 to get an idea of the net improvement contributed by presence of

the other optical resonance, b̂1. We assume ∆ = 11GHz, Qtot = 70,000, Qext =

50,000, Qu = 20,000, λopt = 1,564nm, x0 = 6.75pm, R = 9.5µm. The frequency

separation between the two optical modes in this case is 9.59GHz. We can clearly

see the large boost in intra-cavity energy provided by the optical doublet for the

Stokes sideband for the case where the mechanical frequency assumed is 8GHz.

E.2 Experimental Characterization

We identify a split optical resonance and a singlet optical resonance in our 2 coupled

ring silicon acousto-optic modulator. Figures E.4 (a) and (b) show transmission

spectra for the optical modes. To test the validity of this theory, we study the

electro-mechanical transmission using the doublet resonance at 1,556.9nm and the
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Figure E.3: Comparison of sideband amplitudes normalized to pump energy
for two mechanical modes at 1GHz and 8GHz in case of singlet
and doublet resonances. The frequency separation between the
two optical modes in this case is 9.59GHz. We can clearly see
the large boost in intra-cavity energy provided by the optical
doublet for the Stokes sideband for the case where the mechanical
frequency assumed is 8GHz. The pump laser line (sideband order
= 0) is suppressed for easy visualization.
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singlet resonance at 1,561nm. The frequency difference between the two resonances

in the optical doublet is 9.63GHz.

As we clearly see in Figure E.5, the doublet resonance boosts the transduc-

tion of signals at higher frequencies (5GHz - 10GHz) owing to the second optical

resonance. The enhancement is most pronounced at 5.25GHz and 8.2GHz, where

the insertion loss improves by 25dB and 14dB respectively. Also, it enables us to

observe signals at frequencies all the way up to 9.1GHz and 9.8GHz, which are not

possible using the singlet optical resonance.

Next we examine this coupled resonator system following the partial gap process

flow to improve the electrostatic drive transduction efficiency. This process is used

to reduce the resonator electrode gap from 130nm to 50nm via ALD alumina

(Al2O3). We identify an optical doublet resonance in this device with a frequency

splitting of 3.86GHz (see Figure E.6).

Figure E.7 shows a comparison of the electromechanical transmission spectra

recorded in this device using the doublet resonance, in comparison to transduction

using a singlet resonance with loaded optical quality factor ≈60,000.

Comparing this to Figure E.5, it is easy to observe the larger signal strengths

recorded using a doublet resonance in combination with partial gap transduction.

The resonator thickness prior to ALD is 220nm. Depositing 40nm ALD alumina on

all surfaces of the resonator predominantly changes the thickness, thereby changing

the effective mass of the mechanical mode meff and hence the mechanical reso-

nance frequency
(

Ωmech ∝
√

1
meff

)
. Thus, the resonance frequencies are roughly

expected to lower by a factor of
√

ρSi∗220
ρSi∗220+ρAl2O3

∗80
≈ 0.83. We experimentally

observe a shift in the mechanical resonance frequencies for the radial mode family
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Figure E.4: (a) A split optical resonance for the silicon coupled ring res-
onator. The frequency difference between the two resonances in
the optical doublet is 9.63GHz. (b) A singlet optical resonance
for the silicon coupled ring resonator with loaded optical quality
factor ≈5,000.
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Figure E.5: Wide electromechanical transmission spectrum for the coupled
ring resonator. The signals at higher frequencies have larger am-
plitudes when we employ the optical doublet for sensing motion.

from 1.1GHz to 1GHz for the fundamental mode, from 4.4GHz to 4GHz for the

fourth order mode and so on for each mode order. Notable signal strength enhance-

ment is observed for the fourth order mode (32dB increase from -78dB to -46dB)

and the sixth order mode (28dB increase from -90dB to -62dB) compared to a sin-

glet resonance without ALD. The mass loading on account of ALD also lowers the

mechanical quality factors (980 for the fourth order radial mode post-ALD, 3,500

pre-ALD). The amplitude of motion is directly proportional to the mechanical qual-

ity factor Qmech and varies as inverse-squared power of the resonator-electrode gap

g and the frequency Ωmech

(
U0 ∝ Qmech

Ωmechg2

)
as derived in equation D.7. The lowering

of the mechanical quality factor counters the enhancement due to reduced gap and

hence no improvement in signal strength is noticed at frequencies beyond 7GHz.

The signal strength is largest at the mechanical resonance frequencies whose values

are close to the frequency split in the optical resonances, on account of maximum
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Figure E.6: A split optical resonance with a frequency splitting of 3.86GHz
between the modes in a 50nm gap ALD coated 2-ring resonator.
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Figure E.7: Electromechanical transmission spectra for a 50nm gap resonator
highlighting the efficacy of combining the doublet-based sensing
scheme with a partial gap transduced drive scheme. The signal
strength for the fourth order radial mode at 4GHz shows an im-
provement of 32dB over the signal recorded at 4.4GHz in Figure
E.5 pre-ALD using a singlet resonance.

178



overlap of the Stokes sideband with the adjacent optical mode. This frequency split

could be engineered via changing the resonator-waveguide gap using electrostatic

transduction [124] thus providing a tunable mode selection mechanism. The uni-

versal nature of this sense scheme could also potentially push other transduction

mechanisms such as piezo-opto-mechanical and all optical schemes to frequencies

in the microwave X-band, thereby adding to the vast variety of experiments that

could be realized using opto-mechanics.

179



BIBLIOGRAPHY

[1] M. Frerking, “Fifty years of progress in quartz crystal frequency standards,”
in Frequency Control Symposium, 1996. 50th., Proceedings of the 1996 IEEE
International., 1996, pp. 33–46.

[2] S. Fujishima, “The history of ceramic filters,” Ultrasonics, Ferroelectrics and
Frequency Control, IEEE Transactions on, vol. 47, no. 1, pp. 1–7, 2000.

[3] J. T. M. van Beek and R. Puers, “A review of mems oscillators for
frequency reference and timing applications,” Journal of Micromechanics
and Microengineering, vol. 22, no. 1, p. 013001, 2012. [Online]. Available:
http://stacks.iop.org/0960-1317/22/i=1/a=013001

[4] L. S. Lacaita A and S. C, Integrated Frequency Synthesizers for Wireless
Systems. Cambridge: Cambridge University Press, 2007.

[5] C.-C. Nguyen, “Mems technology for timing and frequency control,” Ultra-
sonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 54,
no. 2, pp. 251–270, 2007.

[6] C. S. Lam, “A review of the recent development of mems and crystal os-
cillators and their impacts on the frequency control products industry,” in
Ultrasonics Symposium, 2008. IUS 2008. IEEE, 2008, pp. 694–704.

[7] S. Tabatabaei and A. Partridge, “Silicon mems oscillators for high-speed
digital systems,” Micro, IEEE, vol. 30, no. 2, pp. 80–89, 2010.

[8] C. Enz, J. Baborowski, J. Chabloz, M. Kucera, C. Muller, D. Ruffieux, and
N. Scolari, “Ultra low-power mems-based radio for wireless sensor networks,”
in Circuit Theory and Design, 2007. ECCTD 2007. 18th European Confer-
ence on, 2007, pp. 320–331.

[9] G. Ho, K. Sundaresan, S. Pourkamali, and F. Ayazi, “Temperature com-
pensated ibar reference oscillators,” in Micro Electro Mechanical Systems,
2006. MEMS 2006 Istanbul. 19th IEEE International Conference on, 2006,
pp. 910–913.

[10] Y.-W. Lin, S.-S. Li, Z. Ren, and C.-C. Nguyen, “Low phase noise array-
composite micromechanical wine-glass disk oscillator,” in Electron Devices
Meeting, 2005. IEDM Technical Digest. IEEE International, 2005, pp. 4 pp.–
281.

180



[11] S. Sridaran and S. Bhave, “1.12ghz opto-acoustic oscillator,” in Micro Electro
Mechanical Systems (MEMS), 2012 IEEE 25th International Conference on,
2012, pp. 664–667.

[12] B. Otis and J. Rabaey, “A 300µw 1.9-ghz cmos oscillator utilizing microma-
chined resonators,” Solid-State Circuits, IEEE Journal of, vol. 38, no. 7, pp.
1271–1274, 2003.

[13] S. Rai, Y. Su, A. Dobos, R. Kim, R. Ruby, W. Pang, and B. Otis, “A 1.5ghz
cmos/fbar frequency reference with ±10ppm temperature stability,” in Fre-
quency Control Symposium, 2009 Joint with the 22nd European Frequency
and Time forum. IEEE International, 2009, pp. 385–387.

[14] R. Ruby, “Positioning fbar technology in the frequency and timing domain,”
in Frequency Control and the European Frequency and Time Forum (FCS),
2011 Joint Conference of the IEEE International, 2011, pp. 1–10.

[15] C. Zuo, J. van der Spiegel, and G. Piazza, “1.05 ghz mems oscillator based
on lateral-field-excited piezoelectric aln resonators,” in Frequency Control
Symposium, 2009 Joint with the 22nd European Frequency and Time forum.
IEEE International, 2009, pp. 381–384.

[16] C. Zuo, J. V. der Spiegel, and G. Piazza, “Switch-less dual-frequency recon-
figurable cmos oscillator using one single piezoelectric aln mems resonator
with co-existing s0 and s1 lamb-wave modes,” in Micro Electro Mechanical
Systems (MEMS), 2011 IEEE 24th International Conference on, 2011, pp.
177–180.

[17] S. Bhave, “Hybrid mems resonators and oscillators,” in Frequency Control
and the European Frequency and Time Forum (FCS), 2011 Joint Conference
of the IEEE International, 2011, pp. 1–6.

[18] H. Chandrahalim, D. Weinstein, L. F. Cheow, and S. Bhave, “Channel-
select micromechanical filters using high-k dielectrically transduced mems
resonators,” in Micro Electro Mechanical Systems, 2006. MEMS 2006 Istan-
bul. 19th IEEE International Conference on, 2006, pp. 894–897.

[19] W. Wang and D. Weinstein, “Deep trench capacitor drive of a 3.3 ghz unre-
leased si mems resonator,” in Electron Devices Meeting (IEDM), 2012 IEEE
International, 2012, pp. 15.1.1–15.1.4.

[20] D. Weinstein and S. A. Bhave, “The resonant body transistor,” Nano

181



Letters, vol. 10, no. 4, pp. 1234–1237, 2010, pMID: 20180594. [Online].
Available: http://pubs.acs.org/doi/abs/10.1021/nl9037517

[21] W. Wang, L. Popa, R. Marathe, and D. Weinstein, “An unreleased mm-wave
resonant body transistor,” in Micro Electro Mechanical Systems (MEMS),
2011 IEEE 24th International Conference on, 2011, pp. 1341–1344.

[22] E. Hwang, A. Driscoll, and S. Bhave, “Platform for jfet-based sensing of rf
mems resonators in cmos technology,” in Electron Devices Meeting (IEDM),
2011 IEEE International, 2011, pp. 20.4.1–20.4.4.

[23] E. Hwang and S. Bhave, “Transduction of high-frequency micromechanical
resonators using depletion forces in p-n diodes,” Electron Devices, IEEE
Transactions on, vol. 58, no. 8, pp. 2770–2776, 2011.

[24] C. Rembe and R. Muller, “Measurement system for full three-dimensional
motion characterization of mems,” Microelectromechanical Systems, Journal
of, vol. 11, no. 5, pp. 479–488, 2002.

[25] J. V. Knuuttila, P. T. Tikka, and M. M. Salomaa, “Scanning
michelson interferometer for imaging surface acoustic wave fields,” Opt.
Lett., vol. 25, no. 9, pp. 613–615, May 2000. [Online]. Available:
http://ol.osa.org/abstract.cfm?URI=ol-25-9-613

[26] H. Chandrahalim, S. Bhave, R. Polcawich, J. Pulskamp, B. Pourat,
S. Boedecker, and C. Rembe, “Heterodyne laser-doppler interferometric char-
acterization of contour-mode resonators above 1 ghz,” in Ultrasonics Sym-
posium (IUS), 2009 IEEE International, 2009, pp. 1044–1049.

[27] V. B. Braginsky, Measurement of Weak Forces in Physics Experiments. Uni-
versity of Chicago Press, Chicago, 1977.

[28] T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt.
Express, vol. 15, no. 25, pp. 17 172–17 205, Dec 2007. [Online]. Available:
http://www.opticsexpress.org/abstract.cfm?URI=oe-15-25-17172

[29] A. Cho, “Putting light’s light touch to work as optics meets mechanics,”
Science, vol. 328, no. 5980, pp. 812–813, 2010. [Online]. Available:
http://www.sciencemag.org/content/328/5980/812.short

[30] L. Ding, C. Baker, P. Senellart, A. Lemaitre, S. Ducci, G. Leo, and
I. Favero, “High frequency gaas nano-optomechanical disk resonator,”

182



Phys. Rev. Lett., vol. 105, p. 263903, Dec 2010. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevLett.105.263903

[31] Z. Hao, S. Pourkamali, and F. Ayazi, “Vhf single-crystal silicon elliptic bulk-
mode capacitive disk resonators-part i: design and modeling,” Microelec-
tromechanical Systems, Journal of, vol. 13, no. 6, pp. 1043–1053, 2004.

[32] J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength rout-
ing via the gradient optical force,” Nature photonics, vol. 3, pp. 478–483,
July 2009.

[33] M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala,
“Characterization of a radiation-pressure-driven micromechanical oscillator,”
Phys. Rev. A, vol. 74, p. 023813, Aug 2006. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevA.74.023813

[34] S. Tallur, S. Sridaran, S. Bhave, and T. Carmon, “Phase noise modeling of
opto-mechanical oscillators,” in Frequency Control Symposium (FCS), 2010
IEEE International, 2010, pp. 268–272.

[35] Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter,
“Mechanical oscillation and cooling actuated by the optical gradient force,”
Phys. Rev. Lett., vol. 103, p. 103601, Aug 2009. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevLett.103.103601

[36] Q. P. Unterreithmeier, E. M. Weig, and J. P. Kotthaus, “Universal transduc-
tion scheme for nanomechanical systems based on dielectric forces,” Nature,
vol. 458, pp. 1001–1004, April 2009.

[37] M. Tomes and T. Carmon, “Photonic micro-electromechanical
systems vibrating at x-band (11-ghz) rates,” Phys. Rev.
Lett., vol. 102, p. 113601, Mar 2009. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevLett.102.113601

[38] H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. O. III, A. Starbuck, Z. Wang,
and P. T. Rakich, “Tailorable stimulated brillouin scattering in nanoscale
silicon waveguides,” Nature Communications, vol. 4, p. 1944, June 2013.

[39] J. Li, H. Lee, T. Chen, and K. J. Vahala, “Characterization of a
high coherence, brillouin microcavity laser on silicon,” Opt. Express,
vol. 20, no. 18, pp. 20 170–20 180, Aug 2012. [Online]. Available:
http://www.opticsexpress.org/abstract.cfm?URI=oe-20-18-20170

183



[40] A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Maleki,
“Surface acoustic wave opto-mechanical oscillator and frequency comb
generator,” Opt. Lett., vol. 36, no. 17, pp. 3338–3340, Sep 2011. [Online].
Available: http://ol.osa.org/abstract.cfm?URI=ol-36-17-3338

[41] M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter,
“Optomechanical crystals,” Nature, vol. 462, pp. 78–82, October 2009.

[42] W. C. Jiang, X. Lu, J. Zhang, and Q. Lin, “High-frequency silicon
optomechanical oscillator with an ultralow threshold,” Opt. Express,
vol. 20, no. 14, pp. 15 991–15 996, Jul 2012. [Online]. Available:
http://www.opticsexpress.org/abstract.cfm?URI=oe-20-14-15991

[43] G. S. Wiederhecker, L. Chen, A. A. Gondarenko, and M. Lipson, “Control-
ling photonic structures using optical forces,” Nature, vol. 462, pp. 633–636,
November 2009.

[44] A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement
micron-scale silicon nitride high q ring resonator,” Opt. Express,
vol. 17, no. 14, pp. 11 366–11 370, Jul 2009. [Online]. Available:
http://www.opticsexpress.org/abstract.cfm?URI=oe-17-14-11366

[45] S. S. Verbridge, J. M. Parpia, R. B. Reichenbach, L. M. Bel-
lan, and H. G. Craighead, “High quality factor resonance at room
temperature with nanostrings under high tensile stress,” Journal of
Applied Physics, vol. 99, no. 12, p. 124304, 2006. [Online]. Available:
http://link.aip.org/link/?JAP/99/124304/1

[46] M. I. Cheema and A. G. Kirk, “Accurate determination of the quality
factor and tunneling distance of axisymmetric resonators for biosensing
applications,” Opt. Express, vol. 21, no. 7, pp. 8724–8735, Apr 2013. [Online].
Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-21-7-8724

[47] Q. Wang, Y. Huang, T.-H. Loh, D. K. T. Ng, and S.-T. Ho, “Thin-film
stack based integrated grin coupler with aberration-free focusing and
super-high na for efficient fiber-to-nanophotonic-chip coupling,” Opt.
Express, vol. 18, no. 5, pp. 4574–4589, Mar 2010. [Online]. Available:
http://www.opticsexpress.org/abstract.cfm?URI=oe-18-5-4574

[48] C. Doerr, L. Chen, Y.-K. Chen, and L. Buhl, “Wide bandwidth silicon nitride
grating coupler,” Photonics Technology Letters, IEEE, vol. 22, no. 19, pp.
1461–1463, 2010.

184



[49] X. Chen and H.-K. Tsang, “Nanoholes grating couplers for coupling between
silicon-on-insulator waveguides and optical fibers,” Photonics Journal, IEEE,
vol. 1, no. 3, pp. 184–190, 2009.

[50] D. Geuzebroek, E. Klein, H. Kelderman, F. Tan, D. Klunder, and
A. Driessen, “Thermally tuneable, wide fsr switch based on micro-ring
resonators,” in IEEE/LEOS Benelux Chapter 2002 Annual Symposium,
T. D. Visser, D. Lenstra, and H. F. Schouten, Eds. Amsterdam, the
Netherlands: Vrije Universiteit Amsterdam, 2002, pp. 155–158. [Online].
Available: http://doc.utwente.nl/58195/

[51] D. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceed-
ings of the IEEE, vol. 54, no. 2, pp. 329–330, 1966.

[52] X. Sun, X. Zhang, M. Poot, C. Xiong, and H. X. Tang, “A superhigh-
frequency optoelectromechanical system based on a slotted photonic crys-
tal cavity,” Applied Physics Letters, vol. 101, no. 22, pp. 221 116–221 116–5,
2012.

[53] S. Sridaran and S. A. Bhave, “Electrostatic actuation of silicon optomechan-
ical resonators,” Opt. Express, vol. 19, no. 10, pp. 9020–9026, May 2011.
[Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-
19-10-9020

[54] S. Wang, S. Chandorkar, A. Graham, M. Messana, J. Salvia, and T. Kenny,
“Encapsulated mechanically coupled fully-differential breathe-mode ring
filters with ultra-narrow bandwidth,” in Solid-State Sensors, Actuators
and Microsystems Conference (TRANSDUCERS), 2011 16th International,
2011, pp. 942–945.

[55] C. Huang, J. Fan, R. Zhang, and L. Zhu, “Internal frequency
mixing in a single optomechanical resonator,” Applied Physics Let-
ters, vol. 101, no. 23, p. 231112, 2012. [Online]. Available:
http://link.aip.org/link/?APL/101/231112/1

[56] W.-T. Hsu and K. Cioffi, “Low phase noise 70 mhz micromechanical reference
oscillators,” in Microwave Symposium Digest, 2004 IEEE MTT-S Interna-
tional, vol. 3, 2004, pp. 1927–1930 Vol.3.

[57] J. Salvia, R. Melamud, S. A. Chandorkar, S. Lord, and T. Kenny, “Real-time
temperature compensation of mems oscillators using an integrated micro-
oven and a phase-locked loop,” Microelectromechanical Systems, Journal of,
vol. 19, no. 1, pp. 192–201, 2010.

185



[58] A. Samarao and F. Ayazi, “Combined capacitive and piezoelectric transduc-
tion for high performance silicon microresonators,” in Micro Electro Mechan-
ical Systems (MEMS), 2011 IEEE 24th International Conference on, 2011,
pp. 169–172.

[59] L.-W. Hung and C.-C. Nguyen, “Capacitive-piezoelectric aln resonators with
q >12,000,” in Micro Electro Mechanical Systems (MEMS), 2011 IEEE 24th
International Conference on, 2011, pp. 173–176.

[60] T. Rocheleau, T. Naing, Z. Ren, and C.-C. Nguyen, “Acoustic whispering
gallery mode resonator with q>109,000 at 515mhz,” in Micro Electro Me-
chanical Systems (MEMS), 2012 IEEE 25th International Conference on,
2012, pp. 672–675.

[61] Y. Xie, Micromechanical Extensional Wine-Glass Mode Ring Resonators
For Wireless Communications. University of Michigan., 2006. [Online].
Available: http://books.google.com/books?id=VzyfVaHEVgQC

[62] R. Tabrizian, M. Rais-Zadeh, and F. Ayazi, “Effect of phonon interactions
on limiting the f.q product of micromechanical resonators,” in Solid-State
Sensors, Actuators and Microsystems Conference, 2009. TRANSDUCERS
2009. International, 2009, pp. 2131–2134.

[63] P. G. Steeneken, J. J. M. Ruigrok, S. Kang, J. T. M. van Beek, J. Bontemps,
and J. J. Koning, “Parameter Extraction and Support-Loss in MEMS Res-
onators,” ArXiv e-prints, Apr. 2013.

[64] T. Roszhart, “The effect of thermoelastic internal friction on the q of micro-
machined silicon resonators,” in Solid-State Sensor and Actuator Workshop,
1990. 4th Technical Digest., IEEE, 1990, pp. 13–16.

[65] A. Duwel, R. Candler, T. Kenny, and M. Varghese, “Engineering mems res-
onators with low thermoelastic damping,” Microelectromechanical Systems,
Journal of, vol. 15, no. 6, pp. 1437–1445, 2006.

[66] R. Lifshitz and M. L. Roukes, “Thermoelastic damping in micro- and
nanomechanical systems,” Phys. Rev. B, vol. 61, pp. 5600–5609, Feb 2000.
[Online]. Available: http://link.aps.org/doi/10.1103/PhysRevB.61.5600

[67] M. Demirci and C.-C. Nguyen, “Mechanically corner-coupled square mi-
croresonator array for reduced series motional resistance,” Microelectrome-
chanical Systems, Journal of, vol. 15, no. 6, pp. 1419–1436, 2006.

186



[68] Y. Lin, W.-C. Li, I. Gurin, S.-S. Li, Y.-W. Lin, Z. Ren, B. Kim, and
C.-C. Nguyen, “Digitally-specified micromechanical displacement ampli-
fiers,” in Solid-State Sensors, Actuators and Microsystems Conference, 2009.
TRANSDUCERS 2009. International, 2009, pp. 781–784.

[69] S. Pourkamali, G. Ho, and F. Ayazi, “Low-impedance vhf and uhf capaci-
tive silicon bulk acoustic-wave resonators - part ii: Measurement and char-
acterization,” Electron Devices, IEEE Transactions on, vol. 54, no. 8, pp.
2024–2030, 2007.

[70] Y.-W. Lin, S.-S. Li, Z. Ren, and C.-C. Nguyen, “Low phase noise array-
composite micromechanical wine-glass disk oscillator,” in Electron Devices
Meeting, 2005. IEDM Technical Digest. IEEE International, 2005, pp. 4 pp.–
281.

[71] T. Cheng and S. Bhave, “High-q, low impedance polysilicon resonators with
10 nm air gaps,” in Micro Electro Mechanical Systems (MEMS), 2010 IEEE
23rd International Conference on, 2010, pp. 695–698.

[72] D. Weinstein and S. Bhave, “Internal dielectric transduction in bulk-mode
resonators,” Microelectromechanical Systems, Journal of, vol. 18, no. 6, pp.
1401–1408, 2009.

[73] V. Kaajakari, A. Alastalo, and T. Mattila, “Electrostatic transducers for
micromechanical resonators: free space and solid dielectric,” Ultrasonics,
Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 53, no. 12,
pp. 2484–2489, 2006.

[74] M. Akgul, B. Kim, Z. Ren, and C. T.-C. Nguyen, “Capacitively transduced
micromechanical resonators with simultaneous low motional resistance and
q>70,000,” Tech. Digest 2008 Solid-State Sensor, Actuator, and Microsys-
tems Workshop, Hilton Head, South Carolina, pp. 6–10, 2008.

[75] K. Wang and C.-C. Nguyen, “High-order medium frequency micromechanical
electronic filters,” Microelectromechanical Systems, Journal of, vol. 8, no. 4,
pp. 534–556, 1999.

[76] A. Hajimiri, “Noise in phase-locked loops,” in Mixed-Signal Design, 2001.
SSMSD. 2001 Southwest Symposium on, 2001, pp. 1–6.

[77] X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt.
Soc. Am. B, vol. 13, no. 8, pp. 1725–1735, Aug 1996. [Online]. Available:
http://josab.osa.org/abstract.cfm?URI=josab-13-8-1725

187



[78] E. C. Levy, M. Horowitz, and C. R. Menyuk, “Modeling optoelectronic
oscillators,” J. Opt. Soc. Am. B, vol. 26, no. 1, pp. 148–159, Jan 2009.
[Online]. Available: http://josab.osa.org/abstract.cfm?URI=josab-26-1-148

[79] L. Maleki, “Sources: The optoelectronic oscillator,” Na-
ture Photonics, no. 5, pp. 728–730, 2011. [Online]. Available:
http://www.nature.com/nphoton/journal/v5/n12/full/nphoton.2011.293.html

[80] G. Li and E. Afshari, “A distributed dual-band lc oscillator based on
mode switching,” Microwave Theory and Techniques, IEEE Transactions
on, vol. 59, no. 1, pp. 99–107, 2011.

[81] M. Metcalfe, S. M. Carr, A. Muller, G. S. Solomon, and J. Lawall, “Resolved
sideband emission of InAs/GaAs quantum dots strained by surface acoustic
waves,” Phys. Rev. Lett., vol. 105, p. 037401, Jul 2010. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevLett.105.037401

[82] T. J. Kippenberg, R. Holzwarth, and S. A. Diddams,
“Microresonator-based optical frequency combs,” Science, vol.
332, no. 6029, pp. 555–559, 2011. [Online]. Available:
http://www.sciencemag.org/content/332/6029/555.abstract

[83] B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, “Raman-based
silicon photonics,” Selected Topics in Quantum Electronics, IEEE Journal of,
vol. 12, no. 3, pp. 412–421, 2006.

[84] R. Espinola, J. Dadap, J. Richard Osgood, S. McNab, and Y. Vlasov,
“C-band wavelength conversion in silicon photonic wire waveguides,” Opt.
Express, vol. 13, no. 11, pp. 4341–4349, May 2005. [Online]. Available:
http://www.opticsexpress.org/abstract.cfm?URI=oe-13-11-4341

[85] H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watan-
abe, J. ichi Takahashi, and S. ichi Itabashi, “Four-wave mixing in silicon wire
waveguides,” Opt. Express, vol. 13, no. 12, pp. 4629–4637, Jun 2005. [Online].
Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-13-12-4629

[86] Q. Xu, V. R. Almeida, and M. Lipson, “Micrometer-scale all-optical
wavelength converter on silicon,” Opt. Lett., vol. 30, no. 20, pp. 2733–2735,
Oct 2005. [Online]. Available: http://ol.osa.org/abstract.cfm?URI=ol-30-
20-2733

[87] A. Schliesser, R. Riviere, G. Anetsberger, O. Arcizet, and T. J. Kippenberg,

188



“Resolved-sideband cooling of a micromechanical oscillator,” Nature Physics,
no. 4, pp. 415–419, April 2008.

[88] J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Grob-
lacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical
oscillator into its quantum ground state,” Nature, no. 478, pp. 89–92, Octo-
ber 2011.

[89] F. Massel, T. T. Heikkila, J.-M. Pirkkalainen, S. U. Cho, H. Saloniemi, P. J.
Hakonen, and M. A. Sillanpaa, “Microwave amplification with nanomechan-
ical resonators,” Nature, no. 480, pp. 351–354, December 2011.

[90] D. W. C. Brooks, T. Botter, S. Schreppler, T. P. Purdy, N. Brahms,
and D. M. Stamper-Kurn, “Non-classical light generated by quantum-noise-
driven cavity optomechanics,” Nature, no. 488, pp. 476–480, August 2012.

[91] C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, “Optomechanical dark
mode,” Science, vol. 338, no. 6114, pp. 1609–1613, 2012. [Online]. Available:
http://www.sciencemag.org/content/338/6114/1609.abstract

[92] J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical
wavelength conversion via cavity optomechanics,” Nature Communications,
no. 3, p. 1196, November 2012.

[93] H. Li, Y. Chen, J. Noh, S. Tadesse, and M. Li, “Multichannel cavity op-
tomechanics for all-optical amplification of radio frequency signals,” Nature
Communications, no. 3, p. 1091, October 2012.

[94] G. Agrawal, Fiber-Optic Communication Systems, ser. Wiley Series in
Microwave and Optical Engineering. Wiley, 2012. [Online]. Available:
http://books.google.com/books?id=yGQ4n1-r2eQC

[95] L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum
communication with atomic ensembles and linear optics,” Nature, no. 414,
p. 1091, September 2001.

[96] A. H. Safavi-Naeini and O. Painter, “Proposal for an optomechanical
traveling wave phononphoton translator,” New Journal of Physics, vol. 13,
no. 1, p. 013017, 2011. [Online]. Available: http://stacks.iop.org/1367-
2630/13/i=1/a=013017

[97] M. Davanço, J. Chan, A. H. Safavi-Naeini, O. Painter, and K. Srini-

189



vasan, “Slot-mode-coupled optomechanical crystals,” Opt. Express,
vol. 20, no. 22, pp. 24 394–24 410, Oct 2012. [Online]. Available:
http://www.opticsexpress.org/abstract.cfm?URI=oe-20-22-24394

[98] T. Baehr-Jones, T. Pinguet, P. L. Guo-Qiang, S. Danziger, D. Prather, and
M. Hochberg, “Myths and rumours of silicon photonics,” Nature Photonics,
no. 6, pp. 206–208, March 2012.

[99] J. S. Orcutt, B. Moss, C. Sun, J. Leu, M. Georgas, J. Shainline, E. Zgraggen,
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