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Abstract

Call a connected undirected graph (d, c)-colorable if there is a vertex
coloring using at most ¢ colors such that no two vertices of distance d
or less have the same color. It is well known that (1,2)-colorability is
decidable in linear time, but (1, ¢)-colorability for ¢ > 3 is NP-complete.
In [19], Sharp shows that for fixed d > 2, the (d, ¢)-colorability problem
is solvable in linear time for ¢ < 3d/2 and NP-complete otherwise. In
this note we give an alternative construction that improves the upper
time bound as a function of d for the case ¢ < 3d/2. The construction
entails a generalization of the notion of tree decomposition and bounded
treewidth [18] to arbitrary overlay graphs, not just trees, which may be
of independent interest.

1 Introduction

Let G = (V,E) be a connected undirected graph with no multiple edges or
loops. The distance between two vertices is the length (number of edges) of a
shortest path between them. A (d, ¢)-coloring is an assignment of colors to the
vertices using at most ¢ colors such that no two vertices of distance d or less have
the same color. For fixed d and ¢, the (d, ¢)-coloring problem is the problem of
determining whether a given graph G has a (d, ¢)-coloring and finding one if so.

The classical coloring problem is the special case d = 1. It is well known
that this problem is NP-complete for three or more colors [7]. However, for
two colors, the problem is decidable in linear time: a graph is colorable with
two colors iff it has no odd cycles, which can be determined in linear time by
breadth-first search. Thus (1, 2)-colorability is in P, whereas (1, ¢)-colorability
for ¢ > 3 is NP-complete.

The (d, ¢)-coloring problem is the same as the (1, ¢)-coloring problem for the
dth power of the graph, which is obtained simply by adding an edge between any
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two vertices of distance d or less. However, the (d, ¢)-coloring problem may be
easier in some cases for small values of ¢ relative to d. In [19], the following sharp
boundary between easy and hard cases was established: for fixed d > 2, (d, ¢)-
coloring is solvable in linear time for ¢ < 3d/2 and NP-complete for ¢ > 3d/2.

The linear time bound in [19] for the case ¢ < 3d/2 is actually only linear in
the size of the graph, but exponential in d. It uses the fact that for ¢ < 3d/2, a
graph is (d, ¢)-colorable only if it is of bounded treewidth [18]. The algorithm
constructs a tree decomposition and uses known algorithms for coloring graphs
of bounded treewidth. In [19], a treewidth bound of 5d is obtained. Since the
complexity of the algorithm depends so drastically on d, it is desirable to obtain
a bound on treewidth that is as small as possible.

In this paper we give an alternative construction that improves the treewidth
bound from 5d to 2d. However, the main interest is not the bound itself, but
rather the analysis, which reveals a clear picture of the structure of colorable
graphs. Our construction entails a generalization of the notion of tree decom-
position and bounded treewidth [18] to allow arbitrary overlay graphs, not just
trees, which may be of independent interest. We couple this generalized notion
of decomposition with a general construction that obtains such a decomposition
from a certain class of edge partitions. One such partition is the one determined
by the biconnected components of the graph, which gives a tree decomposition,
but there are others. In particular, the partition we use gives a bounded-width
cycle decomposition of G.

Finally, our analysis sheds light on a particular source of NP-hardness in
graph problems, namely the ability to propagate information nonlinearly in the
graph. To understand what we mean by this, recall that typical NP-hardness
proofs in graphs involve the construction of certain “widgets” that can propa-
gate information in the graph in a controlled way. These widgets can be quite
intricate. For example, to show that planar 3-colorability is NP-complete [7],
one can use the crossover widget shown in Fig. 1. This widget
has the properties (i) it is planar, (ii) any legal 3-coloring must
color the opposite corners the same, and (iii) every 3-coloring
of the corners with opposite corners the same extends to a legal
3-coloring of the whole widget. Thus, by replacing edge cross-
ings with the widget, 3-colorability of arbitrary graphs can be
reduced to 3-colorability of planar graphs. We can think of the
widget in Fig. 1 as propagating coloring information from the
east corner to the west corner and simultaneously from the north corner to the
south corner.

However, to establish NP-hardness, it is not enough just to be able to prop-
agate information in the graph; it must also be possible to duplicate information
so that it can be propagated nonlinearly. Here we are using the term linear in
the same sense as linear logic [8]. In linear logic, proofs may not freely dupli-
cate assumptions and must consume all occurrences of all assumptions. Every
assertion that is produced is consumed exactly once. Thus the proof rules of
linear logic do not allow the nonlinear propagation of information.

A similar phenomenon arises in combinatorial constraint problems. For ex-
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ample, in the Boolean satisfiability problem, a 3CNF Boolean formula may con-
tain several occurrences of the same variable. Information is propagated by the
constraint that all occurrences of that variable must have the same truth value.
The general 3CNF satisfiability problem is NP-complete, but the problem is
efficiently solvable under the restriction that each variable occur at most twice.
Intuitively, this restriction prevents the nonlinear propagation of information.

Likewise, in the distance-d coloring problem, the restriction to 3d/2 or

fewer colors essentially prevents the nonlinear propagation of information. A
paradigmatic example is the graph illustrated in Fig. 2 with d =
6. This graph is (6, 10)-colorable, and any legal coloring imposes
certain constraints on the colors of any node connected to one of
the three terminal nodes. In the (6,10)-coloring problem, this
graph can be used as a widget to propagate coloring constraints
) nonlinearly. Consequently, (6, 10)-coloring is NP-complete [19].
Fig. 2 On the other hand, the graph of Fig. 2 is not (6,9)-colorable,
so it is a (6,9)-forbidden subgraph in the sense that it cannot
appear as a subgraph of any (6,9)-colorable graph. This severely restricts the
form of (6, 9)-colorable graphs to the extent that they are efficiently recognizable
and efficiently colorable.

This paper is organized as follows. In Section 2, we introduce a generalization
of the notion of tree decomposition [18]. Also in that section, we indicate how
such decompositions can be obtained from a certain class of edge partitions,
of which biconnected components are a special case. In Section 3, we show
that for ¢ < 3d/2, (d, c)-colorable graphs have a tree decomposition of width
at most 2d, and we can find such a decomposition efficiently. In one case, this
involves finding a cycle decomposition of width at most d and stringing the two
strands of the cycle together. We conclude in Section 4 with some observations
regarding the homology of colorable graphs.

2 Decomposition

In this section we introduce a generalization of the notion of tree decomposition
[18]. In a tree decomposition, the overlay graph is a tree. In our generalization,
the overlay graph may be any graph.

2.1 Definition of Decomposition

Let ¢, j, k be vertices of an undirected graph G = (V| E). The set [i, k] is the
set of all vertices lying on all shortest paths from 4 to k, inclusive, in G. The set
[i, k] is called an interval. We say that j is between i and k if j € [i, k]. A set
A of vertices is convex if [i, k] C A whenever i,k € A. Some basic properties
of intervals and convexity in graphs are developed in [14, 15, 16].

Definition 2.1 A decomposition of G is a triple (T, F, X) consisting of an undi-
rected overlay graph (T, F) and amap X : T — 2V associating a subset X; C V
with each ¢ € T satisfying the following properties.



(i) The X; cover V; that is, V' = [J,cp Xi.
(ii) For all edges (s,t) € E, there exists ¢ € T such that s,t € X;.
(iii) If j is between ¢ and k in (T, F), then X; N X, C Xj;.
Equivalent to (iii) is the property:
(iv) For any vertex u, the set {i | u € X;} is convex.
The width of (T, F, X) is max; | X;]|. a

A tree decomposition is just a decomposition in which the overlay graph
is an undirected tree. In this case, the intervals are just unique simple paths
between pairs of vertices and the convex sets are subtrees. We will also consider
cycle decompositions and line decompositions in which the overlay graphs are
undirected cycles and paths, respectively.

2.2 Decompositions from Edge Partitions

Decompositions can be obtained from certain edge partitions. Let P C 2F
be an edge partition of G = (V, E); that is, a collection of pairwise disjoint
nonempty sets of edges whose union is E. For A € P, let V(4) C V be the
set of endpoints of edges in A. Suppose P satisfies the following additional

property:
Condition 2.2 If A,B € P and A # B, then |V(A) NV (B)| < 1.

Thus no two partition elements share more than one vertex. If P satisfies this
condition, then we call any vertex common to two or more partition elements a
local articulation point.

Such partitions give rise to decompositions of G as follows:

Lemma 2.3 Let P be an edge partition of G satisfying Condition 2.2. Let

T=PU{u|V(A) NV(B)={u} for some A, B € P}
F={(u,A)|ueV(A)}

Xa=V(A)

X, = {u}.

The structure (T, F, X) is a decomposition of G.

Proof. Properties (i) and (ii) of Definition 2.1 follow from the fact that G
is connected and P is a partition of the edges. For property (iii), X, and X,
cannot intersect for u £ v. If X,, and X 4 intersect, then (u, A) € F, and there
is no other vertex of (T, F') between u and A, therefore (iii) holds vacuously.
Finally, if X4 and X intersect, A # B, then by Condition 2.2, X4 N X5 = {u}
for some vertex u, thus [A4, B] = {A,u, B}, and X4 N Xp = {u} = X,,. O



A special case of such a decomposition is given by the biconnected com-
ponents of G and their articulation points [10]. Recall that the biconnected
components are the equivalence classes of edges with respect to the equivalence
relation defined by: e ~ ¢’ if e and ¢’ lie on a common simple cycle. In this
case, the decomposition provided by Lemma 2.3 is a tree decomposition of G,
and the width is the maximum size of a biconnected component. In this decom-
position, the sets X 4 for A € P are the biconnected components of G and the
sets X, correspond to the articulation points. We will see a generalization of
this construction in Section 3.2.

3 An Algorithm

Let ¢,d > 2 be fixed constants, ¢ < 3d/2. Henceforth, colorable means (d, c)-
colorable. Let G = (V, E) be a connected undirected graph. Let d(-,-) be the
shortest-path distance function in G.

In this section we describe an algorithm to either construct a constant-width
tree, line, or cycle decomposition of GG, which can then be used to give a tree
decomposition of G of width at most 2d, or declare that G is not colorable.
This algorithm can be used in conjunction with known algorithms for coloring
graphs of bounded treewidth [12, 17, 3] to either give a coloring of G or declare
that no such coloring exists. The algorithm is linear in the size of G for fixed d.

The algorithm proceeds in several steps, which we treat in the indicated
subsections.

§3.1 We first partition the graph into biconnected components. We show that
there is at most one large component G’, otherwise G is not colorable. If
there are no large components, we are done. Otherwise, the large com-
ponent contains a simple cycle T of length at least 2d + 2, which can be
found in linear time. The cycle T is called the trunk.

§3.2 We construct a cycle decomposition of G’ by defining an edge partition
satisfying Condition 2.2.

63.3 Adding the biconnected components removed in §3.1 back in, we show
that we obtain a cycle decomposition of width at most ¢ — d/2.

§3.4 Finally, we show how to obtain a line decomposition of width 2w from a
cycle decomposition of width w by collapsing the two strands of the cycle.

Any one of these steps may fail if G is not colorable, but this will occur in a
recognizable way.

3.1 Biconnected Components

We first find the biconnected components of G. This can be done in linear time
[10]. As observed, the biconnected components and their articulation points
provide a tree decomposition of G. A biconnected component is small if its
diameter is at most d/2, otherwise it is large.



Lemma 3.1 If G is colorable, then there is at most one large component.

Proof. If there were two large components, then each would have a cycle of
length at least d. Since the graph is connected, the two large components would
be connected by an isthmus, and one could construct a forbidden subgraph
similar to the one shown in Fig. 2. a

A large component G’ must be biconnected and its diameter must be at least
|d/2] + 1. If 3d/4 < diam G’ < d, then G’ (hence G) is not colorable, since
there would be a simple cycle of length greater than 3d/2 in a set of diameter
d. So either diam G’ < 3d/4 or diam G’ > d. If the former, or if there is no
large component at all, then each biconnected component is of size at most c,
otherwise the graph is not colorable. In this case we have a tree decomposition
of width at most ¢ < 3d/2 counsisting of the biconnected components, and we
are done.

So assume diam G’ > d + 1. There must exist nodes a, b such that d(a,b) >
d + 1, and since G’ is biconnected, there is a simple cycle T of length at least
2d + 2 containing a and b. We will call the cycle T' the trunk. The nodes a,b
and the trunk can be found in linear time by depth-first or breadth-first search.

3.2 A Cycle Decomposition

In this section we assume that we have identified a biconnected component G’

of diameter at least d + 1. This implies the existence of a simple cycle T in G’

of length at least 2d + 2 and two nodes a and b on T of distance at least d + 1.

We will show how to find a cycle decomposition of G’ of small width, provided
G’ is colorable. The picture to keep in mind is Fig. 3.

First we prove a lemma that will allow us to construct a

suitable edge partition consisting of the equivalence classes

of a certain equivalence relation 2. This partition is very
much like biconnected components, except that we impose
a bound of d on the length of cycles. The following technical
lemma is needed for transitivity.

Fig. 3 Lemma 3.2 If G’ is colorable, then G’ has no simple cycle
of length k for anyd+1 <k <2d+1.

Proof. Suppose for a contradiction that there were a simple cycle K of length
k with d+1 < k < 2d+ 1. Then diam K = |k/2| < d, so by colorability we
must have k < ¢ < 3d/2.

The cycles T and K must have a node in common; if not, then since the
graph is connected, T and K would be connected by an isthmus, and we could
construct a forbidden subgraph like the one shown in Fig. 2.

Since k < 3d/2, there must exist at least |T'|—k > 2d+2—|3d/2] = [d/2]+2
nodes in T\K. Let x be an arbitrary node in T\K. Let d(z, K) denote the
distance from z to the closest element of K. Since T and K share at least
one node, z is contained in a maximal segment P of T' disjoint from K. The



segment P may have no more than |d/2] —1 nodes, otherwise we could construct
a forbidden subgraph like the one shown in Fig. 2 consisting of nodes from P
and nodes from K. Therefore

d(x, K) < [([d/2] = 1)/2]. (1)

We claim now that

d(a, K) > [([3d/2] = k)/2] = 0. (2)

If not, then

d(a,b) < d(a,K)+ |k/2] + d(K,b)

13d/2]/2 = k/2] + [k/2] + [([d/2] = 1)/2]
[3d/2]/2 = [k/2]] + [k/2] + [[d/2]/2]
[3d/2]/2] + [1d/2]/2]

d/2+ [d/2]/2] + [1d/2]/2]

/2] + [1d/2]/2] + [1d/2]/2]

/2] + [d/2]

IN A IA

[
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[
=
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(

contradicting the assumption that d(a,b) > d + 1. By symmetry, (2) also gives
a lower bound on d(b, K).

Since every node = € T is of distance at most [(|d/2] —1)/2] from K, and
since every pair of nodes on K are of distance at most |k/2] < [|3d/2]/2], the
distance between any element of T' and any element of K is bounded by

[13d/21/2] + [(1d/2] — 1)/2] < [|3d/2)/2] + |1d/2]/2]
< 3d/4+d/4 (3)
=d.

By (2), a ¢ K. Let @ be the maximal segment of T' containing a and disjoint
from K. By (3), diam(Q U K) < d. But @ contains at least 2d(a, K) — 1
elements of T\ K, thus

QU K| >2d(a,K)—1+k
2([([3d/2] —k)/2]+1) -1+ k
=2[(|3d/2| - k)/2] +1+k
2((13d/2] = k)/2)+ 1+ k
= 13d/2| + 1,

contradicting colorability. O

For edges e, e’ in G, define e e if e and ¢ lie on a simple cycle of length
at most d. This definition is identical to the definition of the edge partition for
biconnected components except for the length restriction. In the presence of
the length restriction, the only difficulty would be transitivity, but this is taken
care of by Lemma 3.2.



Lemma 3.3 If G’ is colorable, then the relation 2 is an equivalence relation.

Proof. Reflexivity e < ¢ follows from the fact that the edge e and its two
endpoints constitute a simple cycle. The relation is symmetric, since e and ¢’
can be interchanged in the definition of 2

For transitivity, suppose (u,v) i (u/,v") and (u',v") L (u”,v"). Let C and
C’ be two simple cycles of length at most d such that (u,v) and (u’,v") occur on
C and (v',v") and (u”,v"”) occur on C’. Assume u,u’,v’,v occur in that order
around C. Let z be the first vertex on the segment of C' from u to v’ that also
lies in C’; o must exist, since u’ € C’. Let y be the first vertex on the segment
of C from v to v’ that also lies in C’; y must exist, since v’ € C’. Also, x # y,
since C' is simple. Let P be the segment of C' between x and y containing (u, v)
and let P’ be the segment of C’ between = and y containing (u”,v”). Then
P and P’ intersect only in z and y, and together they form a simple cycle K
containing (u,v) and (u”,v”). The length of K is at most |C|+|C’'|—2 < 2d—2,

so by Lemma 3.2, its length is at most d, therefore (u,v) 9 (u”,v"). a

. d .
Lemma 3.4 If G’ is colorable, then no two ~-equivalence classes have more
than one node in common.

Proof. If u and v were both nodes of distinct 2 classes X and Y, then u
and v would be of distance at most d/2 in X and at most d/2 in Y. Combining
shortest paths in X and Y between u and v would yield a simple cycle of length
at most d with edges from both X and Y, thus X =Y. This is a contradiction.

O

Lemmas 3.3 and 3.4 allow us to apply the theory of Section 2. Condition 2.2

follows from Lemma 3.4. Thus the i—equivalence classes give a decomposition
of G’ of width at most ¢. Later, in Section 3.3, we will improve the width bound.

To show that the decomposition is a cycle decomposition, we need to show
how to identify a local articulation point on T. For s,t € T, let (s, ¢) denote
the open interval [s, t]\{s,t}. A chord is a path between two nodes of T none
of whose intermediate nodes lie on T. We use the notation (s, t) to represent
a chord with endpoints s,t € T. A node u € T is subtended by a chord (s, t)
if u lies strictly between s and ¢ on a shortest path between s and ¢ in T'; that
is, if s # u # t and u € [s, t]. Recall that [s, t] is the set of all nodes on all
shortest paths between s and ¢t in 7. There is only one such path unless T is of
even length and s and ¢ are diametrically opposed. The chord (s, t) subtends
all the nodes in (s, t).

Lemma 3.5 If G’ is colorable, then there exists a local articulation point on T.
No local articulation point is subtended by a chord.

Proof. If a node = on T is subtended by a chord, then the two edges on T

adjacent to x are f(i—equivalent, because the length of the chord and the length



of the interval of T subtended are at most d/2, otherwise we could construct
a forbidden subgraph like the one shown in Fig. 2. Thus if every node of T' is

subtended by a chord, then by transitivity, all edges of T" are g-equivalent. But
this cannot be, because no two nodes of distance greater than d/2 on the same

segment of T' between a and b can both be in V' (A) for some 2 class A, because
the diameter of A is at most d/2, and this would short-circuit the distance from
a to b. ad

In fact, by the same argument, the trunk contains at least four local articu-

lation points, thus contains edges from at least four 2 _classes. Starting from a
and moving around the trunk, there must be a local articulation point x within
distance d/2 of a, and there must be a second local articulation point y within
distance d/2 of x, both of which must be encountered before reaching b. There
must be at least two other local articulation points on the other path on 7" from
a to b.

Lemma 3.6 If G’ is colorable, then G’ consists of a cycle of biconnected sub-
graphs, each of diameter at most d/2. Fach biconnected subgraph is connected
to its two neighbors on the cycle by a local articulation point. We can find the
decomposition in linear time.

Proof. The existence is clear from Lemma 3.5. To find the decomposition,
first find a local articulation point s. This can be done in linear time, since every
set of size |d/2] must contain a point of T, and there is a local articulation
point no more than |[d/2| from any node of T. A local articulation point is
recognizable by breadth-first search from s down to a depth of d/2, since it is
not subtended by a chord. We break the graph at s, forming two copies of s,
then find the biconnected components of the resulting graph, which gives the
desired decomposition. O

3.3 Bounding Cycle Width

Let C be the set of small biconnected components of G that we removed in
Section 3.1, and let P be the set of partition elements of G’ constructed in
Section 3.2. In this section we show that, even in the presence of the components
C, we can obtain a cycle decomposition of width at most ¢ — d/2.

Let N = V\T the set of non-trunk nodes of G. Except for articulation
points, N contains all nodes of V(A) for any small biconnected component A
of G.

Let I be an interval in T of length exactly |d/2], which contains exactly
|d/2| + 1 nodes. Note that T extends at least a distance |d/2]| on both sides
of I. f U C V, a U-path is a path all of whose intermediate (non-endpoint)
nodes are in U. Let B be the set of nodes in NV connected to a node in I via an
N-path.

If the interval I contains two local articulation points bounding an element
of P, then B U I contains that component of P and all small biconnected com-
ponents of G connected to it via an N-path. Moreover, every small biconnected



component of G is so connected to some component of P, and every component
of P is so bounded by some I. We wish to show

Lemma 3.7 If G is (d,c)-colorable, then |BUI| < c¢—d/2.

This will follow from a sequences of lemmas. First we show how to simplify
the graph without loss of generality. Delete any edge between a node in N
and a node in T\I; every node in B is still connected to I via an N-path,
so the definition of B after deleting these edges would still give the same set.
Moreover, the graph is still (d, ¢)-colorable, since deleting edges cannot make it
less colorable. Find a spanning tree of the remaining graph containing all edges
of I. One edge of T was removed, but add it back in. The resulting graph is
still colorable, and all nodes of B are still connected to I via an N-path. Delete
all nodes not connected to I, and redefine G to be the resulting graph.

Our simplifications ensure that the graph G consists of the trunk 7" with a
disjoint set of trees branching out from nodes of I. Let B,, be the tree of nodes
in B connected to u € I by an N-path. The sets B, are disjoint and span B.
For every node = € B, there is a unique u € I such that z € B,, and for u # v,
B, and B, are connected only through u and v.

Lemma 3.8 Let u € I. Then d(x,u) <d/2—1 for all x € B,.

Proof. If not, then there exists « € B, with d(r,u) = |d/2]. The set of
elements on a shortest path in B, from = to u along with an interval of d + 1
elements of T' of which u is the median element form a set of size |3d/2] + 1
and diameter d, contradicting colorability. a

Lemma 3.9 diam (BUI) <d—1.

Proof. If diam (B U I) > d, then there exist x,y € B U I such that d(z,y) =
d. Let u,v € I such that © € B, U {u} and y € B, U {v}. By Lemma 3.8,
u # v. Assume without loss of generality that w is to the left of v. Let A consist
of all nodes on a shortest path from x to y (which includes a shortest B,-path
from x to u, followed by a shortest T-path from u to v, followed by a shortest
B,-path from v to y) along with d(z,u) nodes of T' immediately to the left of u
and d(y,v) nodes of T' immediately to the right of v. Then diam A = d and

|A| = 2d(z,u) + 2d(y,v) + d(u,v) + 1
= 2(d(z,u) + d(u,v) + d(v,y)) — d(u,v) + 1
= 2d(z,y) — d(u,v) + 1
>2d—d/2+1
=3d/2+1,

contradicting colorability. O

Lemma 3.10 Let z € I be chosen so as to minimize the mazimum distance to
any other node in BUI. Then d(z,x) < d/2 for allxz € BU I.

10



Proof. Let x € B U I maximizing d(z,z). If z € B,, then we are done by
Lemma 3.8. Otherwise, assume without loss of generality that x € B, for some
u to the left of z (the argument is symmetric if w is to the right of z). Let y be
such that d(z,y) is maximum over all elements of all B, for v = z or v to the
right of z. Then

d(z,y) = d(z,2) + d(z,y), (4)
since the shortest path from x to y goes through z, and
d(z,2) <d(z,y) +1 (5)

by choice of z: if d(z, z) > d(z,y) + 2, then the node immediately to the left of
z would have been a better choice. Using (4), (5), and Lemma 3.9,

d—1>d(z,y) =d(z,z) +d(z,y) > 2d(z,z) — 1,
therefore d(x,z) < d/2. O
Lemma 3.11 |B|<c¢—d—1.

Proof. Let D consist of B along with an interval of d+ 1 elements of T with
the z of Lemma 3.10 as median element. By Lemma 3.10, diam D = d, thus
|D| < ¢ by colorability, therefore |B| = |D| — (d+1) <c¢—d— 1. 0

Lemma 3.7 now follows, since

IBUI|=|B|+|I|<c—d—1+d/2+1=c—d/2.

3.4 Converting Cycles to Lines

We have shown that G has a cycle decomposition of width at most ¢ —d/2. Our
main result will follow immediately from the following lemma.

Lemma 3.12 If G has a cycle decomposition of width w, then G has a line
decomposition of width at most 2w.

Proof. Intuitively, grasp the cycle by diametrically opposed nodes and pull,
creating a line with two strands.

Formally, let (T, F,X) be a cycle decomposition of G = (V, E) of width
w. Suppose (T, F) is a cycle of length m + 1 with the vertices of T" named
0,1,2,...,m in order around the cycle. Consider the line (77, F’, X’) with

T"={0,1,2,...,[m/2]},
F' ={(i,i+1)]0<i<|[m/2] — 1},
X=X, UX,_;.
We wish to show that this is a line decomposition of G of width at most 2w.

Properties (i) and (ii) of line decompositions hold trivially, and it is clearly of
width at most 2w, thus it remains to show property (iii).
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Suppose 0 < i < j < k < [m/2]. We wish to show X/ N X, C X]‘, or
(Xz U X’rn—i) N (Xk: U an—k:) g Xj U Xm—ja

which by distributivity reduces to the following four inclusions:

XinX, C X;UXpj (6)
XiNXm—r € X; UX, (7)
Xm—iN X, € X;UX, (8)

Xm—i N Xpm—k € X; U X, 9)

These inclusions hold by virtue of the fact that (T, F, X) is a cycle decomposi-

tion. Properties (6) and (9) are immediate, since j € [i, k], and by symmetry

m—j € [m—i, m— k], therefore X; N X, C X; and X,,,—; N Xppotp € X e
For (7) and (8), there are two cases, depending on whether

(m—k)—imodm+1<|(m+1)/2] or
i—(m—k)modm+1<|(m+1)/2].

In the former case, j € [i, k] and k € [i, m — k], therefore j € [i, m — k], and
by symmetry, m — j € [m — i, k]. These imply that X; N X,,—r € X, and
Xm—i N Xy C mej-

In the latter case, we have k — (m — i) mod m + 1 < [(m + 1)/2|. Then
j €[4, k] and i € [m —1, k], therefore j € [m —1, k], and by symmetry, m —j €
[¢, m — k]. These imply that X,,,_, N X} C X and X; N Xy € Xppj. O

4 Homology of Colorable Graphs

Colorability has deeper implications regarding the cycle structure of the graph
that are best expressed in terms of homology. The main observation is Theorem
4.2 below, which says that modulo short simple cycles, there is at most one long
simple cycle in the graph.

Let G = (V, E) be a connected undirected graph. Let E be the set of directed
edges of G, consisting of two directed edges uv and vu for each undirected edge
with endpoints u,v of G. Let A be the set of oriented simple cycles. We write
(ujug - - - uy ) for the oriented cycle that goes through u,us,... ,u,,u; in that
order. Call an element of A short if it is of length at most 2d + 1, otherwise
long. Let A% be the set of short oriented simple cycles. Let Hy, Hy, and Hy be
the free abelian groups on generators V, E , and A, respectively. Let H¢ be the
subgroup of Hy generated by A

The free abelian group H on a finite set of generators X can be regarded
as the set of formal sums )y kce, where the k. € Z are integer coefficients.
This also forms a Z-module of dimension |X| with standard basis X. We have
a natural inner product defined by e « ¢/ = 1 if e = ¢’ and 0 if e # € for
basis elements e,e’ € X, extended uniquely to H?> — Z by bilinearity. For a
basis element e € X, the projection = +— e o x gives the coefficient of e in the
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expression x. We apply this construction in Hs, H; and Hy with standard bases
A, E, and V, respectively.

For an object a in A or E, we denote by @ the object with the opposite
orientation. For example, if « is the oriented simple cycle (uvw), then @ =
(wovu), and if e is the directed edge uv, then € = vu. The maps ~: A — A
and ~: E — E extend by linearity to group homomorphisms = : Ho — Hs and
~: Hy — Hjy, respectively.

Let 0, : Ho — Hy and 9y : Hy — Hgy be the boundary homomorphisms
defined by: for an oriented simple cycle «, 91(«) is the sum of the directed
edges in «, and for a directed edge uv, Jp(uv) = v — u. For example, if « is the
oriented simple cycle (uvw), then 9 (a) = uv + vw + wu.

If e is a directed or undirected edge with endpoints u, v, let t. € A be the
unique cycle (uv) of length 2 consisting of the two directed edges uv and vu.
For e € E, 01(t.) = e+eand t, = tz. Let H2 be the subgroup of H, generated
by the t..

The cycle group C C Hj is the kernel of dy, which is the same as the image
of Hy under 8; (Lemma 4.1(i)). Let C¢ be the image of HY under ;. The
group C? is the subgroup of the cycle group generated by (the directed edges
of) the short oriented simple cycles.

Let P; be the positive orthant of H;, 0 <4 < 2. This is the set of expressions
with only nonnegative coefficients. The set P; induces a partial order < on H;
defined by: a < g iff B — a € P;. An element is called positive if it is contained
in Pl

Lemma 4.1
(i) 01(Hs) =C.
(ii) O1(P) =P NC.

Proof. For the forward inclusion of (i), a standard argument shows the
image 01(Hz) is contained in C' = ker 0p; that is, dy 0 91 = 0. For example, if
a = (uvw), then

0p(01(a)) = o (uv + vw + wu) = (v —u) + (w —v) + (u —w) = 0.

The forward inclusion of (ii) follows from the observation that the image of a
positive element under 9; is positive in Hj.

For the reverse inclusion, we prove (ii) first. This argument is similar to the
proof of Euler’s theorem that a cycle in an undirected graph can be written as
a union of simple cycles. If x € P; and v € V, define the indegree of v in x to be
the sum of the coefficients in x of all edges entering v, and define the outdegree
of v in x to be the sum of the coeflicients in = of all edges exiting v. Observe
that for positive x, membership in ker 0y is equivalent to the condition that the
indegree of every vertex is equal to its outdegree; equivalently, v « Jy(x) = 0 for
all v.

Let z € P, N ker §y. Starting at any node of nonzero outdegree, trace a
cycle ay, following edges with positive coefficients in = until encountering a
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node previously seen. It is always possible to continue, since the outdegree
of any node equals the indegree. Subtract off the edges of «y; the resulting
expression x — 01 («v1) is still in P; N ker dp. Continue in a similar fashion to get
Qg, 3, ..., until the resulting expression is 0. Let o =}, ;. Then z = 0;(«)
and o € Py.

For (i), let = € ker dy. Let v € P» be a positive sum of length-2 cycles ¢, with
coefficients just large enough that +09;(y) € Py. Then x+09; () € Py Nker 0.
By (ii), there exists a € Py such that 0;(a) = 2 4+ 91(7). Then 0;(a — ) = x.

O

For example, the element uv 4+ vw — uw € ker dy is 01 ((uvw) — tyw)-

Theorem 4.2 Suppose G is (d,3d/2)-colorable, d > 2. Then either

(i) all simple cycles of G are short, in which case C¢ = C and the quotient
group C/C? is trivial; or

(ii) G contains a long simple cycle, in which case the quotient group C/C? is
isomorphic to 7.

Proof. Case (i) is immediate from Lemma 4.1(i). If all simple cycles are
short, then Hy = H¢, in which case C' = C.

For case (ii), assume that G contains an oriented simple cycle T of length at
least 2d + 2. By Lemma 3.2, G has no simple cycle whose length lies between
d+1 and 2d + 1, inclusive. In this case C¢ is generated by (edges of) simple
cycles of length at most d.

We first show that 01 (7)) is not in C¢, which implies that C¢ # C, thus the
quotient C/C? is nontrivial. By general considerations, we know that it is a
Z-module of some finite dimension. We will show later that the dimension is 1.

Call an element of Hy reduced if it is an expression of the form (8 + ~, where

(i ﬂEPQ;

)
(i) B is orthogonal to H3; that is, t. « 3 = 0 for all e;
(iil) v € H3;

(iv) it is not the case that 9;(t.) < 91(f) for any edge e.

Intuitively, conditions (i)—(iv) say, respectively, that 3 is positive, § is a sum of
cycles of length 3 or greater, v is a weighted sum of cycles of length 2, and no
two cycles of § contain a complementary pair of edges e, €.

We now claim that for every element of a € Hs, there is a reduced expression
B+~ € Hy such that 9;(a) = 91(3 + ). Moreover, if a € HY, then we can
ensure that 3 € HY; thus the reduction process does not introduce any long
cycles.
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First, express « as a sum 31 + 71, where 1 is a weighted sum of cycles of
length at least 3 and 1 is a weighted sum of cycles of length 2. Then § and
satisfy (ii) and (iii). To obtain (i), we observe that

(a+a) =01(> (e alte);

€

intuitively, all the edges in o + @ occur in complementary pairs. Thus

Oh(—a)=0(a— Z(e e Q)te).

(&

If 8y = B — By with 8], 8] € P, let

Ba =B + 05, W2=71—Z(6°5f)te~

€

Then 01 (a) = 01(B2 + v2) and B2 + o satisfies (i)—(iii).

Note that none of the operations so far have introduced any long cycles.
Thus if o € HY then 3 € HE.

Finally, to get (iv), suppose 01(t.) < 01(02). Since te » f2 = 0, we must
have 0,0’ € A and e € E such that 0 + 6’ < B2 and O01(te) < 01(0 +0'). We
have 01 (0+ 6" —t.) € P, N C, so by Lemma 4.1(ii) there exists n € P, such that
01(n) = 01(0 + 6 —t.). Write n as i’ + n’’, where 7’ is orthogonal to H2 and
7" € HZ, and let

B3=P02—0—0"+1n 3 ="2+1" +te.

Then 01 (a) = 01(P3 + 7v3) and O3 + 3 still satisfies (i)—(iii).

Moreover, (33 € HY if 3, € HY. To see this, observe that the inner product
with ) _ e gives the sum of the coefficients, which for a cycle gives the length of
the cycle. If n = >_. 7;, where each 7; € A, then because 6,60’ € A4, we have

DAQ e oim) =D _e) - on(n)

i e e

= e) o (0+0 1)

=0 _e)e01(0+0)— (D e) - dulte)

<2d -2,

therefore each 7; in the sum 7 is of length at most 2d — 2. By Lemma 3.2, it is
of length at most d.

The previous step can be repeated only finitely many times before (iv) be-
comes satisfied, because each time the inner product of the current 5; with > e
decreases by two. We have shown that every « is equivalent modulo 0; to a
reduced (3 + . Moreover, if a € HY, then 8 € HY.
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Now we argue that if a € A and 9;(a) € C?, then o € A% This implies
that 01(T) ¢ C9, since T ¢ A

Suppose o € A and 0;(a) € C4. If « is of length 2, there is nothing to
prove, so assume « is of length at least 3. There is a reduced form expression
B+ 7 such that 8y (e) = (8 +7), 8 € H, and v € HZ. For any edge e € E,

(e—e)+di(a—p)=(e—%)+di(7) =0,
since 7y is a weighted sum of cycles of length 2; therefore

€ e 31(04) — € 81(a) — € 5‘1(5) — € 81(5)

Because « is a simple cycle of length at least 3, each of e « 9;() and € « 91 («)
is either 1 or 0, and not both are 1. Also, since § satisfies (iv) of reduced
expressions, one of e « 91 () or € « 91 () must be 0. It follows by an easy case
analysis that we must have e « 91 () = e « 91(0) in all cases. As e was arbitrary,
O1(a) = 01(B). As « is a simple cycle and § is a positive sum of simple cycles,
we must have a = 3.

Now we argue that there is only one long simple cycle modulo short simple
cycles. Let T and T” be two oriented long simple cycles. Let a and b be points
on T of maximum distance from each other. Let p and ¢ be local articulation
points on T such that p is of distance at most d/2 from a, moving in the forward
direction on T, and ¢ is of distance at most d/2 from b, also moving in the
forward direction. Then p and ¢ are at least distance d +1— [d/2] = [d/2] + 1
apart on T'. Since local articulation points are not subtended by chords, removal
of p and ¢ disconnects the graph. Moreover, both T and 7" must traverse p and
q, otherwise we could construct a forbidden subgraph like the one illustrated in
Fig. 2. Each of T and T’ traverse p and ¢ exactly once, since they are simple,
and we can assume without loss of generality that they are oriented so as to
traverse them in opposite directions.

Consider 61 (T"+T) € C. We will show that this expression vanishes modulo
C. Every edge e of T" is contained in a maximal segment of 7" all of whose
intermediate nodes do not lie on 7. This segment constitutes a chord of T
consisting of edges of T’. The endpoints of the chord are distinct and lie on
both T and T”. The length of the chord is at least 1 and at most d/2, otherwise
we could construct a forbidden subgraph. The length of the segment of T
subtended by the chord is at least 1 and at most d/2 for the same reason. Thus
these two undirected segments together form a short simple cycle, which we
orient in the opposite direction from T”; that is, the cycle contains the edge €
for every edge e on the chord. The segment of the short cycle coinciding with
T is oriented in either the same direction as T or the opposite direction. Let R
be the set of short simple cycles obtained in this way.

Now let v be a maximal sum of cycles of length 2 such that 9;(y) < oy (T" +
T+ R). We argue that 8, (T’ +T+ Y. R—~) = 0. Consider each edge ¢ € E
separately. If neither e nor € is an edge of 77 or T, then e « 01 (T"+T+> . R—7) =
0. If e lies on T” but neither e nor € lies on T, then there is exactly one
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element of R containing € and none containing e. Since both e and € appear in
O (T'+ T+ > R) with coefficient 1, ¢, appears in v, and

e (T +T+Y> R—9)=e+d(I'+Y R—7)=0.

It remains to calculate the coefficient of e and € in 0, (T" +T + > R — ~) for
e = wv lying on T. Suppose p,u,v,q occur on T in that order. Let P be the
segment of T between p and u and let @@ be the segment of T between v and gq.
The segment of T” from q to p traverses an odd number of chords subtending
e, including possibly one of e or e itself, and the traversals from @ to P and
from P to () must alternate, with one more traversal from @ to P. Each of
these chords is responsible for a cycle of R containing either € or e, depending
on whether the chord goes from @ to P or from P to @, respectively. So the
coefficients of e and € in 94 (>_ R) are k and k + 1, respectively, for some k > 0.
This includes the case in which e or € is an edge of T”, except the value of k is
one greater. Adding in the e from T', we have that the coefficients of e and € in
O (T'+T+5 R) are both k+1. Since v was chosen maximally, ¢, appears in
with coefficient k41, therefore the coefficients of e and € in 01 (T"+T+>, R—7)
are both 0.

Since e was arbitrary, we have O (T' +T+ > . R—v)=0,80 (T +T') =
01(y — Y. R) € €4, therefore 9,(T") is equivalent to —d;(T) modulo C¢. We
have shown that every element of C is equivalent modulo C¢ to kT for some
keZ. ad
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