Some Related Problems from Network

Flows, Game Theory and Integer Programming

Sartaj Sahni+

TR 72 - 132

July 1972

Department of Computer Science
Cornell University
Ithaca, New York 14850

To be presented at the 13th Annual Symposium on Switching and Automata
Theory, IEEE, Maryland, October 1972.

Some Related Problems from Network

Flows, Game Theory and Integer Programming

Sartaj Sahni

Cornell University

Abstract

We consider several important problems for which no
polynomially time bounded algorithm is known. These problems
are shown to be related in that a polynomial algorithm for

one implies a polynomial algorithm for the others.

Some Related Problems from Network

Flows, Game Theory and Integer Programming

Sartaj Sahni

Cornell University

l. Introduction

In [2] Cook introduced the concept of P-reducibility.

He showed that there exists a polynomial time bounded algo-

rithm to determine if a formula from the Propositional Cal-

culus, in conjunctive normal form, was satisfiable (i.e.

was true for some truth assignment to its variables) if and

only if the class of languages accepted by polynomial time

bounded Turing machinesis the same as that acceptable by

deterministic Turing machines in polynomial time. The latter

problem is a well known "Open Problem" in the theory of

computing.

Substantial work in identifying other P-equivalent

or P-complete problems has been done by Karp [5].

In this paper we show that the following problems are

P-complete:

(1)

(2)

(3)

(4)
(5)

Multicommodity network flows, flows with multipliers,

flows with homologous arcs and bundle flows.

Existence of a pure strategy equilibrium point in

n-Person Games.

0-1 Integer programming with only one constraint

(Knapsack Problem)
Minimal equivalent digraph

Minimal equivalent Boolean Form

We shall also show that Quadratic Programming and
Linear Programming with one nonlinear constraint are P-hard,
a condition not as strong as P-completeness.

In Section 2 we give a precise formulation of the notions
of P-reducible, P-complete and P-hard. Section 3 contains a
brief description of some of the known members of the class
PC (Polynomially Complete problems) which will be used in
"showing other problems equivalent. Section 4 includes detailed
proofs and descriptions of the new problems that have been

found to be in PC or PH (polynomially hard).

2. Definitions

Definition 1 [Knuth]

a) A computational method is a quadruple (Q,I,Q,f)

satisfying:
(i) Q contains the subsets I and Q
(ii) £ 1is a function from Q into itself.
f leaves {Q pointwise fixed,

i.e. f(q) =g Vg€ Q.

s

Informally Q, I, @, £ represent the states of the computa-
tion, the input set, output set, and the computational rule.

b) Each input x € I defines a computational sequence
Xgr X3r +.. as follows

Xq = X and x =4f(xk) for k > 0

k+1
A computaticnal sequence is said to terminate in k

steps if k is the least integer for which Xy € q .

(Note that by the definition of a computational sequence,
if X, € 2 then Xk+1n€ Q as Xpi1 = f(xk) = xk).

An algorithm is a computational method which terminates
in finitely many steps for all inputs x € I .

If the computational rule £f is single valued then

the computational method is deterministic otherwise it is

nondeterministic.

We restrict ourselves to computational methods that are
effective (i.e. all the operations to be performed are
sufficiently basic that they can be done in a finite amount
of time).

Assuming that at each step of the computational sequence
only one basic operation (add, multiply, compare, etc.) is
performed, we may define the time complexity of the sequence
to be the least k for which xklé 2 . In the case of a
non-terminating computation this is not defined.

The time complexity of an algorithm1 will in general be
some function of its inputs, say £(N) where N is a vector
that characterizes the inputs (for example in graph algorithms
N may be the number of vertices and edges).

If f£(N) is a polynomial in N then the algorithm is
polynomially time bounded. [In some cases it may be meaning-
ful for N to also characterize the outputs, for e.g.: if the
number of outputs is an exponential function of the inputs we

should not expect to find an algorithm that computes them in

'Unless otherwise specified 'algorithm' will mean 'deterministic
algorithm'.

P(N) ; P a polynomial and N a characterization of the
inputs].

As our computational model we shall use Turing Machines.
(For a standard treatment of this model see Hopcroft and
Ullman [3].) It should be noted that our results are valid,
independent of the computational model chosen (e.g. random
access machines).

Definitions 2 through 5 are from Karp [5].

Definition 2 P 1is the class of languages recognizable by

by one-tape Turing machines which operate in polynomial

time.

Definition 3 m 1is the class of functions from £* into

£* defined by one-tape Turing machines which operate

in polynomial time.

Definition 4 Let L and M be languages. Then L a M

(L is P-reducible to M) if there is a function fem

such that f(x)eM = xeL .

Informally, a problem S 1is P-reducible to a problem
T if a polynomial algorithm for T implies a polynomial
for S i.e. given a polynomial algorithm for T we can con-
struct a polynomial algorithm for S . In further discussion
we shall use this informal notion of P-reducible. However, a
suitable modification of each of the problems considered will

easily be seen to be P-reducible in the sense of Definition 4.

Definition 5 NP is the class of languages recognizable in

polynomial time by nondeterministic Turing Machines.

Open Problem is NP = P . We may rephrase this as "Is there

a deterministic polynomial algorithm for all languages

in NP". cCall this problem Pl .

Definition 6 A problem P2 will be said to be P-complete

if P2 a P3 and P3 o P2 for some P3 already known

to be P-complete.

Clearly P-reducible is a transitive relation and

P-complete is an equivalence relation.

Definition 7 Pl (defined above) is in PC (PC is the

equivalence class of P-complete problems and it includes

Pl)

Definition 8 A problem P2 is P-hard if P3 o P2 and

P3 e PC

Clearly all members of PC are P-hard. In some cases

we may only be able to show the relation P-hard rather

than the stronger P-complete relation.

3. Some Known Members of PC

To prove some of the reductions we shall make use of some
known members of PC . A brief description of these members
is given below (A more exhaustive list may be found in
Karp [51).

(i) a) sSatisfiability

Given a formula from the Propositional
Calculus, in conjunctive normal form (CNF), is

there an assignment of truth values for which it

is "True".

b) Satisfiability with exactly 3 literals

per clause.

This is the same as (a) except that each
clause of the formula now has exactly 3 literals.
c) Tautology

Given a formula, from the Propositional
Calculus, in disjunctive normal form (DNF) does
if have the value True for all possible assignments

of truth wvalues.

(ii) Sum of subsets of integers

Given a multiset S = (sl, ooy sr) of positive
integers and a positive integer M does there exist a
sub-multiset of S that sums to M . (This problem
is called the Knapsack problem in [5]. However, here we
shall denote by 'Knapsack Problem' a similar integer
optimization problem.) Note that a multiset is a set

of elements that may not necessarily be distinct.

(iii) Maximum Independent Set

Let G be a graph with vertices Vir Vor eees Vo oo
A set of vertices is independent if no two members of
the set are adjacent in G . A maximum independent set

is an independent set that has a maximum number of

vertices.

(iv) Directed Hamiltonian Cycle

Given a directed graph G , does it have a cycle

that includes each vertex exactly once.

Theorem 1 The following problems are in PC

(i) Satisfiability, Satisfiability with exactly
three literals per clause, tautology;
(ii) Sum of subsets of integers;
(iii) Maximum independent set of a graph;
(iv) Directed Hamilton Cycle.

Proof (i) is proved in Cook [2]. The rest are proved in
Karp [5]. Karp [5] acuually shows that Satisfiability
with at most three literals per clause is P-complete. From
this result one may trivially show that Satisfiability with

exactly three literals per clause is P-complete.

4, Complete and P-hard Problems

In this section we shall show that some frequently
encountered problems in various areas such as Network flows,
Game Theory, nonlinear and linear optimization are either
P-complete or at least P-hard. The reductions will easily
be seen to be effective. The polynomial factors involved in
the reductions are small (usually a constant or a polynomial

of degree 1).

4.1 Integer Network Flows

We define the following network problems:

N(i) Network flows with multipliers.

Let G be a directed graph with vertices Syr Sgr Vqv
ceer Vo and edges (arcs) €11 €5y eeer € . Let w (v) Dbe
the set of arcs directed into vertex v and w+(v) those

arcs directed away from v .

G will be said to denote a network with multipliers if:

(a) The source, Sy of the network has no incoming
arcs, i.e. w'(sl) = ¢
(b) The sink, So 4 has no outgoing arcs, i.e.

+ =
w (52) - ¢

(c) To every vertex vy (excluding the source and sink)
there corresponds an integer hi >0 , called its multi-
plier.

(d) To each edge, ey there corresponds an interval

[ai'bi] .
Conditions (a) - (d) are said to define a transportation
network.
We are required to find a flow vector ¢ = (¢l, ¢2, .
¢m) such that:
1) ey 26y < by
2) hi(v) z ¢i = E ¢. for all v € VI(G)
icw= (v iew (v :
iew= (v) iew" (v) ——
v # S,
3) z ¢. 1is maximized
.- i
icw (sz)
(Note: ¢i integer)
In what follows we assume a; = 0o .
N(ii) Multicommodity Network Flows
The transportation network is as above, but now h(v) =1
for all v in V(G) . We have, however, several different

commodities Cyr Cpr eeer Cp and some arcs may be labelled

i.e. .they can carry only certain commodities. Each arc is

10

assigned a capacity and we wish to know whether a flow
R = (rl,rz, ooy rn), where r, is the quantity of the

ith commodity, is feasible in the network.

N(iii) Integer Flows with Homologous Arcs

The transportation network remains the same. Also
h(v) = 1 and there is only one commodity. Certain arcs are
paired and we require that if arcs 1, j are paired then
¢i = ¢j . We wish to know if a flow of at least F is

feasible in the network.

N(iv) Integer Flows with Bundles

The arcs in the network are divided into sets Il’ ceey
I (the sets may overlap). Each set is called a bundle and
with each bundle is associated a capacity Ci . We wish to

know if a flow > F is feasible in the network.

(I ¢, <Cs, 1<3<k) and h(v) =1, Vv €V(3) .
i€I. J '
-]

Theorem N: Problems N(i) - N(iv) are in PC

Proof a) N(i), N(ii), N(iii), N(iv) o P1 .

The Nondeterministic Turing Machine just guesses the flows
in each arc and then verifies conditions (1) and (2). 1In
addition it does the following:

i) For N(ii) it verifies that the resultant flow
is >R .
ii) PFor N{iii) the 'homologous ccnditions' arc checked

and z ¢. > F verified.

iEW”(sz)

iii) For ©N(iv) the bundle restrictions are checked and

b)

11

z ¢. > F verified.
iew‘(sz)
If in N(i) we replace the max z ¢. reguire-
icw™ (s,)
ment to T: X ¢i > F o
' iEW‘(sz)
then from the above it follows that T o P1 . To see

N(i) o T we note that if the length of the input on a
Turing machine's tape is n then the largest number it
can represent is c™ for some constant ¢ which depends

only on the Turing machine. Hence the maximum capacity
of an arc is bounded by c® and so max z ¢i

iew™ (s,)
for some constant k . Now, assume there

< K°

is a polynomial [p(n)] algorithm for T then using the
method of bisection we can determine max X ¢i in
n iEw‘(sz)

at most 1092 k" =n log2 k applications
of T . This, therefore, gives a polynomial algorithm for
N(i) . Therefore, N(i) o T o Pl and from the transi-
tivity of o we conclude N(i) o P1 . Clearly, this

proof technique can be used to show N(iii) and N (iv)

complete when they are changed to maximization problems.

(i) Sum of subsets of integers. o N(i) . We construct

a network flow problem of type N(i) such that

max b} ¢, = M 1iff there is a sub-multiset of S
iEw‘(sz)

that sums to M . (For notations see Section 3.)

12

Source < Sink
S1 52
hi = s,
Clearly max z ¢. = M 1iff some sub-multiset of S

.z i
sums to M . 1&w (52)

(ii) Tautology o N(ii)

Suppose that the formula P in DNF has n-variables
A17 g7 eeer AL . We shall construct a multicommodity
network with n-commodities Cyr Cpr ewer Cp such that

the flow R(1, 1, ..., 1) 1is feasible iff P 1is not a

tautology. The network of Figure N2 realizes this.

*SMOTJ IOM3ISN AFTpoumodT3Tnw © Aborozne[ZN oanbTg

13
a

Z °osneTd T ®sneTld

(€] [¥]

14

Discussion

[A] This section of the network ensures that there is a
flow through only one of the nodes a; or Ei . In terms
of the formula A , a flow through a; means a truth
assignment of 1 to a; while a flow through Ei means

an assignment of 0 to a, .

i
c ———>l——-5
i i
.._.-._)____._.
1 Ly 3

[B] For each clause (Ki) in P we have a section of the

form
a
e N [—
c a
\<£*\\\) > > 7 ? :
. YK N
a S
\\ 3 c3
If there are j 1literals in the clause then arc (a,B)
is assigned a capacity of Jj - 1 . This requires that the

truth assignments be such that clause ki is false (as at
least one term in it is false). Node "B" 1is where the
"multicomoodity" property of the network is used. Here the
flow through o 1is correctly separated into its components

i.e. we are able to get back the truth values of the variables.

The components for each flow are connected in series as in

Figure N2.

15

We now want to know if a flow R = (1, 1, ..., 1) 1is
feasible. It is easy to see that such a flow is possible
iff there is a truth assignment to Byr eeer @y for which

each clause is false, i.e. 1ff P 1is not a Tautology.

(iii) Tautology o N(iii)

The construction is very similar to that for multi-
commodity network flows. The network is as in Figure N3.
Homologous arcs are marked with the same subscripted
Greek letter.

The arcs (o,B) have a capacity that is one less
than the number of terms in the clause thereby ensuring
that truth assignments that would make the preceding
clause True cannot occur. The "homologous conditions"
permit the separation of the fl¢w at B into the
original "truth assignments".

The maximum capacity of the sink is n . Hence there
is a flow > n iff there is a consistent assignment of
truth values to Byr seer Ay such that no clause is

"True" and hence P 1is not a Tautology.

*SDIY SNOHOTOWOH YITM MIOMISN :EN 2aInbtd

16

20INn0g

Z 9sneTd T ®sne1d Te |4ll||l\\

17

(iv) Max. Independent Set o N(iv)
Let G(V,E) be an undirected graph for which we
want to determine the maximum independent set.

Construct a network as below:

‘Let Syr Vyr eser Vi 8, be the nodes of the net-
work n = |V| . From the source node draw an arc of
capacity 1 to each of the nodes v, 1 < i < n . From

1

each node v draw an arc to the sink node s Mark

5 -
each such arc vy o For each node vy mark the sink arc
(vi,sz) by vj if vy is adjacent to v, . Define

the bundles Il’ I I as:

or eeer I
J ; | arc e, is marked by vj}
Each bundle is assigned a capacity 1 . This ensures that
if vertex vy is chosen in the maximum independent set
(i.e. there is a non-zero flow through it) then there is
no flow through vertices adjacent to A (i.e. adjacent
vertices are not chosen). |

Now there is a flow > F = k iff there is an inde-
pendent set of cardinality > k . We solve the flow problem
for k=n, n-1, ..., 1 and the first k for which we get

a feasible flow defines a maximum independent set.

18

E.g‘
Vl V2
V4 V3
G(V,E) Network

The largest k for which there is a feasible flow is

k = 2, through vertices V; and V, . Thus the maxi-
mum independent set of G 1is of size 2 and one

such set is '{Vl,VZ} . (In this case the solution is

unique.)

4.2 Graph Theory

Gl: Minimal Equivalent Graph of a Digraph

Given a directed graph G(E,V) we wish to remove as
many edges from G as possible, getting a graph Gl such
that:

(1) In G there is a path from A to wv.

J
iff there is a path in Gl from v, to vj
(ii) E(Gl)C: E(G) (E(G) is the set of edges of G)
i.e. we want the smallest subset of E(G) such that

the transitive closure of Gl = Transitive closure of G .

Theorem Gl: Gl is in PC

Proof

19

(a) Gl o P1

Let n = # of vertices in G = |V(G)| then

|E(G)| < 2n(n-1) < 2n? .

We can easily construct a NDTM, T, which given G and an

integer k determines if there is a subset of k edges

satisfying (*) . T can be constructed so as to work in

O(n

3

time. If NP = DP then there is a deterministic

algorithm that does this in p(n) time. We find the smallest

k < n2 for which such a subset exists. After determining
k , the k edges can be determined as below:
Define a sequence E of maximum length |E(G)]| . e, =1 if

edge

i is among the k edges 0 otherwise.

Suppose it is already known that E = (i1, vy ij) is
a correct "partial" choice then we ask if Eu(ij+l = 1) 1is.

If Yes then set E = (i, i2, ey ij’ 1)

If No then set E = (i, i2, cenys ij’ 0)

Do this for j =0, 1, 2, ..., |E|] -1

(b)

Note

Directed Hamilton Cycle o Gl

(i) if the directed graph G has a Hamilton cycle then
its transitive closure is the "complete directed graph"
on [V(G)[points. The smallest graph with this transi-
tive closure is the cycle on |V(G)| points. Thus if
there is a Hamilton cycle then this cycle forms the
minimal equivalent graph of G . |

(ii) Cbnversely if the minimal équivalent graph is a cycle

on |V(G)| points then G has a Hamilton cycle.

20 .

*° G has a Hamilton cycle <=> the minimal equivalent

graph of G 1is a Hamilton cycle.

4.3 n-Person Game Theory

Following Lucas [7] we have:

An n-Person non-cooperative game in normal form consists
of a set N of n players denoted 1, 2, ..., n; a finite
set Ni = 0, 1, ..., n; of (ni + 1) pure strategies for

each player 1€ N; and a payoff function F from

n
le oo an to R .
A strategy n-tuple (Sl*, ceey Sn*) is said to be an

equilibrium n-tuple iff for all i, i € N and SiAG N,

*

*
i-n’ Sp)

*
S i+1’ "' "n

* Fi(Si*, ceey sn*) > Fi(Si*, «e., S ;1 S

where Fi is the ith component of F

i.e. There is no advantage for a player to unilaterally

deviate from an equilibrium point.

Gle Given a game G = (F, n, N) does it have an equilibrium

—

point.

Theorem GTl: GT1 € PC

Proof (a) GT1 o Pl

The nondeterministic Turing Machine just guesses an
equilibrium point and verifies that * is satisfied.
(b) Satisfiability (3 1literals/clause) o GT1

Let P be the formula in CNF in n-variables. Define

an n-person game as below:

Each player has two strategies 0 and 1 .

0 corresponds to assigning a truth value "False" to the

21

Strategy

corresponding variable and 1 to a "True" assignment.

Let P

1

C- Ci

1

1

the variables are

c, A C

2 A

..lA Ck

v Ci 'y Cs
A 1, 13

X cae X
Xll 27 ’ n

Replace each variable in the clause Cy by x,

and by (1 - xi)

Replace "y"

E.g. C,

1

by

if X € C.l

"+" , getting C, .

= xl \Y; xz‘v x3

In order that Ci has a (0

replace X4

+ x!

2

+

1

X3

by

1

1
=> . = +
Cl X X

;1) wvalue

if X, €

£.(x") = x3(1-x)) (1-x3) + (1-xp)x,(l-x3) + (1-x) (1-x)) x5

+ x!

Clearly fi(§')

Define hl(ﬁ')
and Fl(i')

From the above definition of Fl(§')

max Fl(§')

1
1 %2

(1-x3) + x; (1-x,) x4

i

1 1if Ci
2 il fi(
i=1
L

hl(x)

hlix')

r

]] '
+ (l—xl)x2 X4
(x) is "True".

x")

2
2‘ if P(x) 1is satisfiable

2

otherwise

'
+
XlX

it follows that

2

C

X

3

22

Let Gz(xl,x be a 2-person game with 2-strategies

2)

per player and having no equilibrium point.

e 9 0.5
G2(§) - (%) <
g2 % 921 7 lo.5
\
_ ‘91(5)
define F,(x) =
0
0
0
R
Then F2(§) defnnes an n-person game with no equilibrium
point.
2
Set F(x) = F (x) + Fo(x)(|,| = Fy(x))

Then F(X) defines an n-person game in which each player

has 2-strategies.

For any choice of strategy vector x we have either
; = = 1
(1) Fy(x) =0, F(x) =2F,(x) < 1
0
0

By changing the strategies for either X, or x, we
can increase the payoff to X, or x, respectively as
Fz(g) defines a game with no equilibrium point. If such a

{ 5\
change results in Fl(§) = g’ then everyone's payoff

2
increases. In any case such an X cannot be an equilibrium

point.

23

2
(1i) Fl(x) = |2 Such a point is an equilibrium point
2
2
as now F(x) = Fl(ﬁ) = {2 and 2 is the maximum payoff

2
any player can get. So no change from this point, uni-
lateral or otherwise, would be advantageous to any player.
.. the n-person game defined above has an equilibrium

point iff P(x) is satisfiable.

As an example for FZ(Xl’XZ) consider:

Strategy Payoff
(0,0) ’ [0,1]
(1,0) [1,0]
(1,1) [0,1]
(0,1) [1,0]

g, (x) = (2 = x; - x,) (x; + x,)
_ _ _ 2
Clearly no x 1is a stable (equilibrium) point.
g, (%) /2
Set Fz(g) =
g,(x)/2

4.4 Optimization

Kl: One dimensional (0-1) Knapsack Problem.

The problem is to:

24

n
maximize: pX X: Py cee (i)
: 1
n
subject to I X, w, <M
, i "i—
1
X, = 0,1 1l <i<n

Theorem K1l: K1 € PC
Proof (a) Kl o Pl

Clearly the problem with (i) replaced by
(1'y .. = X; Py 22 is reducible to Pl . ©Now if the length
of the input is n , then each P, < k" for some k . So
using the method of bisection we can find the optimal 2
in logzkn = n logzk query steps of (i') for some k ,
k < |Z] (]Z] = number of letters in the alphabet for the

NDTM above).

(b) Sum of subsets of integers a K1
Let S = (S;, «.., S_) be the multiset of integers. We
1 n
want to find a subset (if one exists) that sums to M . This

may be stated in the form of a K1 problem as below

From this we trivially conclude that the general 0-1
integer programming problem is complete. The 0-1 constraint

may be replaced by the inequalities X, < 1 1 <i<n.

25

[Rarp [5] proves a similar result by showing Satisfiability

o 0-1 Integer Programming]

PI: Quadratic Programming

Here, the constraints are linear while the optimization

function is quadratic.

Theorem PI: PI is P-hard.

Proof Sum of subsets of integers a PI

maximize: § X, (xi - 1) + ; X, s; = f (%)
i i
subject to: z X, 85 < M “oe (i)
i
0 < X, < 1
For 0 < x, <1, x.(x. =-1) <0

This, together with (i) implies f£f(x) < M

if for some i, 0 < Xy <1

max f(x) = M iff S has a subset that sums to M .

The following variation of this problem may also be
shown to be P-hard: linear programming with one nonlinear
constraint. Call this problem PI(b) .

Sum of subsets o PI(b)

Just consider the formulation

26

maximize: I xX. s,

subject to:

4.5 Minimal Equivalent Boolean Form

Bl: Given a formula B from the Propositional calculus we

wish to find the shortest formula equivalent to it.

Theorem Bl: Bl € PC

Proof (a) Bl o P1

Define Blk to be the problem: Is there a Boolean form
of length k equivalent to B . We first show that a poly-
nomial algorithm for Pl implies a polynomial algorithm for
Blk . For this we construct a nondeterministic Turing Machine
that guesses the Boolean form of length k and then uses the
'Tautology algorithm' to check that it is equivalent to B .
If Pl works in p(n) time then the 'Tautology algorithm'
works in p2(n) (as Tautology o P1l) time and so the Turing
machine constructed above works in p2(n) time. Hence
Blk o Pl . The proof for Bl a Blk is similar to Gl(a) .
We note that this proof relies heavily on our informal notion
-0f P-reducibility. The proof does noct show that Bl is
polynomially related to the other problems in PC . If the

time complexity of the Tautology problem is fl(n) and that

of Pl f2(n) then this reduction gives a fz(fl(n)) algorithm

27

for B1 . 1If fl (and consequently f2) is exponential

n
then fz(fl(n)) is of the form 22 . All our other reduc-
tions have been of the form p(n)-fz(n) or f2(p(n)) for

some polynomial p .

(b) Tautology o Bl

A formula P is a tautology iff its minimal form is

'l' .

28

5 Conclusions

We have extended the class of known P-complete problems
to include some important applications from Network Flows,
Game Theory and Integer Programming. We have also introduced
the concept of P-hard and shown that Quadratic Programming
and Linear Programming with one non linear constraint are P-hard.
The results obtained indicate that many of the problems for
which no polynomial time bounded algorithm is known are related
in terms of time complexity. Indeed the complexity of these
problems may well be exponential. If such is the case then the
next step will be to search for subexponential algorithms and
to investigate the use of heuristics to improve the average
behavior of these algorithms. In [4] we look at the sum of
‘integers problem and the Knapsack problem. Subexponential
algorithms for these problems are obtained. We also study the

use of heuristics in solving these problems.

6 Acknowledgements

I am grateful to Professor Ellis Horowitz for his assistance

in this research.

[1]

[2]

[31]

[4]

[5]

[6]

(7]

[8]

29

References

Berge, C. and Ghouila-Howri, "Programming, Games and
Transporation Networks", Spottiswoode, Ballantyne, Ltd.,
London (1965).

Cook, S.A., "The Complexity of Theorem-Proving Procedures",
Conference Record of Third ACM Symposium on Theory of
Computing, 151-158 (1970).

Hopcroft, J.E., and Ullman, J.D., "Formal Languages and
Their Relation to Automata", Addison-Wesley (19692).

Horowitz, E., and Sahni, S., "Computing Partitions with
Applications to the Knapsack Problem", Cornell University,
Technical Report No. 72-128.

Karp, R.M., "Reducibkility Among Combinatorial Problems",
Technical Report No. 3, April 1972, Department of Computer
Science, University of California, Berkeley.

Knuth, D.E., "Art of Computer Programming, Vol.l: Funda-
mental Algorithms", Addison-Wesley (1968).

Lucas, W.F., "n-Person Game Theory", SIAM Review, October
1971, Vol.1l3, No.4.

Moyles, D.M., and Thomson, G.L., "An Algorithm for Finding
a Minimum Equivalent Graph of a Digraph", JACM, Vol.l6,
No.4, July 1969, 455-460.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif

