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ABSTRACT

The object of this paper is to investigate the risk pooling effect of
depot stock in a two—echelon distribution system in which the depot serves
n retailers in parallel, and to develop computationally tractable
optimization procedures for such systems. The depot manager has complete
information about stock levels and there are two opportunities to allocate
stock to the retailers within each order cycle. We identify first and second
order aspects to the risk pooling effect. In particular, the second order
effect is the property that the minimum stock available to any retailer after
the second allocation converges in probability to a constant as the number of
retailers in the system increases, assuming independence of the demands.
This property is exploited in the development of efficient procedures to

determine near—optimal values of the policy parameters.
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1. Problem Description

This paper considers an inventory stocking problem in a two-echelon
distribution system consisting of a depot that serves n retailers in
parallel. Eppen and Schrage [1981] demonstrated that backorder costs are
reduced in such systems if the depot acts as a centralized ordering facility
and delays the assignment of stock to the retailers from the time at which an
order is placed with the outside supplier to the time at which the depot
actually receives the stock. This phenomenon is referred to as risk pooling
over the supplier lead time. Our focus is on the next stage in the
allocation process: should stock be immediately distributed to retailers upon
receipt at the depot or should some depot stock be held in reserve, to be
distributed to the retailers later in the cycle? Jackson [1983] demonstrated
circumstances under which the wuse of depot reserve stock significantly
reduces system backorder costs. This phenomenon could be termed the risk
pooling effect of depot stock. Badinelli and Schwarz [1984] have
demonstrated other circumstances in which this risk pooling effect appears to
be very small. Consequently, it becomes important to understand the factors
that contribute to its existence. For example, Zipkin [1981] has
demonstrated analytically that the risk pooling benefit of depot stock
decreases as demand at the retailers becomes more positively correlated. In
this paper, we develop a model that focusses on the risk pooling motive for
holding depot reserve stock and conduct an intensive qualitative analysis of
the model.

In particular, by restricting attention to two allocations per order

cycle, we identify two aspects of the risk pooling phenomenon. The first



aspect, termed the first order effect of risk pooling, is that by holding
stock in reserve the depot can increase, in expectation, the minimum stock
available to any retailer after the second allocation. That 1is, the
distribution of stock in the system will be more balanced as a result of
holding stock in reserve. The second aspect, termed the second order effect
of risk pooling, is that the minimum stock available to any retailer after
the second allocation converges in probability to a constant as the number of
retailers in the system increases, assuming independence of demands. Hence,
as the term suggests, risk pooling removes some of the uncertainty involved
in planning stock levels.

Whether or not these technical benefits of depot stock are sufficient to
outweigh the disadvantages of holding depot stock depends on the cost
parameters involved. The model we develop involves holding costs and
backorder costs. By exploiting the second order effect of risk pooling we
develop approximate cost functions and computational techniques to determine
near optimal amounts of depot reserve stock. The model ignores the
additional fixed costs of using more than one allocation per cycle including,
for example, the cost of the information system that would be required to
implement the proposed allocation policy. However, the computational
techniques are quite practical and could be included as part of a broader
empirical study of the tradeoffs involved in implementing such a policy.

Our analysis of the effect of risk pooling is based on a number of

important and simplifying assumptions, which are as follows:



Assumptions:

(1) All lead times are zero. We have restricted lead times to be zero only
to simplify notation and to focus on risk pooling due to allocation rules.
The extension of the model to allow positive lead times is straightforward.
Eppen and Schrage [1981] have already drawn attention to the risk pooling

phenomenon that takes place over the supplier lead time.

() Transshipment of stock among retailers is not permitted.

(3) As in the Eppen and Schrage model, the depot order cycle is of fixed
length and at the beginning of each c¢ycle, the depot places a single
procurement order sufficient to raise total system stock to a fixed level.
(The order cycle length and the system stock level are set as policy

parameters.)

(4) There are two allocation periods within each cycle: that is, there are
two opportunities to ship stock from the depot to the retailers in each
cycle. One opportunity occurs at the beginning of the cycle, after receipt
of the initial procurement order, and the second occurs at a later,
predetermined point in the cycle. The lengths of the two allocation periods
need not be identical. This assumption facilitates a simple, yet practical
analysis. The concern with stock imbalance in the system occurs towards the
end of the cycle as stock levels become depleted. The second shipment can be
used to correct imbalances. While we could consider more periods, the method

of analysis becomes more cumbersome. Furthermore, the two period model



demonstrates the existence and importance of risk pooling. We also note that
the flexibility gained by more frequent shipments may not justify the

additional shipping costs.

(5) Allocation Assumption: each retailer begins the cycle with less stock
than would be otherwise optimal if costless transshipments were allowed in
the first allocation. This implies that the initial allocation from the
depot to the retailers will be positive for each retailer. To simplify the
notation, we also make the stronger assumption that there is no stock in the

system at the beginning of the cycle.

(6) A holding cost of ht is charged for each unit of inventory held at the
end of period t, t = 1,2, regardless of which location it is held. This
assumption is made so that there is no holding cost advantage to holding stock
at the depot rather than at the retailers. If the demand process is
deterministic, Roundy [1985] and Maxwell and Muckstadt [1985] showed that it
is desirable to allocate all inventory in the first period. Hence we make
this assumption to focus on the risk pooling reasons for holding inventory at
the depot during period 1.

(7) Excess demand in each period is backordered. A backorder cost, Ty s is
incurred for all outstanding customer demands at any retailer that could not

be satisfied by the end of period t.

(8) The demand at location i in period t is denoted by dit’ i=1,...,n,



t =1,2. A known joint probability distribution function Gt(dlt””’dnt) is
assumed for demand in period t. Demand during the second period is
independent of demand during the first period. To focus attention on the risk
pooling motive for centralized stocking, we assume that Gt(dlt"”’dnt) <1
for all finite (dlt”"’dnt) in period t, t = 1,2. That is, there is a
positive probability of stockout in each period, regardless of how much stock
is allocated to the retailers. Because of backorder costs, this assumption
ensures that stock will not be held at the depot unless there is an economic
advantage to do so.

The net effect of the assumptions we have made concerning the holding
costs and demand distribution is that the only motive for holding stock at
the depot in this model is the risk pooling motive.

A number of papers have been written on the control of inventory in
multi-echelon systems. Reviews of this literature can be found in Veinott
[1966], Iglehart [1967], Clark [1972], Aggarwal [1974], Nahmias [1981], and
Silver [1981]. 1In an early seminal paper, Clark and Scarf [1960] analyzed
serial multi-echelon problems by decomposing them into a series of single
echelon problems. They also discussed the difficulties associated with the
allocation of inventory in a single depot, n-retailer system. Subsequently,
others extended their work including Hochstaedter [1970], Federgruen and
Zipkin [1982] and [1984], and Zipkin [1981].

Eppen and Schrage [1981] examined a depot, n-retailer system in which
the depot receives inventory each cycle and immediately allocates all of it
to the n retailers. Their analysis reveals the effect of risk pooling over

the depot's supplier lead time. Erkip, Hausman and Nahmias [1984] extend



their model to allow for correlated demand over time and among retailers.

Jackson [1983] also extended the Eppen and Schrage model by allowing
shipments to be made to each retailer from the depot in each of m periods
per depot reorder cycle. He considers a policy in which the depot shipments
raise the inventory position at each retailer to a fixed level, called the
ship—up-to levels, in each period until a period is reached in which the
depot stock is depleted. This policy permits the risk of imbalance to be
eliminated during the pre-runout period. He derives and uses an approximation
to the m-period cost function for calculating the ship-up-to levels and the
depot reserve stock. Later, Erkip [1984a] compared this policy with an "o
policy" wusing simulation. In this policy, the depot allocates a fraction «
of its total stock to the retailers at the beginning of a cycle and allocates
the remainder at a single time later in the cycle. Erkip [1984b] then used an
approximating dynamic programming model to pre—determine the timing of this
second allocation.

Jonsson and Silver [1985] consider a similar model to the one devloped
here and in Jackson and Muckstadt [1984]. Their approach to approximating
the cost function is considerably different from ours.

The remainder of the paper is organized as follows. In Section 2, we
develop the cost and demand models based on the stated assumptions. Section 3
presents a characterization of the second period’'s allocation problem in
terms of a constrained minimum fractile allocation. In Section 4 we assume
the n retailers have independent and identically distributed demands and
costs. We begin the section by further studying the second period allocation

problem, showing that risk pooling occurs even when there are only two



retailers, and then by analyzing the asymptotic behavior of the second period
allocation. We turn to computational considerations in Section 5 where we
develop algorithms for computing approximately optimal values for the policy
parameters in two cases: (1) the demands are independent among the retailers,
but the demand distributions need not be identical, and (2) the retailers
have identically distributed but correlated demands. Section 6 summarizes the

conclusions of the paper.



2. Modeling the Two-Echelon, Two-Period Allocation Problem
2.1 The Cost Model

The basic quantities in the cost function for this model are
acquisition, holding and shortage costs, and salvage values. Let c¢ denote
the unit acquisition cost, which is paid at the beginning of the first
period. Let s be the unit salvage cost, which represents the value of
excess stock remaining in the system after the second period, and assume
s < Itz.

Let Y be the quantity of stock ordered by the depot at the beginning
of period 1. After the depot makes its first period allocation, let Sil
represent the quantity of stock at retailer i, and let Q represent the
amount of stock held in reserve at the depot. Hence, we have the equation
Y= Q4 LSy

Demands in a period are assumed to occur following the allocation

decision. After observing a demand of di in period 1 at retailer i, the

1
net inventory at that 1location is Ii = Si1 1 o

retailer net inventory level at retailer 1 following the second period

- di Let Si represent the
allocation by the depot. The quantity allocated to retailer i at the
beginning of period 2 from the depot reserve stock may be expressed as
Siz - Ii. Hence, Siz is a random variable that depends on the solution to
the allocation problem in the second period.

The model that we will now state considers the two-period nature of the
problem. The consequences of the first period purchasing and allocation

decisions directly affect the cost and allocation possibilities in the second

period. We begin by describing the second period allocation problem. Suppose



Kz(Q’Ii"”’In) denotes the minimal cost associated with the second period
allocation decision. As stated, the second period cost depends on the retailer

net inventory levels at the end of period 1 and the depot reserve stock.

Then,
n
Ky(Q,1,5-.0,1) = 5 mf?. S {(h8 - s)[Q —'z (845 = 1]
12’ *“nR i=1
n
¢ 3 [0y - 9 el - 4" 1)

i=1

tomy EL(d, - Siz)+]}} ,

subject to:

S.
1 12 i

(12)
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o
+
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-
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i

Siz > Ii , i=1,...,n. (1b)

The objective function (1) reflects the stock levels at the beginning of
period 2, the depot reserve stock, the cost of holding inventory at each
facility, the salvage value of left-over stock and the penalty incurred for
backorders in period 2. Constraint (1a) implies that no additional system
stock may be acquired during the second period; the problem is purely
allocational. Constraints (1b) represent the restriction that transshipments
between retailers and returns to the depot are not permitted.

The overall two-period system cost function is defined in terms of the

period 2 cost function. Let K(Q’Sll""’snl) denote the minimal expected



two-period cost associated with a given vector (Q’Sll"”’snl) of initial

period 1 inventory levels:

n
K(Q,8;5---,8 ) = c[a+ i§1sil] + h,Q

n
+ ¥ [, el(s;- 4,071 + % ela, - 5, 7]] (2)
i=1

+ S[Kz(Q’Sli— dll,ooo’snl— dnl)] .

This cost function reflects period 1 purchase, holding and backorder
charges as well as the period 2 costs captured by the function KZ’ ¥e have
chosen to represent holding and backorder costs so that they are charged only
at the end of each period. For a more accurate accounting of these costs, we
could easily subdivide period 1 and period 2 into m, and m, accounting
sub-periods, respectively. We could then charge holding and backorder costs
in each of these subperiods. The two-period nature of the decision problem
would remain; the method of analysis described in the following sections
would be essentially unaffected by this change.

The proposed model was developed to emphasize the economic impact of
risk pooling. It ignores fixed costs among other factors. We could easily
compare the total cost of operating a system in which there is only one
allocation made to retailers with the total cost of operating the system when
two allocations are made by including the fixed costs. We could also more

accurately account for the holding and backorder costs in this comparison by

subdividing the cycle length into shorter periods and assessing these costs
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in each subperiod. However, we have chosen to exclude these terms from our
cost model so that we can concentrate on the effects of risk pooling on the
depot allocation policy.

The two-period, two-echelon stocking and allocation problem that results

from our assumptions can then be stated as follows:

minimize K(Q’Sli"”’s 1)

n

(3)

subject to

Q >0, Sil >0, i=1,...,n.

By Theorem 5.7 of Rockafellar [1970], Kz(-,-,...,-) is jointly convex
in (Q’Il”"’In)’ It follows easily that K(-,-,...,+) 1is jointly convex
in (Q’Sll”’°’sn1)’

The allocation problem is made difficult by the restrictions against
returns and transshipments (constraints (1b)). In the absence of these
restrictions, an ideal post-allocation stock level exists at the retailers
that depends only on the total stock in the system at the beginning of
period 2, the allocation period.

The distribution of stock is said to be unbalanced if one or more of the
retailers begins the second period with more stock than is called for by its
ideal stock level. Such retailers are overprotected against period 2 demand
relative to the other retailers.

The function of depot reserve stock, Q, is to ensure a more equitable,
or balanced distribution of stock in period 2. In the event that high demand

is observed at one location and low demand at another, the reserve stock may
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be applied to rebalance the stock distribution in the system. The risk of
imbalance is pooled over period 1, while stock is retained at the depot. This
allocation policy will thereby reduce the expected level of backorders in the
system without requiring additional system stock.

We may now restate the inventory problem given by (1) and (2). Let

V(Q,Il,...,In) denote a minimal weighted function of backorders in period 2,

expressed as:

n
V(Q,Il,...,In) = 5 min < iglnz 8[(di2~Si2)+]
122°°7°"n2
(4)
subject to:
) )
S.,<Q+) I.,
i=p 1% i=1 1
Si2 > Ii’ for i=1,...,n,
where 52 = (h2 -s+7m,), i= 1,...,n Hence, KZ(Q’Il"”’In) and
K(Q’Sll”'°’sn1) from systems (1) and (2) can be written as:
n n
Kz(Q’I]_,‘*"In) = (h2 - S) [Q + g Ii - Z g[diz]]
i=1 i=1
+ V(Q,Il,...,In) , (5)

and

—-12-



n n
= = +
K(Q,8,45---»8 ;) = c[Q +i§1311] +i§1n1€[(dil— SN

+ &[V(Q,8,;~d;(»---»8 ;-4 D] - R, (6)
where:
c=c¢+ h1 + h2 -8, (7a)
T = h1 + for i=1,...,n, and (7b)
n n
R = (h+ hy- s)i§1g[d11] + (h,- s)izls[dizj . (7¢)

R.2. The Demand Model

In each period, t, let Szit, i=1,...,n§ be a collection of
independent, identically distributed random variables with zero mean and unit
variance and let 6t be another zero mean, unit variance random variable
such that ét, th’ ceves Zogs t = 1,2, are mutually independent. Assume the

demand in period t at retailer i, denoted dit’ is given by
dig = Fip ¥ %eZie T Pinle (8)

where Bigs %ige and ﬁit are parameters satisfying

o

it = 95tV = py) » and
(9)

]

Bit = 93tVP >

for some given nonnegative parameters St and Pt (0 < Py < 1). For

-13-



example, the common demand factor, 6t’ could represent random variation in
general market share of total demand and Zt could represent local random
variation. The model 1lends itself to econometric estimation of the
parameters.

Assume Tt #Z 0, for all i and t. Observe that the normalized demand

variables, (dit—pit)/cit, are identically distributed:

-El?il-l—t = dT-p, z;, + 1o, 3., (10)
but are independent only if Py = 0. Let Ft(-) denote the common marginal
cumulative distribution function of the normalized demand variables and
Ft(.) denote  the complementary cumulative distribution function
(Ft(x) = 1—Ft(x), ¥x). Assume Ft(-) is absolutely continuous on the
interval (-o,+®) and assume the inverse complementary cumulative, denoted

F;l(-), exists on (0,1). Also observe that the unit variance assumption

implies

T K d., - M,
it Hit t t
o, ’ ! o ! = (11)

pps A 17 .

Thus, Pt is the correlation coefficient for any pair of normalized demand
variables within a period. Negative correlation could be modelled by

allowing %t to take on negative values for some of the retailers. In this
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case, demand for retailer i should be normalized by the absolute value of
Tiy-

To clarify some of the expectation operations in what follows, let
Yl(zl) denote the common probability density function of the random
variables §zi1, i=1,...,n% and let 81(61) denote the probability

density function of the random variable & Let Fi(zl) and @1(61) be

1°
the corresponding cumulative distribution functions. Note that
Ft(') = Ft(-) if Py = 0.

Let 2(s) be the loss function associated with the random variables

X3

i1

2(s) = €[(zy,;-9)"]

]

+© +
J (21 - 8) Yl(zl)dz1

- I (1-r, ()] dy (12)
S

If Py then the loss function simplifies to
o

2(s) = J [1—F1(y)]dy.
s

Let z”l(x) denote the inverse loss function for X > 0.

-1 5~



3. The Period 2 Minimum Fractile Allocation
The characterization of solutions to problems of the form (4) is well-

known (see Zipkin [1980] for a general treatment of such problems):

* *
Proposition 3.1: Let (812””’Sn2) solve the period 2 allocation problem

*
(4). Then there exists a common allocation factor k  such that

k3

*
8, = max (pi2+ oizk , Ii) . i=1,...,n. (13)

The factor k* is referred to as the minimum fractile.

*
Corollary 3.2: Under the same assumptions, the period 2 allocation factor, k ,

solves the following equation:

(hyp + o0k - 1)7=0q. (14)

HiwlD

i=1

Proof: The constraint in (4) involving Q 1is binding. Substitution of (13)

into this constraint yields (14).

The corollary permits us to characterize the solution to the period 2

allocation problem in terms of (Q’Sll””’snl) and the period 1 demand

*
variables. That is, k is a random variable satisfying

* +

(hip + o950k -85, + ;)" =@, (15a)

[ e B

i=1

and

*

S., = max (u

*®
i2 + ciak s S., - dil) . i=1,...,n. (15b)

iR il
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4. Identical Retailers, Independent Demands

For the case in which retailer demands are independent and identically
distributed, it is possible to derive analytically a number of results that
cast light on the nature of the risk pooling effect. Assume Py = 0,
Big = By and T4 = O for i =1,...,n, and t = 1,2. Also, assume that
Ft(-) has support on [—pt/o , ® to ensure that demands are nonnegative.
We will restrict attention to policies satisfying Si1 = Sl’ for all
i=1,...,n, since it is easily shown that an optimal policy exists that

provides the same period 1 allocation to all retailers.

4.1 Characterizations of the Period 2 Solution

For this sub-section only, random variables are indicated by a tilde (~)
to emphasize their nature. The expectations in this section involve random
functions of random variables.

The characterization of the period 2 solution, (15a) and (15b), can be

specialized in the identical retailer case to

n ~¥ ~ +
L, -8 ¢ d; )" =a, (16a)
i=1
and
N* N* ~ . -
S, = max (Sz, S - dii) s i=1,...,n, (16b)
N* N*
where S2 = "2 + czk , the common minimum period 2 stock level, referred to

here as the period 2 stock floor.

-17-



Let d < d .. <4d denote the ordered period 1 demands. Then
*8 A1 = %e1 = o 2 Ym) P

(16a) and (16b) can be rewritten as

*

B, -s, + H[i]]+ -q, (172)

18 1=

i=1

and

¥ ~¥ ~
S[i]z = max (SZ’ S1 - d[i]) s i=1,...,n, (17v)

where [i] is the index of the retailer with the i’'th smallest period 1
demand.

Let ﬁ(x) denote the number of retailers that experience demands in
period 1 not exceeding x, for x » 0. Define N(x) = 0, for all x < 0. The
mapping ﬁ:n—+§0,1,2,...,n§ is nondecreasing, increases by jumps only, and
is right-continuous. Assuming that the demand distribution function Fl(-)
is absolutely continuous, we note that, with probability one, N(0) = 0 and
each jump of ﬁ(-) is of unit magnitude.

Yet another characterization of the period 2 stock floor is provided by
the following lemma. This characterization will ©prove wuseful vwhen
*

investigating the limiting behavior of §2

Lemma 4.1: In the identical retailer, independent demand case, the value of
~F

Sz is determined by

Im A -N@)ax =@ . (18)
5175,

-18-



Proof: Since ﬁ(~) increases only by unit jumps, with probability one, we

have

® n
I (n - ﬁ(x)]dx = .Z (d 1 y)+.
y -

i=0

~F*
Letting y = S,-S

1755 and noting (16a) results in (18) .M

~ ~ o~ N*
The relationship between d[l]""’ d[n]’ N(:), Q, and Sl—Sz, for a

particular realization of period 1 demands, is illustrated in Figure 1 and

Figure 2.
N ()
I TR S R T TR
I :/;//;//Q YRVl
. I
-/
i s
L1 :
- A n
1] Arz] 517% [n] X

~F*

Figure 1. Characterization of S2 in terms of ﬁ(x)
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St------ .

St I

[/

I

Y

// // // /:

TAVryE

%

/ .
UG

N* ~
Figure 2. Characterization of S2 in terms of Sl_d[i]

Building on the above characterization of the period 2 solution, Jackson
and Muckstadt [1984] develop the first order optimality conditions for the
period 1 decision variables. Those conditions involve the convolutions of
truncated random variables. Solving the conditions exactly is
computationally feasible only for the exponential distribution. In this
paper, we explore the behavior of this characterization and use it to suggest
an approximation to the cost function and optimization techniques.

4.2 Risk Pooling in Two Identical Retailer Systems

For a single retailer, it is easily shown that S;z =Y - d11, where Y

is the initial total system stock. That is, the amount of depot reserve stock

has no effect on the period 2 stock level after allocation. There is no risk

-20~



pooling if there is only one retailer.
On the other hand, if there are two identical retailers the period ?

stock floor is given by

Noting that S1 = (Y - Q)/2 simplifies this expression to

R G O Y S o P -
S TmD g3 T G403 7 G0 2 :
Differentiation reveals that
*
dS[SZ]

Since this derivative is positive for sufficiently small @, it is clear that
it is technically possible to see a benefit in period 2 from holding depot
stock in reserve even with as few as two retailers. Whether the improvement
in period 2 system performance outweighs the degradation in period 1
performance (since dSl/dQ < 0) or not depends on the magnitude of the effect
and the various cost parameters involved. Observe that at Q = 0, this
derivative is exactly 1/2 and that this is an upper bound on the derivative.
That 1is, an increase in depot reserve stock would increase the expected
period 2% stock floor at each of the retailers by at most one half of the

increase in Q.
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4.3 Limiting Behavior of the Period 2 Minimum Stock Allocation

For a known value of S2 € (-»,+0), let Xi(Sz) be given by

_ _ +
xi(sz) = (s2 S, + dilj s

for i=1,...,n. Suppose the period 1 stock level, Sl’ is fixed, for all
large values of n. Then, by the strong law of large numbers [Chung, 1974,

Theorem 5.4.1, p. 124], as n— o,

(Xi(sz)~s[xi(sz)]] — 0 a.e. (20)

=2 [
W §=
[

i

This simple result suggests that we work with expected values in (16) for
large values of n. Accordingly, let §2, a function of (Q’Sl) for Q > 0O,

denote the unique solution for 82 to the following equation:

n
i§1g[(82 - s, + di1]+] =q. (21)

Let §2 denote the infimum of values S2 such that the left hand side of
(21) is positive. That a unique solution exists to (21) follows from the fact
that the left hand side is a strictly increasing function of S2 on (§2,m)
with range (0,+®), and Q > O.

Rewriting (21) in terms of the loss function (12) yields:

-~

n S-S, 4§
o[ - ey -

i=1 %

A



Hence,

5, = -oiz"i(Q/(nol)) +8, - n- (22)

The convergence in (20) is based on the assumption of a known value of

*

S,. However, by Lemma 4.1, S, is a random variable satisfying (18). That is,

3

SZ is a random variable depending on the decisions Q and S1 and on the

period 1 demand variables dll”"’dni (which determine the function N(-)).

In this sub—-section, we develop conditions under which it can be shown that

* ~
S, — SZ’ in probability, as n— o,

p

We assume that total expected system demand grows linearly with the
number of retailers and that demand at each of the retailers is independent.
Under this assumption we argue that S; converges in probability to a
constant.

Let Fg(y) denote the proportion of n retailers observing normalized
demand less than or equal to y. F?(y) is called the empirical distribution
function of the normalized demand, ozl(dll—pl), cees ozl(dn1~p1). Dividing

*

through (18) by n and employing a change of variable shows that S2 must

satisfy

W
-1
_ . [1-F3(3)])dy = o, Q/n . (23)
o 1(S -S,-H,) 1 1
1 17271
For large values of n, the empirical distribution function is well
approximated by Fl(y), the true normalized distribution function. We

observe that if @ and 81 are well-behaved as functions of n, then so is
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*
SZ’
that S1 is fixed. An intuitive justification can be made if we start with

the weaker assumption that total system stock grows linearly with the number

In what follows, we will assume that @Q = gn, for fixed q > 0, and

of retailers. Since there are limits to the usefulness of increasing S1

(for large values of S the period 1 stockout probability is negligible),

1
any growth in system safely stock for large numbers of retailers must take
place at the depot level.

For technical reasons, we further assume that the distribution of
normalized demand is concentrated on some compact interval [-a,a] with
Fl(—a) =0 and Fl(a) = 1. This contradicts the earlier assumption of
unbounded demands used in the proof of Proposition 3.1; but, a version of
that proposition can be made to hold provided a 1is sufficiently large. The
spirit of these results should still apply for unbounded demands; but, there
are difficult technical issues to resolve when presenting the proofs in this
case. These issues detract from the main purpose of this paper and so are
avoided. As before, the distribution function, Fl’ is assumed to be

absolutely continuous.

Define the empirical loss function, In(x) by

a

2,0 = [ [1 - Fim]ay - (24)

X

The real-valued random function ‘In is nonincreasing and continuous on
[0,0). Let Xy = Sup §xzxn(x)>0§ and note that 1, is strictly decreasing,
continuous, and wunbounded on (—w,xo). Hence, ‘Zn has a unique inverse

function, denoted by 1;1, defined on (0,0). For q > 0, solving (23)
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yields:

s, = -0, (1. /o)) + 5, -, - (25)

We are thus led to consider the limiting behavior of 1;1 as n— @,
Let m denote the maximum total demand that can occur at any retailer

over two periods. By assumption, m < o.

Theorem 4.2: Under the assumptions of this section, for g < m,
1 1/e) = 1 (a/0))
n 1 172

in probability as n — o,

Proof: Appendix 1.

Corollary 4.3: Under the assumptions of this section, for q < m, S, — S in

probability as n — o,

Corollary 4.3 is used as the basis for approximate computational

techniques developed in the next section.

Proposition 4.4 For fixed Y,

. 4 a1
S, | _ [s,-8,-n
R 1 Fl{_l__g_.é] -1 . (26)

%

A



Proof: Let k = (§2—p2)/0‘2. By lemma 5.1, below, the partial derivative

aﬁz/aQ (=026ﬁ/aQ) is given by

where Fl(o) = 'I""l(-) in the case p = 0.
Together with (22) and the fact that dSl/dQ = -n_'l, since S1 = (Y-Q)/n, this

implies (26).1

Relation (R6) is a many-retailer analog of (19). Observe from the

definition of §2 in (21) that

S—-§——p
lim Fl[—i——z—-—l-] =0.
Q- 0

Consequently, d§2/dQ - +® as Q = 0, in contrast to the two retailer case
in which dS[S;]/dQ is bounded by 1/2.

We can now identify two aspects to risk pooling in the current model.
The first is given by relations (19) and (26) indicating that at sufficiently
small values of depot reserve stock, Q, there is a positive technical benefit
to increasing Q in terms of the period 2 stock floor. We could refer to this
as the first order effect of risk pooling since it relates to the expected
value of the period 2 stock floor. That the derivative in the many-retailer

case dominates the derivative in the two retailer case, at least for small

—-26—



values of Q, suggests that the degree of risk pooling in this sense increases
with the number of retailers in the system.

The second aspect of risk pooling is given by Corollary 4.3, namely that
as the number of retailers increases, the period 2 stock floor stabilizes, at
any positive value of Q. In a system with many retailers, each experiencing
independent demands, the depot can practically guarantee a fixed period 2
stock floor to each retailer. This could be referred to as the second order
effect of risk pooling since it relates to the variance of the period 2 stock
floor.

Whether either of these technical effects of risk pooling justifies the
use of depot reserve stock depends on the cost parameters. In the next
section, we develop computational procedures for determining near-optimal

values of Q and the vector of period 1 allocations.
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5. Computational Procedures
5.1. An Approximate Cost Function

A computational procedure for finding the optimal period 1 decisions for
the two retailer case is given in Brown [1984]. For more than two retailers,
the problem of finding the exact optimal solution is computationally
intractable for all but the simplest demand models (Jackson and Muckstadt
[1984]). It is the goal of the remainder of this paper to develop
computationally efficient procedures to find good solutions. The approach is
to approximate the cost function in the many retailer case using the results
of the preceding section. For sufficiently many retailers the approximation
should be quite good. It is not known how accurate it is for small numbers of
retailers.

Let §1 = (811’°"’Sn1)’ the vector of period 1 allocations, and return

to the general demand model of Section 2.

Substituting for di1 from (8) in (15a) yields

b 3
+ _
[ujq + Byp * @yqZq + Bigdy + o0k - Sl = Q.

w13

i=1

Analogous to (R1), for a given vector of period 1 decisions, (Q’Sll""’sni)’
with Q > 0, and for a given value of the market variable 61, let k denote

the unique solution for k to the following equation:

n

+ —
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Let

2i % Byg TR T Okt B8y s (28)

for i =1,...,n, and rewrite (27) using the loss function, Z(-):

Si17 %
ailz [ } =Q . (29)

The event that retailer i receives a shipment in the optimal period 2

allocation can be approximated by Ei:

Similarly, the event that retailer i receives no shipment in period 2 can
be approximated by the complementary event Ei’ The conditional probability

of event Ei’ conditioned on the common demand factor, &,, is given by

1

o,

= (Si17Y
P%Eilz,l;:r‘l[ },
i1

where Fl is the complementary cumulative distribution of =z i=1,...,n.

i1’
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Lemma 5.1: For a given common demand factor, 61, the partial derivatives of

E(Q,§1,61) are given by

ak _ 1
':56 (Q’Sll”"’snl) = Py > (30)
n S.,— 2,
= il i
L °i2r1[ ’1?"]
i=1 il
and
» S..— 8.4 .0
9k o= il ildk
E-S.ll(Q’Sll".o,Snl) = ri [——-—0,11 }8Q (Q’§1,61) s (31)

for i=1,...,n.

Proof: The proposition is a straightforward application of the implicit
function theorem [eg. Benavie, 1972, Theorem 1.9, p. 26] applied to (27).

Totally differentiating (27) yields

S, ~H.~H., 0. ﬁ—ﬁ. & .
i1 Fi1 Tig Tiet i1 l 61}dk
i

n
o..PqZ.
=1 i? i1l ail

D Si1Hi1Hip7%2KB115
+ PezZ.

o i1 o,

i=1 il

61}d8i1 =dQ .

Simplifying, using (28), yields:
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Formally, this implies (30) and, together with (30), implies (31). N

b3 -~
Let the optimal period 2 decision SiZ be approximated by Sizz

(32)

)
i

iR
Si17 Pi1” %i1%i1 T PigSp i
for i=1,...,n. Let §(Q,§1) denote the following approximation to the

minimal period 2 weighted backorder function:

1E28[(di2—§12)+]

1
g =]

B(Q.8) =
1

i
[l §=]

: 152{ g[lgEig(diz'“iz'°izﬁ)+] (33)

* s[1§§ ;(diz~sii+uil+“ilzil+31151)+]},
i

where 1§E§ is the indicator function of event E (that is, 1§E§ =1 if E
is true, 0 otherwise). Similarly, let ﬁ(Q,§1) denote the approximate total

two period cost function:
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R(Q.8,) = ©[Q +i§1s11] +i§1n18[(dil— .01 - R

n
% .
¥ izlnz{ g[liEiE(diz'“iz'ciak) ] (34)

+
* s[1g§ g(diz'si1+“i1+“iizi1+51151) ]} :

1

In pgeneral, even this approximate cost function is difficult to
optimize. However, there are two special cases in which an efficient
optimization procedure can be developed. These are considered in the next two

sub-sections.

5.2. Non-identical Retailers, Independent Demands
In this sub-section, an optimization procedure for minimizing ﬁ(Q,gl)
is developed for the case of independent demands (pt =0, t=1,2). The

location and scale parameters (}1“’,0i i=1,...n) are not required to be

t;
identical across retailers. In the next sub-section, the correlation
coefficient is allowed to be nonzero but the demands are assumed to be

identically distributed.

Proposition 5.2: Assume Py = 0. Let (Q,Sl) minimize the approximate cost
function K in (34), ignoring nonnegativity restrictions. The first order

necessary conditions for a minimum reduce to
£(6,8.) = Foi[< (35)
’~1 2 »
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and

5..-2
. il i .
S..,—H, [ o S., M., 0. .Z., ~lL.
- i1 Yil - il = i1 Ti1 Ti17i1 TiR
“1r1[ 5 ] t Fz[ . ]rl(dzil)
i1 i2
v
- [ §i1"§i
=cl ] > (36)
1 o,
. il

for each i =1,...,n.

Proof: Setting oK/aQ = 0 yields

~

n

- - ak
0=c-7x, ) O, -——-8[1 1 ~ ]
21=1 i? aQ iEii §diz>pi2+cizk§

=°-T E g .Eg.? zZ >§i&:§i Pld. Su. +o. k
= 2.4 92°30 %17 o, ig”Hi2 %2 1>
i=1 i1
since z11 and diz are independent and ik and (ﬁi; i=1,..,n) are

probabilistically constant when Py = 0. Hence,

Substituting for 9k/9Q from (30) shows that iﬁa(ﬁ) = ¢, which implies
(35).

Similarly, setting aﬁ/asil = 0 for each i yields
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n o~
- = A - ok
0=¢c-mnrid, >S.. 3 -*x, ) o, -—-—-8[1 1 = ]
174711771 2j=1 jR a8, EEjE §dj2>pj2+cj2k§
-x 8[1 1 L ]
*LlyE s 357817117 %51%44 8
_ R §1—§. o
=c - x Pid, >8; § - 2032 1[ o ]Fz(k)

—'ir's[1 1 e ]
R SE .3 $4;5>8, 7117044248

- - - - = [Si1™4 ) 0
=c - n1P§dil>Si1§ - nz-Fl[ S }Fz(k)

- T 8[1 _ 1 o ] ,
*lE s $d;>8; 1711179312445

after substituting for aE/asil from (31) and for 9k/aQ from (30) in the

resulting expression and cancelling terms. Now, Ezﬁz(ﬁ) = ¢, by (35), so,

- X 8[1 1 o ] R
& E .3 8d;5>8; 171179312448

which is equivalent to (36). N
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Remarks: Equation (35) implies that at the (approximate) optimum in period 2,
the probability of a stockout at retailer i should not exceed 3/52, with
equality holding if retailer i receives stock as a result of the period 2
allocation. Equation (36) has the following economic interpretation: the
first term on the left hand side is the marginal benefit in period 1 of an
extra unit of stock assigned to retailer i in period 1. The second term is
the marginal benefit of that extra unit of stock to retailer i in period 2:
the cost-weighted probability that retailer i does not receive stock in the
period 2 allocation, event Ei’ but does experience a stockout at the end of
period 2. The right hand side is the marginal cost of an additional unit of
stock at retailer i, ¢, weighted by the probability of event Ei - that is,
retailer i effectively receives a credit for any additional stock purchased
if happens that it shares in the equal fractile allocation of the second
period.

Observe that the approximately optimal decision vector (@, §11, cees
§n1) can be determined as the result of a sequence of n one-dimensional

searches:

Algorithm 5.3 (Non-Identical Retailers, Independent Demands)
1. Set k « F;l(z/ﬁz).
2. For i=1,...,n:
2a. Determine ﬁi by (28) using k from step 1.
2b. Solve (36) for S. using a one dimensional search technique.

il

3. Substitute k, §,., ..., and §n1 into (27) to determine Q.

11
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5.3. Identical Retailers, Correlated Demands

In this sub-section we relax the assumption of independence to allow
correlated demands (pt >0, t = 1,2) but we restrict attention to the special
case in which retailers face identically distributed demands (pit = Hy»

T o,

it = % %ig T %

an algorithm analogous to Algorithm 5.3 to determine an approximately optimal

and Bit = Bt’ for i=1,...,n, and t = 1,2). We derive

solution.

As in Section 4, we limit attention to policies that satisfy Sil = S1

for some S, and for all i =1,...,n. Observe from (28) that for identical

) b

retailers, e, = %, for all i. For Q > 0, the solution to (29) yields

3= -oclz_l(Q/(ocln)) +s, . (36)

Note that 2 does not depend on & Also, letting S

1 o = Ho + czk, note that

by (28) and (36)

-~ _ _ ——1 _ _
which agrees with (22) when Py = 0.
Proposition 5.4: Let (§,§1) minimize the approximate cost function K in

(34), ignoring nonnegativity restrictions. The first order necessary

conditions for a minimum reduce to

~36—
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w2y
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[y
N’
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D
[y
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o
e
N’
o
o
[y
]
=1 lO i
o"]

and

Proof: Setting oK/9Q = 0 yields

2ok

0 = nc -no,n,-| T=-&[1n 1 ~,]8,]0,(5,)dd
2727 90 "B 3 Ed ou,topkd 11T 0T

maQ o 1

- - %k - §1-§ = =
= nc —ncznz-‘ Pl =— Fz[ k ]el(ai)dal .

~

since & does not depend on & Substituting for

1"

cancelling terms results in (37).

..37_

~ +m ~
S,~H a S, -, z,—B.8,~U
- 171 - 1 = [F1 71 7171 "171 "R
% F [ ] + X, J J Fz[ ]Yl(zl)&)(al)dzldal

(37)

(38)

from (30) and



Similarly, setting aﬁ/asi = 0 yields
a Tak
0 = nc - niP{d1>Sl} - n02n2j*45§18[1§E1§1§d2>p2+02ﬁ§!61191(51)d61

-0

- nn I e[t 1A oo _ |8,]8,(5,)d8
2 §E1§ §d2>81 My=0 2y 3161§ 471N 17

It
3

|
=
~

§ -~
- -— ~ —— 1 - ~
" {d1>s1} - nnzrl[ = ]I‘sz[ k Jo,(5)ds,
-+
4 S PR |8,]e,(8,)d8,
2I_m {E, 3 $d,>8 —p -,z -5, 8, 31711

= nn

after substituting for aﬁ/asl from (31). By (37), this becomes

+m

- nx I M1 _ Lg.i a0 e |8,]e,(5,)ds,
R) i, 3 $4,>8,—p -0z -p 8, 3171471071770

which is equivalent to (38). N

Substituting (28) into (37) yields:

to 8- - W, - BS
J 2( 1 2 1°1 . (39)
-

5 ]91(51)d51 =

ﬁllol
[AS)
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Consequently, only two dimensional searches are required to find

approximate optimal solution in this case:

Algorithm 5.5 (Identical Retailers, Correlated Demand)

-~

1. Solve (39) for 2 wusing a one-dimensional search technique.
2. Solve (38) for §1 using a one-dimensional search technique.

3. Determine @ according to

-39~
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6. Conclusions

The main contributions of this paper are the development of a model to
explore the risk pooling effect of depot stock in a two-echelon distribution
system, the identification of both a first order and a second order aspect of
the risk pooling effect, and the development of computational procedures to
find near-optimal values for the policy parameters in two special cases.

Preliminary computational experience indicates that the algorithms
proposed here yield solution values for the policy parameters that are within
a few units of the optimal values for the case of two identical retailers.
Since the approximation technique is based on the assumption of a large
number of retailers, this two retailer comparison suggests that the procedure
may be quite robust. The experiments conducted to date are too limited to
report here. Further computational experimentation in this area is clearly

needed.
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Appendix 1

In this appendix, we prove Theorem 4.2 under the assumptions of
Section 4. By assumption, 1“1 and FI; have their support on a compact
interval [-a,a]. By a simple change of variable, these functions could
bé redefined to have their support on [0,1] without materially
affecting any of the results of this paper. Without loss in generality,
assume that the functions have been so defined.

Let Jn(x) be given by

1

J (%) L (t - F}))dy - (A1)
—-X

n

It

In(l—x)

The real-valued function Jn is nondecreasing and continuous on [0,®).
Let x5 = inf ix:Jn(x)>0§ and note that J is strictly increasing,
continuous, and unbounded on (xo,w). Hence, Jn has a unique inverse
function, denoted by J;l, defined on (0,®). Furthermore, J;l(y) =1 -
).

Let m denote the maximum total demand that can occur at any
retailer over two periods (assume m < o). If q/01>m/0'1, then
Q > nm, which is n times the maximum two period demand. Purchasing
such a large amount of depot stock is clearly sub-optimal, so we can

limit attention to J;i defined on (O,m/ol]. An wupper bound on

-1 . _ .
Jn (m/cl) is given by X, = m/cri, since Jn(x) < x for all x > O.
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Consequently, we can limit attention to Jn defined on [O,m/cl].

Let D = D([0,1]) be the space of real-valued functions defined
on [0,1] that are right-continuous and have left-hand limits. Then,
Fl(') and each random occurrence of F?(-) are elements of D. We
assume D is endowed with the Skorohod topology. The Skorohod topology
and the topic of convergence in distribution of random elements of
D([0,1]) are treated in detail by Billingsley [1968]. 1t is a simple
matter to extend the theory to the space D([0,b]) for 0< b <o, so
when quoting his results we will occassionally do so in terms of the
latter space, for b = m/cl.

Let Xn be a random element of D given by
X () = WmE - F,M) (A?)
at each y € [0,1].

Theorem A1.1 (Billingsley, 1968, Theorem 16.4): Under the assumptions of

this section,

X — X, (A3)

where X 1is a Gaussian process specified by

gx)] =0
(a4)
E[X(s)X(1)] = F,(s)(1 -F (1)), O<s<t <.
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Remark: Each random occurrence of X is an element of D, since the
sample paths of a Gaussian process are continuous with probability one.
Restrict J to the domain [0,1] and denote the restricted
function by jn’ Let J(x) = Ii_x(i—Fl(y))dy for x E [0,®), and let
J  denote its restriction to [0,1].  Then, J and each random

occurrence of jn are elements of D. Let ?n ED be given by

T o=@ m-I®) , (A5)
at each x € [0,1].
Theorem A1.2:
T 2%, (A6)

where Y 1is a Gaussian process specified by

e[Yt)] =0
TR (A7)
i@I®1 = [ [ enFGenaa, s e o1l
1-s¥1-t

where xay =min§x,y} and x“y = maxix,y$.

Proof: Consider the function ¢:D([0,1])— D([0,1]) given by

i
$a(x) = f G(y)dy »

1-x
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for an arbitrary function G € D and point x € [0,1]. Then,

W@ -J) = ¢[¢E F-F) ]
= X -
That is, ¥ = -¢X . By (43), X 2, X and so -X_ 2, X. Now, -X is a

continuous process in D, with probability one, so that if §Gn§ is any
sequence of functions in D converging to -X (in the Skorohod metric)
then the convergence is uniform; i.e. Gn - -X in the uniform metric

[Billingsley, 1968, p.112]. Consequently, for arbitrary ¢ > 0,

]

sup |G () +X(x)

1
x€[0,1] Sup lIl_X[Gn(Y)+X(y)]dy|

x€[0,1]

I

[ye§3?1]|Gn(Y)+X(y)‘]

IN
Ly

b

for sufficiently large n. Thus, ¢ is continous at -X in the uniform
metric whenever -X is continuous on [0,1], which event occurs with
probability one. Continuity in the uniform metric implies continuity in
the Skorohod metric [Billingsley, 1968, p. 150] so we have shown that
¢ is continuous in the Skorohod metric at -X, with probability one.
By the continuous mapping theorem [Billingsley, 1968, Corollary 1,

p. 31] we see that -X 2, x implies -¢X_ 2, -¢X; i.e. ?n 2, -¢X.
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Let Y = -¢X. Then, ¥(t) is the integral of a Gaussian process
and, therefore, ¥ is itself a Gaussian process. The mean value

function is given by

e[Y(V)]

i

E[-¢X(t)]
S[Ji‘tX(y)dy]

1
j [X(y) 1dy
i-t

=0 ,

for all t € [0,1]. Similarly, the covariance function is given by

cov[¥(s),¥(t)]

e[yX(s)yx(t)]

i

‘ ” i-s.[ i,tx(x)x(y) dydx]

1 1
j j e[X(x)X(y) Jdydx
1-s¥1-t

1 1
= J I Fl(xAy)Fl(xVy)dydx N |
1-sv1-t

Let Yn denote the unrestricted version of ?n’ That is,

Y (o= & -I®] . (48)
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for all x € [O,m/cl]. Note that Yn’ Jn’ and J E D([O,m/ol]). Let

Y be a random element of D([O,m/cl]) given by

Y(x) = ¥(xA1) . (28)

Corollary A1.3: Y_ -2 Y in D([0,n/o,]). (29)
Proof: Since 1—F?(y) =1 for y €0, Jn(x) = 3n(xA1) + (x-1)A0.
Similarly, J(x) = J(xa1) + (x-1)A0. Hence, Yn(x) = ?n(xni). Convergence
in distribution of Y  to Y then establishes the result. N

We are now ready to examine the limiting behavior of J;l. For an

arbitrary function X € D([O,m/ol]) define its inverse by

inf $x: 2(x) > yi if it exists,

-1

x () = (a11)
»(1) otherwise.

Since Jn is strictly increasing on (xo,m), this definition will cause
no problems for y € (O,Jn(m/ol)). Uniqueness of J;l(y) may fail at
y = 0. However, we are only interested in J;l(q/cl) for positive q,
so this definition is adequate.

The following theorem identifies the limiting behavior of J;l. It

is based on a theorem by Spencer [1978]. Since that result is

unpublished we include it in Appendix 2.
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Theorem Al1.4: Under the assumptions of Section 4,

-1
mEot- oy A X (A12)

n -1
1-F(a-J 7)

in the space D((O,J(m/crl))). ( o denotes composition.)

Proof: Checking the conditions of Spencer's theorem 3.17 we note that by
the previous corollary, rn(Jn—J) 2,7 in D([O,m/ol]). Furthermore,
J1’J2"“ are non—-negative, non-decreasing, random elements of
D([O,m/crl]). Y has continuous sample paths with probability one.
g[Y(0)] = 0 and Var[Y(0)] =0, so P§{Y(0) = 0% =1. Let & = n‘l/z;

then \’;n—-» 0 as n— . J is a non-random, continuous, nondecreasing

element of D([O,m/ol]) with J(0) = 0. Its derivative,
I = 1—F1(a—x), is continuous on (O,m/ol). However, since
J (0) = 1——F1(1) =0, J fails the condition that there exist a & > 0

such that J'(x) > & for all xE[O,m/cl]. Assuming Fl(l—s) <1 for
any & > 0, we note that Jl(x) is bounded away from zero for all
x E [8,m/01]. Hence, all of the conditions of Spencer's theorem can be
seen to hold when the domain is restricted to [a,m/cl]. The choice of
the interval's left hand endpoint in Spencer's result is arbitrary: it
applies equally well to convergence in D([a,J(m/cl)) as it does to
convergence in D([O,J(m/cl))). Consequently, (A12) holds in the space
D([S,J(m/cl))), for all small positive &. This is the sense of
convergence in the space D((O,J(m/ol))); it is analogous to defining

convergence in D([0,®)) in terms of convergence in D([0,N]) for all
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large N. N

Corollary A1.5: For large values of n, and for g <m, J;l(q/cl) is
approximately normally distributed with mean 7, M = J_l(q/ci), and

variance az given by

- . 1 1

Fl(xAy)Fl(xvy)dydx . (A13)

R 1"T]A1J‘1"T1A1

Corollary A1.68: For q < m,
-1 -1
J “(a/0) = I “(a/o)) (A14)
n 1 1

in probability as n — o,

Proof: By Corollary A1.5, J;l(q/cl) converges in distribution to a
constant as n — o. Convergence in distribution to a constant implies

convergence in probability to that constant. N
Corollary A1.7 (Theorem 4.2): For q < m,

1 1(a/0) — /o)) (A15)

in probability, as n — «.

Proof': I_l(y) =1 - ng(y). | |
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Appendix 2

Let D = D[0,1], 0 < 1 < », and D, be the subset of D of non-
decreasing, real valued functions, and C = c[0,1], the set of all
continuous, real valued functions defined on the interval [0,1]. C
will be assumed to have the wuniform metric; D has the Skorochod

topology. For x€D define the inverse by

0

inf$u: x(u) > t§ if it exists,
x () =
x(1) otherwise.

Theorem A2 (Spencer): Let X, , X be non-negative random variables

12 ">
in DO’ Y be a random element in C such that P§Y(0) = 0% = 1, &4

Goseen be positive random variables such that cn -2, 0, and f Dbe a

fixed element of CnD such that f(0) = 0, f° exists and is

0’
continuous on (0,1) and there exists a & > 0 such that f°(s) > &

for s€[0,1], f  possibly taking on the value of +® at 0 or 1. If

-2, Y in D[0,1] ,

then
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in the space D[0,f(1)).
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