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Marginal Distributions of Self-Similar

Processes with Stationary Increments

George L. O'Brien and Wim Vervaat

York University and Katholieke Universiteit, Nijmegen

1., Introduction. A real-valued stochastic process

X= (X(t))t 5 0 = (Xt)t > 0 is said to be self-similar with parameter

H> 0 1if

X(a-) d aH X(+) for all a=> 0, (L

d
where = denotes equality of the finite-dimensional distributions of
the two processes., We will say X 1s H-sssi i1f X is self-similar

with parameter H and has statiomary increments, that is,
X(b + +) - X(b) T X(:) - XQO) for all b 0 . (2)

The importance of H-sssi processes arises from the fact that if Y
has stationary increments and if, for some positive function c , the
finite-dimensional distributions of (c(a))"1 Y(a+) converge to those
of a process X as a - ® , then X 1is H-sssi for some H . A result
of this kind was shown by Lamperti (1962). Lamperti used the name ''semi-
stable" instead of "self-similar', reflecting the fact that all strictly
stable processes of index « are H-sssi with H = d;l .

Many articles on H-sssi processes have been published in the last

decade. Most of these are listed by at least omne of Major'(1981),




Taqqu (1982) or Vervaat (1982). Lamperti (1972) and Kiu (1975) consider
self-similar Markov processes while 0'Briem, Torfs and Vervaat (1982)
consider self-similar extremal processes, Most of the work on H-sssi
processes deals with special classes of H-sssi processes, The p;esent
paper on marginal distributions aund Vervaat's (1982) paper on sample
path properties seem to be the first articles dealing with general
properties of H-sssi processes,

We gonsider several aspects of the (one-dimensional) marginal dis-

tributions of an H-sssi process X . In Section 2, we consider the

concentration function @ of 1ogXt (=.10gXt if Xt >0 and = -
otherwise), defined hy
+
Qly) = SUPy m P[b< logXt <b+y], vy>0 , (3)
or equivalently by
b by
Qy) = supy g Ple" <X <e 7] ,y>0 (%)

( cf. Hengartner and Theodorescu (1973) or Petrov (1975)). We show that

Q is independent of t_> 0 and that, for each H # 1 , Q{y) has a
universal upper bound Qﬁ(y) such that QH(y) -0 as v+ 0. In
Section 3 we show that the distribution of X(t) has no atoms for t > 0 ,
except in certain trivial cases., In Section 4, we present a lower bound
on P[X(t) > x] for large x , for the case H> 1 ., Finally, in

Section 5, we give some conditions under which the distribution of Xt

has no "gaps", that is, if X, > b] > 0 and P[Xt < a)l > 0 where



0<a<b, then P[a < Xt < bl >0,
All the proofs of these results use only elementary probability
theory. Furthermore, they almost never use the full strength of (1)

and (2) but only the one-dimensioaal versions: .

X(at) & a X(t) for all a> 0 and t3 O ; (5)

and

X(b + £) - X(b) £ X(t) - X(0) for all b Oand t> 0. (6)

Thus, it may very well be possible to obtain better results by a more
sophisticated use of (1) and (2). We will indicate several open problems
as they arise (cf, Remarks 2,3 and 4).
We conclude this section with several preliminary observations.
First, we have restricted attention to the case H x> 0 in (1) because
the situation is transparent for H < 0 , at least if the process X 1is
assumed to be measurable and separable, If H=0, these assumptions imply that Xt is
a constant function of t with probability one (wpl) , but Xt can
.have any distribution. If H < 0 , then separability implies that X = 0 wpl .

These results are proved by Vervaat (1982).

d
Note that XO = ZH XO by (1) so that P[XO =0] =1 since H> 0.
Thus we may restrict our attention to the distribution of Xt for t> 0.
Since Xt d tH Xl , we may narrow our focus further by looking only at

the distribution of X Since =X 1is H-sssi iff X is H-sssi, we

l -+
mainly consider the part of the marginal distributioms on [0,@) .

The process X = 0 wpl 1is obviously H-sssi for all H and any




process X for which Xt = tX, wpl is 1-sssi, These two special

1
cases must be taken into account when we consider_whether the distribution
of X, has any atoms,

1

2. A bound on the concentration function. By (4) and (1) we see that

eb-Hlogt b+y-Hloga

Qly) = SUPLp 158 < Xl < e

which is obviously independent of t > 0 . The main result of this
section is Theorem 1 below, which shows that for each U # 1 , there is
a universal bound on the concentration function of logXt for all
H-sssi processes X ., We first need the following simple lemma.

Lemma 1. Let Al,Az,...,An be events such that P(Ai) > p for all
i. If n-= [2p_1} , where {-] denotes the greatest integer function,

then

2
max  PAA) > 5P . (7
1<i<j<n J

Proof, We have

1> P(Al U Azu...UAn) > = P(Ai) - :'_Ej P(AiAj)

z mp - () max P(AAL)
1]

Let & = 2p-1 -{Zp_lj (so that 0< 6§ < 1) . Then



max P(AA) » (mp - D(GN
1#] .

- % Pz(l - p&) (8)
1-p5 - (3p - 3p0(L + 6))

v
-
vl
O

Remark 1. One can improve the Iower bound in (7) somewhat by
choosing n so as to maximize the right side of the first inequality
in (8) (e.g. with p =% , take n =3 to get the bound 1/6). The
bound in (7) cannot be more than doubled, as can be seen from the
independent case. The value of n cannot be improved (i.e. decreased)
to less than p-l , as can be seen from the disjoint case,

Theorem 1. For each H # 1 , there is a functiom QH: (0,=) » (0,1]

such that

lim Qu(y) = 0 ON
vi0

and such that, for any H-sssi process X ,
QE) € Qu(y) for all y > 0, (10)

where Q 1is the concentration funetion of 10gxz , £> 0,
Proof., Fix H # 1 . We will show that for any p € (0,1) there
exists a positiwe real number C = C{H,p) such that, for any H-sssi

process X and any bR ,

-+

P[b < logX1<b+C]5p. {11)




Define Qy ! (0,2) - [0,1] by
Q) =inf {p>0:y= CH,p)} -

Then (9) follows from the fact that C(H,p) > 0 £for all p> 0 . By
(1), Q)Y <p if y < C(H,p) , which implies (10).

In order to prove (11) for some C> 0 , fix p € (0,1) and set
m = [29-2] + 1 and n = [Zp‘I] . Consider the function g: (0,1) =R

given by
g(w) = (1 - dHa - w™ .

Since g'(u) = H(L - uH_l)(l - u)-H-l , we see that g is strictly
increasing if H> 1 and strictly decreasing if O0<H<1 . It follows

that the numbers g(e‘l) ’ g(e-z) s g(e”B) ,+ee« are distinct. TFor

u € (0,1) and 1 > 1 , consider the intervals
Blu,ry = (@ - o)L - N, @ -dha- ™.

‘Tt is clear that g(u) € B(u,r) for any r > 1 and that B(u,r) shrinks

to the singleton set [g(u)} as r decreases to 1 . Thus, there exists

a real number r > 1 , dgpending only on H and p , such that the intervals
-i s m s s

B(e , )y ,i=1,2,...,n , are disjoint,

For x> 0 and r as just described, consider the events

a) = xetf < x(eh) < rxe™y, 1=0,1,2,... . (12)

We will show that (11) holds with C = logr . If this is not so for some



b €R , then fix x = eb in (12) . Then P(A(0)) > p , and, by self-
similarity, P(A(i)) > p for all i 0 . Let § € iO,l,...,m-l} .

By Lemma 1, there exist i and j with 0<i < j<n for which
PAGIAG")) = 3 p° , where i' = in® and 3' = jn° . By (1) and (2),

we then have (for each B )

rrat x) € neet 1, 01
- P[x(ej'H Cret Byl Lty R o X, < xed B Ay 30 1y-Hy
= P[x(ej'H - reilH) < X(ej.) - X(ei') < x(rej'H - ei'H)]

2 -1
> PAGADY AGY)Y=2%p >m .

This is impossible since thev m events ix-l Xl‘é ]S(ei'ujl » ¥)}  are
diéjoint. Thus (11) must hold with C = logr . O

Remark 2. We have not given an explicit expression for QH in
Theorem 1 . It would be difficult to calculate and, in any case, is
probably gigantic compared to the best possible bound. Im particular,
our bound is insufficient for providing a positive answer to the following

open question. Is the distribution of Xl outside 0 absolutely

continuous if H #1 ?

3. Continuity of marginal distribution functions, In this section,

we will show that 1f X 4is H-sssi then Xl has no atoms, except for some

trivial cases. We begin with three lemmas.

Lemma 2. Let X be H~sssi for some H # 1 , Then Xl has no atoms




except possibly at zero.

Proof. This is an immediate eomsequence of Theorem 1 .,

Lemma 3. Let X be a separable H-sssi process for some H > 0 ., Then

BY, =0] =px=0].

Proof. By (1), the quantity p := P[Xt 0] is independent of

[}

t- 0. By (2), we have

P[XS = Xt] = PEIXS - Xti = O] = P[Xlt-Sl - 0] =P (13)

for all s,t > 0 with s # t . Again applying (1) we have, for fixed t

and for M and then u sufficiently largaathat

PX, = X, # 0} < PO{X | 2 M) + P[O < [, <]

pU|X,} 2 M) + PO < |x;| < muT)
< 2¢

.for any £ » 0 , so that

lim P{X_ =X #0] =0, (14)

[ ET

Combining (13) and (14) we have for x # t

PX, = 0, X, # 0] < P[X, =0, X, # 0] +‘P[Xu =0, X, # 0]

X #0] - PX =X)]

Il
5]
-
e
L]

01 + P[XS

1l

X, #0] - P (X =X]

+
=)
)
i
I}

0] + P[X,



as u_ « , Thus P[XS =0 l Xt =0} =1 if p> 0. Since X is

separable, P[X =20 | X, = 0]l =1 . .

Lemma %4. Let X be a separable l-sssi process., For x €R ,
P[Xl =x] = PX, = tx} .

Proof, The process Yt:= Xt -tx, t> 0, 1is also separable and

l1-sssi. The result follows by applying Lemma 3 to Y . (il

Let X be a separable H-sssi process., The event {Xt = tXl} ,

which for H # 1 differs from .the event {Xt = 0} by a set of probability
0 , is invariant under the transformations in (1) and (2). If this eveﬁt
has probability less than 1 , then conditioning on its complement leads to
a new separable H-sssi process, Combining the last three 1émmas, we obtain:

Theorem 2, Let X be a separable H-sssi process for which

P[Xt = tXl] <1. For x€R ,
PP, =x | X #ex]=0.,

4. The tails of the marginal distributions. In this section, we

assume that X 1is H-sssi with Hs> 1 . If X is strictly stable then

1im xllH

@

X > x] = ¢ - (135

where ¢ 1is a positive constant if P[X1 > 0] > 0 (cf. Feller (1971},

Lemma XVII.7.1) As will be shown in Remark 3 below, (15) is not valid




- 10 =

for general H-sssi processes, but it is possible that the lower bound on

the tails does extend to the general case, i.e., that

" 1/H
lim inf x / P, > ®x} > 0 dn case P[X1>0]> 0. (16)
R .

We give partial results in this direction in Theorems 3 and & below. We

will have cccasion to use the following lemma,

Lemma 5. Let Y be a real-valued random variable such that
BY> x] < THY > r'x] forall x> B (17)

where r> 1 ,d> 0 and § > 0 ., Thed
- 1/d -1/d d ) d
Y> x] > 8 X P[Y > rg] for all x»r B .

Proof. Let n be the positive integer such that

nd

ar™ < x < Br(n+l)d

Iterating (17), we obtain
-1 -d
HY> x]>r PY>r %]
> r P[Y > _— x]

> (Bx-l)l/d 7Y > rdB] . d

Theorem 3. Let X be H-sssi with X = 1 and suppose PFX1> 0] -~ 0.

Then there are positive constants € and @§ such that
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B, > %] 2 e VEL) e a1 x >B .
Proof. Observe that

P[Xl>x]5P[X%> =)+ X - Xy > 5x)

2

1

H-
2P X, > 27 Tx]

for all x> 0 . Now apply Lemma 5 with Y = Xy , T = 2, and d=H-1.

We can do a bit better with the help of an extra regularity assumption

which holds in many cases including that of stable processes.

Theorem 4, Let X be X-“sssi with H> 1 and suppose F[X; > 0}>0.

Assume

P[XZ-X1> x]K1>x]...O a8 X . @ |, (19)

Then for all 45> H-l R
lim x* HX; > x} == . (20)
K0
Proof. Note first that the left side of (19) is well-defined since
P[Xl > %] > 0 for all x> 0 by Theorem 3. Fix &> 0 , Ilet

g = 2H - 2H-6 and let %k be an integer such that Zk(H-l) £ > ZH-6

We have

a
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X, > 2Hx'__\

P[Xl > x)

H-§ H-§
< P[XI > 27 Tx] + P[X2 - X > 27 Ux]

(21)
+ X, > £x, Xy = X, > &x]

28(%, > 2 O] + o (BF{¥ > ex])

as X o @ , by (19). By the argument at (18) and iteration,

1

P, > ex] < 2P(X; > P

< 2% Bx, > 2k E1) ¢y
k H-6
Combining this with (21), we find

H“'éx]

P[x1>x]5(24'-5) X, > 2

for x sufficiently iarge. Applying Lemma 5 with Y = X1 , T =2+8

and d = (H-5)(log2) (log{2 + 6))-1 , we have
PX, > %} > ox 179 (22)

for some positive comstant € and for x sufficiently large. Choosing

5§ sufficiently small that H > d> a-l , we obtain (20) from (22). O

Remark 3. (a) H~> 1 . It is an open question whether (19) must

always hold. It is alsc open whether (16) or even (20) must always hold.
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On the other hand, the tails of the distribution may be thicker than in
the stable case (cf. (15)). Consider for example the processes which
Kesten and Spitzer (1979) obtain as limits of their so-called random
walks in random scenery. Their processes are H-sssi with H =1 - a-l + Q-IB-I )
for any o and B with 1< 4<2 and 0<B <2, whereas the marginal
distributions are strictly stablé with index B (cf. their Lemma 5) so that, for
0<g<2, < X > X] sc>»>0 as x-oo , If 0<B<1 and
1< g<2 wehave H> 12> ﬁH , thereby giving a counterexample to (lﬁ).

(b) 0<H<L1. In.éhis-case, the tails may either thicker or thinner
than indicated by (15). Fér any H € (0,1) and B € (0,2) , there is a
fractional stable process (cf. ﬁaejima {1982}, Taqqu and Wolpert (1981),
or Vervaat (1982), § 5.5) that is H-sssi and whose marginals are strictly
gstable with index P . Other examples with thin tails are fractional
Brownian motion (Tagqqu (1982)) which has normal marginals (Ehis includes
regular Brownian motion) and the aforementioned processes of Kesten and
Spitzer (1979) with B> 1 and 1< g<2 (here H<1<BH).

(c) H=1. Excluding the linear case. Xt = tX1 , the only example
for which we have computéd the tails of the marginals is the case of the

symmetric Cauchy process,-for which (15) does hold.

5. Support of the marginal distributions. Let X be H-sssi for

some H=> Q . To avoid trivialities, we assume throughout this section that

X 1is separable and P[Xt = tX1]=0. We wish to consider what sets are
possible as the support of Xl , which is defined to be the smallest

closed set S for which
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P[X1 € 8] =1 . We startwith the following result for the case H>» 1 .

Theorem 5. Let X be H-sssi where H> 1 , If the support 3§ of
X1 has the property that S (0,») and SN (-=,0) are both connected,
then S is one of R , [b,®) , (-@,a] or (-=,a] y [b,®) where
a< 0< b . All these cases are possible.

Proof. The fact that S must have ome of the above forms follows
immediately from the connectedness requirement and Theorem 3. If X 1is
generated by a dyadic lattice process accééaihg to the scheme developed in
O'Brien and-Vervaat (1982), § 4 , thenu‘xlgzhas support [b,») for some
b> 0. Multiplication of X by any cgg;tégé. r # 0 shows that any
set [b,®) or (-»,a] is possible for ‘a< 0< b, The one-sided strictly
stable processes (with index d-='H_1 < 1) show that [0,®) and (~=,0]
are possible, If Y has support (~»,b] and Z has support [a,®) »
then the process X , obtained by tossing a coin which is independent of

(Y,Z) and letting X =Y or X =7 on the basis of the outcome of the

toss, has support (-w,a} |y [b,») . Taking a =b =0 yields § =R . m

We have much less information about the support S of Xl if X
is H-sssi for some H< 1, If H<1 then S intersects both (-=,0)

and (0,») . This is a consequence of Theorem 3,la of Vervaat (1982),

which shows in particular that

lim sup h_IXh = and lim inf h_l Xh = -  gpl,
hio0 hi0
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proof of Theorem 6.

Remark 4. The conclusion of Theorems 6 and 7 can be strengthened
to the statement that (23) holds for infinitely man& positive integers u .
To see this, observe that if (23) holds for some n , then for any

£t > 1, either
P[X, <a, X >bt']=2PX >b,X <ath]>0
1 * 7t 1 S

or else the events le < al and {Xt < atH} differ by a null set,

which implies that

H

H, _ H
P[Xl <a,X, > b(nt)"] = P[X. < at , X, > b(nt) 1>0.

The theorems of this section leave two main unanswered questions.

Is it possible, if H < 1 , to have the support of Xl bounded or at least bounded

above? Is 1t necessarily the case, for general H > 0 , that the support
of X, must be connected, except for the two component situation described

1

in Theorem 57




16,

11.
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