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Abstract 

We introduce a general class of models for sequence evolution that includes 
network phylogenies. Networks, a generalization of strictly tree-like phyloge­
nies, are proposed to model situations where multiple lineages contribute to 
the observed sequences. An algorithm to compute the probability distribution 
of binary character state configurations is presented and statistical inference 
for this model is developed in a likelihood framework. A stepwise procedure 
based on likelihood ratios is used to explore the space of models. Starting with 
a star phylogeny new splits (non-trivial bipartitions of the sequence set) are 
successively added to the model until no significant change in the likelihood 
is observed. A novel feature of our approach is that the new splits are not 
necessarily constrained to be consistent with a tree-like mode of evolution. 
The fraction of invariable sites is estimated by maximum likelihood simulta­
neously with other model parameters and is essential to obtain a good fit to 
the data. The effect of finite sequence length on the inference methods is dis­
cussed. Finally, we provide an illustrative example using aligned VPl-genes 
from the Foot and Mouth Disease viruses (FMDV). The different serotypes of 
the FMDV exhibit a range of tree-like and network evolutionary relationships. 

keywords convergent evolution - gene conversion - maximum likelihood 
- phylogeny - quasi-species - recombination - substitution rate - virus 
evolution 
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1 Introduction 

The inference of phylogenetic relationships from molecular sequence data has 

received a great deal of attention in recent years and a variety of methods have 

been developed ( cf. Swofford and Olson 1990, Felsenstein 1988). The methods 

presented here generalize the standard tree-like models of evolution by allow-

ing for network relationships. Phylogenies among (closely) related sequences 

may be complicated by recombination, gene conversion or other horizontal 

tranfers of genetic information and thus can be viewed as a mixture of different 

tree-like histories. The phylogenetic relationships among RNA viruses, often 

described as quasi species (Steinhauer and Holland 1987, Domingo and Hoi-

land 1988), provide an example where tree-like phylogenies are not necessarily 

appropriate. Dopazo et al. (1990) used a non-statistical split decomposition 

method (Bandelt and Dress 1990) to display a network relationship among 

viral sequences. The present work provides a statistical basis for determining 

the significance of a split decomposition. 

Cavender (1978) introduced a model of an evolutionary process on a two 

letter alphabet. We will adopt essentially this model with some extensions 

to be described below. Although nucleic acid sequences are formed from four 

nucleotides it has been helpful to study binary sequences to investigate the 

reliability of tree reconstruction methods (Churchill et al. 1991, Hendy and 
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Penny 1991). A generalization of the method presented here is possible, but 

for the sake of clarity we will present only the two letter case. This restriction 

is not too limiting when transition frequencies are substantially greater than 

transversion frequencies. In this case, the observed transition differences may 

contain very little phylogenetic information (Brown et al. 1982). On the other 

hand Ward et al. (1991) describe a collection of human mitochondrial DNA 

sequences in which only transition differences are observed. 

The existence of invariable sites in amino-acid sequences was first proposed 

by Fitch and Margoliash (1967) and was later extended to include nucleic-acid 

sequences (Fitch 1986a,b ). In a recent study, Shoemaker and Fitch (1989) 

found evidence of invariable nucleotide sites in nearly every data set they 

analyzed. We will extend the Cavender (1978) model by allowing a fraction 

of the sites to be invariable. The fraction of invariable sites is estimated 

by maximum likelihood in the context of the current model. Hasegawa et 

al. (1985) and Hasegawa and Kishino (1989) have proposed an alternative 

method of estimating the fraction of invariable sites and ignore this fraction 

in their tree building procedure. We demonstrate that the estimated fraction 

of invariable sites can be sensitive to the topology considered. 

In principle, to determine which model (models) are most suitable for the 

given data, all possible models should be compared. Because the number 
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of possible trees grows exponentially with the number of species, heuristic 

search algorithms are often used. The single tree with the highest likelihood 

among all trees considered is usually chosen to be the best tree and reported. 

We describe a sequential search method based on likelihood ratios that is 

analogous to stepwise procedures used in linear model building (Draper and 

Smith, 1981 ). The search may be restricted to tree-like topologies or may 

encompass the larger class of evolutionary network models. 

Most tree reconstruction methods start with a fully resolved tree, i.e. a tree 

with vertices of degree one and three only, and search the space of alternative 

fully resolved trees by va.rying the topolcgy and comparing likelihoods maxi­

mized with respect to branch lengths. By looking only at fully resolved trees, 

one assumes a precision that may not be supported by the data. Methods for 

obtaining degenerate "consensus trees" using bootstrap resampling have been 

described (Felsenstein 1989, Swofford 1991 ). However the reported trees do 

not correspond to a single model which has been fit to the data and tested. 

Stepwise procedures that start with a degenerate tree have also been proposed 

(Saitou 1988). However these procedures are designed to stop only when a 

fully resolved tree is obtained. The forward stepwise procedure descibed here 

overcomes these problems by sequentially adding splits to the model until sig­

nificant improvement is no longer possible. In many cases, the resulting trees 
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may be less than fully resolved. The problem remains that there may be sev­

eral models which provide a good fit to the data. These may be revealed by a 

broader search of the model space. 

2 Methods 

2.1 The Model 

Suppose we have a set of K binary sequences each of length N. We will 

assume that the sequences are correctly aligned with homologous sites forming 

a column. The data are represented as a matrix with elements Sij from a 

binary alphabet, coded as 0 and 1, where i is the species index and j is the 

site index. Each site j is represented by a K -dimensional vector of zeroes 

and ones, a binary character-state configuration. We will assume that the 

evolutionary process acts independently at each site and that the sites are 

identically distributed. We will also assume symmetry between zero to one 

and one to zero changes. Thus, two configurations are equivalent if the first is 

obtained from the second by reversing the labeling of zeroes and ones. 

A split is a bipartition of the K species into two disjoint sets. A split can 

be represented by the setS, such that 1 E S, and the set sc = {1, ... , K} \ S. 

Our definition includes the trivial split where S = {1, 2, ... , K}, and sc = 0. 
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Each of the 2K-l non-equivalent configurations corresponds to a split on the 

species. The 2K-l dimensional vector X = (x0 , Xt, ••. , x2K-l_1 ) counts the 

number of occurences of each non-equivalent configuration. A split is called 

non-zero split if Xi > 0, i.e. there is at least one site in the data that supports 

the split. 

An evolutionary model M = ( S, 0) is defined by a set of non-trivial splits 

and a parameter vector (} = {OsiS E S}, where Os is the probability that, at 

a given site, an odd number of substitutions separate the sequences inS from 

those in 5c. Assuming that the substitutions occur as a Markov process in 

time, the valid range of Bs is from 0 to 1/2. The parameter vector(} is analogous 

to Hendy and Penny's (1989) p vector, the probability of character changes 

along an edge of a tree (Hendy 1989, Hendy and Penny 1989) 

Tree phylogenies are a special case of our general evolutionary model. A 

model is representable as a tree if and only if all splits in S are pairwise 

compatible. Splits Si and 5i are pairwise compatible if there exists a Bi E 

{5i, 5i} and a Bi E {5j, 5j} with Bin Bi = 0 (Buneman 1971). If the 

set of splits is not pairwise compatible the evolutionary model is called a 

network. For example, consider the model M 17 with S = { 5 17 5 2, 53 , 54}, where 

51 = {1},52 = {1,3,4},53 = {1,2,4},84 = {1,2,3}. This is the familiar four 

species star phylogeny (figure la). A new model M2 is created by adding the 
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split S5 = {1, 2}. This is the four species tree that pairs species 1 and 2 versus 

species 3 and 4 (figure 1 b). If we now obtain a third model M3 by adding the 

split S6 = {1, 3} the result is a network (figure 1c). The splits Ss and S6 are 

not compatible. 

2.2 Computing the Spectrum of M 

The observed character state configuration at a site is the result of substitu­

tions that have occurred along one or more of the splits in the model. For 

example, if no substitution occurs along any split in model M2 above, the 

resulting character state configuration will be constaut, 0000 or 1111. If sub­

stitutions occur along the splits S1 and S5 , the resulting character state config­

uration will be 0100 or the equivalent configuration 1011. For a given model 

M, the probability vector P = P(M) = (po(O), ... ,p2x-I_1(0)) defines the 

character state probability distribution. Following Hendy and Penny {1991) 

P is called spectrum of M. In this section we describe an algorithm to compute 

the spectrum. 

For a model M = (S, 0) let St, S2, ••• , Sm be the sets inS and let 011 ••• , Om 

be the corresponding probabilities of substitution across a split. Consider one 

site in the sequence set. Since for each split in the model a substitution may 

occur or not, there are 2m combinations of possible substitutions. Each of these 
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combinations generates a character state configuration. Let I= (Ill 12 , ••• , Im) 

be a vector of indicators such that Ii = 1 if an odd number of substitution 

events occur along split Si and Ii = 0 otherwise. For example I= (0, 0, 0, 0, 0) 

indicates that at the site considered, no substitution occurred along any split 

in the model M2 • I = ( 1, 0, 0, 0, 1) corresponds to the example given above. 

For any given I the resulting character state configuration c = ( c17 c2 , •.• , cK ), 

where Ci E { 0, 1}, is calculated according to the following formula: 

m 

Cj = L IviSv n {j}l (moJ 2) (1) 
v=l 

This expression counts occurrences of a species j in the sets Sv whose indicator 

value Iv equals 1. If this number is odd the character state of species j equals 

1, otherwise 0. For a proof of formula 1 see Appendix. 

The probability of an indicator vector I is 

m m 

(2) 
v=l v=l 
Iv=l lv=O 

Summing over all indicator vectors giving rise to c or its equivalent configu-

ration c' yields the total probability of the corresponding probability Pi in the 

spectrum of the model M, 

Pi= .L:Pr(c I I)Pr(I) +Pr(c' I I)Pr(I). (3) 
I 

Where Pr ( c I I) is 1 for the configuration generated by I and zero otherwise. 

The computation of this probability for each of the 2K-I differ~nt configura-
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tions is easily implemented on a computer to define the spectrum for any given 

evolutionary model. 

2.3 Invariable Sites 

To include invariable sites in our model, we introduce a parameter 00 which is 

the fraction of invariable sites among all sites in the aligned sequences. This 

fraction is allowed to vary between 0 and 1. The zK-l dimensional spectral 

vector Q is defined as follows 

0o+(1-Bo)·po (4) 

qi - (1 - Bo) ·Pi, where i = 1, ... , zK-l - 1 (5) 

where p0 is the probability of the constant configuration. The quantities Pi( 0) 

in the log-likelihood (equation 6, below) are replaced by qi(O). The invariable 

sites fraction is estimated by maximum likelihood simultaneously with the 

other model parameters. 

2.4 Parameter Estimation 

To estimate the parameter (} for a given model, we maximize the log-likelihood 

function 
2K-l_l 

£(M,O) = L Xi ·ln(pi(O)). (6) 
i=O 
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The multinomial form of the log-likelihood follows from the independent and 

identically distributed sites assumptions above. Once the spectrum of the 

model has been defined as a function of its parameters, the estimates 0 are 

computed by maximization of l(M,()). This can be achieved by a standard 

optimization procedure such as the Newton-Raphson method. The required 

partial derivatives of the spectrum with respect to 0 are readily obtained. 

Calculating 0 for tree-like evolutionary models in the context of a four letter 

alphabet has been proposed by various authors (Barry and Hartigan 1987, 

Felsenstein 1981). 

2.5 The Search Algorithm 

The problem of selecting a suitable model remains. Our approach is different 

from most of the existing approaches in that instead of starting with a fully 

resolved tree structure (e.g. trees with vertex degree of three and one only) 

we start with a star phylogeny (i.e., a phylogeny which includes all singleton 

splits, i.e. S1 = {1}, and Si = {1, ... , K} \ {i}, i = 2, ... , K). By including all 

of the singleton splits in the model, we ensure that all configurations have non­

zero probability. Splits are then added successively to the model to resolve the 

phylogenetic relationships revealed by the data. If the current model is M1 
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and the model M2 is obtained by adding a split to M1 , the statistic 

(7) 

will have (asymptotically) a X~ distribution with 1 degree of freedom and 

large values indicates a significant improvement in the fit of the model. In 

the stepwise forward search, a split is added to a current model only if the 

likelihood ratio statistic indicates a significant improvement in the goodness-

of-fit. The procedure tests each possible split and stops adding to the model 

when there are no longer any splits that yield a significant improvement. If 

there is more than one alternative, the most significant split is used to extend 

the model. The search may be restricted to splits which are compatible with 

tree-like phylogeny or the set of all splits may be searched to find potential 

network structures. The search space can be further reduced by considering 

only non-zero splits. Although it is possible to include unsupported splits in 

the model, we have found that their estimated values are typically zero or very 

small. 

The choice of an appropriate critical value for stopping is somewhat ar-

bitrary and is complicated by the fact that the asymptotic X~ distribution is 

only an approximation to the true (small sample) distribution of A(Mt,M2). 

In the examples below we elected to use the critical value X~ a = 3.84, where 
' 

a= 0.05. Figure 2 illustrates the stepwise forward procedure. 
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A backward step can be implemented using the same methods. Each split 

in the current model is tested one at a time by dropping it from the model. 

The split which makes the le~t significant change is removed from the current 

model. In a fully backward stepwise procedure, the starting point is a saturated 

model and splits are dropped until all remaining splits give a likelihood-ratio 

statistic which exceeds the critical value. A mixed strategy of forward and 

backward steps can be implemented to give a broader range to the search. 

It is not possible for us to claim any optimality properties for these heuris-

tic search procedures. However, similar methods have been widely used in 

linear and log-linear building (Draper and Smith 1981, Chap. 6). Although 

stepwise procedures can be informative regarding the relative importance of 

major features of the data, we recommend a more general search of the model 

space. 

2.6 A Simulation Test 

The x2 distribution of the likelihood-ratio statistics is an approximation which 

·I 
I is valid when each of the configuration counts is large. The number of possible 

configurations grows exponentially with the number of species. Unless these-

quence lengths are several times 2K-t these counts will typically be sparse and 

the asymptotics of the likelihood ratio test may be unreliable. The following 
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procedure is suggested to overcome this problem. 

Random sequences can be generated according to the smaller model M 1 = 

( S, (}), using the maximum likelihood parameter value 0, to obtain a simulated 

vector Xr of configuration counts. The likelihood ratio statistic in equation (7) 

can then be calculated for a large number of simulated data sets to obtain an 

empirical estimate of the sampling distribution. In particular the 100(1- a)% 

critical values of the distribution can be estimated. 

3 The data 

All sequences are VP-1 gene sequences from the Foot-and-Mouth Disease 

Virus (FMDV). The virus is divided in several subserotypes. The phyloge­

netic relationships with the subserotypes A, C, and 0 were investigated. The 

following aligned sequences were used: 

A types: A10/61, A12/32, A27 /76, A5Mor/83, A5Sp/86, and A5Ww/51. 

C types: C3Ind/78, C3Ind/71, C3Arg/85, C3Res/55, C3Arg/84, CSl0/79, 

and CS16/81 (Piccone et al. 1988, Sobrino et al. 1986)~ 

0 types: 02Norm/47, OMu/82, 01Bfs/68, OlCa/58, Oth/81, OWupp/82, 

and Oisr/81 (Beck and Strohmaier 1987). 

Sequences were translated into the two letter alphabet of purines and 

pyrimidines. Positions where a gap occured in at least one of ~he sequences 
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were ignored. 

4 Results 

Figures 3, 4, and 5 show the final models obtained using the forward stepwise 

procedure with the FMDV sequence alignments. The results (almost) agree 

with the networks shown in Dopazo et al. (1990). nly the 0-type sequences 

show a tree-like evolutionary relationship, whereas A- and C-type sequences 

are related by a network. However, there is a remarkable difference between 

A- and C-type sequences. The C-type sequences contain a considerably large 

amount of tree-likeness. It is instructive to look at the order in which splits 

were introduced in the stepwise forward model. The first three splits added 

to the star phylogeny model of C-type sequences are compatible with a tree 

structure. They account for most of the improvement in the goodness-of-

fit. Only near the end of the stepwise forward procedure are non-compatible 

splits introduced. For the A-types, the second split added to the existing 

model is not compatible with the first split. Hence, the network relationship 

is a prominent feature of the A-type sequences. 

When invariable sites are included in the model, we find that the com-

plexity of the inferred evolutionary network is reduced. The inferred tree for 

0-type sequences remains unchanged. For the C-type (figure ~b) sequences, 
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the network is replaced by a not fully resolved tree. Only three splits are added 

to the original star tree of the C-type. Whereas for the A -type sequences a 

simpler network is obtained (figure 3b ). 

The number of splits in a model influences the estimated fraction of in-

variable sites. Table 1 shows the estimates for the three FMDV serotypes. If 

the star phylogeny model is assumed, the proportion of invariable size is max-

imal and ranges from 84 %to 94 %. The introduction of splits monotonically 

decreases this fraction. When all non-zero splits are included in the model 

the proportion of invariable sites equals zero. This occurs because the model 

is saturated and places no constraints on the expected counts. The * in table 

1 indicate the proportion of invariable sites for the models shown in figures 

3-5. About 75 %, 85 %, and 45 % of the sites are invariable in the A-type, 

C-type, and 0-type sequences respectively. 

The introduction of invariable sites also affects the estimates 0, which now 

reflect the rates of change among the variable sites. The ratio of estimated 

Oi, i ~ 1 parameters for models with and without invariable sites indicates a 

2 (0-type), 4 (A-type), and a 6.5 (C-type) fold increase in the estimated() 

when invariable sites are allowed. The increase is approximately 

()( . . bl . ) O(no invariable sites) 
mvana e sites ~ () . 

1- 0 
(8) 

This empirical result is consistent with the altered defintion of ~i, i ~ 1 when 
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invariable sites are included in the model. 

In order to check the effects of the asymptotic approximation to the likeli-

hood ratio test on our results, we reanalyzed the data using the simulation test 

described in the method section. As illustrated in figure 6 the results agree 

in their major features. The simulation based procedure is slightly more con-

servative and tends to introduce fewer splits. The 0- and C-type sequences 

conform to tree topologies, whereas the A-type sequences still form a network. 

5 Discussion 

The methods described here belong to a large class of likelihood based pro-

cedures used to compute phylogenetic relationships among sequences (e.g. 

Felsenstein 1981, Barry and Hartigan 1987). This approach generalizes other 

methods by allowing the addition of non-compatible splits and thus is notre-

stricted to tree-like phylogenies. For viral sequences, the quasi-species model 

of evolution provides an explanation for the network (Steinhauer and Hol-

land 1987, Domingo and Holland 1988). For sequences which should display a 

tree-like relationship, a network phylogeny may indicate recombination events 

between different lineages, convergent evolution or horizontal transfer of ge-

netic information. These situations violate the usual assumption that evolu-

tionary events along different lineages are independent (see Navi_di et al. 1991 
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assumption 3, also Barry and Hartigan 1987 and Felsenstein 1988). Thus, net­

work models provide a diagnostic to detect violations of this assumption. It 

may be worthwhile to re.examine the sequences looking for continguous subse­

quences which could have arisen from recombination events (see Sawyer 1989). 

Another possible cause for an inferred network is variation in substitution 

rates between sites. When rate heterogeneity is present, estimated rates as­

suming a homogeneous model will be an average of the actual rates. Sites with 

a high rate of change are likely to show an apparent excess of parallel changes 

in independent lineages. It is often instructive to look at the development 

of an evolutionary model in the stepwise procedure. If the true relationship 

is a tree but rate heterogeneity is present, the first splits added to the star 

phylogeny are usually pairwise compatible. Non-compatible splits are added 

only at the later stages to adjust for the parallel changes. The introduction 

of invariable sites is one step towards a realistic evolutionary model with rate 

variation. However, further work on heterogeneity of rates is needed to obtain 

fully satisfactory solution. 

An important feature of the sequential approach to model building is that 

it allows the inferred structure to be less than fully resolved. The stepwise 

forward procedure, although intuitive and easily implemented in an automated 

system, may not give a complete picture of the range of plausible alternative 
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models and should not be strictly applied. A more comprehensive exploration 

of the model space is recommended. 

The methods described here are computationally expensive. The size of 

the spectrum grows exponentially in K. It may be possible to reduce this 

computation by focusing only on components of the spectrum that correspond 

to non-zero splits. The Newton-Raphson optimization of the loglikelihood is 

also slow. With the current implementation, network models for up to 8 or 

10 sequences can be explored in reasonable amounts of time. As additional 

sequences are added, the asymptotic approximations for the likelihood ratio 

test become less reliable. If the simulation based test must be used to assess 

significance, the computational expense will increase substantially. 

17 



6 Acknowledgment 

This work was supported by the Deutsche Forschungsgemeinschaft, the Na-

tional Science Foundation, the National Institutes of Health, and the Uni-

versity of Southern California Faculty and Innovation Fund. We would like 

to thank William Navidi, Simon Tavare, and Michael Waterman for helpful 

suggestions and interesting discussions. We also thank Joaquin Dopazo for 

providing us with the FMDV sequences. Parts of this work were completed 

while one of us (A.v.H.) was staying at the Mathematics Department of the 

University of Southern California at Los Angeles. 

7 Appendix: Proof of formula (1) 

Fix an evolutionary model M with m splits. Given an indicator vector I we 

need to prove that the resulting character state configuration c is given by 

formula (1 ). 

Let p(I) = .L:;=l Iv be the number of ones of a given indicator vector. If 

j 
.) 

p(I) = 1, then Cj = 1 for each j E Sv, since there is only one split Sv, (1 ~ 

v ~ m) with indicator value equal to one. This proves formula (1) for the case 

p(I) = 1. Assume that c has been calculated for every I with p(I) = k, 1 < 

k ~ m- 1. For each I' with p(I) = k + 1 exists an I with p{l) = k such that 
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I' has exactly one component e.g. lv' which is one in the indicator vector of I' 

but not in I. Hence, 

m 

c;(I') = L I~lSv n {i}l (mod 2) 
v=l 

m 

= (lSv' n {j}l + L lSv n {j}l) (mod 2) 

We define 

v=l 
Iv=l 

= c;(l) + lSv' n {i}l (mod 2) 

(9) 

(10) 

(11) 

u(l) = {jlc;(l) = c1(l)} and u(l) = {jlc;(I) '# c1(l)} (12) 

u(I) is the set of all species having the same character state like species 1, given 

the indicator vector I. In u(l) the remaining sequences are collected. W.l.o.g 

we assume that all species in the set Sv' change from their current character 

state to the second state. We can decompose u(I) and u(l) as follows 

(13) 

where 

(14) 

and 

(15) 

The species in A1 and A2 have different character states. Since they are also 

elements of Sv' they change their character states concomitan~ly. Whereas 
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the character states of the species in the B-sets remain unchanged. The new 

character state configuration is now given by 

(16) 

If j is an element of Sv' and has character state c;(I) then the new state is 

c;(I') = c;(I) + 1 (mod 2) = c;(I) + lSv' n {j}l (mod 2). (17) 

If j is not in Sv•, then its character state does not change. Hence, 

c;(I') = c;(I) + 0 = c;(I) + lSv' n {j}l (mod 2). (18) 

This proves formula 1. 
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Tables 

Table 1: Estimated proportion of invariable sites 

number of splits A-type C-type 0-type 
0 87 94 84 
1 86 94 80 
2 84 93 74 
3 75 * 85 * 56 
4 56 79 45 * 
5 0 64 26 
6 - 0 0 

Percentage of invariable sites among the constant sites in three subserotype 
families of FMDV VPJ-gene. * indicates the corresponding fraction for the 
best model, computed by the stepwise forward procedure. 
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Figure Captions 

Figure 1: Successive addition of splits to an evolutionary model. Starting with 
a star phylogeny (a) the addition of split S5 = {1, 2} creates the well known 
binary four species tree (b). The introduction of S5 = {1,3} produces the 
network shown in (c). 

Figure 2: Successive addition of splits to an evolutionary model. Starting 
with a star phylogeny each non-zero split is tested by adding it to the current 
model. The split that produces the most significant improvement is added to 
establish a new model and the procedure is repeated. This example stops with 
a fully resolved tree for the 0-serotype FMD virus sequences. Edge lengths 
are proportional to the substitution rates 

Figure 3: Evolutionary network of A-type FMDV VP1-genes. The complete 
model is the best fit to the data without the assumption of invariable sites. 
Edge lengths are proportional to estimated substitution rates. The additional 
estimation of invariable sites reduces the model to a simpler network (b). Splits 
are represented by parallel lines. The dotted lines for example represent the 
split A12/32, A10/61 versus the remaining sequences. 
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Figure 4: Evolutionary network of C-type FMDV VPl-genes (a). If invariable 
sites are also estimated, the relationship is tree-like (b). 

Figure 5: Evolutionary network of 0-type FMDV VPl-genes. The additional 
estimation of invariable sites does not change the model. 

Figure 6: Evolutionary models computed with the simulation based on the 
simulation test. Edge lengths are proportional to the expected number of sub­
stitutions. In all instances calculations were done without assuming invariable 
sites in the sequences. While the A-type sequences form a network (a), the 
C- and 0-types do not (band c, respectively). 
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