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Abstract

For many boundary element methods applied to Laplace’s equation in
two dimensions, the resulting integral equation has both an integral with a
logarithmic kernel and an integral with a discontinuous kernel. If standard
collocation methods are used to discretize the integral equation we are left
with two dense matrices. We consider expressing these matrices in terms
of wavelet bases with compact support via a fast wavelet transform as in
Beylkin, Coifman and Rokhlin. Upper bounds on the size of the wavelet
transform elements are obtained. These bounds are then used to show that if
the original matrices are of size N x N, the resulting transformed matrices are
sparse, having only O(N log N) significant entries. Some numerical results
will also be presented.

Unlike Beylkin, Coifman and Rokhlin who use the fast wavelet transform
as a numerical approximation to a continuous operator already expressed in
a full wavelet basis of £5(IR), we think of the fast wavelet transform as a
change of basis matrix for a finite dimension, and apply it to a discretized
function or matrix. As a result, we can use this fast wavelet transform as a
“black box” transformation in existing boundary element codes.
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1 Introduction

1.1 The boundary integral element method

The boundary integral equation method (BIEM) is a technique for solving
certain kinds of boundary value problems, including Laplace’s equation. The
essential feature of this method is the transformation of the governing dif-
ferential equation into a set of integral equations defined over the boundary
of the domain in question. The boundary of the domain is discretized and
the resulting linear equations are then solved. Note that in this case only
the boundary of the domain and not the entire domain itself is discretized.
It follows that the set of linear equations generated by the BIEM is much
smaller than the corresponding set of equations generated by an equivalent
finite-difference or finite-element method. However, unlike the latter two
methods, the BIEM yields a dense and usually unsymmetric system. The
BIEM is usually credited to Hess and Smith [14], Jaswon [16] and Symm
[21]. For a more detailed examination of this method, the reader is referred
to the series edited by Brebbia [7].

1.2 Wavelets

Wavelets are usually thought of as functions which give rise to a basis of
L2(IR) (see Daubechies [9], [10] and Meyer [17]). However, numerically one
can use the coefficients that are used to define wavelets in order to create a
change of basis matrix from RY to IRY. Primarily, we will view wavelets
from the latter perspective, and utilize a “fast wavelet transform”, such
as is employed by Beylkin, Coifman and Rokhlin [5] (henceforth referred
to as (BCR)), Alpert [2] and Strang [20], to numerically transform vectors
from one basis to another. Let us denote the change of basis matrix arising
from the fast wavelet transform by W. For the BIEM matrices arising from
Laplace’s equation in two dimensions (denoted by A), we can show that the
fast wavelet transform of the columns of these matrices contain many small,
albeit nonzero, entries. In order to obtain a sparse matrix we zero out these
elements of W A that are smaller than a specified tolerance rule. So, in prac-
tice, instead of computing the matrix/vector product Ax, we would compute
the matrix A’ = WA, and then zero out the entries in A’ that are less than
the specified tolerance rule in absolute value, creating a sparse matrix A”



(O(N log N) elements). We would then compute the vector W=tA"x, ex-
ploiting the sparsity of A”, giving a result very close to that of Ax (see §6.1
for numerical results). The cost of a fast wavelet transform (and its inverse)
of a vector of length N is O(N). Other people have also looked at making
integral operators sparse, such as Canning [8], Greenbaum, Greengard and
Mayo [13], and Rokhlin [18]. Brandt and Lubrecht [6] have also proposed a
multigrid method to make these types of operators sparse. Alpert [2], and
[3], Alpert, Beylkin, Coifman and Rokhlin [4], and Jaffard [15] among others
have also looked at making integral operators sparse using fast wavelet trans-
forms and matrices, but while Alpert and Alpert et. al use the fast wavelet
transform as a linear operator to make general discretized integral operators
sparse, we look specifically at boundary integral operators and take into ac-
count the effect of the geometry upon the resulting sparse matrices. Jaffard
uses a Galerkin method (rather than collocation, as we do) for discretizing
the integral operators and he requires certain smoothness properties on the
wavelets that he uses. Jaffard also takes the view of using wavelets as a ba-
sis of L2(IR). This seems to also be the usual viewpoint taken among those
others who have also look into making operators sparse using a wavelet basis.

1.3 Solving the BIEM system of equations

The traditional way to solve a discretized boundary element method is by
Gaussian elimination. Since the system of equations is dense, this is an
O(N?) process (for N boundary points). In any iterative solution, including
multigrid, the majority of the work involves applying the coefficient matrix
to a vector, generally an O(N?) operation, at each iteration. For a more
detailed examination of iterative methods pertaining to Boundary Integral
Equations, the reader is referred to Atkinson and Graham [1], Schippers [19],
Yan [23], and Vavasis [22]. If, in an iterative algorithm, we replace the orig-
inal matrix/vector multiplications by applying the fast wavelet transform as
mentioned in §1.2 above, we obtain a “black box” transformation which is
easy to implement in an existing numerical iterative algorithm. While the
total cost of transforming the matrix A is O(NN?), for an iterative method this
need only be computed once as a precursor to the iterations, thus yielding
an iterative solution with an O(N log N) cost per iteration and asymptot-
ically reducing the running time of the iterative solution. Furthermore, if
the fast wavelet transform is utilized as mentioned above, all previous theory



regarding the approximation of the BIEM to the original problem can still
be applied, because the fast wavelet transform is applied to the already dis-
cretized matrices. In BCR [5], the integral operator is expressed in terms of a
full wavelet basis of £3(IR), and this expansion is approximated using a finite
number of terms. Because of this difference in the usage of the fast wavelet
transform, we cannot apply the theory of BCR and have thus developed
some theorems to provide upper bounds on the wavelet representations of
the transformed vectors and hence on the sparseness that these fast wavelet
transforms achieve.

1.4 Outline of paper

The columns of a coefficient matrix of a discretized boundary element method
generally represent discretizations of functions with jump discontinuities in
their derivatives. If one applies the fast wavelet transform to any column of
the coefficient matrix, then depending upon the nature of these discontinu-
ities, the resulting transformed column may have a sparsity pattern that one
can then exploit in solving the discretized boundary element method system
of equations. In §2 we examine the BIEM as applied to Laplace’s equation
in two dimensions and give explicit formulae for the functions that give rise
to the coefficient matrix of the discretized boundary element method. In §3
we provide upper bounds on these functions and their derivatives and lower
bounds on their corresponding vector discretizations. In §4 we define both
the discrete wavelet transform and the fast wavelet transform. We also show
that the fast wavelet transform (and its inverse) of a vector of length N is
an O(N) operation. In §5 we state and prove some theorems regarding the
size of the elements of the transformed columns of the coefficient matrix.
We also show that the transformed columns have N — O(log N) “small” en-
tries. These theorems can be applied more generally to any matrix whose
columns are interpolants of a piecewise smooth function. In §6 we present
some numerical results supporting the theorems, and our conclusions and a
discussion of ongoing work are presented in §7.



2 Boundary Integral Equations

2.1 Outline of method

In this section we examine the BIEM as applied to Laplace’s equation in two
dimensions. The specific problem under consideration is as follows: given
a compact connected region € IR? with boundary T, find a solution ¢ to
V2¢ = 0 on  given Neumann boundary data (0¢/dn) on I'; and Dirichlet
boundary data (¢) on I'y, where I' = cl(I'; UTy), Iy N Ty = 0. We will allow
I' to have a finite number of corners, but I' must not contain any cusps. Note
that while the present work focuses on the two-dimensional problem only, it
includes all possible compatible boundary data. The BIEM is now outlined
for the problem stated above. Let ¢ satisty Laplace’s equation, and let z be
a point on I'. Let K(z,z) be the two-dimensional Green’s function

1
K(z,z) = 2—1n |z — z]|.
T

We assume that for any point € T', there is a unit normal direction n(x)
with respect to I'. In case there is a corner at x, we take n(z) to be the
average of the limits of n(y) as y approaches z from either side of z. Let
K, (z, z) be the partial derivative of K(z,z) with respect to x in the normal
direction. Then

K,(z,z)= L—@ — Z’n(f»
N
where (-,-) is the IR? inner product.

Unless otherwise specified the following conventions will be used: || - ||
will denote the 2-norm (I3 norm for vectors, £,(IR) for functions), lowercase
letters will be used for functions, scalars and for vectors in IR?, capital letters
will be used to denote matrices and functions of more than one variable,
and boldface letters will be used for high-dimensional vectors. With the
above definition of K(x, z), the following identity always holds for a Laplace
solution ¢:

. . d¢
o(2)b(z) = /Ffsn(;c,zw(x)dx—/fo(:c,z)a—n(x)d;c. (1)

Here ¢(z) measures the angle at the point z and would be 1 if the boundary
were smooth. This is a consequence of Green’s Second Integral Identity. Let
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us now discretize the boundary I' in the following way: define

T (0,1~ T,
and define the nodal points ¢; via
ti='—~ i=1,....N.
N

We will assume that v is continuous and piecewise C*|[0,1] (for sufficiently
large M; see below) with a finite number of pieces, and that the parameter-
ization of I' by ~ is constant speed, that is

I = ¢,
for some constant C' > 0, for all but a finite number of ¢ € [0, 1] (the corners
of I'). The nodal points on the boundary I' then occur at the equally spaced
points v(¢;), ¢ = 1,..., N. Naturally we must have v(0) = (1), since I is a
simple closed curve.

Now let {¢Z}fi1 be a sequence of basis functions defined periodically on
the interval [0, 1] (e.g., polynomial splines). These basis functions should
have the property that ¢;(tx) = 0if ¢ # k, and ¢;(t;) = 1. We also assume
these functions are bounded and are translations of a fixed basis function v,
that is, ¥;(s) = (s — t;), and that the support of ©; lies in a small interval
around t;, say [t;— Cﬁw, t;+ cﬁ’f'], for some small integer constant ¢;,. We further
assume that i is normalized so that

1 1
/0 (s)ds = v
Some of the assumptions in the last paragraph can be relaxed at the ex-
pense of a more complicated analysis. We note, though, that many common
basis functions for boundary element methods appearing in the literature,
such as piecewise constant function and piecewise linear hat functions, sat-
isfy these assumptions.

_ Forse [0,1], we can approximate ¢(y(s)) and %(’y(s)) by é(v(s)) and

%(7(3)) respectively, via

6(v(s)) = ;pi¢i(5),

5a 1) = L abi(s),



where the p;’s and ¢;’s are unknown coefficients. Note that by the assump-
tions above, ¢(y(;)) = p; and %(’y(ti)) = ¢; for all 1 < i < N. Then for
each nodal value ty on I', k= 1,..., N we approximate (1) with:

c(y(te))pe = Z:MWH/;0fﬁ’n(v(S)m(tk))l/%(S)dS

S alll [ KA b (2)

This approach to discretizing an integral equation is known as collocation,
which is the most common means of discretizing a BEM integral equation.
Note that the second integral in (2) may be improper because K(t,t) is
infinite. The integral itself is has a well-defined value, but these singularities
make the numerical methods more complicated. Also note that the kernel of
the first integral has a removable singularity at the point ¢ = s, unless ~(¢)

coincides with a corner.
If we define the N x N matrices U and V as follows:

UG,3) = [ Kaa(9), 1) () ds = b sel (1)
Vi) = [ KGs)a(t)(s) ds. g
then we can express (2) as the matrix equation
Ax = b. (4)

The coefficient matrix A in (4) is an N x N matrix composed of some columns
of U and some columns of V. The vector x in (4) is composed of the unknowns
from the 2N coeflicients py,...,pn and ¢q,...,qn in (2) (N of which are
given as boundary data) and is of length N, and the vector b is a known
vector also of length N. The matrices U and V can be approximated by
suitable numerical quadrature formulae. For this paper we assume that the
quadrature is exact, but our results hold for approximate quadrature as well.



2.2 Definition of column functions

Consider now the columns of A coming from U. We see that each column
from this part of A can be regarded as the evaluation of the function

wilt) = [ Ka(r(6), 75 ds = Al = t)ela()  (5)

=0

for ¢ discretized at the equally spaced points ¢y,...,ty. Here,

1 ifs=0
A(S)—{o ifs#£0

The columns of A arising from V' are evaluations of the function

o) = [ KG(),4(0)0(s) ds (6

at the same equally-spaced points for the variable ¢ over the interval [0, 1].

3 Bounds on the derivatives and discretiza-
tions of the column functions

In this section we will obtain bounds on the derivatives of the functions
arising from the BEM equation (1), namely bounds on the functions

wilt) = [ Ka(3(9),7(0)85) ds — Alt — 1)e(3(1)

=0

and
vi(t) = [ K((),1(0)s(s) ds,
defined by (5) and (6) in §2.2.

3.1 Bounds on u;(t) and its derivatives

Let us begin with the integral in the equation defining u;(¢). We are inter-
ested in obtaining bounds on the function

A7 ([ Kn(y(),7(1));(5) ds)
dtr

dPu;(t)
dtp

‘227




Ld o y
= /S:O dtp ((’y(t —(8),7(t) — ~(s))

for integers p > 0. To make things more compact, let us introduce some
notation that we will use to study the above term. Let us define

f= 1) = (1) = (), n(v(s))),
and

We will denote the pth derivative of f,(¢) with respect to ¢, %, by f@®),
which is not to be confused with the pth power of f, which will be denoted
by (f)?. We will use the convention that the zeroth derivative of a function
is the function itself, i.e. f© = f. Let us define the chord-arc number of T’
to be

[1]s — ¢}

T vz T =0T
s#£t

where |||s — t||| measures the distance from s to ¢ in the metric on [0, 1]
induced by identifying 0 and 1. We will continue to use the above definition
of ||| -]|| throughout the paper. Because I' is a piecewise C™ curve which has
no cusps, a compactness argument (which we omit) can be used to show that
this supremum is finite. The chord-arc number arises often in the analysis
of boundary operators; see, e.g., David [11]. We will also need to define the
diameter of ' to be

al' = sup |l7(t) = ~(s)]|

0<s,t<1

Henceforth C' will denote a constant which may change in value from line to
line within a proof. With these new definitions now set, let us first concen-

. . dra; (1)
trate on obtaining bounds on the part of the integrand of —2%

that contains



the derivatives, specifically

dhs(t)) &7 [ (v(8) = 7(s),n(5(5))) |
=i (e )

dtr | dtr \ (7(t) — 7(s),4(t) — 7(s))

The first lemma, whose proof is omitted, provides a formula for %;@ i

terms of derivatives of f and g.

Lemma 1 Let p be an integer, p > 1. Then using the definitions of f, ¢
and hs(t) above, we have for 0 < s,t <1,

dvh, (1) v FR g gt . (1)

dtp = E Ck711712,...,lp (g)p_l_l

Eylq,lg,.,lp=0
k+ly+la+-+lp=p

Let us further concentrate our efforts by examining the generic term in
Pl (1)

the formula for =2,

f(k)g(ll)g(ZQ) e g(lp)
(g)P*

Lemma 2 Let p be an integer, p > 1, and let 0 < s,t < 1, s # t. Assume
that v(t) is not a corner of I'. Then the generic term of the form

(7)

f(k)g(ll)g(l2) N g(lp)

(g)r*!
in the formula for %ﬂ has the following bound.:
(g)r+! ~ Il = sl

where Rr(p) is defined by (8) below and depends on the geometry of I', and
C(p) depends only on p.

Proof: We begin by first noting some facts which will be used later on in
the proof. First,

= 3 (4 )60 =2, 60 = (),

10



(where, as usual, these derivatives are with respect to t) and for k£ > 1,

7O = (0(), n(v(9))).
Let ro = ||7(t) — v(s)|| and 7 = ||¥®(¢)|| for k > 1. Then we easily obtain

the following bounds using the above equations and the Cauchy-Schwartz
inequality:

‘f (k)‘ < Tk
and

U]
‘g ‘ <) Org%)g(l PonTl—mm -

In particular, |g(0)‘ = r? and ‘g(l)‘ < 2rgry;. We can use these inequalities to

bound the generic term in the formula for () - Observe that the denomi-

dtp
nator is exactly ro?*2. Thus,
(k) (1) gli2) . .. o (lp) re(Po 71 ) oo (T T
JWg'™yg - g < C'(p) max k(T 1y 1)2p+2( ' lp p)
(9) To

where the max is taken over all choices for all the integers m; such that
0<m; <I[;. Since k+ 1, +---+ [, = p, this can be further bounded by

f(k)g(ll)g(IQ) e g(lp)
(g)r*!

where now the max is taken over all nonnegative integer choices of the \;’s

X1 " Thopsa
SC(P)maX{%ik—F”-—I—)\MH:P}

T'g

adding up to p. Since there are 2p + 1 nonnegative integral A;’s adding up to
p, at least p 4+ 1 of them must be zero. Thus, if we delete exactly p +1 A;’s
that are zeros, we can rewrite this bound as

f(k)g(ll)g(ZQ) e g(lp) rp+1r/\1 “e T-/\p
‘ (7™ < (C(p) max ”T:)\l—l----—l-)\p:p
0

‘r‘/ 1 DR r P
= mmmﬂ{ipﬁi*M+““+%=p}
0
By the definition of the chord-arc number, yr, we can deduce that for 0 <
s, <1, s #t,

+1
1 Xt

< .
Iy () =27 s = 2]

11




Thus, the left-hand side of the above equation may be bounded by

T r/\plei—}—l . _
C(P)maX{W-M—F---—I—)\p—P .
To get an overall bound, let us define

Rozar

and for k£ > 1,

R = sup [|v*)(1)]
tefo,1]

where the sup is taken over values of ¢ such that v(¢) is not a corner. Clearly
7. < Ry, for all k. Let us define

Rr(p) = (xr)""' max{Ry, --- Ry, : Mt + -+ + A, = p} (8)

where each ); is a nonnegative integer. Then finally we can conclude that

(g)r+! = lls =it
O
: : : dPh
A different choice for C(p) then yields a bound on dtp(t)‘

Lemma 3 Let p be an integer, p > 1, and let 0 < s,t < 1, s # t and ¥(t) is
not a corner of I'. Then we have the following bounds on the pth derivative

of Kn(v(s),7(1)):

den(v(S)m(t))‘ < Clp) Br(p)
dtv —t||

where Rr(p) is defined by (8).
Lemma 3 can now be used to prove the following theorem:

Theorem 1 Let p, j and N be integers such that p > 0 and 1 < 3 < N. Let
0<t<1,t#t;. Assume ~(t) is not a corner of I'. Then

It

(MNW_ & (fizo Kn(1(5),7(1))85(5) ds)
dtr dtr
C(p)C(¥) Br(p)

IN

. p+17
N [mingequppy, [[It = |l

12



where Rr(p) is defined by (8), C(p) depends only on p, and C(ip) depends
only on .

Proof: Since
dr

dp’ﬁj(t) < / a
dtp - sEsupp ¥ dtp

< [ ) [
0<s<1 sEsupp ¥

we can apply Lemma 3 to the above equation, provided that ¢ & supp ;.
Then, noting that supgc,<; [1;(s)] = supgc,<; |1(s)], we have

@@WMM@

dP
i 1) 0

ﬁ%%gc@(mpW@Qm@U“ e ds

0<s<1 sesuppey |||t — s]|[F

Let 2¢y supgc,<q [¥(s)] be denoted as C'(3). If t € supp ¢;, and supp ¢; = 2%
we have

(1) | (fomo Kn(3(5),7(1) () ds)
dt ‘ B dtr
< C(p)C() Br(p)

; pH1-
N [minseaupp, [llt = s

O

3.2 Bounds on v;(t) and its derivatives

In this subsection, we will apply the same ideas used to obtain the bounds
for ‘dpuj(t)

‘ in Theorem 1 to the function

fﬂ%::ﬂUQKM%ﬂWM@@
dtr dtr
L (K (y(s) (1)
B /3:0 dtr bi(s)ds

13



= L ) — (s ) ds
< wl 5 I 3(8) = 4(s),7(6) - 7(8)>)‘ [5(s)] ds.

In this case we will initially concentrate our efforts on the term

%;wwﬂﬂ—vﬁ%ﬂﬂ—V@»)

?

forp>1. Incasep =1, for 0 <? <1, s € supp ¢; we have

d s ey = 2009 (1) —4(5)
a0 =) ) =) = i ST Ty

Observe that this is essentially the same form as u;(t), except that the nu-
merator contains 7'(¢) instead of n(y(s)). To obtain higher derivatives of the
kernel function, we now differentiate (9). Denoting the numerator of (9) as

(9)

f and the numerator as g, we now have for £ > 0

’“>—ZDM (), (4() = (),

for some constants D;j. Thus, reintroducing the quantities rg,rq,..., and
using similar arguments as in the last section, for £ > 0 we have

|f(k)| < C(k)max{ra,ry, : M+ Ay =k + 1}.
From this we deduce that
f ll)g .. g( )
)P

rl---rpl
< C(P)max{% M+ + A =p+1}

0

+1

Now we reintroduce Rp(p) defined by (8), and we recall that the above ex-
pression is actually an expression for a term of the (p+ 1)st derivative of the
kernel function. We can therefore conclude that

o Rr(p)
g 00 =960 = 9| < Co) =

Continuing the arguments from last section leads to the following theorem:

14



Theorem 2 Let p, 7, and N be integers such that p > 1 and 1 < 3 < N,
Let 0 <t <1, and assume ¥(t) is not a corner of I'. Then

dpvxt)‘ _ C(p)C () Rr(p)
dtr Nxr [mingeappy, (It = s][]]"

where Rr(p) is defined by (8), C(p) depends only upon p and C(0) depends
only on the basis function 1, but not upon N or the geometry of the domain.

e have just shown that the functions u;(¢) and v;(¢) have as many deriva-
tives as v does except in the support of ©;, and as a result all its derivatives
are piecewise bounded, except at a finite number of points. Here the deriva-
tives have a jump discontinuity as well.

3.3 Lower bounds on the discretization of u;(t)

In this subsection we will obtain lower bounds on the 2-norm of the columns
of the system matrix A taken from the matrix U defined in §2.1 by (3). Let
us denote the discretization of u;(t) by u’. Note that

12
[[u’]l

I
]
£
=

(AVARAYS

(u;(t5))* 2
([ K0 200(6) s~ er1)

where ¢(v(t;)) measures the angle of I' at v(¢;). Since we are assuming that
I' has no cusps, there is a minimum nonzero value for ¢(y(¢)),0 < t < 1.

Y

Also, it can be shown that the first term in parentheses in the expression for
u’ above goes to 0 as N — oo like O(%;). So, for N sufficiently large,

/10 Ko (y(t5),7v(s))v;(s)ds| < MV;#))E

so that L2
HujHQ > (6(7(41)))

We have just proved the following theorem:

> 0.
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Theorem 3 Let N and j be integers such that 1 < 3 < N. Let w’ be a
vector of length N, obtained from discretizing u;(t) given by

1
wit) = [ Ko (0) () i(s) ds = c(x(1),
at the points 3 211 < i< N. Then for N sufficiently large,
s 1)
) > 1O,

where ||’ || represents the 2-norm of the vector u’.

3.4 Lower bounds on the discretization of v;(t)

We begin by defining the N-vector v/ to be the discretization of v;(#), which is
also the jth column of the matrix V' defined in §2.1 by (3). In this subsection,
we are interested in obtaining a lower bound on ||v/||. Recall that

sl = vi = o [ (0t = 1(5)Ds(s) ds

For a fixed j, let us restrict our attention to those i that satisfy

HEERAIIES (10)

(k4] ’H

for all s € suppe;. Recall, also, that ||7/|| is a constant. In order for (10) to
be satisfied, we must have

max{||[t; — == = t[l], [||¢; + tilll} <
N (B4l ’H
or N
max{(j —¢—c¢y) mod N,(j —i+¢y) mod N} < ek
That is, 2 must be an element of the set Z defined by
N N
I = j_cd}_L—J7J_C¢_L—J+17"'7J7
{ [edl [edl
7.]+C¢+LH /HJ 1.]+ ¢+L" /HJ} mod N.

16



The cardinality of 7 is 2(cy + L” ,HJ) +1 = 2(¢y + Mz) + 1. By taking N
sufficiently large, we can guarantee that Z is nonempty. Let us denote the
interval (¢j_.,—ay,tite,+0m;) by 1. As usual, all subscripts are to be taken
modulo N. In order to avoid a more complicated analysis, we will assume,
for this section only, that ¢ (and hence ¥;) is a nonnegative function. Then,
for any s € supp®; and for any ¢ € I, by the mean value theorem we have

7 (s) =~ @)

[ =
llls = ¢l

so that
17(s) =~ < IV [H]]s = ¢]I-

Since t € I, we can apply (10) to deduce that

[7(s) =@ < 1.

As a result, for any 1 € 7

; 1
vil = ol () = a0l)(s) ds
T |/ sEsuppy;
1 !
> o[ (s = tll)(s) d
™ Esuppy;

> o it (s = Gl [ () ds

27 sesuppy; ppi/f]
>—imm@mwmw+——mM1mwww—%—mM}
— 27N 7N ’ 7N

Thus, for N sufficiently large, we see that

N

IVIE = ()
vy
1

—_ Z min {
472 N2 - [

Y

Gy
Il (11 + =7 = &I}

! c 2
(1t — 5% = w1}

17



1 & A4 NE
> .
= 1INt 2 [ln(l N
l||N|| 2
1 A
> P
= 1xIN? ; [IH(L N
l||N|| 2
1 X A ]
P — In(z
— 4Ar2N2 i:lz”:]\;” l ( N )
1 gt , N
> e, (@) T
¢
NIy

where (' is a constant independent of the geometry of I'. We have just proven
the following theorem:

Theorem 4 Let N and j be integers such that 1 < j < N. Let v’/ be a
vector of length N, obtained from discretizing v;(t) given by

o) = [ K((0),9()es(s) ds

at the points 52, 1 <i < N. Then for N sufficiently large, 3 a constant C

N
independent of the geometry of the domain, I', such that
, C
IVI° > S
N

4 Wavelets

Unless otherwise specified, we will continue to use the definitions and nota-
tions introduced in this section throughout the rest of the paper.

4.1 The discrete wavelet transform

In this subsection we will define what we shall term the discrete wavelet
transform of a function f € L3(IR), which involves creating a basis for £3(IR)
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out of wavelets. We are interested in the compact orthonormal wavelets that
give rise to a basis for £,(IR), constructed by Daubechies [9], and [10]. These
are defined as follows: consider the functions ¢, and w on IR which satisfy

2M
= \/52/1“9(21 —k+1),
k=1

and

2M
S VEY g2 k4 1),
k=1

where

gk = (=1)" " ham_p1, k=1,2,...,2M,

/Oo p(x)dr =

The (Daubechzes} wavelet coefficients of order M, {h;}?¥,, (alternatively
{gr}3M) are chosen so that the functions

and ¢ is normalized by

wi(z) = V2"w(2¥z — k + 1), v keZ (11)

form an orthonormal basis of £*(IR). Another condition imposed upon the
hi’s 1s that the first M — 1 moments of w should vanish, i.e.,

/ w(e) 2? de = 0, p=0,1,... . M—1. (12)

The function ¢ is referred to as the (Daubechies) scaling function of order
M, and the function w is referred to as the (Daubechies) wavelet of order
M. M itself is referred to as the wavelet order. Daubechies showed that for
each integer M, there exist wavelet coefficients of order M that guarantee
the existence of such scaling functions and wavelets. In fact, the scaling and
wavelet functions are compact and the support of w and ¢ lie in the interval
[0,2M —1].

Given a function f(z) in L2(IR), the discrete wavelet transform of f is
obtained as follows:

= > dk wi(x

vkeZ
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where

&= [ f@)wi(e)da (13)

for all integers v and k. The elements CZZ will be referred to as the kth discrete
wavelet representation of f of order v. Alternatively, for any integer 3, we
can express f(z) as

fo)= Y $el@+ S Y (). (14)

1=—00 v=01=—00

Here éf is the kth discrete scaling representation of f of order 3 defined via
= [7 fo)ele)de, (15)

where the translations and dilations of ¢, namely gof are defined in a manner
similar to that of equation (11):

Lpf(;ﬂ) = \/2_54,9(2533 —k+1), (16)

for any integers # and k. In the expression (14), {apf}ieg are orthogonal.

4.2 Periodizing the discrete wavelet transform

In the last section we described the wavelet transform for functions in £2(IR).
Recall that our functions are defined on [0, 1] only. Indeed, because the
boundary I' is a closed curve, our functions u; and v; are most easily under-
stood as periodic functions on IR (so that u;(z) = u;(x + k) for all integers
k). It turns out that the discrete wavelet transform for such a function has a
special property: all the wavelet representation entries above order (0 vanish.
Thus, it turns out that the wavelet transform of a periodic function can be
represented as follows: there one scaling function entry, namely, (14) in the
case that # =0,k = 0. Then the remaining entries in the representation are
given by (12) in the case that v > 0 and 1 < k < 2”. This is elucidated
further in the next subsection.
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4.3 The fast wavelet transform

One usually thinks of wavelets as presented in §4.1, that is, as functions that
give rise to a basis for £L2(IR). For our purposes we view wavelets primarily
as functions that give rise to a linear map from IRY to IR™. We consider the
the same orthonormal wavelets as introduced in §4.1 above, but apply them
numerically as outlined by Beylkin, Coifman, and Rokhlin (BCR) [5].

We begin by introducing more notation and terminology, in addition to
what we will reuse from §4.1. Let a be a positive integer, and set N = 2°.
Our goal in this section is to define the fast wavelet transform, a linear map
W : RN — IRY. With this in mind, let f € RY be a given vector, which
we view as being obtained from a function f(s),s € [0,1], discretized at N
equally spaced points 0, %, ceey % We will speak of the function f(s) as
being the parent function of f. We will refer to the ¢th element of f as f;. Let
the wavelet order M be a fixed integer parameter (in our case 1 < M < 10)
and let {h;}?M be the wavelet coefficients of order M. Finally, let s¢ = f;
for k =1,...,N. We now define the scaling representations of £ at level v
recursively via the formula

2M
SZ = Zhl S?—I—-}—Qlk—QmodZV“'l k = 17"'21/7 (17)
=1
and we similarly define the wavelet representations of £ at level v by

2M
dy=>gist, k=1,...,2" (18)
=1

i+2k—2 mod 2v+1

Here the wavelet level v runs from o — 1 down to 0. We will always express
the wavelet level by Greek letters.

Also, given both the wavelet representations of f at level v and the scaling
representations of f at level v we can obtain the scaling representations of f
at level v + 1 as follows:

M M
v+l . oY Y
SQ}C = ZhQZ Sk’—’i-l—l mod 2¥ —I_ Eg?l dk’—z-l—l mod 2¥
=1 =1
M M
v+1 _ R v ; v
Sok—1 = Z hai-1 8k i1 modar + 2922—1 f—i41 mod 2v (19)
1=1 i=1

21



fork=1,...,2", and for v =0,...,a — 1.
We are now in a position to define the fast wavelet transform of f, namely
the N-vector Wt which will henceforth be denoted by w, by

— _ 0 0 1 1 oa—2 a—1 a—1 a—1
WE=w={,d d d,...  do7%, do", ds~",. .. do7h Y.

The fact that (19) is the inverse of (17) and (18) is a property of the values
{h;}?M (see Daubechies [10]). In fact, (19) is the orthogonal transformation
of (17) and (18), and as a result, with the proper scaling, the fast wavelet
transform W is an orthonormal matrix so that W= = W7 where W7 is the
transpose of W.

As can be seen from the formulae (17) and (18), if si*! were known for
k =1,2,...,2"* then s? could be computed numerically with only 2M
multiplications and 2M — 1 additions for each k& = 1,...,2", and similarly
for the d}’s. Hence w could be computed with a total of (2M)(N — 1)
multiplications and (2M —1)(N —1) additions, or an O(N) cost per transform.
Also, it is easy to see that given w, one can retrieve f (by applying (19)
repeatedly) at an O(N) cost as well.

5 Bounds on the fast wavelet transform for
the BEM matrix

In this section we will state and prove some theorems regarding the size of
the fast wavelet representations of the columns of the BIEM matrix A defined
in §2.1 by (3) and (4). Initially, in §5.1, we will phrase the main theorem
in terms of a general vector f and parent function f(¢), but the vectors and
functions we have in mind are those given by (5) and (6). In §5.2 we will
apply this theorem to those specified vectors and functions. Unless otherwise
stated, all subscripts are taken to be modulo N.

5.1 General theorems

As usual, we will denote the fast wavelet transform of f, Wf, by w. The
main theorem gives a bound on the wavelet representations (df) of a vector
f in terms of the derivatives of the parent function f(¢), for k =1,2,...,2"
and for v = a—1,a—2,...,0, for some given . However, in order to prove
this theorem, we will need the following lemma:
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Lemma 4 Let M (wavelet order) and o (number of wavelet levels) be given.
Let p: R — IR be a polynomial of degree k < M — 1. Then the function

= 3 plid(o

is a polynomial in x also of degree k (exactly). Here
pi(z) = V22p(2%x — k + 1),
and o(x) is the scaling function of order M as defined by (16) in §4.1.

Proof: Let r : IR — IR be a polynomial of degree £ < M. We can express
the polynomial r(z) as

o0

r(z) = 3 ap(a),

where the coefficients a; are independent of x, and the above equation holds

for all @ € IR. Since r(z) € L3(IR), this sum is interpreted pointwise. Its

existence follows because r(z) € L£2(IR) when restricted to any finite interval.
Let us concentrate on the coefficients a; for now. We know that

a; = /Oor(;v) ) dx
= /OO ‘Pow_z )d7

so that we can define the function

aly) = [ r(@)gsle — ) do,
We wish to show that if r(z) is a polynomial of degree k < M —1 then a(y) is

also a polynomial of degree k. Since the set {1, x,x%, ... ,wM_l} constitutes

a basis for the space of all polynomials of degree < M — 1 defined on IR, we
can, without loss of generality, consider r(z) = z*. Then

ay) = [ ateile—y)da
= [ @y ds

k_ kl
:Ez' —z'y/ de,

(=0
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and because ¢ is bounded and has compact support, and because the leading
coefficient satisfies:

00 N 1
/M@O(x)dx: \/2—aa

a(y) is a polynomial in y of degree k. Thus, there exists a linear map T :
V = V defined by T'(r) = a, where r and a are defined above and where V
is the space of all polynomials of degree < M — 1 defined on IR. We have
also shown that 7" is of full rank, that is, 7" is invertible. As a result, given
a polynomial p(y) of degree k < M — 1, there exists a polynomial ¢(z) of
degree k such that

o) = | a@)i(e —y)do,
and .
o) = 3 pliei (@)

as required.

We are now in a position to state and prove our main theorem of this
subsection.

Theorem 5 Let M (wavelet order) and o (number of wavelet levels) be
given. Let f € RN, be a given vector, and let f(t) be its corresponding parent

function, i.e. f; = f (ﬁ) fori=1,2,...,N. Assume that f € CM][0,1], with
- dh ) dRf()
tl—lgzr dtk t1—1>I1n— dtk 7

That is, the periodic extension of f should be an element of CM(IR). Then
we can obtain the following upper bound on the entries of the fast wavelet
transform of f, namely the elements of w :

91 < ity C M) sup (lo()]) sup (o()]) sup (

k=0,1,..., M.

£ ()

).

where

(AM — 1) (2M — )M+

C(M) = = ,
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and I} is the interval

(2“—”(k —1) —2M+1 227k — 1)+ 227" (2M — 1))
20 ’ 20 ’

fork=1,2,...,2" and forv=a—1,a—2,...,0.

Proof: It can be shown that if we define the function f : IR — IR by

90
= fipi(a)
=1

then the fast wavelet representations of the vector f are related to the discrete
wavelet representations of f(z) in the following way:

&= [ fle)wile)de,

— 00

where 7 and wy are defined by (11) and (16) in §4.1. Substituting our
expression for f into the expression for dj yields

o0 2(1
di = [ Y fiot(a)uwi(e) da.
=1

Let us restrict our attention to k=1,2,...,2 andtov =a—1,a—2,...,0.
If we apply Taylor s Theorem to the parent function f(t¢), expanding about
the point £ Sa L and evaluating at the point 220}, we see that

M-1

*
chz—k Y+,
J=0

where for y =0,1,... ., M — 1

1 k*—1
C— (4)
C] (QQ)jJ’f ( 2a )7
and ()
R My
Ty (ZQ)M “['f (Thyk )



. .
for some 7; g+ between 22—&1 and k2a1. Here we choose

Br=20m 2k — 1) 4+ 2M — 1) + 1

so that k;l is the nodal point at the center of suppwy, 1 < k£ < 2%, All

subscripts will be taken modulo N from here on, unless otherwise specified.
Inserting the expansion for f; into the above expression for dj yields

& = /_OOZ(icm—k*)un) o3 (@) (a) da
D li- k*)f') o (a)wy (x) de

o0 204
—I—/ Zr%pf(x)w%(;v) dx.
=1

However, by Lemma 4, the function

is a polynomial in z of degree no more than M — 1, and so this integral
vanishes because of the vanishing moment properties of wavelets (§4.1, (12)),
leaving us with

o 2%
& = [ Y ret@uile)de
0 =1

1 27 oo

= @?ﬁjﬂng%ﬂMﬂmWMQ/m@ﬂ@wﬂ@¢ﬂ

V2ot 2
T (2)M Ml (= )M (40

=1

/Oo e(2% — i+ w2’z — k+ 1) dz.

At each wavelet level v, the only ¢ whose support intersects the support of
wy are in the range

207k —1) = 2M 4+ 1 <4 <2°7%(k — 1) + 2°7%(2M — 1).
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Here we are taking the upper and lower bounds modulo N. Therefore,

\/W k*25-v=1(2M 1)
di = Savran > (i = KM FOD (i)
(20)M M! i=k*—(20—v—141)(2M —1)

/OO e(2% — 1+ Dw(2"z — k + 1) de,

— 00

/Doty k*429—v—1(2M-1) o
v i — k* M) (.
9 < Gowan > (6= B |7 ()

i=k*—(20—v—141)(2M —1)

/°° (2% — i + )w(2z — k+1)| da

Nore ke 2M) M
< ————sup (|f™M(y) > G = &)
(20)M M1 nely (‘ D i=k*—(20-v=141)(2M -1)

=L sup(lp(@)]) sup(Ju(z))
z€R =€R

75 1y O sup ([740)]) sup(e(a))) sup(lo(x)).

nely z€R R

IN

where

(AM — 1) (2M — 1M+

C(M) = = ,

and [} is the interval

(k* — 20Vl (OM — 1) = 2M k* 4+ 20771 (2M — 1) — 1)
20 ’ 20 '

Note that if the parent function f does not satisfy the smoothness criteria

of Theorem 5 at some point « € [0, 1), we can still apply the theorem to those

7 such that f is M times differentiable on the interval I}, because the proof

is local in nature. We will use this fact in the next subsection, where we
apply Theorem 5 to the functions w;(¢) and v;(t).
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5.2 Applying the theorems to the BEM matrix A

In this subsection, we will combine the results from §3 and §5.1 to obtain
bounds on the fast wavelet transform of the vectors u/ and v’ defined in
§3.3 and §3.4. We will begin by bounding the vector Wu’, the fast wavelet
transform of u/. The method used in this section is to define a notion of valid
entries of Wu’, that is, indices (v, k) such that d¥ has a small magnitude.
We first bound the 2-norm of the valid entries of Wu’, showing that they are
very small with respect to ||u’| (i.e., small with respect to |[Wu’||). Then
we show that almost all the elements of Wu’ are valid. Thus, if the valid
entries are dropped, then a sparse vector that is a good approximation to
Wu! will result. The same ideas carry over to Wv.

Let « be a given positive integer and set N = 2% Let 1 < 3 < N be
fixed. The first step in obtaining bounds on the fast wavelet transform of
u’ is to obtain bounds on each element of the wavelet transform of u’ using
Theorem 5 of §5. To do this we need to replace the generic function f used
in Theorem 5 by the parent function of u’, u;(¢). Recall that the parent
function of u’ is given by

wilt) = [ Ka(r(s) 2 (0)e5(s) ds — At~ £)e(3(t1).

=0

By applying the bounds for dﬂ;:j,,(t) (t # t;, v(t) not a corner) obtained in

§3.1, namely

‘dM'uj(t) C(M)C () Br(M)

4 ‘_ ' A
7N (i, Nl — sl

to the result of Theorem 5 we obtain

v

2a
W= e T
(2) tely [mmsesuppwj [t — sll|

C(M)C () Br(M) sup (Jw(z)]) sup (|(z)]), (20)
zelR zelR
where Rp(M) is defined by (8). This equation holds provided that k is chosen
such that there are no corners in {y(t) :t € I}}.
Let us confine our attention to those ¢ € [0,1) that are sufficiently far
from supp(%;) and from a corner. Recall that i; is the jth basis function

1

]M—}—l
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(see §2.1)and that v, has small constant support (2%) around t;. In order
to ensure that I} does not meet the support of v;, we restrict k to the set

{1,...,2"} = V,, where

2a 2a
1)
Here k is a constant nonnegative integer to be determined later. Note that
V., depends not only on v but also on j, M, ¢y etc. Let the corners of the
domain be v(7y),...,7(7,), where p is the total number of corners. For each
corner define a set C;, = {k: 7, € I}}.
We will define the pair (k, v) to be valid if

ke{l,. .2y —(V,UC,U---UC,.).

Then for valid (k,v), we can replace

1

sup

tGIU {mlnsesupplbj |||t S|||}
tgsupp

M+1
1 1
P\ e = TR R |
2V

Substituting the above expression into (20), and changing the supremum of
t € I} to the supremum of t € [0, 1] yields, for valid (k,v)

o CONCEWRON y

1S = S (@) sup (o) (22
IVt — P B e ]

(23)

We are interested in squaring the term |d}| given by (22) above, and
summing the result over all valid (k, ). In the summation over k, the only
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factor depending on k is the last, leading to a summation

1 1 2M+2
2 lm{ [t — TRt VL) o b2 f‘%m}] |
21/

valid k 20 T 22

Because we are summing over all valid k£, we can bound this factor by

2V—1 2V—1

v 2M+2 " 1
¢ (o \2M+2
2 Z <?) < 2(2) Z L2M+2
k=k k=k
i 1
S(ov\2M+2
< 2(2%) Z L2M+2
k=k
o dx
aav\2M+2
< 22 /x:l}—l x2M+2
2(2u)2M+2

@M + 1)k - 1)

so long as f: > 2. In the sum > valid vk (dZ)Q, the factor involving v is thus of

the form
(21/)2M+2 (21/)

(21/)2M—|—1 Qa - Qo )

Summing this result over all v yields 1. Absorbing the factor -2 into C(M)

n (22), yields M1
v)? (C(M)C(¢)RF(M))2 sup (|w(z)])* su I
3 s e s (@) sup (o))

Let us define W to hold the “small” elements of the fast wavelet transform of
u’/. That is, W is the N-vector that is equal to d% for entries when (k,v) is
valid, and is equal to zero otherwise. Then, combining the above calculations
and the fact that
jus) > 1L
2
(see Theorem 3.3, §3.3), we obtain the following result:

A

w

’ 1 (C(M)C()Re(M))? | 2 2
i |2 = (b — 1Mt (c(1(1,)))? :gllé(lw(w)l) :tellré(lw(:ﬁ)l) :
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Thus, given € > 0, for N sufficiently large, we can choose 3 large enough
1 . A
(of the order €™ #+172) so that |W|| < €|[u’|. Here, the choice of k£ depends

upon the wavelet chosen (w(x)), the scaling function (¢(x)), the wavelet
order (M), the basis chosen (¢(z)), and the domain, but not upon N. Also,
because

a—1

Y.L 2 Y =M= 1Cul = = Coul]
valid v,k v=0
a—1
> 3 [20 = 2%(200) /2% — 2M — 2 — 2k — 2p(2M — 1)]
v=0
a—1
> 3 [2v—2M — 2 — 2k — 2p(2M — 1)] — 2¢y
v=0

= 2% —a[2M 42k + 2p(2M — 1) + 2] — 2¢; — 1

= N — (log, N)[2M + 2k 4 2p(2M —1) 4+ 2] — 2¢,, — 1,
the vector w has N — O(log N) elements. As a result, if we define the sparse
fast wavelet transform of the vector u’ as w — W, then this vector is sparse,

having O(log N) elements, and is such that ||[Wu’ — (w — W)|| < ¢||[Wu!|| for
any given € > 0. We have just proven the following theorem:

Theorem 6 Let M (wavelet order), a (number of wavelet levels), and € > 0
be given. Let j be an integer such that 1 < 7 < N. Let u’ be a vector of
length N, obtained from discretizing u;(t) given by

wilt) = [ Kala(0), 1(3))5) ds — el(1)),

at the points i_Wl, 1 <@ < N. Then, provided that a(or N) is sufficiently
large, W has at least N — O(log N) nonzero elements, and |[W| < ellu’]|,
where W is a vector of length N containing either zeros or the corresponding

entries of w (if they are “small” enough).

Remark: We are thinking of NV and € as independent parameters. In some
applications it may make sense to regard € as a function of N, for instance,
€ = ¢cN79. In this case, the wavelet transform still yields a sparse column,
but the number of nonzero entries in w — W is O(N”log N) rather than

O(log N'). Here, 3 depends on ¢ and M.
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; .. . ; . dMy
We can perform a similar analysis for v/ by applying the bounds for dt]{}t)

obtained in Theorem 2, §3.2 to Theorem 5. We start with the inequality

< V2 sup L
T @MVZ2 el | [mingequppy, 1t - slll]
C(M)C(¢)Rr(M) sup (Jw(z)|) sup (Je(z)]) /xr.

z€lR zelR
We say that (v, k) is valid if k£ € {1,...,2"} = (V,LUC,U---UC,,), where
V, and C;, were defined in the last section. We will use a new choice for k
specified below.

Summing the squares of d}, over all valid (v, k), the only factor that de-
pends on k is

2M
1 1
Z ma - J+Cw+2M 1 k+2M 2 J- cw ’
valid k& ||| ||| ||| |||

Because we are summing over all valid k£, we can bound this term by

|di]

V— 1 21/ . 2V—1 1
S (5) 2 20 S
k=k
00 dx
< 2(2v)M —
- ( ) r=k—1 $2M
2(21/)2M

(k—1)2M-12M — 1)
For the sum Y ;q,% (d%)?, the factor involving v is thus of the form

(21/)2M B 1
(21/)2M—|—1 Qa - v 20(‘

Summing this result over all v yields a factor of 27 = 1/N. This leads
to an equation for v/ similar to (22):

VL qp (o)) sup ()
1) zelR zcR

> (s

¥
valid v,k Xr- (k
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where Rp(M) is defined by (8). Let us redefine w to hold the “small” entries
of the fast wavelet transform of v/. That is, W is the N-vector that is equal
to the fast wavelet transform of v/ when the corresponding index (k,v) is

valid, and is equal to zero otherwise. Then, combining the above calculations

and the fact that
C

~ Nyl
(see Theorem 4, §3.4), we obtain the following result:

V)" =

A

w|* (C(M)C(¥)Rr(M))* , 2 2
HVJ'HQS (o :telllé(|w($)l) ig};{(@(fﬁ)l) [l

Thus, given ¢ > 0, for N sufficiently large we can choose e large enough
(of the order 6_M+1/2) so that ||W| < ¢||vi||. Here, the choice of f: again
depends upon the wavelet chosen (w(z)), the scaling function (¢(z)), the
wavelet order (M), the basis chosen (¢¥(z)), and the domain, but not upon
N.

The analysis of the number of valid (v, k) is identical to the analysis in
the last subsection. The conclusion is that the vector w has N — O(log N)
elements. As a result, if we define the sparse fast wavelet transform of the

vector v/ as w — W, then this vector is sparse, having O(log N) elements,
and is such that |Wv’ —(w — W)
just proven the following theorem:

vi||, for any given € > 0. We have

Theorem 7 Let M (wavelet order), a (number of wavelet levels), and € > 0
be given. Let j be an integer such that 1 < 7 < N. Let v/ be a vector of
length N, obtained from discretizing v;(t) given by

ot) = [ KO (0),7(5))0s(s) ds

at the points % =1 <i < N. Then, provided that o(or N) is sufficiently
large, W has at least N — O(log N) nonzero elements, and ||W| < ¢|[u’],
where W is a vector of length N containing either zeros or the corresponding
elements of w (if they are “small” enough).

We have succeeded in proving that the BEM matrix A as defined by (4)
in §2.1 contains N* — O(N log N) “small” elements, and making this matrix
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O Jwe

D. E.

Figure 1: The domain shapes reported on in our computational experiments.

sparse as outlined in §1.2 yields a sparse (O(N log N) entries) N x N matrix.
Moreover, the 2-norm of every column of this sparse matrix can be as close to
the 2-norm of corresponding column of the original dense matrix as desired,
for sufficiently large N.

6 Numerical Computations

In this section we present some numerical results to support the theorems
presented in §5. The numerical computations that were carried out were
of two types. In §6.1 we are interested in how well the sparse fast wavelet
transform of A (denoted A” see §1.2) compares with A in solving a general
matrix equation Ax = b. In §6.2 we are interested in how sparse A” actually
is. In each case the numerical computations were performed using the same
matrices, obtained using the following procedure: for each of the domains
in Figure 1, we formed the N x N system matrix A ((4), §2.1) for varying
N (nodal points), M (wavelet orders) and e (tolerance levels), providing
Neumann boundary data at half the nodes and Dirichlet boundary data at
the other half of the nodes. All tests were performed in MATLAB 4.1 on a
Sun 4/670 MP Sparc Workstation. MATLAB, an interactive software package
for numerical computation, is a trademark of The Mathworks, Inc.

6.1 Numerical approximation of A” to A

In this subsection we are interested in comparing the two vectors x and x,,,
obtained by solving the two N x N systems Ax = b and A”"x,, = Wb
respectively, for various values of N, M and €. Here, as mentioned above,
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A is the BEM matrix obtained using half Neumann boundary data and half
Dirichlet boundary data, A” is the sparse fast wavelet transform of A, and
Wb is the fast wavelet transform of the fixed random vector b. The sparse
fast wavelet transform of A was performed as follows: the boundary element
matrix A was formed as outlined in §6. For a given wavelet order M, the
fast wavelet transform of A, WA was calculated. For a chosen tolerance, e,
we went through the matrix WA on a column by column basis, zeroing out
first the smallest element of each column, then the second smallest element
in the column, and so on, until ||A"(:,7) — A(:,7)|| > €||A(:, )|, for all j,
1 <35 < N. In practice, one would most likely drop elements of the column
W A(:, j) that are less than €'| A(:, j)|| in magnitude for some arbitrary €', but
we have used this more complicated procedure to test our theory directly.
Here, A(:, ) represents the jth column of the matrix A, and A”(:, 7) denotes
the jth column of the sparse version of the matrix W A. Both of the systems
(Ax = b and A"x,, = Wb) were solved using Gaussian elimination with
pivoting. The relative error between x and x,,,
_ =% :

err(x,x,) = T (24)
was calculated and plotted against N, for a variety of N values (N = 2% k =
1,2,...,10). We performed these computations for fast wavelet transforms
with M = 2 and with M = 6. For each different fast wavelet transform,
we took € to be 1073,107°, and 10~7. We used a piecewise linear basis as
our choice of {;/)]}] 1, where support(v;(s)) = [tj—1mod N, tj+1modn]. The
computational results for the domains C' and F are plotted in Figures 2 and
3. The key to these figures is given in Table 1. The computational results
for the remaining domains were similar to the plotted result and hence are
not shown here.

Note that examining the relative error between x and x,, is equivalent to
examining the relative error between the vectors x and y, where y solves the
system Ay = b, and where A is a matrix obtained from A via the formula
A=W-1A" Recall that A” = WA+ E where || E|| < ¢||WA]|. Since W is an
orthogonal matrix, this implies that the solution x,, described above satisfies
(A + E"x, = b, where |[F'| < €||A||. In general, this implies that ||x —
Xu||/||X]| is bounded above by ex(A), where x denotes the condition number
(see [12]). Because our perturbation F has special structure, this bound
could be an overestimate. Unfortunately, we do not know of any analysis in
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Domain C

Figure 2: Plot of err(x,x,) vs. N for Domain C. For key see Table 1.
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Domain E

10

Figure 3: Plot of err(x,x,) vs. N for Domain E. For key see Table 1.
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the literature for the condition number of a boundary element matrix with
mixed boundary conditions. Accordingly, we can judge the relative error in x
only by computational experiments. In fact, this behavior is essentially what
we observe from the figures. Any apparent dependence upon N appears as
a result of the relatively small values of N used. Nevertheless, even with
these small values of N, we can observe the order ¢ relative error between
x and y. Also, as is evidenced by the computational results, the relative
error between x and x,, does not depend upon the wavelet order M, and
just upon ¢ as mentioned above. Note also, that the relative error between
x and X, is similar, both qualitatively and quantitatively, for domains with
and without corners. As can be expected, for small N (eg., N < 128), the
matrix WA cannot be made sufficiently sparse, and as a result A” is dense
and the relative error between x and x,, is approximately machine precision.
We can observe from the results that as e decreases, we need a larger value
of N in order for the matrix A” to differ from W A, or to significantly alter
X,, from x.

6.2 Sparsity of A"

In this subsection, we present some numerical results to support the theorems
presented in §5. We will see that while the theorems guarantee their stated
results for sufficiently large N, their results are realized numerically for a
relatively small value of N. The numerical computations that were carried
out were as follows: the boundary element matrix A was formed as outlined
in §6. For a given wavelet order M and tolerance ¢, the sparse fast wavelet
transform of A, A” was calculated as outlined in §6.1. Let us denote a column
of A” that arises from the matrix U (see §2.1 by (3)) by u”. Similarly, let
us denote any column of A” that is associated with the matrix V' by v”. For
domains C' and F, we plotted the average number of elements of u” against V.
We also plotted the average number of elements in v” against N for domains
C and E. These plots are presented in Figures 4 and 5 (for the sparsity of
u”) and Figures 6 and 7 (for the sparsity of v"/). We performed these same
computations for fast wavelet transforms with M = 2 and with M = 6. For
each different fast wavelet transform, we took € to be 1072,107°, and 107".

We chose N to take the values 2%,k = 1,2,...,10. We used a piecewise linear

basis as our choice of {I/Jj}éy:l, where support(1;(s)) = [tj-1mod N's tj+1 mod N |-

The key to all these Figures is presented in Table 1. The computational
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For key see Table 1.

results for the remaining domains were similar to the plotted result and

hence are not shown here.

A few general trends are evident from the test results corresponding to
Figures 4 through 7. First, except for the few computations that have yet
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to settle down (specifically {M, e} = {2,1077}), the O(log N) sparsity that

the theorems prove for sufficiently large N, is evident for all domains, even
for N as small as 128. Also, as expected, for a given e, there are fewer
nonzero elements in the vectors u” and v” corresponding to higher values

of M. This is because the values of k derived in 85 will be smaller as M is

larger. The price paid by using larger wavelets (larger values of M) appears
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Table 1: Key for Figures 2 through 7

{M, e} || point style | line style
{2,107°} 0 solid
{2,107°} 0 dashed
{2,1077} 0 dotted
{6,107°} X solid
{6,107°} X dashed
{6,1077} X dotted
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Figure 5: Plot of the average number of elements in u” vs. N for Domain E.

For key see Table 1.
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Figure 6: Plot of the average number of elements in v’ vs. N for Domain C.

For key see Table 1.
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Figure 7: Plot of the average number of elements in v vs. N for Domain E.

For key see Table 1.
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as larger constants appearing in Theorems 6 and 7, and as a cost increase in
numerically calculating the fast wavelet transform of a vector. Recall that
if we think of M as a variable, the cost of a fast wavelet transform of a
vector of length N is O(M N). Note that for a given domain, M and ¢, the
vector v is slightly less sparse than the corresponding vector u”, especially
for the case M = 2,¢ = 107%. Also, as a general rule, as the domain becomes
more complex, the number of nonzero entries in each sparse (transformed)
vector increases (for a fixed N). In particular, as more corners are added,
the sparsity goes down; this is predicted by our analysis. However, for the
domains in question, each of these vectors is still very sparse, especially as
N increases. Thus, for computational purposes, the theorems seem to hold
true in all respects for all but very small V.

7 Conclusions

Applying a standard BIEM to Laplace’s equation in two dimensions, with any
type of consistent boundary conditions yields a coefficient matrix made up of
columns of U and V as defined by (3). Theorems 5 through 7 show that if we
apply the fast wavelet transform to the columns of this coefficient matrix, we
can obtain a matrix that has at most O(N log N) non-negligible elements in
total. Thus, as mentioned in §1 we can approximate the transformed matrix
by zeroing out the “small” entries and obtain a sparse coefficient matrix that
can be exploited. The penalty for the sparseness of the approximation matrix
is paid in the change of the norm of each individual column of the original
matrix, which for sufficiently large N, is negligible.

While Theorems 6 and 7 above require a sufficiently large number of
boundary element points (N) in order to have the 2-norm of the approximate
wavelet transformed vector closely match the 2-norm of the original vector,
experimentally the number of boundary element points does not need to be
very large for the results of the theorems to hold. That is, even for moderate
size vectors (N & 128), the approximate wavelet transform is sparse, and has
a 2-norm close to the 2-norm of the original vector (the vectors in question
coming from the columns of A).
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