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The main aims of this dissertation were first, to determine the molecular 

mechanism(s) underlying glycoalkaloid-induced effects, in particular their membrane 

disruptive effect in intestinal epithelial cells. Second, to evaluate the usefulness of 

DNA microarrays in discriminating individual glycoalkaloids and glycoalkaloid 

mixtures of varying α-chaconine/α-solanine ratios based on their differences in effect 

severity and potential toxicities. By exploring the application/sensitivity of 

transcriptomic techniques in identifying early indicators of toxicity and screening 

between similar class/effect compounds, these studies clarify the potential application 

of this technique to �whole foods� safety assessments incorporating different models 

of impaired nutritional states.  

The transcriptional effects of individual and mixtures of glycoalkaloids were 

studied in the intestinal epithelial Caco-2 cell line. The principal finding was the 

induction of cholesterol biosynthesis genes by non-cytotoxic glycoalkaloid 

concentrations, which to some extent is in line with their well documented mechanism 

of membrane disruption. Various genes involved in the MAPK, PI3K/AKT, 

chemokine and growth signaling, cell cycle and apoptosis pathways also were 

affected. Confirmatory apoptosis and cell cycle analyses revealed that glycoalkaloids 

induced necrotic/apoptotic death and disproportionate accumulation of cells in the 

G2M phase.  



 

 

The DNA microarray data were in line with the results from previous studies 

demonstrating that potato glycoalkaloids have similar mechanisms of action but differ 

mainly in their adverse effect potency. In addition, this technology could discriminate 

among the different glycoalkaloid treatments with respect to effect severity, which 

correlated well with their effects on lactate dehydrogenase membrane leakage. 

  DNA microarrays are recognized to be useful tools for generating hypotheses and 

elucidating mechanism of action. Therefore, the effect of α-chaconine on SREBP-2 

protein levels and the importance of MAPK and PI3K/AKT pathways in 

glycoalkaloid-induced transcription of cholesterol biosynthesis genes were 

determined. α-Chaconine induced proteolytic cleavage of SREBP-2 and 

phosphorylation of ERK, JNK and AKT kinases. However, the MAPK and PI3K/AKT 

pathways were not crucial for glycoalkaloid-induced expression of cholesterol 

biosynthesis genes. 

In this dissertation, the usefulness of DNA microarrays in identifying hitherto 

unknown mechanisms of action, identifying potential toxicity biomarkers, and 

assessing the effects of simple mixtures of compounds was demonstrated. The studies 

presented will contribute towards the elucidation of the toxic and potential beneficial 

effects of potato glycoalkaloids, which may subsequently enhance current efforts to 

develop transgenic potatoes with altered glycoalkaloid levels/ratios, and the utility of 

these tools for assessing the safety of whole foods.  
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CHAPTER 1 

INTRODUCTION 

A. Literature Review 

1.  Introduction 

Potatoes (Solanum tubersom L.) are widely consumed and are a significant source 

of high quality protein, carbohydrates, vitamins C and B, certain minerals such as 

potassium, magnesium and phosphorus and antioxidant phytochemicals such as 

phenolic acids and flavonoids (1, 2). However despite this, they also contain naturally 

occurring toxins called glycoalkaloids, which may have deleterious toxic effects in 

humans. The two major forms of glycoalkaloids present in potato are α-chaconine and 

α-solanine, which occur at varying concentrations and ratios, depending on the 

specific variety of potato (3). In combination, they may interact synergistically 

resulting in a level of toxicity that is more severe than is observed when either 

glycoalkaloid is administered alone (3-7). Most of the reported glycoalkaloid 

poisoning symptoms are found to be induced by their acetylcholinesterase inhibitory 

or membrane disruptive activities (8). However, while the toxicological effects of 

potato glycoalkaloids in humans are well described; the mechanisms underlying their 

effects are poorly understood. 

Human consumption of potatoes results in the ingestion of α-chaconine and α-

solanine in varying ratios, usually ranging from ~1.2:1 to ~2.4:1 (α-chaconine to α-

solanine) (3). There is currently research on the development of transgenic potatoes 

with altered/lowered glycoalkaloid ratios/levels, which may have potentially 

nutritional/health benefits to consumers (9). In order to enhance the development of 

potentially beneficial potatoes, there is need to investigate the mechanisms underlying 

the toxic effects or mode of action of individual glycoalkaloids and glycoalkaloid 

mixtures at varying α-chaconine to α-solanine ratios.  
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Current conventional food safety assessment methodologies are focused primarily 

on the evaluation of the toxicity of single chemicals to predict effects of exposures to 

mixtures of compounds or whole foods. Prediction of adverse effects of whole foods is 

especially difficult because of the many interactions that may occur among the high 

number of nutrients and other food substances commonly found in whole foods. Such 

interactions may alter the degree and possibly the nature of predicted toxic effects of 

individual food constituents (10). In addition, whole foods cannot be tested with the 

high dose strategy currently used for single chemicals to increase the sensitivity in 

detecting toxic endpoints, as this may result in nutritional imbalances and decreased 

palatability. Profiling methods such as DNA microarray technology have been 

suggested as tools that may facilitate in screening, assessment and/or prediction of 

putative harmful interactions following exposure to mixtures of substances or whole 

foods. Changes in gene expression may provide more sensitive, immediate, and 

comprehensive markers of toxicity than conventional toxicological methods and 

endpoints (11).  

The first part of the chapter focuses on potato glycoalkaloids, their known toxic 

effects, mechanism(s) of action and pharmacokinetics. The second part of the chapter 

focuses on challenges involved in food safety assessments (whole food or mixtures), 

and the potential use of DNA microarrays in improving food safety assessments. 

 

2. Nutritional value of potatoes (Solanum tubersom L.) 

Potatoes represent the secondary staple of many developed countries, but its 

consumption is less wide spread in developing countries where sweet potatoes, yams 

and maize are the main staple crops (12, 13). Despite this, the consumption of potatoes 

in developing countries has been increasing annually by 4.1% (14). Potatoes as well as 
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other root and tuber crops produce large quantities of dietary energy and have stable 

yields under conditions where other crops may fail (14). 

Potato tubers besides being a high source of starch (70�90% on dry basis)(12), are 

also an important source of vitamins, minerals, trace elements and high quality 

protein. The potato protein has higher levels of the essential amino acid lysine and is 

of higher nutritional value compared to wheat protein, which has insufficient amounts 

of the two essential amino acids: lysine and threonine (15). Potatoes also contain 

substantial levels of antioxidants such as vitamin C (2), vitamin E, carotenoids 

(lutein)(16, 17), phenolic acids (mainly caffeic and chlorogenic acids) (17-19) and 

flavonoids (such as catechin, quercetin)(17). Antioxidants protect and prevent cellular 

damage by efficiently scavenging for superoxides and peroxyl radicals together with 

endogenous systems of defense limiting oxidative stress. The levels of vitamin C in 

potatoes are high comparatively to those of rice and wheat, which completely lack this 

vitamin. The vitamin C levels are about 15 mg/100 g of steamed potato, contributing 

to 25�30% of the RDA (Recommended Dietary Allowance) (1, 20). In Spanish 

populations, potatoes have also been shown to contribute to the dietary daily intake of 

potassium, magnesium, protein and fiber in relation to the RDI (recommended daily 

intakes)(19).  

They also contain moderate amounts of B vitamins, including thiamin (B1), 

riboflavin (B2), pyridoxine (B5), and nicotinic acid (B6) (1) and are a source of 

dietary fiber (7% of peeled potato, up to 11% of non-peeled potato). They contain 

mainly the water-soluble fibers, hemicelluloses and pectins (55%), which together 

with water insoluble fibers (45%) such as cellulose may have hypocholesterolemic 

effects (12, 21). Besides containing these compounds, which are of significant 

nutritional value, they also contain naturally occurring toxins called glycoalkaloids 

that may have toxic effects and are the main focus of this dissertation. 
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3. Glycoalkaloids  

 Potatoes belong to the solanaceae plant family, which also includes other 

members such as capsicum, eggplant, tomato, nightshade and jimson weed seeds (9). 

They all contain secondary metabolites known as glycoalkaloids, which at high levels 

may be toxic to bacteria, fungi, viruses, insects, animals, and humans. Glycoalkaloids 

are proposed to function as protection against certain pests and diseases caused by 

insects and fungi. α-Chaconine and α-solanine account for 95% of the total 

glycoalkaloids present in potatoes (22). They consist of the same aglycone solanidine, 

but differ with respect to the nature of the carbohydrate side chain attached to the 3-

OH group of the aglycone. For α-solanine, the carbohydrate side chain is the branched 

trisaccharide, β-solatriose (α-L-rhamnopyranosyl-β-D-glucopyranosyl-β-D-

galactopyranose) and for α-chaconine is also a branched trisaccharide, β-chacotriose 

(bis α-L-rhamnopyranosyl-β-D-glucopyranose) (Figure 1-1) (6, 23, 24). α-Chaconine 

is more potent and usually present at a slightly higher concentration than α-solanine. 

The differences in potency has been attributed to their differing carbohydrate side 

chains (25, 26).  

α-Chaconine and α-solanine are present in potatoes at varying concentrations. In 

combination, they may interact synergistically resulting in increased toxicity at lower 

concentrations than is observed when either glycoalkaloid is administered alone (3-7). 

Consumption of potatoes results in the ingestion of α-chaconine and α-solanine in 

varying ratios, ranging from ~1.2:1 to ~2.4:1 (α-chaconine to α-solanine), depending 

on variety (3). Assessing the toxic effects, if any of glycoalkaloid mixtures at varying 

α-chaconine to α-solanine ratios found in some potatoes varieties is essential.  



 

5 
 

 

 

 

Figure 1-1. The chemical structures of α-chaconine and α-solanine 

3.1. Biosynthesis of glycoalkaloids 

The biosynthetic pathway of glycoalkaloids has been partially elucidated. 

Glycoalkaloids are synthesized via the mevalonate/isoprenoid biosynthesis pathway 

(Figure 1-2), starting with acetyl coenzyme A via the intermediates mevalonate, 

squalene and cycloartenol through to cholesterol and finally the parent compound 

solanidine (27, 28). Solanidine is then glycosylated by either solanidine UDP-

galactose galactosyltransferase (SGT1) or solanidine UDP-glucose glucosyltransferase 

(SGT2) resulting in either α-solanine or α-chaconine, respectively. 

 

3.2. Distribution and accumulation of glycoalkaloids in potatoes 

Glycoalkaloids are produced in all parts of the potato plant including leaves, roots, 

tubers, and sprouts. The highest concentrations of glycoalkaloids are found in leaves, 

skin, unripe tubers, flowers and sprouts. Table 1-1, represents the distribution of 

glycoalkaloids in various parts of the potato. The nature and concentrations of 

glycoalkaloids depend on the potato variety and the total amounts can be influenced 

by environmental factors such as soil and climate (29) and their physiological state 
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(27). Post harvest exposure of potatoes to sunlight, heat and mechanical damage have 

been also shown to stimulate glycoalkaloid biosynthesis (30).  

 

 

 

 

 

 

 

 

 

Figure 1-2. Schematic representation of proposed glycoalkaloid biosynthesis. Triple 

arrowheads represent several enzymatic steps. 

 

Table 1-1. Contents of glycoalkaloids in various parts of the potato 

 

 

 

 

 

 

 

 

 

Taken from reference (27) 

 

Plant part mg/kg fresh weight 

Sprouts 2000-10000 

Flowers 3000-5000 

Stems 30-450 

Leaves 400-1450 

Roots 850 

Tubers     whole 20-80 

       peel 150-500 

       flesh 0-20 
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4. Bioavailability of Glycoalkaloids (Pharmacokinetics) 

Very limited studies have been conducted to study the pharmacokinetics of α-

solanine and α-chaconine in man. This presents a huge challenge in the development 

of toxicity studies. Generally it has been observed that the serum concentrations of 

both α-solanine and α-chaconine increase steadily after consumption. Peak 

concentrations are reached after approximately 6 hours of consumption (31, 32). There 

is a linear relationship between dose and peak glycoalkaloid serum concentrations. 

After reaching peak concentrations, serum concentrations of the glycoalkaloids 

decrease gradually but do not return to baselines. In addition, α-solanine and α-

chaconine have long half-lives, on average 21 and 44 hours respectively (31). 

Therefore, this implies that daily consumption of potato products may cause 

accumulation of glycoalkaloids, which can consequently lead to adverse health effects.  

Sidechains of α-solanine and α-chaconine may be hydrolyzed resulting in their 

respective β and γ forms. Subsequently, these forms are hydrolyzed into the aglycone 

solanidine (32). Figure 1-3 depicts the hypothesized metabolism of α-solanine and α-

chaconine. Potatoes may contain small amounts of the hydrolysis products β and γ 

forms and solanidine (9). 

In human serum HPLC chromatograms, only the parent compounds (α-forms) and 

solanidine could be detected following oral administration of α-solanine and α-

chaconine via mashed potatoes (32). The mean serum total alkaloid concentration was 

2.7 times lower than the solanidine concentration, suggesting that these glycoalkaloids 

are metabolized to solanidine since the amount of solanidine in potatoes was lower 

compared to the alkaloids (31).  
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Figure 1-3. Intermediates in the hydrolysis of the trisaccharide side chains of α-

solanine and α-chaconine to the glycone solanidine. Taken from reference (9) 

 

The site of hydrolysis is unclear, however, it is suggested that hydrolysis may 

occur in the acid environment of the stomach, or in the gastrointestinal tract at the site 

of absorption (33). Alternatively, the relatively high blood solanidine level could 

reflect the preferential absorption of the more lipophilic compound.  
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Solanidine has been shown to accumulate in human livers. Analysis of 

histologically normal post-mortem livers from human subjects, revealed solanidine to 

be present in three of the five samples of human livers (34) suggesting that it 

accumulates in the liver.  

 

5. Risks associated with consumption of glycoalkaloids  

The potential human toxicity of glycoalkaloids has led to the establishment of 

safety guidelines limiting the glycoalkaloid content of new cultivars before they are 

released for commercial use (9). The glycoalkaloid concentrations of most commercial 

potatoes are usually below a safety guideline of 200mg/kg of fresh potatoes (31), 

however, glycoalkaloid concentrations can increase following light exposure or 

mechanical injury, for example, as a consequence of peeling and slicing (29). In 

addition, glycoalkaloids are relatively heat-stable compounds and are unaffected by 

food processing (35). The estimated highest safe level of total potato glycoalkaloids 

for human consumption is about 1mg/kg body weight, the acute toxic dose is 

estimated to be at 1.75 mg/kg body weight, and a lethal dose may be 3-6 mg/kg body 

weight (36). This narrow margin of safety is of concern.  

The toxicological effects of glycoalkaloids have been well described in humans, 

ranging from gastrointestinal disturbances to increased heart-beat, hemolysis and 

neurotoxic effects (37). The toxicities observed are mainly due to the 

anticholinesterase actvitity of glycoalkaloids on the central nervous system and to 

disruptions in the cell membranes affecting the digestive system and other organs (8). 

Toxicities induced in other species include hepatoxicity in mice (38), induction of 

hepatic ornithine decarboxylase activity in rats (39), craniofacial malformations in 

hamsters (40), and developmental toxicity in frog embryos (5, 26). 
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  Toxic Effects 

 Anticholinesterase activity 

α-Solanine and α-chaconine have been shown to inhibit the enzymes 

acetylcholinesterase (AChE) and butrylcholinesterase (BuChE). Both enzymes are 

responsible for hydrolyzing the neurotransmitter acetycholine, a key process in nerve 

impulse conduction across cholinergic synapses (8). Inhibition of AChE results in the 

accumulation of acetylcholine in neuromuscular clefts resulting in neurological 

damage. The symptoms that are indicative of central nervous system damage 

attributed to the anticholinesterase effect of glycoalkaloids include rapid and weak 

pulse, rapid and shallow breathing, delirium and coma (9). Both α-solanine and α-

chaconine are equally potent with regard to in vitro inhibition of bovine and human 

AChE (41). The inhibition of AChE may involve non-covalent competitive binding of 

the glycoalkaloids to the active site of the enzyme (9).  

Studies have shown that the structure of the steroid is more important in 

determining potency rather than the carbohydrate side chain as evidenced by the fact 

that β2-chaconine is as effective as α-chaconine (8). Structure-inhibitory activity 

relationship experiments have shown that the unshared electron pair on the ring of the 

nitrogen of the aglycone may be required for the formation of iminium ions (42) and 

that the nitrogen-containing E/F ring of the aglycone is a more important determinant 

of anticholinesterase activity than the carbohydrate side chain(9). However, the 

presence of the carbohydrate side chain is necessary for inhibition to occur, indicated 

by the ineffectiveness of the aglycone solanidine to inhibit AChE.  

Furthermore, glycoalkaloids may alter the pharmacokinetics of drugs metabolized 

by AChE and BuChE, for example, anesthetic drugs such as succinylcholine (43). 

Glycoalkaloids have been also shown to prolong recovery from mivacurium-induced 

paralysis in rabbits (44). 
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 Membrane disruption  

Some of the toxicological effects of glycoalkaloids may be due to their membrane 

disruptive activity. These effects that have been observed in lipid vesicles, membranes 

of erythrocytes, and various human and mouse cell lines (7, 24, 45, 46). The lipophilic 

moieties of the glycoalkaloids form destabilizing complexes with membrane bound 

cholesterol resulting in membrane disruption (45, 47, 48). This action is thought to be 

responsible for damaging cells in the gastrointestinal tract and also in other tissues or 

organs in which these compounds are transported following absorption, for instance, 

glycoalkaloid-induced hemolysis. The extent of membrane disruption effected by 

glycoalkaloids has been shown to be dependent on the composition of the 

glycoalkaloid carbohydrate side chain and the type and content of sterol present in the 

membrane (47). α-Chaconine results in greater membrane disruptive effects than α-

solanine (6, 7, 24). α-Solanine like α-chaconine binds to cholesterol present in 

membranes but to a lesser extent (6), which may be due to their different carbohydrate 

side chains. It is well established that synergism between these two glycoalkaloids 

significantly enhances the membrane-disruptive activity of potato glycoalkaloid 

mixtures (6).  

Glycoalkaloid toxicity symptoms at lower doses are mainly gastrointestinal, for 

example, vomiting, diarrhoea and abdominal pain. The rate of mild glycoalkaloids 

poisonings is unknown due to the similarity of symptoms to many digestive ailments 

(31, 37). The relative rapidity of symptoms of glycoalkaloid toxicity (0.5-12 hours) 

suggest that their primary toxic effect may be due to gastrointestinal damage with the 

secondary occurrence of neurological disorders (32). Baker et al., 1991 observed that 

hamsters fed potato sprouts had gastric necrosis at doses that relatively have a weak 

effect on AChE activity.  
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 Alteration of membrane potential and transport of calcium and sodium 

Glycoalkaloids have been shown to interfere with transepithelial transport of 

calcium (49) and sodium (50, 51) ions and alter membrane potential of Xenopus laevis 

frog embryos (50-52), which may also influence transport of Na+ ions. α-Chaconine 

and also α-solanine but to a lesser extent, were observed to significantly decrease 

active Na+ transport. Thus, a possible mechanism of action of glycoalkaloids is that 

they may affect active transport across cell membranes. Cell culture and experimental 

animal studies have shown that glycoalkaloids may adversely affect intestinal 

permeability (22). 

 

 Developmental toxicity/ teratogenicity in animal studies 

Glycoalkaloid-induced craniofacial malformations in mice and multi-organ 

malformations in frog embryos have been observed at glycoalkaloids levels found in 

some potato varieties (40, 53, 54). Wang et al., 2005 (55) also observed that α-solanine 

and α-chaconine inhibited pre-implantation embryo development in in vitro fertilized 

bovine oocytes, suggesting that these alkaloids may have a negative effect on early 

embryo development and survival in vivo when ingested by man or animals. The 

developmental toxicity and embryolethality of glycoalkaloids is dependent on the 

nature and order of attachment of carbohydrate chain side chains (25, 26). The 

outcome of animal studies is cause for concern as humans appear to be more sensitive 

to glycoalkaloid toxicity than other species (37). There is concern that glycoalkaloids 

may be involved in neural tube defects. Several epidemiologic studies demonstrating 

an association between neural tube defects and high consumption of severely blighted 

potatoes have been reported (56-58). However, compelling evidence against the 

potato-terata hypothesis was provided by the birth of children with neural tube defects 

to mothers on potato avoidance trials (59). 
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Folate status has been implicated as the major environmental factor in the etiology 

of neural tube defects (NTDs). There is an apparent negative correlation between 

folate consumption during pregnancy and the occurrence of NTDs in newborns. 

Studies have shown folate to protect frog embryos against α-chaconine�induced 

developmental toxicity, mortality and membrane disruption (23, 60). Thus implying 

that folate plays a protective role against glycoalkaloid toxicity. However, a 

pharmacological rather than a much lower nutritional concentration of folate was 

required to achieve a protective effect (60).  

Human clinical and epidemiological studies have demonstrated that maternal use 

of folic acid in early pregnancy can significantly reduce both the occurrence (61), as 

well as the recurrence (62) of NTD-affected pregnancies, and these findings have been 

further validated by observational studies of women taking daily periconceptional 

multivitamin supplements containing folic acid (63, 64). Whereas the epidemiologic 

and experimental data support the hypothesis that this apparent reduction in NTD risk 

may be specifically attributable to folic acid, the mechanisms underlying the protective 

effects of folic acid are not fully understood.  

In epidemiological studies done to assess relationships between glycoalkaloids 

and the development of neural tube defects, the folate status of the women was not 

determined (59). A possible reason for the absence of an association may have been 

that the women exposed to glycoalkaloids were of adequate folate nutriture and thus 

were able to tolerate high levels of glycoalkaloids. An essential question that merits 

addressing is whether women of compromised folate status when exposed to high 

concentrations of glycoalkaloids in potatoes are more susceptible to bearing children 

with neural tube defects.  

Other compounds such as glucose-6-phosphate and nicotine adenine dinucleotide 

phosphate have also been shown to reduce α-chaconine-induced developmental 
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toxicity in frog embryos (23). Taken together, these results may imply that the 

nutritional status of an individual may play an important role in protecting against 

glycoalkaloid toxicity.  

 

 Induction of ornnithine decarboxylase and estrogenic effects 

Intraperitoneal administration of α-solanine, α-chaconine and solanidine was 

shown to result in markedly elevated induction of hepatic ornithine decarboxylase 

activity in rats (39). Ornithine decarboxylase (ODC) catalyzes the decarboxylation of 

ornithine to putrescine, which is a foundation molecule of polyamines and is known to 

interact with DNA. In addition, ODC is a marker of liver cell proliferation. The extent 

of induced ODC activity depends on the nature of the carbohydrate side chain.  

The aglycone solanidine and not α-solanine or α-chaconine, was observed to 

exhibit estrogenic effects in in vitro (36).  

 

6. Potential beneficial health effects 

Although glycoalkaloids are perceived as potentially toxic, they may have 

beneficial effects, depending on dose and conditions of use (9).  

 

6.1. Immune system 

Glycoalkaloids have been observed to enhance the immunity of mice against 

infection by Salmonella typhimurium (65) Mice injected with low levels of α-

chaconine or α-solanine (0.03-0.3 mg/kg of body weight or 0.1-1.0 µg/mouse) were 

resistant to challenges of lethal doses of Salmonella typhymurium. Various organs of 

treated mice were clear of bacteria (65).  
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6.2. Anti-carcinogenic effects against cancer cell lines  

Studies have shown that α-chaconine or α-solanine can inhibit growth of tumor 

cell lines in vitro (3, 66). The antiproliferative effects of many different glycoalkaloids 

including α-chaconine or α-solanine, were evaluated using a microculture tetrazolium 

(MTT) assay and all compounds inhibited proliferation. The level of activity was 

dependent on the chemical structure of the aglycones and the number of carbohydrate 

groups making up the side chain attached to the aglycones.  

 

7. Food Safety Assessments  

Human consumption of potatoes results in the ingestion of α-chaconine and α-

solanine in varying ratios, usually ranging from ~1.2:1 to ~2.4:1 (α-chaconine to α-

solanine), depending on the specific variety of potato (3). Because of the potential risk 

of increased glycoalkaloid toxicity due to synergism, there is currently an active area 

of world wide research on the development of transgenic potatoes with 

altered/lowered glycoalkaloid ratios/levels, which may have potentially 

nutritional/health benefits to consumers (9). Studies have shown that incorporation of 

an anti-sense transgene encoding either the enzyme solanidine UDP-galactose 

galactosyltransferase (SGT1) or solanidine UDP-glucose glucosyltransferase (SGT2) 

in potatoes can result in downregulation of glycoalkaloids biosynthesis, by reducing 

the levels of either α-solanine or α-chaconine, respectively (67, 68). Therefore, from a 

food safety perspective, assessment of toxic effects of glycoalkaloids; individual and 

mixtures at varying α-chaconine to α-solanine ratios found in common and possibly 

transgenic potato varieties, and determination of the molecular mechanism(s) 

underlying these effects, would be informative for both the development of transgenic 

potatoes and risk assessment.  
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7.1. Challenges faced with whole food, nutrient/food mixtures and genetically 

modified foods assessments  

Current conventional food safety assessment methodologies are focused primarily 

on the evaluation of the toxicity of single chemicals. Predictions of adverse health 

effects induced by glycoalkaloid and other toxin mixtures are usually based on data 

obtained from single compound exposures. Unfortunately, observed toxicities 

commonly deviate from such predictions. Prediction of adverse effects of whole foods 

is especially difficult because of the many interactions that may occur among the high 

number of nutrients and other food substances commonly found in whole foods. Such 

interactions may alter the degree and possibly the nature of predicted toxic effects of 

individual food constituents (10).  

Whole food safety assessment remains a difficult proposition because of the 

various interactions that may occur among nutrients and other substances present in 

food. In addition, whole foods cannot be tested with the high dose strategy currently 

used for single (food) chemicals since high dosing of whole foods may be problematic 

with respect to nutritional inbalances and palatibiliy. In principle, every class of food 

chemical may exhibit joint similar1 or dissimilar2 action, which may lead to non-

interactive combined effects. Food chemicals may also interact with one another 

resulting in stronger effects (synergism, potentiation, supra-addivity) or weaker effects 

(antagonism, sub-addivity, inhibition). The joint similar or dissimilar actions or 

interactions of the food chemicals alter the degree and possibly the nature of the 

potential toxic effects of individual food chemicals (10). Possible joint actions or 
                                                
1 A non-interactive process whereby each of the chemicals in a mixture have the same mechanism of 
toxicity and differ only in their potencies: additive effect (23) 
2 The modes of action and possibly the nature and site of effect differ among the chemicals in the 
mixture, which exert their individual effects. They do not modulate each other�s toxic effects (23) 
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interactions among food chemicals may result in dose-additivity and synergism, which 

can lead to increased toxicity.  

Nowadays there is a lot of emphasis on production of genetically modified foods 

with nutritional/health benefits to consumers (second generation genetically modified 

foods with altered food quality traits). Although there is a steady increase in the 

production of genetically modified foods, apprehension about the safety of these foods 

persists. The major concern is whether genetically modified crops are so unique that 

new safety assessment strategies are required or whether current safety assessments 

applied to traditionally bred crops can also be applied to genetically modified crops. 

The challenges in assessing the safety of genetically modified crops are to 

characterize the properties of new gene products and potential changes in the levels of 

endogenous plant constituents, and to identify potential unintended effects due to the 

genetic modification that may result in adverse impacts on human health and the 

environment. Thus, concepts were developed to focus the safety assessment of 

genetically modified crops on any functional and chemical changes that may result 

from genetic modification (69, 70).  

The concept of substantial equivalence elaborated by OECD in 1993 has become 

a key element in the safety assessment of foods derived from genetically modified 

organisms. This concept is a starting point for the safety assessment of genetically 

modified crops. The safety assessment is intended to evaluate whether or not the 

genetically modified crop is as safe as its conventional counterpart. �Equivalence 

Criteria� include agronomical and morphological characteristics and chemical 

composition (including macro- and micro-nutrients, key toxins and anti-nutrients) (71, 

72). These should allow the identification of significant differences that result from the 

genetic modification and may potentially affect human health adversely. Subtle 

unanticipated changes in a plant�s composition however may be difficult to detect. 
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Studies of whole food derived from genetically modified foods appear to be necessary 

(73). As indicated this presents unique problems which, as already mentioned before, 

are related to nutritional aspects and palatability. To increase the probability of 

detecting unintended effects, profiling methods such as DNA microarray technology, 

proteomics and metabolomics have been suggested as tools to characterize not only 

changes in composition of genetically modified crops but also in assessing the safety 

and substantial equivalence of genetically modified foods compared to conventional 

(parental line) foods in animal and in vitro studies (74). In addition, these tools can be 

used to identify sensitive and early biomarkers of effect/toxicity at low doses unlike 

conventional toxicological assays(11).  

 

7.2. Issues for consideration in current food safety assessment protocols 

 7.2.1. Influence of nutritional deficiencies on susceptibility to food toxins 

Diet plays an important role on how individuals deal with environmental stressors 

and toxins to prevent and lessen the impact of disease. Thus it is imperative that 

during the development or assessment of safety or wholesomeness of conventional or 

genetically modified foods that one takes into consideration the nutritional status, as 

well as the consumption patterns of populations for whom particular foods are 

intended. Current food safety assessment protocols do not take in account such 

characteristics. The impact of these characteristics on food safety may influence 

responses to food constituents including natural toxins. In addition, genetically 

modified foods are promoted, in part, on the basis of their potential health benefits; 

therefore, their safety should be assessed with target populations in mind.  

The bioavailability or toxicity of several compounds has been shown to be 

strongly influenced by nutritional status. For example, iron-deficient individuals have 

altered detoxification and antioxidant mechanisms that may affect their susceptibility 
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to exogenous and endogenous food toxins (75). This altered susceptibility may result 

in further deterioration of health, even when toxins are consumed at levels well 

tolerated by healthy populations.  

In undernourished populations, not only one but several micronutrients are 

lacking in diets, and as a result, there is high prevalence of simultaneous multiple 

micronutrient deficiencies. For instance, iron deficiency and anemia is estimated to 

afflict approximately 1.5 billion people worldwide (WHO, 1992) and usually coexists 

with other micronutrient deficiencies such as vitamin A and zinc (76). In African 

populations where the diets are mainly cereal based, zinc and iron deficiencies are 

likely to occur simultaneously (77, 78). Cereals have high levels of phytates, which 

decrease the bioavailability of iron and zinc, and diets that lack or have a small animal 

based component are usually low in these vital micronutrients (79). Concurrent iron 

and zinc deficiencies have deleterious effects on multiple health outcomes for example 

the immune system. Thus, of particular concern are the adverse health effects of toxins 

in individuals with simultaneous multiple micronutrient deficiencies. It is important to 

note that, food availability alone will not benefit many of those who are at nutritional 

risk, if there are no corresponding improvements in the nutritional quality and safety 

of food.  

 Therefore, it is important to assess potential health consequences of consuming 

foods in individuals of different nutritional statuses, in particular in individuals who 

are undernourished. This will enable the development of effective and efficient 

methods for assessing the nutritional value and safety of foods introduced in 

developing countries with significant proportions of undernourished populations. This 

will enhance the efficacy of efforts to increase food availability and its optimal 

utilization.  

  



 

20 
 

 7.2.2. Nutrient imbalances: bio-fortification and genetically modified foods with 

enhanced nutrient levels 

 The ability to change the overall nutrient profile of a plant product has the 

potential to improve the nutritional status of individuals. However, in addition to the 

intended nutrient changes, genetic modification could result in deleterious alterations 

in the nutrient profiles of the product and thus result in adverse health effects. It is not 

clear what the nutritional outcome will be, when a single nutrient is added in 

significant quantities when several nutrients are lacking in diets, for example, 

malabsorption of other essential nutrients. Iron supplements can interfere with the 

absorption of zinc and zinc in high doses, with absorption of iron or copper (80). 

Therefore, when enhancing the nutritional quality of crops, it is necessary to determine 

whether the enhancement will not result in nutrient imbalances.  

 

7.3.  Potential of DNA microarrays in food safety assessments  

DNA microarrays allow the quantitative simultaneous comparison of the 

expression of thousands of individual genes in different biological samples. This may 

facilitate screening, assessment and/or prediction of putative harmful interactions 

following exposure to mixtures of substances or whole foods. Changes in gene 

expression may provide more sensitive, immediate, and comprehensive markers of 

toxicity than conventional toxicological methods and endpoints (11). In addition, 

DNA microarray technology enables detailed analysis of mechanism of toxicity, 

without the need of a priori knowledge on the mode of action, while conventional 

toxicological methods such as histopathology, clinical chemistry and hematology are 

usually applied when a preconceived notion exists on the possible mode action of the 

compound. The value of DNA microarray technology lies in being able to provide 
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complimentary molecular insight when employed in addition to conventional 

toxicology tests for food safety as part of a more comprehensive battery of tests. 

 

7.3.1. Effects of whole foods (mixture) and food components: 

The classical toxicological approach involves the application of high doses of a 

single food component to predict effects of exposures to mixtures of compounds, 

which may not be relevant in real life situations. The genomics approach, has the 

potential to be used to determine the safety of food components in the context of the 

diet, at relevant doses of intake and as they occur in the body (81). Mechanisms of the 

combinatorial effects of the different food components can be studied and possibly 

predicted at the molecular level.  

 

7.3.2. Identification of (early and sensitive) toxicity biomarkers 

Subtle changes in gene expression are likely to precede the conventional 

symptoms of toxicity. Thus, identification of a signature gene expression pattern that 

changes in a characteristic and reproducible manner can facilitate the identification of 

toxicity biomarkers (82). A gene expression profile as a whole may be used as a 

biomarker, whereby the patterns of global changes in expression are compared under 

different conditions. For instance, gene expression profiles have been successfully 

applied to discriminate samples exposed to different classes of toxicants (83, 84). 

Identification of biomarkers can also lead further to the development of dedicated 

diagnostic arrays or reporter gene systems for safety assessments. However, it is 

important to note that in whole foods/mixtures, bioactive food components act 

simultaneously in constantly changing combinations resulting in different gene 

expression profiles, which may make the quest to find specific biomarkers a huge 

challenge. 
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7.3.3. Studying mechanisms of action 

Changes in gene expression play an important role in signal transduction, 

metabolic pathways and protective responses in cells. The mechanisms leading to 

overt symptoms of toxicity/effect are recognized through observations of changes in 

gene or protein expression. DNA microarray technology not only can help to discover 

novel biomarker genes but also can lead to the exploration of an unknown function of 

a food component. It can help to define the molecular mechanism(s) by which food 

components effect their modes of action. Many examples of the use of DNA 

microarrays for mechanistic toxicology have been described (for recent reviews see 

(85, 86))  

 

7.4. Limitations of DNA microarray studies 

Although the application of DNA microaaray technology is highly promising, 

there are issues that need to be resolved to facilitate the further development of this 

area. These include the standardization of experimental procedures and systemization 

of interpretation of results, among others. In addition, DNA microarrays look at just 

one level at which genes are regulated i.e. transcriptional regulation. Other critical 

mechanisms that include post-transcriptional effects (RNA stabilization), protein 

translation and post-translational modifications for example, phosphorylations are not 

analyzed for. These can be just as profound as mRNA transcription but are not 

examined by DNA microarrays (87, 88). There is a need to apply a systems biology 

approach by looking at interactions at the gene, protein and metabolome levels (89).  

The development of a risk profile or identification of early biomarkers of toxicity 

may be difficult. Clearly different time points, different doses and exposure duration 

and cell phenotype may give different gene expression profiles. However, selecting 

the optimal dose and time point at which initial primary responses to a food 
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component toxicity is induced is essential (88), (90). Insight into the relationship 

between genomics-based endpoints and known health endpoints is essential for 

accurate hazard characterization. Significant changes in gene expression cannot be 

concluded to represent adverse effects (or a small change to represent its absence) 

until results are placed in an appropriate biological context (90-92). Another challenge 

is determining whether changes in gene expression at low concentrations are 

predictive of a pathological outcome or are adaptive effects that are unrelated to the 

development of the pathologies. Further studies regarding correlations between the 

changes as indicated by microarray experiments and eventual adverse toxicological 

effects will provide important information on the establishment of threshold levels 

below which no adverse effects can be expected. Thus reducing uncertainties in 

current risk assessments related to high dose to more realistic low dose extrapolations. 

 

B. Objectives and outline of dissertation 

The toxicological effects of glycoalkaloids have been well described in humans; 

however, the molecular mechanisms underlying their toxicity are not fully understood. 

The dissertation�s specific objectives are two. First, to evaluate the usefulness of DNA 

microarrays (together with in vitro cultures) for screening for (differences in) potential 

toxicities of individual glycoalkaloids (α-chaconine and α-solanine) and of varying 

mixtures of the two glycoalkaloids that were tested and second, to gain insights into 

the molecular mechanism(s) of action of glycoalkaloids in the human intestinal 

epithelial Caco-2 cell line. 

Chapter 2 examines the effect of α-chaconine on gene expression and biological 

pathways in differentiated Caco-2 cells. This study was an initial step in determining 

the mechanism of action of glycoalkaloids on their main target of action, i.e. the small 

intestine.  
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Chapter 3 evaluates the utility of DNA microarrays to discriminate the severity of 

effect and potential toxicities of various levels of individual glycoalkaloids and 

various α-chaconine/α-solanine mixtures. In addition, we examine the transcriptional 

effects of the different glycoalkaloid treatments in Caco-2 cells.  

DNA microarrays serve as useful tools for hypothesis generation and 

determination of possible mechanisms of action, thus Chapter 4 investigates/elaborates 

further on the genomics-based hypothesis proposed in Chapter 2. The main objective 

was to determine via biochemical experiments whether the MAPK and PI3K/AKT 

signaling pathways are involved in the α-chaconine-induced transcription of 

cholesterol biosynthesis, as these pathways were found to be affected on basis of the 

gene expression profiles described in chapter 2. 

Chapter 5, comprises a summary of the results and a general discussion. 

 

C. Summary and Conclusions  

The utilization of transcriptomics technology has now become an impetus for 

promoting function and safety analyses of food. There is increasing research 

employing this technology to analyze the effects of food components; nutrient and 

non-nutrients at both the cellular and organism levels. Applying a holistic approach, in 

order to understand the interactions at the protein, gene and metabolome levels is 

essential so as to obtain understanding of the mechanism(s) of action.  

Overall, this dissertation research was designed to enhance understanding of the 

utility of employing DNA microarray technology in food safety assessments. Studies 

have shown that microarrays can discriminate different classes of toxicants, and in 

contrast we have sought to elucidate whether they could be used to discriminate 

similar classes of toxicants. This is particularly relevant, especially in assessing safety 

or equivalence of foods with subtle changes in levels or ratios of similar 
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toxicants/nutrients, for example, genetically modified foods. In this study we focused 

on non-nutrients, glycoalkaloids present in potatoes, whose underlying mechanisms of 

action are poorly understood. We anticipated that by employing DNA microarrays, we 

would be able to unravel some of the mechanisms of action. 
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Abstract 

Glycoalkaloids are naturally occurring toxins in potatoes, which at high levels 

may induce toxic effects in humans, mainly on the gastrointestinal tract by cell 

membrane disruption. In order to better understand the molecular mechanisms 

underlying glycoalkaloid toxicity, we examined the effects of α-chaconine on gene 

expression in the Caco-2 intestinal epithelial cell line using DNA microarrays. Caco-2 

cells were exposed for 6 hours to 10µM α-chaconine in three independent experiments 

(randomized block design). The most prominent finding from our gene expression and 

pathway analyses was the upregulation of expression of several genes involved in 

cholesterol biosynthesis. This to some extent is in line with the literature-described 

mechanism of cell membrane disruption by glycoalkaloids. In addition, various 

growth factor signaling pathways were found to be significantly upregulated. This 

study is useful in understanding the mechanism(s) of α-chaconine toxicity, which may 

be extended to other potato glycoalkaloids more generally. 

 

 

Keywords: α-chaconine; cell membrane disruption; cholesterol biosynthesis; DNA 
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1. Introduction  

Potatoes (Solanum tuberosum L.) contain naturally occurring toxins, α-chaconine 

and α-solanine, which account for 95% of the total glycoalkaloids (1). These 

glycoalkaloids are thought to be partly responsible for the natural defense against 

diseases and predation that affect these crops. At high levels these glycoalkaloids may 

have toxic effects on human health. α-Chaconine and α-solanine are present in 

potatoes at varying concentrations and in certain ratios they act synergistically 

resulting in increased toxicity at lower concentrations compared to the individual 

glycoalkaloids (2, 3).  

Glycoalkaloid toxicity symptoms at lower concentrations are mainly 

gastrointestinal and include vomiting, diarrhea and abdominal pain (4). Experimental 

cell culture and animal studies have shown that glycoalkaloids may affect intestinal 

permeability adversely (1). At higher concentrations humans experience severe 

symptoms such as fever, rapid pulse, low blood pressure, rapid respiration and 

neurological disorders (5). These toxicities are an outcome of the glycoalkaloids� 

anticholinesterase effects on the central nervous system and disruption of cell 

membranes. α-Chaconine and α-solanine inhibit the enzyme acetylcholinesterase, 

which is responsible for the hydrolysis of the neurotransmitter acetylcholine, a key 

process in regulating nerve impulse conduction across cholinergic synapses (6).  

Toxicities at levels found in some potato varieties observed in other species 

include craniofacial malformations in hamsters (7) and multi-organ malformations in 

frog embryos (2, 8). α-Chaconine has been shown to induce hepatotoxicity in mice (9) 

and to increase hepatic ornithine decarboxylase activity in rats (10). 

Studies have shown that α-chaconine and α-solanine cause membrane disruption 

in lipid vesicles, membranes of erythrocytes, and various human and mouse cell lines 

(3, 11-13). Destabilizing complexes formed between the lipophilic moiety of 
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glycoalkaloids and membrane bound cholesterol result in membrane disruption (11, 

12, 14). This action likely accounts for damage to cells lining the gastrointestinal tract 

and other tissues or organs in which these compounds are transported following 

absorption.  

Despite these and other well documented observations, the molecular mechanisms 

underlying the effect of glycoalkaloids remain unclear. Transcriptomics and other 

�omics� technologies are used increasingly in mechanistic toxicological studies. DNA 

microarrays are transcriptomics tools that offer the opportunity to monitor changes in 

expression of many genes simultaneously upon exposure of cells to toxic compounds. 

In particular, when used in concert with established investigative techniques as part of 

a holistic approach to toxicology, the use of microarrays may contribute significantly 

to a better understanding of mechanisms of action and the identification of early and 

sensitive biomarkers of toxicity (15). 

 The main objective of this study was to gain insights of the molecular 

mechanisms that underlie α-chaconine action. This may result in the identification of 

sensitive and early biomarkers of α-chaconine toxicity. For that purpose we examined 

the effect of α-chaconine on gene expression of the human colon carcinoma cell line 

Caco-2 using DNA microarrays. The Caco-2 cell line was chosen as it is used widely 

as an in vitro model system for the intestinal epithelium, which is one of the first 

targets of glycoalkaloid toxicity. Although the focus of this work was on α-chaconine 

toxicity, the outcome of this study may be extended to the mechanism of toxicity of 

glycoalkaloids more generally.  
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2. Methods and Materials 

2.1. Cell culturing 

Human intestinal epithelial Caco-2 cells (ATCC, Manassas, VA) were grown 

routinely in 75-cm2 culture flasks at 37°C in air with 5% CO2 and 100% relative 

humidity in Dulbecco�s modified Eagle�s medium (DMEM; BioWhittaker, Verviers, 

Belguim) supplemented with NaHCO3 (3.7 g/l, Sigma), non-essential amino acids (1x 

NEAA; ICN, Zoetermeer, The Netherlands), fetal calf serum (FCS; 10% v/v; 

Invitrogen, Breda, The Netherlands), penicillin (5,000 U, Sigma), and streptomycin (5 

mg/l, Sigma).  

 

2.2. Biochemicals 

α-Chaconine was obtained from Sigma-Aldrich (St Louis, MO, USA). A stock 

solution of α-chaconine was prepared in dimethyl formamide (DMF) (Merck, 

Germany). The stock solution was diluted with DMEM to the final desired 

concentrations immediately before use. In every experiment, cells in the control group 

were treated with an equivalent concentration of DMF (0.005%).  

 

2.3. Lactate dehydrogenase assay 

To assess the cytotoxic properties of α-chaconine, a lactate dehydrogenase (LDH) 

assay was performed. This assay detects the leakage of LDH from impaired cell 

membranes, which can be used as a measure of cytotoxcity. Caco-2 cells were seeded 

in 24 well plates (Costar) and grown for 19 days allowing the cells to differentiate. 

Subsequently, the differentiated cells were exposed for either 6 or 24 hours to 5, 10, 15 

and 20µM α-chaconine (n=4). LDH activity was determined using a CytoTox 96 

nonradioactive cytotoxicity assay kit (Promega, Benelux b.v., The Netherlands) in 

accordance with manufacturer instructions. 
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2.4. Experimental design of the gene expression profiling studies 

Caco-2 cells were seeded at a density of 40 000 per cm2 in 6 well polyester 

transwell plates (Costar; 0.4 µm pore size, inserts of 24 mm diameter). These were 

allowed to differentiate by growing the cells for 19 days. Upon differentiation, three 

types of experiments were performed in which the medium of the upper compartment 

was replaced with either DMEM containing 0.005% DMF (control exposure) or α-

chaconine and the medium of lower compartment was replaced by DMEM only. First, 

time series experiments were carried out in which differentiated Caco-2 cells (passage 

37) were exposed to 10µM α-chaconine (n=4) for either 2, 4, 6 or 24 hours. In a 

second experiment, the concentration-response relationship was studied by exposing 

the differentiated Caco-2 cells (passage 44) to 5, 10 and 20µM α-chaconine for 6 hours 

(n=4). Finally, a randomized block design experiment was performed whereby 

differentiated Caco-2 cells were grown and exposed to 10µM of α-chaconine for 6 

hours (n=4) in three independent experiments (passage numbers 44, 38, 40 

respectively). After exposure, medium was removed and both compartments were 

washed twice with ice-cold phosphate buffered saline. Subsequently, cells in the upper 

compartment were resuspended in 1ml TriZol (Invitrogen, Breda, The Netherlands) 

and stored at -80◦C until RNA extraction.  

 

2.5. Microarray hybridizations  

Total RNA from Caco-2 cell lines was isolated using TriZol reagent according to 

the manufacturer�s directions. RNA clean-up was performed using the RNeasy mini 

kit (Qiagen, Westburg bv, Leusden, The Netherlands). RNA integrity and purity were 

verified by gel electrophoresis and UV spectrometry. RNA concentrations were 

determined by measuring absorbance at 260 and 280nm and purity was estimated by 

260/280 nm absorbance ratio. Although each of the exposures were performed in 
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quadruplicate (n=4), it was decided to pool the four RNAs for hybridization, since 

pilot microarray experiments with the four individual RNAs within one exposure 

resulted in a high level of reproducibility (results not shown).  

Prior to hybridization to 22K 60-mer oligonucleotide Agilent Human 1A Oligo 

microarrays V2 (Agilent Technologies, Palo Alto, CA, USA), RNA was amplified 

using the Agilent low RNA input fluorescent amplification kit protocol (fluorescent 

cRNA synthesis procedure). 1µg of each of the linearly amplified cRNA preparations 

(control and α-chaconine treated cells) was labeled by incorporation of Cy5-CTP 

(PerkinElmer/NEN Life Sciences, Boston, MA, USA). RNAs from control exposures 

also were used as reference cRNA probes (1µg) and labeled with fluorescent Cy3 dye 

(Perkin-Elmer/NEN). Each Cy5-labeled experimental cRNA probe was combined 

with the Cy3-labeled reference probe and hybridized on the 22K microarray following 

the Agilent 60-mer oligo microarray processing protocol. The microarrays were 

hybridized for 17 hours at 60ûC in Agilent microarray hybridization chambers 

(G2534A). Upon hybridization, the microarrays were washed and dried at room 

temperature following Agilent�s instructions. 

Arrays were scanned using a Scanner Array Express HT microarray scanner 

(PerkinElmer Life Sciences, Boston, MA, USA). The fluorescent readings from the 

scanner were converted to quantitative files using Array Vision Software (Imaging 

Research, Ontario, Canada). Quality check of the arrays was done using macros in 

Microsoft Excel 2000 (Microsoft Corporation, USA) and software package 

LimmaGUI in R version 2.3.1 (http://bioinf.wehi.edu.au/limmaGUI/index.html). 

Single spots or areas on the array with obvious blemishes were flagged. The non-

flagged fluorescence signals quantified using Array Vision software were exported to 

GeneMaths XT software (Applied Maths, St Martens-Latem, Belgium) for further 
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analyses. Array elements for which the fluorescent intensity in each channel was less 

than 1.5 times the background were excluded from subsequent analyses. 

 

2.6. Data Analysis 

As a first step in the microarray data analyses, data were log transformed and 

normalized as described by Pellis (16). In short, first, the Cy5 values were corrected 

using values of the Cy3-labeled internal standard to correct for possible differences in 

hybridization conditions between slides. Subsequently, the median of the adjusted Cy5 

signals was used to correct for possible differences between experiments with respect 

to the efficiency of probe labeling and amount of probe labeled.  

 

2.7. Statistical Analysis  

Differentially expressed genes were identified by using both an unpaired student�s 

t-test with p-value < 0 .01 and a fold change criterion of >1.5. For the time series and 

concentration effect experiments, only fold change criteria >1.5 were used since RNA 

was pooled for each treatment group in those experiments. 

Principal Component Analysis (PCA) and clustering analyses were performed 

using GeneMaths XT software. Pearson correlation and Unweighted Pair Group 

Method with Arithmetic Means were used to determine the clustering of experimental 

groups.  

An online software suite MetaCore� Version 3.2.1 (GeneGo Inc., St. Joseph, MI, 

USA) was used to identify statistically significant pathways responding to α-chaconine 

treatment in the Caco-2 cell lines. For this purpose, only the data of genes found to be 

significantly differentially expressed (p < 0.01 and fold change > 1.5) were imported 

into the MetaCore program. For the time series and concentration response 

experiments only genes with a fold change of > 1.5 (either up or down) were imported 
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into the MetaCore program. MetaCore analyses result in lists of maps ranked 

according to the most significantly affected map (lowest p-values). The p-values are 

calculated by the program as a hypergeometric distribution whereby the p-value 

represents the probability of particular mapping arising by chance, given the numbers 

of genes in the set of all genes on maps/networks/processes, genes on a particular 

map/network/process and genes in the experiment (17).  

 

3. Results 

 3.1. LDH leakage from the cell 

First, in view of the presumed disruptive effects of glycoalkloids on the cell 

membrane and to define appropriate concentrations of α-chaconine for gene 

expression profiling studies, membrane integrity was evaluated by measuring leakage 

of the cytosolic enzyme lactate dehydrogenase (LDH) from the cells into the medium. 

Exposure of differentiated Caco-2 cells to increasing concentrations of α-chaconine 

for 6 or 24 hours resulted in concentration-dependent LDH leakage at both time points 

(Figure 2-1).  

At both 6 and 24 hours of exposure, 20µM α-chaconine resulted in LDH leakage 

of more than 20%, which is frequently used as a lower level of cytotoxicity. 

Furthermore, microscopic examination of the monolayer revealed that irrespective of 

exposure time, some cells were detached from the well surfaces and appeared dead at 

20µM α-chaconine only (results not shown). Thus, these results suggest that α-

chaconine is cytotoxic at 20µM but not at the lower concentrations.  
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Figure 2-1. Concentration dependency of α-chaconine induced LDH leakage from 

differentiated Caco-2 cells. Each point represents the average of 4 replicates with a 

standard deviation of less than 5%. 

3.2. Gene expression studies: time series and concentration response  

In order to determine the optimal exposure time for further gene expression 

studies, differentiated Caco-2 cells were exposed for 2, 4, 6, and 24 hours to 10µM α-

chaconine. In the LDH assay experiment this was the lowest concentration at which 

the membrane disruptive effect of α-chaconine was observed both after 6 and 24 hours 

exposure. Upon hybridization of the RNAs to 22K human oligomicroarrays, the 

number of differentially expressed genes was determined. Data analyses revealed that 

the number of genes differentially expressed (fold change > 1.5) after 6 hours of 

exposure (1597 genes) was approximately twice the number obtained after 2 hours 

(857), 4 hours (815) and 24 hours (855) of exposure.  

Subsequently, to analyze the effect of increasing concentrations of α-chaconine on 

gene expression, differentiated Caco-2 cells were exposed for 6 hours to 5, 10 and 
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20µM α-chaconine. The hybridization data were subjected to univariate analysis, PCA, 

hierarchical clustering and pathway analysis.  

Univariate analysis of the data showed that the number of genes differentially 

expressed (fold change > 1.5) at 5, 10 and 20µM α-chaconine were 748, 1062 and 

1117 respectively. The Venn diagram below illustrates the overlap of differentially 

expressed genes among the treatments (Figure 2-2C).  

In general, PCA and hierarchical clustering analyses revealed that the gene 

expression profiles of Caco-2 cells exposed to 5 and 10µM α-chaconine were very 

similar (Figure 2-2A and B). There is distinctive separation of control cells from 

treated cells. The PCA results indicate that 92.6% of the variation in the data was 

explained by the first two components(X: 73.1%; Y: 19.5%). Closer analysis of the 

components revealed that the gene expression profiles of 10 and 20µM α-chaconine 

are similar in the X component (component explaining most of the variation in the 

gene expression data). From the Venn diagram (Figure 2-2C), it is evident that there is 

a lot of overlap between genes differentially expressed at 10µM α-chaconine and at 5 

or 20µM α-chaconine. Thus to some extent cells exposed to 10µM α-chaconine exhibit 

a similar gene expression profile to cells exposed to either 5 or 20µM. 

All genes differentially regulated 1.5-fold or more by either of the α-chaconine 

concentrations were analyzed using MetaCore. At 5 and 10µM, the most significantly 

differentially regulated pathways were cholesterol biosynthesis followed by 

transcription regulation of amino acid metabolism, GTPase-mediated cell signaling 

and cell adhesion. The most significantly affected pathways at 20µM α-chaconine 

were mainly pathways involving apoptosis regulation and mitogen-activated protein 

kinase (MAPK) cascades (Table 2-1). The cholesterol biosynthesis pathway also was 

regulated significantly at 20µM but not to the same extent as at 5 and 10µM α-

chaconine.  
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Figure 2-2. (A) PCA mapping and (B) hierarchical clustering of the three different 

concentrations. a, control cells; b, cells exposed to 5µM; c, cells exposed to 10µM and 

e, cells exposed to 20µM α-chaconine. (C) Venn diagram showing overlap of 

differentially regulated genes (fold change > 1.5) across the treatments. 

 

3.3. Reproducibility study with 10µM α-chaconine (3 independent experiments) 

To examine the reproducibility of the results, three independent experiments were 

performed in which different batches of Caco-2 cells were grown and exposed to 

10µM α-chaconine for 6 hours. These experimental conditions were chosen based on 

the outcome of the time series and concentration effect experiments. 
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# Map name p-value Expressed All 

1. Cholesterol biosynthesis 8.439e-10 9 21 

2. Transcription regulation of amino acid metabolism 8.509e-06 8 42 

3. EGF signaling pathway 3.045e-05 9 64 

4. EGFR signaling via small GTPases 4.737e-05 7 39 

5. VEGF signaling via VEGFR2-generic cascades 9.102e-05 7 43 

6. IGF-RI signaling 4.478e-04 8 72 

7. MIF in innate immunity 5.522e-04 7 57 

8. AKT signaling 5.522e-04 7 57 

9. Erk Interactions: Activation and selected Erk targets 5.522e-04 7 57 

10. HGF signaling pathway 6.906e-04 6 43 

Using a fold change criterion of > 1.5 and a p-value < 0.01, 446 genes were found 

to be significantly differentially expressed. Of these 446 differentially expressed 

genes, 363 genes were upregulated and 83 genes were downregulated. MetaCore 

analysis of these differentially expressed genes revealed that the pathway affected 

most significantly by 10µM α-chaconine was cholesterol biosynthesis (Table 2-2), 

with 9 out of the 21 genes in this pathway being differentially expressed (i.e. 

upregulated).  

 
Table 2-2. Top 10 pathways differentially regulated by α-chaconine 10µM after 6 

hours 

Upregulation of the cholesterol biosynthesis pathway by 10µM α-chaconine in 

Caco-2 cells is consistent with the results obtained in our concentration response pilot 

study. Most of the genes in this pathway (12 out of 21) responded to α-chaconine 

treatment when the selection criteria were set at p<0.05 and fold change > 1.5 (Figure 

2-3). Among the genes differentially expressed is 3-hydroxy-3-methylglutaryl-

Coenzyme A reductase (HMGCR) a known rate limiting enzyme in cholesterol 
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biosynthesis. Also significantly upregulated is the low density lipoprotein receptor 

(LDLR) gene (p-value 0.00046, fold change 3.66), which together with HMGCR, play 

a central role in maintaining cholesterol homeostasis in the cell. A cholesterol 

biosynthesis pathway map indicating the genes differentially expressed in the α-

chaconine exposed Caco-2 cells is shown in Figure 2-3A. Figure 2-3B shows the 

corresponding p-values and fold changes of all genes involved in this pathway.  

Other pathways responding to α-chaconine treatment, mainly by upregulation of 

gene expression, were related to the transcription regulation of amino acid 

metabolism, epidermal growth factor (EGF), hepatocyte growth factor (HGF), 

vascular endothelial growth factor (VEGF), epidermal growth factor receptor (EGFR), 

insulin like growth factor receptor I (IGF-RI), and AKT signaling pathways, Erk 

(extracellular signal related protein kinase) activation, and macrophage migration 

inhibitor factor (MIF) in innate immunity (Table 2-2). Table 2-3 lists all the significant 

genes in these pathways (excluding those involved in cholesterol biosynthesis). These 

pathways induce similar signal transduction cascades hence there is overlap of the 

genes involved in these pathways (Table 2-3).  
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Figure 2-3. Induction of cholesterol biosynthesis by α-chaconine 10µM in Caco-2 

cells. (A) Cholesterol biosynthesis pathway map modified from GenMAPP (http: 

//www.genmapp.org). Genes with cut off fold change > 1.5 and p<0.05 are indicated. 

Note dashed box indicates presence of more than one transcript of a particular gene on 

the microarray. (B) Corresponding p-values and fold changes of all the cholesterol 

biosynthesis genes. 
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4. Discussion and conclusion  

The effects of α-chaconine on the transcriptome of the human intestinal epithelial 

cell line Caco-2 were determined in a sequentially performed set of experiments. LDH 

leakage experiments and initial microarray experiments indicated that 20µM, and not 

10µM α-chaconine was cytotoxic to the cells. The outcome of these initial experiments 

directed the design of a final study in which differentiated Caco-2 cells were exposed 

for 6 hours to 10µM α-chaconine in three independent experiments. Gene expression 

profiling showed that treatment of the cells with this putative non-cytotoxic 

concentration, α-chaconine significantly affected several metabolic and signal 

transduction pathways. Among these pathways, those involving growth factor receptor 

signaling, MIF, transcription regulation of amino acid metabolism and cholesterol 

biosynthesis were affected.  

The most prominent finding from our microarray studies was the upregulation of 

several genes involved in cholesterol biosynthesis following exposure of the Caco-2 

cells to α-chaconine. Cholesterol is an abundant component of the plasma in 

eukaryotic cells and plays an important role in maintaining membrane integrity and 

fluidity. The cholesterol level of cell membranes is known to be tightly regulated and 

changes in this level have major effects, both direct and indirect, on a wide array of 

biological functions (18, 19). 

The most well-documented mechanism of glycoalkaloid toxicity is the disruption 

of membrane integrity as a result of the formation of destabilizing complexes between 

the lipophilic moiety of glycoalkaloids and cholesterol present in the membranes (11, 

12, 14). The leakage of LDH from the cells as observed in our study may be a 

reflection of this loss of membrane barrier integrity.  

Based upon the known membrane-disruptive properties of α-chaconine and results 

from the present study, the cholesterol biosynthesis pathway may be induced through 
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feedback regulation due to depletion of cellular cholesterol by α-chaconine. Cellular 

cholesterol homeostasis is maintained by endogenous cholesterol synthesis via 

transcriptional regulation of genes that govern the synthesis of cholesterol or by uptake 

of exogenous lipoproteins via receptors such as the LDL receptor (19). According to 

this mechanism, depletion of cholesterol in the membrane is sensed by sterol 

regulatory element binding transcription factor cleavage-activating protein (SCAP), 

which forms a complex with sterol regulatory element binding transcription factors 

(SREBPs) and escorts them from the endoplasmic reticulum to the Golgi complex. 

SCAP facilitates proteolytic cleavage of SREBPs into transcriptionally active 

segments, which enter the nucleus to activate expression of cholesterol and fatty acid 

biosynthesis genes (20). SREBPs bind to sterol-regulatory elements (SREs) found in 

the promoter regions of these genes (21). In our study, we found several cholesterol 

biosynthesis genes including the cholesterol biosynthesis rate limiting gene HMGCR 

to be differentially expressed upon exposure of Caco-2 cells to α-chaconine. 

Interestingly, the gene encoding the LDL receptor, which maintains both plasma and 

cellular cholesterol balance by mediating the catabolism of low density lipoprotein 

(LDL), was also found to be upregulated. The expression of the LDL receptor gene 

and HMGCR are known to be regulated in a coordinated manner by SREBPs (19, 21). 

Therefore, it may be hypothesized that the sequestering of membrane bound 

cholesterol by α-chaconine results in disturbance of cholesterol balance. Cells may 

attempt to counteract this insult by a SREBP-mediated increase of expression of 

cholesterol biosynthesis and LDLR genes in order to maintain cholesterol 

homeostasis.  

Growth factor signaling pathways mediated by EGF, HGF, VEGF, EGFR and 

IGF-RI were also found to be differentially regulated by 10µM α-chaconine. These 

pathways are correlated with a variety of processes and functions, such as cell 
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survival, proliferation, and differentiation (22). Alteration of growth factor mediated 

signaling results in the induction of either the PI3K-Akt signaling pathway (23) or 

Erk/MAPK pathway (24). Studies have shown that activation of the PI3K/Akt 

pathway induces ER-to-Golgi transport of SREBP and SCAP, which results in the 

activation of SREBP (25, 26). The Erk/MAPK pathway also has been shown to 

regulate the transcriptional activity of SREBPs (27, 28). It is not clear from our present 

data by which mechanism the growth signaling pathways are being induced and 

whether induction of these pathways (via PI3K-Akt or Erk/MAPK) resulted in the 

upregulation of cholesterol biosynthesis genes. 

 It is interesting to note that these growth signaling pathways have transmembrane 

receptors associated with lipid raft domains/caveolae (29-35). Lipid rafts /caveolae are 

membrane platforms for signaling molecules (36) and it has been observed that 

alterations in cellular cholesterol levels can result in their disruption (37, 38). This can 

lead to dysregulation of intracellular signaling pathways and cross-talk between 

different receptor systems (18). Thus, a hypothetical mechanism of the effect of α-

chaconine on growth signaling pathways could be the formation of 

glycoalkaloid/sterol complexes in the cell membrane and subsequent lipid raft 

disruption. Current work is being focused on biochemical (lipid rafts) and functional 

genomics, i.e. RNA interference, experiments, in order to determine the precise 

mechanism by which growth signaling pathways are being induced and whether 

modulation of these growth signaling pathways (via PI3K-Akt or Erk/MAPK) by α-

chaconine results in induction of cholesterol biosynthesis genes. 

Besides cholesterol biosynthesis and growth factor signaling pathways, also the 

MIF pathway and regulation of amino acid metabolism were found to be significantly 

affected by α-chaconine (Table 2-2). Among the differentially expressed genes, which 

these latter pathways have in common are those encoding the Jun and Fos 
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transcription factors (Table 2-3). MIF is a pleiotropic cytokine whose functions 

include mediating inflammation, immune responses, cell proliferation and 

differentiation (39). MIF and growth factor signaling pathways are known to use a 

common set of signal transduction cascades involving the Erk, MAPK, PI3K, and Akt 

protein kinases as well as Jun and Fos (32, 34, 40-42). With respect to the 

transcription regulation of amino acid metabolism not only Jun and Fos genes but also 

the Maf gene was found to be differentially expressed in our α-chaconine exposure 

experiment (Table 2-3). Fos and Jun proteins are known to accumulate in tissues in 

response to growth-stimulatory signals and there is evidence that Maf proteins form 

heterodimers with Fos and Jun which may enable them to exert transcriptional control 

over expression of various genes including growth-regulatory genes (43, 44). 

Upregulation of cholesterol biosynthesis genes in Caco-2 cells was observed at 

the lowest concentration α-chaconine (5µM) and the shortest exposure time (2 hours; 

results not shown), implying that this pathway is relatively sensitive to α-chaconine 

treatment and is induced rapidly. Thus, the cholesterol biosynthesis genes found to be 

differentially expressed in the Caco-2 cells following exposure to 10µM α-chaconine, 

a concentration at which initial LDH leakage is observed, may serve as possible early 

and sensitive biomarkers of glycoalkaloid toxicity on cell membranes. 

It is important to note that cholesterol biosynthesis and growth factor signaling 

pathways were induced less significantly in cells exposed to 20µM α-chaconine as 

compared to 10µM α-chaconine. The most significantly affected pathways at 20µM α-

chaconine were those involved in apoptosis regulation. It has been reported that 

prolonged exposure of the human colon carcinoma HT-29 cell line to α-chaconine 

induced apoptotic death (45). Our LDH leakage experiments showed an increase in 

LDH release at 20µM α-chaconine, which may indicate that at least some of the cells 

at this concentration have progressed into a post-apoptotic necrotic phase. These 



 

 58

results together with gene expression data suggest that at low α-chaconine 

concentrations cells induce rescue mechanisms to counteract the cell membrane 

damaging effects but that at higher concentrations induce apoptotic processes that 

eventually lead to necrosis.  

In conclusion, the present work is an example of the application of microarray 

technology and in vitro cell culture to get a better insight in the mechanism of action 

of food toxins and the identification of candidate biomarkers of toxicity. The most 

prominent finding from our study was the upregulation of cholesterol biosynthesis 

genes in Caco-2 cells following exposure to α-chaconine, which to some extent is in 

line with the literature-described mechanism of cell membrane disruption by 

glycoalkaloids. Cholesterol biosynthesis genes found to be differentially expressed 

may serve as potential early and sensitive biomarkers of α-chaconine toxicity, which 

may extend to potato glycoalkaloids in general. Further work is being conducted to 

determine the mechanism(s) by which α-chaconine induces cholesterol biosynthesis 

genes and modulates growth factor signaling pathways.  
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Abstract 

α-Chaconine and α-solanine are naturally occurring toxins. They account for 95% of 

the total glycoalkaloids in potatoes (Solanum tuberosum L.). At high levels, these 

glycoalkaloids may be toxic to humans, mainly by disrupting cell membranes of the 

gastrointestinal tract. Gene-profiling experiments were performed, whereby Caco-2 

cells were exposed to equivalent concentrations (10 µM) of pure α-chaconine or α-

solanine or glycoalkaloid mixtures of varying α-chaconine/α-solanine ratios for 6 h. In 

addition, lactate dehydrogenase, cell cycle, and apoptosis analyses experiments were 

also conducted to further elucidate the effects of glycoalkaloids. The main aims of the 

study were to determine the transcriptional effects of these glycoalkaloid treatments on 

Caco-2 cells and to investigate DNA microarray utility in conjunction with 

conventional toxicology in screening for potential toxicities and their severity. Gene 

expression and pathway analyses identified changes related to cholesterol 

biosynthesis, growth signaling, lipid and amino acid metabolism, mitogen-activated 

protein kinase (MAPK) and NF-κB cascades, cell cycle, and cell death/apoptosis. To 

varying extents, DNA microarrays discriminated the severity of the effect among the 

different glycoalkaloid treatments. 

 

Keywords: α-chaconine; α-solanine; cell membrane disruption; DNA microarrays; 

glycoalkaloids; potatoes 
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Introduction 

α-Chaconine and α-solanine account for 95% of the total glycoalkaloids 

present in potatoes (Solanum tuberosum L.) (1). These are naturally occurring toxins, 

which at high levels (3�6 mg/kg body weight) may have toxic effects on human health 

(2). Both consist of the aglycone solanidine but differ in the carbohydrate side chain 

attached to the aglycone moiety (Figure 3-1). The branched trisaccharides solatriose 

(α-L-rhamnopyranosyl-β-D-glucopyranosyl-β-D-galactopyranose) and chacotriose 

(bis-α-L-rhamnopyranosyl-β-D-glucopyranose) are the carbohydrate side chains of α-

solanine and α-chaconine, respectively (Figure 3-1) (3-5). α-Chaconine is 

toxicologically more potent and is usually present at slightly higher concentrations in 

potatoes than α-solanine. Toxicological differences are attributed to the disparate 

carbohydrate side chains (6, 7). 

 

 

 

 

 

 

 

 
Figure 3-1. Chemical structures of α-chaconine and α-solanine 

Toxicological effects of individual glycoalkaloids have been described well in 

humans. These include gastrointestinal disturbances, increased heart beat, hemolysis, 

and neurotoxic effects (8). Reported toxicities are mainly due to acetylcholinesterase 

inhibition and cell-membrane disruptive activities that affect digestive and other 

organs (9). Toxicities induced in other species include hepatoxicity in mice (10), 
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increased hepatic ornithine decarboxylase activity in rats (11), craniofacial 

malformations in hamsters (12), and developmental toxicity in frog embryos (6, 13). 

Total glycoalkaloid concentrations of most commercial potatoes are usually below 

200 mg/kg of fresh potatoes (14) but can increase following light exposure or 

mechanical injury, for example, from peeling and slicing (15). α-Chaconine and α-

solanine are present in potatoes at varying concentrations and ratios. In combination, 

they may interact synergistically, resulting in a level of toxicity that is more severe 

than is observed when either glycoalkaloid is administered alone (5, 13, 16-18). 

Human consumption of potatoes results in the ingestion of α-chaconine and α-solanine 

in varying ratios, usually ranging from ~1.2:1 to ~2.4:1 (α-chaconine/α-solanine), 

depending upon the specific variety of potato (16). Studies have shown that 

incorporation of an anti-sense transgene encoding either the enzyme solanidine UDP-

galactose galactosyltransferase (SGT1) or solanidine UDP-glucose glucosyltransferase 

(SGT2) in potatoes can result in the downregulation of glycoalkaloid biosynthesis, by 

reducing the levels of either α-solanine or α-chaconine, respectively (19, 20). 

Alteration of glycoalkaloid ratios/levels in potatoes may have potentially 

nutritional/health benefits to consumers. Therefore, from a food safety perspective, 

assessment of the toxic effects of glycoalkaloid mixtures at varying α-chaconine/α-

solanine ratios found in common and possibly transgenic potato varieties would be 

informative. 

Predictions of adverse health effects induced by glycoalkaloid and other toxin 

mixtures are usually based on data obtained from single compound exposures. 

Unfortunately, observed toxicities commonly deviate from such predictions. 

Prediction of adverse effects of whole foods is especially difficult because of the many 

interactions that may occur among the high number of nutrients and other food 
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substances commonly found in whole foods. Such interactions may alter the degree 

and possibly the nature of predicted toxic effects of individual food constituents (21). 

DNA microarrays permit the quantitative simultaneous comparison of the 

expression of thousands of individual genes in different biological samples. This may 

facilitate screening, assessment, and/or prediction of putative harmful interactions 

following exposure to mixtures of substances or whole foods. Thus, changes in gene 

expression may provide more sensitive, immediate, and comprehensive markers of 

toxicity than conventional toxicological methods and endpoints (22). 

The present study focused on the detection and possible significance of multiple 

gene responses induced by equivalent concentrations of pure α-chaconine or α-

solanine or glycoalkaloid mixtures of varying α-chaconine/α-solanine ratios in human 

intestinal epithelial Caco-2 cells. Two α-chaconine/α-solanine ratios were chosen, 

1.7:1, a ratio found in some wild-type potato varieties, and 28.8:1, a ratio that can be 

achieved by genetic modification using a SGT1 anti-sense construct (20). The diverse 

glycoalkaloid treatments resulted in membrane disruptive activities of varying severity 

as determined by the cellular leakage of lactate dehydrogenase. This outcome was 

used as an anchor to assess the usefulness of DNA microarrays in screening for 

potential toxicities and the severity of these compounds alone and as mixtures. 

 

2. Methods and Materials 

2.1. Biochemicals 

α-Chaconine, α-solanine, and propidium iodide were obtained from Sigma 

Aldrich (St Louis, MO). Stock solutions of the glycoalkaloids and glycoalkaloid 

mixtures were prepared in dimethyl formamide (DMF) (Merck, Germany). The stock 

solutions were diluted with Dulbecco's modified Eagle's medium (DMEM) to the final 

desired concentrations immediately before use. In every experiment, cells in the 
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control group were treated with an equivalent concentration of the solvent DMF 

(0.0005%, v/v). 

 

2.2. Caco-2 Cell Culture 

 The human intestinal epithelial cell line Caco-2 (ATCC, Manassas, VA) was 

grown routinely in 75 cm2 culture flasks at 37 °C in air with 5% CO2 and 100% 

relative humidity in DMEM (BioWhittaker, Verviers, Belgium) supplemented with 

NaHCO3 (3.7 g/L, Sigma), non-essential amino acids (1× NEAA; ICN, Zoetermeer, 

The Netherlands), fetal calf serum (FCS; 10%, v/v; Invitrogen, Breda, The 

Netherlands), penicillin (5000 units, Sigma), and streptomycin (5 mg/L, Sigma). 

 

2.3. Lactate Dehydrogenase (LDH) Assay 

 A LDH assay was performed to assess the cytotoxic properties of α-chaconine, 

α-solanine, and two different glycoalkaloid mixtures. This assay detects the leakage of 

LDH from impaired cell membranes, which can be used as a measure of cytotoxcity. 

Caco-2 cells were seeded in 24-well plates (Costar) and grown for 19 days, allowing 

the cells to differentiate. Subsequently, the differentiated cells were exposed in 

quadruple for either 6 or 24 h to 5, 10, 15, and 20 µM α-chaconine (n = 4), α-solanine 

(n = 4), α-chaconine/α-solanine (1.7:1) (n = 4), and α-chaconine/α-solanine (28.8:1) (n 

= 4). LDH activity was determined using a CytoTox 96 nonradioactive cytotoxicity 

assay kit (Promega, Benelux bv, The Netherlands) in accordance with the instructions 

of the manufacturer. 

 

2.4. Gene Expression Experiments 

 In three independent experiments, Caco-2 cells were seeded at a density of 40 

000 per cm2 in 6-well polyester Transwell plates (Costar; 0.4 µm pore size, inserts of 
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24 mm in diameter). The cells were allowed to differentiate by growing them for 19 

days. Following differentiation, cells were exposed for 6 h to 10 µM of the following 

glycoalkaloid preparations: α-chaconine, α-solanine, α-chaconine/α-solanine (1.7:1), 

and α-chaconine/α-solanine (28.8:1). The exposure time and concentration were based 

on results from a previous study, in which optimal conditions for studying the effect of 

α-chaconine on gene expression were determined systematically (23). The media in 

the upper compartments of the transwells were replaced with DMEM containing 

0.01% DMF (control exposure) or one of the glycoalkaloid-containing solutions 

described above. The media in the lower compartments were replaced with DMEM 

only, to mimic conditions in the body. 

After exposure, media were removed and both compartments were washed twice 

with ice-cold phosphate-buffered saline (PBS). Cells in the upper compartments were 

resuspended in 1 mL TriZol (Invitrogen, Breda, The Netherlands) and stored at −80 °C 

until RNA extraction. 

 

2.5. Microarray Hybridizations 

 Total RNA from Caco-2 cells was isolated using the TriZol reagent according to 

the instructions of the manufacturer. RNA purification was performed using the 

RNeasy kit (Qiagen, Westburg bv, Leusden, The Netherlands). RNA integrity was 

verified by gel electrophoresis, and RNA concentrations and purity were determined 

by UV spectrometry by measuring 260/280 and 260/230 nm absorbance ratios, 

respectively. All RNA samples had OD260/280 ratios between 1.9�2.1 and 

OD260/230 ratios higher than 1.7. 

A control reference design was used to analyze differential gene expression in 

glycoalkaloid-treated samples versus controls. RNA samples (2 µg each) were 

amplified and labeled with Cy5- and Cy3-CTP (PerkinElmer/NEN Life Sciences, 
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Boston, MA) to produce labeled cRNA using Agilent low RNA input fluorescent 

linear amplification kits following the protocol of the manufacturer. For hybridization, 

the Agilent 60-mer oligo microarray processing protocol (Rev. 7, SSPE Wash/6-screw 

hybridization chamber) was followed. Briefly, 1 µg of Cy3-labeled control (reference 

sample) and 1 µg of Cy5-labeled glycoalkaloid-treatment sample were mixed and 

hybridized to a 22K 60-mer oligonucleotide Agilent human 1A oligo microarrays V2 

(Agilent Technologies, Palo Alto, CA) for 17 h at 60 °C. Upon hybridization, the 

microarrays were washed and dried at room temperature following instructions by 

Agilent. 

Arrays were scanned using a Scanner Array Express HT microarray scanner 

(PerkinElmer Life Sciences, Boston, MA). The software package, Array Vision 

Software 7.0 (Imaging Research, Ontario, Canada), was used to extract data from the 

scanned images. The quality of the arrays was checked by using Microsoft Excel 2000 

(Microsoft Corporation, Redmond, WA) and the software package LimmaGUI in R 

version 2.3.1 (http://bioinf.wehi.edu.au/limmaGUI/index.html). Single spots or 

blemished areas on the array were flagged. The non-flagged fluorescence signals that 

were quantified using Array Vision software were exported to GeneMaths XT 

software (version 1.5, Applied Maths, St Martens-Latem, Belgium) for further 

analyses. Array elements for which the fluorescent intensity in each channel was less 

than 1.5 times the background were excluded, leaving 10 829 transcripts for 

subsequent analyses. Data normalization was performed with GeneMaths XT, as 

described previously (23). 
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2.6. Data Analysis 

 Identification of genes differentially expressed between a glycoalkaloid treatment 

and control group was performed by using both an unpaired Student's t test with p 

value < 0.01 or < 0.001 and a fold change criterion > 1.5. 

Two complementary methods were applied to relate changes in gene expression to 

functional changes. First, an online software suite MetaCore version 4.3 (GeneGo, 

Inc., St. Joseph, MI) was used to identify statistically significant pathways responding 

to the different glycoalkaloid treatments. For this purpose, only the data of genes 

found to be significantly differentially expressed (p < 0.01 and fold change > 1.5) 

were imported into the MetaCore program. MetaCore analyses resulted in lists of 

maps/pathways ranked according to significance (lowest p values), as outlined by 

Ekins et al. (24). 

The other approach used was based on over-representation of gene ontology (GO) 

terms. The software package ErmineJ (25), which uses a scoring-based resampling 

method, was applied to identify significant enrichment or over-representation of 

biological processes responding to specific glycoalkaloid treatments. All t-test p 

values from the probe set comparisons across each glycoalkaloid treatment, and 

control groups were used for these analyses. 

A one-way analysis of variance (ANOVA) test (p < 0.001) was performed in 

GeneMaths XT to determine genes that were differentially expressed across the 

glycoalkaloid treatments. Principal component analysis (PCA) and hierarchical 

clustering analyses were performed in GeneMaths XT. The gene subset that was 

identified to be differentially expressed following ANOVA analysis was used for 

those analyses. Pearson correlation and the unweighted pair group method with 

arithmetic means (UPGMA) were used to determine the clustering of experimental 

groups. 
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2.7. Cell-Cycle Analysis 

 Cell-cycle analysis was performed on Caco-2 cells grown for 19 days in 6-

well polyester Transwell plates exposed to 5, 10, and 20 µM α-chaconine (n = 3) for 6 

or 24 h. Caco-2 cells were harvested with trypsin, washed twice with cold PBS, and 

then resuspended in cold PBS. Cells subsequently were fixed in 70% ethanol for 30 

min and stored at 4 °C. Before processing, cells were collected by centrifugation and 

incubated in RNase (1 mg/mL) for 30 min at 37 °C. Propidium iodide (100 µg/mL) 

was added, and samples were incubated for 30 min at room temperature. Cell-cycle 

analysis was performed using a FACSarray flow cytometer (Becton Dickinson, San 

Jose, CA). In each experiment, a minimum of 20 000 events were evaluated. Cell-

cycle distribution was analyzed using FACSdiva software (Becton Dickinson, San 

Jose, CA). To identify the significant difference between each experimental test 

condition and control treatment, a Student's t test was performed. A p value < 0.05 was 

regarded as indicating statistical significance. 

 

2.8. Determination of Apoptosis 

The Annexin V assay was conducted on Caco-2 cells grown for 19 days in 6-

well polyester Transwell plates exposed to 5, 10, and 20 µM α-chaconine (n = 4) for 6 

h. When apoptosis is initiated, the lipid organization of the plasma membrane is 

altered, exposing phosphatidylserine on the outer membrane surface. Annexin V was 

used to detect exposure of phosphatidylserine, because it is one of the markers for the 

early stage of apoptosis (26). Cells were harvested with trypsin, washed twice in cold 

PBS, and resuspended in binding buffer. The cells were washed and subsequently 

incubated with 2 µL of Annexin V-Fluos (Roche Diagnostics, Penzberg, Germany) in 

200 µL of Annexin V buffer according to the protocol of the manufacturer. After an 

incubation period of 15 min at room temperature, the cells were spun-down and 
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resuspended in 200 µL of Annexin V buffer and 2 µL of propidium iodide (PI; 1 

mg/mL; Sigma). The cells were then immediately analyzed on a FACSArray flow 

cytometer (Becton Dickinson, San Jose, CA). In each experiment, a minimum of 10 

000 events were evaluated. Cell death was analyzed using FACSDiva software 

(Becton Dickinson, San Jose, CA). A Student's t test was performed to identify the 

significant difference between each experimental test condition and control treatment. 

A p value < 0.05 was regarded as indicating statistical significance. 

 

3. Results 

3.1. LDH Leakage 

Exposure of differentiated Caco-2 cells to increasing concentrations of 

glycoalkaloid treatments for 6 or 24 h resulted in concentration-dependent leakage of 

LDH at both time points (Figure 3-2). For all treatments, except α-solanine alone, the 

higher glycoalkaloid concentration of 20 µM resulted in LDH leakage of more than 

20% after 6 and 24 h of exposure. This latter level is used frequently as a lower cutoff 

for cytotoxicity. With respect to the 10 µM exposures, only the α-chaconine/α-

solanine mixture (1.7:1) resulted in a LDH leakage greater than 20% at both exposure 

times. 

The extent of LDH leakage was comparable at 6 and 24 h when cells were 

treated with α-chaconine alone or the mixture of α-chaconine/α-solanine (28.8:1) 

(Figure 3-2). α-Solanine, when administered alone for 24 h, caused relatively less 

membrane disruption, irrespective of the concentration. In general, glycoalkaloid 

exposures for 24 h induced LDH leakage with the following order of potency: α-

chaconine/α-solanine (1.7:1) > α-chaconine/α-solanine (28.8:1) = α-chaconine > α-

solanine at all concentrations of exposure. After 6 h of exposure, α-solanine caused 

less disruption at 20 µM, whereas at concentrations of 15 µM or less, the degree of 
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LDH leakage was similar to that observed when cells were treated with α-chaconine 

alone or with α-chaconine/α-solanine (28.8:1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-2. Concentration dependent LDH leakage induced by the glycoalkaloid 

treatments after (A) 6 hours and (B) 24 hours exposures. Each point represents the 

average of 4 replicates with a standard deviation of less than 5 %. 
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3.2. Gene Expression Studies 

 Exposure of Caco-2 Cells to α-Solanine, α-Chaconine, and Glycoalkaloid 

Mixtures. Gene expression profiles were determined to assess glycoalkaloid-induced 

transcriptional effects. The number of genes up- or downregulated at significance 

levels of either p < 0.01 or < 0.001 and that exhibited fold changes > 1.5 are shown in 

Table 3-1. α-Solanine (10 µM) had very little effect on gene expression in the Caco-2 

cell line compared to the other treatments that were tested. 

 

Table 3-1. Numbers of significantly up- and down- regulated genes in Caco-2 cells 

after treatment with glycoalkaloids 
       p<0.01 (FC > 1.5)        p<0.001 (FC > 1.5)  

Glycoalkaloid Treatment upregulated downregulated total upregulated downregulated total 

10 µM -Solanine 2 5 7 - - - 

10 µM -Chaconine 54 97 451 124 20 144 

10 µM -Chaconine: -solanine 

(28.8:1) 

310 204 514 97 27 124 

10 µM -Chaconine: -solanine 

(1.7:1) 

264 157 421 50 15 65 

FC: Fold Change; p: Student�s t-test p-value; -: not significant 
 

PCA and hierarchical clustering analyses were performed using 444 genes that 

were expressed differentially by at least one of the glycoalkaloid treatments (ANOVA, 

p < 0.001). These results were consistent with a compound-specific response on gene 

expression (Figure 3-3). Cells exposed to α-solanine alone were clustered closer to 

control cells. The other glycoalkaloid treatments elicited markedly distinct gene 

expression profiles from those of the control and α-solanine-only groups. Gene-

expression profiles observed following α-chaconine and α-chaconine/α-solanine 

(28.8:1) treatments were more similar to each other than to the profile observed 

following α-chaconine/α-solanine (1.7:1) treatment. 
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Figure 3-3. PCA mapping and hierarchical clustering of the different glycoalkaloid 

treatments with genes found to be significantly differentially expressed (ANOVA, p ≤ 

0.001). The axes on the PCA plot show the gene-expression profiles of the different 

treatment groups in the principal component x, y, and z (which explain the largest part 

of the variance). a, control cells; b, cells exposed to α-solanine; c, cells exposed to α-

chaconine; d, cells exposed to α-chaconine/α-solanine (28.8:1); and e, cells exposed to 

α-chaconine/α-solanine (1.7:1). The results are based on three (1�3) independent 

experiments.  
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Genes differentially expressed following distinct glycoalkaloid treatments (p < 

0.01 and fold changes > 1.5) were imported into MetaCore to identify pathways that 

were affected by the respective treatments. Microarray data obtained with α-solanine 

were not subjected to MetaCore analysis because only seven genes were differentially 

expressed following this treatment. The 10 most significantly affected pathways by the 

various treatments tested that were identified by MetaCore are presented in Table 3-2. 

Comparisons of treatment effects on Caco-2 cell gene expression revealed that 

cholesterol biosynthesis was one of the pathways most significantly affected by both 

α-chaconine administered alone and the α-chaconine/α-solanine (28.8:1) mixture 

(Table 3-2). These treatments resulted in the upregulation of several genes involved in 

cholesterol biosynthesis (p < 0.01 and fold change > 1.5) (Table 3-4). The α-

chaconine/α-solanine (1.7:1) mixture did not significantly affect the cholesterol 

biosynthesis pathway (Table 3-2). Most importantly, the rate-limiting enzyme of 

cholesterol biosynthesis, 3-hydroxy-3-methylglutaryl-coenzyme A reductase 

(HMGCR), was not significantly induced by α-chaconine/α-solanine (1.7:1) (Table 3-

4). 

Generally, MetaCore analysis revealed that the glycoalkaloid treatments 

affected the same pathways and genes. Besides cholesterol biosynthesis, most of the 

pathways affected appeared to be those involved in growth-related signaling (e.g., 

EGF), lipid metabolism, transcription regulation of amino acid metabolism, Ras 

family GTPases cascades, and chemokine- and cytokine-mediated signaling. 
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Table 3-2. Top 10 Lists of MetaCore Pathways Affected by the Glycoalkaloid 
Treatments  
 
# map p valuea expressedb allc

10 µM -Chaconine 

1 cholesterol biosynthesis 4.592 × 10–10 9 21 

2 EGF-signaling pathway 1.764 × 10–5 9 64 

3 EGFR signaling via small GTPases 3.037 × 10–5 7 39 

4 transcription regulation of amino acid metabolism 4.263 × 10–5 7 41 

5 oncostatin M signaling via MAPK in mouse cells 5.013 × 10–5 7 42 

6 oncostatin M signaling via MAPK in human cells 5.868 × 10–5 7 43 

7 VEGF signaling via VEGFR2, generic cascades 6.839 × 10–5 7 44 

8 IGF–RI signaling 0.000 280 9 8 72 

9 MIF in innate immunity response 0.0003251 7 56 
1
0 

AKT signaling 0.0003632 7 57 

 

               10 µM -Chaconine/ -Solanine (28.8:1) 

1 transcription regulation of amino acid metabolism 1.356 × 10–5 8 41 

2 cholesterol biosynthesis 1.632 × 10–5 6 21 

3 oncostatin M signaling via MAPK in mouse cells 0.005757 5 42 

4 role of AP-1 in regulation of cellular metabolism 0.00637 5 43 

5 oncostatin M signaling via MAPK in human cells 0.00637 5 43 

6 Ras family GTPases in kinase cascades (scheme) 0.006946 4 28 

7 VEGF signaling via VEGFR2, generic cascades 0.007027 5 44 

8 triacylglycerol metabolism p.1 0.007885 4 29 

9 EGF signaling pathway 0.00832 6 64 
1
0 

IL2 activation and signaling pathway 0.008481 5 46 

 

               10 µM -Chaconine/ -Solanine (1.7:1) 

1 phospholipid metabolism p.2 0.001715 3 11 

2 EGF-signaling pathway 0.003392 6 64 

3 PPAR regulation of lipid metabolism 0.003588 4 28 

4 fatty acid omega oxidation 0.003596 3 14 

5 triacylglycerol metabolism p.1 0.004088 4 29 

6 proline metabolism 0.00442 3 15 

7 methionine–cysteine–glutamate metabolism 0.007534 3 18 

8 role of VDR in regulation of genes involved in osteoporosis 0.009688 5 57 

9 transcription regulation of amino acid metabolism 0.01407 4 41 
1
0 

P53-signaling pathway 0.02075 4 46 

     
a For a calculation of p values, see the Materials and Methods. b The 
number of differentially expressed genes (p < 0.01 and FC > 1.5) in a 
pathway/map. c The total number of genes in a particular pathway/map.  
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A parallel analysis using ErmineJ was performed to determine the biological 

processes affected by the different glycoalkaloid treatments. These results were 

consistent with those obtained by MetaCore (Table 3-3). For all glycoalkaloid 

treatments, similar processes were found to be affected. Over-represented GO classes 

included descriptors for lipid metabolism, cytokine- and chemokine-mediated 

pathways, amino acid metabolism, MAPK and NF-κB cascades, cell death/apoptosis, 

and the cell cycle. As found with MetaCore analysis, cholesterol biosynthesis was 

observed to be affected significantly by α-chaconine and α-chaconine/α-solanine 

(28.8:1) exposure and not by α-chaconine/α-solanine (1.7:1). More cell 

death/apoptotic and oxidative stress processes were regulated differentially by this 

latter treatment. 

In a dose�response microarray experiment conducted with these glycoalkaloid 

treatments, induction of cholesterol biosynthesis genes was evident at low 

concentrations of 5 µM glycoalkaloid (mixtures), except when α-solanine was 

administered alone (data not shown). Cholesterol biosynthesis genes were only 

induced at a concentration of 20 µM following this latter treatment. Except for α-

solanine administered alone, glycoalkaloid concentrations of 20 µM affected 

apoptotic/cell death pathways rather than the cholesterol biosynthesis pathway (data 

not shown). Table 3-4 presents lists of genes classified in selected processes that were 

affected by the specified treatments. 
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Table 3-3. Gene Ontology classes overrepresented following glycoalkaloid treatment 

A scoring-based resampling method was used to identify significantly overrepresentedGOclasses. More 

than ten thousand t-test p-values from the probe set comparisons across the glycoalkaloid treatments 

were used. The analysis was performed using the tool ErmineJ (23). Only classes for the concept 
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�biological process� (top 20 with a FDR <0.0001) are shown. For the analysis only classes containing 8 

through 125 genes were taken into account. 

Table 3-4. Partial List of Differentially Expressed Genes Classified According to 

Selected Processes Commonly Affected by All Treatmentsa 
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Table 3-4 (Continued). 

3.3. Cell-Cycle Analysis 

 Gene-expression analyses revealed that cell-cycle genes were also affected 

significantly by the glycoalkaloid treatments (Table 3-4). Therefore, a cell-cycle 

analysis was performed to determine which cell-cycle phase(s) was affected. In 

general, an accumulation of cells in the G2/M phase was noted after 6 or 24 h of 

exposure to 5, 10, or 20 µM α-chaconine (Figure 3-4). 
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Figure 3-4. Effect of various concentrations of α-chaconine on the cell-cycle phase in 

Caco-2 cells. Cells were grown for 19 days and then exposed to 5�20 µM α-chaconine 

for either 6 or 24 h. Cell-cycle phases were identified by propidium iodide flow 

cytometry. Values are expressed as mean ± standard deviation (SD). (*) p values 

shown are in comparison to the values of the control group. 
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3. 4. Determination of Apoptosis 

 Our data revealed a concentration-dependent increase in a late apoptotic or 

necrotic phase in Caco-2 cells exposed to 5, 10, and 20 µM -chaconine for 6 h. We 

did not observe any significant effect on the early apoptotic cells at the concentrations 

tested (Figure 3-5). 
 

 

 

 

 

 

 

 

 

 
Figure 3-5. Effect of various concentrations of α-chaconine on apoptosis/necrosis in 

Caco-2 cells. Cells were grown for 19 days and then exposed to 5 µM to 20 µM α-

chaconine for 6 hours. Values are expressed as mean ± SD. (P values shown are in 

comparison to the control group�s values.) 

 

Discussion 

The toxic effects of single and mixtures of potato glycoalkaloids on gene 

expression in Caco-2 cells were investigated, and the utility of DNA microarrays in 

screening for toxic effects, assessing effect severity, and identifying potential 

mechanisms of toxicity were evaluated in this model system. Differences in the 

responses to the various glycoalkaloid treatments were mainly due to the differing 

degrees of potency of the glycoalkaloids, as noted in earlier studies (4, 5, 17). DNA 
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microarrays, to varying extents, discriminated severity of effect/potency among the 

different glycoalkaloid treatments. 

α-Solanine (10 µM) was the least potent of the glycoalkaloid treatments, as 

observed in both LDH leakage and gene profiling experiments. α-Solanine 

administered alone caused less LDH leakage compared to equimolar amounts of α-

chaconine and the glycoalkaloid mixtures. PCA and hierarchical cluster analyses 

revealed that the gene expression profile of cells treated with 10 µM α-solanine mostly 

resembled that of control cells, but expression profiles of cells subjected to the other 

glycoalkaloid treatments differed significantly from those of the controls. α-Chaconine 

alone (10 µM) and α-chaconine/α-solanine (28.8:1, 10 µM) had similar gene 

expression profiles in Caco-2 cells, suggesting common mechanisms of action and/or 

similar degrees of effect. In addition, these latter treatments resulted in similar LDH 

leakage. On the other hand, exposure to 10 µM α-chaconine/α-solanine (1.7:1) 

resulted in a gene expression profile that was distinguishable from those observed 

following the other treatments. As documented by LDH leakage experiments, 10 µM 

α-chaconine/α-solanine (1.7:1) was the most potent membrane disrupter. Clearly, 

glycoalkaloid treatments elicited signature patterns of gene expression that appeared to 

reflect potency, thereby indicating the usefulness of DNA microarrays to screen for 

differences in potencies of distinct glycoalkaloid treatments and, as is described 

below, provide additional valuable information. 

To obtain a comprehensive overview of the response of Caco-2 cells to the 

selected glycoalkaloid treatments that were tested, significant over-representation of 

differentially expressed genes with roles in specific biological processes and pathways 

were identified using ErmineJ and MetaCore, respectively. Those analyses revealed 

that, for the most part, similar biological processes/pathways were affected by the 

tested treatments. Pathways/biological processes affected by all of the tested 
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treatments included cytokine- and chemokine-mediated signaling, growth signaling, 

MAPK and NF-κB cascades, lipid metabolism, the cell cycle, and cell death/apoptosis. 

The most distinctive observation was the significant induction of the cholesterol 

biosynthesis pathway in Caco-2 cells by either α-chaconine/α-solanine (28.8:1) or α-

chaconine alone but not by the other treatments. 

Intestinal membrane disruptive activity is the most well-described toxic 

mechanism of action of the potato glycoalkaloids. Those effects were attributed to the 

formation of destabilizing complexes between the lipophilic moieties of 

glycoalkaloids and membrane-bound cholesterol (27-29). In previous work, we 

observed that α-chaconine induced cholesterol biosynthesis genes in Caco-2 cells prior 

to other changes reflective of cytotoxicity. This pathway ceased to be important with 

either prolonged exposure to low α-chaconine concentrations or shorter exposure to 

higher, cytotoxic concentrations of α-chaconine (23). Therefore, it is likely that 

disturbances in cellular cholesterol levels/homeostasis as a result of the formation of 

membrane glycoalkaloid/sterol complexes result in the induction of cholesterol 

biosynthesis to regain homeostasis. We also observed general downregulation of lipid 

metabolism pathways that use cholesterol (e.g., decreased expression of SULT2A1 

and UGT2B7 involved in steroid metabolism, Table 3-4), and as such, influence 

intracellular cholesterol levels might be explained in this view. 

Results of both MetaCore and ErmineJ analyses indicated that non-cytotoxic 

concentrations (LDH leakage < 20%) of 10 µM of either α-chaconine alone or the α-

chaconine/α-solanine (28.8:1) mixture induced genes of the cholesterol biosynthesis 

pathway. In contrast, α-chaconine/α-solanine (1.7:1) did not significantly affect the 

cholesterol biosynthesis pathway. The results from the LDH assay suggest that α-

chaconine and α-solanine act synergistically when present in the ratio of 1.7:1 and that 

this mixture is more potent than equivalent concentrations of either α-chaconine or α-
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solanine alone. We suggest that the induction of cholesterol biosynthesis is precluded 

by apoptotic processes that result in cell death. Other studies have also shown that, at 

certain α-chaconine/α-solanine ratios, mixtures of glycoalkaloids interact 

synergistically, resulting in increased toxicity (5, 13, 16-18). 

Exposure to α-chaconine was shown to result in greater membrane disruptive 

effects than exposure to α-solanine (4, 5, 17). The differences in potency between α-

solanine and α-chaconine can either be explained by subtle changes in the sugar 

moiety volume or by the different side chains on the sugar ring structures that 

influence sugar�sugar intermolecular interactions and, thereby, the formation of stable 

glycoalkaloid�sterol complexes (27). α-Solanine binds to membrane-bound 

cholesterol but to a lesser extent than α-chaconine, thus resulting in reduced membrane 

disruption compared to that observed following α-chaconine exposure (5). A 

concentration of 10 µM α-solanine proved to be too low to detect any effects on gene 

expression. Exposure of Caco-2 cells to 20 µM α-solanine (data not shown) affected 

the same pathways as did exposure to 5 or 10 µM α-chaconine and to α-chaconine/α-

solanine mixtures, indicating similarities in their mechanisms of action. For example, 

the induction of cholesterol biosynthesis genes by α-solanine was only observed at a 

higher concentration of 20 µM and not at 10 µM. 

Because several cell-cycle genes were affected by the treatments, cell-cycle 

analysis experiments were conducted using α-chaconine. Yang et al. (30) showed that 

the exposure of intestinal HT29 cells to 5 µg/mL (~5.9 µM) α-chaconine and 10 

µg/mL (~11.5 µM) α-solanine for more than 48 h induced accumulation of cells in the 

sub-G0/G1 phase. However, our data indicated accumulation of Caco-2 cells in the 

G2/M phase at concentrations of 5�20 µM. We also exposed cells to 100 µM α-

chaconine (6/24 h) (data not shown); however, we were unable to measure 20 000 

events because of significant cell death. Despite this, it appears that cells tend to 
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accumulate disproportionately in the G0/G1 phase when exposed to higher 

glycoalkaloid concentrations. These results imply that the effect of α-chaconine on the 

cell cycle may depend upon the cell type and/or exposure concentration. Among the 

cell-cycle genes affected by all of the selected treatments in the current study was polo 

kinase 3 (Plk3), which is involved in the regulation of cell-cycle progression through 

the M phase (31). Plk3 is a NF-κB downstream target gene (32) and induces cell 

death, possibly by inducing p53-dependent and -independent pathways. Ectopic 

expression of Plk3 or its mutants perturbs microtubule integrity, resulting in dramatic 

morphological changes, G2/M arrest, and apoptosis (31). Also induced in the present 

experiments was cyclin-dependent kinase inhibitor 1A (CDKN1A or p21 or Cip1), 

which inhibits both cyclin-dependent G1 kinases (33) and the G2/M-specific cdc2 

kinase (34-36). Thus, CDKN1A can result in cell-cycle arrest in either the G1 or G2/M 

phase. Also induced was cyclin-dependent kinase inhibitor 1C (CDKN1C or p57 or 

Kip2), which, similar to CDKN1A, inhibits DNA replication by binding to the 

proliferating cell nuclear antigen (PCNA), resulting in antiproliferative effects (37, 

38). Expression of either Plk3 or CNKN1A can result in either G2/M or G0/G1 arrest; 

therefore, this may explain the different effects on the cell cycle observed using 

selected α-chaconine concentrations. 

We also observed the differential expression of genes encoding potential 

regulators/players of proapoptotic/apoptotic or cell-death cascades. Cell death may 

occur because of either necrotic or apoptotic processes depending upon the cell type 

and stimulus. Apoptosis is executed mainly by a family of proteases called caspases, 

which can be activated by two main pathways, i.e., the extrinsic (via cell-surface death 

receptors) and intrinsic (via perturbation of the mitochondrial membrane) pathways 

(39, 40). Necrosis is characterized by swelling of the cell and its organelles, resulting 

in cell-membrane disruption and cell lysis. Downstream mediators of the extrinsic 
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tumor necrosis factor (TNF) pathway were affected by glycoalkaloid treatments in the 

present study (Table 3-4; TNFRSF1A, TNFRSF11B, TNFRSF12A, and TNFRSF21). 

TNF was observed to induce, via binding to TNF receptors, either apoptosis or 

necrosis depending upon cellular context (41, 42). However, we also observed the 

induction of genes that are involved in the intrinsic mitochondria-mediated apoptotic 

pathways (Table 3-4; BBC3, BMF, SH3GLB1, and PHLDA1). In addition, Yang et al. 

observed that, in HT29 cells, α-chaconine induced apoptosis. This effect may be 

mediated through the suppression of Erk1/2 phosphorylation and subsequent 

activation of caspase 3. The results obtained with the annexin V assay indicated that α-

chaconine exposure resulted in late apoptosis and necrosis rather than early apoptosis 

in differentiated Caco-2 cells. Thus, both apoptosis and necrosis may have occurred 

simultaneously. 

Many of the genes showing alterations in expression were encoding transcription 

factors, including NF-κB and activating protein 1 (AP-1) dimers (c-Fos, FosB, c-Jun, 

JunB, and ATF3). NF-κB activity is stimulated by a wide range of stimuli, such as 

pathogens, stress signals, and pro-inflammatory cytokines (43). AP-1 activity is 

induced by growth factors, cytokines, neurotransmitters, bacterial and viral infections, 

and a variety of physical and chemical stresses (44). NF-κB and AP-1 are key 

transcription factors that regulate the expression of many genes important for diverse 

processes, for example, cell growth, development, inflammation, stress responses, 

immune, cell-cycle progression, and apoptosis (43-45). Because we observed the 

differential expression of several genes/processes involved in growth signaling, cell-

cycle regulation, apoptosis, and chemokine and cytokine signaling, which are targets 

of NF-κB and AP-1, it is conceivable that potato glycoalkaloids affect these processes 

via these transcription factors. 
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In conclusion, this study describes changes in gene-expression profiles in 

response to potato glycoalkaloids. Gene-profiling experiments revealed that the 

glycoalkaloids, α-chaconine and α-solanine, and their mixtures act by the same 

mechanisms, with the main difference being the degree of potency. Most importantly, 

we observed the induction of cholesterol biosynthesis genes by non-cytotoxic 

glycoalkaloid treatments and the repression of their induction by more severe 

glycoalkaloid concentrations that result in cytotoxicity. Induction of cholesterol 

biosynthesis genes may be an early response to glycoalkaloid toxicity, induced 

perhaps to rescue cells from the progression to death. Furthermore, we conclude that 

microarrays used in conjunction with classical toxicological tests can be useful in 

discriminating glycoalkaloid treatments on the basis of potency or degree of effect, 

thus demonstrating the potential of microarray technology as a tool for detecting subtle 

differences in toxicities of mixtures and/or possibly also whole foods. Mixture studies, 

such as those performed in the present work, can be helpful to predict the toxicological 

consequences of changing relative levels of compounds in food crops, for example, 

changing α-chaconine/α-solanine ratios in potato by genetic modification. 
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Abstract 

We previously reported that non-cytotoxic concentrations of potato glycoalkaloids 

induce expression of cholesterol biosynthesis genes in the intestinal epithelial Caco-2 

cell line. Genes involved in MAPK and PI3K/AKT pathways and their downstream 

effectors such as Jun, c-Myc and Fos also were induced. MAPK and PI3K/AKT 

pathways have been described to regulate the activity of SREBPs and consequently the 

expression of cholesterol biosynthesis genes. In this study, in order to understand the 

mechanism of induction of cholesterol biosynthesis by α-chaconine, its effect on 

SREBP-2 protein levels was investigated. We also examined whether MAPK and 

PI3K/AKT pathways are required for the observed induction of these genes by α-

chaconine. Differentiated Caco-2 cells were pre-treated with LY294002 (PI3K 

inhibitor), PD98059 (MEK1 inhibitor) or SP600125 (JNK inhibitor) or a combination 

of all inhibitors for 24 hours prior to co-incubation with 10 µM α-chaconine for 6 

hours. Significant increases in precursor and mature protein levels of SREBP-2 were 

observed following α-chaconine treatment. We also observed that α-chaconine 

induced significant phosphorylation of AKT, ERK and JNK kinases but not that of 

p38. In general, the kinase inhibitor experiments revealed that phosphorylation of 

kinases of PI3K/AKT, ERK and JNK pathways was not crucial for glycoalkaloid-

induced expression of cholesterol biosynthesis genes, with the exception of SC5DL. 

For the SC5DL gene, α-chaconine-induced transcription was reduced when all three 

pathways were inhibited. Based on these results, it can be postulated that other 

mechanisms, which may be independent of the MAPK and PI3K/AKT pathways, 

including possibly post-translational activation of SREBP-2 by α-chaconine may be 

more pivotal for the induction of cholesterol biosynthesis genes by α-chaconine.  

 

Keywords: glycoalkaloids, α-chaconine, MAPK, PI3K/AKT, cholesterol biosynthesis 



 

 101

Introduction 

Potatoes (Solanum tuberosum L.) contain the toxins, α-chaconine and α-

solanine. These account for 95% of potatoes� total glycoalkaloids (1). These 

glycoalkaloids at high levels (3-6mg/kg body weight) may have toxic effects on 

human health (2). These include gastrointestinal disturbances, increased heart-beat, he 

molysis and neurotoxic effects (3). Reported toxicities are due mainly to 

acetylcholinesterase inhibition and cell membrane disruption that affect digestive and 

other organs (4). Toxicities induced in other species include hepatoxicity in mice (5), 

increased hepatic ornithine decarboxylase activity in rats (6), craniofacial 

malformations in hamsters (7) and anatomical developmental toxicities in frog 

embryos (8, 9). 

The most well documented mechanism of glycoalkaloid toxicity is the 

disruption of membrane integrity, which is caused by the formation of destabilizing 

complexes between the lipophilic moiety of glycoalkaloids and cholesterol present in 

membranes (10-12). At certain sterol threshold concentrations, glycoalkaloids can 

form irreversibly glycoalkaloid/sterol complexes in cell membranes resulting in rapid 

loss of membrane barrier integrity (10, 12). In previous studies, we observed increased 

lactate dehydrogenase leakage in Caco-2 cells following exposure to increasing 

concentrations of glycoalkaloids, an indicator of increased membrane disruption (13, 

14). In addition, we observed that α-chaconine induced cholesterol biosynthesis genes 

in Caco-2 cells prior to changes reflective of cytotoxicity. Prolonged exposure to low 

α-chaconine concentrations or shorter exposure to higher, cytotoxic concentrations of 

α-chaconine resulted in reduced induction of those genes (13). These observations 

were interpreted to suggest that disturbances in cellular cholesterol levels due to the 

formation of glycoalkaloid/sterol complexes may have resulted in the homeostatic 

induction of cholesterol biosynthesis genes.  
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Cholesterol is an important component of cellular membranes, thus levels of 

cholesterol are tightly regulated. Cholesterol biosynthesis genes are regulated at the 

transcriptional level and their transcriptional regulation is controlled by membrane-

bound transcription factors, sterol regulatory element binding proteins (SREBPs)(15). 

SREBPs bind to sterol-regulatory elements (SREs) found in the promoter regions of 

many cholesterol and fatty acid biosynthesis genes inducing their transcription.  

The regulation of SREBP activity occurs at the transcriptional and post-

translational levels (16, 17). The post-translational regulation of SREBP activity 

involves sterol-mediated suppression of SREBP proteolytic cleavage (18). Whereas, 

regulation at the transcriptional level is more complex, one mechanism involves feed-

forward regulation, whereby the SREBPs regulate the transcription of their own genes 

via SRE in the enhancer or promoter region of each gene (16, 19). Other factors such 

as liver X-activated receptors (LXRs), insulin and glucagon have been shown to 

regulate SREBP transcription (16). 

 Previously, we observed that α-chaconine induced genes involved in 

PI3K/AKT, MAPK and growth (which are mediated by either AKT or MAPK) 

signaling pathways and downstream effectors of these pathways, such as Jun, Fos and 

c-Myc (13, 14). The MAPK family consists of at least three different sub-groups that 

include ERK1/2 (extracellular signal related kinase), JNK (c-jun N terminal protein 

kinase, also referred to as stress-activated protein kinase, SAPK), and p38. MAP 

kinases play a pivotal role in orchestrating intracellular events essential for cell 

functioning, growth, and apoptosis (20). On the other hand, PI3K and its substrate, i.e. 

AKT kinases, play a central role in diverse signaling cascades that regulate cell 

proliferation and survival, cell size and response to nutrient availability, glucose 

metabolism, cell invasiveness, genome stability and angiogenesis (21, 22). Once 

activated, these kinases can phosphorylate and activate transcription factors which 
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regulate gene expression. In particular, studies demonstrate that activation of the 

PI3K/AKT pathway induces SREBP activity at the transcriptional and post-

translational levels. AKT activation results in upregulation of SREBP (23) or 

alternatively induces ER-to-Golgi transport of SREBP and SCAP, resulting in 

proteolytic cleavage of SREBP (24). On the other hand, the MAPK pathway was 

shown to regulate the transcriptional activity of SREBPs via phosphorylation of ERK 

(25, 26).  

 In an attempt to further understand the mechanism of action of potato 

glycoalkaloids on the induction of cholesterol biosynthesis genes, in the present study 

we investigated the effect of α-chaconine on SREBP-2 protein levels and determined 

whether the PI3K/AKT or MAPK signaling pathways are necessary for α-chaconine-

induced transcription of these genes.  

 

2. Methods 

2.1. Reagents 

α-Chaconine was obtained from Sigma Aldrich (St Louis, MO, USA). 

Chemical inhibitors LY294002 (PI3K inhibitor), PD98059 (MEK1 inhibitor) and 

SP600125 (JNK inhibitor) were purchased from Calbiochem (Darmstadt, Germany). 

Stock solutions of α-chaconine and the chemical inhibitors were prepared in dimethyl 

sulfoxide (DMSO) (Merck, Germany). The stock solutions were diluted with DMEM 

to the final desired concentrations immediately before use. In every experiment, cells 

in the control group were treated with an equivalent concentration of the solvent (0.01 

v/v % DMSO). Rabbit polyclonal antibodies against Total p44/42 (ERK), phopho-

p44/42 (ERK 1/2) (Thr 202/Tyr 204), phopho-AKT (Ser 473), Total AKT, phopho-

SAPK/JNK 1/2 (Thr 183/ Tyr 185), Total SAPK/JNK and Total p38 were obtained 

from Cell Signaling (Beverly, MA, USA). Rabbit polyclonal antibody against 
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phospho-p38 (Thr 180/Tyr 182) and goat polyclonal antibody against Actin (C-11) 

were obtained from Santa Cruz Biotechnology (Santa Cruz, CA, USA), whereas the 

rabbit polyclonal antibody against SREBP-2 was obtained from Abcam (Cambridge, 

UK). The horseradish peroxidase-conjugated anti-rabbit and donkey anti-goat 

antibodies were obtained from Promega (Madison, WI, USA). Reagents for 

electrophoresis and Western blotting were obtained from Amersham Bioscience 

(Arlington Heights, IL, USA). Detergent compatible (DC) protein assay for protein 

quantification was obtained from BioRad (Hercules, CA, USA). 

 

2.2. Caco-2 cell culture 

The human intestinal epithelial cell line Caco-2 (ATCC, Manassas, VA) was 

grown routinely in 75-cm2 culture flasks at 37°C in air with 5% CO2 and 100% 

relative humidity in Dulbecco�s modified Eagle�s medium (DMEM; BioWhittaker, 

Verviers, Belguim) supplemented with NaHCO3 (3.7 g/l, Sigma), non-essential amino 

acids (1x NEAA; ICN, Zoetermeer, The Netherlands), fetal calf serum (FCS; 10% v/v; 

Invitrogen, Breda, The Netherlands), penicillin (5,000 U, Sigma), and streptomycin (5 

mg/l, Sigma).  

 

2.3. Treatment with α-Chaconine and Chemical Inhibitors 

Caco-2 cells were seeded at a density of 40 000 per cm2 in 6-well polyester 

Transwell plates (Costar; 0.4 µm pore size, inserts of 24 mm diameter). The cells were 

allowed to differentiate by growing them for 19 days. Following differentiation, cells 

were exposed for 6 hours to 10 µM α-chaconine. The exposure time and concentration 

were based on results from a previous study in which optimal conditions for studying 

the effect of α-chaconine on gene expression were determined systematically (13). 

When chemical inhibitors were used, cells were pre-treated for 24 hours with either 



 

 105

LY294002 (60 µM) or PD98059 (50 µM) or SP600125 (60 µM) or a combination of 

all inhibitors, prior to co-incubation with 10 µM α-chaconine for 6 hours. As stock 

solutions were dissolved in DMSO, an equal volume of DMSO (final concentration 

0.01%, v/v) was added to the control cells. The media in the upper compartments of 

the transwells were replaced with DMEM containing 0.01% (v/v) DMSO (i.e. control 

exposure (with or without inhibitor(s)) or 10 µM α-chaconine (with or without 

inhibitor(s)). The media in the lower compartments were replaced with DMEM only.  

 

2.4. Western blotting 

Isolation of SREBP-2 proteins 

Following treatment of Caco-2 cells for 6 hours with and without 10 µM α-

chaconine, nuclear and membrane fractions were prepared by a modification of the 

procedure described by Field et al (27). The precursor form of SREBP-2 is 

predominantly in the membrane fraction, as it is normally bound to membranes of the 

endoplasmic reticulum and nuclear envelope. After proteolytic cleavage the mature 

form is released and enters the nucleus which is the site of action (27). Briefly, 

following treatment, cells were washed twice with PBS and resuspended in ice-cold 

buffer A [10 mM HEPES-NaOH (pH 7.4), 1.5 mM MgCl2, 10 mM KCl, 1 mM 

ethylenediaminetetraacetic acid (EDTA), 1 mM ethyleneglycoltetraacetic acid 

(EGTA)]. They were allowed to swell for 30 minutes. Subsequently, the cells were 

homogenized by passage through a 22-gauge needle 15 times. First, the homogenate 

was centrifuged at 1,500 rpm for 5 minutes to obtain a nuclear pellet. The supernatant 

was centrifuged at 40,000 rpm for 45 minutes to isolate a membrane fraction. Nuclear 

proteins were extracted from the nuclear pellet with 0.1 mL of buffer C [20 mM 

HEPES-KOH (pH 7.9), 1.5 mM MgCl2, 25% glycerol, 500 mM NaCl, 1 mM EDTA, 

1 mM EGTA]. Membrane proteins were extracted from the membrane fraction with 
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0.15 mL of buffer B [125 mM Tris (pH 6.0), 160 mM NaCl, 1% Triton X-100]. Both 

fractions were sonicated for 10 seconds followed by centrifugation in a 

microcentrifuge for 30 minutes at 14,000 rpm. Protease inhibitors N-acetyl-leucyl-

leucyl-norleucinal (50 µg/ml), 0.5 mM phenylmethylsulfonyl fluoride (PMSF), 

pepstatin A (5 µg/ml), leupeptin (10 µg/ml), 1 mM Pefabloc, 10 mM DTT, and 

aprotinin (2 µg/ml) were added to all buffers used for preparing the cell fractions. All 

protein isolation procedures were performed at 4°C. Protein concentrations were 

determined by the BioRad DC protein assay and the samples were stored at -80ºC until 

further use.  

 

Isolation of MAPK kinase proteins 

Upon treatment, Caco-2 cells were washed twice with ice-cold phosphate 

buffered saline (PBS) and lysed in 0.5 ml lysis buffer (20 mM Tris�HCl (pH 7.5), 150 

mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton, 2.5 mM sodium pyrophosphate, 1 

mM beta-glycerophosphate, 1 mM sodium orthovanadate, 1 µg/ml leupeptin, 1 mM 

PMSF ). Cell debris was removed by centrifugation at 14,000 rpm for 10 minutes at 

4ºC. Protein concentrations in the supernatants were determined by the BioRad DC 

protein assay and the samples were stored at -80ºC.  

 

For Western blot analyses, 30 µg (MAPK/AKT) or 80 µg (SREBP-2) of 

protein were subjected to sodium dodecyl sulphate - polyacrylamide gel 

electrophoresis (SDS-PAGE, 12.5% polyacrylamide) before transferring onto a 

polyvinylidene difluoride (PVDF) membrane (GE Healthcare Bio-Sciences Corp., 

Piscataway, NJ). The PVDF membrane was blocked with 5% skimmed milk in Tris-

buffered saline with 0.05% Tween-20 (TBS-T), pH 7.4 for 1 hr at room temperature, 

probed with rabbit antibodies against total or phospho-p38, total or phospho-ERK1/2, 
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total or phospho-JNK, total or phospho-AKT, SREBP-2, and the goat antibody against 

actin (1:1,000 dilution) at 4°C overnight. The membrane was washed and incubated 

with secondary anti-rabbit (Promega) or donkey anti-goat antibodies (Promega) 

(1:10,000 dilution) coupled to horseradish peroxidase for 1 hr at room temperature. 

Antibody�antigen complexes were then detected using the ECL Plus� 

chemiluminescent detection system according to the manufacturer's instructions (GE 

Healthcare Bio-Sciences). Band intensities were quantified using the software program 

Quantity One 1-D analysis software version 4.6.1 (Bio-Rad). 

 

Reprobing the immunoblots 

The immunoblots were soaked in stripping buffer (0.7% 2-mercaptoethanol, 

2% SDS, 62.5 mM Tris pH 6.8) and incubated at 50°C for 30 minutes with gentle 

shaking. After stripping, the membranes were washed 4 times for 5 minutes with TBS-

T, then blocked in 5% skimmed milk in TBS-T, pH 7.4 for 1 hr at room temperature, 

followed by probing with the primary and secondary antibodies of interest.  

 

2.5. Real time RT-PCR of cholesterol biosynthesis genes 

Total RNA from Caco-2 cells was isolated using TriZol reagent (Invitrogen, 

Breda, The Netherlands) as specified in the manufacturer�s instructions. To remove 

any genomic DNA contaminants, RNA samples were treated with DNAse-I RNase 

free (Promega) followed by phenol/chloroform/isoamylalcohol (25:24:1;v:v:v) and 

chloroform/isoamylalcohol (24:1;v:v) purification steps. RNA concentration and 

purity were determined by measurement of absorbance at 260 and 280 nm using a 

Nanodrop (Isogen Life Science). Complementary DNA (cDNA) was synthesized from 

1 µg total RNA for each sample using the iScript cDNA synthesis kit, following 

instructions of the manufacturer (Bio-Rad). Primers for SYBR Green probes were 
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designed with Beacon Designer 5.0 (Premier Biosoft International, Palo Alto, CA) and 

are shown in Table 4-1. After primer design, all primers were run through the National 

Center for Biotechnology Information (NCBI) Blast database in order to check for 

specificity. PCR amplification and detection were performed with the iQ SYBR Green 

Supermix and the MyIQ single color real time PCR detection system (Bio-Rad). 

Standard curves were constructed for each amplified gene sequence using serial 

dilutions of a reference sample from the cDNA samples known to induce selected 

genes significantly. The level of mRNA for each gene was normalized using 

Ribosomal protein L12 (RPL-12) as a reference gene, which was chosen on the basis 

of microarray data (data not shown) since it showed similar expression levels for 

control and α-chaconine-treated groups. To verify the RPL12-normalized results, data 

also were normalized using a well accepted reference gene Hypoxanthine 

phosphoribosyltransferase 1 (HPRT1). The outcome of that analysis was similar (data 

not shown).  

 

2.6. Statistical analysis 

Results are expressed as means ± standard deviation (S.D.). Comparisons of 

changes in protein levels among treatment groups were analyzed statistically by the 

unpaired Student's t-test (two-tailed). RT-PCR gene analysis was conducted using a 

two way ANOVA with the factors α-chaconine treatment (2 levels: with or without α-

chaconine) and inhibitor(s) pre-treatment (5 levels: no inhibitor(s), ERK pathway 

inhibitor (PD98059), JNK pathway inhibitor (SP600125), PI3K/AKT pathway 

inhibitor (LY294002) and combination of all inhibitors). Ratios of the signal 

intensities of the gene of interest versus the reference gene were calculated and these 

ratio values were log transformed to stabilize the variance. The main effects of α-

chaconine treatment, inhibitor(s) pre-treatment and interaction of α-chaconine and 
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inhibitor(s) on gene expression were determined. The effect of inhibitor(s) pre-

treatment was split up in 4 contrasts between the level of 'No inhibitor(s)' versus each 

of the other 4 levels. A p-value of less than 0.05 was considered statistically 

significant. 

 

3. Results 

3.1. Effect of α-chaconine on SREBP-2 protein expression and cleavage 

 To better understand the mechanism by which α-chaconine regulates the 

expression of cholesterol biosynthesis genes in Caco-2 cells, we determined its 

possible effect on expression of SREBP-2 at the (post)-translational level. Upon 

exposure of differentiated Caco-2 cells to 10 µM α-chaconine for 6 hours, nuclear and 

membrane fractions were isolated from the cell lysate and Western blot analysis was 

conducted using a specific antibody against SREBP-2. Western blotting demonstrated 

that the level of precursor SREBP-2 in the membrane fraction was increased 

significantly after treatment with α-chaconine, however there was no significant 

increase in the levels of the mature protein (Figure 4-1A). With respect to the 

abundance of SREBP-2 in the nuclear fraction, no precursor SREBP-2 could be 

detected (data not shown) but treatment of Caco-2 cells with α-chaconine resulted in a 

up to 3-fold increase in mature SREBP-2 protein levels (Figure 4-1B). However, this 

increase was of marginal statistical significance (p=0.07) due to large variation among 

the α-chaconine-treated samples (S.D. = + 1.78).  
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3.2. Effect of α-chaconine on phosphorylation of MAP and AKT kinases 

Since analysis of data from previous microarray experiments indicated that 

several genes involved in MAPK and AKT pathways also were affected, we examined 

by Western blotting whether α-chaconine treatment resulted in activation (i.e. 

phosphorylation) of AKT and the MAP kinases ERK, JNK and p38. Exposure of 

differentiated Caco-2 cells to 10 µM α-chaconine for 6 hours resulted in a significant 

increase in phosphorylation of JNK, ERK and AKT but not p38 (Figure 4-2). Since 

p38 was not phosphorylated and thus might not be involved in induction of cholesterol 

biosynthesis genes by α-chaconine, it was not included in the subsequent kinase 

inhibitor experiments.  

 

3.3. Effects of LY294002, PD98059 and SP600125 on α-chaconine-induced expression 

of cholesterol biosynthesis genes 

In order to examine whether, and if so, which of the α-chaconine-induced 

phosphorylations in the MAPK and PI3K/AKT pathways are crucial for the 

upregulation of cholesterol biosynthesis genes, we determined the effects of cell 

permeable inhibitors of MEK1 (PD98059), JNK (SP600125) and PI3K (LY294002) 

on the expression of a number of representative genes by real-time RT-PCR (Table 4-

2). LY294002 was used as PI3K is an upstream regulator of AKT (28, 29), PD98059 

inhibits MEK1, which is a dual-specificity kinase that phosphorylates ERK1/2 (30), 

and SP600125 directly inhibits JNK. Caco-2 cells were pre-treated with either 

PD98059 (50 µM) or SP600125 (60 µM) or LY294002 (60 µM) or a combination of 

all inhibitors for 24 hours prior to co-incubation with 10 µM α-chaconine for 6 hours. 

As shown in Figure 4-3, each inhibitor was able to block the phophorylation of its 

respective kinase and α-chaconine could not overcome this inhibition (Figure 4-3). 
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Figure 4-2. Effect of α-chaconine on ERK, JNK, p38 and AKT phosphorylation. 

Caco-2 cells were exposed to 10 µM of α-chaconine for 6 hours. Total cell lysates (30 

µg of protein) were analyzed by western blotting for phosphorylated and total ERK, 

JNK, p38 and AKT. First, blots were probed for the phosphorylated forms, and then 

they were stripped and reprobed with a corresponding antibody against the total 

protein form for assessment of equal loading. Integrated densitometric data from 3 

independent experiments are shown as a bar graph and the illustrated data represent 

one of the three independent experiments. Results are presented as means + S.D. 

(n=3). * Significant difference from solvent control, p<0.05. 

Two way ANOVA and contrast analysis of the RT-PCR data allowed the 

determination of the effects of α-chaconine or the inhibitors and possible interaction 

between α-chaconine and the inhibitors on the transcription of cholesterol biosynthesis 

genes (Table 4-2, Figure 4-4). In particular, determining the presence of an interaction 

between α-chaconine and the kinase inhibitors would reveal the possible role of the 

MAPK and PI3K/AKT pathways in α-chaconine-induced expression of cholesterol 
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biosynthesis genes. Our data showed a distinct effect of α-chaconine or inhibitor(s) on 

the level of cholesterol biosynthesis gene expression, with no significant interaction 

observed between α-chaconine treatment and inhibitor(s) pre-treatment, with the 

exception of the gene SC5DL (Table 4-2, Figure 4-4). Figure 4 shows that the 

expression of most cholesterol biosynthesis genes was increased when cells were 

exposed to α-chaconine in the absence as well as in the presence of inhibitors (Table 

4-2, p<0.05). For the SC5DL gene, a statistically significant interaction effect was 

observed between α-chaconine and inhibitor, when all three kinase inhibitors (ERK, 

JNK and AKT) were simultaneously applied. A decrease in expression of this gene 

was observed suggesting that blocking all pathways affected the induction of this gene 

by α-chaconine (Table 4-2, p-value of 0.02). Kinase inhibitors that were tested, either 

alone or in combination, however, did not prevent the induction of the other 

cholesterol biosynthesis genes following α-chaconine exposure. Using the exposures 

without inhibitors (with or without α-chaconine) as a basis of comparison, pre-

treatment of the cells with PI3K/AKT pathway inhibitor LY294002 alone or a cocktail 

of all inhibitors, reduced the expression levels of cholesterol biosynthesis genes 

significantly (Table 4-2, Figure 4-4). On the other hand, pre-treatment with the ERK 

inhibitor PD98059 alone, resulted in increased transcription of CYP51A1 (Figure 4-4, 

Table 4-2, p<0.04). Taken together, the overall outcome of the inhibition experiments 

indicate that, although particularly the PI3K/AKT signaling pathway is important for 

basal cholesterol biosynthesis gene expression, neither this pathway nor JNK and ERK 

pathways are mediating the α-chaconine-induced expression of these genes.  
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Figure 4-3. Confirmation of the inhibition of phophorylation of ERK, JNK and AKT 

kinases by specific chemical inhibitors. Caco-2 cells were incubated with PD98059 

(50 µM; Panel A) or SP600125 (60 µM; Panel B) or LY294002 (60 µM; Panel C) or 

all chemical inhibitors (indicated with �a� in Panels A-C) for 24 hours prior to 

exposure to 10 µM of α-chaconine for 6 hours. Total cell lysates (30 µg of protein) 

were analyzed by western blotting for phosphorylated and total ERK, JNK and AKT. 

First, blots were probed for the phosphorylated forms, and then they were stripped and 

reprobed with a corresponding antibody against the all forms for assessment of equal 

loading. The illustrated data represent one of the three independent experiments. 
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Figure 4-4. Two Way ANOVA to examine possible interaction of α-chaconine and 

inhibitors (ERK pathway inhibitor (PD98059), JNK pathway inhibitor (SP600125), 

PI3K/AKT pathway inhibitor (LY294002) and combination of all inhibitors) on 

expression of selected cholesterol biosynthesis gene. 
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Discussion 

Our previous microarray studies showed that α-chaconine, α-solanine and 

varying mixtures of these two glycoalkaloids induce cholesterol biosynthesis genes at 

non-cytotoxic concentrations in intestinal epithelial cells (13, 14). We also found that 

genes in the PI3K/AKT and MAPK pathways and their downstream effectors such as 

Jun, Myc and Fos were upregulated. To understand the mechanisms underlying the 

induction of cholesterol biosynthesis genes by glycoalkaloids, the effect of α-

chaconine on the expression of SREBP-2, the main regulator of cholesterol 

biosynthesis, was investigated. Since the MAPK and PI3K/AKT pathways have been 

shown to regulate the activity of SREBP-2 and consequently cholesterol biosynthesis 

gene transcription (23-26), the importance of PI3K/AKT and MAPK pathways in the 

induction of cholesterol biosynthesis genes by glycoalkaloids also was determined.  

Our data indicate that α-chaconine regulates SREBP-2 expression at the (post-) 

translational level. A significant increase in SREBP-2 precursor protein levels in the 

membrane fraction of the Caco-2 cell lysates was observed. Although, this increase in 

precursor levels could be a reflection of the increase in SREBP-2 gene expression by 

α-chaconine, it could also be due to increased SREBP-2 protein stabilization, as 

normally these proteins are rapidly ubiquitinated and degraded by 26S proteosome 

(31). In addition, we also observed a 3-fold increase in mature SREBP-2 protein levels 

in the nuclear fraction of α-chaconine-treated cells. This increase of cleaved SREBP-2 

in the nucleus is correlated to increased precursor protein levels in the membrane 

fraction of the cell lysates. However, other explanations for this increase can be 

envisaged. It is possible that the increase is (at least partially) attributed to a 

stimulatory effect of α-chaconine on translocation of the mature SREBP-2 fragment 

into the nucleus, where it activates transcription of cholesterol biosynthesis genes. The 

initial trigger for this stimulatory effect may be due to depletion of cholesterol in 
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membranes caused by the formation of glycoalkaloid/sterol complexes (12). 

Decreased membrane cholesterol, may promote a sterol mediated proteolytic cleavage 

that increases levels of mature SREBP-2 protein (18).  

In the current study, Western blot analyses revealed that levels of 

phosphorylated AKT, JNK and ERK proteins increased following treatment of Caco-2 

cells with α-chaconine. Subsequently, we determined whether the ERK, JNK or 

PI3K/AKT pathways were necessary for the induction of cholesterol biosynthesis 

genes by α-chaconine using specific kinase inhibitors. We observed a significant 

increase in expression of cholesterol biosynthesis genes in Caco-2 cells following α-

chaconine treatment, which confirmed our previous studies (13, 14). Inhibiting the 

signaling pathways, particularly the PI3K/AKT pathway by LY294002, reduced the 

(basal) expression levels of cholesterol biosynthesis genes significantly, both in the 

absence and presence of α-chaconine. This is in agreement with findings from other 

studies (23) that indicate a role of the PI3K/AKT pathway in cholesterol biosynthesis 

gene regulation. 

In spite of these inhibition effects, two-way ANOVA analysis revealed no 

significant interactions between α-chaconine and the inhibitors of ERK, JNK or 

PI3K/AKT pathways, indicating that the inhibitors and α-chaconine did not influence 

each other�s effect on the transcription of cholesterol biosynthesis genes, except for 

SC5DL. Inhibition of all pathways reduced α-chaconine-induced transcription of 

SC5DL. Given that five out of the six genes analyzed did not show a significant 

interaction effect between inhibitors and α-chaconine, we concluded that activation of 

these pathways is not crucial for glycoalkaloid-induced transcription of cholesterol 

biosynthesis genes but may have a modulatory role (i.e. enhancer effect). The results 

suggest that α-chaconine induces cholesterol biosynthesis gene expression through 

other more pivotal mechanisms, which may be independent of the MAPK and 
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PI3K/AKT pathways. We observed that α-chaconine treatment resulted in an increase 

of precursor and mature SREBP-2 in the membrane and nuclear fractions of Caco-2 

cell lysates, respectively. It still remains to be determined whether these changes in the 

level of SREBP-2 are linked to a mechanism that is crucial for α-chaconine-induced 

expression and acts independently of the MAPK and PI3K/AKT pathways. 

 Thus far, the precise mechanisms underlying the toxicological and potential 

beneficial effects of glycoalkaloids are understood poorly. As indicated in the present 

study, the PI3K/AKT, JNK and ERK signaling pathways were affected by α-

chaconine and may play a role in some of the observed effects. It is likely that the 

biological processes affected by these pathways are dependent on the cell type, 

glycoalkaloid concentration, and the status of other signal transduction pathways. For 

instance, Yang and co-workers (32) observed that in HT29 cells, α-chaconine induced 

apoptosis, which may be mediated through the suppression of ERK1/2 

phosphorylation and subsequent activation of caspase 3, whereas we have observed 

increased phosphorylation of ERK1/2.  

In conclusion, this study indicates that α-chaconine induces phosphorylation of 

AKT, ERK and JNK in intestinal epithelial cells. However, these phosphorylation 

events are not necessary for the induction of cholesterol biosynthesis genes by α-

chaconine. Since these signaling pathways play a central role in many diverse cellular 

processes and possibly influence glycoalkaloid toxic outcomes, further studies of their 

roles in other glycoalkaloid-induced effects, e.g., apoptosis and cell cycle effects (13, 

14) would be informative. The present work contributes to the knowledge base of the 

molecular mechanisms of action of glycoalkaloids and may lead to a better 

understanding of their toxic and possible beneficial effects.  
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CHAPTER 5 

CONCLUSION 

 

The specific aims of this dissertation were first, to determine the molecular 

mechanism(s) underlying glycoalkaloid-induced effects, in particular their membrane 

disruptive effect in intestinal epithelial cells. Second, to evaluate the usefulness of 

DNA microarrays in discriminating individual glycoalkaloids and glycoalkaloid 

mixtures of varying α-chaconine/α-solanine ratios based on their differences in effect 

severity and potential toxicities. We demonstrated that DNA microarrays can be useful 

in identifying hitherto unknown mechanisms of action, identifying potential toxicity 

biomarkers and assessing the effects of mixtures of compounds. These studies 

contribute towards a better insight into the toxic and potential beneficial effects of 

potato glycoalkaloids. This understanding may enhance current efforts to develop 

transgenic potatoes with altered glycoalkaloid levels and/or ratios. In addition, by 

exploring the application/sensitivity of transcriptomic techniques in identifying early 

indicators of toxicity and screening between similar class/effect compounds, these 

studies clarify the potential application of this technique to �whole foods� assessments 

incorporating different models of impaired nutritional states.  

This chapter summarizes the dissertation�s main findings, implications and 

future perspectives.  
 

A. Main findings 

i. Detection of glycoalkaloid-induced transcriptional effects in Caco-2 cells 

Analysis of data of the gene expression profiling studies revealed that in 

differentiated Caco-2 cells, potato glycoalkaloids affect several genes and processes 

involved in cholesterol biosynthesis, apoptosis, cell cycle, lipid metabolism, amino 
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acid, growth, chemokine and MAPK and PI3K/AKT signaling. The interpretation of 

these data was strengthened by anchoring observations of transcriptional effects with 

functional endpoints. Conventional toxicological or molecular assays, i.e., LDH 

assays, apoptosis and cell cycle analyses experiments, RT-PCR and Western blot 

analyses were conducted to interpret and confirm observed effects at the gene 

expression level. 

The most prominent and consistent finding was the induction of transcription 

of cholesterol biosynthesis genes in intestinal epithelial cells by potato glycoalkaloids. 

Chapters 2 and 3, examine the induction of these genes by non-cytotoxic glycoalkaloid 

treatments and the repression of their induction by higher, cytotoxic concentrations. 

This was explained, in part, by glycoalkaloids� well described mechanism of 

membrane disruption (1-3). It was concluded that early induction of cholesterol 

biosynthesis genes likely reflects a �rescue� response to glycoalkaloid toxicity that 

prevents cells from dying.  

Several genes involved in cell cycle progression and apoptosis also responded 

to glycoalkaloid treatments. Chapter 3 describes cell cycle and apoptosis analyses 

experiments designed on the basis of those observations. 5-20µM α-chaconine resulted 

in disproportionate accumulation of Caco-2 cells in the G2/M phase. On the other 

hand, a more cytotoxic concentration of 100 µM resulted in cell accumulation in the 

G0/G1 phase, which was in agreement with a previous study that showed that 

prolonged exposure of HT29 cells to 6 µM α-chaconine resulted in accumulation of 

cells in the sub G0/G1(4). Hence, the glycoalkaloid-induced effects on the cell cycle 

appeared to depend on the cell type, exposure duration and glycoalkaloid 

concentration. Annexin V assays confirmed gene expression data and revealed that 

glycoalkaloid exposure results in late-apoptotic or necrotic death of Caco-2 cells, 

which was in agreement with observed LDH assay results.  
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ii. Elucidation of mechanism(s) of action/effect 

DNA microarray technology serves as a useful tool for generating and/or 

focusing hypotheses. In Chapter 2, we proposed that non-cytotoxic glycoalkaloid 

concentrations induce the formation of glycoalkaloid/sterol complexes in cellular 

membranes that, in turn, result in the depletion of cellular cholesterol resulting in 

disruption of lipid rafts. We also proposed that lipid raft disruption also affects several 

growth, MAPK and PI3K/AKT pathways, subsequently inducing cholesterol 

biosynthesis gene expression. Chapter 4 describes experiments designed to test the 

role of MAPK or PI3K/AKT pathways in α-chaconine-induced transcription of 

cholesterol biosynthesis genes in Caco-2 cells. Western blot analyses revealed that 

although α-chaconine induced the phophorylation of JNK, ERK and AKT proteins, 

these pathways are not crucial for α-chaconine-induced transcription of cholesterol 

biosynthesis genes. Therefore, it can be postulated that other mechanisms, which may 

be independent of the MAPK and PI3K/AKT pathways, including possibly (post)-

translational effects of α-chaconine on the expression of SREBP-2 may be more 

pivotal for the observed induction of cholesterol biosynthesis genes (see below). Also 

in Chapter 4, the possible effect of α-chaconine on expression and processing of the 

transcription factor SREBP-2, which is known to function as key regulator of 

cholesterol biosynthesis genes (5), was investigated. We observed that α-chaconine 

treatment resulted in an increase of precursor and mature SREBP-2 in the membrane 

and nuclear fractions of Caco-2 cell lysates, respectively. It still remains to be 

determined whether these changes in the level of SREBP-2 are linked to a mechanism 

that is crucial for α-chaconine-induced expression and acts independently of the 

MAPK and PI3K/AKT pathways (see also Biii). 

 Although we observed that the MAPK and PI3K/AKT pathways were not 

required for α-chaconine-induced transcription of cholesterol biosynthesis genes, they 
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play a central role in many diverse cellular processes, for example the cell cycle, 

apoptosis and cell differentiation, and therefore can influence toxic outcomes. It is 

likely that the toxicological outcomes/effects of glycoalkaloids may depend on the 

status of these signaling pathways, cell phenotype and the concentrations of 

glycoalkaloid exposure.  

 

iii. Detection of signature expression patterns and subtle effect differences  

Gene expression profiles potentially identify signature patterns that reflect 

cellular responses to treatments/exposures. Chapter 3 compared transcriptional 

responses of Caco-2 cells to treatments with equimolar concentrations of the two main 

potato glycoalkaloids, α-chaconine and α-solanine, and their mixtures thereof. 

Principal component and hierarchical analyses revealed clustering or separation of the 

gene expression profiles of the different glycoalkaloid treatments, which correlated 

well with their severities of effect on lactate dehydrogenase membrane leakage in 

Caco-2 cells. Gene expression analyses based on the pathway analysis tools, MetaCore 

and ErmineJ revealed that glycoalkaloid treatments affected similar pathways and 

processes. Thus, we concluded that observed differences in gene expression profiles 

reflected differences in effect intensity. This confirmed previous studies (6-12) 

demonstrating that potato glycoalkaloids act by the same mechanism of action but 

differ with regard to potency. α-Solanine was the least potent of the two 

glycoalkaloids, whereas for the glycoalkaloid mixtures, confirmation that at certain α-

chaconine/α-solanine ratios, there is increased toxicity/potency due to synergism. To 

varying extents, DNA microarrays used in conjunction with LDH assays discriminated 

among the glycoalkaloid treatments on the basis of effect severity, thus demonstrating 

DNA microarray technology�s potential for detecting subtle differences in the 

toxicities of individual compounds, mixtures, and/or possibly of whole foods. 
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 These studies also observed overlaps in the gene expression profiles of the 

various glycoalkaloid treatments. Several genes involved in the cell cycle, apoptosis, 

growth signaling, MAPK and PI3K/AKT signaling and lipid metabolism were 

particularly common in these expression profiles. Such overlapping gene lists 

potentially provide a basis for reliably identifying (specific) biomarkers of 

glycoalkaloid toxicity, however further studies are required to fully explore this 

possibility.  
 

B. Implications and Future perspectives  

i. Systems biology approach 

 Understanding the transcriptional effects of glycoalkaloids is an initial step in 

determining their mechanism(s) of action, however, a �systems biology approach� (13) 

is necessary for a more complete insight. As shown in Chapter 4, some of the effects 

of glycoalkaloids may occur at the protein level, for example phophorylation of JNK, 

ERK and AKT proteins and possibly proteolytic cleavage of SREBP-2, or at the 

metabolome level (interactions of glycoalkaloids with (and the generation of) other 

metabolites). Therefore, to obtain a holistic picture of the mechanisms of action of 

glycoalkaloids, and generally of other toxins, studying effects at the genome, 

metabolome and (phospho) proteome levels is essential. 

Chapter 3 demonstrates the potential use of microarrays in combination with 

classical toxicological tests in testing compounds with similar chemical structures, 

mechanism(s) of action and present in different food/chemical component ratios. As 

this technology has the potency to provide early and sensitive effect indicators, it may 

be used to screen for subtle differences of whole foods, for example the assessment of 

the substantial equivalence of conventionally bred and genetically modified crops. 

However, in whole foods/mixtures and diets, food components act simultaneously in 
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constantly changing combinations resulting in different gene expression profiles, 

which may make the quest to identify signature gene expression patterns and to 

translate these to safety of food components difficult. In spite of this challenge, 

application of a systems biology approach whereby the effects of glycoalkaloids are 

assessed in the context of the diet or the whole potato and at relevant doses of intake 

(13) is essential and likely will provide a fuller understanding of the effects of dietary 

mixtures. 

Another likely important determinant of toxicological outcomes is the 

nutritional status of the consumer. For instance, studies on potato glycoalkaloids have 

shown that folate, glucose-6-phosphate and nicotine adenine dinucleotide phosphate 

reduce glycoalkaloid-induced developmental toxicity in frog embryos (14, 15). Given 

that potatoes represent a major nutritional part of the diet of many individuals, further 

studies determining the effect of nutritional status on glycoalkaloid-induced toxicities 

are recommended. In this respect, in particular the effect of folate nutriture on 

glycoalkaloid-induced toxicities provides an interesting model for examining such 

relationships.  

 

ii. Identification of glycoalkaloid specific effects 

Gene expression profiling experiments generally produce many data. Reducing 

these data to useful information remains a challenge, for example distinguishing 

adaptive/reversible responses from early specific glycoalkaloid-induced toxicities. In 

order to define the conditions resulting in reproducible and specific gene responses (i.e 

responses not due to cytotoxicity), in Chapter 2 Caco-2 cells were exposed in three 

independent experiments to various concentrations of α-chaconine for 2, 4, 6 and 24 

hours, which were conditions representing various degrees of membrane disruption. 

Based on the outcome of these experiments, Chapters 3 and 4 mainly focused on a 
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concentration (10 µM) and exposure duration (6 hour) at which minimal membrane 

disruption and maximal relevant gene expression effects were observed. 

Studies have shown that gene expression profiles also vary depending on tissue 

or cell type, for instance, hexachlorobenzene elicited different gene expression profiles 

in various organs in Brown Norway rats (16). Although the intestine is the main target 

of glycoalkaloids, determination of their effects in other tissues and cell lines may be 

necessary to identify cell or tissue specific responses. Comparisons of glycoalkaloid-

induced gene effects with those of other known chemical class toxicants (particularly 

membrane disruptors; see below) also are essential. These will help to better assess the 

significance and/or specificity of glycoalkaloid-induced effects. Determining cell- , 

tissue- and glycoalkaloid-specific effects will help elucidate more fully mechanism(s) 

of effect, identify previously unknown functions (beneficial or deleterious) and assist 

in the identification of glycoalkaloid toxicity biomarkers.  

 

iii. Confirmation of hypotheses 

Chapter 2 described the hypothesis that glycoalkaloids deplete cellular 

cholesterol subsequently leading to lipid raft disruption and activation of various 

signaling pathways. Unfortunately, time constraints and technical problems, precluded 

examining glycoalkaloid effects on lipid rafts. Nevertheless, we compared the gene 

expression effects of α-chaconine in Caco-2 cells with those of other well known 

membrane disrupters and detergents (saponin, Triton X100, SDS, filipin and methyl-β-

cyclodextrin). We observed that α-chaconine and methyl-β-cyclodextrin, which is a 

well known cholesterol-depleting agent that results in lipid raft disruption (17-22), 

exhibited similar gene expression profiles (data not shown). Lipid raft isolation 

experiments using sucrose gradient centrifugation and confocal microscopic 

visualization and analysis of lipid raft domains by fluorescence tagging with for 
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example FITC-CTx, which selectively binds to the lipid raft marker ganglioside GM1 

(23), could be carried out to assess effects of glycoalkaloids on lipid rafts.  

In addition, as already mentioned before under Aii, the precise mechanism of 

α-chaconine-induced transcription of cholesterol biosynthesis genes remains unclear. 

Further elucidation of the mechanism of proteolytic cleavage and possibly protein 

stabilization of the SREBP-2 are necessary, for example by analysis of SREBP-2 

processing by SCAP-insig1-binding assay and effect of α-chaconine in SCAP-

deficient cell lines. Also 26S proteosome inhibition experiments would be 

informative.  

  

iv. Extrapolation of in vitro results to in vivo  

This dissertation explored the effects of glycoalkaloids in vitro; these studies 

should be followed by assessments of their in vivo relevance. Though not included in 

this dissertation, we in collaboration with the Danish National Food Institute 

conducted in vivo experiments, whereby the transcriptional effects of 33.3mg of total 

glycoalkaloid in α-solanine/α-chaconine ratios of either 1:70 or 1:3.7 on epithelial 

cells from the small intestine of Syrian hamsters were determined. The treatments 

were administered by gavage for 28 days. In this hamster study, and in contrast to the 

in vitro studies, we did not observe an increase in expression of cholesterol 

biosynthesis genes. This discrepancy may have been a consequence of cross 

hybridization of hamster RNA on to human arrays (hamster-specific arrays were not 

available). However, a down regulation of genes involved in lipid metabolism and bile 

acid biosynthesis pathways was observed and can be explained in the light of 

depletion of cholesterol from cell membranes due to the formation of glycoalkaloid-

sterol complexes. Moreover, significant down regulation of several genes involved in 

sphingolipid metabolism was identified by MetaCore software. Other studies have 
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shown parallel increases in sphingomyelin and cholesterol content in various models 

including Caco-2 cells (24). Sphingomyelin, one of the main forms of sphingolipids 

and a main constituent of lipid rafts (25), was shown to have a high affinity for 

cholesterol and may be a major player in maintaining cholesterol in plasma membrane 

compartments (26). In particular, sphingomyelin phosphodiesterase 3 (SMPD3) 

(sphingomyelinase), a gene that initiates sphingomyelin catabolism (27) was 

significantly down regulated in our hamster study. Thus, intestinal cells may preserve 

sphingomyelin levels by reducing sphingomyelin catabolism. However, further studies 

are necessary to allow extrapolation of observed in vitro effects to the in vivo situation.  

 

D. Conclusions 

This dissertation demonstrates the potential application of DNA microarray 

technology in food safety assessments, i.e. to identify known and thus far unknown 

effects of single or multiple-mixture compounds and to elucidate mechanism(s) of 

action. Although, the results obtained did not indicate that this technology was more 

sensitive than current assays, for example cell leakage, they demonstrated an added 

advantage of detecting subtle toxic differences. This advantage is particularly relevant 

to whole food testing for which conventional toxicology tests are frequently 

insufficient. This dissertation also illustrated that DNA microarray experiments allow 

the definition of hypotheses on candidate markers of toxicity and mechanisms of 

action, which can be further addressed using a systems biology approach in which 

various other aspects and techniques are incorporated. With respect to safety 

assessment of food, such an approach will be particularly attractive when for example 

the nutritional status of consumers is suspected to play a role. 
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