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In order to steer through a world characterized by a complex mixture of

variability and structure, organisms rely upon implicit statistical learning, the

capability to extract probabalistic patterns occurring in environmental stimuli.

Although statistical learning has been found to occur across a myriad of

domains, there has been little investigation into the effect that sense modality

and other stimulus attributes may have on learning. In a series of experiments,

I investigate to what extent implicit statistical learning is constrained and

influenced by the nature of the input in which the statistical regularities occur.

All experiments have in common the use of artificial grammar learning

methodology, where adult participants are incidentally exposed to

statistically-governed patterns and then are tested on their ability to apply

their acquired knowledge to novel instances. Chapter 2 presents two

experiments that compared learning across touch, vision, and audition,

producing evidence for modality constraints. Specifically, the auditory

modality displayed a quantitative learning advantage compared to vision and

touch; additionally, each sense modality was more or less attuned to specific

aspects of the input. Chapter 3 describes an experiment that further explored

modality constraints by manipulating both the presentation format (temporal,

spatial, or spatiotemporal) and presentation rate for visual and auditory

material. Consistent with a modality-constrained view of learning, vision and



audition were best at encoding spatial and temporal regularities, respectively.

Finally, using a novel cross-over design, Chapter 4 presents three experiments

that pitted abstract, amodal processing against stimulus-specific learning and

found that statistical learning is mediated to a greater extent by stimulus-

specific, not abstract, representations. Taken together, the results from these

experiments suggest that statistical learning inherently involves learning

mechanisms that are heavily influenced by the perceptual and sensory

characteristics of the stimuli. I argue that a full understanding of statistical

learning – and likely other aspects of language and cognition – will come only

by specifying the role played by the senses. I conclude with a proposal for a

perceptual, modality-constrained view of implicit statistical learning framed

within the context of cognition as a whole.
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CHAPTER ONE
Introduction

Over a century ago, William James remarked that  “…our capacities for

forming new habits, for remembering sequences, and for abstracting general

properties from things and associating their usual consequences with

them…[are] exactly the faculties needed for steering us in this world of mixed

variety and uniformity”  (James, 1985/1892; p. xxvii). As James noted, the

world is a complex mixture of variability and structure. Learning to perceive

relevant environmental regularities amidst a background of change is an

important function for any successfully adapting organism. For humans,

detecting structure is mediated by multiple sense modalities. For instance, in

the auditory domain, speech elements (e.g., words and phonemes) occur not

randomly but according to certain regularities that can be described in terms

of statistical or probabilistic relationships (Altmann, 2002; Christiansen, Allen,

& Seidenberg, 1998; Saffran, Aslin, & Newport, 1996). That is, language, once

learned, does not sound like incomprehensible gibberish; there is a lawful

order to the way that speech sounds and words occur in speech. Music is

another example of a structured auditory stimulus domain: music elements

occur with particular temporal and rhythmic regularities (Drake & Bertrand,

2001) that are detectable by adults and infants (Hannon & Johnson, in press).

Structure is also inherent in our visual environment, in the patterns of letters

and words that occur in print, as well as in the way in which objects and

features are arrayed in a visual scene (Fiser & Aslin, 2001; Olshausen & Field,

2000). Consider that our visual experience does not look like the chaotic

“white noise” of a television screen but contains recognizable exemplars in a
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non-random configuration. Finally, the tactile sense also subserves the

detection of environmental regularities: tactile communication devices used

by the visually impaired, such as Braille, exploit the fact that the sense of

touch can usefully pick up meaningful patterns of spatiotemporal stimulus

energies (Heller & Schiff, 1991).

Several decades of research have revealed that the ability to detect and

use such environmental regularities is not only fundamental to human

cognition and survival, but occurs relatively automatically and without

conscious awareness (Barlow, 2001; Berry, 1997; Berry & Dienes, 1993;

Cleeremans, Destrebecqz, & Boyer, 1998; Reber, 1993; Seger, 1994; Stadler &

Frensch, 1998). This learning ability, here referred to as implicit statistical

learning, has been investigated through the use of the artificial grammar

learning (AGL) paradigm (Reber, 1967). In a standard AGL experiment, an

artificial grammar is used to generate stimuli that conform to certain rules

governing the order that elements can occur within a sequence. After being

exposed to a subset of structured sequences under incidental and

unsupervised learning conditions, it is the participants’ task to classify novel

stimuli in terms of whether they conform to the rules of the grammar.

Participants typically achieve a moderate degree of success, though they are

unable to verbally express the nature of the rules, leading to the assumption

that learning is “implicit”. Furthermore, because the task presumably requires

learners to extract the probabilistic structure of the stimuli, such as detecting

element co-occurrences or covariations between events, learning can be

regarded as one of computing and encoding statistically-based patterns.

The AGL paradigm has provided a rich database of knowledge

regarding the characteristics of implicit statistical learning. However, one
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major limitation to these studies is that the majority have used a single,

narrow stimulus domain (strings of letters), making it difficult to generalize

results across cognition. Researchers have mostly been content to study

implicit statistical learning without regard to the effect that different stimuli

may have on learning, likely due in part to two reasons. First, the field of

cognition has long been enamored with theories of amodal processing, where

perception is considered to be separate and independent of “higher” cognitive

processes such as memory or concept formation (Fodor, 1983; Pylyshyn, 1999).

Under this view, the perceptual characteristics of the stimulus elements are

relatively inconsequential to the operation of the supposed amodal implicit

learning mechanisms. The second reason is that, from the outset of AGL

research, it was discovered that participants could apparently transfer their

knowledge of the input structure from one letter set to another; that is, after

being exposed to grammatical strings using one letter vocabulary, learners

could then apply their knowledge of the underlying patterns to new strings

formed with a different letter set (Brooks & Vokey, 1991; Gomez, 1997;

Knowlton & Squire, 1996; Manza & Reber, 1997; Reber, 1969; Shanks,

Johnstone, & Staggs, 1997; Whittlesea & Dorken, 1993). These transfer data

suggest to some that the acquired knowledge in AGL is abstract, consisting of

a high-level representation that generalizes the underlying complex input

structure while necessarily excluding stimulus-specific information (Reber,

1993).

Because of these two reasons, most researchers have resisted exploring

any effect that sense modality or stimulus characteristics might have on

implicit statistical learning, presumably because they do not expect any effect

to exist. In the handful of studies that have recently examined statistical
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learning in different sensory and stimulus domains (e.g., Fiser & Aslin, 2002,

2001; Pothos & Bailey, 2000; Saffran, Johnson, Aslin, & Newport, 1999), the

data have not revealed modality differences. However, such a conclusion may

be premature given that these studies have not used comparable procedures

and materials when comparing learning in different domains. The one notable

exception is Saffran (2002), who examined AGL of visual and auditory

material and did in fact report modality effects. What is needed beyond this

single study is a more rigorous examination of learning across modalities and

stimulus domains. A theory of implicit learning, or indeed of any aspect of

cognition, will be incomplete if it does not take into account the role that sense

modality plays in processing (Tulving & Madigan, 1970).

Thus, the goal of this thesis is to investigate the role that sense modality

and stimulus characteristics have on implicit statistical learning. To preview,

the evidence from the following experiments suggests, in contrast to most

prevailing views, that the perceptual characteristics of the stimulus elements

do effect learning in important ways. Chapter 2 is a recently published paper

in the Journal of Experimental Psychology: Learning, Memory, and Cognition that

explores statistical learning of tactile, visual, and auditory sequences (Conway

& Christiansen, 2005), presenting the first empirical evidence of implicit

statistical learning in the tactile domain. We find that although all three sense

modalities have the capability for affording AGL, there exist prominent

modality-specific learning differences. These learning differences took the

form of what we refer to as quantitative and qualitative effects. The learning of

sequential structure proceeded quantitatively better for auditory input

compared to the other modalities. Additionally, each sense modality was



5

more or less qualitatively attuned to picking up regularities that occurred

toward the beginning or ending parts of sequences.

One possibility is that this auditory learning advantage is due to more

global modality constraints that affect perception, learning, and memory

across the senses. I argue that audition is excellent at tasks requiring temporal

processing adroitness, whereas vision excels at handling spatial

configurations. Chapter 3, a paper to be submitted to the journal Memory and

Cognition, directly explores this hypothesis by manipulating the presentation

format and presentation rate in visual AGL. Visual stimuli were distributed

temporally, spatially, or spatiotemporally. As predicted by our modality-

constrained view, learning in the visual-spatial condition exceeded the other

visual conditions, comparable to an auditory (temporal) condition.

Furthermore, we found that learning of visual-temporal structure declined the

most for the faster presentation rate, consistent with other research showing a

similar effect in short-term memory of temporal rhythms (Collier & Logan,

2002). Finally, the qualitative biases observed earlier in Chapter 2 were

replicated, supporting the notion that each learning subsystem has different

properties that govern its encoding efficacy.

Even though these two papers highlight the existence of learning-

related modality constraints, it may still be possible that the acquired

knowledge in an AGL task consists mainly of amodal or abstract

representations. To investigate this possibility, Chapter 4 presents a paper to

be submitted to Psychological Science that pits abstract versus stimulus-specific

knowledge. Using a novel modification of the standard AGL design, we

presented two different sets of statistically-governed stimuli to participants,

either in two different sense modalities or within the same modality. At test,
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they were given new exemplars from each of the two grammars, but with all

test items instantiated with one of the vocabularies only. The data showed that

participants learned both sets of structured stimuli independent of one

another – that is, specific to the sense modality in which it was originally

presented – as long as the two sets of stimuli existed in different sense

modalities (audition versus vision) or along different perceptual dimensions

(nonsense syllables versus tone sequences; color sequences versus shape

sequences). Thus, rather than the knowledge being in an amodal or abstract

form, these experiments show that AGL is highly stimulus-specific.

Together, these three papers point toward a new account of implicit

statistical learning, one that stresses sensory and perceptual constraints. In the

final chapter, Chapter 5, I propose that implicit learning arises from and is

continuous with perceptual processing, and as such, is heavily affected by the

sensory and perceptual features of the input domain in question. I offer an

outline for a perceptual theory of implicit statistical learning, guided by an

embodiment perspective (e.g., Barsalou, 1999; Glenberg, 1997; Kan et al., 2003;

Pecher, Zeelenberg, & Barsalou, 2004; Pulvermüller, 2001), and drawing upon

data and theory from diverse research domains such as implicit memory,

perceptual learning, working memory, and serial recall. In closing, I suggest a

framework for understanding cognition as a whole in terms of modality-

constrained systems that perform a multitude of inter-related perceptual,

learning, and memorial functions.

In order to provide a foundation for the learning abilities displayed in

the next chapters, I next review recent evidence investigating statistical

learning in non-human primates.
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Statistical Learning in Non-Human Primates

It appears that many animal species are sensitive to statistical

information in the environment (Kelly & Martin, 1994).  For instance, rats are

highly sensitive to rate information governing the placement of food in a T-

shaped maze. Over numerous trials, the rat distributes its left-right choices

based on the probabilistic pattern of food placement (e.g., 70% to the left

versus 30%to the right). Rats also are sensitive to the contingencies occurring

between variables, demonstrated in classic conditioning experiments

(Rescorla, 1988). Thus, based on the evidence from rats, it appears that non-

human animals are adept at detecting statistical relationships in the

environment.

However, only recently have investigators examined statistical learning

in non-humans using a task comparable to that used with human adults and

infants (Hauser, Newport, & Aslin, 2001; for a review of non-human

sequential learning abilities more generally, see Conway & Christiansen,

2001). In the Hauser et al. study, cotton-top tamarins (Saguinus oedipus) first

were exposed to a 20-min sequential speech stream, consisting of four

different trisyllabic nonsense words (e.g., tupiro, golabu, bidaku, padoti)

concatenated together in random order.  The boundaries between words were

not marked by any acoustic or prosodic cues.  Afterwards, the tamarins were

exposed to different test sound sequences and were assessed on whether they

oriented toward the sound when it was played.  Some of the test sequences

were words that were contained within the speech stream, some were non-

words which contained syllables in an order that had not occurred in the

speech stream, and others were part-words, which contained syllable

sequences spanning a word boundary.  The tamarins were significantly more
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likely to orient toward non-words than to words, suggesting that they had

discriminated test sequences on the basis of syllable order.  The tamarins also

were significantly more likely to orient toward part-words than to words,

indicating that they were sensitive to the frequency of the syllable

combinations.  These results, which mirrored those of human infants (Saffran

et al., 1996), indicate that cotton-top tamarins--and presumably other primate

species--are able to encode some of the statistical regularities present in

language-like, auditory sequences.  However, it is important to note that while

the tamarins were exposed to a 20-min speech stream, the human infants

demonstrated statistical learning after only a 2-min exposure.

Two other studies have further illuminated primate statistical learning

abilities. Newport, Hauser, Spaepen, and Aslin (2004) showed that tamarin

monkeys can learn statistical regularities between non-adjacent elements. This

is an intriguing demonstration because human language consists of

regularities that occur not just among adjacent speech elements but also

between elements that are separated by intervening material. A second study

showed that tamarin monkeys can generalize patterns that they have learned

to a new vocabulary (Hauser, Weiss, & Marcus, 2002). It has been argued that

extracting these sorts of patterns is necessary for language acquisition

(Marcus, Vijayan, Rao, & Vishton, 1999).

In summary, these studies appear to support the notion that statistical

learning is not limited to human cognition. Non-human primates and likely

other non-human animals appear to have many of the same statistical learning

capabilities as humans. However, it is likely that species-specific differences

exist, as well. For example, Newport et al. (2004) found differences in the types

of non-adjacent dependencies that were learned by human adults and tamarin
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monkeys. Thus, future research will be necessary to explore just how species-

general this capability is.
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CHAPTER TWO

Modality-Constrained Statistical Learning of Tactile, Visual, and
Auditory Sequences∗

The world is temporally bounded: Events do not occur all at once but

rather are distributed in time. Therefore, it is crucial for organisms to be able

to encode and represent temporal order information. One potential method

for encoding temporal order is to learn the statistical relationships of elements

within sequential input. This process appears to be important in a diverse set

of learning situations, including speech segmentation (Saffran, Newport, &

Aslin, 1996), learning orthographic regularities of written words (Pacton,

Perruchet, Fayol, & Cleeremans, 2001), visual processing (Fiser & Aslin, 2002),

visuomotor learning (e.g., serial reaction time tasks; Cleeremans, 1993) and

nonlinguistic auditory processing (Saffran, Johnson, Aslin, & Newport, 1999).

Not only human adults but also infants (Gomez & Gerken, 1999; Kirkham,

Slemmer, & Johnson, 2002; Saffran, Aslin, & Newport, 1996) and nonhuman

primates (Hauser, Newport, & Aslin, 2001) are capable of statistical learning.

Noting such widespread examples of statistical learning, many

researchers—either implicitly or explicitly—view statistical learning as a

single, domain-general phenomenon (e.g., Kirkham et al., 2002). Although it

may be true that statistical learning across different domains is based on

similar computational principles, it is also likely that modality constraints

exist that may differentially affect such processing. For instance, traditionally,

                                                  
∗ Conway, C.M., & Christiansen, M.H. (2005).  Modality-constrained statistical learning of
tactile, visual, and auditory sequences. Journal of Experimental Psychology: Learning, Memory, &
Cognition, 31, 24-39. Copyright © 2005 by the American Psychological Association. Adapted
with permission.
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vision and audition have been viewed as spatial and temporal senses,

respectively (Kubovy, 1988). Empirical evidence from perceptual and

temporal processing experiments supports such a distinction between vision

and audition (e.g., Glenberg & Swanson, 1986; Mahar, Mackenzie, & McNicol,

1994). However, it is currently unknown whether and how these modality

constraints affect the learning of statistical relationships between elements

contained within sequential input.

This article explores potential modality constraints affecting statistical

learning. Experiment 1 investigates statistical learning in three sensory

modalities: touch, vision, and audition. Experiment 1A provides the first

direct evidence that touch can mediate statistical learning. Experiments 1B and

1C compare learning in two additional sensory modalities, vision and

audition. Although commonalities exist, we find initial evidence for a striking

difference in auditory statistical learning compared with tactile and visual

learning. We follow up with Experiment 2, designed to control perceptual and

training effects as well as to tease apart potential learning sensitivities

uncovered in the first experiment. The results of Experiment 2 provide further

evidence that modality constraints affect statistical learning. We discuss these

results in relation to basic issues of cognitive and neural

organization—namely, to what extent statistical learning might consist of a

single or multiple neural mechanisms.

Statistical Learning of Sequential Input

Statistical learning appears to be a crucial learning ability. For instance,

making sense of visual scenes may require the extraction of statistical

components (e.g., Fiser & Aslin, 2001). Another domain in which statistical
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learning likely plays an important role is the encoding of sequential input

(Conway & Christiansen, 2001). Artificial grammar learning (AGL; Reber,

1967) is a paradigm widely used for studying such statistical learning1. AGL

experiments typically use finite-state grammars to generate the stimuli. In

such grammars, a transition from one state to the next produces an element of

the sequence. For example, by passing through the nodes S1, S2, S2, S4, S3, S5

of Figure 2.1, one generates the “legal” sequence 4–1–3–5–2.

Figure 2.1. Artificial grammar from Gomez and Gerken (1999), also used
in the current Experiment 1. We generated legal sequences by following the
paths starting at S1 and continuing until we reached an exit path. Each path
generates a number (1, 2, 3, 4, or 5) that corresponds to a particular stimulus
element. S = state, so that S1 and S2 refer to State 1 and State 2, and so on.

In the AGL paradigm, participants observe a subset of legal training

sequences (i.e., sequences that are generated from the artificial grammar), after

which the participants typically display learning of sequential structure as

                                                  
1 The serial reaction time (SRT) task is another common method for exploring the learning of
sequential regularities. The SRT paradigm differs from AGL in that the behavioral measure
for the former is reaction time, whereas that for the latter is classification accuracy.
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evidenced by their ability to classify novel sequences as being legal or illegal.

Additionally, they often have difficulties verbalizing the distinction between

legal and illegal stimuli, a finding that originally prompted Reber (1967) to

describe the learning as implicit.

The nature of the cognitive processes underlying AGL has been the

subject of much debate, leading to the proposal of several different theories.

The abstractive view sees AGL as a process that encodes and extracts the

abstract rules of the grammar (e.g., Reber, 1993). Two alternative accounts

stand in contrast to the abstractive view, proposing that instead of abstract

knowledge, participants learn particular features of the training items. The

exemplar-based view posits that the stimuli themselves are encoded and

stored in memory (e.g., Vokey & Brooks, 1992): When participants make

classification judgments at test, they compare the test sequences with their

memory of the stored exemplars and make their decision on the basis of

similarity. The fragment-based view posits that participants learn small

fragments or chunks of information, consisting of pairs (bigrams) and triples

(trigrams) of elements (e.g., Perruchet & Pacteau, 1990). Participants use these

chunks of information to help them classify novel input.

Although there has been disagreement as to which theory is correct,

there is considerable evidence suggesting that the learning of fragment

information is a crucial aspect of AGL2 (e.g., Johnstone & Shanks, 1999;

Knowlton & Squire, 1994, 1996; Meulemans & Van der Linden, 1997; Perruchet

& Pacteau, 1990; Pothos & Bailey, 2000; Redington & Chater, 1996). These

experiments have shown that participants become sensitive to the fragment

                                                  
2 It also appears to be the case that learners rely on other cues, such as overall similarity of test
items to training exemplars, in addition to fragment information (e.g., see Pothos & Bailey,
2000).
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information contained within the training input, as quantified by specific

fragment measures, which allows participants to classify novel sequences in

terms of whether they conform to the same statistical regularities as the

training items. Such statistical sensitivity appears to be vital for AGL tasks.

The standard AGL paradigm has been used extensively to assess visual

as well as auditory (e.g., Saffran, 2000) learning. However, two issues remain

relatively unexplored: Can statistical learning occur in other modalities, such

as touch? And what differences in statistical learning, if any, exist among

different sensory modalities? Whereas previous research generally has

focused on the similarities among statistical learning in different domains

(Fiser & Aslin, 2002; Kirkham et al., 2002), there are reasons to suppose that

modality constraints may affect learning across the various senses. Next, we

summarize evidence for such modality constraints.

Modality Constraints

Ample research testifies to the existence of modality constraints that

affect the manner in which people perceive, learn, and represent information

(for relevant reviews, see Freides, 1974; Penney, 1989). In this section we

summarize research in the realms of serial recall, temporal acuity, and the

learning of temporal and statistical patterns.

One of the most well-known modality effects—often referred to as the

modality effect—is found in serial recall. Numerous studies attest to

differences in the serial position learning curves for aurally versus visually

presented verbal input (e.g., lists of spoken or written words). Specifically,

there appears to be a stronger recency effect (i.e., better recall of final elements

in a list) for auditory as compared with visual material (Crowder, 1986; Engle
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& Mobley, 1976). A number of theories have attempted to explain this

modality effect, such as the traditional account supposing that a precategorical

acoustic storage exists for auditory material (Crowder & Morton, 1969) or that

the auditory modality benefits from better temporal coding (e.g., Glenberg &

Fernandez, 1988). Beaman (2002) showed that under certain conditions, a

stronger primacy effect (i.e., better recall of beginning elements in a list) occurs

for visual as compared with auditory material. Traditional theories do not

adequately explain why this might occur. Additionally, studies with

nonhuman primates have shown that monkeys have opposite serial position

curves for auditory and visual material (Wright, 2002), as a function of the

amount of time occurring between the last element in the list and the recall

test. That is, when the recall test occurs relatively soon after the list

presentation, there is an auditory primacy effect and a visual recency effect;

when the recall test occurs relatively late after the presentation, there is a

visual primacy and an auditory recency effect. These new data suggest that

different mechanisms may underlie auditory and visual serial recall, leading

to qualitatively different serial position curves.

Modality differences are also apparent in low-level temporal processing

tasks (e.g., Gescheider, 1966, 1967; Lechelt, 1975; Oatley, Robertson, & Scanlan,

1969; Sherrick & Cholewiak, 1986). For example, Sherrick and Cholewiak

(1986) reviewed data relating to temporal acuity in touch, vision, and audition.

In measures of simultaneity—the ability to correctly perceive two closely

occurring events—the senses have differing temporal sensitivity, with vision

being the least and audition the most sensitive. Similarly, Lechelt (1975)

assessed each modality in terms of numerosity, or the ability to count rapidly

presented stimuli. Stimuli consisting of flashes of light, aural clicks, or finger
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taps were delivered for short durations (2 ms or less), with sequences of

varying length (between two and nine pulses) and varying rates (between

three and eight signals per second). In terms of assessing the number of

signals in the sequences, participants performed best when the signals were

presented aurally and worst when they were presented visually.

Likewise, studies of temporal pattern and rhythm discrimination also

reveal modality differences (e.g., Collier & Logan, 2000; Garner &

Gottwald,1968; Glenberg & Jona, 1991; Handel & Buffardi, 1969; Manning,

Pasquali, & Smith, 1975; Rubinstein & Gruenberg, 1971). When presented with

rhythmic patterns of flashing lights or auditory stimuli, participants were

much better at discriminating auditory as opposed to visual patterns

(Rubinstein & Gruenberg, 1971). Learners were also better at identifying

repeating sequences of binary elements (e.g., 1122121211221212) when the

elements were auditory stimuli rather than visual or tactual ones (Handel &

Buffardi, 1969).

There have also been hints that similar modality constraints affect AGL.

Several studies have noted that performance in AGL tasks differs depending

on the modality and the manner of presentation (i.e., whether material is

presented simultaneously or sequentially). For instance, Gomez (1997)

remarked that visual AGL proceeds better when the stimuli are presented

simultaneously rather than sequentially, perhaps because a simultaneous

format permits better chunking of the stimulus elements. Saffran (2002) used

an AGL task to test participants’ ability to learn predictive dependencies. She

found that participants learned these predictive relationships best with an

auditory–sequential or visual–simultaneous presentation and did poorly in a

visual–sequential condition.
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The evidence reviewed suggests that modality differences are present

across the cognitive spectrum. These modality constraints take two main

forms. First, it appears that vision and audition differ in respect to their

sensitivities to the initial or final parts of sequential input. Vision may be more

sensitive to initial items in a list (Beaman, 2002), whereas audition appears

more sensitive to final list items (Crowder, 1986). Second, the auditory

modality appears to have an advantage in the processing of sequential input,

including low-level temporal processing tasks (Sherrick & Cholewiak, 1986)

and pattern or rhythm discrimination (e.g., Manning et al., 1975). In a

comprehensive review of the effect of modality on cognitive processing,

Friedes (1974) concluded that for complex tasks, audition is best suited for

temporal processing, whereas vision excels at spatial tasks (for similar views,

see also Kubovy, 1988; Mahar et al., 1994; Penney, 1989; Saffran, 2002). That is,

audition is best at processing sequential, temporally distributed input,

whereas vision excels at spatially distributed input. The touch modality

appears to be adept at processing both sequential and spatial input, but not at

the same level of proficiency as either audition or vision (Mahar et al., 1994).

In this article we explore in what manner these modality constraints

might affect statistical learning. In the experiments, our strategy is to

incorporate comparable input in three sensory conditions: touch, vision, and

audition. Previous researchers have claimed that statistical learning in

audition and vision is the same, yet rarely has much effort been made to

control experimental procedures and materials across the senses. Thus, the

present experiments provide a better comparison of learning across these

three modalities. We begin by investigating statistical learning in the tactile

domain, a realm that has been previously ignored in AGL experiments.
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Experiment 1A: Tactile Statistical Learning

The touch sense has been studied extensively in terms of its perceptual

and psychophysical attributes (see Craig & Rollman, 1999), yet it has not been

fully explored in relation to statistical learning. In Experiment 1A, we

presented to participants tactile sequences conforming to an artificial grammar

and then tested their ability to classify novel sequences. As reviewed above,

studies of sequential pattern perception suggest that the touch sense ought to

be capable of extracting sequential regularities in an AGL setting (e.g., Handel

& Buffardi, 1969; Manning et al., 1975). This experiment attempted to verify

this hypothesis.

Method

Participants

Twenty undergraduates (10 in each condition) from introductory

psychology classes at Southern Illinois University participated in the

experiment. Subjects earned course credit for their participation. The data

from an additional 5 participants were excluded for the following reasons:

prior participation in AGL tasks in our laboratory (n = 4), and failure to

adequately follow the instructions (n = 1).

Apparatus

The experiment was conducted with the PsyScope presentation

software (Cohen, MacWhinney, Flatt, & Provost, 1993) run on an Apple G3

PowerPC computer. Participants made their responses using an input/output

button box (New Micros, Inc., Dallas, TX). Five small motors (18 mm × 5 mm),

normally used in hand-held paging devices, generated the vibrotactile pulses

(rated at 150 Hz). The vibration pulses were suprathreshold stimuli and easily
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perceived by all participants. The motors were controlled by output signals

originating from the New Micros button box. These control signals were in

turn determined by the PsyScope program, which allowed precise control

over the timing and duration of each vibration stimulus. Figure 2.2 shows the

general experimental setup.

Figure 2.2. Vibration devices attached to a participant’s hand with the
button box to the side (Experiment 1A)

Materials

The stimuli used for Experiment 1 were taken from Gomez and

Gerken’s (1999) Experiment 2. This grammar (see Figure 2.1) can generate up

to 23 sequences between three and six elements in length. The grammar

generates sequences of numbers. Each number from the grammar was

mapped onto a particular finger (1 was the thumb, and 5 was the pinky

finger). Each sequence generated from the grammar thus represents a series of
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vibration pulses delivered to the fingers, one finger at a time. Each finger

pulse duration was 250 ms, and the pulses within a sequence were separated

by 250 ms. As an illustration, the sequence 1–2–5–5 corresponds to a 250-ms

pulse delivered to the thumb, a 250-ms pause, a 250-ms pulse delivered to the

second finger, a 250-ms pause, a 250-ms pulse delivered to the fifth finger, a

250-ms pause, and then a final 250-ms pulse delivered to the fifth finger.

Figure 2.3 graphically represents this sequence.

Figure 2.3. Graphical representation of the tactile sequence 1–2–5–5 in
Experiment 1A. Each hand represents a single slice in time, whereas each
black circle represents the occurrence of a vibrotactile pulse to a particular
finger.

A total of 12 legal sequences were used for training.3 Each of the legal

sequences was used twice to formulate a set of 12 training pairs. Six pairs

consisted of the same training sequence presented twice (matched pairs),

                                                  
3 Note that what we refer to as the training phase contained neither performance feedback nor
reinforcement of any kind. Exposure phase might be a more accurate description of this part
of the experiment.
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whereas the remaining 6 pairs consisted of 2 sequences that differed slightly

from one another (mismatched pairs). These matched and mismatched

training pairs were used in conjunction with a same–different judgment task,

described in detail below. The 12 training pairs are listed in Table 2.1.

Table 2.1

Training Pairs for Experiments 1A, 1B, and 1C

Matched pairs Mismatched pairs

1-2-1-1-1-3 / 1-2-1-1-1-3 1-2-3-5-2-5 / 1-2-3-5-2-3

4-1-1-3-5-2 / 4-1-1-3-5-2 1-2-3-5-2-3 / 1-2-3-5-2-5

4-1-3-5-2 / 4-1-3-5-2 4-3-5-2-3 / 4-3-5-2-5

1-2-5-5-5 / 1-2-5-5-5 4-3-5-2-5 / 4-3-5-2-3

4-1-3 / 4-1-3 1-2-5-5 / 1-2-1-3

1-2-3 / 1-2-3 1-2-1-3 / 1-2-5-5
Note.  The numbers refer to a particular finger vibration (Experiment 1A),
visual stimulus (Experiment 1B), or auditory tone (Experiment 1C.).

The test set consisted of 10 novel legal and 10 illegal sequences. Legal

sequences were produced from the finite-state grammar in the normal fashion.

Illegal sequences did not conform to the regularities of the grammar. The

illegal sequences each began with a legal element (i.e., 1 or 4), followed by one

or more illegal transitions and ending with a legal element (i.e., 2, 3, or 5). For

example, the illegal sequence 4–2–1–5–3 begins and ends with legal elements

(4 and 3, respectively) but contains several illegal interior transitions (4–2, 1–5,

and 5–3, combinations of elements that the grammar does not allow).

Therefore, the legal and illegal sequences can be described as differing from
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one another in terms of the statistical relationships between adjacent elements.

That is, a statistical learning mechanism able to encode the possible element

combinations occurring in the training set could discern which novel test

sequences are illegal. For instance, by realizing that the elements 4 and 2 never

occur together in the training set, a learner could potentially discern that the

novel test sequence 4–2–1–5–3 is illegal.4 Finally, the legal and illegal test

sequences were closely matched in terms of element frequencies and sequence

lengths (Gomez & Gerken, 1999). All test sequences are listed in Table 2.2.

Procedure

Participants were assigned randomly to either a control group or an

experimental group. The experimental group participated in both a training

and a test phase, whereas the control group only participated in the test phase.

Before beginning the experiment, all participants were assessed by the

Edinburgh Handedness Inventory (Oldfield, 1971) to determine their

preferred hand. The experimenter then placed a vibration device onto each of

the five fingers of the participant’s preferred hand. At the beginning of the

training phase, the experimental group participants were instructed that they

were participating in a sensory experiment in which they would feel pairs of

vibration sequences. For each pair of sequences, they had to decide whether

the two sequences were the same and indicate their decision by pressing a

button marked YES or NO. This match–mismatch paradigm used the 12

training pairs described earlier, listed in Table 2.1. It was our intention that

this paradigm would encourage participants to pay attention to the stimuli

                                                  
4 Note that we remain neutral as to whether such performance might occur in the presence or
absence of awareness.
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while not directly tipping them off to the nature of the statistically governed

sequences.

Table 2.2

Fragment Measures for Experiments 1A, 1B, and 1C Test Sequences

Legal Test Sequences

Item Chunk Novel NFP Sim I-Anchor F-Anchor

4-1-3-5-2-3 4.11 0 0 2 2.5 2.5

1-2-1-3-5-2 4.11 0 0 2 4.5 2.0

4-3-5-2-5-5 3.67 0 2 4 2.0 1.5

4-1-3-5-2-5  4.00 0  0  2  2.5  2.0

4-1-1-1-3  2.57  0  3  3  2.0  2.0

1-2-1-1-3   3.14  0  2  2  4.5  2.0

1-2-3-5-2 5.0  0  0 1 5.0  2.0

4-1-1-3  2.80  0  0 2  2.0 2.0

4-3-5-2 4.40 0 0 1 2.0 2.0

1-2-5 4.33 0 0 1 4.5 1.0

Averages: 3.81  0.0 0.70 2.00 3.15 1.9
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Table 2.2 (Continued)

Illegal Test Sequences

1-4-5-1-3-3 0.56 8 9 3 0 0

4-5-1-2-1-3 1.89 4 8 3 0 2.0

4-2-1-3-1-5 0.89 6 6 3 0 0

1-5-3-3-2-2 0.00 9 9 3 0 0

1-5-3-4-2 0.00 7 7 3 0 0

4-2-1-5-3 0.29 6 6 3 0 0

1-5-3-1-2 1.00 6 7 3 0 0

4-5-1-3 1.00 4 4 2 0 1.5

4-5-2-2 1.20 4 5 3 0 0

1-4-2 0.00 3 3 2 0 0

Averages:  0.68 5.70 6.40 2.80 0 0.35
_____________________________________________________________________
Note. NFP = Novel fragment position; Sim = similarity; I-anchor = initial
anchor strength; F-anchor = final anc. str.

Each pair was presented six times in random order for a total of 72

exposures. As mentioned earlier, all vibration pulses had a duration of 250 ms

and were separated by 250 ms within a sequence. A 2-s pause occurred

between the two sequences of each pair and after the last sequence of the pair.

A prompt was displayed on the computer monitor asking for the participant’s

response, and it stayed on the screen until a button press was made. After

another 2-s pause, the next training pair was presented. The entire training

phase lasted roughly 10 min for each participant.

A recording of white noise was played during training to mask the

sounds of the vibrators. In addition, the participants’ hands were occluded so
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that they could not visually observe their fingers. These precautions were

taken to ensure that tactile information alone, without help from auditory or

visual senses, contributed to task performance.

Before the beginning of the test phase, the experimental group

participants were told that the vibration sequences they had just felt had been

generated by a computer program that determined the order of the pulses by

using a complex set of rules. They were told that they would now be

presented with new vibration sequences. Some of these would be generated

by the same program, whereas others would not be. It was the participant’s

task to classify each new sequence accordingly (i.e., whether or not the

sequence was generated by the same rules) by pressing a button marked either

YES or NO. The control participants, who did not participate in the training

phase, received an identical test task.

The 20 test sequences were presented one at a time, in random order, to

each participant. The timing of the test sequences was the same as that used

during the training phase (250-ms pulse duration, 250-ms interstimulus

interval, and 2-s pauses before and after each sequence). The white noise

recording and occluding procedures also were continued in the test phase.

At the completion of the experiment, participants were asked how they

decided whether test sequences were legal or illegal. Some researchers have

used such verbal reports as a preliminary indication as to whether learning

proceeded implicitly or explicitly (Seger, 1994).
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Results and Discussion

We assessed the training performance for the experimental participants

by calculating the mean percentage of correctly classified pairs. Participants,

on average, made correct match–mismatch decisions for 74% of the training

trials.

However, for our purposes, the test results are of greater interest

because here the participants must generalize from training experience to

previously unobserved test sequences. The control group correctly classified

45% of the test sequences, whereas the experimental group correctly classified

62% of the test sequences. Following Redington and Chater’s (1996)

suggestions, we conducted two analyses on the test data. The first was a one-

way analysis of variance (ANOVA; experimental vs. control group) to

determine whether any differences existed between the two groups. The

second compared performances for each group with hypothetical chance

performance (50%) using single group t tests.

The ANOVA revealed that the main effect of group was significant, F(1,

18) = 3.16, p < .01, indicating that the experimental group performed

significantly better than the control group. Single group t tests confirmed the

ANOVA’s finding. The control group’s performance was not significantly

different from chance, t(9) = 1.43, p = .186, whereas the experimental group’s

performance was significantly above chance, t(9) = 2.97, p < .05.

Finally, the participants’ verbal reports suggest that they had very little

explicit knowledge concerning sequence legality. Most of the experimental

group participants reported basing their responses merely on whether a

sequence felt familiar or similar. Several of the participants reported that they
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made their judgments on the basis of a simple rule (e.g., “If a sequence was

four elements long, I said ‘no’”). However, in each of these cases, following

the rule would actually lead to incorrect judgments. None of the participants

was able to report anything specific that could actually help him or her make a

decision (e.g., “Certain finger combinations were not allowed, such as the

fourth finger followed by the second”). On the basis of these verbal reports,

we do not see evidence that the experimental group participants were

explicitly aware of the distinction between legal and illegal sequences.5

The results show that the experimental group significantly

outperformed the control group. This suggests that the experimental

participants learned aspects of the statistical structure of the training

sequences—in the form of adjacent element co-occurrence statistics—that

allowed them to classify novel test sequences appropriately. Additionally, the

participants had difficulty verbalizing the nature of sequence legality. This is

the first empirical evidence of an apparently implicit, tactile statistical learning

capability.

Experiments 1B and 1C: Visual and Auditory Statistical Learning

Experiment 1A showed that statistical learning can occur in the tactile

domain. To compare tactile with visual and auditory learning, we conducted

two additional studies. Experiments 1B and 1C assessed statistical learning in

the visual and auditory domains, respectively, using the same general

procedure and statistically governed stimulus set as used in Experiment 1A.

For Experiment 1B, the sequences consisted of visual stimuli occurring at

                                                  
5 We note, however, that verbal reports are not necessarily the most sensitive measure of
explicit awareness, so it is still possible that explicit awareness contributed to task
performance.



33

different spatial locations. For Experiment 1C, sequences of tones were used.

Like the vibrotactile sequences, the visual and auditory stimuli were

nonlinguistic, and thus participants could not rely on a verbal encoding

strategy.

Method

Participants

Experiment 1B. Twenty undergraduates (10 in each condition) were

recruited from introductory psychology classes at Cornell University. Subjects

received extra credit for their participation. The data from 3 additional

participants were excluded because the participants did not adequately follow

the instructions (n = 2) and because of equipment malfunction (n = 1).

Experiment 1C. An additional 20 undergraduates (10 in each condition)

were recruited from introductory psychology classes at Cornell University.

Apparatus

The apparatus was the same as in Experiment 1A, except for the

exclusion of the vibration devices. The auditory stimuli were generated by the

SoundEdit 16 (Version 2) software for the Macintosh.

Materials

The training and test materials were identical to those of Experiment

1A (see Tables 2.1 and 2.2). The difference was that the sequence elements

were mapped onto visual or auditory stimuli instead of vibrotactile pulses.

For Experiment 1B, the stimuli consisted of black squares displayed on the

computer monitor in different locations (the element 1 represents the leftmost

location, and 5 the rightmost). Each black square (2.6 × 2.6 cm) was positioned

in a horizontal row across the middle of the screen at approximately eye level,
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with 2.5 cm separating each position. Participants were seated at a viewing

distance of approximately 45 cm to 60 cm from the monitor.

A visual stimulus thus consisted of a spatiotemporal sequence of black

squares appearing at various locations. As in Experiment 1A, each element

appeared for 250 ms, and each was separated by 250 ms. Figure 2.4 shows a

representation of the sequence 1–2–5–5.

Figure 2.4. Graphical representation of the visual sequence 1–2–5–5 in
Experiment 1B. Each of the four large rectangles represents the monitor
display at a single slice in time. Note that the dashed squares, representing the
five possible stimulus element locations, were not visible to the participants.
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For Experiment 1C, the stimuli consisted of pure tones of various

frequencies (1 = 261.6 Hz, 2 = 277.2 Hz, 3 = 349.2 Hz, 4 = 370 Hz, and 5 = 493.9

Hz) corresponding to musical notes C, C#, F, F#, and B, respectively.6 As in

Experiments 1A and 1B, each element (tone) lasted 250 ms, and each was

separated by 250 ms. Figure 2.5 graphically represents the sequence 1–2–5–5.

Procedure

The procedures were the same as that of Experiment 1A, the only

differences relating to the nature of the stimulus elements, as described above.

The timing of the stimuli, pauses, and prompts was identical to the timing in

Experiment 1A.

Figure 2.5. Graphical representation of the auditory sequence 1–2–5–5 in
Experiment 1C.

                                                  
6 This particular set of tones was used because it avoids familiar melodies (Dowling, 1991).
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Results

We performed the same statistical analyses as used in Experiment 1A.

During the training phase, the Experiment 1B (visual) experimental group

made correct match–mismatch decisions on 86% of the trials, whereas the

Experiment 1C (auditory) experimental group scored 96%. We compared the

training means across the three experiments, which revealed a main effect of

modality, F(2, 27) = 24.30, p < .0001. Thus, auditory training performance was

significantly better than visual performance (p < .005), which in turn was

significantly better than tactile performance (p < .001). Because the training

task essentially involves remembering and comparing sequences within pairs,

the results may elucidate possible differences among the three modalities in

representing and maintaining sequential information (Penney, 1989). It is also

possible that these results instead are due to factors such as differential

discriminability or perceptibility of sequence elements in different sensory

domains.

Results for the test phase in Experiment 1B revealed that the control

group correctly classified 47% of the test sequences, whereas the experimental

group correctly classified 63% of the test sequences. An ANOVA

(experimental vs. control group) indicated that the main effect of group was

significant, F(1, 18) = 3.15, p < .01. Single group t tests revealed that the control

group’s performance was not significantly different from chance, t(9) = 1.11, p

= .3, whereas the experimental group’s performance was significantly

different from chance, t(9) = 3.03, p < .05.

Results for the auditory (Experiment 1C) test phase revealed that the

control group correctly classified 44% of the test sequences, whereas the

experimental group correctly classified 75% of the test sequences. An ANOVA
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(experimental vs. control group) indicated that the main effect of group was

significant, F(1, 18) = 7.08, p < .001. Single group t tests revealed that the

control group’s performance was marginally worse than chance, t(9) = 2.25, p

= .051, indicating that our test stimuli were biased against a positive effect of

learning. The experimental group’s performance was significantly different

from chance, t(9) = 7.45, p < .001.

Participants’ verbal reports in Experiments 1B and 1C were similar to

those in Experiment 1A. Namely, the most common report given was that

participants were basing their classification decisions on how similar or

familiar the sequences were relative to the training items. None of the

participants was able to verbalize any of the rules governing the sequences.

Therefore, it appears that participants generally did not benefit from explicit

knowledge of the sequence structure.

These results indicate that both the visual and the auditory

experimental groups significantly outperformed the control groups, with

participants unable to verbalize how the legal and illegal sequences differed.

Hence, participants appear to have implicitly learned aspects of the statistical

structure of the visual and auditory input. These initial analyses suggest

commonalities among tactile, visual, and auditory statistical learning.

However, one striking difference is that the auditory test performance

was substantially better than tactile or visual performance (75% vs. 62% and

63%; see Figure 2.6). Submitting these three test performances to an ANOVA

reveals a main effect of modality, F(2, 27) = 3.43, p < 0.05, with the effect due to

the auditory performance being significantly better than both touch and vision

(ps < .05). Thus, it appears that in this task, auditory statistical learning was

more proficient than both tactile and visual learning. This is in accord with
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previous research emphasizing audition as being superior among the senses in

regard to temporal processing tasks in general (e.g., Friedes, 1974; Handel &

Buffardi, 1969; Sherrick & Cholewiak, 1986).

Figure 2.6. Experiment 1: Mean number of correct test responses out of
20 (plus standard error) for the experimental (indicated by solid bars) and
control (indicated by open bars) groups. Ten is the level expected for chance
performance.

Discussion

The previous analyses have offered a quantitative comparison among

tactile, visual, and auditory learning, revealing better learning in the auditory

condition. One possible objection to this conclusion is that the auditory

experiment differs from the first two experiments in that pitch, instead of

space, is the primary stimulus dimension being manipulated. A different

possibility would have been to set up five speakers at five different spatial

locations, each one producing the same pitch stimulus at different times in the



39

sequence, much like the visual stimuli were displayed in Experiment 1B.

However, it has been proposed that for the auditory modality, pitch is, in a

sense, equivalent to space (Kubovy, 1988). Shamma (2001) argued that the

auditory nervous system transforms sound input, through the cochlea, into

spatiotemporal response patterns, and therefore the visual and auditory

systems process spatial and temporal input, respectively, in computationally

similar ways. Thus, the perception of pitch and the perception of

visual–spatial patterns may arise through similar computational algorithms in

the two sensory modalities. For this reason, we believe that the most

appropriate test for auditory statistical learning is to use stimulus elements

that differ along the dimension of pitch rather than that of space. This is

consistent with previous tests of auditory AGL to use stimulus elements that

vary in terms of pitch or syllable rather than space. Although this research has

found similar statistical learning performances in vision and audition (Fiser &

Aslin, 2002; Saffran, 2002), our data suggest a quantitative advantage for

auditory learning relative to tactile and visual learning.

We might also ask whether there were any qualitative learning

differences among the three modalities. For example, were there particular

test sequences within each modality that participants were better or worse at

correctly endorsing? Which types of statistical information did participants

within each modality rely on to perform the test task? To answer these

questions, we present several additional analyses.

We first investigated whether certain sequences were easier or more

difficult to classify for each modality. We conducted item analyses across the

three sense modalities, entering the test performance data averaged across

subjects for each sequence. This two-way ANOVA (Modality × Sequence)
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resulted in main effects of modality, F(2, 540) = 4.73, p < .01, and sequence,

F(19, 540) = 1.69, p < .05, but no interaction of modality and sequence, F(38,

540) = 1.20, p = .2.

To get a better idea about which sources of information are most

valuable for each modality, we analyzed each test sequence in terms of the

information content that participants may have used to guide test

performance. We used five fragment measures: associative chunk strength,

novelty, novel fragment position (NFP), initial anchor strength (I-anchor), and

final anchor strength (F-anchor). Associative chunk strength is calculated as

the average frequency of occurrence of each test item’s fragments (bigrams

and trigrams), relative to the training items (Knowlton & Squire, 1994).

Novelty is the number of fragments that did not appear in any training item

(Redington & Chater, 1996). NFP is measured as the number of fragments that

occur in novel absolute positions where they did not occur in any training

item (Johnstone & Shanks, 1999). We designed the I-anchor and F-anchor

measures to indicate the relative frequencies of initial and final fragments in

similar positions in the training items. Previous studies used a single anchor

strength measure (e.g., Knowlton & Squire, 1994) instead of calculating the

initial and final measures separately, as we do here. We consider I-anchor and

F-anchor separately to determine whether modality constraints lead

participants to be more or less sensitive to the beginnings or endings of

sequences.7 Finally, we used a measure of global similarity, which is the

number of elements by which a test item is different from the nearest training

item (Vokey & Brooks, 1992).

                                                  
7 Meulemans and Van der Linden (2003) also used separate I-anchor and F-anchor measures.
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We computed these six measures for each of the 20 test sequences, and

the results are listed in Table 2.2. Inspection of this table reveals that the legal

and illegal test sequences differ considerably in terms of their chunk, I-anchor,

F-anchor, novel, and NFP information. It is therefore likely that one or more of

these information sources guided participants in making their classification

judgments at test.

To see which information sources were used for each modality, we

used regression analyses. Our initial regression model contained the six

sources of information listed in Table 2.2 as predictors, in addition to two

other predictors: length of each sequence, as measured by the number of

elements per sequence, and legality, which was simply an index of whether

the sequence was legal or illegal. Because these eight predictors are highly

correlated with one another, we submitted them to a principal-components

analysis (PCA) to reduce the number of predictors to use in the regression

analyses. The results of the PCA revealed that the eight predictors could be

reduced to two components, explaining 87.7% of the variance. These two

components are listed in Table 2.3.
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Table 2.3

Results of Principal Component Analysis

Component 1 Component 2

Chunk 0.950 0.179

Novel -0.953 -0.002

NFP -0.945 0.153

Sim -0.696 0.536

Length -0.154 0.949

I-Anchor 0.903 0.007

F-Anchor 0.846 0.302

Legality 0.947 0.184

Note. NFP = Novel fragment position; Sim = similarity; I-anchor = initial
anchor strength; F-anchor = final anc. str.

As can be seen, the first component is roughly a measure of chunk

strength, including I-anchor and F-anchor, and is also an inverse measure of

novelty and NFP. This is intuitive, because a sequence with a high chunk or

anchor strength contains fewer novel fragments. The second component is

nearly equivalent with length. With these results in mind, we decided to use

three predictors in our multiple regression model: I-anchor, F-anchor, and

length. Note that in essence, what we did was separate the first component

(which is roughly equivalent to chunk strength) into initial and final chunk

strength predictors. We did this with the expectation that the multiple

regression analysis might reveal possible modality constraints related to

beginning or ending sequence biases.
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The results of the regression analyses will inform us as to which of

these three measures best predict whether a participant in each sensory

condition will endorse a test sequence. We performed one linear regression for

each modality. The results reveal that length (p < .05) and I-anchor (p < .005)

were good predictors for tactile endorsements. F-anchor (p < .005) was a good

predictor for auditory endorsements. None of the three predictors was a

statistically significant predictor for visual endorsements.

In summary, the item analyses revealed no differences in terms of

performance on individual sequences across the modalities. However, the

multiple regression analyses revealed that there may be differences in terms of

which sources of information are most important for test performance in each

of the three modalities. We found that tactile learners were most sensitive to

the length of the sequence and the fragment information at the beginning of a

sequence, auditory learners were most sensitive to fragment information at

the end of a sequence, and visual learners were biased toward neither the

beginning nor the ending of the sequences. Thus, these preliminary analyses

suggest that not only does auditory statistical learning of tone sequences have

a quantitative advantage over tactile and visual learning, there also may be

qualitative differences among the three modalities. Specifically, tactile

learning appears to be sensitive to initial item chunk information, whereas

auditory learning is most sensitive to final item chunk information.

Experiment 2: Tactile, Visual, and Auditory Statistical Learning

The first three experiments assessed statistical learning of tactile, visual,

and auditory sequences. The results suggest the presence of modality

differences affecting learning. Specifically, there was a quantitative learning
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difference in that auditory learning was superior to the other two senses.

There was also evidence for qualitative learning differences in that the sense

modalities appeared to be differentially sensitive to the initial or final aspects

of the sequences. However, one unresolved question is whether the observed

learning differences are merely the result of low-level, perceptual effects of the

particular stimulus elements used in the three experiments. For example, it is

possible that auditory learning was more effective because the set of tones

used in Experiment 1C may have been more distinctive than the set of

vibration pulses or visual stimuli used in Experiments 1A and 1B. Similarly,

recall that auditory training performance was significantly better than visual

or tactile performances; perhaps the superior auditory test scores were due to

better performance in the training phase.

To better control for perceptual and training effects, we conducted

Experiment 2, which was similar to the first set of experiments except for

several crucial modifications. We used a pretraining phase to assess the

perceptual comparability of the stimulus elements across modalities. Also, we

used a modified training task in which participants observed a sequence

followed by a bigram fragment and then judged whether the bigram fragment

had occurred within the sequence. We adopted this new training task to

ensure similar training performance levels across the three modalities. In

addition, we used a randomized design to ensure that any differences across

conditions were not the result of differences in population samples. Finally,

we provided a more substantive test for qualitative learning differences by

incorporating test stimuli that could better assess whether participants were

differentially sensitive to statistical information in the beginnings or endings

of sequences. Our hypothesis, following the analyses of Experiment 1, was
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that participants would be more sensitive to the initial fragments when

exposed to tactile sequences, whereas they would be more sensitive to the

final fragments when exposed to auditory sequences.

Method

Participants

An additional 48 undergraduates (8 in each condition) were recruited

from introductory psychology classes at Cornell University.

Apparatus

The apparatus was the same as in Experiment 1.

Materials

To generate the stimuli used for Experiment 2, we created a new finite-

state grammar (Figure 2.7). This grammar was created with two main

constraints in mind. First, we intended it to be more complex than that used in

Experiment 1. The new grammar can generate up to 75 sequences between

three and seven elements in length (as opposed to 23 sequences in Experiment

1), allowing for a more difficult learning task. Second, we created the new

finite-state grammar to allow us to test the hypothesis that learners are more

or less sensitive to beginning or ending aspects of sequences in each sense

modality. The grammar is symmetrical in terms of the number of possible

bigrams and trigrams allowed in initial and final positions.8 Thus, it is not

biased toward the beginning or ending aspects of sequences in terms of the

amount of chunk information available. This allows us to have better control

over what parts of the sequences may be useful for the learner.

                                                  
8 There are 6 unique initial bigrams, 6 unique final bigrams, 13 unique initial trigrams, and 13
unique final trigrams.
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Figure 2.7. Artificial grammar used in Experiment 2.

The five stimulus elements making up the sequences were identical to

those used in Experiment 1 except for the auditory tones. The tone set used for

the auditory stimuli was slightly different from before, consisting of 220 Hz,

246.9 Hz, 261.6 Hz, 277.2 Hz, and 329.6 Hz (i.e., the musical notes A, B, C, C#,

and E, respectively). As with the previous tone set, we used these tones

because they avoid familiar melodies (Dowling, 1991). Additionally, this new

tone set spans a smaller frequency range (220 Hz to 329.6 Hz, as opposed to

261.6 Hz to 493.8 Hz).

We also tested all materials for their discriminability across modalities.

Ten separate participants took part in a discrimination task in which they

received two stimuli (within the same modality) and judged whether they

were the same or different. Participants were presented with all of the possible

pairwise combinations for each modality. The data revealed that participants
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were able to correctly discriminate the stimuli at near-perfect levels across all

three modalities (tactile: 95%; visual: 98.3%; auditory: 98.8%), with no

statistical difference in performance among modalities (p = .87).

Pretraining phase. For the pretraining phase, each of the five stimulus

elements was paired with each other to give every possible combination (52 =

25 possible combinations). Because responses for pairs such as 3–2/2–3 and

1–4/4–1 were averaged together in the analysis (see the Results section), we

presented the 5 pairs that contain identical elements two times instead of once

(e.g., 1–1, 2–2). This gave a total of 30 stimulus pairs. Each stimulus element

had a duration of 250 ms, and elements were separated by 250 ms. The

pretraining materials are listed in Table 2.4.

Table 2.4

Pre-training Materials for Experiment 2                                                                   

1-1 (x2) 1-2 1-3 1-4 1-5

2-1 2-2 (x2) 2-3 2-4 2-5

3-1 3-2 3-3 (x2) 3-4 3-5

4-1 4-2 4-3 4-4 (x2) 4-5

5-1 5-2 5-3 5-4 5-5 (x2)

Note. (x2) indicates that this element pair was presented twice.

Training phase. A total of 24 legal sequences were generated from the

new finite-state grammar and used for the training phase. Each of these

sequences was coupled with a particular bigram fragment. For half of the

sequences, the bigram appeared within the sequence (e.g., 3–4–5–1–2–3–2 and

1–2). For the other half of the sequences, the bigram itself did not occur within
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the sequence, but the elements composing the bigram did (e.g., 1–2–3–5–2–3–2

and 1–3). In all cases, the bigrams presented after the sequence were legal

according to the finite-state grammar. Each stimulus element had a duration

of 250 ms and was separated from the elements before and after by 250 ms. A

2-s pause separated the sequence from the bigram. The training materials are

listed in Table 2.5.

Table 2.5

Training Materials for Experiment 2                                                            

5-3-1-3-2-3-4 / 5-3 3-4-4-5-4-4-4 / 3-5

3-2-3-1-4-5-2 / 2-3 3-2-3-1-3-2-4 / 3-4

1-2-3-5-4-4-4 / 3-5 3-4-4-5-4-5-2 / 5-3

3-4-5-1-4-5-2 / 1-4 5-1-3-1-2-3-2 / 2-1

3-4-5-1-2-3-2 / 1-2 3-3-2-5-4-5-2 / 4-3

3-3-2-5-2-3-2 / 2-3 3-2-3-1-4-4-4 / 4-1

5-1-1-1-1-3-2 / 3-2 1-2-3-5-2-3-2 / 1-3

3-4-5-1-4-4-4 / 3-4 5-3-1-4-4-3-4 / 4-5

5-3-1-4-5-2 / 3-1 3-4-5-1-4-1 / 4-3

3-4-4-5-4-1 / 4-5 5-1-3-1-4-1 / 4-3

5-3-1-4-4-4 / 4-4 3-4-4-3-3-4 / 3-2

3-2-1-1-3-2 / 3-2 5-3-1-2-3-2 / 5-1
Note.  The numbers refer to a particular finger vibration, visual stimulus, or
auditory tone.

Test phase. The test set consisted of 16 novel legal and 16 novel illegal

sequences. Legal sequences were produced from the finite-state grammar in

the normal fashion. We produced illegal sequences by changing two elements



49

of each legal test sequence. We created 8 of the illegal sequences, referred to as

illegal–initial sequences, by modifying the second and third elements of a

legal sequence (e.g., legal: 5–1–3–1–4–5–2; illegal: 5–5–2–1–4–5–2). We created

the other 8 illegal sequences, referred to as illegal–final sequences, by

modifying the third-to-last and second-to-last elements of a legal sequence

(e.g., legal: 3–2–3–1–2–3–2; illegal: 3–2–3–1–5–2–2). Each illegal sequence was

paired with the legal sequence from which it was generated, counterbalanced

so that all sequences appeared both first and last, giving a total of 32 test pairs.

Each stimulus element had a duration of 250 ms and was separated by 250 ms.

A 2-s pause separated one sequence from the next within a pair. Table 2.6 lists

the test materials.

We created the Experiment 2 test sequences so that information about

legal element repetitions would not be useful. For instance, Table 2.6 reveals

that out of the 32 test sequences, 18 are relevant for element repetitions, and

the other 14 sequences are neutral in regard to element repetition information.

If one uses the strategy of choosing the sequence within a pair containing legal

element repetitions (i.e., those repetitions seen in the training sequences), this

would lead to only 8 out of 18 correct endorsements. Thus, such a strategy is

actually worse than random guessing, meaning that the test sequences are

well controlled in terms of element repetition information.

Additionally, as we did in Experiment 1, we can analyze the test

sequences in terms of chunk, novelty, and similarity information in relation to

the training set. We divided the test set into four groups: legal–initial,

illegal–initial, legal–final, and illegal–final. We then analyzed each group in

terms of the fragment measures and made statistical comparisons among the

various groups.
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Table 2.6

Fragment Measures for Experiment 2 Test Sequences

Legal-Initial Sequences

Item Chunk Novel NFP Sim I-Anchor F-Anchor

5-1-3-1-4-5-2 6.27 0 0 2 2.50 5.00

1-2-3-3-5-4-1 3.27 2 8 3 2.00 2.00

3-3-2-3-3-4 5.56 1 3 2 2.00 2.00

1-2-5-3-2-3-4 4.91 3 5 3 1.00 2.00

3-4-5-1-3-2-4 6.09 0 1 2 6.00 1.00

1-2-5-4-4-3-4 4.18 1 5 3 1.00 2.00

1-2-5-4-4-4 5.56 1 5 3 1.00 5.00

1-2-5-3-2-4 3.22 3 7 4 1.00 1.00

Averages: 4.88 1.38 4.25 2.75 2.06 2.50
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Table 2.6 (Continued)

Illegal-Initial Sequences

Item Chunk Novel NFP Sim I-anchor F-anchor

5-5-2-1-4-5-2 4.00 4 6 3 0.00 5.00

1-1-1-3-5-4-1 2.73 1 9 5 0.00 2.00

3-5-5-3-3-4 2.44 4 6 2 0.00 2.00

1-4-4-3-2-3-4 6.73 1 3 3 0.00 2.00

3-1-2-1-3-2-4 4.09 2 6 2 0.00 1.00

1-1-1-4-4-3-4 4.91 1 3 2 0.00 2.00

1-5-1-4-4-4 6.44 2 4 2 0.00 5.00

1-4-2-3-2-4 4.67 3 8 3 0.00 1.00

Averages: 4.50 2.25 5.62 2.75 0.00 2.5

                                                                                                                                    

Legal-Final Sequences

1-2-3-3-3-4 4.33 2 3 3 2.00 2.00

3-2-3-1-2-3-2 7.82 0 0 2 3.50 6.00

3-3-2-3-3-3-4 4.82 2 6 3 2.00 2.00

3-4-4-3-3-3-4 4.82 1 3 3 6.00 2.00

3-2-1-3-1-4-1 5.00 1 7 4 2.50 2.50

3-4-4-3-5-4-1  4.18 1 6 3 6.00 2.00

3-2-3-1-4-1 7.00 0 0 2 3.50 2.50

1-2-3-5-3-2-4 4.27 2 3 2  2.00 1.00

Averages: 5.28 1.12 3.50 2.75 3.44 2.50
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Table 2.6 (Continued)

Illegal-Final Sequences

Item Chunk Novel NFP Sim I-anchor F-anchor

1-2-3-1-1-4 5.22 2 3 3 2.00 0.00

3-2-3-1-5-2-2 4.55 5 5 2 3.50 0.00

3-3-2-3-5-4-4 5.64 0 7 4 2.00 2.50

3-4-4-3-5-5-4 3.73 4  6  3  6.00 0.00

3-2-1-3-4-3-1  4.18  4  6  4   2.50  0.00

3-4-4-3-2-1-1  5.09  1  5  4  6.00  0.00

3-2-3-5-1-1  5.11 1  4  3  3.50  0.00

1-2-3-5-4-1-4  4.00  1  2  1  2.00 0.00

Averages:  4.69 2.25 4.75 3.00 3.44 0.31

Table 2.6 shows the associative chunk strength, I-anchor, F-anchor,

novelty, NFP, and similarity measures for each of these four groups.

Legal–initial and illegal–initial items differed only in terms of I-anchor (2.06

vs. 0.00, p < .05). Likewise, legal–final and illegal–final items differed only in

terms of F-anchor (2.50 vs. 0.31, p < .05). Legal–initial and legal–final items

were statistically identical across all measures (ps > .2). Illegal–initial and

illegal–final items differed in terms of both I-anchor (0.00 vs. 3.44, p < .001)

and F-anchor (2.50 vs. 0.31, p < .05). Thus, in terms of fragment information,

the only differences among the four groups of test sequences lies among the

dimensions of initial and final chunk anchor strengths. This means that we can

clearly examine differences in participants’ sensitivities to initial and final

fragment information across the three sensory modalities.
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Procedure

The overall procedure was similar to that of the previous experiments

but included an extra pretraining phase as well as a modified training task.

Participants were randomly assigned to one of six conditions: tactile, visual,

auditory, tactile control, visual control, or auditory control. The three control

conditions were identical to their respective experimental conditions except

that the controls participated in the pretraining and test phases only.

All participants in the tactile conditions were assessed by the

Edinburgh Handedness Inventory (Oldfield, 1971) to determine their

preferred hand.

Pretraining phase. As already described, a separate group of participants

had participated in a simple discrimination task, which revealed that the

stimuli are easily discriminable across the modalities. To provide an

additional test of perceptual comparability, we incorporated the pretraining

phase into the current experiment. As an additional benefit, this procedure

also served to familiarize participants with the actual stimulus elements before

they were exposed to the training sequences.

Participants were informed that they would observe two stimuli, one

following the other. The stimuli consisted of vibration pulses, visual stimuli,

or tones, depending on the experimental condition. Participants were required

to judge how similar the two stimuli were to each other and give a rating

between 1 and 7, where 1 corresponded to most dissimilar and 7 to most

similar. Participants in the tactile conditions were told to base their ratings on

the vibration pulses’ proximity to each other, as all vibration pulses were

identical except for which fingers were stimulated. Similarly, participants in
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the visual conditions also were told to base their ratings on the stimuli’s

proximity, as the stimuli themselves were identical and differed only in terms

of where they were located. Participants in the auditory conditions were told

to base their ratings on the pitches of the tones.

Before the rating task began, participants were exposed to each of the

five possible stimuli, one at a time, so that they knew what the possible stimuli

were. Then they were presented with each of the 30 possible pairs listed in

Table 2.4, in random order for each participant. All stimuli were delivered for

a duration of 250 ms with a 250 ms pause occurring between the stimuli

within a pair. A prompt containing a reminder of the rating scheme appeared

on the screen, and the participant used the keyboard to give a numerical

response between 1 and 7. Following a 2-s pause after the rating was given,

the next stimulus pair was delivered.

Training phase. As in Experiment 1, the purpose of the training phase

was for the participants to attend to the legal training sequences without

explicit instruction that the sequences contained statistical regularities. On the

basis of pilot studies, we modified the training procedure slightly from

Experiment 1 in an attempt to equate training performance across the three

modalities.

At the beginning of the training phase, participants were instructed that

they would observe a particular sequence of stimuli and then, after a slight

pause, would observe two additional elements. The task was to decide

whether the pair of elements had occurred within the sequence in the same

order and then to press the appropriate key, Y for yes, N for no. The training

sequence–pair combinations from Table 2.5 were presented in random order

for three blocks, for a total of 72 training trials. Stimulus elements had a
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duration of 250 ms and were separated by 250-ms pauses. A 2-s pause

occurred between each sequence and each pair of elements. One second after

the last element of the stimulus pair occurred, a prompt was displayed on the

screen asking for the participant’s response. The next sequence–pair

combination began after a 2-s pause.

Test phase. The purpose of the test phase was to assess how well

participants learned the statistical regularities of the training set and could

generalize such knowledge to novel stimuli in a classification task. At the

beginning of the test phase, participants were instructed that all of the

sequences they had been exposed to in the previous phase of the experiment

were generated by a complex set of rules. They now would be exposed to new

sequences, presented in groups of two. One of the sequences in each pair was

generated by the same rules as before, whereas the other was not. The

participants’ task was to choose which sequence was generated from the same

rules by pressing a key marked 1 or 2, signifying the first or second sequence,

respectively. The test sequence pairs from Table 2.6 were presented in random

order for each participant. Stimulus elements had a duration of 250 ms and

were separated by 250-ms pauses. A 2-s pause occurred between the two

sequences of a pair. One second after the second sequence occurred, a prompt

was displayed on the screen asking for the participant’s response. The next

pair of sequences began following a 2-s pause.

Results

Pretraining Phase

We collected similarity ratings from all participants and averaged them

for each element pair combination to form three similarity matrices, one for
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each modality. Within each modality, the experimental and control ratings

were combined. We submitted each similarity matrix to a multiple

dimensional scaling (MDS) procedure (euclidian model) using SPSS 10.0 for

Windows. A one-dimensional solution provided a good fit for each of the

three modalities, with stress values less than 0.0500 in all cases (touch = 0.0056;

vision = 0.0086; audition = 0.0470). As can be seen from Figure 2.8, the tactile

and visual solutions contain clearly separated stimuli, in accord with the

linear relationship of the actual stimuli (e.g., the tactile vibration elements are

in the expected order, beginning with the thumb pulse, then the second finger,

then third finger). In slight contrast, the auditory solution contains two tones,

the third (261.6 Hz) and fourth (277.2 Hz), that are clustered together in state

space.

Figure 2.8. MDS solutions using the pretraining data for each of the
three sensory modalities. The numbers correspond to each of the five possible
stimulus elements for each modality.
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We interpret these MDS solutions as depicting that, overall, the stimuli

in the three modalities are perceived in psychologically similar ways. The only

noticeable difference is that two of the tones may have similar perceptual

representations.

Training Phase

The mean training performance out of 72 for each modality was 43.38

(60.3%) for tactile, 50.13 (69.6%) for visual, and 48.25 (67.0%) for auditory. The

data were submitted to a one-way ANOVA with the factor of modality. There

was a marginally significant main effect, F(2, 21) = 2.81, p = .083. Post hoc tests

revealed a significant difference between the tactile and visual training means

(p < .05). These results indicate that although the tactile training performance

was somewhat lower than the auditory and visual performances, in general,

scores across the three modalities were roughly equivalent.

Test Phase

The mean test scores out of 32 for each group were 15.75 for

tactile–control (49.2%), 16.00 for tactile–experimental (50.0%), 14.38 for

visual–control (44.9%), 15.88 for visual–experimental (49.6%), 15.25 for

auditory–control (47.6%), and 19.25 for auditory–experimental (60.2%). Figure

2.9 displays Experiment 2 test performance.
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Figure 2.9. Experiment 2: Mean number of correct test responses out of
32 (plus standard error) for the experimental (solid bars) and control (open
bars) groups. Sixteen is the level expected for chance performance.

Recall that the control groups participated in the pretraining and test

phases only. Therefore, the best way to assess learning within each sensory

modality is to compare experimental group performance with both

hypothetical chance levels (i.e., 50%) and control group performance (see

Redington & Chater, 1996). Individual single group t tests comparing

experimental group performance with theoretical chance reveal that only the

auditory group performed significantly better than chance, t(7) = 3.61, p < .01.

Likewise, paired t tests reveal that only the auditory experimental group

performed better than its control group, t(7) = 3.86, p < .01. These results

reveal that only the auditory experimental group learned the statistical

regularities of the training corpus.

We next submitted the experimental group data to a repeated-measures

ANOVA with the between-subjects factor of modality and the within-subject
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factor of initial versus final group sequences. We found a main effect of

modality, F(2, 21) = 4.95, p < .05, a main effect of initial–final group, F(2, 21) =

8.61, p < .01, and no interaction (p = .25). The effect of initial–final group arises

because test performance across modalities was generally better at initial

group sequences. The main effect of modality arises because the auditory

group was significantly better than both the tactile and the visual groups (ps <

0.05). Thus, these analyses confirm the presence of modality differences in

learners’ test performances.

The ANOVA revealed no interaction between modality and initial

versus final group sequences. However, because Experiment 1 suggested the

presence of such modality differences, we continued to explore possible

differences with planned comparisons. As described earlier, the test sequences

were created such that test pairs differed only in terms of I-anchor and F-

anchor measures. Thus, we can easily determine whether each sensory

modality was better at discriminating sequences on the basis of initial or final

fragment information. For the experimental group test performance in each

modality, we considered initial and final test pairs separately. Performance on

the 16 initial test pairs (i.e., test pairs consisting of one legal–initial and one

illegal–initial sequence) was 8.50 (53.1%) for touch, 9.50 (59.4%) for vision, and

10.13 (63.3%) for audition. We conducted a one-way ANOVA that revealed no

statistical differences among the three modalities, F(2, 21) = 1.69, p = .21.

Next, we consider performance on the 16 final test pairs for the

experimental conditions (i.e., test pairs consisting of one legal–final and one

illegal–final sequence). Performance was 7.50 (46.9%) for tactile, 6.38 (39.8%)

for visual, and 9.13 (57.0%) for auditory. An ANOVA revealed a main effect of
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modality, F(2, 21) = 3.98, p < .05. Specifically, auditory performance was

significantly better than visual performance (p < .05).

To summarize, the auditory group alone showed learning.

Furthermore, the auditory superiority appears to be largely due to better

performance, relative to vision and touch, on fragment–final test pairs. Thus,

consistent with Experiment 1, Experiment 2 provides evidence for both

quantitative and qualitative learning differences across the senses.

Discussion

Experiment 2 more closely examined modality differences in statistical

learning by attempting to control for two variables that could have influenced

performance in Experiment 1: low-level perceptual factors and training

performance effects. We controlled the first variable by introducing a

pretraining phase, in which participants observed all combinations of element

pairs and gave similarity ratings for each. These ratings were then submitted

to an MDS analysis, and the results provide good indication that, across

modalities, the stimuli were represented similarly. Furthermore, an additional

control task revealed that the stimuli within each modality were easily

discriminated.

Even if the stimuli across all three conditions were comparable in terms

of their perceptibility, it is still possible that uneven training performances

could lead to differences in test performance. For example, in Experiment 1,

the auditory group’s training performance was significantly better than both

visual and tactile training performance. The improved training performance

may have led to better encoding of the relevant fragment information,

resulting in a better ability to classify novel sequences at test. For Experiment
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2, we controlled training performance effects by using a training task that

resulted in relatively comparable training scores. This task proved more

difficult than that used in the first set of experiments, with scores ranging

between 60% and 69%. Auditory training performance was equivalent to

visual performance and only slightly better than tactile performance.

Even after we controlled for the perceptual and training effects,

auditory test performance still was significantly better than tactile and visual

performance. In fact, only the auditory group showed a main effect of

learning. Experiment 2 also shows that the auditory modality’s better

performance was due to a heightened sensitivity to sequence–final fragment

information.

Comparing the results of Experiment 2 with those of Experiment 1

reveals strong similarities. Both experiments showed an auditory advantage

for classifying novel sequences in regard to their legality. Both experiments

also revealed differences in terms of whether initial or final fragment

information was more important for each modality. The regression analyses in

the first set of experiments suggested a tactile–initial and an auditory–final

effect. The auditory–final effect was confirmed in Experiment 2.

One potentially troubling aspect of Experiment 2 is that there appeared

to be no tactile learning. This may be a result of the more complex grammar

and more difficult test that we used in Experiment 2. Tactile memory for serial

lists may be weaker compared with vision and audition (Mahrer & Miles,

1999) and, if so, may hinder learning during the training phase. The lack of

learning leaves open the possibility that the tactile learning we found in
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Experiment 1A was spurious. To replicate the tactile learning from

Experiment 1A, we conducted an additional tactile learning experiment.9

We hypothesized that using a slightly modified training scheme, one

that is less computationally demanding, might allow participants to better

encode the training regularities and lead to successful learning. Instead of a

training sequence being followed by a pair of elements (i.e., a bigram), each

training sequence was followed by a single element. The participants’ task

was to judge whether the single element had been a part of the preceding

sequence. In all other respects this additional experiment was identical to the

tactile condition in Experiment 2. On the training task, participants scored 62.2

out of 72 (86.4%), and on the test task they scored 18.63 out of 32 (58.2%). An

ANOVA (experimental vs. control) comparing the test performance with the

control performance revealed a significant effect, F(1, 14) = 5.83, p < .05. Thus,

under a slightly less complex training condition that allowed better training

performance, tactile participants showed a main effect of learning in the test

phase. This confirms the tactile learning we found in Experiment 1.

Finally, it could be argued that the superior performance in the

auditory condition was due to the presence of relative pitch information

present in the tone sequences (e.g., see Saffran & Griepentrog, 2001). Because

the auditory sequences can be construed as melodies, they contain

information about not just absolute pitch but also relative pitch in the form of

familiar musical intervals (e.g., perfect fourths and major sevenths). To

eliminate this information and provide an auditory task more comparable to

the other experiments, we conducted a new auditory experiment identical to

                                                  
9 Although there also was no effect of learning in Experiment 2’s visual condition, we did not
feel it was necessary to conduct an additional visual learning experiment because visual
statistical learning has been demonstrated in previous research (e.g., Fiser & Aslin, 2002).
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Experiment 2 but with a different tone set. The new tones were created so that

they would neither conform to standard musical notes nor contain standard

musical intervals between them. The tones, having frequencies of 210 Hz, 245

Hz, 286 Hz, 333 Hz, and 389 Hz, were equally spaced in log frequency, on the

basis of a ratio of 7/6 (1.166) and its powers 2, 3, and 4 (1.36, 1.59, 1.85,

respectively). Of these ratios, only one comes close to a musical interval, minor

6 (ratio 1.6), which is not a very prominent interval. With this new tone set,

participants scored 41.8 out of 72 (58.1%) on the training task and 18.7 out of

32 (58.4%) at test. The test scores were significantly greater than chance, t(9) =

3.69, p < .01, revealing an effect of learning. We also compared the test scores

with the original Experiment 2 auditory scores and found no difference, t(7) =

0.35, p = .74. Thus, this additional experiment indicates that the presence or

absence of musical interval information does not appear to affect learning and

therefore is not the underlying cause for the superior auditory performance.

General Discussion

Our experiments provided a controlled investigation into the nature of

statistical learning across the three primary sensory modalities. Unlike in

previous statistical learning forays, we used comparable materials and

identical procedures across the three senses. Additionally, in Experiment 2, we

controlled for low-level perceptual as well as training performance effects,

which allowed us to make direct comparisons among the modalities. In this

section we discuss the main findings of these experiments and conclude by

considering the underlying neural and cognitive mechanisms.

The first important finding is that touch can mediate statistical learning

of sequential input. Experiment 1A revealed that after very brief (10 min)
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exposure to training sequences produced from an artificial grammar,

participants were able to classify novel sequences as being either generated or

not generated from the same grammar. To our knowledge, no other studies

have demonstrated such a tactile learning ability, perhaps because of the belief

that deep structure learning is beyond the tactile sense’s capacity. Participants

did not perform above chance or control level performance in Experiment 2,

likely because the grammar was too complex and the distinction between legal

and illegal sequences more subtle. However, when we used a slightly less

demanding training scheme, participants displayed learning, which confirms

that touch can mediate the learning of an artificial grammar.

The tactile learning in both experiments occurred in the absence of

feedback and apparently without participants’ awareness. Additionally,

participants learned more than simply element frequencies, sequence lengths,

or beginning and ending element legality, as these factors were controlled;

rather, the legal and illegal test sequences differed in terms of adjacent

element statistics. The learning process observed here in the tactile domain is

conceptually similar to statistical learning found in the visual and auditory

modalities (e.g., Fiser & Aslin, 2002; Saffran et al., 1999). Besides having

theoretical importance, these data may have practical implications in the

realm of communication devices for the visually or auditorily impaired, by

capitalizing on people’s ability to encode and represent tactile temporal order

statistics.

The second important finding is the presence of modality constraints

affecting statistical learning. These modality constraints took two main forms:

a quantitative effect, and a qualitative effect. The quantitative effect was

evidenced by the fact that auditory statistical learning was better than both
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tactile and visual learning. The auditory advantage occurred even after we

controlled for training performance and stimulus element perceptibility across

the modalities and eliminated standard musical intervals from the tone

sequences. Our results thus suggest that the modality constraints affected

learning itself rather than a lower level perceptual process that might have in

turn affected learning performance. Although previous research has pointed

to an auditory advantage for low-level temporal processing tasks (Mahar et

al., 1994; Sherrick & Cholewiak, 1986), our results appear to be some of the

first evidence that such an advantage extends to more complex processes,

namely statistical learning of sequential input.

In addition to the quantitative effect was a qualitative learning effect

that took the form of biases regarding which aspects of a sequence each

sensory system is more or less attuned toward. We found evidence that

learners of tactile sequences may have been more sensitive to fragment–initial

information, whereas learners of auditory material were more sensitive to

fragment–final information. These biases suggest that each sensory system

may apply slightly different computational strategies when processing

sequential input. The auditory–final bias is interesting because it mirrors the

modality effect in serial recall, in which a more pronounced recency effect (i.e.,

greater memory for items at the end of a list) is obtained with spoken as

compared with written lists (e.g., Crowder, 1986). This may indicate that

similar constraints affect both explicit encoding of serial material and implicit

learning of statistical structure. In both cases, learners appear to be more

sensitive to material at the end of sequences or lists for auditory input. It may

prove fruitful to further explore this hypothetical connection between serial
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list learning and implicit sequential learning; the results may inform research

in both domains, which have traditionally remained separate endeavors.

In contrast to the quantitative and qualitative effects we found, two

previous studies comparing auditory and visual statistical learning did not

report any modality differences. Fiser and Aslin (2002) found human visual

statistical learning of spatiotemporal sequences to be very similar to learning

in the auditory domain with temporal sequences (e.g., Aslin, Saffran, &

Newport, 1998) and in the visual domain with spatial structures (e.g., Fiser &

Aslin, 2001). Similarly, Kirkham et al. (2002) concluded that infant visual

statistical learning was similar to auditory learning (e.g., Saffran et al., 1996).

However, Fiser and Aslin’s (2002) and Kirkham et al.’s (2002) conclusions

were based on studies that did not use comparable stimuli or procedures

across the modalities. Thus, neither of these two studies are adequate for

making fine-tuned cross-modal comparisons. We agree that there are

similarities in how infants and adults learn sequential patterns across vision

and audition, but our data reveal important differences, as well. Saffran (2002)

used more comparable procedures and stimuli in her visual and auditory

AGL experiments and found comparable overall learning performances across

modalities. However, a subtle modality difference was revealed, showing that

auditory learners were more sensitive to the presence or absence of predictive

dependencies in the grammar, perhaps because they had more experience in

the auditory domain for tracking such sequential structure.

Similarly, it could be argued that the auditory learning advantage we

observed was merely due to participants having more prior experience

listening to tone sequences compared with feeling vibration pulses or tracking

visual spatiotemporal patterns. However, if this was the case, one would
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expect the auditory training performance levels to be substantially better than

visual or tactile scores. In fact, auditory training performance was lower than

visual performance in Experiment 2. Additionally, it is difficult to see how

previous training exposure would lead to the qualitative differences we

observed in terms of each sensory modality being differentially biased toward

the beginning or ending of sequences.

If, as we suggest, modality constraints exist, what might be their

nature? The answer clearly depends on how one views statistical or implicit

learning itself. Because most researchers have tended to emphasize the

similarities existing between statistical learning in various domains, this has

led to implicit assumptions—or, in some cases, explicit statements (Kirkham et

al., 2002)—depicting statistical learning as a single, domain-general

mechanism. If this view is adopted, modality constraints are seen as

influencing the processing of input sequences before the information is

funneled into the presumed amodal statistical learning mechanism, allowing

some types of input to be processed more or less efficiently.

Another view of statistical learning is that it is made up of various

subsystems, each operating over different types of input and subserved by

different brain areas. This view is supported by increasing evidence that

unimodal brain areas contribute to the learning of statistical patterns. For

example, in a functional magnetic resonance imaging study (Reber, Stark, &

Squire, 1998), subjects learned to categorize visual patterns in terms of

whether the patterns were similar to a previously seen corpus. It was found

that occipital cortex (V1, V2) was instrumental for learning the structural

regularities of the patterns, apart from being involved in visual perception

itself. Similarly, Molchan, Sunderland, McIntosh, Herscovitch, and Schreuers
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(1994) found the primary auditory cortex to be involved in auditory

associative learning. These studies indicate that relatively low-level unimodal

sensory areas play an important role in learning environmental statistical

regularities. It is our view that implicit statistical learning may be akin to

perceptual priming, where modality-specific brain areas mediate learning by

becoming more fluent at processing previously observed stimuli and/or

stimuli that contain similar statistical properties as those viewed earlier (also

see Chang & Knowlton, 2004). Within this framework, modality constraints

may reflect general processing differences that exist among the various

statistical learning subsystems, with the auditory system excelling at encoding

statistical relations among temporal elements and the visual system

specializing primarily in computing spatial relationships.

In conclusion, we have presented new evidence revealing both

similarities and differences in statistical learning across the senses. An

important target for future research is to uncover to what extent these

modality constraints are related to previous reports of modality differences in

perception and cognition. We anticipate that future studies, involving a

combination of cognitive and neurophysiological methods, will further

illuminate the nature of modality-constrained statistical learning across the

senses.
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CHAPTER THREE
Seeing and Hearing in Space and Time:

Effects of Modality and Presentation Rate on Implicit Statistical
Learning

Intuitively, each sensory modality seems biased to handle particular

aspects of environmental input.  For instance, vision and audition appear to be

most adept at processing spatial and temporal input, respectively (Kubovy,

1988). Consider that it takes very little time – often a single glance – in order to

recognize a relatively complex visual scene (Potter, 1976) but it generally takes

several seconds or longer to recognize a melody or voice.  That is, a brief

“snapshot” of sound is fairly incomprehensible whereas a visual snapshot

may be quite coherent (Seifritz, Espoto, Neuhoff, & Di Salle, 2003). Also

consider that whereas the auditory system must compute the location of

sounds through differences in intensity and time of arrival at each ear, the

location of visual stimuli is directly mapped onto the retina and then projected

topographically into cortical areas (Bushara et al., 1999). This somewhat

anecdotal evidence, bolstered by studies of perception and memory, suggests

that in visual cognition, the dimensions of space weigh most heavily, whereas

for audition, the temporal dimension is most prominent (Friedes, 1974;

Geldard, 1970; Kubovy, 1988; O’Connor & Hermelin, 1978; Penney, 1989).

These modality constraints have been proposed to affect the manner in

which stimuli are perceived (Mahar, Mackenzie, & McNicol, 1994; Repp &

Penel, 2002), learned (Conway & Christiansen, 2005; Handel & Buffardi, 1969;

Saffran, 2002), and maintained in working memory (Collier & Logan, 2000;

Glenberg & Swanson, 1986; Penney, 1989). Even so, researchers do not always
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give modality effects due attention.  In fact, it has been suggested that

cognitive psychologists ought not to consider the senses as separate entities at

all (e.g., Marks, 1978; Stoffregen & Bardy, 2001). Or at the very least, modality

effects ought to be de-emphasized, with an emphasis instead on the

importance of amodal information in the environment that can be detected by

any of the sense modalities (e.g., Gibson, 1966). Unfortunately, these views

tend to obfuscate the possible presence of modality differences that may affect

processing, which can hinder the development of a complete theory of human

cognition.

It is currently unknown to what extent spatial and temporal constraints

affect statistical learning, the capability for extracting environmental

regularities, largely through automatic learning mechanisms operating

outside of awareness. Statistical learning is a fundamental ability believed to

underlie important aspects of language and cognition (Altmann, 2002;

Conway & Christiansen, 2001), including speech segmentation (Saffran,

Newport, & Aslin 1996) visual scene computations (Fiser & Aslin, 2001), and

tactile pattern processing (Conway & Christiansen, 2005). Very few studies of

statistical learning have directly compared learning across sensory domains;

fewer still have considered possible spatial and temporal constraints on

learning. One exception is Gomez (1997), who suggested that visual learning

of artificial grammars proceeds better when the stimulus elements are

presented simultaneously – that is, spatially arrayed – rather than

sequentially, presumably because a simultaneous format permits better

chunking of the stimulus elements. Likewise, Saffran (2002) found that

participants learned predictive relationships best with an auditory or visual-

simultaneous presentation, but did poorly in a visual-sequential condition.
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Finally, more recently Conway and Christiansen (2005) examined statistical

learning of tactile, visual, and auditory input sequences and found that

auditory learning of such material exceeded both visual and tactile learning.

In this report, we extend these studies to directly test the hypothesis

that temporal and spatial constraints affect visual and auditory learning of

statistical patterns. Using the artificial grammar learning (AGL; Reber, 1967)

paradigm, we expose participants to statistically-governed visual or auditory

input sequences generated from an artificial grammar and then test learners

on their ability to generalize their knowledge to novel patterns.  Our primary

manipulation is the manner in which the visual input is distributed: spatially,

spatiotemporally, or temporally.  In line with a modality-constrained view, we

predict that learning will be greatest for the visual-spatial input, comparable

to an auditory (temporal) condition, and poorest for the visual-temporal

material.  An additional aim of this study is to explore the effect that rate of

presentation has on learning, an issue that has not yet been explored in AGL

or traditional statistical learning tasks.  Faster presentation rates may magnify

the effect of modality constraints by adversely affecting learning in the non-

preferred mode of processing (see Collier & Logan, 2002). Consequently, we

predict that at the fast rate, learning in the visual-temporal condition will

show the largest decrement in performance.

Experiment 3: Effects of Modality and Presentation Rate on Learning

In Experiment 3, we manipulated presentation format and presentation

rate to uncover additional constraints on visual and auditory implicit

statistical learning.
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Method

Subjects

One hundred forty-four subjects (twelve in each condition) with normal

hearing and normal or corrected-to-normal vision were recruited from

psychology classes at Cornell University, earning course credit for their

participation. Data from two subjects were discarded, one due to the

participant being color blind and the other due to experimenter error.

Materials

The materials are similar to those used by Conway and Christiansen

(2005). Figure 3.1 shows the artificial grammar used to generate the input

sequences, taken from Gomez and Gerken (1999). The grammar consists of

five unique elements, each represented by a numeral (1-5). In turn, each

numeral is mapped onto elements from one of four visual or auditory

vocabularies, corresponding to four input conditions (auditory, visual-

temporal, visual-spatial, and visual-spatiotemporal).

As in Conway and Christiansen (2005), for the “training” phase we

used 12 legal sequences that were generated from the grammar. Each legal

sequence was used twice to create a set of 12 training pairs (see Table 3.1). Six

of the pairs consisted of the same training sequence presented twice (matched

pairs), whereas the other 6 pairs consisted of 2 different sequences

(mismatched pairs). These matched and mismatched training pairs were used

in conjunction with a same–different judgment task.
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Figure 3.1. Artificial grammar used in Experiment 3, taken from Gomez
and Gerken (1999). Each numeral was mapped onto a particular auditory or
visual stimulus element, depending on the condition.

Table 3.1

Training Pairs

_____________________________________________________               

Matched Pairs                                               Mismatched Pairs                 

1-2-1-1-1-3 / 1-2-1-1-1-3 1-2-3-5-2-5 / 1-2-3-5-2-3

4-1-1-3-5-2 / 4-1-1-3-5-2 1-2-3-5-2-3 / 1-2-3-5-2-5

4-1-3-5-2 / 4-1-3-5-2 4-3-5-2-3 / 4-3-5-2-5

1-2-5-5-5 / 1-2-5-5-5 4-3-5-2-5 / 4-3-5-2-3

4-1-3 / 4-1-3 1-2-5-5 / 1-2-1-3

1-2-3 / 1-2-3 1-2-1-3 / 1-2-5-5

Note.  The numbers refer to a particular visual or auditory stimulus (see text).

1

2 4

53

4

5

1

2

1

2

3

Start

Exit

Exit

5

S2

S1

S3

S4

S5
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The test set consisted of 10 novel legal and 10 illegal sequences. Legal

sequences were produced from the finite-state grammar in the normal fashion.

The illegal sequences each begin with a legal element (i.e., 1 or 4), followed by

one or more illegal transitions and ending with a legal element (i.e., 2, 3, or 5).

For example, the illegal sequence 1-4-5-1-3-3 begins and ends with legal

elements (1 and 3, respectively) but contains several illegal interior transitions

not allowed by the grammar (1-4, 4–5, 5–1, and 3-3). The legal and illegal

sequences can be described as differing from one another in terms of co-

occurrence statistics of adjacent elements. That is, a statistical learning

mechanism could discern which novel test sequences are illegal by noting the

presence of pairwise element combinations that did not occur in the training

set. All test sequences are listed in Table 3.2.

As mentioned earlier, each of the five stimulus elements (1-5) were

mapped onto one of four vocabularies, corresponding to four types of

modality/format. Importantly, the timing of all stimuli was equated across

these four conditions in order to make comparisons across conditions viable.

Auditory. For the auditory conditions, the stimulus elements consisted

of pure tones of various frequencies (1 = 261.6 Hz, 2 = 277.2 Hz, 3 = 349.2 Hz, 4

= 370 Hz, and 5 = 493.9 Hz) corresponding to musical notes C, C#, F, F#, and

B, respectively, played through headphones. For the “slow” and “fast” input

conditions, each stimulus element (tone) had durations of 250 ms and 125 ms,

respectively. As an example, the sequence 1-2-1-3 consists of the following

four notes in this order: C, C#, C, and F.
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Table 3.2

Test Items

______________________________________________________               

Legal               IAS      FAS                 Illegal             IAS      FAS                 

4-1-3-5-2-3 2.5 2.5 1-4-5-1-3-3 0 0

1-2-1-3-5-2 4.5 2.0 4-5-1-2-1-3 0 2.0

4-3-5-2-5-5 2.0 1.5 4-2-1-3-1-5 0 0

4-1-3-5-2-5 2.5 2.0 1-5-3-3-2-2 0 0

4-1-1-1-3 2.0 2.0 1-5-3-4-2 0 0

1-2-1-1-3 4.5 2.0 4-2-1-5-3 0 0

1-2-3-5-2 5.0 2.0 1-5-3-1-2 0 0

4-1-1-3 2.0 2.0 4-5-1-3 0 1.5

4-3-5-2 2.0 2.0 4-5-2-2 0 0

1-2-5 4.5 1.0 1-4-2 0 0

_____________________________________________________               
Note: The numbers refer to a particular visual or auditory stimulus (see text).
IAS = initial anchor strength; FAS = final anchor strength.

Visual-temporal. For the visual-temporal conditions, the stimulus

elements consisted of different colored squares (1=red, 2=blue, 3=yellow,

4=green, 5=black) appearing sequentially in the center of the computer screen

at approximately eye level.  Each square (2.6 cm x 2.6 cm) appeared for 250 ms

in the “slow” input condition and 125 ms in the “fast” condition. Thus, the

sequence 1-2-1-3 consists of a temporal sequence of red, blue, red, and yellow

squares (see Figure 3.2).
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Figure 3.2. Example of visual-temporal sequence 1-2-1-3. The arrow
designates the flow of time. Note that participants did not see the labels for
each color; they are included here only for illustrative purposes.

Visual-spatial. For the visual-spatial conditions, the stimulus elements

consisted of the same colored squares described above, except that all squares

in a sequence were presented simultaneously along a horizontal row, from left

to right, at approximately eye level. The timing of the stimuli was equal to the

cumulative presentation time of the visual-temporal stimuli. That is, in the

slow condition, a visual-spatial sequence was displayed for a number of msec

equal to 250 x N, where N is the number of squares in the sequence. For the

fast condition, a sequence was displayed for 125 x N ms. Thus, the visual-

spatial sequence 1-2-1-3 consists of a row of squares appearing simultaneously

(yellow)

(red)

(blue)

(red)
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for (250 x 4) = 1000 ms or (125 x 4) = 500 ms, from left to right: red, blue, red,

yellow (see Figure 3.3).

Visual-spatiotemporal. The visual-spatiotemporal conditions were

designed to include both temporal and spatial information in each sequence.

Each stimulus element consisted of a black square, displayed on the computer

monitor in different locations (element 1 represents the leftmost location, and

5 the rightmost). Each black square (2.6 × 2.6 cm) was positioned in a

horizontal row across the middle of the screen at approximately eye level,

with 2.5 cm separating each position.  Each element appeared for 250 ms or

125 ms, depending on the presentation rate condition. Figure 3.4 illustrates the

visual-spatiotemporal sequence 1-2-1-3.

Figure 3.3. Example of visual-spatial sequence 1-2-1-3. Note that
participants did not see the labels for each color; they are included here only
for illustrative purposes.

         (red)     (blue)    (red)   (yellow)
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Figure 3.4. Example of visual-spatiotemporal sequence 1-2-1-3. The
arrow designates the flow of time. Note that participants did not see the
dashed squares, which are included here only for illustrative purposes.

Procedure

Participants were assigned randomly to one of twelve conditions, four

control groups and eight experimental groups. Within the experimental

groups, the 4 x 2 design consisted of two factors: Modality/Format (auditory,

visual-temporal, visual-spatial, and visual-spatiotemporal) and Presentation

Rate (slow and fast). The slow and fast groups received the input material at a

presentation rate of 4 and 8 elements per second, respectively (corresponding

to individual element durations of 250 ms and 125 ms).

The four control groups consisted of the four different

Modality/Format conditions; all control groups received the input at the slow
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presentation rate only.10 The control groups were meant to ensure that any

learning that the experimental groups displayed was dependent upon the

exposure to the input material in the training phase.  Consequently, the

experimental groups received both training and test phases whereas the

control groups received the test phase only.

At the beginning of the training phase, the slow and fast experimental

group participants were instructed that they would hear or see pairs of

sequences. For each pair of sequences (listed in Table 3.1), they had to decide

whether the two sequences were the same or not and indicate their decision

by pressing a button marked YES or NO. This match–mismatch paradigm,

also used by Conway and Christiansen (2005), served as a way to encourage

participants to pay attention to the stimuli without giving them explicit

instruction that the sequences conformed to an underlying structure. Note that

there is no feedback given during the task.

Each pair was presented six times in random order for a total of 72

exposures, with the timing parameters described earlier. In all conditions, a 2-

s pause occurred between the two sequences of each pair and following the

last sequence of the pair. After exposure to the two sequences, a prompt was

displayed on the computer monitor asking for the participant’s response, and

it stayed on the screen until a button press was made. After another 2-s pause,

the next training pair was presented. The entire training phase in each

condition lasted roughly 10 min for each participant.

Before the beginning of the test phase, the experimental group

participants were told that the sequences they had just observed had been

                                                  
10 We only incorporated the slow presentation rate for the control groups because, assuming
that the control groups would perform at chance levels, there is no reason to believe that
increasing the rate of presentation would change performance levels.
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generated by a computer program that determined the order of the stimuli by

using a complex set of rules. They were told that they would now be

presented with new sequences. Some of these would be generated by the same

program, whereas others would not be. It was the participant’s task to observe

each of the new sequences and then classify it without feedback in terms of

whether it was generated by the same rules by pressing a button marked

either YES or NO. The control participants, who did not participate in the

training phase, received an identical test task.

The 20 test sequences were presented one at a time, in random order, to

each participant. The timing of the test sequences was the same as that used

during the training phase (250-ms or 125-ms pulse durations and 2-s pauses

before and after each sequence).

Results

The training performances for the eight experimental groups are shown

in Table 3.3, which reports the mean number of correct match/mismatch

decisions out of 72. We submitted the data to a two-way ANOVA with the

factors Modality/Format and Presentation Rate. There was a main effect of

Modality/Format, F(3,88) = 26.1, p < .0001 but no main effect of Presentation

Rate, F(1,88) = .28, p = .60, nor a significant interaction, F(3,88) = .55, p = .55.

Recall that the training task was merely meant to encourage participants’

attention to the training stimuli and thus comparisons of performance

between different conditions is of minimal importance for our purposes. The

data of more interest are the test classification results, which provide a

measure of the extent to which participants can extract statistical regularities

and generalize this knowledge to novel patterns.
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Table 3.3

Experimental Group Training Results

                                                                                                                                    

Slow (4 elements/s)             Fast (8 elements/s)   

Modality/Format                 M        %                                 M        %                     

Auditory 49.4 68.7 50.4 70.0

Visual-Temporal 44.1 61.3 42.8 59.4

Visual-Spatial 47.3 65.8 48.7 67.6

Visual-Spatiotemporal 40.8 56.6 41.5 57.7

                                                                                                                                    

Note. Mean values reported out of 72 possible correct.

The control group test results are shown in Table 3.4, which reports the

mean number of correct classification responses out of 20. As expected, none

of the four groups performed greater than chance levels, thus indicating that

any learning displayed by the experimental groups is due to exposure to the

material during the training phase.11

                                                  
11 The visual-spatiotemporal control group actually performed statistically worse than chance,
indicating that the visual-spatiotemporal experimental groups might be biased against an
effect of learning.
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Table 3.4

Control Group Test Results

                                                                                                

Modality/Format                 M        %         t(11)                

Auditory 10.8 54.2 1.76

Visual-Temporal 9.9 49.6 0.16

Visual-Spatial 9.3 46.7 -0.83

Visual-Spatiotemporal 8.1 40.4 -2.73*

                                                                                                
Note. Mean values reported out of 20 possible correct. T-tests are conducted
with respect to chance levels.
*p < .05

The experimental group test results are shown in Table 3.5 and

displayed graphically in Figure 3.5. Notice first that the auditory, visual-

temporal, and visual-spatial groups all evidenced learning above chance levels

in the slow presentation conditions. Notice, too that only the visual-temporal

group’s performance declined at the fast presentation rate, dropping to chance

levels.
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Table 3.5

Experimental Group Test Results

                                                                                                                                    

Slow (4 elements/s)             Fast (8 elements/s)   

Modality/Format                 M        %         t(11)                M        %         t(11)    

Auditory 13.9 69.5 5.42*** 14.3 71.7 6.28***

Visual-Temporal 12.2 60.8 3.17** 10.4 52.1 0.92

Visual-Spatial 13.1 65.4 3.39** 12.6 62.9 3.11**

Visual-Spatiotemporal 10.9 54.6 1.35 11.5 57.5 3.00*

                                                                                                                                    
Note. Mean values reported out of 20 possible correct. T-tests are conducted
with respect to chance levels.
*p < .05. **p < .01. ***p < .001

Figure 3.5. Experimental group test performances, showing number of
correct test items out of 20, and including error bars.
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We submitted the experimental group data to a two-way ANOVA with

the factors Modality/Format and Presentation Rate. There was a main effect of

Modality/Format, F(3,88) = 7.96; p < .0001, but no main effect of Presentation

Rate, F(1,88) = 0.40; p = .52, nor a significant interaction, F(3,88) = 1.18; p = .32.

We continued with planned comparisons between the four different

modality/formats, collapsed across presentation rate. The results revealed

that auditory performance was significantly greater than both visual-temporal

(p < .0001) and visual-spatiotemporal performance (p < .001), as well as

marginally greater than visual-spatial performance (p = .067). Visual-spatial

performance in turn was significantly greater than both visual-temporal (p <

.05) and visual-spatiotemporal performance (p < .05). There were no

differences between the visual-temporal and visual-spatiotemporal groups (p

= .91). We also conducted planned comparisons within each modality/format

between the slow and fast conditions. Confirming our earlier observation,

only the visual-temporal group showed a difference in test performance,

scoring significantly lower at the fast presentation rate (p < .05).

These results suggest quantitative learning differences between sense

modalities. In order to detect more subtle modality-specific learning

differences, we conducted item analyses to determine whether particular test

items were more or less difficult to classify in each modality/format. We

conducted two separate two-way ANOVA’s (Modality/Format x Test Item),

one for each rate of presentation, entering the test performance data averaged

across subjects for each test item. For the slow presentation rate, there were

main effects both of Test Item, F(19, 880) = 3.47, p < .0001, and

Modality/Format, F(3, 880) = 4.53, p < .01, but no interaction, F(57, 880) = 1.17,

p = .19. For the fast presentation rate, there also were main effects for Test
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Item, F(19, 880) = 3.39, p < .0001, and Modality/Format, F(3, 880) = 8.18, p <

.0001, as well as a significant interaction, F(57, 880) = 2.14, p = .001.

The significant interaction in the item analysis for the fast presentation

conditions suggests that there exist learning-related qualitative modality

effects. We followed up with regression analyses to determine which sources

of information may have been extracted by each modality/format condition.

Each of the legal and illegal test items were assessed in terms of their initial

and final anchor strengths (IAS and FAS), an indication of the relative

frequencies of the initial and final fragment “chunks” (i.e., bi- and tri-grams)

that exist in similar positions in the training items (Conway & Christiansen,

2005). For example, the test item 1-2-1-3-5-2 has an IAS of 4.5 and an FAS of

2.0, indicating that the initial chunks 1-2, 2-1, and 1-2-1 occur frequently in the

initial positions of the training set, whereas the final chunks 3-5, 5-2, and 3-5-2

occur slightly less frequently in the final positions of the training set.12  We

used IAS, FAS, and item length as predictors in four different multiple

regression analyses, one for each modality/format condition (each collapsed

across presentation rate). The results of the multiple regression analyses

should indicate which of these three measures best predicts whether a

participant in each modality/format condition will endorse a test item as

legal. The results reveal a striking difference between the auditory and the

visual conditions: FAS was a significant predictor for auditory endorsements

(p < .005), whereas IAS was a significant and marginally significant predictor

                                                  
12 In Conway and Christiansen (2005), we assessed these stimuli in terms of additional
information sources, such as novelty (Redington & Chater, 1996), novel fragment position
(Johnstone & Shanks, 1999), and similarity (Vokey & Brooks, 1992), but found that for this
particular test and training set, these measures were highly correlated with IAS and FAS. A
principle components analysis revealed that all these sources could be efficiently reduced to
IAS, FAS, and item length. Therefore, we include only those three measures in the regression
analyses.
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for visual-spatial (p < .05) and visual-temporal endorsements (p = .09),

respectively. Length was a significant and marginally significant predictor for

visual-spatial (p < .05) and visual-temporal endorsements (p = .087),

respectively. It is important to note that there are no length differences

between legal and illegal items. Thus, participants in the visual-spatial and

visual-temporal conditions apparently were partially relying on an incorrect

strategy to guide their test classifications.

In summary, for the experimental group test data, there was a main

effect of modality/format, with auditory performance greatest, closely

followed by visual-spatial performance, and with the visual-temporal and

visual-spatiotemporal groups performing worst. We also found that at the fast

presentation rate, only visual-temporal performance suffered. These

quantitative learning differences were accompanied by qualitative learning

effects. Consistent with previous results (Conway & Christiansen, 2005),

audition and vision were differentially biased toward the end and beginning

of input sequences, respectively.

These results provide key support for a modality-constrained view of

statistical learning. Participants in the visual conditions appeared to best

extract statistical patterns when the input was presented in a spatial format

rather than a temporal or spatiotemporal one. Additionally, visual learning

relied upon statistical information present at the beginning of input sequences.

In contrast, auditory learning excelled in the encoding of temporal input,

mediated by greater sensitivity to the statistical structure of the end of input

sequences. Furthermore, the quantitative modality constraints were magnified

at the highest presentation rate, with visual-temporal learning dropping in
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overall performance, highlighting the fact that vision is poor at encoding

temporal regularities, especially at fast presentation rates.

General Discussion

The modality constraints observed here extend the results of Conway

and Christiansen (2005), who found that auditory statistical learning of

sequential structure exceeded that of visual or tactile learning, as well as that

of Saffran (2002), who found that learning of predictive relationships occurred

better for visual-simultaneous and auditory input compared to visual-

sequential material. In the current study, visual learning nearly matched

auditory learning but only when the visual regularities were presented in a

simultaneous/spatial format. These results illustrate that the extraction of

statistical patterns is heavily affected by the modality and presentation format

in which the input is delivered. Furthermore, we found that increasing the

rate of presentation magnified these modality constraints, causing a decline in

learning performance for the visual-temporal condition but not for the other

formats.

These data suggest that a full understanding of statistical learning, and

likely other forms of perception, learning, and memory, will only be borne out

by taking into account effects of modality in relation to the dimensions of

space and time. The empirical evidence supports what we call a modality-

constrained view of perception and cognition.  That is, consistent with previous

work in perception (Mahar et al., 1994), learning (Saffran, 2002), and short-

term memory (Penney, 1989), we suggest that performance on particular tasks

will vary depending on the sensory modality and the input format (i.e.,

spatial, temporal, or spatiotemporal) in question.
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Before attempting to further clarify the nature of this modality-

constrained view, it is worthwhile to consider possible objections. Although

the modality effects reviewed here and elsewhere appear to be substantial and

robust, there also exist commonalities between visual and auditory processing

(e.g., Kubovy & Van Valkenburg, 2001; Marks, 1978). Both vision and audition

can localize stimuli in space, can detect movement, can perceive rhythms and

sequential patterns, and can discriminate objects based on when they

occurred.  As the Gibsons (1966; 1969) argued, such environmental

information might be “amodal” in the sense that these and other features can

be picked up across multiple sense modalities.  If so, then different stimulus

energies could be considered to be equivalent, or invariant, to one another.

Similarly, Marks (1978) argued that the sense modalities have much in

common in terms of phenomenological attributes, principles, and

mechanisms. As he suggested, it is likely that the auditory and visual systems

rely upon many of the same computational algorithms and neural

architectures (see Shamma, 2001). From these perspectives, perhaps the vision-

space, audition-time analogy is misleading (Handel, 1988).

We agree that it may be misleading to consider vision solely within a

spatial framework and audition as existing only within a temporal one.

However, there appear to be real biases in terms of which dimensions are

more or less important for each modality.  From a purely phenomenological

perspective, it seems nearly impossible to imagine an a-temporal sound or a

non-spatial visual percept.  On the other hand, it is easier to think of sound

without space or a visual scene without the passage of time.  Time appears to

be the primary gridwork for audition, with sounds changing in certain ways
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over time, whereas space is the primary referent for vision, with visual objects

defined by size and shape (Hirsh, 1967).

More importantly, the empirical data shown here and elsewhere (e.g.,

Friedes, 1974) act as a counter-argument to the possibility of amodal cognitive

processes.  As Barsalou (1999) argued, modality differences make it difficult to

cling to amodal theories of perception and cognition.  Though it may be true

that both vision and audition can perceive the invariant structure of certain

features such as temporal patterns or object locations, nevertheless, each sense

appears to be differentially adept at detecting a subset of stimulus

characteristics, including temporal and spatial statistical patterns.

Thus, however much the sensory systems may be similar, it is clear that

certain constraints affect their processing, and therefore it is important to

understand what causes the constraints.  Within the context of verbal short-

term memory, Penney (1989) suggested that auditory and visual stimuli are

processed in separate “streams” with each having different properties and

capabilities.  The auditory stream is characterized by strong associations

between successive/sequential items, whereas the visual stream encodes

associations between simultaneously presented spatial input.  This makes

sense in light of what is known about the principles of auditory grouping:

sounds that rapidly follow one another tend to be produced by the same

environmental source and thus are perceived or “grouped” together, whereas

it is spatial rather than temporal contiguity which is important for visual

perception (Goldstein, 2002).  Possibly, a similar associative neural learning

mechanism may be operative in both the auditory and visual cortical areas,

but each makes its computations over a different set of input. The existence of

similar underlying computational principles helps explain the processing
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similarities across the modalities, while the proposed separate processing

streams allow for the existence of modality-specific differences. Under this

framework, visual mechanisms might associate features and/or objects that

are close together in terms of their location along the retinotopic map (i.e., in

terms of space).  Auditory mechanisms would encode relations among events

occurring close together in time.

This modality-constrained framework helps explain the current data.

First, the data revealed that subjects were best able to encode statistical

regularities contained within visual input when the material was presented

spatially, rather than spatiotemporally or temporally.  In contrast, subjects

excelled at the processing of auditory input (presented temporally),

outperforming all other visual conditions.  Second, when the input stream was

presented at relatively fast rates (8 elements per second), modality effects were

magnified: subjects in the visual-temporal condition suffered a substantial

decrement in performance.

The differences in the initial/final sensitivities by vision and audition

were also observed previously (Conway & Christiansen, 2005). It is important

to note that for the current stimulus set, both fragment-initial and fragment-

final information are equally helpful for making correct classification

judgments; thus, it isn’t likely that the observed qualitative sensitivity biases

are due to experiment-specific learning. Instead, it is more likely that learners

come into the experiment with pre-existing auditory-final and visual-initial

encoding biases. Interestingly, similar modality initial/final effects are seen in

the realm of serial recall (i.e., serial position effects) with audition showing

better recall for the end of lists (Crowder, 1986) and under certain

circumstances, vision showing better recall for the beginning of lists (Beaman,
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2002). Thus, there may exist a global perceptual/cognitive constraint on vision

and audition, evolved through currently unknown selection pressures, to

differentially attend to information in initial and final sequence positions,

respectively.

As others have argued (Barsalou, 1999; Glenberg, 1997; Penney, 1989;

Tulving & Madigan, 1970), understanding the role played by the sensory

systems is key to having a full theory of human memory and perception, and

any theory of cognition will not be adequate if it cannot account for modality-

specific phenomena. Our data shed light on one important modality

constraint: implicit statistical learning is heavily constrained by the sense

modality and presentation format in which the patterns occur. These

constraints suggest that auditory and visual statistical learning occurs in

separate, modality-specific streams, each having different biases and

properties. Additional research must further elucidate the nature of each

modality-constrained learning system and how they support human cognition

more broadly.
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CHAPTER FOUR
Statistical Learning Within and Between Modalities:

Pitting Abstract Against Stimulus-Specific Representations

A core debate in the psychological sciences is to what extent acquired

knowledge consists of modality-dependent versus abstract or amodal

representations. Traditional information processing approaches to cognition

have emphasized the operation of amodal symbol systems (Fodor, 1975;

Pylyshyn, 1984), whereas more recently, the “embodiment” approach

proposes instead that cognition is grounded in modality-specific sensorimotor

mechanisms (Barsalou, 1999; Barsalou, Simmons, Barbey & Wilson, 2003;

Glenberg, 1997; Lakoff 1988). This debate has especially come to a head in the

area of implicit statistical learning of artificial grammars.13 In Arthur Reber’s

(1967; 1969) early work, letter strings were generated from an artificial

grammar. Because the strings obeyed the overall rule structure of the

grammar, they were constrained in terms of what letters could follow other

letters. Participants not only showed evidence of learning this structure

“implicitly”, but they could apparently transfer their knowledge of the legal

regularities from one letter vocabulary (e.g., M, R, T, V, X) to another (e.g., N,

P, S, W, Z) as long as the same underlying grammar was used for both (Reber,

1969). This effect has been replicated many times, with transfer being

demonstrated not just across letter sets (e.g., Brooks & Vokey, 1991; Mathews

                                                  
13 Artificial grammar learning is “statistical” in the sense that successful test performance can
be achieved by encoding something akin to chunks of elements (Perruchet & Pacteau, 1990) or
learning the transitional probabilities among consecutive elements (Saffran, Johnson, Aslin, &
Newport, 1999).
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et al., 1989; Shanks, Banbury, & Henry, 1997) but also across sense modalities

(Altmann, Dienes, & Goode, 1995; Manza & Reber, 1997; Tunney & Altmann,

2001). Both adults and infants have displayed successful transfer (Gomez &

Gerken, 1999; Marcus, Vijayan, Rao, & Vishton, 1999).

The usual way to explain transfer effects in artificial grammar learning

(AGL) tasks is by proposing that the learning is based on “abstract”

knowledge, that is, knowledge not directly tied to the surface features or

sensory instantiation of the stimuli (Altmann et al., 1995; Marcus et al., 1999;

Pena, Bonatti, Nespor, & Mehler, 2002; Reber,1989; 1993; Shanks et al., 1997).

For instance, the human cognitive system might encode patterns among

stimuli in terms of “abstract algebraic-like rules” that encode relationships

between amodal variables (Marcus et al., 1999, p. 79). Such a proposal

emphasizes the structural relationships among items and deemphasizes

information pertaining to specific features of the stimulus elements (see Reber,

1993, pp. 120-121). Alternatively, instead of abstract knowledge, participants

may be learning the statistical structure of the input sequences in a modality-

or stimulus-specific manner (e.g., Chang & Knowlton, 2004; Christiansen &

Curtin, 1999; Conway & Christiansen, 2005; McClelland & Plaut, 1999;

Perruchet, Tyler, Galland, & Peereman, 2004; Seidenberg & Elman, 1999).

In this chapter, we present new evidence from a set of AGL experiments

supporting a modality-constrained or embodied view of statistical learning.

We introduce a novel modification of the AGL paradigm to examine the nature

of statistical learning within and across modalities. We used two different

finite-state grammars in a dual–grammar cross-over design such that the

grammatical test sequences of one grammar were used as the ungrammatical

test sequences for the other grammar. For example, in Experiment 4,
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participants were exposed to visual sequences of one grammar and auditory

sequences from the other grammar. In the test phase, they observed new

grammatical sequences from both grammars, half generated from one

grammar and half from the other. Crucially, for each participant, all test items

from both grammars were instantiated only visually or only aurally. This

cross-over design allows us to make the following prediction. If participants

learn the abstract rules underlying both grammars, they ought to classify all

sequences as equally grammatical (by our scoring scheme, achieving 50%

performance). However, if they learn statistical regularities specific to the sense

modality in which they were instantiated, participants ought to classify a

sequence as grammatical only if the sense modality and grammar are matched

appropriately, leading to above-chance performance. To preview, the data

from these experiments suggest that learners encoded the sequential patterns

and generalized their knowledge to novel instances by relying on stimulus-

specific, not abstract, representations.

Experiment 4: Crossmodal Learning

Experiment 1 assesses crossmodal learning by presenting participants

with auditory tone sequences generated from one grammar and visual color

sequences generated from a second grammar. We then test participants using

novel grammatical stimuli from each grammar that are instantiated in one of

the vocabularies only (tones or colors), cross-balanced across participants. In

our scoring scheme, a null effect of learning (50% performance) can mean one

of two possibilities: 1) participants were unable to display adequate knowledge

of the statistical regularities; or 2) participants could learn the regularities but
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the knowledge exists in an amodal format that does not retain information

regarding the sense modality of the input. Accordingly, if performance levels

are significantly above chance, it shows that participants learned the statistical

regularities from both grammars in a modality-specific manner. In order to

compare dual-grammar learning to “standard” AGL learning performance, we

employed single-grammar, unimodal learning conditions as a baseline.

Method

Subjects. For Experiment 1, 40 participants (10 in each condition) were

recruited for extra credit from Cornell University undergraduate psychology

classes.

Materials. Two different finite-state grammars, Grammar A and

Grammar B (shown in Figure 4.1), were used to generate two sets of non-

overlapping stimuli (see Table 4.1). Each grammar had 9 grammatical

sequences used for the training phase and 10 grammatical sequences used for

the test phase, all sequences containing between three and nine elements. For

each participant, one grammar was instantiated as a color vocabulary, five

differently colored squares, and the other grammar was instantiated as an

auditory vocabulary, five pure tones. The five colored squares ranged along a

continuum from light blue to green, chosen such that each was perceptually

distinct yet similar enough to make a verbal coding strategy difficult. The five

tones had frequencies of 210, 245, 286, 333, and 389 Hz. These frequencies were

chosen because they neither conform to standard musical notes nor contain

standard musical intervals between them (see Conway & Christiansen, 2005).

As an example, for one participant, the Grammar A sequence “V-V-M” might
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be instantiated as two light green stimuli followed by a light blue stimulus,

whereas for another participant, this same sequence might be instantiated as

two 389 Hz tones followed by a 286 Hz tone.

All visual stimuli were presented in a serial format in the center of a

computer screen. Auditory stimuli were presented via headphones. Each

element (color or tone) of a particular sequence was presented for 500 ms with

100 ms occurring between elements. Each sequence was separated by 1700 ms

of blank screen.

Figure 4.1. Grammar A (top) and Grammar B (bottom) used in all three
experiments. The letters from each grammar were instantiated as colors or
tones (Experiment 4), colors or shapes (Experiment 5A), tones or nonwords
(Experiment 5B), two different shape sets (Experiment 6A), or two different
nonword sets (Experiment 6B).
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Table 4.1

Training and Test Items for Grammars A and B

                                                                                    

                        Grammar A               Grammar B    

Training VVM XXM

XMXM VTRM

XXRVM VVRXM

VTVTM XTTXM

XXRVTM XMRTRM

VTTVTM VRRTRM

XMMMXM XMRRTRM

XXRTTVM VRVRTXM

VTVTRVM VRRVRXM

                                                                                    

Test VTVM XTXM

VVTM VRTRM

XMMXM XTMTRM

VTTVM VRVRXM

VTTTVM VVRTXM

VVTRVM XMVRXM

VTTTVTM VRRRTRM

XXRTVTM XMVRTXM

XMXRTVM VVRTTXM

XMMXRVM XMRVRXM
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Procedure. Participants were randomly assigned to one of four

conditions, two experimental and two baseline. Participants in the

experimental conditions were exposed to the training sequences from both

grammars, with one grammar instantiated as the color vocabulary and the

other as tones. Modality-grammar assignments were counter-balanced across

participants. Additionally, the particular assignment of letters to visual or

auditory elements within each grammar was randomly determined for each

participant.

At the beginning of the experiment, participants were told that they

would hear and/or see sequences of auditory and visual stimuli. They were

told that it was important to pay attention to the stimuli because afterward

they would be tested on what they observed. Importantly, the participants

were not explicitly told of the existence of the grammars, underlying rules, or

regularities of any kind. The 18 training sequences (9 from each grammar)

were presented randomly, one at a time, in six blocks, for a total of 108

sequences. Note that because the order of presentation was entirely random,

the visual and auditory sequences were completely intermixed with one

another. Figure 4.2 shows a schematic of a possible sample of the stimulus

presentation.
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Figure 4.2. Sample stimulus presentation for Experiment 4. Sequences
from the two grammars were interleaved randomly. For each participant, one
grammar was instantiated with the color vocabulary and the other grammar
instantiated with the tone vocabulary. The letters denote a particular color or
tone, depending on the grammar and vocabulary. The timing of the sequence
elements are shown, in milliseconds.

In the test phase, participants were instructed that the stimuli they had

observed were generated according to a complex set of rules that determined

the order of the stimulus elements within each sequence. Participants were told

they would now be exposed to a new set of color or tone sequences. Some of

these sequences would conform to the same set of rules as before, while the

others would be different. Their task was to judge which of the sequences

followed the same rules as before and which did not. For the test phase, 20

sequences were used, 10 that were grammatical with respect to one grammar

and 10 that were grammatical with respect to the other. For half of the

participants, these test sequences were instantiated using the color vocabulary

(Visual-Experimental condition), while for the other half, the test sequences

were instantiated using the tone vocabulary (Auditory-Experimental
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condition). For scoring purposes, test sequences from a particular grammar

that were instantiated in the same sense modality as in the training phase were

deemed “grammatical” whereas the sequences from the other grammar were

deemed “ungrammatical”. Thus, a classification judgment was scored as

correct if the sequence was correctly classified in relation to the sense modality

in question.

Participants in the baseline single-grammar conditions followed a

similar procedure except that they received training sequences from only one

of the grammars, instantiated in just one of the sense modalities, counter-

balanced across participants. The nine training sequences were presented

randomly in blocks of six for a total of 54 presentations. The baseline

participants were tested using the same test set as the experimental

participants, instantiated with the same vocabulary with which they were

trained on. Thus, the baseline conditions (Visual-Baseline and Auditory-

Baseline conditions) assess visual and auditory learning with one grammar

alone, in a way similar to the standard AGL design.

Results and Discussion

Table 4.2 reports mean correct classification scores (out of 20) for each

group as well as t-tests compared to chance levels. Each group’s overall

performance was better than would be expected by chance. Furthermore, we

compared each experimental group to its respective baseline group and found

no statistical differences: Visual-Experimental versus Visual-Baseline, t(9) = .22;

p = .83; Auditory-Experimental versus Auditory-Baseline, t(9) = 1.1; p = .30.
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Table 4.2

Experiment 4 Mean Performance and Tests of Significance versus Chance

                                                                                                                                    

Experimental (Dual-grammar)      Baseline (Single-grammar) 

Modality M % t(9) M % t(9)

                                                                                                                                    

Visual 12.7 63.5 2.76* 12.4 62.0 2.54*

Auditory 14.1 70.5 4.38** 13.1 65.5 3.44**

                                                                                                                                    
Note. Mean values reported out of 20 possible correct. T-tests are conducted
with respect to chance levels.
*p < .05. **p < .01

These results clearly show that participants can simultaneously learn

statistical regularities from input generated by two separate artificial

grammars, each instantiated in a different sense modality. Perhaps

surprisingly, the levels of performance in the dual-grammar experimental

conditions were no worse than those resulting from exposure to stimuli from

just one of the grammars alone. This lack of a learning decrement suggests that

learning of visual and auditory statistical structure occurs in parallel and

independently. Furthermore, these results stand in contrast to previous reports

showing transfer of learning in AGL between two different modalities (e.g.,

Altmann, Dienes, & Goode, 1995). Our data essentially show a lack of transfer.

If our participants had exhibited transfer between the two sense modalities,

then all test sequences would have appeared grammatical to them, driving

their performance to chance levels (according to our scoring scheme). Thus,
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our data suggests that the knowledge of the statistical patterns, instead of

being amodal or abstract, was stimulus-specific.

We next ask whether learners can similarly learn from two different

statistical input streams that are within the same sense modality. In order to

provide the most optimal conditions for learning, we chose the two input

streams so that they would be as perceptually dissimilar as possible, using

colors and shapes (Experiment 5A) and tones and nonwords (Experiment 5B).

Experiment 5: Intramodal Learning Along Different Perceptual Dimensions

The purpose of Experiment 5 was to further explore the stimulus-

specific nature of statistical learning. Specifically, we assessed whether

participants can learn two sets of statistical regularities when they are

presented within the same sense modality but instantiated along two different

perceptual “dimensions.” Experiment 5A examines intramodal learning in the

visual modality while Experiment 5B examines auditory learning. For

Experiment 5A, one grammar was instantiated with colors and the other with

shapes. For Experiment 5B, one grammar was instantiated with tones and the

other with nonwords.

Method

Subjects. For Experiment 5, 60 additional participants (10 in each

condition) were recruited in the same manner as in Experiment 4.

Materials. Experiment 5 incorporated the same two grammars, training

and test sequences that were used in Experiment 4. Experiment 5A used two

visual vocabularies.  The first was the same set of colors used in Experiment 4;
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the second consisted of five abstract, geometric shapes. These shapes were

chosen to be perceptually distinct yet not amenable to a verbal coding strategy.

Experiment 5B used two auditory vocabularies. The first consisted of the same

set of tones used in Experiment 4; the second consisted of five different

nonwords, recorded as individual sound files spoken by a human speaker

(from Gomez, 2002): “vot,” “pel,” “dak,” “jic,” and “rud.”

Procedure.  Participants were randomly assigned to one of six conditions,

two for Experiment 5A, two for Experiment 5B, and two new single-grammar

baseline conditions. The general procedure was the same as in Experiment 1. In

Experiment 5A, participants were trained on the two visual grammars and

then tested on their ability to classify novel sequences. For half of the

participants, these test sequences were instantiated using the color vocabulary

while for the other half they were instantiated using the shape vocabulary.

Likewise, in Experiment 5B, participants were trained on both auditory

grammars and then at test, half of the participants received all test sequences

as tones and the other half received all as nonwords.

The two new baseline conditions provided data for single-grammar

performance for the new shape and nonword vocabularies (note that we used

the same color and tone vocabulary baseline data from Experiment 4). In all

other respects, the procedure for Experiment 5 was the same as in Experiment

4.

Results and Discussion

Mean scores and t-tests compared to chance levels are shown in Table

4.3. Each group’s overall performance was better than expected by chance.

Furthermore, there was no statistical difference between the respective
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experimental and baseline groups: Colors-Experimental versus Colors-

Baseline, t(9) = -.42, p = .68; Shapes-Experimental versus Shapes-Baseline, t(9) =

-1.15, p = .28; Tones-Experimental versus Tones-Baseline, t(9) = .439, p = .67;

Nonwords-Experimental versus Nonwords-Baseline, t(9) = -.178, p = .86.

Table 4.3

Experiment 5 Mean Performance and Tests of Significance versus Chance

                                                                                                                                    

Experimental (Dual-grammar)      Baseline (Single-grammar) 

Dimension M % t(9) M % t(9)

                                                                                                                                    

Experiment 5A

Colors 11.9 59.5 2.97* 12.4 62.0 2.54*

Shapes 11.9 59.5 2.31* 13.2 66.0 3.44***

                                                                                                                                    

Experiment 5B

Tones 13.7 68.5 4.25** 13.1 65.5 3.44**

Nonwords 12.0 60.0 2.58* 12.2 61.0 3.44*

                                                                                                                                    
Note. Mean values reported out of 20 possible correct. T-tests are conducted
with respect to chance levels. The Colors-Baseline and Tones-Baseline are the
same data reported in Experiment 4 (called Visual-Baseline and Auditory-
Baseline).
*p < .05. **p < .01. ***p < .001.

The results for Experiments 5A and 5B were similar to those of

Experiment 4. Participants were adept at learning two different sets of

statistical regularities simultaneously within the same sense modality, for
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shape and color sequences (Experiment 5A) and tone and nonword sequences

(Experiment 5B). Performance levels in these dual-grammar conditions were

no worse than learning levels with one grammar only. These results thus

suggest that participants can acquire statistical regularities from two streams of

information within the same sense modality, as long as the two streams differ

along a major perceptual dimension. Furthermore, these results suggest that

participants’ knowledge of the underlying statistical structure was stimulus-

specific rather than abstract.

We next look at dual-grammar learning within the same sense modality

when the vocabularies lie along the same perceptual dimension. That is, we

use two different sets of shapes and two different sets of nonwords.

Experiment 6: Intramodal Learning Within the Same Perceptual Dimension

The purpose of Experiment 6 was to test whether learners can learn two

sets of statistical regularities when they are presented along the same

perceptual “dimension” within the same sense modality. Experiment 6A

incorporated two different sets of visual shapes and Experiment 6B

incorporated two different sets of auditory nonwords.

Method

Subjects. For Experiment 6, 60 additional participants (10 in each

condition) were recruited.

Materials. Experiment 6 incorporated the same two grammars, training

and test sequences that were used in Experiments 4 and 5. Like the previous

experiments, the experimental conditions employed learning under dual-
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grammar conditions. Experiment 6A employed two visual vocabularies: Shape

Sets 1 and 2 (Figure 4.3). Shape Set 1 was the same set of shapes used in

Experiment 5A; Shape Set 2 was a new set of shapes similar in overall

appearance but perceptually distinct from set 1. Experiment 6B employed the

nonword vocabulary used in Experiment 5B as well as a new nonword set

consisting of “tood,” “jeen,” “gens,” “tam,” and “leb.”

Figure 4.3. Visual vocabularies used in Experiment 6A (Shape Set 1: top;
Shape Set 2: bottom).

Procedure.  Participants were randomly assigned to one of six conditions,

two for Experiment 6A, two for Experiment 6B, and two new single-grammar

baseline conditions. The general procedure was identical to Experiment 5

except that different vocabularies were used. In Experiment 6A, one grammar

was instantiated as Shape Set 1 and the other grammar was instantiated as

Shape Set 2. At test, half of the participants were given the test sequences



118

instantiated as Shape Set 1 and for the other half they were instantiated as

Shape Set 2. Similarly, participants in Experiment 6B were also trained on both

grammars, with one grammar being instantiated as Nonword Set 1 and the

other instantiated as Nonword Set 2. Half of these participants were tested on

the first nonword set and the other half were tested on the second nonword

set.

The two new baseline conditions provided data for single-grammar

performance for the new Shape Set 2 and Nonword Set 2 vocabularies (note

that we used the Shape Set 1 and Nonword Set 1 baseline data from

Experiment 5). In all other respects, the procedure for Experiment 6 was the

same as in Experiment 5.

Results and Discussion

Mean scores and t-tests compared to chance levels are shown in Table

4.4. When exposed to two different statistically-governed streams of visual

input, each with a distinct vocabulary of shapes, learners on average were only

able to learn the structure for one of the streams. This same result was also

found when learners were exposed to two different nonword auditory streams.

Thus, under dual-grammar conditions, learners showed above-chance

classification performance for only one of the vocabularies/grammars. As we

remarked earlier, chance level performance could be due to either an inability

to learn the underlying regularities or the result of having acquired these

regularities in terms of abstract representations that do not distinguish items

based on perceptual characteristics. Thus, the current data implies one of the

following: 1) dual-grammar statistical learning did not occur due to perceptual
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confusion of the stimuli; or 2) once learned, the knowledge of the two

grammars was co-mingled because the input elements were perceptually

similar. Either way, traditional, abstractive theories of AGL may have difficulty

accounting for such low-level, perceptual effects.

Table 4.4

Experiment 6 Mean Performance and Tests of Significance versus Chance

                                                                                                                                    

Experimental (Dual-grammar)      Baseline (Single-grammar) 

Dimension M % t(9) M % t(9)

                                                                                                                                    

Experiment 6A

Shapes1 12.0 60.0 2.58* 13.2 66.0 3.44***

Shapes2 11.2 56.0 1.65 11.6 58.0 2.95*

                                                                                                                                    

Experiment 6B

Nonwords1 10.9 54.5 1.49 12.2 61.0 3.44*

Nonwords2 12.4 62.0 6.47*** 13.3 66.5 3.79**

                                                                                                                                    
Note. Mean values reported out of 20 possible correct. T-tests are conducted
with respect to chance levels. The Shapes1-Baseline and Nonwords1-Baseline
are the same data reported in Experiment 5 as Shapes-Baseline and Nonwords-
Baseline.
*p < .05. **p < .01. ***p < .001.

Overall Analyses. To better quantify the differences in learning across the

three experiments, we submitted all data to a 4 X 2 X 2 ANOVA that

constrasted condition (crossmodal, intramodal-different dimension,
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intramodal-same dimension, or baseline), modality (visual versus auditory),

and grammar (Grammar A versus Grammar B). There was a main effect of

condition, F(3, 144) = 2.66; p = .050. There was a marginally significant main

effect of modality, F(1, 144) = 2.97; p = .087. There was no main effect of

grammar, F(1, 144) = 1.26; p = .264, nor were there any significant two-way

interactions (p’s >.4). There was a significant three-way interaction, however,

F(3, 144) = 2.59, p = .055, driven by better auditory-crossmodal learning for

Grammar A but better visual-crossmodal learning for Grammar B. The

marginal effect of modality is consistent with previous research showing that

auditory statistical learning of sequential input is generally superior to visual

(or tactile) learning (Conway & Christiansen, 2005).

Figure 4.4 shows the overall data collapsed across grammar and

modality. Post-hoc comparisons reveal that the mean performance for the

intramodal, same-dimension condition is significantly less than performance

on both the crossmodal (p < .01) and baseline (p < .05) conditions. Thus, this

outcome confirms that there was a learning decrement in Experiment 6 for

intramodal learning when the two grammars were composed of vocabularies

along the same perceptual dimension.
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Figure 4.4. Mean test performance (out of 20) for all three experiments:
Crossmodal (Experiment 4), Intramodal, different-dimension (Experiment 5),
Intramodal, same-dimension (Experiment 6), and Baseline, single-grammar
conditions (Experiments 4, 5, 6).

General Discussion

These experiments sought to determine the nature of acquired

knowledge underlying implicit statistical learning. We distinguished between

two possibilities. On the one hand, consistent with traditional information-

processing approaches, it is possible that people encode the underlying

structure of complex patterns in an amodal or abstract fashion. On the other

hand, embodiment theories propose that the mind represents concepts by

relying on modality-specific sensorimotor systems. Our data support the latter

view.

Experiment 4 showed that participants can learn statistical regularities

from two artificial grammars presented via two different input streams when

they occur in different sense modalities, one visually and the other aurally.

Furthermore, test performance under such dual-grammar conditions was

identical to baseline, single-grammar performance. This result suggests that
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15

Crossmodal Intra-diff Intra-same Baseline
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not only was learning modality-specific, but that the underlying learning

systems operate in parallel and independently of one another. Experiments 5

and 6 extended these results, showing that learners can also learn regularities

from two input streams simultaneously within the same sense modality—as

long as the respective vocabularies differ along a major perceptual dimension.

Learning suffered when the vocabularies for each grammar were along the

same perceptual dimension, limiting statistical learning to just one of the two

input streams.

This modality-dependent view of statistical learning stands in contrast

to claims that learning in an AGL task may consist of modality-independent

representations (Altmann et al., 1995) or abstract “rules” (Marcus et al., 1999;

Reber, 1993). Some AGL studies purportedly show transfer effects across

modalities, suggesting that the underlying knowledge is abstract. However,

there has been considerable controversy surrounding the transfer data (e.g.,

Christiansen & Curtin, 1999; Marcus, 1999; Mathews, 1990; McClelland &

Plaut, 1999; Redington & Chater, 1996). For example, transfer may be achieved

by participants noticing the presence of low frequency illegal starting elements

in the transfer set, rather than by relying on abstract knowledge per se (Tunney

& Altmann, 1999). Or, participants may merely be recognizing certain patterns

of repeating elements (e.g., “BDCCCB”) and then recognizing the same

repetition patterns in items with a new vocabulary (e.g., “MTVVVM”; Brooks

& Vokey, 1991; Redington & Chater, 1996). Thus it is far from clear that transfer

effects reflect the operation of abstract knowledge acquired during the learning

task.

Though the current data point toward modality-specificity, it is possible

that human cognition relies on stimulus-specific representations for some tasks
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but abstract learning for others. For example, explicit problem-solving tasks

sometimes tap participants’ use of abstract principles (Goldstone & Sakamoto,

2003; Reeves & Weisberg, 1994). The ability to learn abstract principles and

transfer them to new domains certainly appears to be a hallmark of explicit

cognition; it is much less clear, especially in light of the current data, whether

this is also true for implicit learning.

In addition to the evidence for modality-specificity, the data revealed,

quite remarkably, that participants can learn multiple, independent statistical

regularities simultaneously. This ability makes sense when one considers that

humans often attend to and process multiple, concurrent perceptual inputs at

the same time, especially across different sensory modalities.14 For example,

driving a car involves performing certain motor sequences as well as attending

to multiple visual, auditory, and haptic input patterns. It is likely that there is

an adaptive advantage for organisms to be able to encode statistical

regularities from multiple environmental input streams simultaneously.

Finally, these data speaks to the nature of the underlying cognitive

mechanisms of statistical learning. It is commonly believed that statistical

learning involves a single, unitary mechanism that operates over all types of

input (e.g., Kirkham, Slemmer, & Johnson, 2002). However, our data may

indicate that this view is inaccurate, or at least, incomplete. It is not clear how a

single, amodal mechanism could afford simultaneous learning of multiple

statistical regularities and keep the stimulus-specific representations

independent of one another (Experiments 4 and 5). Previous research has

suggested that although commonalities exist with statistical learning across

                                                  
14 For instance, people can better attend to rapidly-presented sequential stimuli when one
stream is auditory and the other is visual, compared to when both streams are in the same
modality (Duncan, Martens, & Ward, 1997).
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vision, audition, and touch, there also are important modality differences,

highlighting the possible operation of separate modality-constrained

subsystems (Conway & Christiansen, 2005). Such a view of statistical learning

resonates both with theories of implicit sequence learning (Goschke, 1998;

Keele, Ivry, Mayr, Hazeltine, & Heuer, 2003) and implicit memory (Schacter,

Chiu, & Ochsner, 1993).

Implicit memory research in particular may offer insights into the

nature of statistical learning mechanisms. It appears likely that both implicit

statistical learning and perceptual priming are supported by something akin to

perceptual fluency (Chang & Knowlton, 2004; Kinder, Shanks, Cock, &

Tunney, 2003). Networks of neurons in modality-specific brain regions show

decreased activity when processing items that are the same or similar in overall

structure – possibly because of increased processing efficiency for that class of

stimuli (Reber, Stark, & Squire, 1998; Schacter & Badgaiyan, 2001). A

perceptual priming/fluency explanation for statistical learning is consistent

with the stimulus-specific learning we observed in the current experiments and

possibly offers an attractive possibility of unifying implicit learning and

implicit memory phenomena.

Much of perception and cognition involves the use of multiple sense

modalities to extract structure from temporal or spatiotemporal patterns. The

current experiments suggest that the knowledge underlying such implicit

statistical learning is closely tied to the sensory and perceptual features of the

material itself, perhaps indicating the involvement of multiple learning

subsystems, and challenging traditional abstractive and amodal theories of

cognition.
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CHAPTER FIVE
Summary and Discussion

The studies presented in this thesis provide groundwork for a

perceptual theory of implicit statistical learning. In contrast to traditional

perspectives on artificial grammar learning (AGL), these three studies

emphasize the importance of sense modality and stimulus characteristics in

learning. The data can be summarized with three main points regarding

implicit learning: 1) learning is affected by auditory-temporal and visual-

spatial constraints; 2) learning is affected by auditory-final, visual-initial, and

tactile-initial biases; 3) and learning is mediated by independent, stimulus-

specific representations. After considering each in turn, we present a

preliminary outline of a perceptual theory of implicit learning, supported in

part by drawing upon principles of perceptual learning. Finally, we propose a

rethinking of the standard “systems of memory” view, replacing it with a

modality-constrained view of cognition.

Auditory-Temporal and Visual-Spatial Constraints

One form of modality constraint observed in the experiments was the

presence of auditory-temporal and visual-spatial emphases in the processing

of complex patterns (Chapters 2, 3, 4). Consistent with previous research in

memory and perception, the data highlight the fact that audition and vision

are differentially adept at picking up information distributed in the

dimensions of time and space, respectively (Collier & Logan, 2000; Friedes,

1974; Kubovy, 1988; Mahar, Mackenzie, & McNicol, 1994; O’Connor &
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Hermelin, 1978; Penney, 1989). Although research had demonstrated that such

constraints affect the learning of fixed sequential patterns, (Handel & Buffardi,

1969), these constraints had not been investigated in the realm of statistical

learning. In Chapter 2 (Conway & Christiansen, 2005), we took measures to

ensure that the temporal/spatial constraints were not due merely to

differences in the ability for each sense modality to perceive the actual

stimulus elements. Thus, the observed effects appear to be influencing the

acquisition of the regularities existing among the relationships of elements,

rather than in detecting the individual elements themselves.

Because these temporal/spatial biases affect not just implicit statistical

learning but also a wide variety of other cognitive processes, this suggests the

presence of global constraints affecting processing within each sense modality.

In Chapter 3 we suggested that one possible cause could arise from the

differences in how stimulus energies are encoded across the senses. That is,

whereas the auditory system is organized tonotopically, the visual system is

organized retinotopically. Sound is a pressure wave that is represented at the

tympanic membrane as a one-dimensional temporal waveform.  Therefore, in

order to detect changes in the sound wave, the auditory system necessarily

must be sensitive to these temporal dynamics.  A visual image is a two-

dimensional spatially distributed pattern encoded by the retina and therefore

space is much more inherent in the processing of a visual image.  Likewise,

whereas the auditory system breaks down incoming sound waves into their

constituent frequency components, leading to a tonotopic organization in

auditory cortex, the visual system maintains a spatial/retinotopic organization

throughout. Thus, from very early on in the processing stream, differences in
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the way the stimulus energies are encoded likely affect all subsequent

processing done by each sense modality, including statistical learning.

An alternative, or perhaps complementary, explanation for the

auditory-temporal and visual-spatial biases is suggested by embodiment

theory. A.M. Glenberg (personal communication, February 23, 2005) proposed

that visual statistical learning might be mediated through eye movements. The

suggestion is that the underlying regularities are encoded by the ocular motor

system – as long as the regularities occur spatially. If the regularities exist not

in the dimension of space but instead in purely temporal patterns, as in

Chapter 3’s visual-temporal condition, then eye movements cannot participate

in learning and performance declines. This is an interesting hypothesis that

needs further empirical investigation.

Another possible explanation for the auditory-temporal and visual-

spatial biases, to be discussed later in the chapter, comes from perceptual

learning mechanisms. Next, we consider the second modality constraint that

was observed in the experiments.

Auditory-Final, Visual-Initial, and Tactile-Initial Biases

A second modality constraint was seen in that each sense modality was

especially attuned to extracting regularities from the initial or final parts of

stimuli (Chapters 2 & 3). That is, participants’ endorsements of novel items in

the test phase were more influenced by the fragment information contained in

final positions when the input was auditory, whereas endorsements for visual

or tactile material were more dependent upon fragment-initial information.

Nowhere else, to our knowledge, has such an effect been demonstrated in

AGL, statistical learning, or implicit learning more generally. Intriguingly,
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there is a similar effect seen in the shape of serial position curves in explicit

recall. It has long been known that a recency effect exists for auditory over

visual material; that is, people show better recall for auditory input compared

to visual input for the final one or two elements in a list (Crowder, 1986; Engle

& Mobley, 1976). More recently, evidence has revealed a visual primacy effect,

with recall better for visual material compared to auditory items for the first

few elements in a list (Beaman, 2002; Wright, 2002). Wright (2002) observed

the visual primacy effect in monkeys when recall was tested at relatively long

delays (10 seconds or more). Similarly, Beaman (2002) obtained the effect

when human participants were instructed to recall the second half of a list

before the first half. Thus, in both cases, it appears that the visual serial recall

advantage for initial items is seen only under conditions in which the recall

occurs after a substantial delay.

Likewise, the test phase in an AGL task occurs many minutes after

exposure to the first training stimulus. Thus, sensitivity to elements (or

fragments) in the initial positions of a visual sequence may only be measured

under appropriate test conditions. If so, then this suggests that common

processes may underlie, or constrain, learning and memory in both implicit

and explicit tasks. Finding common properties for the encoding of material

under implicit and explicit conditions may force a re-thinking of theories of

implicit (i.e., nondeclarative) and explicit (i.e., declarative) cognition. The most

accepted view is that implicit and explicit learning and memory are mediated

by entirely separate cognitive and neural systems, with different properties

characterizing each (Tulving & Schacter, 1990). It is too early to tell to what

extent the current data alters this standard view. There exist at least three

possibilities: the auditory-final, visual-initial, and tactile-initial biases in both
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implicit and explicit cognition may signify that both may be part of the same

memory system, relying on a single set of underlying mechanisms;

alternatively, there may be two separate systems that have common

properties. A third possibility is that “implicit” learning tasks tap explicit

processes. That is, participants may be explicitly recalling fragments of

elements from the training phase when classifying novel strings, in which case

recall of such fragments is constrained by serial position effects.

Independent, Stimulus-Specific Representations

In Chapter 4, we presented data showing that learning in AGL is

stimulus-specific rather than abstract or amodal. Furthermore, the acquired

knowledge existed independently for each sense modality or perceptual

dimension. That is, learners acquired the statistical regularities from two input

streams in parallel – either visually and auditorily or along two different

dimensions within the same modality – and the representations were not

confused with one another.

The issue of stimulus-specific versus abstract representations speaks to

the heart of theories of AGL as well as to the wider field of cognition. In terms

of cognition as a whole, our data is more consistent with an embodiment

approach (Barsalou, 1999; Glenberg, 1997) rather than one that

compartmentalizes perceptual processing from amodal cognition (Fodor, 1975;

Pylyshyn, 1999). In terms of implicit learning specifically, it has been proposed

that the acquired knowledge consists of abstract, algebraic-like rules (Reber,

1993; Marcus, Vijayan, Rao, & Vishton, 1999) because of data apparently

showing that participants can transfer their acquired knowledge across

different perceptual domains or modalities (e.g., Brooks & Vokey, 1991; Reber,
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1969; Tunney & Altmann, 2001). However, much of the transfer data can be

explained due to 1) not employing proper methodological controls; or 2) by

participants adopting explicit strategies during the test task to induce

mappings between vocabularies (Redington & Chater, 1996). Both possibilities

remove the need for postulating acquired abstract knowledge.

The data from Chapter 4 support a non-abstractive account of AGL,

with participants learning statistical structure specific to the sense modality or

perceptual dimension in which it occurred. If participants had been learning

the underlying abstract structure of the two input streams in our cross-over

design, then they should have exhibited chance level performance. Our results

show some conceptual consistency with an “exemplar-based” view of implicit

learning (Brooks & Vokey, 1991; Pothos & Bailey, 2000; Vokey & Brooks,

1992), which proposes that participants make classification judgments based

on overall similarity to observed training items, rather than knowledge of

underlying abstract rules.15

Not only were the acquired representations stimulus-specific, but they

appeared to exist separately and independently of one another. That is,

participants were exposed to two statistically-governed streams, and tested on

their ability to classify novel sequences. These novel sequences contained

exemplars from each of the two grammars, but all test items were instantiated

with one of the vocabularies only, counter-balanced across participants. The

fact that participants in Experiments 1 and 2 showed high performance levels

– statistically no different than single-grammar baseline conditions – means

                                                  
15 Because it has been established that AGL also consists of encoding the presence of chunks of
elements (i.e., fragments; Perruchet & Gallego, 1997; Perruchet & Pacteau, 1990; 1991), it is
likely that learning involves both exemplar and fragment-based processes, or a combination of
both.
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that they learned the two regularities in parallel, keeping each stimulus

domain separate from the other. For example, on average, learners classified a

visual stimulus as “legal” only if it matched the statistical regularities present

in the visual training items.

Several other cognitive theories are relevant to this issue of

independent, stimulus-specific representations. First, as mentioned in Chapter

3, Penney (1989) outlined a “separate streams” hypothesis in which verbal

short-term recall is mediated by modality-dependent processing streams, each

taking in different types of input as well as having different processing

capabilities. There are obvious similarities between Penney’s “separate

streams” and Baddeley and Hitch’s (1974; 1994; Baddeley, 1992)

multicomponent model of working memory, which also contains modality-

dependent processing loops. How the Penney/Baddeley account of short-term

memory relates to implicit statistical learning is discussed further below. It

will be suggested that both short-term memory and implicit learning operate

within a wider, modality-specific cognitive system.

Second, Keele, Ivry, Mayr, Hazeltine, and Heuer (2003) proposed a

neurocognitive model of sequence representation, based mainly on data from

the serial reaction-time task (Nissen & Bullemer, 1987). Their model includes

two separate pathways, dorsal and ventral, differing in neural structures, in

the type of input that is processed, and in access to awareness. In brief, the

dorsal stream is implicit and encodes unidimensional regularities whereas the

ventral stream is both implicit and explicit and can associate elements across

modalities or dimensions. The Keele et al. (2003) model, although based on

data from a different experimental paradigm, may be applicable to the

perceptual-based sequence learning explored in the current experiments.
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Specifically, Keele’s unidimensional “modules” may serve stimulus-specific

learning that was observed in this thesis. Furthermore, their description of the

multidimensional processing system lays the groundwork for exploring

implicit statistical learning that involves input occurring across different

perceptual modalities or dimensions. Keele et al. propose that learning cross-

modal or cross-dimensional patterns requires active attention and awareness.

Thus, this prediction can be explored within the context of perceptual

sequence learning using the AGL task.

Third, a popular view of implicit memory holds that it is composed of

separate, modality-specific subsystems, such as an auditory and a visual

perceptual representation system (Schacter, 1994). These subsystems mediate

priming phenomenon, in which people have a better ability to identify or

produce items following prior exposure to those items without conscious

recollection of the exposure (Tulving & Schacter, 1990). The modality-specific

subsystems are inferred based on evidence that priming is significantly

reduced when the modality or surface features are changed between study

and test (Schacter, 1987). Additionally, there appears to be very little

interaction between the visual and auditory priming subsystems (David &

Hirshman, 1998).  The existence of separate priming subsystems is also

supported by neuroimaging data showing decreased activity in modality-

specific brain areas during a priming task; for instance, within-modal visual

priming is accompanied by decreased activity in occipitotemporal extrastriate

cortical regions (Schacter, Dobbins, & Schnyer, 2004). As we suggested in

Chapter 4, something akin to perceptual priming may also support

classification tasks in implicit statistical learning. Some support for this view

comes both from behavioral (Chang & Knowlton, 2004; Kinder, Shanks, Cock,
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& Tunney, 2003) and neuroimaging studies (Reber, Stark, & Squire, 1998),

which emphasize the role of perceptual processing in implicit learning.

Implicit Learning as Perceptual Learning

To sum up so far, our data reveal three main points. Implicit statistical

learning shows: 1) auditory-temporal and visual-spatial biases; 2) auditory-

final, visual-initial, and tactile-initial biases; 3) evidence for independent,

stimulus-specific processing. We suggest that these modality-specific

constraints on statistical learning point toward the existence of separate

underlying learning mechanisms, each with different properties and

characteristics, and each having the ability to operate independently and in

parallel to one another.

Based on all of this evidence, we suggest that implicit statistical

learning arises from and is continuous with perceptual processing. Such a

view is consistent with embodiment theories (Barsalou, 1999; Glenberg, 1997;

see also Goldstone & Barsalou, 1998) that argue that cognition as a whole is

supported by and made up of perceptual (and motor) mechanisms. This raises

the question, what exactly are the perceptual mechanisms that support

implicit statistical learning?  One possible mechanism already mentioned is

perceptual fluency (a.k.a. priming), in which perceptual processing becomes

increasingly efficient after exposure to particular items or item types.

Other insights regarding perceptual mechanisms may come from

perceptual learning phenomena. Perceptual learning involves changes to an

organism’s perceptual system so that it can respond better to its environment

(Goldstone, 1994). Superficially, there appear to be similarities between

perceptual learning and implicit learning. For instance, participants’ verbal
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reports in our experiments suggest that their perception of the stimuli has

changed after exposure to the training exemplars: participants often claim to

have made the test responses based on what “looked” or “sounded” right.

One hint of the relevance of perceptual learning to statistical learning comes

from Hall (1991),who suggested links between associative learning – which in

turn possibly mediates implicit learning (Cleeremans, Destrebecqz, & Boyer,

1998) -- and perceptual learning.  In fact, the Gibsons’ perceptual learning

approach (Gibson & Gibson, 1955) formed the basis for Reber’s (1967) first

study of implicit learning. Reber hypothesized that learning the regularities of

language-like structure may occur through something akin to the Gibsons’

idea of “differentiation,” where the learner becomes more sensitive to the

information inherent in the environment due to mere exposure to the relevant

stimuli. Aside from this early remark, there have been virtually no explicit

connections

made between implicit and perceptual learning.16 One exception is a recent

talk given at Cornell University (Goldstone, 2002) in which it was proposed

that statistical learning and perceptual learning both rely on the same

mechanisms. Below, I expand upon this idea, using the four perceptual

learning mechanisms outlined by Goldstone (1994): attentional weighting,

stimulus imprinting, differentiation, and unitization.

Attentional weighting

Attentional weighting modifies an organism’s attention, increasing it to

important perceptual dimensions or features or decreasing it to irrelevant

                                                  
16 It may be that Reber’s (1969) subsequent paper showing transfer of implicit learning
between different letter sets discouraged the notion that perceptual learning mechanisms are
synonymous with implicit learning. That is, if one believes that the transfer data point to
abstract knowledge, then it is difficult to see a role for perceptual learning.



140

dimensions or features. Certain dimensions or stimulus features acquire

“distinctiveness” because they become important to the organism in some

way. Goldstone (1998) suggested that one example of attentional weighting is

categorical perception (Liberman et al., 1957), where between-category

features are emphasized over within-category features.

Attentional weighting may be the mechanism by which our learners

showed the auditory-final, visual-initial, and tactile-initial biases. An

attentional weighting account would suggest that organisms develop

(phylogenetically or ontogenetically) greater sensitivity for the beginning or

ending of input sequences in the different senses. It is not clear whether the

weighting is innate or has a developmental progression. Either way,

presumably these attentional biases would have developed because they

confer a functional advantage. Perhaps having different shaped serial position

curves is advantageous because where learning and memory for one sense

modality is strongest (auditory-final), the other senses are weakest (vision,

touch), and vice-versa (Wright, 2002).

An attentional weighting account might also explain the auditory-

temporal and visual-spatial differences. Perhaps organisms’ attention to the

dimensions of space and time change through exposure of the auditory and

visual world. That is, attention toward auditory-temporal and visual-spatial

information is increased, whereas attention to auditory-spatial and visual-

temporal information is decreased. This account differs from the account we

offered earlier which suggested these constraints might arise from the physical

make-up of the sensory systems. One way to distinguish between the two

accounts would be to explore whether young infants have these modality

constraints. If they do, it might imply that it occurs as a product of the
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physical architectures of the sensory systems as opposed to developing from

experience to sensory input.

Stimulus imprinting

Related to attentional weighting, stimulus imprinting refers to the

development of specialized functional “detectors” to detect important or

frequently repeating stimuli.17 Interestingly, Goldstone remarks that stimulus

imprinting may be the mechanism that explains implicit memory

phenomenon. In terms of implicit statistical learning, detectors could be

developed for whole stimuli (i.e., entire training sequences) or parts of stimuli

(i.e., frequently co-occurring elements), neatly coinciding with exemplar

(Vokey & Brooks, 1992) and fragment-based (Perruchet & Pacteau, 1990)

theories of AGL According to Goldstone, the creation of fragment/part

detectors allows the organism to develop new “building blocks” for

representing stimuli, thus allowing for the flexible description of novel objects

and stimuli. In the case of statistical learning, these building blocks

correspond to frequently co-occurring elements (fragments or chunks),

allowing learners to generalize their knowledge to novel stimuli in an AGL

test task.

Unitization and Differentiation

Unitization is the mechanism by which a single perceptual chunk is

created out of separate stimulus elements that reliably co-occur.

Differentiation refers to the mechanism in which perceptual elements that had

originally been fused together become separated. As Goldstone (2002)

                                                  
17 Goldstone (1994) uses the term “detector” to refer to any abstract/cognitive device or
process.
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suggested, unitization and differentiation are likely candidates for implicit

statistical learning. Elements that reliably co-occur in AGL tasks can be

represented as chunks or fragments (Perruchet & Pacteau, 1990). Similarly,

differentiation might help separate elements that weakly co-occur. These two

mechanisms thus are opposites but operate in concert. Elements that do not

occur together reliably become increasingly differentiated at the same time

that highly co-occurring elements become unitized.

One or all of these four mechanisms may underlie aspects of implicit

statistical learning. In comparing these mechanisms to posited theories of

AGL, a perceptual learning account differ from abstractive, rule-learning

theories but appears to share similarities with associative/fragment based

accounts (Cleeremans, Destrebecqz, & Boyer, 1998; Perruchet & Pacteau, 1990)

as well as exemplar theories (Vokey & Brooks, 1992). Associative/fragment

accounts posit that frequently co-occurring elements are associated or

“chunked” together. This account shares obvious similarities with unitization,

for example. Exemplar models propose that whole items are encoded during

the training task and that test items are then compared with these stored

exemplars. Thus, something akin to stimulus imprinting appears similar to the

exemplar approach.

Despite the similarities, a perceptual learning account differs from

associative and exemplar theories because it posits that perception itself

changes. These changes presumably operate at a relatively “low” level in the

information stream, suggesting that the locus of learning may be in primary

sensory cortices (Fahle, 2002; Goldstone, 1998).

Taking all this into consideration, the groundwork is now in place for

constructing a perceptual theory of implicit statistical learning.
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Toward a Perceptual Theory of Implicit Learning (and Beyond)

Here we outline the beginnings of a perceptual theory of implicit

statistical learning. We begin by proposing four characteristics of statistical

learning.  We then place statistical learning within the wider context of

perception and cognition and go on to present a new way of thinking about

systems of perception, learning, and memory.

Given the evidence presented in this thesis, we propose that implicit

statistical learning has the following four characteristics.

1) Learning is mediated by multiple, modality-specific (visual, auditory,

tactile, etc.) mechanisms.

2) Each learning mechanism operates independently and potentially in

parallel with the others, although some interaction can occur.

3) Each learning mechanism has unique properties that constrain learning

(e.g., the auditory system specializes in handling temporal input and is

also biased to encode material in list-final positions).

4) Each mechanism operates using similar computational principles.

These principles may be a combination of those involved in implicit

memory (priming) and perceptual learning.18

A question that naturally follows is how do these modality-specific

implicit learning mechanisms relate to the rest of cognition. One prominent

view holds that learning, memory, and cognition can be subdivided into

multiple components, in a more or less hierarchical manner (Schacter &

                                                  
18 It will be necessary for future research to begin to distinguish between these alternate
mechanisms and the role they play in implicit statistical learning.
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Tulving, 1994; Squire & Zola, 1996). These components include working

memory, declarative memory, nondeclarative memory, priming, etc. (see

Figure 5.1). Some of these “systems” in turn contain modality-specific

subsystems. We propose an alternative way of depicting the components of

cognition that turns the standard view on its head. Instead of positing separate

memorial systems that are in turn composed of modality-specific subsystems,

we propose that cognition consists of separate sensorimotor cognitive systems,

each composed of a suite of inter-related perceptual, memorial, and cognitive

functions. This view recognizes the major, if not primary, role that perception

plays, and the continuous nature of perception with cognition and action

(Barsalou, 1999; Fuster, 1997; Lloyd, 2000; Mesulam, 1998).

The proposed cognitive architecture is organized by the primary sense

modalities.  Figure 5.2 shows the Visual, Auditory, and Tactile Cognitive

Systems. The purpose of each of these systems is to detect, encode, and

represent the immediate and past environment in order to prepare the

organism for future action.  Thus, each of these systems serve a number of

related processes, such as implicit memory, implicit learning, long-term

memory, and language. We hypothesize that these within-modality processes

rely upon and overlap with one another, rather than being discrete

mechanisms as is generally assumed.
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Figure 5.1. A prominent view of the systems of memory and cognition.
Adapted and modified from Squire and Zola (1996).

Note that in Figure 5.2, the outlines of each system are illustrated with

dashed lines, meant to imply that the boundaries are not sharp and rigid.

Thus, Fodorian “information encapsulation” (Fodor,1975) is not a

characteristic of this model. There is a large body of research demonstrating

crossmodal interactions in perception and cognition (e.g., Calvert, 2001; Driver

& Spence, 2000; McGurk & MacDonald, 1976; Meredith, 2002). The diagram

represents these interactions with the connecting arrows. The specific manner

and properties of such interactions are not within the scope of this thesis.

Likewise, a “multimodal” system or systems likely exist but are beyond the

scope of the current discussion.

Primary Memory
(Working or STM)

Secondary Memory
(LTM)

Declarative
(Explicit)

Nondeclarative
(Implicit)

Semantic Episodic
Procedural

Priming

Conditioning

Nonassociative
Learning

Statistical
Learning
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Figure 5.2. Proposed modality-constrained view of cognition. Each
perceptual/cognitive system is composed of a suite of inter-related
perceptual, memorial, and cognitive functions. The list of processes listed
within each system is not meant to be exhaustive. Also note that because this
thesis has been focused exclusively on the visual, auditory, and tactile
modalities, we exclude olfactory, taste, and motor cognitive systems from the
figure, while recognizing that they surely exist.

Each perceptual/cognitive system is proposed to have certain

modality-specific global constraints that affect all of its processes. In this way,

the model may help explain why the same modality constraints – e.g., visual-

spatial and auditory-temporal biases – are seen in apparently disparate

cognitive processes, including implicit learning, working memory, long-term

memory, and perception.

Below, we list and briefly describe some of the proposed functions that

each modality-constrained cognitive system might include.
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Attention

Both anecdotal and empirical evidence suggests that attention has a

modality-specific component. That is, it is easier to attend to two stimuli

simultaneously when they occur in two different sense modalities rather than

in the same one (Duncan, Martens, & Ward, 1997; Treisman & Davies, 1973).

Furthermore, attention appears to be implemented neurally by a modality-

specific competition and suppression mechanism (Duncan, 1999). For

example, neurons corresponding to visual objects in visual cortex show

suppressed responses when the objects are being ignored, whereas attended

objects are strongly represented.  This evidence suggests that attention may

arise out of the workings of separate modality-specific cognitive systems.

Perceptual Representation

Borrowing from Schacter’s terminology (1994), we use the term

“perceptual representation” to refer to not just perception and implicit

memory (priming), but perceptual learning and implicit learning, as well. As

already discussed and outlined, we suggest that these four phenonema may

be variations of the same overall perceptual processing mechanisms.

Associative Learning

Associative learning has an intimate connection with implicit statistical

learning in that it appears to be a mechanism for uncovering environmental

regularities (Cleeremans et al., 1998; Ryder & Fovorov, 2001). However,

although associative learning has long been believed to be an important aspect

of learning and memory, it has mostly been considered unable to account for

perceptual learning phenomenon (Goldstone, 1998; though also see Hall, 1991

for an effort to unite associative and perceptual learning). Regardless,

associative learning is a core process in both cognitive and neural function
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(Hebb, 1949; Fuster, 1997). It seems likely that this learning process supports

perceptual and cognitive functions within and across each modality-specific

system. For instance, learning an association between two visual stimuli likely

involves links established between visual perceptual representations, whereas

learning an association between a visual and auditory stimulus necessitates

cross-modal links between the two systems.

Working Memory and Serial Recall

Working memory is commonly believed to consist of separate,

modality-specific processing streams, such as the phonological loop and

visuospatial sketchpad (Baddeley & Hitch, 1994; Penney, 1989).  These

modality-specific streams appear to be mediated by portions of the prefrontal

cortex that have corresponding links with the areas of the brain handling the

perception of phonological and visuospatial information (Goldman-Rakic,

1999). Thus, working memory appears to naturally arise out of perceptual

processes.

 Postulating working memory as arising out of modality-specific

perceptual processing dovetails nicely with MacDonald and Christiansen’s

(2002; Christiansen & MacDonald, 1999) proposal that working memory

emerges from interactions between experience and domain-specific processing

architectures. Thus, on the present account, there is not a separate working

memory resource; instead, it is the consequence of the functioning of each

modality-specific system.

Long-Term Memory, Concept Formation, and Language

Barsalou (1999) proposed that long-term memory and conceptual

knowledge are derived from the same neural and cognitive mechanisms

underlying perception. Simply, a perceptual state arises in modality-specific
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sensorimotor systems. These perceptual representations can then be stored in

long-term memory, retaining their perceptual characteristics. These modality-

specific “symbols” can then be merged and recombined dynamically to create

complex multimodal concepts that are less tied to direct perceptual

experience, though still grounded in it.

Likewise, Pulvermuller (2001) presented evidence that the brain

represents the meaning of words via functional “webs,” networks of neurons

distributed throughout the brain in regions corresponding to the perceptual

and motor properties of the word in question. Thus, words with strong visual

associations (i.e.,animal names) correspond to greater brain activity in

occipital cortex whereas words with strong action connotations (i.e., tool

names) result in greater activity in premotor cortex. This provides strong

evidence that meaning in language is represented in a modality-specific

manner.

Conclusion

This model offers a framework for unifying perception and cognition

while simultaneously reducing the number of various memorial systems that

have been proposed. It also suggests how different independent cognitive and

perceptual processes may be more functionally and mechanistically similar

than generally realized. In fact, areas that are traditionally entirely separate

research endeavors – such as implicit learning, implicit memory, and

perceptual learning – may be aspects of the same overall function.

This framework also offers novel predictions regarding cognition. For

instance, the processes within each modality-specific system ought to be very

closely related and dependent upon one another. Thus, it is predicted that

working memory and implicit learning, for example, which have seldom been



150

investigated together, interact closely. Predictions such as this one are not

borne out if one takes the standard memory systems view (Figure 5.1).

In summary, this dissertation has presented evidence for modality

constraints affecting implicit statistical learning. We have suggested that these

modality differences arise from the operation of separate, modality-specific

cognitive systems, each with different processing constraints.  These modal

systems have a common purpose: to provide information regarding the

various sensory domains in order to prepare the organism for future action.

As such, these systems encompass the range of perceptual and cognitive

processes that are studied in human and non-human animals. Unanswered

questions remain, of course, such as to what extent these systems interact with

one another. But it is proposed that this modality-constrained account of

cognition may yield new insights into not only how organisms extract

structured information from the environment, but also into the very nature of

mind and behavior.
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