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 5 

Pharmaceutical have been detected in bodies of water all over the world and their 6 

environmental fates are the subject of increasing scientific attention.  Sphingomonas Ibu-7 

2 was isolated from a wastewater treatment plant based on its ability to use ibuprofen as a 8 

sole carbon and energy source.  A yellow color indicative of meta-cleavage accumulated 9 

in the culture supernatant when Ibu-2 was grown on ibuprofen.  When 3-flurocatechol 10 

was used to poison the meta-cleavage system, isobutylcatechol was identified in the 11 

culture supernatant via GC/MS analysis.  Ibuprofen-induced washed cell suspension also 12 

metabolized phenylacetic acid to catechol.  A chromosomal library of Ibu-2 was 13 

generated in Escherichia coli and yielded a single fosmid clone (E. coli epi300 14 

pFOS3G7) capable of metabolizing ibuprofen to isobutylcatechol.  Transposon 15 

mutagenesis of pFOS3G7 and screening for loss of function revealed insertions in five 16 

open reading frames ipfABDEF whose predicted amino acid sequences bore similarity to 17 

the large and small units of aromatic dioxygenases, an SCPx thiolase, domain of 18 

unknown function 35 (DUF35), and an aromatic coenzyme A ligase, respectively.  19 

Complementation of the E. coli epi300 pFOS3G7 ipfD deletion mutant restored catechol-20 

production.   An E. coli subclone expressing ipfABDEF from pFOS3G7 produced trace 21 

catecholic metabolites from phenylacetic acid derivatives, suggesting that these genes 22 

were sufficient for the observed activity.  The co-expression of ipfABDEF with ipfH and 23 



 

     

ipfI, a ferredoxin reductase and a ferredoxin respectively which were both identified on 1 

pFOS3G7, greatly enhanced the production of catecholic metabolites.  Further analysis 2 

revealed that cell-free extracts of E. coli harboring a high copy number ipfF expression 3 

vector  catalyzed the ATP and magnesium-dependent ligation of coenzyme A to both 4 

phenyacetate and ibuprofen.  Uptake of phenylacetic acid was also found to be driven by 5 

the ibuprofen coenzyme A ligase IpfF; when ipfF was knocked out, uptake was decreased 6 

to negative control levels as determined by radiolabelled phenyletate uptake assays.  7 

These results are consistent with ibuprofen uptake occurring via a vectorial acylation 8 

mechanism.  Taken toghether, the results described in this dissertation demonstrate that in 9 

contrast to the widely distributed coenzyme A ligase, homogentisate, or 10 

homoprotocatechuate pathways for metabolism of phenylacetic acids, Ibu-2 removes the 11 

acidic side chain of ibuprofen and related compounds prior to ring-cleavage.  The 12 

involvement of a novel SCPx thiolase (IpfD) and a DUF35 protein (IpfE) in the 13 

generation of the catechol suggest that this pathway is distinct from others described to 14 

date and represents a new aerobic paradigm for the metabolism of phenylacetic acids15 

16 
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1 
CHAPTER 1 2 

INTRODUCTION 3 

 4 

Pharmaceuticals in the Environment 5 

 6 

The ecotoxicology community has become increasingly concerned with the issue 7 

of human pharmaceuticals as potential environmental contaminants (Halling Sorensen, 8 

Nielsen et al. 1998; Daughton and Ternes 1999; Jorgensen and Halling-Sorensen 2000; 9 

Dietrich, Webb et al. 2002, Kagle et al. 2009).  We have become distinctly aware that the 10 

world is not a limitless sink for our wastes (Andonova and Mitchell 2010; Peattie 2010; 11 

Schwarzenbach, Egli et al. 2010).  At this stage in our cultural evolution, we are quite 12 

aware that our waste products can adversely impact the natural environment and 13 

ourselves. 14 

Within the last decade, an initially puzzling and cataclysmic drop in Central Asian 15 

vulture populations was clearly linked to the veterinary use of the anti-inflammatory 16 

diclofenac (Oaks, Gilbert et al. 2004).  These species of vultures were powerfully 17 

impacted due to a combination of very high exposure levels via feeding on deceased, 18 

recently-dosed cattle and an extremely severe idiosyncratic nephritic sensitivity that led 19 

to death by visceral gout (Oaks, Gilbert et al. 2004).  The severe consequences of this 20 

entirely unanticipated toxic manifestation will likely serve as a rallying cry against the 21 

indiscriminant use of pharmaceuticals in the environment for a long time to come. 22 

While on one hand it can be argued that virtually no adverse environmental effect 23 

has ever been linked to the environmental presence of human (rather than veterinary) 24 
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pharmaceuticals, that pharmaceuticals are metabolized by the human body and are mobile 1 

and readily diluted in the hydrosphere such that they will not reach notable 2 

concentrations (Jones, Voulvoulis et al. 2004).  On the other hand, unlike many pollutants 3 

traditionally given much more attention, pharmaceuticals are specifically designed to be 4 

biologically active.  Even though they are released in low concentrations, they are 5 

released in an overwhelmingly complex diversity of parent compounds and metabolites, 6 

raising the possibility of addition and synergistic toxicity (Flaherty and Dodson 2005; 7 

Chou 2006; Laetz, Baldwin et al. 2009).  Mixture toxicity is a poorly developed, highly 8 

controversial field (Chou 2006; Baas, van Houte et al. 2007).  Predictions of mixture 9 

effects are currently not feasible due in large part  to the absence of precise dose-relevant 10 

mechanistic data (Borgert, Quill et al. 2004; Cedergreen, Christensen et al. 2008; Crofton 11 

2008; Kortenkamp 2008).   12 

Given the inadequacy of the knowledge base regarding the potential effects of 13 

these compounds at environmentally relevant concentrations, many governments the 14 

world over have begun to apply the loosely-defined Precautionary Principle to guide 15 

policy development in regards to environmental risks (Ferrari and Mons et al. 2004; 16 

Gardiner 2006).  Whereas classical risk analysis and cost-benefit analysis depend upon 17 

having a handle on the mathematical underpinnings of cause-effect relationships, the 18 

Precautionary Principle is invoked in the absence of proof of causation (Raffensberger 19 

and Tickner 1999; Gardiner 2006).  Given the complexity of the problem, the subtlety of 20 

the potential effects involved, and the limited scientific information available, it seems 21 

that application of the conservative Precautionary Principle may be the best way to limit 22 

the potential environmental risks of pharmaceuticals. 23 
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Pharmaceuticals are released primarily from sewage treatment plants (STPs) into 1 

bodies of water.  There is potential for untreated waste to be released when STP capacity 2 

is exceeded or for effluent to be poorly diluted during periods of drought, during which 3 

STP effluent may be the main source of flow, thus leading to concentration spikes 4 

(Loraine and Pettigrove 2006).  For example, concentrations of pharmaceuticals in STP 5 

effluent can vary by over an order of magnitude depending on rainfall levels (Peng, Yu et 6 

al. 2008).  Additionally, while most pharmaceuticals investigated so far have are 7 

effectively removed during wastewater treatment (>90%), many, such as carbemezipine, 8 

clofibric acid, and diclofenac, are not (Heberer 2002).  Additionally, little work has been 9 

done to resolve what amount of apparent removal might be due to sorption to the solid 10 

phase followed by land application of the resulting solids (Xia, Bhandari et al. 2005).  11 

Ternes et al. suggest that solid phase sorption is likely a very significant fate for 12 

pharmaceuticals depending on their charge and Kow (Ternes, Joss et al. 2005).  In the few 13 

studies that have investigated the capacity of acidic pharmaceuticals to sorb to solid 14 

phases, little or no sorbtion capacity has been observed (Heberer, Verstraeten et al. 2001; 15 

Jones, Lester et al. 2005), though these studies have not considered biolsolids in 16 

particular.  This route is generally regarded as more important for lipophiles or for 17 

chemicals that have the capacity to sorb to the sludge via other mechanisms (Rabiet, 18 

Togola et al. 2006).   19 

Release and dilution into the hydrosphere is not the only fate of treated 20 

wastewater.  Treated wastewater is being increasingly used as irrigation water, 21 

particularly in dry western states in the USA (Pedersen, Yeager et al. 2003; Pedersen, 22 

Soliman et al. 2005; Kinney, Furlong et al. 2006).  Kinney et al. (Kinney, Furlong et al. 23 
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2006) state that “in 1993, it was estimated that 2.4% of wastewater effluent was used for 1 

irrigation in the United States.” Only a decade later, it was estimated that the percentage 2 

had increased to 7.4% (Xu, Wu et al. 2009).  In especially dry, densely populated areas 3 

such as Israel, the percentage of reclaimed water used for irrigation can be as much as 4 

66% (Kinney, Furlong et al. 2006).  The xenobiotics remaining in this treated wastewater 5 

are available to directly impact soil ecosystems with little or no dilution.  Indeed, 6 

common pharmaceuticals have been detected at part-per-billion levels in both treated 7 

wastewater used for irrigation and associated agricultural fields in Colorado (Kinney, 8 

Furlong et al. 2006), Mexico City (Siemens, Huschek et al. 2008), and southern 9 

California (Xu, Wu et al. 2009) and were even found to persist from one growing season 10 

to another (Kinney, Furlong et al. 2006).  As populations and urbanization increase, this 11 

will become a more and more prevalent practice.   12 

Of potentially greater importance from a political and public perception 13 

viewpoint, is the possibility of contamination of drinking water with pharmaceuticals.  14 

Chefetz et al. (Chefetz, Mualem et al. 2008) showed that several common 15 

pharmaceuticals are readily mobile in soil and may reach groundwater following 16 

application to agricultural fields via sludge or treated wastewater, establishing a mode of 17 

transfer between the human waste stream and water reservoirs.  A handful of studies have 18 

examined to what extent drinking water treatment methods are effective at removal of 19 

pharmaceutical residues.  An investigation by Stackelberg et al. (Stackelberg, Gibs et al. 20 

2007) found that the most common methods such as chlorination and charcoal filtration 21 

are partially effective, removing some compounds, but not others, though the authors 22 

point out that chlorination could be generating an array of unknown chemically activated 23 
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reaction products.  Huerta-Fontella and Fontella (Huerta-Fontela and Ventura 2008) 1 

showed that a more thorough drinking water treatment process that includes several 2 

oxidative and advanced filtration steps is almost completely effective at removing 3 

pharmaceutical residues.   4 

Presumably due to constant release into the hydrosphere via wastewater effluent 5 

processes, direct land application followed by transport through groundwater systems, 6 

and incomplete removal during drinking water treatment processes, a very wide variety 7 

of pharmaceuticals have been detected in drinking water supplies at part-per-trillion to 8 

part-per-billion levels the world over (see (Fent, Weston et al. 2006; Benotti, Trenholm et 9 

al. 2008; Huerta-Fontela and Ventura 2008; Corcoran, Winter et al. 2010; Kummerer 10 

2010) for summaries of available data).  However, a recent thorough risk analysis of 11 

fifteen commonly detected pharmaceuticals with known endpoints including 12 

carcinogenic, developmental, and reproductive toxicity predicted no effects on humans at 13 

any concentrations that have been detected in drinking water (Bruce, Pleus et al. 2010).  14 

A thorough review of available pharmaceutical ecotoxicological data by Fent et al. (Fent, 15 

Weston et al. 2006) showed that with few exceptions, available lowest observed effect 16 

concentration (LOEC) data suggests virtually no environmental impact of such 17 

compounds, though they point out that such data is sorely lacking for individual 18 

compounds and almost nonexistent for complex mixtures.  Efforts to create a 19 

comprehensive database of pharmaceutical ecotoxicological data are currently underway 20 

(www.wikipharma.org (Molander, Agerstrand et al. 2009)). 21 

The scientific and policy communities are faced with a vastly complex issue 22 

where the potential for harm is not understood due to a lack of data regarding the 23 

http://www.wikipharma.org/
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toxicological and ecological questions posed.  Several comprehensive reviews are 1 

available that summarize data regarding the presence and effects of pharmaceuticals.  2 

They all come to the same conclusion: that not enough data exists to adequately answer 3 

the pertinent questions (Stuer-Lauridsen, Birkved et al. 2000; Heberer 2002; Jones, 4 

Voulvoulis et al. 2004; Cunningham, Buzby et al. 2006; DeLange, Noordoven et al. 5 

2006; Fent, Weston et al. 2006; Hernando, Mezcua et al. 2006; Schwarzenbach, Escher et 6 

al. 2006; Dorne, Skinner et al. 2007; Kummerer 2008; Kummerer 2010; Santos, Araújo et 7 

al. 2010). 8 

 9 

Ibuprofen 10 

 11 

Ibuprofen is one of the most commonly consumed pharmaceuticals in the world 12 

(see (Fent, Weston et al. 2006) for a partial review of country-by-country consumption).  13 

It is also a good candidate for study because it is a member of a diverse class of 14 

compounds that share certain structural features in common:  the non-steroidal anti-15 

inflammatories (NSAIDs).  The NSAIDs themselves are a very significant class of 16 

pharmaceuticals from an environmental risk perspective.  The dose of most NSAIDs is 17 

particularly high, typically hundreds of milligrams to grams per day.  Many NSAIDs are 18 

purchased over the counter with virtually no regulation, largely because of their very 19 

broad margin of safety; for example, ibuprofen is considered one of the safest drugs ever 20 

(Rainsford 2009).  There are also many NSAIDs that are available by prescription, either 21 

because they serve specific needs or because they are young in a regulatory sense.  Many 22 

of these NSAIDs share a phenylacetic acid moiety which is believed to be responsible for 23 
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their activity (Figure 1.1).   1 
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COOH

Cl

COOH
NH

COOH

Cl

Cl

Ibuprofen Ketoprofen

Naproxen Diclofenac
 2 

Figure 1.1.  Common non-steroidal anti-inflammatory pharmaceuticals with a phenylacetic 3 
acid moiety (bolded). 4 

 5 

Their typical mode of action is the inhibition of cyclo-oxygenase (COX) enzymes that 6 

cleave arachadonic acid in humans to create prostglandins which are potent paracrine 7 

signaling compounds (Figure 1.2) (Fent, Weston et al. 2006).   8 
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 1 

Figure 1.2.  General action of cyclooxygenase enzymes (Fent, Weston et al. 2006). 2 

 3 

However, prostglandins are a rather broad class of paracrine compounds that play a 4 

variety of roles in animals in addition to inflammation including regulation of gastric 5 

mucosa (Vane 1971) renal vascular tissue (Hao and Breyer 2008) and egg shell thickness 6 

in birds (Lundholm 1997).  Prostglandins also play many roles in fish including control 7 

of ovulation (Mercure and Van der Kraak 1996; Sorbera, Asturiano et al. 2001), sex 8 

hormone regulation (Lister and Van der Kraak 2008), sexual behavior (Sorensen and 9 

Goetz 1993), cortisol regulation (Mommsen, Vijayan et al. 1999) and even function as 10 

sex pheromones (Sorensen and Geotz 1988; Moore and Waring 1996).  At high doses, 11 

NSAIDs can cause liver damage following metabolic activation (reviewed by Fent et al. 12 

(Fent, Weston et al. 2006)), although the relevance of this toxic outcome at representative 13 

environmental concentrations is unknown. 14 

In addition to its wide consumption and structural similarity to a number of other 15 

pharmaceuticals, an obvious reason to investigate the fate of ibuprofen is the fact that 16 
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ibuprofen has been detected in bodies of water all over the world.   Environmental 1 

concentrations of ibuprofen have been found to range from low part-per-trillion (Buser, 2 

Poiger et al. 1999; Stumpf, Ternes et al. 1999; Farre, Ferrer et al. 2001; Winkler, 3 

Lawrence et al. 2001; Kolpin, Furlong et al. 2002) to low part-per-billion levels (Buser, 4 

Poiger et al. 1999; Farre, Ferrer et al. 2001) (See (Santos, Araújo et al. 2010) for a 5 

thorough listing of available environmental concentration data).  Ibuprofen has been 6 

found in trace concentrations in such disparate locations as drinking water (Heberer, 7 

Verstraeten et al. 2001; Jones, Lester et al. 2005; Loraine and Pettigrove 2006; Rabiet, 8 

Togola et al. 2006) and the middle of the North Sea (Buser and D. 1998).   9 

 10 

The fate of ibuprofen in the environment 11 

The primary pathway by which ibuprofen enters the environment is believed to be 12 

via human waste and sewage treatment plants, though deposition into landfills is a 13 

poorly-understood alternate route (Bound and Voulvoulis 2005).  A significant amount of 14 

ibuprofen consumed by humans, 8.9% - 14%, is excreted unmodified or as the 15 

glucuronide conjugate (Rudy, Knight et al. 1991; Lee, Peart et al. 2005).  The primary 16 

human metabolite of ibuprofen is hydroxyibuprofen (Figure 1.3), which has been 17 

detected in sewage treatment plants but whose fate and effects are otherwise completely 18 

unknown (Paxeus 2004).  Two other minor human ibuprofen metabolites 19 

carboxyibuprofen and carboxyhydratropic acid (Figure 3) are similarly uninvestigated.   20 
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Figure 1.3.  Human primary metabolites of ibuprofen (Rudy, Knight et al. 1991; Lee, Peart 2 
et al. 2005).   3 

 4 

Given all the pathways by which ibuprofen can enter the environment combined 5 

with the high therapeutic dose and high rate of consumption, it is not surprising that 6 

ibuprofen is one of the most frequently detected pharmaceutical compounds in aquatic 7 

systems.  The input, while somewhat sporadic, is continuous for the most part, leading to 8 

a situation of continual low level exposure for the exposed aquatic communities.  9 

Hydroxyibuprofen, the primary human metabolite of ibuprofen, has also been detected 10 

though not quantified in surface waters (Winkler, Lawrence et al. 2001). 11 

As soon as ibuprofen enters the waste stream, it is likely to be acted upon by 12 

microorganisms via two general types of metabolic/enzymatic systems: non-specific co-13 

metabolic processes or assimilative metabolism.  The biological transformation of 14 

ibuprofen has been investigated in broad strokes using analytical chemistry techniques.  15 

Microbe-dependent accumulation of hydroxyibuprofen and carboxyibuprofen (identical 16 

to those illustrated in Figure 1.3) have been observed in a handful of studies (Zwiener, 17 

Seeger et al. 2002; Quintana, Weiss et al. 2005; Marco-Urrea, Pérez-Trujillo et al. 2009), 18 
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though in each those studies these the side-chain oxidation products that accumulated 1 

only accounted for a small amount of ibuprofen disappearance.  There is no evidence in 2 

the literature that the assimilative metabolism of ibuprofen has been investigated outside 3 

of the work presented in this dissertation.   4 

Ibuprofen has been found to be biologically degraded in sewage treatment plants 5 

and in the aquatic environment with varying efficiency.  Buser et al. (Buser, Poiger et al. 6 

1999) found ibuprofen to have a half-life of 3 hours in activated sludge and 20 days in 7 

lake water.  Zweiner et al. (Zwiener, Seeger et al. 2002) found ibuprofen to have a half-8 

life of less than a day in a batch experiment.  Sewage treatment plants have for the most 9 

part been shown to be at least 90-95% efficient in removal of ibuprofen (96%-99.9%; 10 

(Buser, Poiger et al. 1999)) with certain exceptions (22%-75%; (Stumpf, Ternes et al. 11 

1999)), particularly in the developing world where STP performance can be highly 12 

variable.  Whether the ibuprofen is mineralized (degraded all the way to carbon dioxide 13 

and water), transformed to stable but as of yet unidentified products, assimilated into 14 

biomass, or sorbed by solids, etc. has not been investigated.  Buser et al. (Buser, Poiger et 15 

al. 1999) did demonstrate, however, that ibuprofen is rather persistent in sterile lake-16 

water, with no degradation occurring within 37 days even when exposed to daylight.  An 17 

investigation in to the persistence of ibuprofen in a low-nutrient Swiss lake-water found 18 

that ibuprofen was surprisingly recalcitrant, with a half-life of 32 days (Tixier, Singer et 19 

al. 2003).  In this system, ibuprofen did not sorb to sediment to a significant degree, nor 20 

did it volatilize.   21 

Ibuprofen is non-volatile (Henry’s Law constant = 1.23 x 10-6 atm m3/mole), 22 

sparingly water soluble (Kow = 3.97 (Jones, Lester et al. 2005)), does not sorb to 23 
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sediment (Jones, Lester et al. 2005), and is little-affected by physical degradative forces.  1 

These characteristics are similar to many other pharmaceuticals (Tixier, Singer et al. 2 

2003) and can be said to be an adequate, if crude, picture for the fate of pharmaceuticals 3 

in general.  In fact, pharmaceuticals are designed specifically to have these properties: 4 

they must be non-volatile and physically stable so that they have a respectable shelf-life. 5 

The fact that ibuprofen is chiral should not be excluded from studies on ibuprofen 6 

fate.  The formulation of ibuprofen in use across the world is a 50/50 R/S mixture with 7 

the exception of some specialty products in use in Europe.  This is likely because no 8 

method for isolating the active enantiomer is sufficiently cost-effective to justify the 9 

marginal benefits provided.  The S-enantiomer is the biologically active compound.  The 10 

R-enantiomer has no known biological activity.  Humans readily perform a chiral 11 

inversion on ibuprofen, converting the R- to the S-form (Daughton 2002).  Therefore, 12 

ibuprofen and its byproducts are primarily excreted as the S-enantiomer.  Interestingly, 13 

Buser et al. (Buser, Poiger et al. 1999) found that the R isomer persisted longer in 14 

biologically active lake water spiked with racemic ibuprofen, implying either that a chiral 15 

inversion mechanism (S to R) was at work and/or that the S-enantiomer is more readily 16 

degraded. 17 

While, as mentioned above, some STPs remove up to 99% of the ibuprofen load 18 

(Buser, Poiger et al. 1999), these facilities still represent of a source from which 19 

ibuprofen can reach the environment.  Simply due to the constancy of their outputs, many 20 

STPs must also occasionally release untreated waste during periods of high precipitation 21 

or equipment failure (Loraine and Pettigrove 2006).  Also, during dry periods, the bodies 22 

of water that sewage effluent is discharged into can be depleted, thus limiting the effect 23 
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of dilution and thereby effectively increasing the concentration of ibuprofen in the 1 

receiving waters (Loraine and Pettigrove 2006).  2 

The fate of unused pharmaceuticals is largely unknown.  One survey-based 3 

British research project was conducted so as to gain some insight on this subject for 4 

ibuprofen and three other pharmaceuticals (Bound and Voulvoulis 2005).  They might be 5 

flushed down the toilet, in which case they would enter the same waste stream as outlined 6 

above.  Alternatively, people may return them to a pharmacy, a route that was found to be 7 

rather uncommon in the case of ibuprofen.  The primary mode of ibuprofen disposal was 8 

found to be via solid waste disposal, which overall accounted for 8% of total ibuprofen 9 

fate in the Bound et al. study (Bound and Voulvoulis 2005).   10 

 11 

Ibuprofen Ecotoxicology  12 

A comprehensive body of literature exists that describes the toxicology of 13 

ibuprofen in mammalian systems at or near concentrations reached in the body during 14 

normal therapeutic use, which are far above what is ever seen in the environment 15 

(reviewed in (Rainsford 1999)).  Ibuprofen has also been found to inhibit the growth of 16 

common pathogenic bacteria and was for a time investigated for use as an antibiotic 17 

(Cederlund and Mardh 1993; Elvers and Wright 1995).  However, once again these 18 

inhibitory effects were found only at concentrations far above those found in the 19 

environment.  Only in recent years has the toxicology of environmentally relevant 20 

concentrations of ibuprofen been investigated (Cleuvers 2004; Pomati, Netting et al. 21 

2004; Richards, Wilson et al. 2004; Escher, Bramaz et al. 2005; Pomati, Castiglioni et al. 22 

2006; Flippin, Hugget et al. 2007) 23 
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 Ecotoxicological data indicate that the potential for acute or sub-acute toxicity is 1 

far too low to be of environmental relevance in a variety of species studied (Cleuvers 2 

2004; Escher, Bramaz et al. 2005).  However, investigations into subtle and mixture 3 

toxicity have suggested that some effects can be caused by environmentally relevant 4 

concentrations (Pomati, Netting et al. 2004; Richards, Wilson et al. 2004; Flippin, Hugget 5 

et al. 2007; Han, Choi et al. 2010) 6 

A number of studies have found various effects on fish at concentrations 7 

approaching environmental relevance.  For example, Flippen et al. (Flippin, Hugget et al. 8 

2007) found that environmentally relevant ibuprofen concentrations caused subtle 9 

alterations in reproductive function in female Japanese medaka fish including increased 10 

clutch size and decresed egg development time, hypothetically due to ibuprofen’s effects 11 

on cyclooxygenases and prostaglandin synthesis in vertebrate reproduction.  Han et al. 12 

found that ibuprofen delayed hatching in Japanese medaka at concentrations as low as 0.1 13 

µg/L (Han, Choi et al. 2010).  David et al. (David and Pancharatna 2009) found that 14 

ibuprofen elicited a wide variety of developmental and behavioral effects in Zebrafish at 15 

10ug/L. 16 

Schnell et al. (Schnell, Bols et al. 2009) found that while they did not detect 17 

effects on trout cells at relevant concentrations of ibuprofen on its own, pharmaceutical 18 

mixture results suggested synergistic effects when ibuprofen was used in combination 19 

with other classes of drugs. 20 

One of the most profound effects was described by Pomati et al. (Pomati, Netting 21 

et al. 2004) who found that ibuprofen strongly stimulated the growth of the cyanobacter 22 

Synecohcystis, causing a 72% increase in growth rate at an ibuprofen concentration of 10 23 
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ppb.  The same study revealed a 25% growth reduction in the growth of the aquatic plant 1 

Duckweed (Lemna minor) at concentrations of ibuprofen that might be found in sewage 2 

treatment plant effluent.  Results from both of these species suggest that primary 3 

producers, which are of high importance in oligotrophic aquatic ecosystems, may be 4 

sensitive to the effects of ibuprofen.   5 

Richards et al. (Richards, Wilson et al. 2004) investigated the effects on aquatic 6 

community structure caused by mixtures of pharmaceuticals at environmentally relevant 7 

concentrations.  The mixture that they tested included ibuprofen, fluoxitine (commonly 8 

known as prozac), and ciprofloxacin.  The complexity and burdensomeness of doing 9 

mesocosm studies prohibited a large sample number and thus reduced statistical certainty.  10 

However, a mixture of the three compounds including ibuprofen at a concentration of 60 11 

parts per billion caused significant effects on the aquatic community structure.  There was 12 

an overall reduction in microbial diversity and algae became more predominant 13 

(Richards, Wilson et al. 2004).   14 

Pomati et al. (Pomati, Castiglioni et al. 2006) investigated the effects of a 15 

complex mixture of thirteen pharmaceuticals, including ibuprofen, on human embryonic 16 

cells.  The exposure concentrations were based on existing data regarding the highest 17 

reported riverine concentrations of the pharmaceuticals.  A 10%-30% decrease in cell 18 

proliferation was observed with an acculation of cells at the G2/M phase and associated 19 

overexpression of cell cycling proteins p16 and p21, indicating a disruption of cell 20 

cycling systems.  The cells exhibited increased activation of stress response kinases and 21 

glutathione-S-transferase.  While the exposure conditions were two steps removed from 22 

environmental relevance (maximum observed toxicant concentrations and raw exposure 23 
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of embryonic cells in the absence of an organismal context), the results indicate the 1 

potential for pharmaceutical mixtures to have subtle effects over short exposure times. 2 

Other than the Pomati et al. (Pomati, Castiglioni et al. 2006) human embryonic 3 

cell study, the studies described above made no attempt to discover the mechanism by 4 

which ibuprofen was exerting effects on the target organisms.  A number of studies have 5 

made the attempt to identify modes of ibuprofen toxicity using traditional toxicological 6 

methods aimed at identifying major toxic effects including mutagenesis, GSH induction, 7 

baseline toxicity (membrane disruption), and estrogenicity, but have only detected 8 

toxicity at concentrations far above those relevant in the environment (Cleuvers 2004; 9 

Escher, Bramaz et al. 2005).  Therefore, the mechanism by which ibuprofen may have 10 

exerted effects upon the aquatic organisms at environmentally relevant concentrations 11 

remains completely unknown (Pomati, Netting et al. 2004; Richards, Wilson et al. 2004). 12 

The organism which is the subject of this dissertation, Sphinogmonas Ibu-2, was 13 

enriched and isolated on media containing a much higher concentration (500 mg/L) of 14 

ibuprofen than is found in the environment.  The low environmental concentration of 15 

pharmaceuticals may make the maintenance and expression of specific metabolic genes 16 

unfavorable in a selective sense, although it is not clear what the “cut-off” exposure level 17 

is for these compounds.  Although this subject is beyond the scope of this dissertation, it 18 

is likely to be very important in determining whether and how pharmaceuticals are 19 

biologically transformed in the environment.  That said, similar enrichment based studies 20 

have resulted in the isolation of organisms whose degradation pathway biochemistry has 21 

been shown to be relevant to pollutant degradation at environmentally relevant pollutant 22 

concentrations (Pumphrey and Madsen 2007).  Thus, while more work is needed in order 23 
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to understand if the Ibu-2 metabolic paradigm presented below is relevant to more real 1 

world conditions, the research chapters presented here represent the first published effort 2 

to describe the biochemistry and genetics of ibuprofen degradation.  It serves two general 3 

purposes; as an important first step in identifying metabolites to search for under more 4 

environmentally relevant conditions and as an investigation into what metabolic 5 

strategies might be employed by bacteria in the degradation of structurally related 6 

chemicals. 7 

 8 

Bacterial metabolism of aromatic chemicals 9 

  10 

Biosynthesis of the six-carbon aromatic ring is essential for the production of 11 

certain amino acids and diverse biological cofactors, though many aromatic compounds 12 

in the environment are of pyrogenic or petrogenic origin.  A large percentage of lignin, 13 

which is the second-most common biological compound on the surface of the planet 14 

(Kirk and Farrell 1987) is also aromatic, being primarily composted of phenolic 15 

heteropolymers (Masai, Katayama et al. 2007).  “Aromatic” refers specifically to circular 16 

hydrocarbons and heterocycles with delocalized π-orbital electrons (Vaillancourt, Bolin 17 

et al. 2006; Phale, Basu et al. 2007); while these are reduced, energy-rich compounds, 18 

they are unusually resistant to chemical attack due to the negative resonance of the 19 

delocalized electrons and the inaccessibility of the carbons (Vaillancourt, Bolin et al. 20 

2006; Phale, Basu et al. 2007).  Presumably because they are energy rich and ubiquitous, 21 

bacterial pathways for metabolizing aromatic compounds are common.  However, the 22 
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unusual stability of the ring necessitates highly specialized enzymatic machinery for 1 

catalysis. 2 

The bulk of the scientific work examining the microbial metabolism of aromatic 3 

chemicals has tended to point to certain rules or trends common to the metabolic 4 

strategies that bacteria employ.  A simple, if inaccurate, model for aerobic bacterial 5 

degradation of the aromatic group is that of the double-dioxygenation; an initial addition 6 

of two oxygens to the aromatic group seems sufficient to destabilize the structure and 7 

allow for a second dioxygenation event to cleave the ring, which prepares the resulting 8 

non-aromatic metabolite for catabolism and eventual entry into central carbon cycling 9 

pathways (Masai, Katayama et al. 2007; Phale, Basu et al. 2007; Fuchs 2008; Zeyaullah, 10 

Abdelkafe et al. 2009; Ju and Parales 2010).  Presumably the initial double oxygenation, 11 

whether it be a single hydroxylation of an already-oxidized ring, sequential 12 

monoxygenations, or a single dioxygenation event, is required to destabilize the ring, 13 

perhaps by altering the resonance of the delocalized π-orbital electrons or by deshielding 14 

the ring-carbons (Parales and Resnick 2006; Phale, Basu et al. 2007).  In actuality, the 15 

double-dioxygenation paradigm is not by any means universally applicable, though this 16 

paradigm holds true for the aerobic degradation of simple aromatic chemicals such as 17 

benzene and toluene and remains a likely first hypothesis for predicting the mechanism of 18 

an unknown degradative pathway.   19 

 20 

Classical double-dioxygenation metabolism of aromatics 21 

While dihydroxylation of the aromatic ring itself is a nearly universal prerequisite 22 

for ring cleavage , microbes possess a diverse array of mechanisms for doing this 23 
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(Yamaguchi and Fujisawa 1978; Schweizer, Markus et al. 1987; Butler and Mason 1997) 1 

(Figure 1.4).  The two hydroxyl groups can be added in adjacent or opposite positions 2 

upon the ring.  In the case of aromatic chemicals that do not already have hydroxyl 3 

groups, simultaneous dioxygenation via multicomponent dioxygenase and subsequent 4 

dehydrogenative rearomatization is the typical route of transformation (Butler and Mason 5 

1997; Parales and Resnick 2006).  Aromatic compounds that have two adjacent hydroxyl 6 

groups are commonly termed catechols.  There are fewer examples of opposite position, 7 

or para-, hydroxylations such as the homogentisate (2,5-dihydroxyphenylacetic acid) 8 

pathway that is commonly used by both eukaryotes and prokaryotes in aromatic amino 9 

acid metabolism (Arias-Barrau, Olivera et al. 2004) and in the metabolism of 10 

alkylphenols via hydroquinone by an environmental isolate Sphingomonas sp. strain 11 

TTNP3 (Corvini 2006).   12 

The initial dioxygenation is a reductive hydroxylation requiring high-energy 13 

electron input (Parales and Resnick 2006; Kweon, Kim et al. 2008).  This power is 14 

typically supplied by ferredoxins which are in turn powered by NAD(P)H dependent 15 

ferredoxin (FeDox) reductases (Mason and Cammack 1992; Kweon, Kim et al. 2008).  16 

The typical electron transfer chain is NAD(P)H > FeDox-Reductase > Ferredoxin > O2 + 17 

substrate.  Ferredoxins and their reductases are both redox-active iron-sulfur proteins.  18 

Most reductases studied to date use NADH, a ubiquitous reduced nucleotide-based 19 

cofactor, as an electron source.  While an electron source is required for the initial 20 

dioxygenation event, NADH is subsequently regenerated in the following 21 

dehydrogenation event (Figure 1.4) (Parales and Resnick 2006), making the conversion 22 

of the aromatic to a catechol net energy-neutral. 23 
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Figure 1.4.  Basic features of the double-dioxygenation paradigm for the aerobic 2 
metabolism of aromatic chemicals by bacteria.  “Upper pathway” broadly refers to the 3 
reactions leading up to initial ring dioxygenation while “lower pathway” refers to all 4 
reactions following the initial dioxygenation.  5 

 6 

Catechols are the substrates for further metabolism by other types of 7 

dioxygenases (Figure 1.4).  These dioxygenases do not require an electron transport 8 

chain, presumably because the destabilized ring is vulnerable to attack at this stage.  Ring 9 

cleavage in the 2,3 position relative to the two hydroxyl groups of a catechol is termed 10 

meta- or extradiol- cleavage, to indicate that fission takes place adjacent to the two 11 

hydroxy groups.  The ring fission product of a meta-cleavage reaction exhibits a 12 

diagnostic yellow color that disappears upon acidification.  The alternative to meta-13 

cleavage is ortho- or intradiol- cleavage, in which the ring is broken between the two 14 

hydroxy groups.  In this situation, no yellow product is observed (See (Harayama, Kok et 15 

al. 1992) and (Vaillancourt, Bolin et al. 2006) for reviews of ring-cleavage 16 

dioxygenases).  17 

The most-studied aromatic acid degradation processes so far involve an initial 18 

dioxygenation in the 1,2 or 2,3 position.  An example of 1,2 dioxygenation is found in the 19 
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TOL pathway of Pseudomonas putida mt-2.  The TOL operon encodes for the genes for 1 

the degradation of toluene and the xylenes.  Toluene is sequentially oxidized at the 2 

methyl group to benzoate.  Benzoate is then cis-dioxygenated in the 1,2 position to cis-3 

benzoate dihydrodiol, which is decarboxylated and dehydrogenated to form catechol (1,2-4 

dihydroxybenzene). Catechol is then dioxygenated at the 2,3 position, cleaving the ring 5 

(Eaton 1996; Eaton 1997).   6 

An example of a 2,3-dioxygenation pathway for the degradation of an aromatic 7 

acid is the degradation of 4-isopropylbenzoate (cumate).  It is the only aromatic acid with 8 

a branched aliphatic substituent in the para-positionwhose degradation pathway has been 9 

fully described.  Cumate is dioxygenated at the 2,3 position by Pseudomonas putida F1 10 

via enzymes encoded by the cmt operon.  It is then subsequently dehydrogenated to yield 11 

2,3-dihydroxy-4-isopropylbenzoate (Figure 1.5).  This compound is then cleaved via 12 

dioxygenation across the 3,4-bond, a meta-cleavage that yields a diagnostic pH-13 

dependent yellow product (Defrank and Ribbons 1976; Defrank and Ribbons 1977; Eaton 14 

1996; Eaton 1997). 15 

 16 
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Figure 1.5.  General scheme of the 1,2 dioxygenation cmt pathway (Eaton 1996; Eaton 18 
1997). 19 

 20 

Alternatively there are a number of aromatic metabolic strategies that seem to not 21 

necessarily require the initial double-oxygenation or even that the ring be oxygenated at 22 
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all.  A large portion of biological chemistry, from both a current spatial perspective and 1 

certainly in regards to the geological time-frame, occurs under anoxic conditions.  Even 2 

though oxygen is the most potent electron acceptor on the modern earth, nitrate and ferric 3 

iron are both useful and reasonably abundant terminal electron acceptors with sufficient 4 

oxidizing power to permit their use during the break down aromatic chemicals by 5 

bacteria (see.(Foght 2008; Fuchs 2008; Carmona, Zamarro et al. 2009) for current 6 

reviews). Clearly in the absence of ubiquitous oxygen gas, the double-dioxygenation 7 

paradigm becomes irrelevant, leading to necessarily different strategies for ring-opening. 8 

 9 

Alternative aerobic ring cleavage substrates 10 

Some facultative anaerobes actually utilize the same metabolic system under both 11 

aerobic and anaerobic conditions.  Bacteria couple a benzoate CoA-ligase mediated first 12 

step to a variation of the double-dioxygenation paradigm in which an oxygenase adds 13 

dioxgyen across the 2,3 bond while simultaneously dearomatizing the ring, followed by a 14 

direct, non oxygen-dependent ring cleavage (Gescher, Eisenreich et al. 2005), while the 15 

aerobic metabolism of phenylacetic acid further blurs the line between the two paradigms 16 

as described below. 17 

 There are also other examples of aerobic aromatic ring-openings, namely those of 18 

salicylate (Hintner, Lechner et al. 2001) and aminoaromatics (Kulkarni and Chaudhari 19 

2007; Ju and Parales 2010) that do not require an intial ring dioxygenation.  Additionally, 20 

there are a number of examples of pathways that actually utilize trihydroxybenzenes as 21 

ring cleavage substrates that, while they do not as dramatically challenge the 22 

dihydroxylation model, are variations that should be acknowledged (Zeyer and Kearney 23 
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1984; Kluge, Tschech et al. 1990; Hanne, Kirk et al. 1993; Stolz and Knackmuss 1993; 1 

Meulenberg, Pepi et al. 1996; Kadiyala and Spain 1998; Haigler 1999; Johnson, Jain et 2 

al. 2000; Schink, Phillips et al. 2000; Dayan, Watson et al. 2007; Kulkarni and Chaudhari 3 

2007; Carmona, Zamarro et al. 2009).   4 

 5 

Anaerobic metabolism of aromatics 6 

As in aerobic aromatic degradative strategies, the anaerobic reactions responsible 7 

for aromatic ring cleavage can also be grouped into upper pathways that converge upon a 8 

central ring cleavage substrate and a lower pathway that is responsible for ring cleavage 9 

and further degradation (Foght 2008; Fuchs 2008; Carmona, Zamarro et al. 2009).  While 10 

for a variety of reasons anaerobic pathways have not been as extensively studied as 11 

aerobic pathways, the existing evidence seems to suggest that a large number of unique 12 

strategies are employed in upper pathway metabolism (Carmona, Zamarro et al. 2009).  13 

This may be rationalized in part as the result of the fact that the term “anaerobic” is a 14 

catch-all term for pathways that utilize a very wide variety of electron acceptors with 15 

very different redox potentials and thus different energetic conditions.  For example, 16 

upper pathways adapted for using nitrate or ferric iron as electron acceptors (Bouwer and 17 

Zehnder 1993; Wilson and Bouwer 1997; Chakraborty and Coates 2004), both of which 18 

have moderately high redox potentials, are quite different from those adapted to less ideal 19 

electron acceptors such as sulfate (Diaz 2000).   20 
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Figure 1.6.  General scheme of the benzoyl-CoA paradigm for the anaerobic metabolism of 2 
aromatic chemicals by bacteria (Carmona, Zamarro et al. 2009). 3 

 4 

Through a wide variety of strategies, anaerobic aromatic metabolism is funneled 5 

through a single central metabolite regardless of redox conditions; benzoyl-coenzyme-A 6 

(Figure 1.6) (Carmona, Zamarro et al. 2009).  Though there is scant evidence so far, it 7 

appears that even benzene is converted to benzoyl-CoA under anaerobic conditions, so 8 

universal is this metabolic intermediate (Ulrich, Beller et al. 2005).  Benzoyl-CoA is 9 

cleaved via a drastically different mechanism than that observed in classical aerobic 10 

examples.  Benzoyl-CoA is cleaved by an energy-dependent reductive hydrolytic 11 

mechanism that requires reduced ferredoxin and ATP (reviewed by Boll (Boll 2005).)  12 

The ATP-dependent CoA-ligation (or non-energy-dependent CoA-transfer in some cases 13 

(Muller and Schink 2000; Leutwein and Heider 2001)) is believed to activate the ring for 14 

reductive hydrolysis in a manner analogous to the oxidative activation of the ring for 15 

oxidative ring cleavage in addition to facilitating downstream metabolism (Vellemur 16 

1995).  CoA-ligation may also drive uptake and retention by keeping the intracellular 17 

concentration of the substrate effectively low, a strategy generally termed vectoral 18 

acylation (Black and DiRusso 2003; Zou, F. et al. 2003)   19 

 20 
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Metabolism of phenylacetate 1 

Recently-described pathways for the bacterial catabolism of phenylacetic acid 2 

have also been shown to utilize hydrolytic ring cleavage mechanisms similar to those 3 

found in anaerobic pathways (Teufel, Mascaraque et al. 2010).  Phenylacetic acid is a 4 

relatively simple chemical which upon initial inspection does not seem to warrant 5 

catabolic strategies vastly different from those required for the other simple aromatics 6 

such as BTEX (benzene, toluene, ethylbenzene, xylene) or benzoates.  Indeed, early 7 

investigations into phenylacetate biodegradation yielded circumstantial evidence for the 8 

utilization of pathways involving homoprotocatechuate (3,4-dihydroxyphenylacetic acid) 9 

or homogentisate (2,5-phenylacetic acid) (Roof, Lannon et al. 1953; Kunita 1955; Kunita 10 

1955) 11 

Ibuprofen is similar in nature to phenylacetic acid in that the acid group is two 12 

carbons removed from the aromatic ring.  As described below, it was believed until fairly 13 

recently that bacteria metabolize phenylacetic acid through the same pathways by which 14 

they metabolize hydroxyphenylacetic acids, which they convert via monooxygenation to 15 

either 3,4-hydroxyphenylacetic acid (homoprotocatechuate) or 2,5-hydroxyphenylacetic 16 

acid (homogentisate) (Sparnins, Chapman et al. 1974; Sparnins and Chapman 1976; 17 

Wegst, Tittman et al. 1981; Arias-Barrau, Olivera et al. 2004).  Homoprotocatechuate and 18 

homogentisate intermediates were first identified during early investigations into the 19 

biochemistry of  fungal (Kluyver and van Zijp 1951; Perrin and Towers 1973), animal 20 

(Knox and Edwards 1955; Crandall, Krueger et al. 1960; Flamm and Crandall 1963; 21 

McCormick, Young et al. 1965), and bacterial (Roof, Lannon et al. 1953; Kunita 1955; 22 

Kunita 1955; Jamaluddin 1977; Lee Y-L and Dagley 1977) metabolism.   23 
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Fungal metabolism of phenylacetate 1 

The capacity of fungi to perform assimilative metabolism of phenylacetic acid via 2 

homogentisate is well-established.  In 1976, Kishore et al. (Kishore, Sugumaran et al. 3 

1976) demonstrated that the fungus Aspergillus niger converted phenylalanine to 4 

phenylacetic acid, 2- and 4-hydroxyphenylacetic acid, and homogentisate by performing 5 

thin layer chromatography on radiolabelled substrate.  They additionally demonstrated 6 

that both phenylacetic acid hydroxylase and homogentisate oxygenase activites were 7 

upregulated in phenylalanine-grown cultures, offering strong support to the assertion that 8 

phenylacetate can be metabolized via homogentisate in fungi.  This model was further 9 

supported by the subsequent characterization of phenylacetate 2-hydroxylase mixed 10 

function NADPH-dependent p450 enzyme in phenylacetic acid grown A. niger cultures 11 

(Sugumaran and Vaidyanathan 1979) and in other Aspergillus species (Fernandez-Canon 12 

and Penalva 1995; Mingot, Penalva et al. 1999; Rodriguez-Saiz, Barredo et al. 2001).  13 

The homogentisate ring-cleavage dioxygenase has also been isolated from fungi 14 

(Fernandez-Canon and Penalva 1995).  A similar pathway involving the sequential mono-15 

oxidation of ethylbenzene to homogentisate via phenylacetic acid has also been described 16 

in the fungus Exophiala lecanii-corni (Gunsch, Cheng et al. 2003; Gunsch, Cheng et al. 17 

2005).   18 

 19 

Early research into the bacterial metabolism of phenylacetate 20 

In two of the earliest reports, Kunita (Kunita 1955; Kunita 1955) reported that 21 

Pseudomonads had the capacity to metabolize phenylacetate via both homogentisate and 22 

protocatechuate pathways, though later it was reported that Pseudomonas might 23 
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alternatively metabolize phenylacetic acid via a decarboxylative mechanism to catechol 1 

via benzoate based on detection of putative metabolites in the media (Sariaslani, 2 

Sudmeier et al. 1982).  In the 1950’s, Dagley et al. reported that Vibrio also metabolized 3 

phenylacetic acid via homogentisate, though the conclusion was based solely upon an 4 

apparently high level of oxygen consumption in washed phenylacetate-grown cells 5 

exposed to homogentisate (Dagley, Fewster et al. 1953).  However, such up-regulation 6 

was measured in the absence of any negative controls making the conclusion tenuous.  7 

The authors never actually demonstrated the conversion of phenylacetate to 8 

homogentisate (Chapman and Dagley 1962).  Later, Boer et al. found evidence in support 9 

of this general model in Nocardia, though using the same single experimental technique; 10 

oxygen consumption of induced washed-cell systems exposed to homogentisate (Boer, 11 

Harder et al. 1988).  Pometto et al. (Pometto and Crawford 1985) did offer stronger 12 

support for the employment of the homogentisate model in Streptomyces sp. by first 13 

demonstrating that phenylacetate accumulated in phenylalanine-grown cultures, leading 14 

to the conclusion that phenylacetate is an intermediate of phenylalanine in such bacteria.  15 

They further demonstrated that homogentisate dioxygenase activity was higher in 16 

phenylalanine grown cells than in tyrosine grown cells.  Once again however, there were 17 

no negative controls utilized and no statistical testing was employed to support the 18 

claims, nor was any direct conversion of phenylacetate to homogentisate achieved 19 

(Pometto and Crawford 1985).  A 1988 study by van den Tweel et al. (van den Tweel, 20 

Smits et al. 1988) again claimed to find evidence for aerobic metabolism of phenylacetate 21 

via homogentisate based on up-regulation of associated oxygenase activities in the 22 

absence of any direct phenylacetate hydroxylase activity by induced cell-free extracts. 23 
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In 1985, Cooper et al. suggested that the then current model of phenylacetate 1 

metabolism via homogentisate or protocatechuate was not tenable because associated 2 

dioxygenase activities by phenylacetate grown Pseudomonads were negligible.  The 3 

same group had definitively demonstrated that 3- and 4-hydroxyphenylacetate were 4 

metabolized by E. coli via protocatecuate (Cooper and Skinner 1980).  However in the 5 

case of phenylacetate-grown E. coli they reported an accumulation of 2-6 

hydroxyphenylacetate, which was a dead-end metabolite, and no enzymatic activities or 7 

metabolites indicative of either the protocatechuate or homogentisate pathways being 8 

utilized (Cooper, Jones et al. 1985).  As described below, it would later be repeatedly 9 

shown that this enigmatic 2-hydroxy dead-end metabolite accumulates in several 10 

phenylacetate-degrading bacteria and is dead-end side product of the true underlying 11 

metabolic pathway.   12 

 13 

Phenylacetyl coenzyme A ligase pathway 14 

In the early 1990s several studies published out of Dr. Georg Fuchs’s laboratory 15 

characterized phenylacetyl-coenzyme A ligases utilized under anaerobic conditions by 16 

Pseudomonas (Dangel, Brackmann et al. 1991; Seyfried, Tschech et al. 1991; Mohamed 17 

and Fuchs 1993; Mohamed, Seyfried et al. 1993).  Induction of phenylacetyl-coenzyme A 18 

ligases under anaerobic conditions were also reported in E. coli (Vitovski 1993), 19 

Acinetrobacter (Vitovski 1993), Alcaligenes (Vitovski 1993), and later, Rhodococcus 20 

(Navarro-Llorens 2005), Silicibaacter (Yan, Kang et al. 2009), and Thermus 21 

thermophilus (Erb, Ismail et al. 2008).  As described above, coenzyme A (CoA) is a 22 

nucleotide-based cofactor utilized in a wide variety of metabolic systems throughout all 23 
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branches of life (Vellemur 1995; Leonardi, Zhang et al. 2005; Spry, Kirk et al. 2008).  1 

CoA is utilized by bacteria under anaerobic conditions to activate aromatic substances for 2 

ring-cleavage and subsequent catabolism and possibly also to drive uptake (Vellemur 3 

1995; Carmona, Zamarro et al. 2009).  Dangel et al. (Dangel, Brackmann et al. 1991) 4 

demonstrated using radiolabelled substrate that Pseudomomas activates phenylacetic acid 5 

under anaerobic conditions using a coenzyme A ligase and then proceeds to 6 

decarboxylate it to benzoyl-coenzyme A with equimolar release of radiolabelled CO2 gas 7 

via a phenylglyoxylate intermediate (Figure 1.7), whereas Seyfried et al. (Seyfried, 8 

Tschech et al. 1991) showed that several environmental Pseudomonas isolates obtained 9 

from an anaerobic phenylacetate enrichment were able to metabolize a variety of putative 10 

intermediate compounds that were consistent with the decarboxylative benzoyl-coenzyme 11 

A pathway.   12 
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Figure 1.7.  The phenylglyoxylate pathway (Dangel, Brackmann et al. 1991), which channels 14 
phenylacetate to the central benzoyl-CoA pathway under anaerobic conditions in 15 
Pseudomonas (Dangel, Brackmann et al. 1991), Thauera aromatica via (Hirsch, Schagger et 16 
al. 1998) and Azoarcus evansii (Hirsch, Schagger et al. 1998) 17 

 18 
In the same Pseudomonas system in the same laboratory, Mohamed et al. (Mohamed and 19 

Fuchs 1993) characterized phenylacetyl-CoA ligase activity using chromatographic 20 

methods, showing considerable up-regulation of the activity in induced cells versus 21 

glucose-grown cells.  Curiously, the group reported that the activity was also induced 22 
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under aerobic conditions to a lesser extent, but discarded the information as artifactual.  1 

In the following years, several more projects came out of the Fuchs lab describing in 2 

detail the biochemistry of metabolism of phenylacetyl-coenzme A to benzoyl-coenzyme 3 

A via phenylglyoxylate under anaerobic conditions in Thauera aromatica (Hirsch, 4 

Schagger et al. 1998) and Azoarcus evansii (Hirsch, Schagger et al. 1998).  It would 5 

shortly be reported that aerobically-grown Azoarcus evansii also employs a phenylacetyl-6 

CoA ligase (Mohamed 2000; Rost, Haas et al. 2002) by demonstrating the in vivo CoA-7 

ligase activity of radiolabelled compounds preferentially by phenylacetate-induced cells 8 

(Mohamed 2000). 9 

A short time previously, a Spanish research group led by Dr. Jose Luengo 10 

described the induction of a phenylacetyl-coenzyme A enzyme in aerobically-grown 11 

Pseudomonas putida U (Martinez-Blanco, Reglero et al. 1990).  The group concentrated 12 

the enzymatic fraction of induced cell cultures and demonstrated ATP and Mg2+ 13 

dependent conversion of phenylacetate to phenylacetyl-coenzyme A via HPLC.  At the 14 

time, such an intermediate in an aerobic aromatic pathway was both unprecedented and 15 

ran counter to the accepted model of metabolism via homogentisate or protocatechuate; 16 

accordingly, the researchers hedged by stating that such enzymatic activity might actually 17 

be due to a non-specific activity or a detoxification mechanism (Martinez-Blanco, 18 

Reglero et al. 1990).  This uncertainty was shortly cleared up with the demonstration that 19 

genetic knockout mutants that had lost the ability to grow on phenylacetate accordingly 20 

lost the ability to generate phenylacetyl-coenzyme A (Schleissner, Olivera et al. 1994).  21 

The 1.3 kilobase phenylacetyl-coenzyme A ligase gene with high similarity to acetyl-22 

CoA ligases and fatty acid-CoA ligases was identified in Pseudomonas putida U via Tn5 23 
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transposon mutagenesis (Minambres, Martinez-Blanco et al. 1996).  A nearly identical 1 

gene (86% identity) was identified in P. putida Y2 wherein it is necessary for the 2 

metabolism of styrene via phenylacetate (Velasco, Alonso et al. 1998).   3 

Shortly thereafter, several genes associated with aerobic phenylacetate 4 

metabolism in P. putida U (Olivera, Minambres et al. 1998) and the styrene-metabolizer 5 

P. putida Y2 (Alonso, Bartolomé-Martín et al. 2003; Bartolomé-Martín, Martínez-García 6 

et al. 2004) were identified and sequenced.  In addition to the coenzyme A ligase that had 7 

already been described (phaE), four genes associated with ring hydroxylation (phaFGHI) 8 

and a gene encoding a putative ring-opening enzyme (phaL) were identified.  The 9 

putative ring hydroxylation genes were identified based on conserved oxidase and 10 

electron transfer domains and by the fact that when they were knocked out, phenylacetate 11 

accumulated during the metabolism of chemicals degraded via a phenyacetyl-coenzyme 12 

A intermediate (Olivera, Minambres et al. 1998).  When phaL was knocked out, 2-13 

hydroxyphenylacetate accumulated in the media, leading to the tentative conclusion that 14 

this monohydroxylated chemical was actually an intermediate (later shown to be wrong 15 

as described below) upon which the phaL gene product performed a ring fission though 16 

sequence analysis revealed no similarity to any known ring-fission associated genes 17 

(Olivera, Minambres et al. 1998).   18 

Genes closely related to those of the Pha operon in P. putida U were also 19 

discovered in the aerobic phenylacetate-metabolizer E. coli W (Ferrandez, Minambres et 20 

al. 1998; Olivera, Minambres et al. 1998); a phenylacetyl-coenzyme A ligase (paaK), a 21 

multicomponent oxygenase (paaABCDE), and putative lower-pathway-encoding genes 22 

(paaGJZ).  Sequence analysis of the putative paaB and paaE gene products showed 23 
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rieske iron clusters and conserved FAD+ and NAD(P)+ binding domains with similarities 1 

to the electron transport components of some toluene and phenol mono-oxygenases, 2 

suggesting that these two genes encode an electron transport system.  paaACD showed no 3 

similarities to any functionally characterized genes and were hypothesized to encode a 4 

multicomponent phenylacetyl-coenzyme A oxygenase.  Knocking out paaG, paaJ, or 5 

paaZ resulted in accumulation of 2-hydroxyphenylacetate which was clearly a dead-end 6 

metabolite in E. coli W.  paaG and paaJ showed similarities to genes that encode beta-7 

oxidation enzymes, enoyl-CoA hydratase/isomerase and beta-ketoadipyl-CoA thioloase 8 

respectively and as such were expected to be involved in metabolizing the product of ring 9 

cleavage.  By default, PaaZ appeared to be the ring-opening enzyme, though it bore no 10 

resemblance to any known ring-opening enzyme; rather, like phaL (Olivera, Minambres 11 

et al. 1998), it bore only a conserved aldehyde dehydrogenase domain, and ultimately 12 

provided no clear hypothesis regarding how ring-opening might occur (Ferrandez, 13 

Minambres et al. 1998).  Mohammed et al. would later show that similar genes and 14 

metabolites were present in Azoarcus evansii, Escherichia coli, Rhodopseudomonas 15 

palustris and Bacillus stearothermophilus, indicating that this coenzyme A mediated 16 

pathway is widely distributed in bacteria (Mohamed, Ismail et al. 2002).  Again the 17 

accumulation of the apparent dead-end metabolite 2-hydroxyphenylacetate was observed, 18 

though it was postulated that it might be an abiotic breakdown product of 2-19 

hydroxyphenylacetyl-CoA which might be a true metabolic intermediate (Mohamed, 20 

Ismail et al. 2002).   21 

Rost et al. attempted to identify the ring-cleavage substrate by knocking out pacL, 22 

the putative gene thought to encode phenylacetate ring-cleavage activity in A. evansii (the 23 
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equivalent of paaZ in E. coli W and phaL in P. putida U) (Rost, Haas et al. 2002).  In the 1 

knockout mutant, a compound identified via NMR as 2,4,6-cycloheptatriene-1-one was 2 

identified, though no attempts to see whether or not this was metabolizable by induced 3 

cells was reported.  The authors suggested that this unexpected accumulating metabolite 4 

was the product of rearrangement of the actual ring-cleavage substrate by housekeeping 5 

enzymes or abiotic reaction (Rost, Haas et al. 2002).  Ismail et al. attempted to solve the 6 

ring-opening question using the same tactics (Ismail, Mohamed et al. 2003); NMR 7 

analysis of knockout mutants in E. coli K12.  As had been previously reported (Olivera, 8 

Minambres et al. 1998; Mohamed, Ismail et al. 2002), paaG and paaZ knockouts 9 

accumulated 2-hydroxyphenylacetate.  However, an additional metabolite was detected in 10 

paaG knockouts; the gamma-lactone of 2-hydroxyphenylacetate (Figure 1.8 compound 11 

4).  Although PaaG was expected to act upon the ring-opened metabolite due to its 12 

similarity to beta-oxidation enoyl-CoA hydratase/isomerase proteins, the accumulation of 13 

a unique eight-carbon aromatic compound (Figure 1.8 structure 2) suggested instead that 14 

it might actually catalyze ring-opening via an isomerization of an activated aromatic-CoA 15 

compound.  The structure of the lactone was consistent with the abiotic dehydration of a 16 

dearomatized 1,2-dihyroxy metabolite as is classically utilized in aerobic aromatic 17 

pathways by bacteria (Gibson 1968), though the postulated 1,2-dihydroxy was not 18 

detected directly (Ismail, Mohamed et al. 2003).  The 2,4,6-cycloheptene-1-one 19 

metabolite detected by Rost et al. (Rost, Haas et al. 2002) was also postulated to be an 20 

abiotic breakdown product of the putative 1,2-diol intermediate (Ismail, Mohamed et al. 21 

2003).  22 
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Further analysis of the putative multicomponent oxygenase system paaABCDE 1 

from E. coli (Fernandez, Ferrandez et al. 2006) expanded upon and supported the putative 2 

role that these genes play in phenylacetate metabolism.  Sequence and phylogenetic 3 

analyses placed this five-gene operon firmly within the bacterial diiron multicomponent 4 

oxygnase (BMO) family, which contains such multicomponent oxygenases that 5 

monooxygenate methane, ammonia, linear alkanes, tetrahydrofuran, phenol, and toluene.  6 

While it had been postulated that this phenylacetyl-CoA oxygenase performed a 7 

dioxygenation, the sequence analyses strongly suggested a monooxygenation mechanism 8 

(Fernandez, Ferrandez et al. 2006).  Indeed, a 2010 report by the Fuchs lab offered strong 9 

support for a monooxygenation mechanism of a sort unprecedented in aromatic 10 

metabolism (Teufel, Mascaraque et al. 2010).  When Teufel et al. exogenously expressed 11 

the paaABCDE operon from E. coli K12 and exposed purified enzymatic reaction to 12 

radiolabelled phenylacetyl-CoA, an epoxide, 1,2-epoxyphenylacetyl-CoA (Figure 1.8 13 

compound 11) was identified via NMR analysis.  Enzymatic assay with labelled oxygen 14 

gas or labelled water revealed that the source of the epoxy-oxygen was diooxygen rather 15 

than water.  Sequence analysis supported the previous predictions (Olivera, Minambres et 16 

al. 1998; Fernandez, Ferrandez et al. 2006) that PaaACD encodes for a multicomponent 17 

BMO while PaaB and PaaE play the electron-transfer role.  The facts that the 2-18 

hydroxyphenylacetic acid and lactone metabolites previously observed in ring-cleavage 19 

deficient mutants (Rost, Haas et al. 2002; Ismail, Mohamed et al. 2003) were also 20 

consistent with abiotic degradation of this epoxy metabolite and that the epoxide was 21 

more consistent with the conserved monooxygenase character of the ring cleavage operon 22 

paaABCDE (Fernandez, Ferrandez et al. 2006) appeared to have resolved the question of 23 
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how ring hydroxylation proceeds and is summarized in Figure 1.8. 1 
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Figure 1.8.  The paa pathway for the aerobic metabolism of phenylacetate (Teufel, 3 
Mascaraque et al. 2010). 4 

 5 

The NMR experiments upon E. coli K12 paa clones and mutants by Teufel et al. 6 

(Teufel, Mascaraque et al. 2010) also cast light upon the mechanism of ring opening 7 

catalyzed by PaaG and PaaZ.  In a manner somewhat consistent with it’s conserved 8 

enoyl-CoA hydratase/isomerase identity, purified PaaG catalyzed the isomerization of the 9 

epoxyphenylacetyl-CoA to 2-oxepin-2-(3H)-ylideneacetyl-CoA(oxepin-CoA) (Figure 1.8 10 

compound 2), a reversible reaction.  Further addition of purified PaaZ catalyzed the 11 

NADP+-dependent conversion of epoxide and oxepin-CoA into 3-oxo-5,6-12 

dehydrosuberyl-CoA (Figure 1.8 compound 3).  Previous studies had identified only an 13 

aldehyde dehyrdrogenase domain in PaaZ (Ferrandez, Minambres et al. 1998), though 14 

further sequence analysis by Teufel et al. (Teufel, Mascaraque et al. 2010) revealed an 15 

additional enoyl-CoA-hydratase (MaoC) domain which the authors took to indicate that 16 

final ring cleavage was accomplished in a multi-step reaction catalyzed by PaaZ in which 17 
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the MaoC hydratase domain adds water across the C2-C3 bond, the ring is cleaved by the 1 

tautomerization of the unstable reaction product, and then the aldehyde dehydrogenase 2 

domain futher oxidizes the resulting aldehyde at the C8 position in an NADP+ dependent 3 

manner to produce the observed final metabolite.  While the multi-step proposed PaaZ 4 

mechanism will require much more experimentation to establish firmly, the formation of 5 

an epoxy-CoA by PaaABCDE, the oxepin by PaaG, and ultimate ring cleavage by PaaZ 6 

was clearly demonstrated (Teufel, Mascaraque et al. 2010). 7 

The presence of paa-like genes in 16% of sequenced bacterial genomes suggests 8 

that this CoA-ligase hydrolytic ring-cleavage mechanism may be a central paradigm for 9 

the aerobic metabolism of aromatic chemicals (Teufel, Mascaraque et al. 2010).  Aerobic 10 

coenzyme A mediated metabolism of benzoate derivatives has also been described as 11 

mentioned above (Fuchs 2008).  Such pathways are currently regarded as “hybrid” 12 

because they combine aspects of both a classical anaerobic (CoA ligation and hydrolytic 13 

ring cleavage) with aspects of typical aerobic (oxygenation of the aromatic ring) 14 

pathways (Fuchs 2008).  The PAA hybrid pathway was particularly difficult to 15 

characterize, likely due to the novelty of the enzymes involved and the ephemeral 16 

qualities of the epoxy and oxepin metabolites produced.  The true extent of its relevance 17 

has therefore been clouded however based on the prevelance of uncharacterized paa 18 

homologs in the genomes of sequenced bacteria, it is becoming clear that similar hybrid 19 

paradigms for the metabolism of aromatic acids are wide spread and may be as common 20 

as the better characterized double-dioxygenation and anaerobic benzoyl-CoA paradigms.    21 

  22 

 23 
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Bacterial metabolism of 2-phenylpropionate 1 

Even more structurally similar to ibuprofen than phenylacetate is 2-2 

phenylpropionate.  However, data regarding the microbial degradation of 3 

phenylpropionate is much scarcer than that regarding phenylacetate.  Site-specific 4 

hydroxylation of phenylpropionate has been observed in the gram-positive bacterium 5 

Streptomyces rimosus, which converts phenylpropionate to 4-hydroxyphenylpropionate 6 

(Kuge, Mochida et al. 1991).  Pseudomonas cepacia has been shown to metabolize 7 

phenylpropionate and tropic acid (2-phenyl-3-hydroxypropionic acid) via 8 

decarboxylation of the alpha methyl group to phenylacetaldehyde followed by oxidation 9 

to phenylacetate (Andreoni, Baggi et al. 1992).  Long et al. (Long 1997) studied in detail 10 

the steps involved in the oxidation of tropic acid to phenylacetate by Pseudomonas sp. 11 

strain AT3.  They demonstrated that tropic acid is dehydrogenated to phenylmalonic 12 

semialdehyde (2-phenyl-3-oxopropionic acid), decarboxylated to phenylacetaldehyde, 13 

and dehydrogenated to phenylacetic acid.    14 

 15 

Metabolism of ibuprofen 16 

Little information exists regarding how ibuprofen is oxidatively metabolized by 17 

environmental microbes.  The fungus Verticillum lecanii has been shown to hydroxylate 18 

ibuprofen on the isobutyl group prior to metabolism, forming (S)-2-[4-(2-hydroxy-2-19 

methylpropyl)phenyl]propionic acid (Hanlon, Kooloobandi et al. 1994).  In biofilm 20 

reactor experiments, Zweiner et al. (Zwiener, Seeger et al. 2002) and Winkler et al. 21 

(Winkler, Lawrence et al. 2001) reported a small increase in the concentration of 22 

hydroxyibuprofen and carboxyibuprofen concomitant with the decrease in concentration 23 
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of ibuprofen under aerobic conditions.  Quintana et al. (Quintana, Weiss et al. 2005) also 1 

reported identifying two isomers of hydroxyibprofen in spiked active sewage sludge.  2 

Short-lived intermediates such as substituted catechols would have not been detected 3 

using the techniques described in any of the studies listed above, nor was the generation 4 

of the hydroxylated metabolites linked to assimilative metabolism.  This data suggests 5 

that microbes could be metabolizing ibuprofen through a mono-oxygenation process 6 

similar to that observed in Verticillum lecanii (Hutt, Kooloobandi et al. 1993).  However, 7 

in the Zweiner et al. study (Zwiener, Seeger et al. 2002) the hydroxy- and 8 

carboxyibuprofen accounted for only 7% of the ibuprofen that was degraded.  How that 9 

remaining 90+% was metabolized was not determined.   10 

Chapter two of this dissertation provides evidence detailing a unique metabolic 11 

pathway for the degradation of ibuprofen whereby the acid side chain is removed and a 12 

catecholic intermediate is formed.  Chapter three details the genes found in 13 

Sphinogmonas Ibu-2 which encode the observed metabolic pathway described in chapter 14 

two. 15 

 16 

Transport of aromatics and related chemicals by bacteria 17 

Most aromatic acid transport systems studied to date have been found to utilize 18 

inner membrane porins of the major facilitator superfamily (MFS) that tend to couple 19 

transport to the influx of hydrogen ions (Marger and Saier 1993; Pao, Paulsen et al. 1998; 20 

Kahng, Byrne et al. 2000; Kasai, Inoue et al. 2001).  Such proteins have been found to be 21 

required for the uptake of phthalate (Chang, Dennis et al. 2009), benzoate (Clark, 22 

Momany et al. 2002; Ledger, Flores-Aceituno et al. 2009; Wang, Xu et al. 2011), 23 



 

     39

chlorobenzoate (Ledger, Flores-Aceituno et al. 2009), 4-hydroxybenzoate (Ditty and 1 

Harwood 2002), and protocatechuate (Harwood and Parales 1996).  Transport of 2 

phenylacetic acid has been found to take place via a similar mechanism in Pseudomonas 3 

putida U (Schleissner, Olivera et al. 1994) wherein PhaK is a porin that forms an outer 4 

membrane channel with a high degree of substrate specificity while PhaJ is an inner 5 

membrane MFS permease, also with high specificity (Olivera, Minambres et al. 1998).  It 6 

was demonstrated that in P. putida U, transport is most likely coupled to electrochemical 7 

gradients and that the membrane is impermeable to phenylacetic acid.  However, the 8 

membrane characteristics of P. putida U are considered highly unusual in that P. putida 9 

U is impervious to membrane disruption by fatty acids (Schleissner, Olivera et al. 1994).  10 

Therefore it is not clear that this transport system is representative of phenylacetic acid 11 

transport in general.  12 

 Despite its transport through a porin in Pseudomonas putida U, phenylacetate 13 

metabolism and regulation have been shown in recent years to perhaps be more akin to 14 

that of fatty acids than aromatic compounds.  For example, phenylacetate is ligated to 15 

coenzyme-A as a prerequisite for further metabolism and the CoA ligate serves as a 16 

genetic regulator for downstream metabolic elements (Galan, Garcia et al. 2004). 17 

A second type of transport system, the ABC transporter, has been found to be 18 

utilized in the uptake of certain aromatic acids.  ABC (short for ATP-binding cassette) 19 

transporters are multi component active uptake systems unlike the MFS permease 20 

symporters.  Whereas MFS proteins are porins, ABC systems are not (Busch and Saier 21 

2002).  ABC systems have been found to be utilized for the uptake of 3-22 

hydroxyphenylacetate (Arias-Barrau, Sandoval et al. 2005) and phthalate (Hara, Stewart 23 
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et al. 2009).  It is not clear why drastically different types of uptake strategies should be 1 

in use for the transport of such similar chemicals. 2 

Because ibuprofen is nominally an aromatic acid, one may hypothesize that it is 3 

likely to be transported using an MFS porin or an ABC transporter.  However, it is not a 4 

foregone conclusion that the aromatic ring is the main feature dictating the type of 5 

transport system employed.  From a metabolic perspective, the aromatic ring poses a 6 

unique challenge.  The dispersed electron cloud of the aromatic ring is particularly 7 

resistant to chemical modification.  Entirely unique systems of catabolic enzymes have 8 

evolved specifically to tackle this challenge.  On the other hand, from the perspective of 9 

transport across biological membranes, the aromatic ring is of little significance since it is 10 

simply a slightly bulky hydrophobic group which should have little trouble traversing the 11 

membrane.  It is therefore possible that other structural characteristics will contribute to 12 

the selection of transport systems; while ibuprofen is an aromatic acid, it also has a long 13 

hydrophobic tail which includes the aromatic ring and the isobutyl-group, making it 14 

drastically more hydrophobic than any of the chemicals listed above. 15 

Fatty acids are transported in an entirely different manner than aromatic acids.  16 

No inner-membrane spanning pores are required, nor is transport coupled directly to any 17 

ion gradients (Black and DiRusso 2003).  This is most likely due to the tendency for fatty 18 

acids to partition into biological membranes due to their surfactant qualities.  This 19 

characteristic makes for a chemical that can partition into and out of biological 20 

membranes, such that the membrane only slows diffusion to some degree but cannot 21 

prevent it.  This presents a bacterium seeking to utilize the fatty acid with an entirely 22 

different situation from that faced by those seeking to utilize phenylacetate.  In the case 23 
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of phenylacetate, the challenge lies in getting the molecule into the cell, whereas with 1 

fatty acids which freely diffuse across the membrane in both directions, the challenge lies 2 

in keeping the molecule inside the cell.   3 

The transport approach that has evolved in the case of fatty acids which is found 4 

across all domains of life can be generally termed “vectorial ligation.” (Black and 5 

DiRusso 2003; Zou, F. et al. 2003).  The fatty acid, which freely passes into the cell down 6 

its concentration gradient, is ligated to coenzyme A, a bulky hydrophilic cofactor, a 7 

process that serves two transport purposes; the fatty acid is now trapped inside the cell 8 

because the CoA group cannot cross the membrane and the intracellular concentration of 9 

the fatty acid is effectively kept low, thus maintaining a concentration gradient and 10 

insuring continued influx (Weimar, DiRusso et al. 2002).  It is actually this fatty acid 11 

CoA ligate that then typically serves as an inducer/repressor  of regulation and as 12 

substrate a for further catabolism (Black, Faegerman et al. 2000; Campbell and Cronan 13 

2001; DiRusso and Black 2004). 14 

While the fact that vectorial ligation is a driving force in the uptake of fatty acids 15 

is at this point uncontestable, there is mounting evidence that there are additional 16 

transport mechanisms in place that enhance uptake.  FadL is an outer membrane spanning 17 

protein that is found in many bacteria (van den Berg, Black et al. 2004; Hearn, Patel et al. 18 

2008).  FadL has high affinity for fatty acids and is proposed to translocate fatty acids via 19 

an accessory protein (TonB) driven by conformational change (Ferguson and Deisenhofer 20 

2002; van den Berg, Black et al. 2004).  Intriguingly, the transport of toluene by two 21 

other TonB-dependent members of the FadL family has been demonstrated in the cases 22 

of TbuX (Kahng, Byrne et al. 2000) and TodX (Wang, Rawlings et al. 1995).   23 
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The aliphatic side chain of ibuprofen that renders it much more hydrophobic than 1 

phenylacetic acid (Kow 3.9 vs 1.4 (Hansch, Leo et al. 1995; Tixier, Singer et al. 2003)).  2 

This hydrophobic nature implies that it will have a much greater capacity to passively 3 

diffuse across the membrane, reducing the requirement for channel proteins such as the 4 

major facilitators and porins that have been observed to be involved in the transport of 5 

more hydrophilic aromatic acids.  Chapter four of this dissertation details preliminary 6 

evidence suggesting that, like long chain fatty acids, ibuprofen transport proceeds via 7 

vectoral ligation, is dependent upon a CoA ligase, and does not rely upon a specific 8 

transmembrane transport system, though consideration of fatty acid and toluene transport 9 

systems suggest that further unidentified proteins may be involved. 10 

 11 

Conclusions 12 

 13 

The fate of ibuprofen in the environment is a poorly understood phenomenon.  14 

Given the overall lack of experimental evidence upon which to solidly base a hypothesis 15 

regarding how ibuprofen and related NSAIDs may be metabolized by environmental 16 

microbes, a direct experimental approach using classical microbiological methods was 17 

undertaken.  By isolating an organism capable of growth on ibuprofen and studying the 18 

chemistry and genetics of the phenomenon we hoped to arrive at a solid understanding of 19 

said mechanism and to therefore make a solid contribution to the environmental sciences 20 

and microbiology. 21 

22 
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CHAPTER 2 1 

 2 

FORMATION OF CATECHOLS VIA ACID SIDE CHAIN REMOVAL FROM 3 

IBUPROFEN AND RELATED AROMATIC ACIDS1 4 

 5 

 6 

Abstract 7 
 8 

Although ibuprofen (2-(4-isobutylphenyl)-propionic acid) is one of the 9 

most widely consumed drugs in the world, little is known regarding its degradation 10 

by environmental bacteria.  Sphingomonas Ibu-2 was isolated from a wastewater 11 

treatment plant based on its ability to use ibuprofen as a sole carbon and energy 12 

source.  A slight preference towards the R-enantiomer was observed, though both 13 

ibuprofen enantiomers were metabolized.  A yellow color, indicative of meta-14 

cleavage, accumulated in the culture supernatant when Ibu-2 was grown on 15 

ibuprofen.  When and only when 3-flurocatechol was used to poison the meta-16 

cleavage system, isobutylcatechol was identified in the culture supernatant via 17 

GC/MS analysis.  Ibuprofen-induced washed cell suspensions also metabolized 18 

phenylacetic acid and 2-phenylpropionic acid to catechol, while 3- and 4-19 

tolylacetic acids and 2-(4-tolyl)-propionic acid were metabolized to the 20 

corresponding methyl catechols before ring cleavage.  This data suggests that in 21 

contrast to the widely distributed coenzyme A ligase, homogentisate, or 22 

homoprotocatechuate pathways for metabolism of phenylacetic acids, Ibu-2 23 

                                                 
1This chapter has been published in Applied and Environmental Microbiology October 2005, p. 
6121-6125, Vol. 71, No. 10 
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removes the acidic side chain of ibuprofen and related compounds prior to ring-1 

cleavage.   2 

 3 

Introduction 4 

Ibuprofen (2-(4-isobutylphenyl-propionic acid)) is a pharmaceutical drug used for 5 

its analgesic, antipyretic, and anti-inflammatory properties.  It is the third most consumed 6 

drug in the world, with an estimated annual production of several kilotons (Buser, Poiger 7 

et al. 1999).  Approximately 10% of the ibuprofen consumed by humans is excreted 8 

unmodified or as the glucuronide conjugate (Lee, Williams et al. 1985; Rudy, Knight et 9 

al. 1991).  Wastewater treatment processes have been found to remove ibuprofen with 10 

varying success, which may explain why Kolpin et al. (Kolpin, Furlong et al. 2002) 11 

detected ibuprofen in 9.5% of the bodies of water that they surveyed.  Environmental 12 

concentrations of ibuprofen have been found to range from low part-per-trillion (Buser, 13 

Poiger et al. 1999; Stumpf, Ternes et al. 1999; Farre, Ferrer et al. 2001; Winkler, 14 

Lawrence et al. 2001; Kolpin, Furlong et al. 2002) to low part-per-billion levels (Buser, 15 

Poiger et al. 1999; Farre, Ferrer et al. 2001).   16 

Little information exists regarding how ibuprofen is oxidatively metabolized by 17 

environmental microbes.  Side chain hydroxylation has been reported (Kolpin, Furlong et 18 

al. 2002; Zwiener, Seeger et al. 2002), along with the formation of carboxyhydratropic 19 

acid (2-(4-carboxyphenyl)propionic acid) (Buser, Poiger et al. 1999; Zwiener, Seeger et 20 

al. 2002) and ibuprofenol (2-(4-isobutylphenyl)-propanol) under anaerobic conditions 21 

(Chen and Rosazza 1994).  22 
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 The most similar compounds whose bacterial metabolism have been described 1 

include 4-isopropylbenzoate (cumate), phenylacetic acid (PAA), and 2-phenylpropionic 2 

acid (2PPA).  Cumate is dioxygenated at the 2,3 position by Pseudomonas putida F1 3 

carrying the cmt operon and subsequently meta-cleaved  (Defrank and Ribbons 1976; 4 

Defrank and Ribbons 1977; Eaton 1996; Eaton 1997).  Other routes for the metabolism of 5 

phenylacetic acids include the well-characterized homoprotocatechuate (Sparnins and 6 

Chapman 1976) and homogentisate pathways (van den Tweel, Smits et al. 1988), as well 7 

as the more recently described CoA-ligase pathway (Ismail, Mohamed et al. 2003).   8 

Additionally, Streptomyces rimosus has been shown to convert 2PPA to 4-hydroxy-2PPA 9 

(Kuge, Mochida et al. 1991).  Finally, Pseudomonas cepacia has been shown to 10 

metabolize 2PPA (2) and tropic acid (21) (2-phenyl-3-hydroxypropionic acid) via a 11 

pathway involving decarboxylation to phenylacetaldehyde followed by oxidation to PAA 12 

(Andreoni, Baggi et al. 1992).   13 

In this study we report upon the isolation of a bacterium capable of utilizing 14 

ibuprofen as a sole carbon and energy source.  We also provide evidence of an apparently 15 

novel metabolic pathway for the degradation of ibuprofen and related PAAs. 16 

 17 

Methods 18 

 19 

Materials and Strains 20 

NAD+ was purchased from SigmaAldrich (St. Louis, MO).  Dextrin 10 was 21 

purchased from Fluka BioChemika (Buchs, Switzerland).  All other chemicals were 22 

purchased from Acros (Morris Plains, NJ).  A 50/50 enantiomeric mixture of R/S-23 
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ibuprofen was used unless stated otherwise.  Mineral salts medium (MSM) was prepared 1 

as previously described (McCullar 1994).  2 

 3 

Isolation of Ibu-2 via enrichment of sewage sludge 4 

Sewage sludge was enriched with ibuprofen according to standard protocols 5 

(Krieg 1981).  A single colony was isolated and designated strain Ibu-2.  A fragment of 6 

the 16S rRNA gene from Ibu-2 was PCR amplified using the universal primers 27F 7 

(AGAGTTTGATCMTGGCTCAG) and 1055R (CGGCCATGCACCACC) (Lane 1991) 8 

and was sequenced using the 27F and 1055R primers.   9 

 10 

Stereospecificity 11 

Ibu-2 was inoculated into 500 mg/L R/S-ibuprofen, 500 mg/L S-ibuprofen, or 250 12 

mg/L R/S-ibuprofen.  Pure R-ibuprofen was not used because it is not commercially 13 

available.  Maximal cell density was determined spectrophometrically.   14 

 Chiral capillary electrophoresis (CE) was performed on the supernatants of 15 

ibuprofen grown Ibu-2 cultures in order to determine if a difference existed in the rate at 16 

which the enantiomers were metabolized.  Supernatants were harvested and filtered as 17 

described above.  Samples were run on an HP3D CE using a 40 cm x 50 µm fused silica 18 

column from Agilent technologies (Palo Alto, CA) and a method adapted from Simo et 19 

al. (Simo 2002).  Cassette temperature was set at 25 ºC.  The running buffer was 20 

composed of 6% dextrin 10 and 150 mM sodium borate at pH 9.  Prior to each injection, 21 

the column was preconditioned for 1 min with water, 1 min with 0.1 M NaOH and 50 22 

mM SDS, and finally for 2 min with the running buffer.  Injection was performed by 23 
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applying 10 mbar pressure for 9 seconds followed by running buffer injection at 50 mbar 1 

for 5 seconds.  Voltage was applied at +20 kV.  A diode array detector was used with 2 

detection and reference wavelengths set at 194 +/- 2 nm and  500 +/- 80 nm respectively.   3 

 4 

Substrate specificity analysis with washed cells 5 

Ibu-2 was grown in MSM containing 500 mg/L ibuprofen or 0.1% glucose.  6 

Washed cell suspensions (WCS) were prepared according to standard protocols (Focht 7 

1994).  Test compounds were added to a final concentration of 500 mg/L in 500 µl 8 

aliquots of WCS and yellow color generation was monitored for thirty min.  The yellow 9 

products were further characterized by determining their absorbance maxima via 10 

spectrophotometry.  Yellow color was assumed to be indicative of meta-cleavage product 11 

and was thus taken as positive indication of metabolism of the test compound. 12 

Chemicals tested included phenol, 2-, 3-, and 4-methylphenol, catechol, 3-13 

methylcatechol, 4-methylcatechol, 4-tertbutylcatechol, benzoate, 4-methylbenzoate, 14 

phenylacetaldehyde, phenylacetic acid, R- and S-2-hydroxy-2-phenylacetic acid 15 

(mandelic acid) 2-, 3-, and 4-tolylacetic acid, 2- and 4-(hydroxyphenyl)acetic acid, 2- and 16 

3-phenylpropionic acid, 2-(4-tolyl)propionic acid, 2-phenyl-3-hydroxypropionic acid 17 

(tropic acid), 3-phenyl-2-propenoic acid (cinnamic acid), 2-phenylbutyric acid, and 2,2-18 

diphenylacetic acid. 19 

 20 

Growth substrate analysis 21 

Growth of Ibu-2 was tested on compounds that gave a positive result in the 22 

substrate specificity analysis.  Tests were performed in triplicate in test tubes.  5 ml of an 23 
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overnight Ibu-2 culture grown on ibuprofen was used to inoculate MSM containing 250 1 

mg/L or 500 mg/L of the chemical of interest.  The tubes were placed on a vertical rotor 2 

and monitored over the course of one week for growth via changes in OD at 600 nm 3 

(OD600).   4 

Compounds that did not support growth on their own were assayed for their 5 

ability to support growth in the presence of ibuprofen as an inducer.  Ibu-2 was 6 

inoculated into mixtures of 250 mg/L of these compounds plus 250 mg/L ibuprofen in 7 

MSM.   8 

 9 

Analysis of culture supernatants by GC/MS 10 

 Ibu-2 was inoculated into 1 L of MSM containing 500 mg of ibuprofen.  When 11 

grown on ibuprofen, the culture accumulated a yellow color.  The culture was allowed to 12 

continue growing until that color reached an apparent maximum level (48-60 hours).  At 13 

this point, the supernatant was harvested via centrifugation and filtered through a 0.22 µm 14 

filter.  The supernatant was then acidified to pH 3 using 1 M HCl and extracted with 50 15 

ml of ethyl acetate. The extract was concentrated to a volume of 2 ml under nitrogen at 16 

35°C.  The samples were then methylated with diazomethane by standard protocols 17 

(Hecht and Kozarich 1972).  After thirty min at room temperature, the samples were 18 

evaporated to a minimal volume under a nitrogen stream and analyzed via GC/MS using 19 

an HP 6890 GC equipped with an HP-5MS column (5% phenyl methyl siloxane 30 m x 20 

0.25 mm, 0.25 µm film thickness) using helium as the carrier gas with a flow rate of 1 21 

ml/min.  The injector temperature was 250°C.  The initial oven temperature of 40°C was 22 

held for 1 min, then ramped at a rate of 10°C/min to 250°C.  The temperature was held at 23 
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250°C for 7 min and then ramped up at 30°C/min until 300°C.  The detector was an HP 1 

5973 MSD with the quadrupole and source set at 150ºC and 230ºC respectively.   2 

 3 

Analysis of catecholic ibuprofen intermediates 4 

3-fluorocatechol, a meta-cleavage inhibitor, was added to a final concentration of 5 

50 mg/L in 100 ml of mid-log-phase Ibu-2 culture.  After 30 min, the supernatant was 6 

removed and filtered.  Potassium carbonate and acetic anhydride were added to final 7 

concentrations of 1.5% and 0.5% respectively.  This aqueous acetylation was performed 8 

to selectively acetylate aromatic hydroxyl groups (Mars 1997).  After thirty min, the 9 

samples were acidified to pH 3, extracted with ethyl acetate, and dried over a sodium 10 

sulfate column.  The extracts were then methylated with diazomethane and analyzed as 11 

described above.  A culture with ibuprofen but without 3-fluorocatechol was also 12 

analyzed. 13 

 14 

Characterization of catechols produced from ibuprofen analogs 15 

Assays were performed with WCS and the 2-arylpropionic acids and phenylacetic 16 

acids that produced yellow metabolites.  The assays were performed with and without the 17 

addition of 3-fluorocatechol.  The supernatants were passed through a 0.22 µm filter and 18 

then analyzed via HPLC for accumulation of catechols. The HPLC retention times of the 19 

metabolites were compared to those of catechol and methylcatechol standards.  HPLC 20 

was performed using 70% methanol, 30% 40 mM acetic acid as the eluent.  The sample 21 

was pumped at a rate of 1 ml/min using a Waters Model 590 pump through a Varian 22 

Microsorb-MV C18 column (250 mm by 4.6 mm).  Samples were injected by a Shimadzu 23 
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SIL-10AD AP autoinjector and detected with a Shimadzu SPD-10A VP UV-Vis detector 1 

by monitoring absorbance at 285 nm. 2 

 3 

Cell-free extract assays 4 

Ibuprofen-grown Ibu-2 was washed with 0.9% NaCl to remove the 5 

exopolysaccharide matrix (Richau 2000) and then resuspended in a minimal volume of 6 

sonication buffer (100 mM tris, 2 µm phenylmethylsulfonyl fluoride, and 1 µm 7 

dithiothreitol at pH 8 (Long 1997)).  The cells were then lysed via sonication using a 8 

Branson Sonifer 450 set at 100% duty cycle using three cycles of 30 seconds each 9 

separated by 1 min rest time.  The cells were kept on ice at all times.  The samples were 10 

then centrifuged at 21000 x g at 4°C for 15 min and the supernatant retained.  Extracts 11 

were assayed for activity by adding catechol to a small aliquot and monitoring for yellow 12 

product generation.   13 

 14 

Assaying sidechain oxidation 15 

Cell extracts from Pseudomonas AT3 grown on tropic acid, prepared using the 16 

method described above, were used as a positive control for side chain oxidation (Long 17 

1997).  The assay, which monitors NAD+/NADP+ reduction, was performed with cell free 18 

extracts from Ibu-2 or AT3 in sonication buffer with either 0.1 µM tropic acid or 19 

ibuprofen and 0.1 µM of either NAD+ or NADP+.  The reactions were incubated at room 20 

temperature and monitored for reduction of NAD+ or NADP+ at 340 nm. 21 

  22 

 23 
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Results and Discussion 1 

 2 

 Ibu-2 grew on ibuprofen as a sole source of carbon and energy (data not shown).  3 

When grown on ibuprofen in liquid media, a yellow color appeared in the supernatant.  4 

This yellow color disappeared upon acidification and reappeared upon neutralization, a 5 

phenomenon diagnostic of meta-cleavage products (mcp).  Sequencing and BLAST 6 

analysis (Altschul 1990) of the 16S rRNA gene fragment revealed that Ibu-2 was 98% 7 

identical to Sphingomonas species over 967 bp.  Ibu-2 had yellow pigmentation and 8 

tended to develop an exopolysaccharide matrix, especially when grown on glucose.  Both 9 

of these characteristics are common to Sphingomonas species (Pollock 1993).   10 

 11 

Stereospecificity 12 

Ibu-2 grew to the same maximum cell density on 500 mg/L R/S-ibuprofen as it 13 

did on 500 mg/L S-ibuprofen.  Both of these values were approximately twice that 14 

obtained using 250 mg/L S ibuprofen or R/S-ibuprofen.  During growth on R/S-ibuprofen 15 

the entantiomeric fraction dropped to less than 35% R-ibuprofen before both isomers 16 

where completely removed, suggesting that Ibu-2 may preferentially degrade the R 17 

enantiomer (Figure 2.1). 18 

19 
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Figure 2.1.  The enantiomeric fraction (EF) of R-ibuprofen (-○-) and overall ibuprofen 2 
concentration (-♦♦♦♦-) in a growing Ibu-2 culture in which ibuprofen is the sole carbon and 3 
energy source.  The concentrations of both ibuprofen enantiomers were determined by 4 
chiral CE analysis.   5 

 6 

GC/MS analysis of culture supernatant extracts 7 

When ibuprofen-grown cultures were poisoned with 3-fluorocatechol, a 8 

metabolite accumulated in the supernatant whose mass spectrum was consistent with 9 

isobutylcatechol (metabolite B, Table 2.1).  The mass spectrum of this compound 10 

revealed a molecular ion at m/z 250, which is consistent with diacetylated 11 

isobutylcatechol.  The two acetyl groups, which were added during aqueous acetylation, 12 

are diagnostic of the presence of two aromatic hydroxyl groups (Mars 1997).  Acetyl 13 

groups give predictable losses of m/z 42, which in this case accounted for the peaks at m/z 14 

208 and 166.  The other large peak at m/z 123 represents a loss of 43 which is consistent 15 

with the loss of the isopropyl group from the base ion fragment.  The combination of this 16 

mass spectral fragmentation pattern, the derivatizable nature of metabolite during 17 
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aqueous acetylation, and its accumulation only in the presence of 3-fluorocatechol are 1 

strong evidence that the peak detected via GC-MS was indeed isobutylcatechol.   2 

Mass spectra were also obtained for two other compounds from the extract of a 3 

culture that was not poisoned with 3-fluorocatechol and which had accumulated high 4 

levels of mcp (metabolites C and D, Table 2.1).   5 

 6 

Table 2.1.  GC/MS retention times and major ions of isobutylcatechol (B) and two putative 7 
isobutylcatechol meta-cleavage metabolites (C and D). 8 

MS ret. time (min.) mass (relative abundance)     

b 15.7 123(99) 166(100) 208(17) 250(4)   

c 14.7 226(2) 167(100) 151(6) 137(1) 123(8) 

d 15.8 256(10) 225(10) 197(100) 139(20)   

 9 

These spectra were not detected in the extract of cultures poisoned with 3-10 

fluorocatechol.  One spectrum was consistent with the mcp of isbutylcatechol: 5-formyl-11 

2-hydroxy-7-methylocta-2,4-dienoic acid (metabolite C, figure 2.2), and the other was 12 

consistent with its formyl-oxidized derivative, 2-hydroxy-5-isobutylhexa-2,4-dienedioic 13 

acid (metabolite D, figure 2.2). 14 

 15 
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Figure 2.2.  Proposed pathway for the metabolism of ibuprofen by Ibu-2. Metabolites b-d 2 
were all detected via GC/MS.  b:  isobutylcatechol; c:  5-formyl-2-hydroxy-7-methylocta-3 
2,4-dienoic acid; d: 2-hydroxy-5-isobutylhexa-2,4-dienedioic acid 4 

 5 

As expected, treatment with diazomethane methylated both the acidic hydroxyl 6 

and the alpha carbon hydroxyl groups of metabolites C, giving a molecular ion of m/z 7 

226.  The m/z 167 fragment represents a loss of 59 from the parent ion, which is 8 

consistent with the loss of a methylated carboxyl group and is a common loss from 9 

aliphatic esters.  The m/z 137 fragment is consistent with the loss of CH2O from the m/z 10 

167 fragment. 11 

The major fragments of metabolite D (m/z 256 / 225 / 197 / 139) are consistent 12 

with the expected transformation product of metabolite C.  After derivatization this 13 

would be expected to have three additional methyl groups, one on each acidic hydroxyl 14 

group and one on the alpha hydroxyl group. A loss of 31 to give m/z 225 is consistent 15 

with loss of CH2OH from the parent ion.   An alternative loss from the parent ion  (m/z 16 

256) yielded a fragment with an  m/z 197 and is consistent with the loss of a methylated 17 

carboxylic acid group (-59).  Further impact of this fragment would be expected to result 18 

in a loss of 58 which would correspond to removal of the second methylated carboxylic 19 

acid group and yield the fragment with an m/z 139.   20 

 21 
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Substrate specificity analysis 1 

Ibu-2 washed cell suspension was also able to metabolize phenylacetic acid, 3- 2 

and 4-tolylacetic acids, 2-phenylpropionic acid, and 2-(4-tolyl)-propionic acid.  However, 3 

it was not able to metabolize 2-phenylbutyric acid or 2,2-diphenylacetic acid, which 4 

implies that the nature of the substitution on the alpha carbon is important.  Neither 5 

phenol nor any methylphenol was metabolized, making it less likely that a phenolic 6 

metabolite was involved.  Washed cell suspension could not metabolize either mandelic 7 

acids or tropic acid (2-phenyl-3-hydroxypropionic acid), implying that hydroxylation of 8 

the acid side chain was not an intermediate step in side-chain removal.  Furthermore, 9 

washed cell suspension was not able to metabolize benzoate or 4-methylbenzoate, 10 

suggesting that benzoic acids, which have been shown to be intermediates in the 11 

anaerobic degradation of phenylacetic acid by a Pseudomonas sp. and by Azoarcus 12 

evansii (Mohamed, Ismail et al. 2002), were not likely to be intermediates in ibuprofen 13 

degradation.  Other compounds that were not metabolized include 4-tertbutylcatechol, 14 

phenylacetaldehyde, 2-tolylacetic acid, 2- and 4-(hydroxyphenyl)acetic acid, 3-15 

phenylpropionic acid, 3-phenyl-2-propenoic acid (cinnamic acid).  In all cases, it is 16 

possible that lack of metabolism was due to lack of transport into the cell.   17 

 18 

Growth substrate analysis 19 

The only ibuprofen analogs that supported growth of Ibu-2 without the presence 20 

of ibuprofen as an inducer were 3-tolylacetic acid and 2-(4-tolyl)propionic acid.  21 

However, 4-tolylacetic acid was able to support growth when ibuprofen was also present 22 

in the media.  Phenylacetic acid and 2-phenylpropionic acid did not support growth under 23 
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any conditions (Figure 2.3).  Surprisingly, 3-tolylacetic acid supported less than half of 1 

the growth permitted by ibuprofen or 4-tolylacetic and 4-tolylpropionic acids (p < 0.02).  2 

This suggests the possibility of toxicity or incomplete metabolism. If the latter were true, 3 

accumulation of a metabolite might have been predicted.  However, no dead-end 4 

metabolites were detected when the culture supernatant from 3-tolylacetic acid grown 5 

cells was subjected to HPLC or GC/MS analysis (data not shown). 6 
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Figure 2.3.  Average final culture density (n=3) as measured by OD600 when Ibu-2 was 2 
inoculated in liquid MSM culture containing ibuprofen or its analogs (ipf ibuprofen, paa 3 
phenylacetic acid, 2ppa 2-phenylpropionic acid, 3taa 3-tolylacetic acid, 4taa 4-tolylacetic 4 
acid, 2(4t)pa 2-(4-tolyl)propionic acid).  5 

 6 

 7 
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Characterization of catechols produced from ibuprofen analogs 1 

When the supernatants of WCS that had been incubated with ibuprofen analogs 2 

and 3-fluorocatechol were examined via HPLC, each exhibited a novel peak.  These 3 

peaks were only present after the addition of 3-fluorocatechol.  In the phenylacetic acid 4 

and 2-phenylpropionic acid samples, a peak appeared whose retention time matched that 5 

of catechol (6.4 min).  Within 2 hrs, almost 60% of the phenylacetic acid added was 6 

converted to catechol and no other intermediates were detected, suggesting that the 7 

observed deacylation was not merely an unproductive side reaction.  In the 3-tolylacetic 8 

acid sample, a peak appeared whose retention time matched that of 3-methylcatechol 9 

(13.5 min).  In the 4-tolylacetic acid and 2-(4-tolyl)-propionic acid samples, a peak 10 

appeared whose retention time matched that of 4-methylcatechol (11.6 min).   11 

 12 

Characterization of meta-cleavage products of ibuprofen analogs.   13 

The mcps of phenylacetic acid, 2-phenylpropionic acid, and catechol all had the 14 

same maximum absorbance wavelength (378 nm).  The mcps of 3-tolylacetic acid and 3-15 

methylcatechol also had the same maximum absorbance wavelength (380 nm), as did 4-16 

tolylacetic acid, 2-(4-tolyl)-propionic acid, and 4-methylcatechol (384 nm).  These 17 

observations all suggest that deacylation of the acidic side chain occurred before ring 18 

cleavage. 19 

 20 

Cell-free extract activities upon ibuprofen 21 

Ibu-2 cell-free extracts readily produced mcp from catechol, 3-methylcatechol, 22 

and 4-methylcatechol (data not shown).  Ibu-2 cell-free extracts did not generate any 23 
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yellow color when incubated with ibuprofen with or without the addition of 1 

NADH/ferrous iron, nor was any ibuprofen disappearance detected via HPLC under any 2 

conditions.  The Ibu-2 cell free extracts did not reduce NAD+ or NADP+ in the presence 3 

of either ibuprofen or tropic acid, although the positive control reduced NAD+ in the 4 

presence of tropic acid.  Cofactor reduction woµld have been expected if Ibu-2 used a 5 

Pseudomonas AT3-like mechanism to oxidize the sidechain of ibuprofen.   6 

  7 

Conclusions 8 

 9 

Unlike Variovorax sp Ibu-1, which has been suggested to dioxygenate the 10 

aromatic ring of ibuprofen in the 2 and 3 positions (Murdoch 2002), Ibu-2 appears to 11 

metabolize ibuprofen through a novel mechanism resµlting in removal of the propionic 12 

acid moiety and dioxygenation of the ring at the 1,2 position, giving rise to 13 

isobutylcatechol.  The accumµlation of this compound when and only when a meta-14 

cleavage inhibitor was added suggests that isobutylcatechol is further metabolized via 15 

meta-cleavage.  The identification of compounds consistent with the meta-cleavage of 16 

isobutylcatechol only when a meta-cleavage inhibitor was not added lends further support 17 

to this conclusion.   18 

As a similar side chain removal of related 2-phenylpropionic acids or 19 

phenylacetic acids has not been previously reported, the ability of Ibu-2 to metabolize 20 

other aromatic acids was determined.  The production of catechols and their respective 21 

mcps from these compounds provides additional evidence for this unique pathway.   22 
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The exact mechanism whereby Ibu-2 accomplished this acid side chain removal 1 

remains to be determined.  Although it is likely that other steps were required to activate 2 

the acid moiety prior to removal, we could not detect any evidence suggesting the 3 

involvement of other intermediates prior to the formation of catechols.  Further work will 4 

be required before the mechanism whereby this is accomplished can be elucidated. 5 
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CHAPTER 3 1 

 2 

GENETIC AND CHEMICAL CHARACTERIZATION OF IBUPROFEN 3 

AND PHENYLACETIC ACID METABOLISM BY SPHINGOMONAS 4 

IBU-2 5 

 6 

Abstract 7 

 8 

Sphingomonas Ibu-2 has the unique ability to cleave the acid side chain from the 9 

non-steroidal anti-inflammatory drug ibuprofen and related phenylacetic acid 10 

derivatives to yield corresponding catechols under aerobic conditions.  To identify 11 

the genes involved in this unusual pathway, we constructed a chromosomal 12 

library of Ibu-2 DNA in Escherichia coli epi300. Fosmid clones capable of 13 

metabolizing ibuprofen to isobutylcatechol were identified.  Transposon 14 

mutagenesis of one of the fosmids (pFOS3G7) allowed identification of thirteen 15 

mutants that failed to produce detectatable catechols.  DNA sequencing revealed 16 

insertions in five open reading frames ipfABDEF whose predicted amino acid 17 

sequences bore similarity to the large and small units of aromatic dioxygenases, 18 

an SCPx thiolase, a domain of unknown function 35 (DUF35), and an aromatic 19 

coenzyme A ligase respectively.  A knockout of ipfH which putatively encodes a 20 

ferredoxin reductase component of an aromatic dioxygenase system showed 21 

reduced catecholic metabolite production.  An open reading frame ipfI which 22 

putatively encodes the ferredoxin component of an aromatic dioxygenase was also 23 
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identified on pFOS3G7.  Complementation of a markerless loss-of-function ipfD 1 

deletion mutant with ipfD restored catechol-generation ability.  Subcloned 2 

ipfABDEF produced catecholic metabolites, but only in trace amounts.  The co-3 

expression of ipfABDEF with ipfH and ipfI greatly enhanced the production of 4 

catecholic metabolites.  The existence of the isobutylcatechol metabolite and the 5 

novel involvement of an SCPx thiolase (IpfD) and a DUF35 protein (IpfE) in the 6 

generation of the catechol suggest that this pathway is distinct from others 7 

described to date and represents a novel aerobic paradigm employed for the 8 

metabolism of alkyl aromatic acids. 9 

 10 

Introduction 11 

 12 

Ibuprofen (2-(4-isobutylphenyl-propionic acid)) is a pharmaceutical with 13 

analgesic, antipyretic, and anti-inflammatory properties. With an annual production of 14 

several kilotons (Buser, Poiger et al. 1999), it is the most widely used member of a 15 

diverse class of pharmaceuticals termed the non-steroidal anti-inflammatory drugs 16 

(NSAIDs), many of which share a phenylacetic acid (PAA) core such as diclofenac, 17 

naproxen, ketoprofen, and flurbiprofen (Figure 1.1).  Approximately 10% of the 18 

ibuprofen consumed by humans is excreted unmodified or as the glucuronide conjugate 19 

(Lee, Williams et al. 1985; Rudy, Knight et al. 1991).  The drug’s popularity, large 20 

therapeutic dose, and incomplete human metabolism lead to a large amount of ibuprofen 21 

entering the environment with human waste.  Wastewater treatment processes have been 22 

found to remove ibuprofen to varying degrees (Buser, Poiger et al. 1999; Stumpf, Ternes 23 
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et al. 1999; Farre, Ferrer et al. 2001; Winkler, Lawrence et al. 2001; Kolpin, Furlong et 1 

al. 2002; Fent, Weston et al. 2006; Benotti, Trenholm et al. 2008; Huerta-Fontela and 2 

Ventura 2008; Corcoran, Winter et al. 2010; Kummerer 2010; Santos, Araújo et al. 2010) 3 

which may explain why ibuprofen has been detected in bodies of water all over the world 4 

(Buser, Poiger et al. 1999; Stumpf, Ternes et al. 1999; Farre, Ferrer et al. 2001; Winkler, 5 

Lawrence et al. 2001; Kolpin, Furlong et al. 2002).  Ibuprofen has also been detected in 6 

water used for irrigation (Pedersen, Yeager et al. 2003; Pedersen, Soliman et al. 2005; 7 

Kinney, Furlong et al. 2006; Siemens, Huschek et al. 2008; Xu, Wu et al. 2009) and 8 

municipal drinking supplies (Jones, Lester et al. 2005).  Environmental concentrations of 9 

ibuprofen have been found to range from low part-per-trillion (Buser, Poiger et al. 1999) 10 

to low part-per-billion levels (Buser, Poiger et al. 1999; Farre, Ferrer et al. 2001; Santos, 11 

Araújo et al. 2010) 12 

Investigations into subtle effects and mixture toxicity have found ibuprofen 13 

induced changes on the timing of spawning by medaka (Flippin, Hugget et al. 2007; Han, 14 

Choi et al. 2010),  growth/predominance of algae and duckweed (Pomati, Netting et al. 15 

2004; Richards, Wilson et al. 2004), microbial diversity in aquatic mesocosms (Richards, 16 

Wilson et al. 2004), and riverine biofilm communities (Lawrence, Swerhone et al. 2005) 17 

at environmentally relevant concentrations. 18 

Little information exists regarding how ibuprofen is oxidatively metabolized by 19 

environmental microbes.  The fungus Verticillum lecanii has been shown to hydroxylate 20 

ibuprofen on the isobutyl group (Hanlon 1994) and similar microbially-generated 21 

hydroxyibuprofen metabolites along with carboxylated ibuprofen have been detected 22 

(Zwiener, Seeger et al. 2002; Quintana, Weiss et al. 2005; Marco-Urrea, Pérez-Trujillo et 23 
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al. 2009).  However, these metabolites have not been linked directly with the ability to 1 

use ibuprofen as a growth or energy source nor did they account for the majority of the 2 

added ibuprofen. 3 

Sphingomonas Ibu-2 is able to use racemic ibuprofen as a sole carbon and energy 4 

source (Murdoch and Hay 2005).  Ibu-2 utilizes a classical catechol meta-cleavage type 5 

pathway.  However, the catechol that is generated from ibuprofen is isobutylcatechol, the 6 

creation of which requires the removal of the propionic acid side-chain from the aromatic 7 

ring (Figure 3.1).  It was also demonstrated that Ibu-2 performs similar reactions with 8 

other phenylacetic acids including phenylacetic acid, 2-phenylpropionic acid, 3- and 4-9 

tolylacetic acids, and 2-(4-tolyl)propionic acid, converting them to the corresponding 10 

catechols (catechol or methylcatechol).   11 
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 1 

Figure 3.1.  Catechols and corresponding meta-cleavage products absorbance maxima and 2 
the substrate chemicals as detected in ibuprofen-induced resting Sphingomonas Ibu-2 3 
(Chapter 2). 4 

 5 
There is to this author’s knowledge no precedent for the ejection of an acyl group from an 6 

aromatic ring in such a manner, though it is reminiscent of 1,2- benzoate dioxygenases 7 

that remove the carboxyl moiety from benzoate and which have been extensively 8 
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described (Reiner 1971; Fetzner, Muller et al. 1992; Jeffrey, Cuskey et al. 1992; Eaton 1 

1996).  This side chain removal phenomenon also differs from published reports of the 2 

metabolism by other bacteria of phenylacetic acid which has been shown to take place via 3 

coenzyme A ligation followed by epoxidation and non-oxygenolytic ring cleavage but 4 

does not involve catecholic intermediates (Martinez-Blanco, Reglero et al. 1990; 5 

Mohamed 2000; Rost, Haas et al. 2002; Ismail, Mohamed et al. 2003; Fernandez, 6 

Ferrandez et al. 2006; Teufel, Mascaraque et al. 2010). 7 

The metabolism of ibuprofen and related phenylacetic acids by Sphingomonas 8 

Ibu-2 appears to represent a new paradigm for the metabolism of phenylacetic acids. In 9 

order to identify the genes responsible for the conversion of these aromatic acids to the 10 

corresponding catechols, a fosmid library was constructed of Ibu-2 total DNA.  A fosmid 11 

that conferred upon E. coli the ability to generate isobutylcatechol from ibuprofen was 12 

subjected to transposon mutagenesis.  We report here on the results of these efforts and a 13 

description of the steps involved in ibuprofen and phenylacetic acid degradation by 14 

Sphingomonas Ibu-2. 15 

 16 

Material and Methods 17 

 18 

Materials 19 

 Unless otherwise noted, chemicals were purchased from Acros (Morris Plains, 20 

NJ).  Luria-Bertani broth (LB) was prepared as previously described (Sambrook, Fritsch 21 

et al. 1989).  Mineral salts medium (MSM) was prepared as previously described 22 

(McCullar 1994).  23 
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 1 

Creation and screening of Ibu-2 fosmid library 2 

Ibu-2 chromosomal DNA was extracted from cells harvested from 100 mL of 3 

liquid MSM culture containing 500 mg/L ibuprofen (ipf) by the standard alkaline lysis 4 

procedure (Sambrook, Fritsch et al. 1989).  The harvested DNA was quantified using the 5 

Ribogreen Kit (Molecular Probes, Eugene, OR).  The DNA was prepared and the fosmid 6 

library was created according to the instructions in the CopyControl™ Fosmid Library 7 

Production Kit instructions (Epicentre Biotechnologies, Madison, WI).  Briefly, the DNA 8 

was sheared and size selected for 35kb-45kb.  The DNA was then end-repaired, ligated 9 

into the fosmid vector, and packaged in phage particles.  These particles were then used 10 

to transfect E. coli epi300 and successful transformants were selected on LB 25 mg/L 11 

chloramphenicol (chl).  A 900 clone library (approximately 7X expected genome 12 

coverage) was constructed in 96-well plates and stored with the addition of 20% glycerol 13 

at -80 deg C.  The fosmid library was screened for the accumulation of dark brown 14 

catecholic polymers when grown in LB with 50 mg/L ibuprofen in 96-well plates.  10mM 15 

arabinose was used to induce the fosmid to high copy number in all metabolic assays. 16 

 17 

Creation and metabolic screening of fosmid clone transposon libraries 18 

 The EZ::TN <TET-1> Insertion Kit (Epicentre Technologies, Madison, WI) was 19 

used to create transposon insertion mutants of chromosomal library fosmid pFOS3G7 20 

which was positive for isobutyl catechol accumulation.  The mutagenesis was performed 21 

as described in the kit instructions.  The reaction was packaged in phage extract 22 

(MaxPlax Lambda Packaging Extract, Epicentre Technologies, Madison, WI), transfected 23 
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into E. coli epi300, and selected on LB plates containing 25 mg/L chl and 12 mg/L 1 

tetracycline (tet).  A 96-clone library of transposon mutants was then screened for loss of 2 

the ability to accumulate the brown color associated with catechol production and 3 

polymerization.   4 

 The loss-of-function mutants were characterized by sequencing DNA surrounding 5 

the site of transposon insertion using transposon-specific primers FP and RP (Table 3.2).  6 

The sequence information was compiled using the SeqManager program (DNAStar, Inc., 7 

Madison, WI) and searched for open reading frames using the GeneQuest program 8 

(DNAStar, Inc., Madison, WI).  Similarity to known and putative proteins was assessed 9 

using BLAST-P (Altschul 1990).   10 

 11 

Table 3.1.  Strains and plasmids used in this study. 12 

 13 
Strains     

Sphingomonas Ibu-
2 

isolated from Ithaca, NY sewage treatment 
plant via enrichment for growth on ibuprofen this study 

E. coli S17 

λpir; hsdR pro recA; RP4 2-Tc::Mu-Km::Tn7, 
pro, res-, mod+, streptomycin resistance, 
trimethoprim resistance 

(Simon, Priefer et al. 
1983) 

E. coli JM109 

recA1 subE44 endA1 hsdR17 gyrA96 relA1 thi 
∆(lac-proAB) F' (traD36 proAB+ lacIq lacZ 
∆M15) 

(Sambrook, Fritsch et 
al. 1989) 

E. coli epi300 

F- mcrA ∆(mrr-hsdRMS-mcrBC) 
Φ80dlacZ∆M15 ∆lacX74 recA1 endA1 
araD139 ∆(ara, leu)7697 galU galK λ- rpsL 
(StrR) nupG trfA tonA Epicentre, Madison, WI 

    
    
Plasmids     

pKD4  

contains the template for generating FLP 
recombinase target lambda red kanamycin 
resistance PCR fragment; kanamycin resistant 

(Datsenko and Wanner 
2000).   

epi300 3G7 pKD46  
arabinose-inducible lambda red recombinase 
expression plasmid; ampicillin resistant 

(Datsenko and Wanner 
2000).   
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 pCP20  
heat inducible FLP recombinase expression 
plasmid 

(Datsenko and Wanner 
2000).   

pCC1FOS  

copy control fosmid vector, inducible to high 
copy number with arabinose when hosted in E. 
coli epi300, chloramphenicol resistance Epicentre, Madison, WI 

pFOS3G7 
pCC1FOS Sphingomonas Ibu-2 chromosomal 
library clone 3G7 this study 

pFOS4F6 
pCC1FOS Sphingomonas Ibu-2 chromosomal 
library clone 4F6 this study 

pBBR1mcs 
broad host range plasmid, chloramphenicol 
resistance 

(Kovach, Elzer et al. 
1995) 

pJ25 
pBBR1mcs with BamHI/NsiI fragment from 
pCC1FOS 3G7 bearing ipfABDEF this study 

pFOS3G7Tn:ipfA 

pFOS3G7 with Tn5 insertion in ipfA, 
transposon library clone F1, chloramphenicol 
and tetracycline resistant this study 

pFOS3G7Tn:ipfB 

pFOS3G7 with Tn5 insertion in ipfA, 
transposon library clone H6, chloramphenicol 
and tetracycline resistant this study 

pFOS3G7Tn:ipfD 

pFOS3G7 with Tn5 insertion in ipfD, 
transposon library clone A2, chloramphenicol 
and tetracycline resistant this study 

pFOS3G7Tn:ipfE 

pFOS3G7 with Tn5 insertion in ipfE, 
transposon library clone E6, chloramphenicol 
and tetracycline resistant this study 

pFOS3G7Tn:ipfF 

pFOS3G7 with Tn5 insertion in ipfF, 
transposon library clone F10, chloramphenicol 
and tetracycline resistant this study 

pFOS3G7∆ipfA  
pFOS3G7 with markerless deletion of ipfA, 
chloramphenicol resistant this study 

pFOS3G7∆ipfB 
pFOS3G7 with markerless deletion of ipfB, 
chloramphenicol resistant this study 

pFOS3G7∆ipfD 
pFOS3G7 with markerless deletion of ipfD, 
chloramphenicol resistant this study 

pFOS3G7∆ipfE 
pFOS3G7 with markerless deletion of ipfF, 
chloramphenicol resistant this study 

pGEMt-easy  ampicillin resistance Promega, Madison, WI 

pGEM:ipfArbs  

pGEMt-easy with ipfArbsF/ipfAR PCR product 
ipfA including a three frame stop codon and a 
ribosomal binding site,  this study 

pGEM:ipfBrbs  

pGEMt-easy with ipfBrbsF/ipfBR PCR product 
ipfB including a three frame stop codon and a 
ribosomal binding site,  this study 

pGEM:ipfDErbs   

pGEMt-easy with ipfDrbsF/ipfER PCR product 
ipfDE including a three frame stop codon and a 
ribosomal binding site,  this study 

pGEM:ipfDrbs  

pGEMt-easy with ipfDrbsF/ipfDR PCR product 
ipfD including a three frame stop codon and a 
ribosomal binding site,  this study 
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pGEM:ipfErbs  

pGEMt-easy with ipfErbsF/ipfER PCR product 
ipfE including a three frame stop codon and a 
ribosomal binding site,  this study 

pGEM:ipfAB 
pGEMt-easy with ipfAF and ipfBR PCR product 
ipfAB  this study 

pGEM:ipfF 
pGEMt-easy with ipfFF/ipfFR PCR amplicon 
ipfF this study 

 
pGEM:ipfHI 

pGEMt-easy with ipfHI PCR amplicon created 
by strand overlap extension this study 

 1 
 2 

Functional analysis of pFOS3G7 clones via HPLC  3 

 Overnight cultures of E. coli epi300 harboring pFOS3G7 or different transposon 4 

mutants of pFOS3G7 were inoculated (10% v/v) into five ml of LB containing 50 mg/L 5 

ibuprofen, the appropriate antibiotics, and 10mM arabinose.  The cultures were incubated 6 

at 37°C in a rotary shaker.  One ml samples were taken at the initiation of the experiment 7 

and at four days and analyzed for ibuprofen concentration via HPLC.  The HPLC solvent, 8 

80% methanol 20% 40mM acetic acid, was pumped at a rate of 1 ml/min using a Waters 9 

Model 590 pump through a Varian Microsorb-MV C18 column (250 mm by 4.6 mm).  10 

Samples and standards were injected by a Shimadzu SIL-10AD AP autoinjector and 11 

detected with a Shimadzu SPD-10A VP UV-Vis detector. The UV-Vis signal was fed 12 

into a PC computer where it was collected and analyzed using Peaksimple (SRI 13 

Instruments, Torrance, CA).  Ibuprofen was quantified by comparison to a standard 14 

curve. 15 

GC/MS was performed on overnight cultures to characterize catecholic 16 

metabolites or  other detectable metabolites that might accumulate.  Aqueous acetylation 17 

was performed by previously described methods (Murdoch and Hay 2005) in order to 18 

selectively derivatize aromatic hydroxyl groups.  The sample was then extracted with 19 

ethyl acetate and dried over a sodium sulfate column.  The ethyl acetate extracts were 20 
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methylated using diazomethane and dried once more over a sodium sulfate column.  1 

GC/MS was performed using previously described methods (Murdoch and Hay 2005).   2 

Presence or absence of catechols was determined by HPLC analysis of washed 3 

cell suspensions that had been concentrated 20-fold and was performed as previously 4 

destribed (Murdoch and Hay 2005).   5 

 6 

Fosmid subcloning 7 

Analysis of sequence from the transposon mutants implicated an approximately 8 

5kb region of fosmid pFOS3G7 as being involved in the production of isobutylcatechol 9 

(Figure 3.4).  This region was gel purified away from the rest of the fosmid after 10 

digestion with BamHI and NsiI.  The 5kb fragment was then ligated into pBBR1mcs 11 

(Kovach, Elzer et al. 1995) that had been digested with BamHI and PstI.  The ligation 12 

was transformed into JM109 via electroporation and selected on LB chl 25 mg/L plates.  13 

The transformants were screened using primers specific for the desired insert.  The 14 

resulting plasmid, pJ25, was then harvested and transformed into E. coli epi300 in order 15 

to afford comparisons with the fosmid in the same genetic background.   16 

PCR strand overlap extension (SOE) strategy was employed to co-express ipfH, a 17 

putative ferredoxin reductase gene, and ipfI, a ferredoxin gene, both of which were also 18 

located on pFOS3G7.  SOE employed PCR primers with additional 5’ homology 19 

overlaps between the two PCR products that allowed for artifical joining of the two PCR 20 

products.  An initial round of PCR using a 50C anneal and 1.5 minute extension with a 21 

pFOS3G7 template and the SOE primers (Table 3.2) was used.  The products, which 22 

were of the predicted size, were gel purified and used as template for three cycles of 23 
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primer-less PCR under the same conditions.  IpfFeDoxFsew and ipfFeDoxRedRsew were 1 

then added and PCR performed under the same conditions, yielding a combined product 2 

of the predicted size.  The SOE product was t-cloned into pGEMt-easy, sequence 3 

verified, and transformed into E. coli epi300 pJ25.   4 

 5 

Table 3.2.  Primers used in this study.  1:  pGEMt- Easy vector system, Promega 6 
Corporation, Madison, WI.  2:  EZ::TN <TET-1> Insertion Kit, Epicentre, Madison, WI.   7 

 8 
name sequence source
ipfAF TGACATGATTGAAGGTCGCACCGA this study
ipfAR ATGATGTATCTCCTTGCGCGTCCT this study
ipfBF AGCGTATTGATCACCACCTCATCC this study
ipfBR TTTGCAGACGCAAGGGCAACTCTT this study
ipfDF AAACATGTGTCGATTACCGCGGAC this study
ipfDR ATGAATGCGAGAAATGCCTCGTCG this study
ipfEF AATGGTGGCTGCCTTGACTACCA this study
ipfER TCGATGCTTTCTTGCGTCAGGATG this study
ipfFF TTTCGACCGACAAGGTCTGGTGTT this study
ipfFR ACGGCGGTAGCCATCAAACATTTC this study
T7F GTAATACGACTCACTATAGGGC 1
M13R GCAAACAGCTATGACCATG 1
FP1 GGGTGCGCATGATCCTCTAGAGT 2
RP1 TAAATTGCACTGAAATCTAGAAATA 2

ipfFeDoxFsew TACCGCCGAGCAGGAATATTACAGCCGCGACA this study
ipfFeDoxRsew2 GAAGCGGGTACATTCCTCCAGACGGTCCTC this study
ipfFeDoxRedFsew GGAGGAATGTACCCGCTTCACGCACACAATCTA this study
ipfFeDoxRedRsew TTTCACCGCAGGCCTATGCCGC this study
ipfDlambdaF CATGGGGACGAGGCTGTTCCCAGTCTGGCATTCATCATCTGACGCGCACCGTGTA this study

GGCTGGAGCTGCTTC
ipfDlambdaR AATGCCTCGTCGTAGCGGTGAAAAAAGGTGCTATCCATCAATGGCTCCAGATGGG this study

AATTAGCCATGGTCC
ipfAlambdaF GGAAATACTTTCAGCGCCAGTTTTTACACTATTTTTGTGTAGGCTGGAGCTGCTTC this study
ipfAlambdaR CCCGAAGGGGGGCGGATGAGGTGGTGATCAATACGCATGGGAATTAGCCATGGTCC this study
ipfBlambdaF AGCGTCCTGCGAGCAGGACGCGCAAGGAGATACATCGTGTAGGCTGGAGCTGCTTC this study
ipfBlambdaR TGGTCTTTTTCTTCACTCGCGTGACCATGGTGCGCGATGGGAATTAGCCATGGTCC this study
ipfElambdaF AGCCCACACCGCACCCTCGCCTGACTGGAGCCATTGGTGTAGGCTGGAGCTGCTTC this study
ipfElambdaR TCTTGCCAACATAACTTGTCTCCTTGGTTTTAAGTTATGGGAATTAGCCATGGTCC this study9 
 10 

 11 

Metabolic analyses of subclones 12 

The metabolic capabilities of E. coli epi300 pJ25 pGEM:ipfHI (J25HI) were 13 

studied by adding substrates to mature LB-grown cultures.  J25HI was compared directly 14 
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to E. coli epi300 pJ25, E. coli epi300 pGEM:ipfHI, and E. coli epi300 with no vector.  1 

Initial expression assays utilizing 25ppm chloramphenicol with the addition of substrate 2 

at the time of inoculation failed to demonstrate activity.  To promote higher copy 3 

numbers of the plasmids prior the introduction of substrate, cultures were grown into 4 

stationary phase before introduction of substrate.  In order to avoid negative selection 5 

effects exerted by the putative toxic catcholic metabolites, substrate addition was delayed 6 

until 24 hours after inoculation.  At 24 hours 1mM of test substrate added as a 1M 7 

solution in ethanol was spiked into the cultures.  Test substrates were ibuprofen and 8 

phenylacetate both of which have been previously shown to be converted to 9 

corresponding deacylated catechols by Sphingomonas Ibu-2 (Chapter 2).  The media 10 

consisted of LB and 100ppm chloramphenicol and/or 150ppm ampicillin.  Following the 11 

addition of test substrate, cultures were incubated at 37C for 18 hours.   12 

For direct visualization of catechols, ferric choride was added to 150ul of culture 13 

to a final concentration of 1.5mM in 96-well plate format.  Additionally, HPLC was used 14 

to directly quantify substrate and catechols.  40:60 methanol:40mM acetic acid running 15 

buffer was used for separation of phenylacetate (10.6 minutes) and catechol (4.3 16 

minutes).  70:30 methanol:40mM acetic acid was used to separate ibuprofen (13.2 17 

minutes) and a peak at 3 minutes presumed to be isobutylcatechol due to its high 18 

absorbance at 280nm.  A detection wavelength of 220nm was used for the aromatic acids 19 

while a detection wavelength of 280nm was used for the catechols.  Standard curves were 20 

used to quantify the analytes.  Because no standard exists for isobutylcatechol, the 21 

catechol standard curve was used to approximate isobutylcatechol concentration. 22 

 23 
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Complementation of pFOS3G7 ipfABDEF mutants 1 

 pFOS3G7Tn:ipfF was complemented by the cloning ipfF into pGEMt-easy using 2 

the primers ipfFF/ipfFR that had been designed so as to include the native ribosomal 3 

binding site (Table 3.2).  Attempts to complement other four genes (ipfABDE) using the 4 

same approach described above were unsuccessful (results not shown).  In order to 5 

reduce the influence of possible polar effects introduced by the Tn5 cassette, markerless 6 

mutants were created using the lambda red system using a protocol modified from 7 

Datsenko and Wanner (Datsenko and Wanner 2000).  pKD4 insertion cassette primers 8 

with 36-50bp overlap homology to target gene-flanking regions (Table 3.2) were used to 9 

generate insertion cassettes and transformed into E. coli epi300 pFOS3G7 pKD46 with 10 

arabinose induction as described previously (Datsenko and Wanner 2000).  However, the 11 

pCC1 fosmid is induced to high copy number by arabinose which led to difficulty in 12 

isolating insertion mutants presumably due to the loss of mutated fosmid during recovery 13 

following transformation with the insertion cassette.  In order to achieve acceptable 14 

recovery of insertion mutants, 10mM arabinose was therefore added during both the 15 

recovery and initial plating which increased recovery of insertion mutants by more than 16 

an order of magnitude (data not shown).  The cassettes were removed by electroporation 17 

and induction of pCP20 as previously described (Datsenko and Wanner 2000).  Insertions 18 

and deletions were confirmed by PCR analysis.   19 

 Except in the case of ipfF, initial attempts to complement the loss of function 20 

knockouts using expression constructs that included the native ribosomal binding site 21 

regions were unsuccessful (data not shown).  In order to address the possibility that the 22 

lack of complementation was due lack of efficient translation, complements were created 23 
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using primers with artificial stop codons and ribosomal binding sites added to the 5’ end 1 

of the forward primers (Figure 3.2).  PCR was performed using proof-reading polymerase 2 

followed by monoadenylation of the resulting blunt-ended product by adding taq 3 

polymerase and ATP following purification.  Resulting plasmids were sequenced and 4 

given the suffix rbs, then transformed into pFOS3G7 deletion mutants or transposon 5 

mutants and screened for catechol accumulation.  Because pGEM:ipfErbs failed to 6 

complement pFOS3G7∆ipfE, an attempt to complement using pGEM:ipfDErbs was 7 

undertaken. 8 

 9 

Figure 3.2 expression vector forward primer strategy.  RBS; ribosomal binding site 10 

 11 

In silico analyses  12 

 Fosmid transposon library clone sequences were assembled into contiguous units 13 

using SeqMan (DNAStar, Inc., Madison, WI) and searched for open reading frames 14 

(ORFs) using GeneQuest (DNAStar, Inc., Madison, WI).  Translated ORFs were 15 

subjected to Blastp analysis against the Swiss-prot database at the National Center for 16 

Biotechnology Institute (NCBI) website (Altschul, Madden et al. 1997).  Conserved 17 

domain analysis was conducted using the CDD tool at NCBI (Marchler-Bauer, Anderson 18 

et al. 2003; Marchler-Bauer and Bryant 2004).  Phylogenetic trees were built using the 19 

COBALT multiple alignment tool (Papadopoulos and Agarwala 2007 ) using Fast 20 

    

 

three-frame stop  spacer RBS  Gene-specific  
primer  

5’- TAG CTAG C TAGC AAGGAGATATACAT(N18-24)-3’
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Minimum Evolution tree building method with Grishin distance.  Three-dimensional 1 

structure modeling was performed using Swiss-model and visualized using Swiss-PDB 2 

viewer (Peitsch 1995; Arnold, Bordoli et al. 2006; Kiefer, Arnold et al. 2009).  Protein 3 

amino acid sequence alignments were performed using MegAlign (DNAStar, Inc., 4 

Madison, WI). 5 

  6 

Expression of ipfD and ipfE in E. coli K12 paa operon mutants 7 

 In order to investigate the interaction between E.coli K-12 phenylacetate 8 

metabolites (Chapter One, Figure 1.8) and IpfDE, the ipfDE pGEMt-easy expression 9 

vector described above was electroporated into E.coli K-12 ∆paaG, ∆paaZ, and ∆paaJ 10 

mutants and screened for effects on growth rate, catechol generation, and for effects on 11 

the rate of phenylacetate metabolism and 2-hydroxyphenylacetate accumulation.  The 12 

growth medium was 0.2% glycerol with 7mM phenylacetate, 1mM IPTG, and 150ppm 13 

ampicillin adjusted to pH 7.  Strains with pGEM:ipfDErbs were tested against control 14 

strains harboring empty pGEMt-easy vector.  Phenylaceteate and 2-hydroxyphenylacetate 15 

were assayed via HPLC using the same equipment described above with a 40:60 16 

methanol:40mM acetic acid eluent.  LB medium with 1.5 mM ferric chloride and 17 

100ppm p-toluidine along with 1mM IPTG and 150 ppm ampicillin was employed for the 18 

detection of catechol.   19 

 20 

Metabolism of Phenylacetyl Coenzyme A in cell-free extracts 21 

 Further metabolism of phenylacetyl CoA was measured in reactions containing 50 22 

µl 2mM phenylacetyl CoA (Sigma, St. Louis, MO), 50 µl 2mM NADH, and 100 µl cell-23 
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free extract.  Crude cell-free extracts of E. coli clones were prepared by centrifuging 1 

100ml of mid-exponential growth phase 1mM IPTG or 10mM arabinose induced culture, 2 

washing, and resuspending in a minimal volume of sonication buffer (40 mM potassium 3 

phosphate, 20% glycerol, 1mM PMSF, 1mM DTT, pH 7.4).  Approximately 0.1g of 0.1 4 

mm glass beads was then added and the pellets were bead-beaten for three minutes 5 

(MiniBeadbeater-8, Biospec Products, Bartlesville, OK).  The pellets were then spun 6 

down as described above.  In both cases, the protein content of the supernatant containing 7 

the crude extract was quantified using the Bio-Rad Protein Assay (Bio-Rad Laboratories, 8 

Hercules, CA).  The reactions were left at room temperature for one hour, whereupon the 9 

reaction was terminated by the addition of 20 ul 4M trichloroacetic acid.  In order to 10 

quantify phenylacetyl CoA, the samples were analyzed via HPLC with UV-Vis detection 11 

as described above. 12 

 GC/MS was used to test for the appearance of putative metabolites of 13 

phenylacetyl-CoA.  After acidification of the samples to terminate the reaction, the pH 14 

was raised to 10 by the addition of sodium hydroxide in order to promote alkaline 15 

hydrolysis of the coenzyme group (Mangino, Zografakis et al. 1992).  The effectiveness 16 

of this procedure was confirmed by noting the disappearance of phenylacetyl-CoA by 17 

HPLC in a separate assay.  After 20 minutes, aqueous acetylation was performed by 18 

previously described methods (Murdoch and Hay 2005) in order to selectively conjugate 19 

aromatic hydroxyl groups.  The sample was then acidified to pH 2.5 and precipitates were 20 

removed via centrifugation.  The sample was then extracted with ethyl acetate and dried 21 

over a sodium sulfate column.  The ethyl acetate extracts were methylated using 22 

diazomethane and dried once more over a sodium sulfate column.  GC/MS was 23 
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performed using the methods described above.  A standard of 2-hydroxyacetic acid, a 1 

hypothetical metabolic byproduct, was also subjected to the same treatment and analysis. 2 

 3 

 4 

Results 5 

 6 

Ibu-2 fosmid library 7 

E. coli epi300 pFOS3G7 was the only clone of the 900 clone Ibu-2 fosmid library 8 

that accumulated visible brown pigment when exposed to ibuprofen in liquid media.  The 9 

presence of isobutylcatechol (Murdoch and Hay 2005) in ethyl acetate extracts of 10 

acetylated culture supernatant from E. coli epi300 pFOS3G7 grown in LB and exposed to 11 

500 mg/L ibuprofen was confirmed via GC/MS (retention time 15.7 minutes with major 12 

peaks (relative abundance) of 123(99), 166(100), 208(17), 250 (4)) (Figure 3.3). 13 
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Figure 3.3.  Mass-spectrum of acetylated isobutylcatechol detected in extracts of E. coli 2 

epi300 pFOS3G7 supernatant. 3 

 4 

Screening and Characterization of E. coli epi300 pFOS3G7 transposon library 5 

When the 96-clone transposon library of E. coli epi300 pFOS3G7 was screened 6 

for catechol accumulation in the presence of ibuprofen, seventeen clones no longer 7 

accumulated the characteristic dark catecholic polymerization product, indicating a loss-8 

of-function.  Sequencing of the DNA surrounding the transposon insertion and analysis 9 

of the sequence information revealed that thirteen of the E. coli epi300 pFOS3G7 10 

transposon insertion clones harbored a transposon in a 5kb region of Ibu-2 DNA, while 11 

the other four clones had the transposon in the vector.  Sequence analysis (DNAStar, Inc., 12 

Madison, WI) revealed that this 5kb region contained five open reading frames (ORFs) 13 

(Figure 3.4) with sequence similarities to aromatic and other metabolic enzyme-encoding 14 

genes described in more detail below.  All five ORFs had representative knockouts 15 
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amongst the loss-of-function mutants.  Only ipfB and ipfF had recognizable conserved 1 

ribosomal binding sites (Table 3.3).   2 

In addition to ipfABDEF, two open reading frames with sequence similarities to a 3 

ferredoxin reductase (ipfH) and a ferredoxin (ipfI) were identified (Figure 3.4).  ipfH was 4 

identified by observing that a particular transposon library mutant (pFOS3G7Tn:ipfH) 5 

accumulated dark catecholic coloring at a slightly slower rate.  ipfI was fortuitously 6 

identified during random sequencing of pFOS3G7 transposon library clones. 7 

 8 

Table 3.3.  DNA immediately upstream of ipf open reading frames.  Purine-rich regions 9 
with homology to conserved ribosomal binding site are underlined. Only ipfB and ipfF had 10 
strong RBSs.  11 
 12 

 13 

 14 

 15 

 16 

ipfA 
CAGCGCCAGTTTTTACACTATTTTTstart 
 
ipfB 
AGCAGGACGCGCAAGGAGATACATCstart 
 
ipfD 
TGGCATTCATCATCTGACGCGCACCstart 
 
ipfE 
CACCCTCGCCTGACTGGAGCCATTGstart 
 
ipfF 
AAACTTAAAACCAAGGAGACAAGTTstart 
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Figure 3.4.  Open reading frames found on pFOS3G7.  Large black arrows represent ORFs 2 
with high similarity to conserved transposase genes.  Small black arrows represent the 3 
location and orientation of loss-of-function transposon insertions.  ORFs described in this 4 
study are named.   5 

 6 

Metabolic analyses of clones and constructs 7 

Deletions of genes following application of the lambda-red system was successful 8 

as indicated by PCR analysis (Figure 3.5).  Ibuprofen disappearance assays revealed 9 

several trends.  First of all, they clearly demonstrated that expression of pFOS3G7 in E. 10 

coli epi300 caused the disappearance of ibuprofen from the culture supernatant (Figure 11 

3.6).  E. coli epi300 pFOS3G7 loss-of-function mutants representing each putative 12 

metabolic gene caused partial or complete loss of ibuprofen disappearance (Figure 3.6) 13 

while not producing visible catecholic polymers (Figure 3.7) or any isobutylcatechol 14 

detectable by GC/MS (data not shown).  Notably, pFOS3G7Tn:ipfF did not degrade 15 

ibuprofen at all.   16 

 17 



 

     107

ipfA ∆ipfA ipfB ∆ipfB ipfD ∆ipfD ipfE ∆ipfE

2kb-
1.6kb-

1kb-

0.5kb-

ipfA ∆ipfA ipfB ∆ipfB ipfD ∆ipfD ipfE ∆ipfE

2kb-
1.6kb-

1kb-

0.5kb-

 1 

Figure 3.5.  PCR of indicated ipf genes using either intact pFOS3G7 or makerless mutants.  2 
All products were of the predicted size for targeted gene deletion. 3 
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Figure 3.6.  Percentage of 50ppm ibuprofen remaining after two days of incubation in E. 7 
coli epi300 pFOS3G7, loss-of-function mutants, and the two successful complementation 8 
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constructs as determined by HPLC analysis of the cultures shown in Figure 3.17.  n = 3, 1 
standard deviations were too small to be visualized effectively. 2 

3G7 ∆ipfA Tn:ipfF∆ipfB ∆ipfD ∆ipfE

∆ipfD

pGEM:ipfDrbs

Tn:ipfF

pGEM:ipfF

epi3003G7 ∆ipfA Tn:ipfF∆ipfB ∆ipfD ∆ipfE

∆ipfD

pGEM:ipfDrbs

Tn:ipfF

pGEM:ipfF

epi300

 3 

Figure 3.7.  Catecholic polymer accumulation in E. coli epi300 pFOS3G7, loss-of-function 4 
mutants, and the two successful complement constructs grown in LB broth with 50 ppm 5 
ibuprofen and 1.5mM ferric chloride. 6 

 7 
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 8 

Figure 3.8.  Centrifuged knockout and complement strains showing the tendency of 9 
catecholic polymers created in the presence of 1.5mM ferric chloride to pellet along with the 10 
cell mass. 11 
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Markerless deletion mutants of the individual ipf genes (∆ipfA, ∆ipfB, ∆ ipfD, and 1 

∆ipfE) also failed to produce catecholic metabolites (Figures 3.7 and 3.8) and eliminated 2 

less ibuprofen than intact pFOS3G7 (Figure 3.6).  Complementation of pFOS3G7∆ipfD 3 

with pGEM:ipfDrbs and pFOS3G7Tn:ipfF with pGEM:ipfF restored catechol generation 4 

and ibuprofen disappearance (3.6-3.8), although we were unable to complement the other 5 

mutants.   6 

Results of HPLC analysis of E. coli epi300 pFOS3G7Tn:ipfH were consistent 7 

with the observation that dark catecholic metabolites accumulate more slowly in this 8 

clone (Figure 3.9). 9 
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Figure 3.9.  % of 50ppm ibuprofen metabolizied by E. coli epi300 pFOS3G7, E. coli epi300 11 
pFOS3G7Tn:ipfH, and epi300 negative control after four days as determined by HPLC 12 
analysis. 13 

 14 

When ipfABDEF were subcloned into pBBR1mcs to create pJ25, E. coli 15 

harboring this plasmid produced trace amounts of isobutylcatechol when grown with 16 

ibuprofen as detected by GC/MS (data not shown), but no polymerization products were 17 

visible nor were levels detectable via HPLC analysis.  E. coli epi300 pJ25 pGEM:ipfHI 18 
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cultures showed dark brown coloration in response to ferric chloride addition (Figure 1 

3.10) while single vector or vectorless controls contained no detectable dark coloration.  2 

HPLC analysis revealed that E. coli epi300 pJ25 pGEM:ipfHI degraded at least 50% 3 

more of the ibuprofen and phenylacetate test substrates than single vector or vectorless 4 

controls.  Additionally, HPLC analysis detected catechol in phenylacetate only in dual-5 

vector cultures.  The disappearance of phenylacetate in the dual vector culture (0.58 mM) 6 

corresponded closely with the accumulation of catechol (0.37 mM) (Figure 3.11).  The 7 

putative isobutylcatechol peak was quantified using the catechol standard curve because 8 

no standard for isobutylcatechol is available.  0.42 mM ibuprofen disappeared from the 9 

pJ25 pGEM:ipfHI culture and approximately 0.25 mM isobutylcatechol appeared (Figure 10 

3.12).   11 
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Figure 3.10.  150ul of E. coli epi300 harboring the indicated plasmids following 18 hours of 2 
incubation with 1mM ibuprofen (IPF) or phenylacetate (PAA) with 1.5 mM ferric chloride 3 
for catecholic metabolite visualization.   4 

 5 

 6 
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Figure 3.11.  Phenylacetate and catechol concentration in E coli epi300 cultures harboring 2 
pJ25 and/or pGEM:ipfHI (pHI) following 18 hours of incubation 1 mM phenylacetate. 3 
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Figure 3.12. Ibuprofen and isobutylcatechol concentration in E coli epi300 cultures 6 
harboring pJ25 and/or pGEM:ipfHI (pHI) following 18 hours of incubation 1 mM 7 
ibuprofen.  8 

 9 

 10 

Phenylacetyl coenzyme A disappearance in E. coli pGEM:ipfAB cell-free extract 11 

 The rate of phenylacetyl coenzyme A disappearance in both E. coli pFOS3G7 12 

(172 nmol/(mg protein*hr)) and JM109 pGEM:ipfAB (161 nmol/(mg protein*hr)) cell-13 
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free extracts were significantly higher than in cell-free extract of JM109 (123 nmol/(mg 1 

protein*hr)) (p<0.05) (Figure 3.13).  While no novel peaks were detected via GC/MS 2 

analysis, the peak area of phenylacetic acid was approximately 90% less in the JM109 3 

pGEM:ipfAB sample than it was in the JM109 control.  4 
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Figure 3.13.  Disappearance of phenylacetyl CoA (PAA-CoA) in cell-free extract 7 
experiments.  PAA-CoA was quantified via HPLC.  n=3.  All data points are significantly 8 
different from one another as calculated by student’s t-test (p<.05). 9 

 10 

Expression of ipfDE in E. coli K12 paa mutants 11 

 In order to gain a greater understanding of the role of IpfD and IpfE, we expressed 12 

them in E.coli K12 mutants that had lost the ability to cleave the ring of phenylacetic acid 13 

(paaG, paaZ, and paaJ mutants).  The genes were co-expressed due to the co-dependency 14 

of bacterial SCPx thiolases and DUF35 proteins that has been previously observed in the 15 

Phl (Bangera and Thomashow 1999) and Bbs (Leuthner and Heider 2000; Kube, Heider 16 

et al. 2004; Kuhner, Wohlbrand et al. 2005) pathways.  This work was undertaken prior 17 

to the recent publication by Teufel et al (Teufel, Mascaraque et al. 2010) with the 18 
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hypothesis that Ibu-2 and K12 might share a common hydroxylated, CoA-ligated 1 

intermediate which could be acted upon by IpfD and IpfE, resulting in isobutylcatechol 2 

production.  While no isobutylcaechol was detected, expression of ipfDE caused a 57% 3 

increase in the amount of PAA disappearance (p<0.05) and a 67% increase (p<0.05) in 4 

the amount of 2-hydroxyphenylacetate detected in the supernatant of the E. coli K12 5 

∆paaG mutant, but not in the wild type or either of the other two mutants implicated in 6 

ring fission (Figure 3.14, also see Figure 1.8 for the paa pathway).  The 2-7 

hydroxyphenylacetate accounted for the majority of metabolized phenylacetate in strain 8 

K12 ∆paaG. 9 
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Figure 3.14.  A; Concentration of phenylacetate remaining after three days in E. coli K12 12 
cultures (7mM starting concentration).  The strains are WT, wild type; G, ∆paaG, J, ∆paaJ; 13 
Z, ∆paaZ.  “DE” indicates presence of pGEM:ipfDErbs.  All strains without 14 
pGEM:ipfDErbs  harbored the empty pGEMt-easy vector.  All strains were grown in 0.2% 15 
glycerol MSM with 1mM IPTG induction at 37C.  Asterics indicate significantly higher 2-16 
hydroxyphenylacetate (p<0.05) 17 
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Discussion 1 

 2 

Previously (Murdoch and Hay 2005), isobutylcatechol was detected in ibuprofen-3 

grown Sphingomonas Ibu-2 cultures when and only when catechol-meta-cleavage 4 

activity had been poisoned by the addition of 3-fluorocatechol.  The removal of the acid 5 

side-chain and consequent creation of the corresponding catechol was demonstrated for a 6 

variety of phenylacetic acids by ibuprofen-induced cultures (Figure 3.1).  GC/MS spectra 7 

corresponding to isobutylcatechol meta-cleavage products were also observed (Table 8 

2.1). 9 

 In order to further study this pathway, a fosmid library was constructed in E. coli 10 

using Sphingomonas Ibu-2 chromosomal DNA.   E. coli epi300 pFOS3G7 turned brown 11 

in the presence of ibuprofen, indicative of accumulation of a catecholic metabolite.  The 12 

disappearance of ibuprofen from E. coli epi300 pFOS3G7 and accumulation of 13 

isobutylcatechol was confirmed via HPLC and GC/MS respectively.  Creation and 14 

screening of a transposon library of pFOS3G7 led to the discovery of five genes 15 

(ipfABDEF) that, when knocked out, prevented isobutylcatehcol accumulation and 16 

slowed the disappearance of ibuprofen.   17 

 18 

ipfA 19 

Sequence analysis of ipfA revealed that its predicted protein product contained 20 

two conserved domains an N-terminal Rieske domain and a C-terminal catalytic domain 21 

similar to those of the alpha subunit of anthranilate 1,2-dioxygenase (AntDO, CD03538) 22 

conserved domain and related Rieske-type non-heme iron aromatic ring-hydroxylating 23 
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oxygenase (RHO, CD00680) conserved domain.  The general RHO domain is typified by 1 

having a large hydrophobic pocket that affords aromatic substrate specificity while 2 

proteins containing the AntDO subfamily domain are specific for aromatic acids (Gibson 3 

and Parales 2000; Ferraro, Gakhar et al. 2005).  The multi-domain architecture is similar 4 

to those of 1,2-benzoate dioxygenase, 1,2-anthranilate dioxygenase, and 3-5 

phenylpropionate dioxygenases.  There was no detectable similarity at any level to the 6 

monooxygenase encoding genes of the E. coli paa operon paaABCDE.  Thus, 7 

phylogenetic analysis clearly places IpfA in the of the RHO superfamily (Table 3.4). 8 

 9 

10 
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Table 3.4.  The substrates, similarity measures, and confidence levels of comparisons 1 
between the predicted amino acid sequence of ipfA and characterized large subunits of 2 
dioxygenases found in the Swiss-prot database.   3 

Accession Description (alpha subunit of)  Organism % identity
% positive 
similarity

Query 
coverage

E value

ABY62759.1 indole 3-acetic acid dioxygenase  IacC 34 51 94% 1.00E-62

P. putida

P37333.3 biphenyl 2,3-dioxygenase 29 45 93% 6.00E-45

Burkholderia xenovorans

AAB62285.1 p-cumate 2,3-dioxygenase 29 43 92% 2.00E-44

P. putida

BAB78521.1 2,4-dichlorophenoxyacetic acid dioxygenase 27 44 84% 4.00E-44

Bradyrhizobium sp. HW13

Q7N4W0.1 3-phenylpropionate dioxygenase 28 46 95% 8.00E-44

Photorhabdus luminescens

Q52028.1 biphenyl 2,3-dioxygenase 28 45 93% 1.00E-43

P. pseudoalcaligenes

Q07944.1 benzene 1,2-dioxygenase 29 45 92% 2.00E-43

P. putida

Q51601.3 2-halo benzoate 1,2-dioxygenase 29 46 83% 2.00E-43

Burkholderia cepacia

A5W4F2.1 benzene 1,2-dioxygenase 28 45 92% 3.00E-43

P. putida F1

A8A344.1 3-phenylpropionate dioxygenase 28 46 94% 3.00E-43

Escerichia coli HS

Q83K39.1 3-phenylpropionate dioxygenase 23 46 94% 4.00E-43

Shigella flexneri 

Q52438.1 biphenyl 2,3-dioxygenase 28 44 96% 9.00E-43

P. sp. KKS102

P07769.2 benzoate 1,2-dioxygenase 29 47 78% 2.00E-42

Acinetobacter sp. ADP1

ZP06690405.1 anthranilate 1,2-dioxgyenase 28 45 83% 2.00E-41

Acinetobacter sp. SH024

Q51494.1 napthalene 1,2-dioxygenase 28 47 94% 3.00E-41

P. aeruginosa

BAH86807.1 2,4-dichlorophenoxyacetic acid dioxygenase 27 45 81% 3.00E-41

Sphingomonas sp. 58-1

P0A110.1 napthalene 1,2-dioxygenase 29 46 93% 4.00E-41

P. putida

P23099.1 toluate 1,2-dioxygenase 29 47 70% 1.00E-40

P. putida

Q46372.1 biphenyl 2,3-dioxygenase 27 44 95% 7.00E-40

Comomonas testosteroni

O07824.1 napthalene 1,2-dioxygenase 28 45 93% 2.00E-39

P. fluorescens  4 

 5 

The predicted protein product of ipfA was most closely related to iacC from P. putida, 6 

though the relationship was still distant (34% identity and 51% similar residues over 94% 7 

of its length).  iacC is predicted to encode the large subunit of an indole-3-acetic acid 8 
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dioxygenase (Leveau and Lindow 2005; Leveau and Gerards 2008), though the specifics 1 

of the metabolic pathway have not been described.  A sequence analysis of available iac-2 

region from P. putida revealed no genes bearing any similarity to ipfD, ipfE, or ipfF,  3 

 4 

ipfB 5 

Sequence analysis of ipfB reveals strong homology to the beta or small subunits 6 

of aromatic dioxygenases.  The function of beta-subunits of RHO heterodimers is not 7 

well known, but they are believed to serve a largely structural, non-catalytic role (Parales 8 

and Resnick 2006).  BLAST-P similarity analysis to a variety of dioxygenase beta 9 

subunits show 20%+ identity and 40%+ similiarity (Table 3.5). 10 

11 
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Table 3.5.  The substrates, similarity measures, and confidence levels of comparisons 1 
between the predicted amino acid sequence of ipfB and characterized small subunits of 2 
dioxygenases found in the Swiss-prot database.   3 

Accession
Description (beta subunit of)         

Organism
% Identity

% Positive 
similarity

Query 
coverage

E-value

42151 p-cumate 2,3 dioxygenase 33 47 84% 1.00E-16
P. putida

P37334.3 biphenyl 2,3 dioxygenase 31 50 85% 4.00E-15
Burholderia xenovorans

Q52439.1 biphenyl 2,3 dioxygenase 32 46 79% 7.00E-14
P. sp. KKS102

Q46373.1 biphenyl 2,3 dioxygenase 33 46 83% 1.00E-13
Comamonas testosteroni

A5W4F1.1 toluene 2,3 dioxygenase 25 48 86% 6.00E-13
P. putida F1

Q07945.1 benzene 1,2-dioxygenase 25 48 83% 8.00E-13
P. putida

Q7N4V9.1 3-phenylpropionate dioxygenase 29 49 87% 1.00E-12
Photorhabdus luminescens

P23100.1 toluate 1,2-dioxygenase 30 50 58% 5.00E-12
P. putida

Q31XV1.1 3-phenylpropionate dioxygenase 28 48 87% 1.00E-11
Shigella boydii

Q8XA73.1 3-phenylpropionate dioxygenase 28 47 87% 1.00E-11
E. coli

P07770.1 benzoate 1,2-dioxygenase 26 49 53% 2.00E-09
Acinetobacter sp. ADP1

BAB78522.1 2,4-dichlorophenoxyacetic acid dioxygenase 26 44 83% 2.00E-08
Bradyrhizobium sp. HW13

ABY62760.1 indole-3-acetic acid dioxygenase 23 45 91% 3.00E-08
P. putida

BAH86808.1 2,4-dichlorophenoxyacetic acid dioxygenase 24 43 83% 8.00E-07
Sphingomonas sp. 58-1

ADG20790.1 anthranilate 1,2-dioxygenase 25 44 74% 9.00E-07
Burkholderia sp. CCGE1002

1NDO_F napthalene dioxygenase 23 45 73% 3.00E-06
Pseudomonas  4 

 5 

ipfD 6 

Analysis of the predicted amino acid sequence of ipfD (Marchler-Bauer, 7 

Anderson et al. 2003; Marchler-Bauer and Bryant 2004), revealed the presence of a 8 

highly conserved domain similar to those found within the condensing enzyme family of 9 

proteins related to sterol carrier protein X (SCPx) (E-value = 1.02x10-51) (Stolowich, 10 

Petrescu et al. 2002).  Condensing enzymes generally catalyze the condensation and/or 11 

thiolytic cleavage of acetyl groups to or from beta-keto acids.   12 
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There are two main types of condensing enzymes; decarboxylating and non-1 

decarboxylating.  Decarboxylating enzymes, which perform Claisen-like, CO2-evolving 2 

condensations, are largely represented by the many variants of polyketide synthesis 3 

proteins found within bacteria which are integrally involved in the synthesis of polyketide 4 

polymers (Ferrer, Jez et al. 1999; Das and Khosla 2009; Crawford and Townsend 2010).   5 

Non-decarboxylating enzymes, also called beta-keto thiolases are separated into 6 

two main groups by sequence phylogeny; thiolases and SCPx thiolases (Heath and Rock 7 

2002).  The general thiolase group is typified by the 3-keto thiolases involved in fatty 8 

acid synthesis and catabolism such as FadA (Yang, He Yang et al. 1991).  ”SCP”-x 9 

thiolases are termed “sterol carrier proteins” due to early observations that disruption of 10 

the gene led to steroid metabolism disfunction in mammals (Gallegos, Atshaves et al. 11 

2001; Stolowich, Petrescu et al. 2002).  While eukaryotic SCPx was originally suspected 12 

to be involved in transport of cholesterols and fatty acids (Puglielli, Rigotti et al. 1995; 13 

Gallegos, Atshaves et al. 2001), more detailed molecular analyses have demonstrated it’s 14 

involvement in two specific metabolic reactions in eukaryotes; bile-acid synthesis 15 

(Takeuchi, Chen et al. 2004)(Figure 3.15a) and the beta-oxidation of pristanoyl-CoA, a 16 

branched-chain fatty acid (Figure 3.15b) (Wanders, Denis et al. 1997; Verhoeven and 17 

Jakobs 2001; Westin, Hunt et al. 2007 ),. 18 
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Figure 3.15.  Reactions catalyzed by sterol carrier protein X (SCPx) in animals.  A; the 2 
thiolytic depropionation of 24-oxo-3α,7α,12α-trihydroxy-5β-cholestanoyl-CoA (Takeuchi, 3 
Chen et al. 2004):  B; the thiolytic depropionation of 3-ketopristanoyl-CoA (Westin, Hunt et 4 
al. 2007 ). 5 

 6 

In both cases, SCPx is specifically involved in the beta-oxidation of an alpha-methyl 7 

beta-keto fatty acid.  While there are over two thousand SCPx-type bacterial genes in the 8 

NCBI database, only four have been characterized to any degree.  Phylogenetic analysis 9 

of IpfD places it within the somewhat divergent bacterial SCPx group which, however, is 10 

more closely related to eukaryotic SCPx proteins than it is to other bacterial FadA-type 11 

traditional thiolases (Figure 3.16 and Table 3.6). 12 
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Figure 3.16.  Phylogenetic tree of characterized thiolase-type proteins found in the Swiss-2 
prot database and listed in Table 3.5. 3 

 4 

Table 3.6.  The similarity measures and confidence levels of comparisons between the 5 
predicted amino acid product of ipfD and and characterized thiolase-type proteins found in 6 
the Swiss-prot database.   7 

Accession Description Organism % Identity % Positive
Query 

coverage
E-value

AAD21068.1 DitF P. abietaniphila 34 45 89% 1.00E-42
AAK50624.1 Camphor ORF2 Rhodococcus sp 33 49 91% 1.00E-37
YP_158078.1 BbsB Aromatoleum aromaticum EbN1 34 50 53% 5.00E-26
Q07598.1 SCPx Gallus gallus 30 44 64% 8.00E-23
NP_001075504.1 SCPx Oryctolagus cuniculus 28 44 68% 1.00E-22
P07857.2 SCPx Bos taurus 27 42 68% 3.00E-21
P32020.3 SCPx Mus musculus 26 43 63% 4.00E-20
NP_001037378.1 SCPx Bombyx morii 28 43 53% 3.00E-17
AAB48108.1 PhlC P. putida 36 52 39% 3.00E-14
P28790.2 FadA P. fragi 30 46 49% 2.00E-06
P21151.3 FadA E. coli 27 40 71% 3.00E-06
Q9R9W0.1 FadA P. putida 30 46 49% 6.00E-06
Q93Q11.1 FadA P. putida 30 46 49% 1.00E-05
Q9F0Y6.1 FadA Enterobacter cloacae 23 36 45% 3.00E-05  8 

 9 
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Four bacterial SCPx genes have been described at some level.  ditF 1 

(Pseudomonas abietaniphila) is a part of a catabolic cluster for abietic acid (Martin and 2 

W. 1999; Martin and Mohn 2000)(Figure 3.17a).  Knocking out the gene leads to 3 

complete loss of growth on abietic acid, though neither the gene product nor the reactions 4 

have been described further.  PhlC (Pseudomonas putida) is required for a polyketide 5 

synthase-like action in conjunction with an acyl carrier protein and a domain of unknown 6 

function 35 protein in the synthesis of a polyketide antibiotic from acetyl-CoA and 7 

malonyl-CoA building blocks (Bangera and Thomashow 1999).  The Phl proteins are 8 

also able to catalyze the addition of an acyl group directy to an aromatic ring (Figure 9 

3.17b).  Rhodococcus sp. NCIMB 9784 camphor catabolic cluster ORF-2 (Grogan, 10 

Roberts et al. 2001; Roberts, Grodan et al. 2004) may be involved in the metabolism of 11 

camphor to alpha-campholinic acid by camK, a p450 hydroxylase, though the pathway 12 

again has not been characterized nor has the gene’s involvement been confirmed.  It has 13 

however been noted that the pathway involves a Claisen-type reaction in the thiolytic 14 

cleavage reaction between the 1,3-ketone carbons (Figure 3.17c) (Grogan, Roberts et al. 15 

2001).  While that work provides a hypothetical role for the involvement of an SCPx 16 

thiolase, it is fully possible that ORF2 is involved in another aspect of the poorly-17 

described pathway.  BbsB from Aromatoleum aromaticum EbN1 (Kube, Heider et al. 18 

2004; Kuhner, Wohlbrand et al. 2005) and Thauera aromatica (Leuthner and Heider 19 

2000) are part of a relatively better described pathway for the metabolism of toluene to 20 

benzoyl-CoA under anaerobic denitrifying conditions.  BbsB in conjunction with BbsA 21 

performs the decondensation of an alpha-aliphatic beta-keto coenzyme A adduct in a 22 
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manner that mirrors the role of eukaryotic SCPx in the metabolism of bile acids and 1 

branched fatty acids (Figure 3.17d).   2 

 3 
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Figure 3.17.  General schema of bacterial metabolic pathways that require the action of 5 
SCPx thiolases:  A; DitF, B; PhlC, C; camphor ORF2, D; BbsB. 6 

 7 

Although the branched nature of several of these substrates suggests a similar 8 

mechianism may be catalyzed by IpfD, further consideration of ibuprofen and the 9 

isobutylcatechol intermediates (Figure 3.1) reveals that a classical thiolase type reaction 10 

is not possible due to the fact that there is no way for the beta-carbon, presumably part of 11 

the aromatic ring, to be bonded to the sulfur atom of a coenzyme A residue.  The thiolase 12 

reaction when performed in a reverse catabolic role is defined by the use of the sulfur 13 

residue to break the alpha-beta carbon bond; because such a reaction is not apparently 14 

possible based on what is known of the ipf reaction, no such thiolase reaction can be 15 

performed.  Both the thiolase and eukaryotic SCPx type proteins share two primary 16 
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catalytic residues that have been shown to be crucial to thiolase activity, a cysteine in the 1 

80-100 aa region and a histidine in the 350-400 region (Bangera and Thomashow 1999).  2 

Alignment of IpfD and other bacterial SCPx thiolases against well-characterized SPCx 3 

and FadA genes shows that IpfD lacks these crucial residues (Figure 3.18); in IpfD, the 4 

N-terminal catalytic cysteine is replaced by glycine, a substitution that would be expected 5 

to remove catalytic ability.  The C-terminal catalytic histidine, a positively charged 6 

residue, is replaced by tyrosine, a weakly negatively charged residue, a substitution that is 7 

generally associated with changes in catalytic properties (Paganl, Zagato et al. 1994 ; Liu, 8 

Moanne-Loccoz et al. 1999).  Interestingly, the two bacterial SCPx proteins known to 9 

catalyze classical thiolase reactions, PhlC and BbsB, have both of these catalytic 10 

residues.  More work needs to be done before a mechanistic explanation for the role of 11 

IpfD in ibuprofen metabolism can be established, however, given its similarity to SCPx 12 

proteins it may interact with the branched sidechain of ibuprofen. 13 
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Figure 3.18.  Alignment of conserved catalytic residues of IpfD, bacterial and eukaryotic 2 
SCPx thiolases, and FadA fatty acid thiolases.  Conserved catalytic residues are highlighted 3 
in light grey, variations from the conserved catalytic residues are highlighted in dark grey.  4 
Created using MegAlign (DNAStar, Inc., Madison, WI). 5 

 6 

ipfE 7 

Conserved domain analysis of the predicted amino acid sequence of ipfF revealed 8 

that it contains a Domain of Unknown Function 35 (DUF35) motif (E-value = 3.71x10-9 

11).  Over 600 DUF35 proteins have been found in bacteria and archaea, but none have 10 

been identified in eukaryotes.  Interestingly, there are 43 cases in the NCBI database 11 

when a DUF35 gene is found directly adjacent to nondecarboxylating condensing 12 

enzymes, a protein family of which IpfD is predicted to be part.  The role played by only 13 

two DUF35 proteins have been characterized to any degree.  PhlB (Pseudomonas putida) 14 

plays a role in the polyketide synthase pathway described above.  PhlB acts in 15 
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conjunction with the SCPx protein PhlC, though its role is unclear.  BbsA, which has 1 

been characterized in Thauera aromatica (Leuthner and Heider 2000) and Aromatoleum 2 

aromaticum EbN1(Kube, Heider et al. 2004; Kuhner, Wohlbrand et al. 2005) is required 3 

for the decondensation reaction catalyzed by BbsB described above (Figure 3.14d) 4 

though its role is also unclear.  An uncharacterized representative of the DUF35 family 5 

from Sulfolobus solfataricus was recently crystallized (Krishna, Aravind et al. 2010), 6 

revealing a three domain structure (Figure 3.19).  At the N-terminal is a conserved but 7 

entirely uncharacterized two-helix motif termed the 14-3-3 interacting domain.  Next is a 8 

zinc-finger motif; zinc-fingers are often associated with nucleotide binding proteins and 9 

have been clearly shown to interact directly with nucleotides.  Based on this general 10 

property and a genome context analysis, it has been hypothesized that in the case of 11 

DUF35, this zinc-finger motif interacts with the adenosine moiety of coenzyme A 12 

(Krishna, Aravind et al. 2010).  At the C-terminal is an oligosaccharide/oligonucleotide 13 

binding fold (OB-fold), a double-barreled motif often associated with binding small 14 

molecules, which in the case of DUF35 is hypothesized to interact with the hydrophobic 15 

end of acyl-CoA molecules based on the presence of hydrophobic amino acid functional 16 

groups in the putative binding pocket (Krishna, Aravind et al. 2010).  None of the 17 

domains is predicted to have any catalytic role.   18 

 An alignment and structural modeling of IpfE using the Sulfolobus DUF35 19 

template using the Swiss model program (Peitsch 1995; Arnold, Bordoli et al. 2006; 20 

Kiefer, Arnold et al. 2009) reveals a strong homology and a stable model (E-value = 21 

1.40e-31) though only for the zinc-finger and OB-fold domains (Figure 3.19).  The 22 

crystallographers hypothesized that the close proximity of the zinc-finger and OB-fold 23 
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motifs, taking into consideration their genomic contexts, suggests that DUF35 interacts 1 

specifically with acyl-CoA molecules, perhaps serving a similar role as that played by 2 

acyl carrier protein (SCP-2) in eukaryotes.  SCP-2 in eukaryotes is tightly associated with 3 

SCPx proteins in that it is actually transcribed and translated as a single polypeptide only 4 

to be proteolytically cleaved into two proteins following translation. (Gallegos, Atshaves 5 

et al. 2001; Takeuchi, Chen et al. 2004; Westin, Hunt et al. 2007 ).  No homology could 6 

be detected, however, between SCP2 and DUF35 using BLAST-P.  7 

 8 
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Figure 3.19.  Three dimensional model of the predictied amino acid sequence of ipfE 10 
modelled on the structure of Sulfolobus DUF35 (Krishna, Aravind et al. 2010) with 11 
conserved domains labeled.  Image created using Pov-Ray (Persistence of Vision Raytracer 12 
Pty. Ltd., Victoria, Australia).   13 
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ipfF 1 

 Analysis of ipfF is described in Chapter 4.  Briefly, the putative gene product of 2 

ipfF has similarity to coenzyme A ligases of the luxE superfamily. 3 

 4 

ipfH 5 

During initial screening of pFOS3G7 transposon mutants, a clone designated 6 

pFOS3G7TnC3 that appeared to have stunted accumulation of catecholic polymer was 7 

targeted for sequencing analysis.  The transposon insertion in clone 3G7C3 was within an 8 

ORF that appears to encode for a ferredoxin reductase ipfH. 9 

Ibprofen disappearance analysis of E. coli epi300 pFOS3G7Tn:ipfH via HPLC 10 

was in accordance with the observation of lower catechol accumulation (Figure 3.9).  11 

TnH metabolized ibuprofen at roughly half the rate as E. coli epi300 pFOS3G7.  12 

However, the fact that TnH still produces isobutylcatechol from ibuprofen is curious; if 13 

IpfH is actually part of an electron transport chain for IpfAB, then it would be expected 14 

that knockout out ipfH would lead to total loss of function.  The fact that the pathway still 15 

functions suggests that there is perhaps an additional copy of the gene on pFOS3G7 or 16 

that the IpfAB electron transport chain is able to make use of a compatible system in E. 17 

coli.   18 

Blast-X analysis against the Swissprot protein database revealed strong 19 

similarities to a number of bacterial ferredoxin reductase components from aromatic 20 

dioxygenase systems (Table 3.7) in addition to several other electron transport chain 21 

reductases.  This information in combination with the two pieces of metabolic generation 22 

support a role for IpfH in the ipf pathway as part of the IpfAB electron transport chain. 23 
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Table 3.7.  Most similar proteins in the Swiss-prot database to IpfH as determined by 1 
BlastP.   2 
Accession Identity % coverage E value Max ident
P43494.2 Rhodocoxin reductase 89% 4.00E-43 48%
P37337.2 Biphenyl dioxygenase system ferredoxin reductase 87% 2.00E-37 53%
Q07946.1 Benzene 1,2-dioxygenase system ferredoxin reductase 79% 3.00E-37 71%
P16640.1 Putidaredoxin reductase 89% 7.00E-35 46%
A5W4E9.1 Toluene 1,2-dioxygenase system ferredoxin reductase component 88% 2.00E-34 64%
B7N6C9.1 3-phenylpropionate dioxygenase ferredoxin reductase component 81% 2.00E-33 47%
P08087.3 Benzene 1,2-dioxygenase system ferredoxin reductase component 88% 2.00E-29 64%
Q9L4M8.1 Rubredoxin-NAD(+) reductase 75% 9.00E-28 43%
P33009.1 Terpredoxin reductase 72% 2.00E-24 55%   3 

ipfI 4 

Blast-X analysis against the Swissprot database revealed significant homology to 5 

a single characterized plant-like 2Fe-2S ferredoxin protein (P23263.1), part of a salicylate 6 

hydrogenase complex and a member of the plant-like ferredoxins, so called because such 7 

proteins play a role in chloroplast electron transport chains and are also commonly parts 8 

of aromatic dioxygenase complexes. 9 

 10 

Ipf pathway overview 11 

 12 

 While complementation of ipfF was accomplished by cloning in the gene with the 13 

native ribosomal binding site (Table 3.2), attempts to complement the other transposon 14 

mutants were unsuccessful.  In order to minimize the possibility of polar effects, 15 

markerless gene deletions were introduced into pFOS3G7 using a modified lambda red 16 

protocol.  Each of the deletions failed to produce catechols (Figures 3.7 and 3.8).  17 

Because an initial attempt to complement pFOS3G7∆ipfD using the native ribosomal 18 

binding site failed, complements were constructed using a forward primer that introduced 19 

a three frame stop codon followed by a strong conserved ribosomal binding site (Figure 20 

3.2) in a high copy number vector under the lacZ promoter of the high copy number 21 
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vector pGEMt-easy.  Complementation of pFOS3G7∆ipfD with pGEM:ipfDrbs restored 1 

activity.   2 

 The cooperation of an SCPx thiolase (IpfD) and a DUF35 protein (IpfE) is not 3 

without precedent.  In the benzosuccinyl-CoA pathway of Thauera aromatica, an SCPx 4 

and a DUF35 coordinate together to perform a beta-ketothiolytic decondsation (Figure 5 

3.17d).  Two similar genes are also involved in a polyketide aromatic acetylation in P. 6 

putida.  While these two situations represent the only well-characterized reactions 7 

catalyzed by either type of protein in bacteria, examination of the NCBI database clearly 8 

shows that such genes are present in many bacteria; over 2000 putative SCPx thiolases 9 

and over 1500 DUF35 encoding genes have been identified by sequence analyses.  There 10 

are also at least 43 cases in which these two gene types are located directly adjacent to 11 

one another in bacteria.  In animals, SCPx proteins have been shown to catalyze the 12 

removal of propionyl-CoA from alpha-methyl-beta-keto coenzyme A fatty acids via a 13 

classical thiolytic reaction mechanism (Figure 3.15)(Wanders, Denis et al. 1997; 14 

Verhoeven and Jakobs 2001; Takeuchi, Chen et al. 2004; Westin, Hunt et al. 2007 ).  The 15 

metabolite that IpfDE is predicted to act upon is dearomatized 1,2-diol-ibuprofen-CoA, 16 

an alpha-methyl-beta-hydroxyl CoA fatty acid.  Similarly, IpfDE is predicted to remove a 17 

propionyl-CoA group (Figure 3.20).   18 

 19 
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 1 

Figure 3.20.  Proposed pathway by which Sphingomonas Ibu-2 metabolizes ibuprofen to 2 
isobutylcatechol.  I:  Ibuprofen, II:  Ibuprofen-CoA, III:  1,2-cis-diol-2-hydroibuprofen-3 
CoA,  IV:  4-isobutylcatechol.  The creation of II is suggested by the fact that IpfF was 4 
shown to CoA-ligate ibuprofen in an enzyme assay and by the analagous CoA ligation of 5 
phenylacetic acid as confirmed by HPLC analysis (discussed in Chapter 4).  Additionally, 6 
the creation of phenylacetyl-coenzyme A, catalyzed by the same enzyme, was confirmed via 7 
HPLC.  III   has not been detected and is hypothesized based upon the putative function of 8 
IpfAB.  The identity of IV was confirmed via GC/MS. 9 

 10 

However, the predicted reaction mechanism does not allow for a thiolytic decondensation 11 

due to the mechanistic constraint caused by bond limitations of the ring beta carbon.  12 

Consistent with the requirement for a unique mechanism, IpfD does not have the amino 13 

acid residues associated with thiolase activity (Figure 3.18).  The DUF35 proteins are 14 

predicted to have an affinity for acyl-CoA groups based on crystal structure analysis 15 

(Krishna, Aravind et al. 2010) and may serve a function similar to that played by sterol 16 

carrier protein 2 (SCP-2) in eukaryotes.  SCP2 is an acyl carrier closely associated in 17 

function with SCPx proteins (Gallegos, Atshaves et al. 2001; Stolowich, Petrescu et al. 18 

2002).  SCP2 domains are not found in bacteria while DUF35 domains are not found in 19 

eukaryotes, a fact which suggests the possbility of convergent evolution. 20 

 Expressing ipfDE in E. coli K12 ∆paaG caused an increase in the amount of the 21 

dead-end metabolite 2-hydroxyphenylacetate that was produced (Figure 3.14).  E. coli 22 

K12 ∆paaG, which lacks an isomerase capable of dearomatizing the phenylacetyl ring, 23 

accumulates 1,2-epoxyphenylacetyl-CoA which is rapidly abiotically degraded primarily 24 
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to 2-hydroxyphenylacetate (Figure 1.8)(Teufel, Mascaraque et al. 2010).  Since 1 

expression of ipfDE did not increase 2-hydroxyphenlacetate levels in the wildtype or in 2 

the knockouts of the two downstream steps paaZ and paaJ, it is likely that the epoxy 3 

metabolite which is the substrate of PaaG is interacting with IpfDE in some manner.  For 4 

many years, it was suspected that the bacterial phenylacetyl coenzyme A pathway 5 

involved a 1,2-dihydroxy intermediate which IpfDE would be hypothesized to convert to 6 

catechol by analogy to the ipf pathway (Ismail, Mohamed et al. 2003).  The fact that we 7 

could not detect catechol via ferric chloride assay or by HPLC in the paaG mutant 8 

expressing ipfDE is consistent with recent evidence of the involvement of an epoxide 9 

intermediate in the paa pathway.  The increased product of 2-hydroxyphenylacetate, 10 

however, suggests that there may be some interaction between IpfDE and the putative 11 

epoxyphenylacetyl-CoA; perhaps the epoxide is similar enough to the predicted 1,2-12 

dihydroxyl intermediate that IpfDE is hypothesized to act upon that an interaction occurs 13 

in such a way as to either speed the hydrolysis of the epoxide or alter reaction kinetics in 14 

such a way that further production of the labile epoxide is favored.  While inconclusive, 15 

this data is consistent with the involvement of IpfDE in the ipf and PAA degradation 16 

pathways in Ibu-2.  17 

As discussed in more detail in Chapter 4, the predicted amino acid sequence of 18 

ipfF has limited similarity to a wide variety of coenzyme A ligases, including that from 19 

the Fad operon of E. coli, and to several ligases used in the anaerobic metabolism of 20 

benzoic acid (Table 4.2).  IpfF showed no similarity to human xenobiotic/medium-chain 21 

fatty acid:CoA ligase which has been shown to be capable of performing ibuprofen CoA 22 

ligation (Vessey, Hu et al. 1996).  That ipfF encodes for ligase activity of ibuprofen and 23 
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phenylacetate but not an oxidized intermediate is strongly supported by the complete and 1 

complementable lack of ibuprofen disappearance in the HPLC assay of E. coli epi300 2 

pFOS3G7Tn:ipfF while all other loss-of-function clones retained some initial metabolic 3 

activity (Figure 3.6).  Indeed, an initial coenzyme A ligation is the case in characterized 4 

fatty acid metabolic systems and in the phenylacetic acid catabolic pathway of P. putida 5 

U (Garcia, Olivera Elias et al. 2000; Teufel, Mascaraque et al. 2010). 6 

Ibuprofen degradation in E. coli harboring pJ25 was very poor when compared 7 

with E. coli epi300 pFOS3G7, even though ipfABDEF expression was under the control 8 

of the lac promoter.  Only trace amounts of catecholic metabolites were detected.  One 9 

explanation for the reduced activity encoded by pJ25 is the need for other gene products 10 

encoded by pFOS3G7 that facilitate metabolism.  Indeed, preliminary sequence analysis 11 

of non-loss-of-function pFOS3G7 transposon mutants revealed a putative ferredoxin 12 

(ipfI) and a ferredoxin reductase (ipfH).  HPLC analysis from a knockout of the putative 13 

ferredoxin reductase (ipfH) in E. coli epi300 pFOS3G7 showed decreased ibuprofen 14 

disappearance though catechols are still generated (Appendix 2, Figure A2.2).  Cloning 15 

and expressing these genes along with the ipfABDEF cassette found on pJ25 resulted in 16 

successful reconstruction of the ipf upper pathway, with 0.37 mM phenylacetate being 17 

converted to catechol within 18 hours (Figure 3.12) and approximately 0.25 mM 18 

ibuprofen being converted to isobutylcatechol (Figure 3.13).  The dependency of the 19 

ipfABDEF pJ25 cassette upon the co-expression of ipfHI is consistent with the fact that 20 

many ring-hydroxylating aromatic dioxygenases require a reductase component for 21 

activity (Mason and Cammack 1992; Butler and Mason 1997) and offers circumstantial 22 
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support for the involvement of ipfAB, a putative aromatic ring dioxygenase, in the 1 

pathway.   2 

While the initial data suggest that ipfAB are required for metabolism, we were 3 

unable to elucidate the mechanisms by which they function or any further metabolic 4 

intermediates.  When ipfAB was cloned and expressed in E. coli and concentrated cell-5 

free extract was exposed to phenylacetyl-CoA, the disappearance of phenylacetyl-CoA 6 

was significantly higher than in the control extract (161 vs 123 nM phenylacetyl-CoA / 7 

mg protein * hr, Figure 3.10, p<0.05).  The backround disappearance of the phenylacetyl-8 

CoA in the control, possibly due to abiotic hydrolysis or non-specific enzymatic activityr, 9 

makes it difficult to draw any firm conclusions about the role of IpfAB, especially given 10 

that GC/MS analysis failed to identify any reaction products in  crude-extracts incubated 11 

with phenylacetyl-CoA.   12 

It is not clear what roles IpfD and IpfE are playing.  pFOS3G7-harboring clones 13 

with deletions of either of these genes were clearly unable to generate isobutylcatechol 14 

(Figure 3.12).  However, attempts to identify accumulated intermediates via HPLC or 15 

GC/MS proved fruitless.  Chromatographic analysis of these mutants with the addition of 16 

14C-ring-labelled ibuprofen or phenylacetic acid might allow for identification of any 17 

metabolite or byproduct that may be accumulating.  While preliminary biochemical 18 

evidence and putative function implied from sequence similarity suggest that IpfAB 19 

dioxygenates ipfCoA and that IpfDE catalyze removal of the acyl-CoA group (Figure 20 

3.20), these reactions warrant more investigation.   21 

 The removal of the acidic side-chain and associated oxidation of the 1-position of 22 

the aromatic rings of ibuprofen and phenylacetic acid are reminiscent of the removal of 23 
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an acyl group during beta-oxidation of fatty acids (Eaton 1996; Trotter 2001) such as is 1 

performed by the well-characterized Fad operon of E. coli  (Black, DiRusso et al. 1992; 2 

Kunau, Dommes et al. 1995; Campbell and Cronan Jr. 2002).  This work reveals that 3 

ibuprofen and other phenylacetic acids, a class of chemical that includes many of the 4 

non-steroidal anti-inflammatory pharmaceuticals, may be metabolized by a novel type of 5 

pathway involving coenzyme A ligation, removal of the acidic side-chain, and generation 6 

of a catechol through the acitivty of a thiolase/acyl-transferase and an aromatic 7 

dioxygenase.   8 

 9 

All sequences can be found in the National Center for Biotechnology Information (NCBI, 10 

http://www.ncbi.nlm.nih.gov) nucleotide sequence database under accession number 11 

EF090268. 12 
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CHAPTER 4 1 

 2 

UPTAKE OF PHENYLACETIC ACID BY SPHINGOMONAS IBU-2 FOSMID 3 

LIBRARY CLONE 3G7 4 

 5 

Abstract 6 

 7 

 Sphingomonas Ibu-2 chromosomal DNA fosmid clone 3G7 (E. coli epi300 8 

pFOS3G7) exhibits the novel ability to metabolize ibuprofen to isobutylcatechol 9 

and phenylacetate to catechol.  The mechanism by which phenylacetate enters E. 10 

coli epi300 pFOS3G7 was investigated by radiolabelled uptake assays with 11 

special attention paid to the putative ibuprofen and phenylacetate coenzyme A 12 

ligase ipfF.  Sphingomonas Ibu-2 exhibited constituitive phenylacetyl coenzyme 13 

A ligation activity.  pFOS3G7 was also shown to confer phenylacetate coenzyme 14 

A ligation.  When cloned into E. coli a high-copy number ipfF expression 15 

construct conferred a 68-fold increase in the rate of phenylacetate coenzyme A 16 

ligation and also catalyzed the coenzyme A ligation of ibuprofen.  Uptake of 17 

phenylacetic acid by E. coli harboring pFOS3G7 was found to be enhanced by 18 

ipfF; when ipfF was knocked out, uptake was decreased two- to eight-foldUptake 19 

by E. coli epi300 pFOS3G7 was reduced to ipfF knockout levels following 20 

incubation with the metabolic poisons potassium cyanide or 2,4-dinitrophenol, 21 

although residual uptake by the ipfF knockout was unaffected by metabolic 22 

poisons, indicating that no other energy-dependent process was involved in 23 
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phenylacetic acid uptake in this fosmid clone  Uptake of phenylacetic acid was 1 

greater at pH 5.5 than at pH 7.  In silico analyses of the putative product of ipfF 2 

predicted the presence of a small membrane-associating helix, suggesting that the 3 

coenzyme A ligase might transiently bind to the cell membrane in a manner 4 

similar to that shown by the fatty acid coenzyme A ligase FadD which drives the 5 

uptake of fatty acids via vectorial acylation.  These results are consistent with a 6 

coenzyme A ligation driven vectorial acylation mechanism for uptake of 7 

phenylacetic acid and ibuprofen which is more typical of fatty acid uptake and 8 

differs markedly from other recently described mechanisms for phenylacetic acid 9 

uptake which rely on symporters. 10 

 11 

Introduction 12 

 Ibuprofen (2-(4-isobutylphenyl)-propionic acid) is a very widely used over the 13 

counter pharmaceutical compound which is self-administered primarily as an anti-14 

inflammatory and pain reliever.  It is consumed and excreted in sufficiently large 15 

quantities to be routinely detected in sewage treatment effluents and surface waters 16 

world-wide (Buser, Poiger et al. 1999; Stumpf, Ternes et al. 1999; Farre, Ferrer et al. 17 

2001; Winkler, Lawrence et al. 2001; Kolpin, Furlong et al. 2002).  Compounds like 18 

ibuprofen that are not technically recalcitrant but which are continuously released into the 19 

environment are considered to be “pseudopersistent (Daughton 2002)”, like many other 20 

pharmaceuticals that enter the environment regularly from municipal sewage treatment 21 

plants.  The environmental implications of this extremely diverse soup of biologically 22 

active compounds flowing into surface waters are not completely understood (Stuer-23 
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Lauridsen, Birkved et al. 2000; Heberer 2002; Jones, Voulvoulis et al. 2004; 1 

Cunningham, Buzby et al. 2006; DeLange, Noordoven et al. 2006; Fent, Weston et al. 2 

2006; Hernando, Mezcua et al. 2006; Schwarzenbach, Escher et al. 2006; Dorne, Skinner 3 

et al. 2007; Kummerer 2008; Kummerer 2010; Santos, Araújo et al. 2010).  In order to 4 

begin to characterize the hazards associated with these pseudopersistent compounds more 5 

data is needed regarding their possible biological transformations and other aspects of 6 

their environmental fate. 7 

This chapter describes attempts to elucidate the mechanism by which Ibu-2 8 

transports ibuprofen and phenylacetic acid into the cell.  Uptake is an essential aspect of 9 

any catabolic system as it is an obvious prerequisite for induction and further metabolism 10 

of the chemical in question (constitutive expression is not typically used in the case of 11 

most catabolic systems (Madigan and Martinko 2006)).  Below a certain threshold, a 12 

chemical will tend to persist due to a combination of physical mass transfer (Bosma, 13 

Middledorp et al. 1997) and biological factors (Schmidt, Alexander et al. 1985).  As 14 

concentration increases, the threshold is eventually reached where the chemical is 15 

transported into the cell where it will accumulate until the concentration is sufficient to 16 

trigger induction (Louis and Becskei 2002).  Induction, somewhat non-intuitively, is 17 

seldom an analog process; it has been demonstrated that induction systems tend to be 18 

functionally binary in that below a particular threshold, no transcription takes place and 19 

when the threshold is crossed, transcription springs into action.  It is partially due to the 20 

binary nature of the induction process that chemicals can persist to a surprising degree at 21 

low concentrations.  For example, it has been demonstrated that metabolism of 3-22 

phenylpropionic acid, an aromatic acid somewhat similar to ibuprofen, by E. coli is not 23 
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induced at concentrations below 3 mg/L (Kovar, Chaloupka et al. 2002).  On the other 1 

hand, it has been demonstrated that phylogenetically undefined sewage and oligotrophic 2 

lake samples can mineralize aromatic acids at concentrations as low as a few ng/L 3 

(Rubin, Subba-Rao et al. 1982).  In part because transport is an integral part of the 4 

induction process, understanding transport may be of assistance in predicting the 5 

environmental fate characteristics of a particular chemical. 6 

Aromatic acids, including phenylacetic acid (Olivera, Minambres et al. 1998), 7 

phthalate (Chang, Dennis et al. 2009), benzoate (Clark, Momany et al. 2002; Ledger, 8 

Flores-Aceituno et al. 2009; Wang, Xu et al. 2011), chlorobenzoate (Ledger, Flores-9 

Aceituno et al. 2009), and 4-hydroxybenzoate (Ditty and Harwood 2002), tend to be 10 

taken up by major facilitator systems that couple uptake to chemiosmotic gradients 11 

(Marger and Saier 1993; Pao, Paulsen et al. 1998; Kahng, Byrne et al. 2000; Kasai, Inoue 12 

et al. 2001).  There is also evidence for the involvement of ABC type transporter systems 13 

required for the uptake of phthalate (Hara, Stewart et al. 2009) and 3-14 

hydroxyphenylacetate (Arias-Barrau, Sandoval et al. 2005).  On the other hand, fatty acid 15 

uptake is at least partially driven by vectorial acylation processes that require no specific 16 

membrane channels but instead relies on diffusion of the substrate into the cytoplasm 17 

where it is then ligated to coenzyme A and thereby trapped inside the cell (Weimar, 18 

DiRusso et al. 2002; Black and DiRusso 2003; Zou, F. et al. 2003).  Additionally, there is 19 

mounting evidence that the vectorial acylation process works in concert with the action of 20 

a TonB-dependent outer membrane transporter FadL in the case of fatty acid transport 21 

(Ferguson and Deisenhofer 2002; van den Berg, Black et al. 2004) and similar proteins 22 
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TodX and TbuX in the case of toluene (Wang, Rawlings et al. 1995; Kahng, Byrne et al. 1 

2000).   2 

Although an aromatic acid, ibuprofen’s four-carbon aliphatic side-chain and alpha 3 

methyl group also make it similar to fatty acids. In fact, analysis of the octanol water 4 

portioning coefficient of ibuprofen using the structure activity software KowWin in the 5 

program Episuite (Agency 2000) suggests that the majority of the hydrophobicity of 6 

ibuprofen comes from the aliphatic carbons.  That Ibu-2 treats ibuprofen as a fatty acid is 7 

suggested by the catabolic processes that have been demonstrated to be involved or are 8 

predicted based on the gene sequences of the ipf operon; coenzyme A ligation and 9 

oxidation of the beta carbon followed by the action of a thiolase-type protein.  Given that 10 

ibuprofen is metabolized in a manner similar to that by which fatty acids are metabolized 11 

and given the hydrophobicity of the ibuprofen molecule, I hypothesized that it is 12 

transported into the cell using a fatty acid-like mechanism driven by vectorial acylation.  13 

In this study, transport assays using E.coli  heterologously expressing ipfF was employed 14 

to examine the roles played by these different genes in the uptake of ibuprofen and 15 

phenylacetic acid by Ibu-2.   16 

 17 

Methods 18 

Unless otherwise noted, chemicals were purchased from Acros (Morris Plains, 19 

NJ).  Luria-Bertani broth (LB) was prepared as previously described (Sambrook, Fritsch 20 

et al. 1989).  Phenylacetyl CoA was purchased from Sigma (St. Louis, MO) and 21 

coenzyme A was purchased from Roche Diagnostics (Indianapolis, IN).   22 

 23 
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Strains and Clones:  Construction and Identity 1 

ipfF was PCR amplified using the primers ipfFF and ipfFR (Table 3.2).  The 2 

resulting PCR product was cloned into pGEMt-easy (Promega Corp., Madison, WI) using 3 

the manufacturers instructions, creating pGEM:ipfF.  pGEM:ipfF was transformed into E. 4 

coli JM109 via electroporation.  Successful clones were selected on LB ampicillin with 5 

blue/white screening via X-gal and 1mM IPTG then sequenced.   6 

 7 

Table 4.1.  Strains and plasmids used in this study. 8 

Strains     

Sphingomonas Ibu-
2 

isolated from Ithaca, NY sewage treatment 
plant via enrichment for growth on ibuprofen this study 

E. coli JM109 

recA1 subE44 endA1 hsdR17 gyrA96 relA1 thi 
∆(lac-proAB) F' (traD36 proAB+ lacIq lacZ 
∆M15) 

(Sambrook, Fritsch et 
al. 1989) 

E. coli epi300 

F- mcrA ∆(mrr-hsdRMS-mcrBC) 
Φ80dlacZ∆M15 ∆lacX74 recA1 endA1 
araD139 ∆(ara, leu)7697 galU galK λ- rpsL 
(StrR) nupG trfA tonA Epicentre, Madison, WI 

    
    
Plasmids     

pCC1FOS  

copy control fosmid vector, inducible to high 
copy number with arabinose when hosted in E. 
coli epi300, chloramphenicol resistance Epicentre, Madison, WI 

pFOS3G7 
pCC1FOS Sphingomonas Ibu-2 chromosomal 
library clone 3G7 this study 

pFOS3G7Tn:ipfA 

pFOS3G7 with Tn5 insertion in ipfA, 
transposon library clone F1, chloramphenicol 
and tetracycline resistant this study 

pFOS3G7Tn:ipfF 

pFOS3G7 with Tn5 insertion in ipfF, 
transposon library clone F10, chloramphenicol 
and tetracycline resistant this study 

pGEMt-easy  ampicillin resistance Promega, Madison, WI 

pGEM:ipfF 
pGEMt-easy with ipfFF/ipfFR PCR amplicon 
ipfF this study 

 9 

 10 
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Coenzyme A ligase activity 1 

 Wild type Ibu-2 and E. coli harboring either pFOS3G7 or various subclones were 2 

assayed for phenylacetyl coenzyme A ligase and ibuprofen coenzyme A ligase activity.  3 

P. putida U was also used as a positive control because it is known to perform 4 

phenylacetyl coenzyme A ligation (Martinez-Blanco, Reglero et al. 1990).  The 5 

inducibility of phenylacetyl coenzyme A ligase activity in Ibu-2 was tested by growing 6 

two batches of Ibu-2 in LB and adding 50ppm ibuprofen to one for one hour prior to 7 

preparation of cell-free extract.   8 

The method described by Martinez-Blanco et al. (Martinez-Blanco, Reglero et al. 9 

1990) was used with minor modifications for measuring phenylacetyl coenzyme A ligase 10 

activity and ibuprofen coenzyme A ligase activity.  In the case of Ibu-2 and P.putida U, 11 

crude extract was prepared by first concentrating 100mL of E. coli or a 1000mL of P 12 

.putida or Ibu-2 culture via centrifugation, followed by two washes with 10 mM 13 

phosphate buffer (pH 7.4) and resuspension in 1-2 ml of sonication buffer (40 mM 14 

potassium phosphate, 20% glycerol, 1mM PMSF, 1mM DTT, pH 7.4).  Larger volumes 15 

of P. putida and Ibu-2 cultures were used due to the lower overall culture density yielded 16 

by growth on minimal media.  E. coli cultures were grown in LB media with IPTG or 17 

arabinose for induction, P. putida was grown in MSM with 5mM PAA, and Ibu-2 was 18 

grown in MSM with 500 mg/L ibuprofen.  The cell pellet was then sonicated (Branson 19 

Sonifier 450, Branson Ultrasonics, Danbury, CT) using three one minute cycles at 20 

maximum output with one minute rest time on ice in between each cycle.  The cell lysate 21 

was then spun for twenty minutes at 15,000 x g at 4° C.  In the case of E. coli clones, 22 

crude extracts were prepared by centrifuging 100ml to 200ml of mid-exponential growth 23 
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phase of either IPTG or 10mM arabinose induced culture, washing, and resuspending in 1 

1-2 ml of sonication buffer.  Approximately 0.1g of 0.1 mm glass beads was then added 2 

and the pellets were bead-beaten for three minutes (MiniBeadbeater-8, Biospec Products, 3 

Bartlesville, OK).  The pellets were then spun down as described above.  In both cases, 4 

the protein content of the supernatant containing the crude extract was quantified using 5 

the Bio-Rad Protein Assay Kit with bovine serum albumin as a standard (Bio-Rad 6 

Laboratories, Hercules, CA).   7 

The reaction mixture for Co-A ligase assays included 4.2 µl 0.2 M MgCl2, 17 µl 8 

0.1 M ATP, 10 µl 20 mM coenzyme A, 10 µl 0.1 M phenylacetic acid or ibuprofen, 20 µl 9 

cell-free extract (~0.1 mg of crude protein), and 17 µl neutral hydroxylamine solution.  10 

Neutral hydroxylamine solution was prepared freshly by mixing 1 ml of 5 M 11 

hydroxylamine hydrochloride, 1.25 ml 4 M KOH, and 250 µl of water.  150 µl ferric 12 

chloride reagent (0.37 M ferric chloride, 20 mM trichloroacetic acid, and 0.66 M 13 

hydrochloric acid) was added to terminate the assay at the prescribed time.  Samples were 14 

spun down to remove precipitate, and the OD540nm was measured using a µ-Quant 15 

spectrophotometer (Bio-Tek Instruments, Inc., Winooski, VT).  Concentrations of the 16 

phenylacetate ferric chloride complex were calculated using the known extinction 17 

coefficient of 0.9 /(mM)(cm) (Martinez-Blanco, Reglero et al. 1990).  Because the 18 

extinction coefficient of the ibuprofen ferric chloride complex (putatively derived from 19 

ibuprofen-CoA) is unknown, the phenylacetate ferric chloride value was used. 20 

 The disappearance of phenylacetic acid and concomitant appearance of 21 

phenylacetyl-CoA was also measured via HPLC using the methods described by 22 

Mohamed et al. (Mohamed and Fuchs 1993).  The reactions were performed as listed 23 
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above except for the exclusion of neutral hydroxylamine and the addition of an equimolar 1 

amount of coenzyme A.  For the detection of phenylacetyl-CoA (retention time 45 2 

minutes), the running solvent was 30mM potassium phosphate buffer pH7 with 9% 3 

methanol and 7% acetonitrile.  Phenylacetic acid was analyzed using 50% 40mM acetic 4 

acid and 50% methanol and eluted from the column at 10 minutes.  Phenylacetic acid was 5 

monitored at 210 nm and the appearance of phenylacetyl CoA was monitored at 254 nm. 6 

 7 

Uptake in Ibu-2 and E. coli constructs 8 

 To examine the contribution of certain genes to uptake rates of Ibu-2, E. coli 9 

epi300 pFOS3G7, and E. coli epi300 pFOS3G7 with a transposon insertion in ipfF  were 10 

selected for uptake assays.  To determine if the impact of this gene product was 11 

concentration dependent, a range of phenylacetic acid concentrations was used; 0.5µM, 12 

2.5µM, 25µM, 100µM, 500µM, and 1mM. 13 

 14 

Effect of metabolic poisons on phenylacetic acid uptake by E. coli epi300 pFOS3G7, and 15 

E. coli epi300 pFOS3G7Tn:ipfF 16 

 Metabolic poisons were utilized to examine the energy-requirement of the uptake 17 

system.  Two poisons with different modes of action were used; potassium cyanide and 18 

2,4-dinitrophenol (2,4-DNP).  Poisoning assays were performed on E. coli epi300 19 

pFOS3G7 and E. coli epi300 pFOS3G7Tn:ipfF using a phenylacetate concentration of 20 

25µM.  The assays were performed as described above, except that after the initial wash 21 

step, the cells were suspended in 0.5 mM KCN, 0.5 mM DNP, or no poison, all in MSM 22 
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for 10 minutes.  The cells were then centrifuged again, resuspended with the radiolabeled 1 

substrate, and the assay proceeded as described above.  2 

 3 

Effect of pH on uptake by E. coli epi300 pFOS3G7 4 

The impact of pH on phenylacetic acid uptake was examined in E. coli epi300 5 

pFOS3G7.  If the solute was merely diffusing across the membrane, then lowering pH 6 

should increase the degree of uptake due to the protonation of the acid group, thereby 7 

eliminating its negative charge and facilitating passage of the neutral molecule into the 8 

biological membrane.  A wide range of phenylacetic acid concentrations was examined, 9 

from 0.5 uM to 1 mM.  A low pH (5.5) and neutral pH (7) were used.  The assay was 10 

performed as described above except that the solution of radiolabelled phenylacetic acid 11 

MSM was adjusted to the desired pH with 1M HCl. 12 

 13 

Uptake Assays 14 

 Techniques for uptake assays were adapted from those described by Leveau et al. 15 

(Leveau, Zehnder et al. 1998).  Ibu-2 was inoculated (5% V/V) in MSM with 500 ppm 16 

ibuprofen using a late exponential growth phase culture and grown for approximately 24 17 

hours, which allowed for harvest of cells in mid-exponential growth phase.  All the E. 18 

coli strains were similarly inoculated (5% V/V) into LB with appropriate antibiotics using 19 

overnight cultures, then induced to high-copy number using 10mM arabinose and grown 20 

for 5 hours.  Cultures were centrifuged and washed with MSM pH 7.4 once before being 21 

centrifuged again and then resuspended to an approximate optical density (600nm) of one 22 

in MSM.   23 
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 For each data set, 50,000 dpm of 14C phenylacetic acid was added to 3mL MSM 1 

containing twice the desired concentration of unlabeled phenylacetic acid at pH 7.4.  To 2 

initiate the uptake assay, 3mL of washed cell suspension was added to the 3mL 3 

phenylacetic acid solution.  The resulting 6mL solution was well-mixed and then filtered 4 

in 2mL aliquots at the appropriate time.  The filter apparatus consisted of a 6mL plastic 5 

syringe attached to a reusable filter cartridge preloaded with a 0.45 micron filter 6 

membrane.  At one minute, the cell suspensions were forced through the filter.  Each 7 

membrane was then washed with 2mL of 50 uM phenylacetic acid MSM solution to 8 

displace any labeled surface-bound phenylacetic acid.  The filters were then removed, 9 

placed in scintillation tubes containing 5mL scintillation cocktail, and measured in a 10 

scintillation counter.  The fraction of 14C phenylacetic acid retained on the membranes 11 

was assumed to equal the fraction of total phenylacetic acid taken up by the cells. 12 

 Phenylacetic acid uptake was standardized to protein content of the cell 13 

suspensions.  Each sample was centrifuged and the protein quantified via the Bradford 14 

assay (Bio-Rad Laboratories, Hercules, CA) after they had been boiled in 0.1 M NaOH 15 

for ten minutes.   16 

 17 

In silico analyses of ipfF 18 

Phylogenetic analysis of the putative gene product of ipfF was performed with the 19 

COBALT multiple alignment tool (Papadopoulos and Agarwala 2007 ) using Fast 20 

Minimum Evolution tree building method with Grishin distance.  The putative protein 21 

product of ipfF was aligned with paaK from E. coli (NCBI BAE76428.1), the recently 22 

crystallized paaK1 and paaK2 from Burkholderia cenocepacia (PDB 2Y27 and 2Y4O), 23 
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and FadD fatty acid coenzyme A ligase from E. coli (NCBI P69451.1) in the MegAlign 1 

program (DNAStar, Inc.) using clustalW distance measure.  Initial screening of proteins 2 

for transmembrane helices was performed using the PHDhtm algorithm (Rost, Casiado et 3 

al. 1995) provided by the PSIPRED server for definitive prediction of treansmembrane 4 

helices at 95% confidence level (Jones 2007 ) and using the TMHMM algorithm to 5 

provide redundancy of transmembrane helix detection and also to provide visual output 6 

(Krogh, Larsson et al. 2001).   7 

 8 

Results 9 

 10 

Assaying coenzyme A ligase activity  11 

CoA ligase activity in Ibu-2 cell free extracts was determined using both 12 

phenylacetic acid and ibuprofen as substrates.  Ibu-2 crude extract catalyzed phenylacetyl 13 

CoA ligation (Figure 4.1) at a rate of approximately 10 nmol/mg/minute, which was 14 

similar to that of P. putida U (data not shown).  Ibu-2 extracts also catalyzed the CoA 15 

ligation of ibuprofen when compared to P. putida U (p=0.007), which did not yield 16 

detectable CoA-ligation product.  However, the rate of ibuprofen CoA ligation by Ibu-2 17 

was much lower; while almost all phenylacetic acid was ligated within two hours, only 18 

33% (+/- 4%) of the ibuprofen was ligated in 63 hours.  Prior exposure of Ibu-2 to 19 

Ibuprofen had no affect on CoA ligase activity (p=0.36) (Figure 4.1).   20 

Crude extract from E. coli epi300 pFOS3G7 or E. coli JM109 pGEM:ipfF both 21 

contained detectable phenylacetyl CoA activity, 34 and 19.6 nmoles / mg protein / minute 22 

compared to 0.5 in vectorless epi300 (Figure 4.1).  HPLC analyses confirmed that the 23 
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accumulation of phenylacetyl CoA was concomitant with the disappearance of 1 

phenylacetic acid (data not shown).  Both phenylacetic acid and ibuprofen CoA-ligase 2 

activities were completely dependent upon the presence of ATP and Mg++ (data not 3 

shown).   4 

 5 
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Figure 4.1.  Phenylacetic acid coenzyme A ligase activity in the cell-free extracts of different 7 
strains.  “F” represents the pGEMt-easy ipfF clone while “AB” is the respective ipfAB 8 
clone.  (n=3).   9 

 10 

Uptake of phenylacetic acid in all strains, clones, and knockouts 11 

 The results detailed in chapter 3 demonstrated that E. coli epi300 12 

pFOS3G7Tn:ipfF was not able to produce isobutylcatechol from ibuprofen.  At all 13 

concentrations studied, E. coli epi300 pFOS3G7Tn:ipfF displayed less phenylacetic acid 14 

uptake than E. coli epi300 pFOS3G7 (Figure 4.2).   15 
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Figure 4.2.  Uptake of phenylacetic acid by strains E. coli epi300 pFOS3G7, E. coli epi300 E. 2 
coli and epi300 pFOS3G7Tn:ipfF over a range of phenylacetic acid concentrations.  Uptake 3 
was standardized to total cell protein.  E. coli epi300 pFOS3G7Tn:ipfF was significantly less 4 
(n=3, p < 0.05) than E. coli epi300 pFOS3G7 at all concentrations tested. 5 

 6 

Effect of metabolic poisons on E. coli epi300 pFOS3G7, and E. coli epi300 7 

pFOS3G7Tn:ipfF 8 

 Uptake assays using Ibu-2 proved to be infeasible.  Ibu-2 clogged up the filter 9 

membranes rapidly, prohibiting prompt filtration to any degree.  This is likely due to its 10 

extensive exopolysaccharide layer which has been frequently observed in other 11 

Sphingomonads (Pollock 1993).  The metabolic poisons significantly reduced 12 

phenylacetic acid uptake by E. coli epi300 pFOS3G7 (Figure 4.3).  Uptake was reduced 13 

by approximately 23-32% by both poisons (p<0.05).  Metabolic poisons did not affect 14 

uptake by E. coli epi300 pFOS3G7Tn:ipfF to any statistically detectable degree (Figure 15 

4.3).  16 
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Figure 4.3.  Uptake of 25 µM phenylacetic acid by E. coli epi300 pFOS3G7 and E. coli 2 
epi300 pFOS3G7Tn:ipfF exposed to 0.5mM of the metabolic poisons 2,4 dinitrophenol or 3 
potassium cyanide.  Both pFOS3G7 poisoning treatments exhibited significantly less uptake 4 
than the non-poisoned control (n=3, p < 0.05) while no other differences were significant.   5 

 6 

Effect of pH on uptake 7 

 The impact on uptake of phenylacetic acid by E. coli epi300 pFOS3G7 at a low 8 

vs. high pH was quantified by calculating the ratio of uptake at pH 5.5 vs. pH 7.  At all 9 

concentrations other than the lowest, uptake was higher at low pH, indicating that 10 

diffusion across the membrane is a significant driving force in uptake.   11 

The ratio of low/high pH uptake showing a trend of being proportional to the 12 

logarithm of phenylacetic acid concentration (best fit line R=0.8941, Figure 4.4).  In 13 

other words, low pH had more of an impact on higher concentrations of phenylacetate, 14 

suggesting that pH drives transport to some degree but that there is also an underlying 15 

non-pH based transport mechanism at work.  If no such mechanism existed, one would 16 

expect pH to alter uptake equivalently at all solute concentrations.   17 

 18 



 

     161

R2 = 0.8941

0

1

2

3

4

5

6

7

8

0.1 1 10 100 1000 10000

mM PAA

n
m
o
l u
p
ta
ke
 / 
m
g
 p
ro
te
in
 :
 p
H
 5
.5
 / 

p
H
 7

 1 

Figure 4.4.  Phenylacetic acid uptake by E. coli epi300 pFOS3G7at pH 5.5 divided by 2 
uptake at pH 7.  All data points other than for 0.5mM phenylacetate demonstrate that 3 
uptake was higher at pH 5.5 vs pH 7 as is consistent with the vectorial acylation mechanism 4 
(n=3, p < 0.05). 5 

 6 

Discussion 7 

 8 

ipfF was identified by transposon mutagenesis of pFOS3G7 and metabolic 9 

screening for loss of ability to convert ibuprofen to a catecholic metabolite as described 10 

in Chapter 3.  ipfF had modest similarity to a number genes encoding coenzyme A 11 

ligases, particularly to those involved in degradation of aromatic acids with three 12 

(Achterholt, Priefert et al. 2000) and four (Veith, Herzberg et al. 2004) carbon acidic 13 

sidechains.   14 

 Conserved domain analysis of the predict amino acid sequence of ipfF revealed it 15 

to be a member of the LuxE superfamily (E-value = 1.64e-33), which harbor a domain 16 

associated with the formation of thioester bonds with representatives amongst all 17 

domains of life.  The superfamily includes the coenzyme A ligases.  A BlastP search of 18 
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IpfF against the Swissprot database reavealed similarities to a wide variety of coenzyme 1 

A ligases including those for aromatic acids and for fatty acids (Table 4.2).  IpfF does not 2 

clearly group with any particular type of coenzyme A ligase; curiously, amongst the 3 

proteins with significant homology, it is most distantly related to the phenylacetyl CoA 4 

ligases (Figure 4.5) with which it shares only 40% similarity over 50-60% of the 5 

sequence, while sharing 45+% similar residues across 95+% of the sequence in the case 6 

of the long-chain fatty acid coenzyme A ligases from bacteria (Matsuoka, Hirooka et al. 7 

2007 ) and even with 4-coumarate CoA ligase from the plant Arabidopsis (Ehlting, 8 

Battner et al. 1999) (Table 4.2).   9 

 10 

Table 4.2.  The substrates, similarity measures, and confidence levels between IpfF and 11 
characterized coenzyme-A ligases found in the Swiss-prot database. 12 

Accession
Description (alpha subunit of)       

Organism
% identity % positive

Query 
coverage

E value

O07610.2 long-chain fatty acid CoA ligase 27 47 96% 2.00E-53
Bacillus subtilis

Q9S725.2 4-coumarate CoA 29 47 98% 9.00E-51
Arabidopsis thaliana

P69451.1 long-chain fatty acid CoA ligase 26 45 96% 1.00E-47
E. coli K12

AAC73148.2 crotonobetaine/carnitine-CoA ligase 28 46 94% 1.00E-43
E. coli K12

Q00594.1 medium-chain fatty acid CoA ligase 25 47 96% 6.00E-39
Pseudomonas oleovorans

YP_559588.1 benzoate CoA ligase 27 45 93% 1.00E-35
Burkholderia xenovorans

AAN32623.1 benzoate CoA ligase 25 41 93% 5.00E-28
Thauera aromatica

AAA92151.1 benzoate CoA ligase 24 42 96% 5.00E-25
Rhodopseudomonas palustris 

A5JTM6.1 4-chlorobenzoate CoA ligase 27 41 70% 2.00E-22
Pseudomonas  CBS-3

YP_931807.1 phenylacetyl CoA ligase 24 41 60% 1.00E-12
Azoarcus sp.

CAA66100.1 phenylacetyl CoA ligase 25 40 57% 1.00E-11
E. coli K12

YP_002768992.1 phenylacetyl CoA ligase 25 40 54% 2.00E-09
Rhodococcus erythropolis

ZP_05785221.1 phenylacetyl CoA ligase 23 40 55% 7.00E-08
Silicibacter lacuscaerulensis  13 

 14 
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Figure 4.5.  Phylogenetic tree of the predicted aminoacid sequence of ipfF and characterized 2 
coenzyme A ligases found in the Swiss-prot database and listed in Table 4.2. 3 

   4 

Crude extracts from Sphingomonas Ibu-2 and E. coli epi300 pFOS3G7 were 5 

shown to possess phenylacetyl-CoA ligase activity (Figure 4.1).  Activity was further 6 

shown to be completely dependent upon the presence of Mg2+ and ATP (data not shown).  7 

ipfF, which encodes the putative coenzyme A ligase, was further subcloned and 8 

expressed in E. coli where it was shown to confer both phenylacetyl- and ibuprofen-CoA 9 

ligase activity.  This data establishes the role of IpfF in the first step of the ipf pathway as 10 

postulated in chapter 3 (Figure 3.17). 11 
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 The mode of activity of Sphingomonas Ibu-2 ibuprofen transport gene products 1 

was studied via filter-based radio-labeled substrate uptake assays.  Based on previous 2 

findings regarding the mechanism by which Ibu-2 catabolizes ibuprofen, an uptake 3 

system analogous to fatty acid uptake systems was hypothesized.  It was previously 4 

demonstrated that the ibuprofen catabolic machinery (encoded by ipfABDEF) was 5 

capable of acting upon phenylacetic acid and similar compounds in the same way that 6 

ibuprofen was metabolized.  Given its ready availability, 14C phenylacetic acid was 7 

therefore used as a surrogate for ibuprofen.   8 

 The  roles played by different ipf gene products on the uptake of PAA was studied 9 

with the aid of genetic constructs; E. coli epi300 pFOS3G7 is fully capable of 10 

metabolizing ibuprofen to the catechol stage, while transposon mutant of ipfF is fully 11 

defunct in this ability (Figure 3.6).  The data presented in these figures is consistent with 12 

a model of ibuprofen uptake via fatty acid-like vectorial acylation.  The core result 13 

supporting this model is the observation that E. coli epi300 pFOS3G7Tn:ipfF took up 14 

less  phenyacetate than. E. coli epi300 pFOS3G7 at all substrate concentrations tested.  15 

This is consistent with previous findings that E. coli epi300 pFOS3G7Tn:ipfF was unable 16 

to cause the disappearance of ibuprofen.  Heterologous expression of ipfF was shown to 17 

confer both ibuprofen and phenylacetate coenzyme A ligase activity on E. coli.  Taken 18 

altogether, it is clear from these findings that ipfF encodes the first step in ibuprofen 19 

metabolism.  20 

 Phenylacetate uptake by E. coli epi300 pFOS3G7 was inhibited by the addition of 21 

either potassium cyanide or 2,4-dinitrophenol.  Cyanide directly interferes with electron 22 

transport, thus slowing the pumping of protons outside of the inner bacterial membrane 23 
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(Gregus and Klaasen 2001).  2,4-DNP is a protonophore; it is believed to destroy the 1 

electrochemical proton gradient by serving as a functional proton conduit across the inner 2 

membrane.  The impacts of both poisons relevant to this assay are the slowing of ATP 3 

production, which may be used in active transport, and the loss of the electrochemical 4 

proton gradient, which can be used to drive solute symport.  This inhibition of uptake is 5 

fully consistent with the model of IpfF-catalyzed coenzyme A ligase activity driving 6 

uptake via vectorial acylation.  Coenzyme A ligases are dependent upon energy provided 7 

by ATP (Kunau, Dommes et al. 1995; Vellemur 1995; Trotter 2001).  If ATP production 8 

is inhibited by an uncoupler such as cyanide or a protonophore such as 2,4 dinitrophenol, 9 

ATP will be in short supply and the substrate that diffuses into the cell will not be trapped 10 

via acylation, rather, it will remain free to diffuse back out of the cell.   11 

Alignment of the putative product of ipfF (IpfF) with three phenylacetyl 12 

coenzyme A ligases and FadD showed that IpfF has  the conserved P-loop, an ATP-13 

binding domain (Table 4.3).  IpfF also has all three conserved residues associated with 14 

the first adenylation step catalyzed by coenzyme A ligases (Table 4.4).  IpfF also contains 15 

five of the eleven residues that have been demonstrated to form the phenyacetate 16 

substrate binding pocket in PaaK1 (Law and Boulanger 2011 ) (Figure 4.5). 17 

 18 

 19 

Table 4.3  Alignment, positions, and identities of ATP-binding P-loop residues 20 

P-Loop Residues 

PaaK2 B. cenocepacia 100SSGTTGKPT108 

PaaK1 B. cenocepacia 93SSGTTGKPT101 

PaaK E. coli 98SSGTTGKPT106 

FadD E. coli 214YTGTTGVAK222 

IpfF S. Ibu-2 165TSGTTGVPK173 
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Table 4.4  Positions and identities of conserved adenylating catalytic residues 1 

Catalytic Residues 

PaaK2 B. cenocepacia Arg333 Glu248 Lys432 

PaaK1 B. cenocepacia Arg327 Glu242 Lys424 

PaaK E. coli Arg331 Glu246 Lys427 

FadD E. coli Arg453 Glu361 Asp511 

IpfF S. Ibu-2 Arg410 Glu309 Lys510 

 2 
 3 
 4 

Table 4.5  Positions and identities of residues that align with the binding pocket residues of 5 
PaaK1 from B. cenocepacia.  Residues that are identical to those found in PaaK are darkly-6 
shaded while similar residues (as judged by charge) are lightly-shaded. 7 

Binding  Pocket Residues 

PaaK E. coli Tyr141 Phe146 Gly148 Ala152 Gly218 Ala219 Ala241 Tyr242 Gly243 Gly249 Pro250 Pro250 
PaaK2 B. 
cenocepacia Phe143 Phe148 Gly150 Ile154 Gly220 Ala221 Ile243 Tyr244 Gly245 Gly251 Pro252 Pro252 
PaaK1 B. 
cenocepacia Tyr136 Phe141 Gly143 Ala147 Gly214 Ala214 Ile237 Tyr238 Gly239 Gly245 Pro246 Pro246 

FadD E. coli Pro158 Phe264 Leu265 Cys269 Gly333 Ala334 Gly256 Tyr257 Gly258 Pro364 Val365 Val365 

IpfF S. Ibu-2 Pro204 Trp209 Val211 Asn215 Gly280 Ala281 Ala304 Tyr305 Ala306 Gly312 Ile315 Ile315 

 8 
 9 
 10 
While PHDhtm predicted a single transmembrane motif for both FadD and the 11 

putative product of ipfF, the lengths of the putative membrane-spanning helices (8-14 12 

residues) are likely too small to span a lipid bilayer (Cuthbertson, Doyle et al. 2005).  13 

True membrane-spanning helices tend to be 20-30 residues long (Cuthbertson, Doyle et 14 

al. 2005).  TMHMM made similar predictions (Figure 4.6), with putative but low 15 

probability transmembrane-like motifs in the region of the amino acid chains where three 16 

conserved binding pocket motifs are located approximately 30-40 amino acids 17 

downstream of the ATP-binding P-loop domain.  Neither program detected 18 

transmembrane motifs in PaaK1.  These kinds of short transmembrane-like motifs have 19 

been termed “half-TMs” (Cuthbertson, Doyle et al. 2005).   20 
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bacteriorhodopsin PaaK1 

IpfF FadD 

 1 

Figure 4.6  Location and probabilities of putative transmembrane helix motifs in PaaK1, 2 
IpfF, and FadD as predicted by the TMHMM algorithm (Krogh, Larsson et al. 2001).  3 
Bacteriorhodopsin, an extensively membrane associated protein (Haupts, Tittor et al. 1999), 4 
is presented for reference.  Amino acid locations are shown on the x-axis while the 5 
probability of membrane association is represented on the y-axis.   6 

 7 

It has been demonstrated that FadD associates with the membrane; both 8 

membrane and soluble enzyme fractions of induced E. coli K-12 contain FadD activity 9 

(Weimar, DiRusso et al. 2002).  It has been hypothesized that free substrate dissolved in 10 

the membrane recruit FadD to become membrane-associated (Weimar, DiRusso et al. 11 

2002), possibly involving a drastic conformational change common to this general class 12 

of proteins (Law and Boulanger 2011 ).  This membrane association might be due to the 13 

short half-TMs present in each of these proteins, though there are other ways by which 14 

proteins can transiently associate with membranes, such as amphipathic helices and 15 

hydrophobic loops (Goni 2002).  FadD has been shown to be sufficient to drive uptake of 16 
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fatty acids which diffuse into the inner bacterial membrane in E. coli and into the 1 

cytoplasm where they are trapped via coenzyme A ligation (Weimar, DiRusso et al. 2 

2002) (Figure 4.7). 3 

 4 
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Figure 4.7   Model illustrating the role of FadD in the vectorial transport of exogenous fatty 6 
acids  (Weimar, DiRusso et al. 2002). 1, free fatty acids become protonated in the 7 
periplasmic space following FadL-dependent transport across the outer membrane (not 8 
illustrated here) and then partition into the inner membrane. 2, the protonated fatty acid 9 
flips from the periplasmic face of the inner membrane to the cytoplasmic face. 3, free fatty 10 
acids within the membrane signal FadD to partition into the inner membrane, presumably 11 
in an ATP-bound form. 4, FadD functions to abstract fatty acids from the inner membrane 12 
concomitant with the formation of fatty acyl-CoA for further metabolism.   13 

 14 
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The similarity of membrane-associating regions present in both FadA and the 1 

putative product of ipfF are consistent with a similar vectorial acylation driven uptake 2 

system for ibuprofen and phenylacetic acid by the ipf pathway in Sphingomonas Ibu-2.  3 

The proximity of the putative half-TM (in the 200-220 residue range) to the ATP-binding 4 

P-loop (residues 165-173) and three of the residues that align with conserved binding 5 

pocket residues (Pro204, Trp209, Val211, and Asn215) is consistent with an IpfF model 6 

wherein a membrane-associating region binds with and adenylates membrane-dissolved 7 

substrate.   8 

It would be possible to test this model by separating membrane-associated and 9 

cytoplasmic protein fractions and testing each for phenylacetate and ibuprofen coenzyme 10 

A ligase activity using the methods employed by Weimar et al. in their description of 11 

FadD membrane association (Weimar, DiRusso et al. 2002).   12 

The vectorial acylation model is also consistent with the observation that the 13 

background uptake of phenylacetate by E. coli epi300 pFOS3G7Tn:ipfF was not affected 14 

by the addition of metabolic poisons.   15 

 It is important to keep in mind that this work was all performed using cloned 16 

genes in an E. coli host.  Uptake assays could not be performed using Sphingomonas Ibu-17 

2 because of the fact that the extensive exopolysaccharide clogged the filter membranes.  18 

While vectorial acylation may be the prime driving force in E. coli harboring ipfF, it may 19 

be the case that Ibu-2 requires more extensive machinery to take up ibuprofen due to 20 

membrane structure or exopolychaccharide layer differences.  Cloning ipfF into a 21 

different Sphingomonad or another more closely related strain would begin to address the 22 

question of whether such species specific factors are important to the transport system.   23 
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While benzoate and phenylacetate coenzyme A ligases have been described, in 1 

each of these cases traditional symport or translocase driven uptake systems are required 2 

for uptake (Olivera, Minambres et al. 1998; Clark, Momany et al. 2002; Ledger, Flores-3 

Aceituno et al. 2009; Wang, Xu et al. 2011).  In contrast, the Ibu-2 subclone uptake data 4 

presented herein provides preliminary evidence that the product of ipfF alone is sufficient 5 

to drive PAA uptake via a membrane-associating coenzyme A ligase mediated vectorial 6 

acylation mechanism akin to the uptake of fatty acid driven by FadD in E. coli (Weimar, 7 

DiRusso et al. 2002).  To this author’s knowledge, a vectorial acylation uptake system for 8 

an aromatic acid would be novel.   9 

 10 
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 CHAPTER 5 1 

 2 

CONCLUSIONS 3 

 4 

Pharmaceuticals have been detected in bodies of water all over the world, in 5 

treated wastewater used for agriculture (Kinney, Furlong et al. 2006; Siemens, Huschek 6 

et al. 2008; Xu, Wu et al. 2009) and even in human drinking water (Fent, Weston et al. 7 

2006; Benotti, Trenholm et al. 2008; Huerta-Fontela and Ventura 2008; Corcoran, Winter 8 

et al. 2010; Kummerer 2010).  The scientific community has seen a recent surge of 9 

interest regarding the fate and effects of pharmaceutical compounds released into the 10 

environment, prompted not only by the precautionary principle (Ferrari, Mons et al. 11 

2004; Gardiner 2006) but due to widespread detection of such chemicals (summarized by 12 

(Santos, Araújo et al. 2010)) and emerging reports of potential (see www.wikipharma.org 13 

(Molander, Agerstrand et al. 2009) for a summary of available data) and observed 14 

impacts (Oaks, Gilbert et al. 2004).   15 

The prediction of environmental fate of such a diverse category of chemicals is 16 

hampered in part, by limited understanding of the way microbes might degrade such 17 

chemicals once they enter the environment.  It is in response to such a challenge that this 18 

dissertation was undertaken.  As the most commonly used member of the diverse class of 19 

phenylacetate-based non-steroidal anti-inflammatories, ibuprofen (2-(4-20 

isobutylphenyl)propionic acid) was selected so as to provide insight not only into the fate 21 

of a common environmental contaminant but also to provide guidance to aid in the 22 

prediction of the fate of similar pharmaceuticals.  Indeed the results of the scientific 23 

inquiries conducted suggest the utilization of a novel metabolic strategy for the 24 

http://www.wikipharma.org/
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assimilative metabolism of such chemicals.  While such work provides valuable insight, 1 

the scope of the challenge posed by environmental release of pharmaceutical compounds 2 

is great and will require a more attention from the scientific community.   3 

 4 

Pharmaceuticals in the Environment:  The scope of the challenge to the scientific 5 

community 6 

 7 

The lack of understanding regarding the issue of pharmaceuticals in the 8 

environment can be categorized into several categories.  The complex mixture of low 9 

concentrations of biologically active compounds presents a quandary for ecotoxicology 10 

and human toxicology (Borgert, Quill et al. 2004; Chou 2006; Baas, van Houte et al. 11 

2007; Cedergreen, Christensen et al. 2008; Crofton 2008; Kortenkamp 2008).  The 12 

toxicological sciences are based upon a foundation of understanding acute toxic effects of 13 

individual compounds and have only recently begun to investigate chronic exposure of 14 

ecosystems to single chemicals.  The subtle chronic effects of mixtures are largely 15 

unexplored territory (Groten, Heijne et al. 2004).  Ecotoxicology and ecology are tasked 16 

with an even more complicated challenge; that of how to quantify the subtle toxicological 17 

impact(s) of mixtures on not just single organisms, but on higher levels of biological 18 

organization such as populations, communities, and ecosystems.   19 

With respect to the latter problem, the toxicological sciences are  faced with the 20 

seemingly insurmountable challenge posed by the sheer number of different chemicals 21 

present in the pharmaceutical waste stream.  Not only is that number already vast, but it 22 



 

     179

grows ever larger as new products are continually brought into use.  The cost of bringing 1 

a single pharmaceutical to market has been estimated to be an average of $897 million 2 

dollars (Kaitin 2003), of which $466 million is spent on human testing phases and $2-9 3 

million on testing on model organisms (DiMasi, Grabowski et al. 2004).  These 4 

procedures take years.  It is highly doubtful that it will ever be feasible using existing 5 

methods to test every compound for subtle and mixture effects.  It is in response to such 6 

challenges that computational and predictive methods are being increasingly used 7 

(Kulkarni, Zhu et al. 2005; Collins, Gray et al. 2008 ), along with the development of 8 

cell-based high through put studies (Inglese, Auld et al. 2006 ).  Large-scale projects by 9 

the U.S. EPA, National Institutes of Environmental Health Sciences and National 10 

Institute of Health are under way to create comprehensive toxicology databases and focus 11 

high-throughput screening efforts, although almost none of these efforts take into account 12 

microbial metabolism of these compounds (NIH 2011; Tox21 2011; ToxCast 2011).   13 

If one is presented with several novel chemicals yet have only the capacity to 14 

investigate the toxicology of a single compound, one must employ some rational method 15 

of deciding which chemical to analyze.  While computational tools based on structure 16 

activity relationships exist for the prediction of ecotoxicological effects of a given 17 

chemical which can help guide such decisions (reviewed in (Netzeva, Pavan et al. 2007; 18 

Pavan and Worth 2008; Piparo and Worth 2010; Serafimova, Gatnik et al. 2010) these 19 

models are dependent upon thorough scientific data (Scior, Medina-Franco et al. 2009) 20 

describing known endpoints or mechanisms of action which calls in to doubt their ability 21 

to predict toxicity in the case of novel mechanisms of intoxication or when appropriate 22 

data sets are lacking (Greene 2002).  An added level of complexity comes from the fact 23 
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that the overall impact of a given chemical is not based only upon the chemical itself, but 1 

also upon the breakdown products of that chemical.  The type and importance of 2 

metabolites can vary due to inter-individual differences in human metabolism (Baillie 3 

2007; Uetrecht 2007; Ulrich 2007; Li 2009), human gut metabolism (Doherty and 4 

Charman 2002; Li, Wang et al. 2008 ; Thelen and Dressman 2009; van Herwaarden, van 5 

Waterschoot et al. 2009) metabolism by environmental microbes (Neuwoehner, 6 

Zilberman et al. 2010), and abiotic breakdown products.  Science is beginning to develop 7 

tools for predicting the breakdown products of a particular pharmaceutical compounds 8 

(Kulkarni, Zhu et al. 2005) and make predictions of likely metabolites, but once again, 9 

prediction of metabolism relies upon known pathways for similar chemicals.  Reliable 10 

predictions of a novel compound’s metabolism and toxicity are most likely to be accurate 11 

only when they are based on experimental data from closely related compounds.  Thus 12 

we are still left with a daunting task when it comes to hazard identification and risk 13 

characterization which underscores the value of the precautionary principle for protecting 14 

human and environmental health. 15 

The work presented in this dissertation represents the first investigation into the 16 

assimilative bacterial metabolism of an alpha-branched phenylacetic acid with the goal of 17 

providing insight that may eventually help inform model development and pathway 18 

prediction accuracy  19 

 20 

 21 

 22 

 23 
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Metabolism of Ibuprofen by Sphingomonas Ibu-2 1 

 2 

Sphingomonas Ibu-2, which was isolated by enrichment culture from sewage 3 

sludge, has the ability to grow using ibuprofen as sole carbon and energy source.  Ibu-2 4 

exhibits a slight tendency to degrade the R-enantiomer more quickly than the S, but is 5 

capable of growth on either (Figure 2.1).  Ibu-2, in an unprecedented fashion, 6 

accumulates de-acylated catechols when incubated with a ring-cleavage inhibitor 7 

(Murdoch and Hay 2005).  The expression of seven open reading frames, ipfABDEFHI, 8 

proved sufficient to transfer this metabolic activity upon an E. coli host.  Uptake assays 9 

performed using an Ibu-2 chromosomal library clone capable of performing this 10 

deacylating reaction suggests that Ibu-2 accumulates ibuprofen intracellularly through the 11 

action of a coenzyme A ligase enzyme encoded by ipfF and powered by ATP.  Coenzyme 12 

A ligation encourages uptake on two general principles.  Firstly, the coenzyme group is 13 

large and hydrophilic, thus trapping ibuprofen inside the cell.  In the absence of ligation, 14 

ibuprofen is able to cross cellular membranes in both directions, resulting in no net 15 

intracellular accumulation.  However, by chemically altering it, ibuprofen is effectively 16 

taken out of the thermodynamic equation therefore encouraging continued influx.  The 17 

combination of intracellular trapping and continued influx down a concentration gradient 18 

through a ligative process is termed vectorial acylation and has also been observed in the 19 

metabolism of fatty acids by bacteria and eukaryotes (Weimar, DiRusso et al. 2002; 20 

Black and DiRusso 2003; Zou, F. et al. 2003).   21 

Ibuprofen coenzyme A (ipfCoA) is the likely target of further metabolism by a 22 

dioxygenase system in Ibu-2.  This conclusion is based on the requirement of functional 23 
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copies of ipfA and ipfB (genes share homology with the two primary components of 1 

aromatic dioxygenase systems) in pFOS3G7 for isobutylcatehcol production and upon 2 

the observation that subcloned ipfABDEF is not capable of efficient metabolic activity 3 

without the co-expression of ipfHI,  a ferredoxin reductase and ferredoxin respectively 4 

(Figures 3.9 - 3.11).  The presumed 1,2 dearomatized diol that results from IpfAB-5 

mediated transformation of ibuprofen CoA is predicted to be the substrate that leads to 6 

isobutylcatechol production via IpfDE.   7 

The predicted amino acid sequence of ipfD shares homology with genes encoding 8 

acyl-transferases that are members of the sterol carrier protein X (SCPx) family and 9 

which are known to catalyze the removal of an acyl-CoA group.  Despite this family 10 

being numerous and diverse, it is poorly characterized.  In fact, the limited experimental 11 

exidence presented in chapter 3, which shows that expression of ipfDE is essential for 12 

isobutyl catechol production from ibuprofen, makes it only the third bacterial putative 13 

SCPx protein that has been characterized at the reaction level.  Via an unknown 14 

mechanism, ibuprofen CoA diol is rearomatized to isobutylcatechol during or after the 15 

deacylation reaction.  The role played by the domain of unknown function 35 (DUF35) 16 

protein IpfE in this process is unknown, but it likely associates with the acid side chain 17 

and is necessary for the activity of IpfD given the fact that many DUF35 genes are found 18 

next to a SCPx gene in sequenced genomes.  The likely involvement of an SCPx thiolase 19 

and DUF35 protein in the direct conversion of a phenylacetic acid derivative directly to a 20 

de-acylated catechol was not forseen and is without precedent.  This novel reaction 21 

mechanism may prove relevant for the prediction of possible environmental breakdown 22 

products of other alpha-branched phenyalcetic acids such as ketoprofen and naproxen 23 
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(figure 1.1).  While the recently characterized paa bacterial pathway might prove more 1 

useful for the breakdown prediction for non-alpha-branched NSAIDs with a phenylacetic 2 

acid core such as diclofenac, etodolac, indomethacin, sulindac, and tolmetin, it is at this 3 

point unknown how wide spread ipf-like pathways might be and what their specifity 4 

might be.   5 

 6 

Points of Uncertainty in the Ibu-2 Ibuprofen Metabolism Model 7 

 8 

The vectoral acylation mechanism conclusion was based partially upon the 9 

observation that adding the metabolic poisons potassium cyanide or dimethylphenol to E. 10 

coli epi300 pFOS3G7 inhibited uptake, indicating the presence of an active transport 11 

system.  Using the same poisons on E. coli epi300 pFOS3G7 with a knocked-out ipfF did 12 

not impact uptake to any degree; this is a critical piece of data indicating that IpfF is the 13 

only source of active transport amongst the DNA expressed on pFOS3G7.  It may be 14 

pointed out that cyanide and 2,4-DNP poison both affect the chemiosmotic gradient and 15 

as a consequence ATP production and therefore the loss of uptake upon poisoning could  16 

result in the disruption of gradient-driven transport by a major facilitator porin transport 17 

system.  A thorough approach would have utilized an ATP synthase inhibitor such as 18 

venturicidin (Hong and Pedersen 2008) while leaving the chemiosmotic gradient 19 

undisrupted.  However, the E. coli epi300 pFOS3G7Tn:ipfF data obviates the need for 20 

this by demonstrating that no other active transport system is active in E. coli epi300 21 

pFOS3G7. 22 
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While IpfF is sufficient for uptake in E. coli, it may not be so in Sphingomonas.  It 1 

is possible that transport in Ibu-2 also involves a FadL-like translocase such as has been 2 

proven to enhance the uptake of fatty acids (Ferguson and Deisenhofer 2002; van den 3 

Berg, Black et al. 2004) and of toluene (Wang, Rawlings et al. 1995; Kahng, Byrne et al. 4 

2000).   5 

While ipfABDEFHI were shown to be sufficient for metabolic activity, 6 

conclusions regarding the activity of the putative enzymes IpfAB and IpfDE are based on 7 

indirect experimental data .  Each of the associated genes has been demonstrated to be 8 

necessary for ibuprofen metabolism.  The hypothesis that IpfAB acts upon the coenzyme 9 

A CoA-ligate that is the product of IpfF is supported by the statistically significant 10 

greater loss of phenylacetyl-CoA in E. coli pGEM:ipfAB cell-free extracts.  However, the 11 

difference between the clone and the control was modest (though statistically significant) 12 

and no reaction products could be identified via chromatographic methods.  Additionally, 13 

the requirement of subcloned ipfABDEF on the co-expressed electron transport chain 14 

ipfHI (Figure 3.10 – 3.11) offers strong but indirect evidence for the involvement of 15 

ipfAB.   16 

The activity of IpfDE is largely speculative and based primarily on the inference 17 

that IpfDE is likely responsible for metabolizing dioxygenated ibuprofen-CoA to 18 

isobutylcatechol.  This inference is supported by catalytic activity described for orthologs 19 

of IpfD; SCPx acyl-transferase proteins which deacylate alpha-branched 3-oxo CoA-20 

ligated fatty acids in both eukaryotes (Wanders, Denis et al. 1997; Verhoeven and Jakobs 21 

2001; Westin, Hunt et al. 2007 ) and bacteria (Leuthner and Heider 2000; Kube, Heider et 22 

al. 2004; Kuhner, Wohlbrand et al. 2005).  The inferred involvement of IpfE in the 23 
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process is based upon the fact that ibuprofen metabolism is dependent upon its presence 1 

and that an IpfE-like DUF35 protein and an SCPx thiolase have been shown to be 2 

intimately associated in the case of benzylsuccinate metabolic proteins BbsB and BbsC 3 

(Leuthner and Heider 2000; Kube, Heider et al. 2004; Kuhner, Wohlbrand et al. 2005). 4 

 5 

Environmental Relevance of the Ibu-2 Ibuprofen Pathway 6 

 7 

A number of questions can be raised regarding the relevance of this pathway.  8 

Firstly, how common is this pathway?  Is it a common paradigm for dealing with 9 

ibuprofen and similar chemicals or is it an anomaly?  Additionally, it is not at all clear 10 

that this is the mechanism whereby ibuprofen would be metabolized in the environment 11 

where it is found at much lower concentrations than were used in this work.   12 

To approach the question of whether or not ibuprofen is degraded via the Ibu-2 13 

type pathway by organisms that have only been exposed to low concentrations, active 14 

sewage sludge was spiked with ibuprofen and ring-cleavage inhibitor and metabolites 15 

were analyzed within only a few hours, presumably before any genetic acclimatization 16 

could take place (Appendix 4).  While many structural variations of hydroxyibuprofen 17 

and carboxyibuprofen were detected, isobutylcatechol was not detected, suggesting that 18 

the resident microbial community was not expressing an Ibu-2 type pathway.  This 19 

preliminary piece of data suggests that the isobutylcatechol pathway may not be relevant 20 

in the environment in a strict sense although catechols could have sorbed or reacted with 21 

the abundant organic matter present in the sewage sludge and therefore went undetected.  22 

This issue was addressed directly in a pilot project that applied a bacterial fractionation of 23 
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environmental samples in order to remove the presumptive solid phase catechol sink 1 

(outlined in Appendix 4).  The bacterial fractions did indeed produce traces of acid labile 2 

yellow color consistent with meta cleavage product when spiked with the ibuprofen 3 

analog m-tolylacetica acid,  suggesting that such pathways might indeed be present at 4 

appreciable levels in the environment. 5 

The apparent discrepancy regarding the fate of ibuprofen at high versus low 6 

concentrations is one of far-reaching relevance.  It is not entirely clear what happens to 7 

low-concentration organic chemicals in the environment.  Martin Alexander’s laboratory 8 

(Rubin, Subba-Rao et al. 1982; Schmidt, Alexander et al. 1985) approached this topic and 9 

presented evidence that an entirely different set of organisms acts upon organics at low 10 

versus high concentrations.  Low concentrations of organics were mineralized via 11 

unknown and apparently non-assimilative mechanisms, which is reminiscent of the 12 

seemingly non-specific oxidation of ibuprofen by the biological activity present in 13 

sewage sludge.  The mineralization reported by Alexander and coworkers obviously 14 

excludes the assimilative types of metabolism that are present in microorganisms isolated 15 

by the enrichment techniques used in this study.  The possible mechanisms of low 16 

concentration metabolism could be but are not limited to: 17 

 18 

1. Fungal extracelluar lignin-degrading enzymes such as fungal laccases; 19 

Laccases, which are present in prokaryotes, fungi, and plants, have a wide variety of 20 

functions (Mayer and Staples 2002; Claus 2004).  Fungi are known to secrete laccases for 21 

the putative purpose of catalyzing the oxidative degradation of the lignin polymers into 22 

smaller molecules that can be been absorbed (Claus 2003).  Because lignin is an 23 
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extremely structurally complex compound, a wide variety of laccases with varying 1 

specificity are secreted.  While it has never been directly investigated, it seems likely that 2 

this constant presence of laccases in biological slurries is likely to have the capacity to 3 

non-specifically oxidize many organic xenobiotics.  Indeed, it has been demonstrated that 4 

laccases can oxidize a wide variety of phenolics and aromatic anilines (Claus 2003) and 5 

that they oxidize the carbons of a xenobiotics in a fairly random manner (Ullrich and 6 

Hofrichter 2007) such as was observed during incubations of ibuprofen in sewage sludge. 7 

2. Cometabolism, or the biotransformation of xenobiotics by metabolic 8 

processes designed for another purpose but with loose specifity; cometabolic processes 9 

have been found to be significant in the fate of MTBE (Fiorenza and Rifai 2003),  10 

chlorinated ethylenes (Arp, Yeager et al. 2001), and polycyclic aromatic hydrocarbons 11 

(Prak and Pritchard 2001).  Such processes may be at work in metabolizing very low 12 

concentrations of xenobiotics when the enzymes in question have been induced by other 13 

chemicals for which they are specific. 14 

3. Organisms that are poorly represented in enrichment and culturing 15 

processeses; it is widely acknowledged that the majority of prokaryotes present in the 16 

environment cannot be recovered using traditional culturing techniques (Amann, Ludwig 17 

et al. 1995).  This means that any given bacterium performing a relevant metabolic 18 

process in the environment is likely to be uncultivable. 19 

 20 

 21 

 22 

 23 
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Future Work 1 

 2 

The relevance of this work straddles two realms, environmental toxicology and 3 

microbial metabolism.  From the microbiological perspective, this work’s contribution 4 

lies in providing preliminary evidence for new types of enzymes and metabolic pathways 5 

that may provide a deeper understanding of bacterial metabolic potential in general.  6 

From an environmental perspective, this work was performed with the hope that 7 

information would be gained that would aid in the prediction of the environmental fate of 8 

similar xenobiotics.  For example, the metabolic pathways responsible for the elimination 9 

of the phenylacetic acid based pharmaceuticals diclofenac, naproxen, ketoprofen, and 10 

benzafibrate are all currently poorly understood (Quintana, Weiss et al. 2005; Kosjek, 11 

Heath et al. 2009).  Degradation of each of these chemicals in environmental systems has 12 

been observed, but the intermediates have been scarcely described.  The 1,2 dioxygenase, 13 

SCPx, DUF35 deacylating pathway offers novel hypothetical metabolites to search for in 14 

each case.   15 

 16 

Future Work:  Environmental 17 

First of all it would be informative to know whether or not ipf-type genes are 18 

found with any frequency in the environment.  While it would be informative to examine 19 

environmental samples using degenerate primers or probes for bacterial SCPx genes, this 20 

family of genes is very divergent; sequence alignment does not reveal any suitably 21 

conserved targets for analysis.  In order begin to address the general question of whether 22 

such a pathway is present at appreciable levels in the environment, a pilot experiment 23 
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was conducted in which ibuprofen and m-tolylacetic acid were spiked into the bacterial 1 

fraction of Cayuga lake water (described in Appendix 4).  A yellow coloration consistent 2 

with the presence of meta-cleavage product of methylcatechol was present though the 3 

absorbance peak was somewhat broad and inconclusive.  A GC/MS analysis of such 4 

samples might reveal the presence of the meta-cleavage semi-muconic acid metabolite.   5 

The presence and unique qualities of the ipf pathway are puzzling for a variety of 6 

reasons.  For instance, why is this pathway fundamentally different from the widely 7 

distributed paa pathway which degrades phenylacetatic acid and phenylalanine via an 8 

epoxide intermediate?  It is perhaps informative that Ibu-2 grows using the same ipf 9 

pathway on tolylacetic acids but is unable to grow on phenylacetic acid.  This suggests 10 

that the ipf pathway is suited to the metabolism of methylated phenylacetic acids as 11 

opposed to unsubstituted phenylacetic acid.  It would be informative to investigate 12 

whether the paa pathway is capable of activity towards tolylacetic acids.  An inability of 13 

the epoxide-mediated paa metabolic strategy to act upon tolylacetic acids would take a 14 

step towards explaining the presence of the unique ipf pathway.  However, it remains 15 

puzzling that while the ipf pathway strategy is apparently very well-suited towards the 16 

metabolism of phenylacetic acid to catechol and subsequent ring cleavage products, such 17 

a strategy has not been reported in the literature for the metabolism of such a ubiquitous 18 

and well-studied chemical.   19 

In this and other studies, several varieties of hydroxylated ibuprofen have been 20 

identified in spiked sewage sludge or environmental samples.  In order to approach the 21 

role of fungal laccases in the production of the hydroxylated metabolites that have been 22 

identified, the following research strategies could be utilized.  Unfortunately, laccase 23 
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inhibition is out of the question due to the fact that the only true laccase inhibitor is azide, 1 

which also has broad biocidal properties (Johannes and Majcherczyk 2000).  2 

Alternatively, it would be very informative to use pure fungal strains or to clone laccases 3 

and specifically examine their capacity to oxidize ibuprofen and other xenobiotics. 4 

Radiolabelled ibuprofen could be used to trace the fate of ibuprofen in 5 

environmental samples.  Unfortunately only ibuprofen that is labeled on the carboxy 6 

carbon is currently available commercially.  This is a very limiting factor due to the 7 

observation that Ibu-2 removes the carboxy atom early in the metabolic process.  If ring 8 

labeled ibuprofen could be synthesized, much more could be learned.  For example, trace 9 

amounts of labeled ibuprofen could be added to sewage sludge, the carbon dioxide 10 

released during mineralization could then trapped and quantified or HPLC and  GC/MS 11 

could be used to detect and identify radiolabelled metabolites.  Further analysis could be 12 

performed on the biological fraction to detect any assimilated radioactivity.  For example, 13 

a radioactive variation of Stable Isotope Probing (SIP) (Madsen 2006) which uses cesium 14 

chloride gradients to separate DNA based on the mass of the carbon isotope it contains 15 

could be used to obtain a phylogenetic snap-shot of the organisms that are assimilating 16 

labeled ibuprofen.   17 

 18 

Future Work:  Microbiological 19 

From a microbiological perspective, the most intriguing aspect of the system by 20 

far is the apparently novel removal of the acyl-CoA group and associated re-21 

aromatization of the ring.  No such chemical reaction has been reported in the literature.   22 
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The pathway was successfully reconstructed using subcloned ipfABDEFHI.   Presently 1 

there is only indirect evidence that IpfABHI dioxygenates CoA ligated substrate.  2 

Directly identifying the oxygenated metabolite of ipfABFHI would both remove 3 

uncertainty on this point and also begin to offer insight into the mechanism of ipfDE.  4 

The SCP-x thiolase and DUF35 ipfDE are the most exciting aspect of this system given 5 

the ubiquity of these types of genes and the near complete lack of insight into the 6 

functions of their products.  The pFOS3G7∆D mutant should be adequate for production 7 

of the dioxygenase metabolite.  The fosmid, when upregulated, is at a high copy number.  8 

However, the activity of the pFOS3G7 system is not remarkably high.  It is possible that 9 

cloning ipfABFHI into a high copy number vector with a strong E. coli promoter will 10 

prove more fruitful.  An ipfABF construct in pGEMt-easy, which is a high copy number 11 

vector with a strong lac promoter, has already been constructed.  pBBR1mcs could be 12 

used to express ipfHI.  Alternatively, the ipfABF cassette could be combined with ipfHI 13 

on a single vector using strand overlap extension.   14 

 In order to definitively identify the dioxygenated metabolite, NMR should be 15 

employed.  GC/MS identification of a diol is possible but challenging, requiring the use 16 

of a butylboronic acid derivitization.  Even then, GC/MS does not provide definite 17 

identification of a chemical in the absence of a standard.  In order to perform NMR, 18 

substrate completely labeled with carbon-13 must be obtained.  [U-13C]phenylacetate is 19 

not commercially available, but a farily simple method for it’s production is in 20 

publication (Ismail, Mohamed et al. 2003) by which phenylalanine is deaminated using 21 

commercially available L-amino acid oxidase.  The reaction is then acidified and 22 

extracted with ethyl acetate in order to purify the reaction product.   23 
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 Teufel et al. (Teufel, Mascaraque et al. 2010) produced 13C-labelled 1 

intermediates in bacterial phenylacetate production by first developing methods by which 2 

to purify the proteins.  Maltose binding protein tagging was used instead of traditional 3 

histidine-tags in most cases for unspecified reasons.  Developing methods by which to 4 

purify IpfABFHI will be required as a first step.  Teufel et al. column-purified 5 

overexpressed proteins and then exposed them to substrate with all necessary cofactors, 6 

which in the case of IpfABFHI will likely require a pool of ATP, CoA, and NADH.  7 

Alternatively, the reaction could be split into the two substituent steps, i.e. separate 8 

reactions and product purifications for first the IpfF coenzyme A ligation and then the 9 

IpfABHI dioxygenation.  The reaction products can be purified by HPLC.  Teufel et al. 10 

also included radioactive 14C-labelled substrate as a tracer to aid in this step.  The 14C 11 

substrate would also have to be prepared from 14C phenylalanine using the amino acid 12 

oxidase method described above.  Regarding product stability, Teufel et al. found that 13 

most intermediates in the paa pathway had half-lives in methanol ranging from 2.5 to 6 14 

hours.  Half-lives in water were very low.  Following product purification, the samples 15 

should be dried, resuspended in deuterated water and subjected to NMR analysis.   16 

 Further characterization of ipfD and ipfE will prove challenging given that these 17 

types of gene products have never been characterized at the reaction level.  I have 18 

constructed histidine-tagged ipfD and ipfE on protein overexpression vectors and they 19 

might be prove useful for further characterizations by allowing for the purification of the 20 

protein products.  Unfortunately, the likely instability of the hypothetical diol metabolite 21 

will make generation of a stable chemical stock by an ipfABFHI construct challenging if 22 

not impossible.  If the reaction product of IpfABFHI can be identified by NMR as 23 
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described above, the reaction product can be exposed to purified IpfD and/or IpfE in 1 

order to verify that it is indeed the substrate for the subsequent and final reaction.     2 

Chapter 4 described the investigations into the transport mechanisms employed by 3 

the ipf system.  The results suggested that the predicted protein product of ipfF was 4 

responsible for uptake of the substrate via a CoA-mediated vectorial ligation mechanism.  5 

However, these experiments were performed exclusively in an E. coli host using 6 

radiolabelled phenylacetic acid.  Ibu-2 proved difficult to work with due to the fact that it 7 

clogged the filter membranes and phenylacetic acid was used due to the inexpensiveness 8 

of radiolabelled phenylacetic acid versus ibuprofen.  While the results were consistent 9 

with the known mechanisms for fatty acid uptake systems, they were at odds with other 10 

described systems for aromatic acid uptake, including those for phenylacetic acid.  The 11 

bulk of phenylacetic acid uptake systems involve specific porin-type active-transport 12 

systems.  While IpfF may have been sufficient to mediate uptake in the E. coli host, it is 13 

possible that other transport proteins are involved or perhaps even required in 14 

Sphingomonas Ibu-2.  In order to study uptake in Ibu-2, a different approach would have 15 

to be taken.  Either an efficient way to remove the extracellular matrix from Ibu-2 would 16 

have to be developed or an uptake assay that does not involve filter membranes would 17 

have to be utilized.  If an alternative uptake protocol could be developed, the question of 18 

the sufficiency of IpfF to drive uptake could be addressed by a targeted knockout of ipfF 19 

in Ibu-2 and measuring uptake.  Initial attempts to generate genetic knockouts in Ibu-2 20 

using targeted double recombination or random transposon based approaches proved 21 

untenable (Appendix 4).  Alternatively, ipfF could be cloned into a more closely related 22 
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species, one that is more amenable to filter-based uptake assays, and the uptake studied 1 

therein.    2 

3 
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APPENDIX 1 1 

A NOVEL MECHANISM FOR THE BIODEGRADATION OF 2 

IBUPROFEN 3 

 4 

Preface 5 

 6 

The following manuscript was prepared in 2002 and submitted to Environmental 7 

Science and Technology.  It was accepted on the condition that certain experiments 8 

be elaborated upon.  Attempts to revive the organism that was supposedly isolated 9 

and identified as a Variovorax sp. Ibu-1 were unsuccessful.  It seemed the case that 10 

Ibu-1 was not a pure culture and in fact had been, at some point in the course of 11 

regular maintenance of the organism, heavily contaminated.  Whether the dihyroxy- 12 

and trihydroxyibuprofen detected in culture media were actually utilized in a 13 

catabolic pathway remains uncertain.  Subsequent attempts to isolate an organism 14 

utilizing a similar pathway, distinct from the isobutylcatechol pathway utilized by 15 

Ibu-2, proved fruitless. 16 

 17 

Abstract 18 

 19 

A bacterium was isolated from sewage sludge that has the ability to use 20 

ibuprofen as its sole carbon and energy source.  16S rRNA gene sequence 21 

analysis revealed 98% homology to species of the Variovorax genus.  22 
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When grown on ibuprofen it accumulated a transient yellow intermediate 1 

that disappeared upon acidification, a trait consistent with meta ring-2 

fission metabolites.  GC/MS analysis of the derivatized culture supernatant 3 

yielded two spectra consistent with trihydroxyibuprofen, bearing all three 4 

hydroxyl groups on the aromatic ring.  However, these metabolites were 5 

only detected when 3-fluorocatechol, a meta ring-fission inhibitor, was 6 

added to Ibu-1 cultures and the supernatant was then derivatized with 7 

aqueous acetic anhydride and diazomethane. These findings suggest the 8 

possibility of ibuprofen metabolism proceeding via a meta ring-fission 9 

pathway. Identical spectra, consistent with these putative ring-10 

hydroxylated trihydroxyibuprofen metabolites, were also obtained from 11 

ibuprofen-spiked sewage sludge, but only when it was poisoned with 3-12 

fluorocatechol and derivatized. This demonstrates the biological potential 13 

for ibuprofen degradation via previously unidentified intermediates. The 14 

presence of the same metabolites in both spiked sewage sludge and culture 15 

supernatants suggests that a ring-cleavage pathway for the degradation of 16 

ibuprofen may have environmental relevance. 17 

 18 

Introduction 19 

 20 

Ibuprofen (2-(4-isobutylphenyl-propionic acid)) is a non-steroidal anti-21 

inflammatory drug (NSAID) used for its analgesic, antipyretic, and anti-inflammatory 22 

properties.  Two decades ago, it was labeled as being “inherently biodegradable” 23 
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(Richardson and Bowron 1985).  In the decades since, ibuprofen has become the third 1 

most highly consumed drug in the world (Buser, Poiger et al. 1999).  Given that 8.9% - 2 

14% of the administered dose is excreted unmodified or as the easily hydrolysed 3 

glucuronide conjugate (Lee, Williams et al. 1985; Rudy, Knight et al. 1991; D'Ascenzo 4 

2003), a large amount of ibuprofen has the potential to enter the environment.  5 

Environmental concentrations of ibuprofen have been found to range from low ppt  6 

(Buser, Poiger et al. 1999; Stumpf, Ternes et al. 1999; Farre, Ferrer et al. 2001; Winkler, 7 

Lawrence et al. 2001; Kolpin, Furlong et al. 2002) to low ppb levels (Buser, Poiger et al. 8 

1999; Farre, Ferrer et al. 2001).  However, these studies analyzed only the ibuprofen in 9 

aqueous solution.  With a log Kow of 3.5 (Stuer-Lauridsen, Birkved et al. 2000), ibuprofen 10 

would be predicted to partition predominantly to sediment. 11 

Despite the large environmental load of ibuprofen, little is known regarding how 12 

ibuprofen is degraded by bacteria in the environment. No organisms have been reported 13 

to grow on ibuprofen in pure culture, although Chen and Rosazza (Chen and Rosazza 14 

1994) reported that a Nocardia species could reduce the carboxylic acid moiety to an 15 

alcohol and then acetylate it.  In laboratory reactor experiments, Winkler et al. (Winkler, 16 

Lawrence et al. 2001) reported an increase in the concentration of ibuprofen with a 17 

hydroxyl- or carboxyl-group on a side-chain concomitant with the decrease in 18 

concentration of ibuprofen. In addition to these metabolites, Zwiener et.al. (Zwiener, 19 

Seeger et al. 2002) also reported 4-carboxyhydratropic acid as a degradation product of 20 

ibuprofen.  However, these metabolites did not account for all ibuprofen degradation, 21 

representing only 10% of total ibuprofen disappearance in one case (Zwiener, Seeger et 22 

al. 2002). 23 
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Like ibuprofen, many other NSAIDs, including naproxen, ketoprofen, and 1 

diclofenac, are aliphatic-substituted phenylacetic acids.  There is extensive literature 2 

describing the bacterial metabolism of hydroxyphenylacetic acids (Sparnins and 3 

Chapman 1976; Blakley 1977; van den Tweel, Smits et al. 1988) and some recent work 4 

regarding phenylacetic acid, which proceeds via a phenylacetyl CoA intermediate 5 

(Ferrandez, Minambres et al. 1998; Olivera, Minambres et al. 1998).  However, there has 6 

been almost no work describing the biodegradation of aliphatic-substituted phenylacetic 7 

acids, including ibuprofen.  As perhaps the most ubiquitous member of these two 8 

overlapping classes of compounds, ibuprofen serves as a useful model for how these 9 

compounds may be metabolized. 10 

With the exception of unsubstituted phenylacetic acids, the literature regarding 11 

the aerobic metabolism of aromatic compounds by bacteria reveals a near-constant 12 

paradigm.  The aromatic ring is dioxygenated on vicinal carbons and dehydrogenated to 13 

form a catechol, followed then by the insertion of molecular oxygen to accomplish ring 14 

opening (Butler and Mason 1997).  para-dioxygenation is more rare, but is also a 15 

sufficient prerequisite for ring-opening (van den Tweel, Smits et al. 1988).  If bacteria are 16 

to completely metabolize ibuprofen under aerobic conditions, they might do it by 17 

dioxygenating the ring. 18 

While catechols seem to be a common intermediate in the aerobic metabolism of 19 

aromatic compounds, they are ephemeral, being transformed rapidly by both enzymatic 20 

and non-enzymatic mechanisms (Schweigert 2001).  For these reasons, they are rarely 21 

detected in the environment.  As catechols are known to be toxic (Schweigert 2001), most 22 

organisms capable of degrading aromatic compounds do not normally accumulate 23 
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catechols without either prior genetic manipulation or the use of enzyme inhibitors.  1 

Given the uncertainty regarding the fate of most of the ibuprofen entering the 2 

environment, we hypothesized that ibuprofen may be metabolized to intermediates that 3 

are not readily detected using standard sample preparation techniques, and have therefore 4 

previously gone undetected.  Specifically we hypothesized that ibuprofen might be 5 

degraded via initial ring dioxygenation followed by meta-cleavage.  In order to test this 6 

hypothesis we characterized ibuprofen metabolites from an environmental bacterium 7 

named Ibu-1, which is capable of using ibuprofen as a sole carbon and energy source.  8 

We then examined ibuprofen-supplemented sewage sludge for the presence of the same 9 

metabolites. 10 

 11 

Materials and Methods 12 
 13 

Materials.  All chemicals were purchased from Acros (Morris Plains, NJ).  14 

Sewage sludge was collected from the City of Ithaca, NY sewage treatment plant.   15 

Enrichment of Sewage Sludge.  Sewage sludge was enriched with S-ibuprofen 16 

according to standard protocols (Krieg 1981).  After five serial transfers, the final 17 

enrichment was streaked onto a solid mineral salts medium (MSM) containing 500 mg/L 18 

S-ibuprofen.  MSM was composed of 1 mM MgSO4, 10 mM K2HPO4, 3 mM NaH2PO4, 19 

10 mM (NH4)2SO4, 10 µM Fe(NO3)3, and 100 µM Ca(NO3)2 (McCullar 1994).  A single 20 

colony was isolated and subjected to further analysis. 21 

Species Identification.  A portion of the 16S ribosomal rRNA gene of Ibu-1 was 22 

PCR amplified using primers 1055F (ATGGCTGTCGTCAGCT) (Ferris 1996) and 23 

1492R (TACGGYTACCTTGTTACGACTT) (Lane 1991).  The resulting product was 24 
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then ligated into pGEMt-easy (Promega, Madison, WI) and electroporated into 1 

Esherichia coli DH5α.  The insert contained within a single colony was amplified using 2 

T7/M13 primers and sequenced.  The sequence was then analyzed via BLAST (Altschul 3 

1990), an online database and search engine which identifies analagous DNA sequences. 4 

Growth Conditions of Ibu-1.  The isolate was grown in liquid MSM and 5 

containing 500 mg/L S-ibuprofen and supplemented with 0.2% Luria-Bertani broth (LB) 6 

to speed growth.  Growth was monitored by measuring absorbance at 600 nm using a 96 7 

well µQuant spectrophotometer from BioTek instruments (Winooski, VT).   8 

Monitoring Ibuprofen Concentrations via HPLC.  1 ml of Ibu-1 culture was 9 

centrifuged at 15,800 x g for 2 minutes.  The supernatant was then passed through a 0.2 10 

µm filter.  Results from the HPLC analysis of samples and a standard curve were used to 11 

determine the ibuprofen concentration in the supernatant.  The eluent was 70% methanol 12 

and 30% 40 mM acetic acid.  The sample was pumped at a rate of 1 ml/min using a 13 

Waters Model 590 pump.  The column was a Varian Microsorb-MV C18 column, 250 14 

mm by 4.6 mm.  Under these conditions, ibuprofen elutes at approximately 15 minutes.  15 

Samples were injected by a Shimadzu SIL-10AD AP autoinjector.  Detection was 16 

accomplished with a Shimadzu SPD-10A VP UV-Vis detector measuring absorbance at 17 

220 nm. 18 

GC/MS Analysis of Variovorax Ibu-1 Culture Supernatant.  Two 100 ml ibu-1 19 

cultures were grown on 500 mg/L S-ibuprofen until late exponential phase.  To one 20 

culture, 3-fluorocatechol (3FC) was added to a final concentration of 50 mg/L.  After 21 

thirty minutes at room temperature, the cultures were centrifuged and the supernatants 22 

pulled through a 0.2 µm filter.  Aqueous acetylation was performed by adding potassium 23 
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carbonate and acetic anhydride to the supernatant to final concentrations of 1.5% and 1 

0.5% respectively (Mars 1997).  After thirty minutes, the samples were acidified to pH 3, 2 

extracted with ethylacetate, and dried over a sodium sulfate column.  The extracts were 3 

then methylated with diazomethane.  Diazomethane was generated in a 40 ml EPA vial 4 

by combining 5 ml ethyl ether with 3–5 g of N-nitroso-N-methylurea, a single pellet of 5 

sodium hydroxide, and 0.1–0.2 ml of water.  The ethyl ether containing diazomethane 6 

was dried over a sodium sulfate column, and then added to the ethylacetate extracts.  7 

After thirty minutes at room temperature, the samples were evaporated to a minimal 8 

volume under a nitrogen stream and separated using an HP 6890 GC equipped with an 9 

HP-5MS column (5% phenyl methyl siloxane 30 m x 0.25 mm, 0.25 µm film thickness) 10 

with helium as the carrier gas at a flow rate of 1 mL/min.  The injector temperature was 11 

250°C.  The initial oven temperature of 40°C was held for 1 min, then ramped at a rate of 12 

10°C/min. to 250°C.  The temperature was held at 250°C for 7 min and then ramped up at 13 

30°C/min until 300°C.  The detector was an HP 5973 MSD with quadrapole and source 14 

settings of 150 ºC and 230 ºC respectively. 15 

GC/MS Analysis of Ibuprofen Supplemented Sewage Sludge.  500 mg/L R/S 16 

ibuprofen was added to 1 L of sewage sludge.  Ibuprofen concentration was monitored 17 

via HPLC as described above.  After one week the ibuprofen concentration had dropped 18 

to approximately 50% of original level and the sample was split in two.  To one half, 3-19 

fluorocatechol was added to a final concentration of 1000 mg/L.  After thirty minutes, the 20 

sludge samples were centrifuged. The supernatant was then filtered sequentially over a 4 21 

µm filter followed by a 0.4 µm filter.  The samples were then extracted, derivatized, and 22 

analyzed via GC/MS as described above. 23 
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Results and Discussion 1 

 2 

Isolation of a Bacterium capable of growth on Ibuprofen.  Ibu-1 was isolated 3 

from an ibuprofen enrichment culture that had the ability to use S-ibuprofen as a sole 4 

carbon and energy source.  Growth of Ibu-1 correlated directly with the disappearance of 5 

ibuprofen (Figure A1.1).   6 

 7 
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Fig. A1.1.  Growth of Ibu-1 on ibuprofen as measured by increase in Ibu-1 culture density 9 

via spectrophotometry at 600nm (uuuu ).  Concomittant loss of ibuprofen during growth as 10 

measured via HPLC (pppp ). 11 

 12 

Ibu-1 entered exponential growth phase 10 to 20 hours after inoculation into 500 mg/L 13 

ibuprofen in MSM (fig. A1.1).  Stationary phase was reached after approximately 75 14 

hours.  By this time, approximately 40% of the initial ibuprofen had been metabolized.  15 

When Ibu-1 was grown in ibuprofen/MSM liquid, a yellow color appeared in the 16 

supernatant.  This yellow color disappeared upon acidification, and reappeared upon 17 
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neutralization.  This pH-dependent yellow color is indicative of typical meta-cleavage 1 

products (McCullar 1994). 2 

BLAST (Altschul 1990) analysis of the 16S ribosomal rRNA gene sequence 3 

revealed Ibu-1 to be a β-proteobacterium, having 98% homology with species of the 4 

Variovorax genus.  This genus is represented by a large number of environmental isolates 5 

that have been best characterized with respect to their ability to metabolize 2,4-6 

dichlorophenoxyacetic acid (2,4-D) (Giovanni, Neilson et al. 1996; Vallaeys, Albino et 7 

al. 1998; Smejkal, Vallaeys et al. 2001).  In addition to utilizing 2,4-D, some members of 8 

this genus such as V. paradoxus have also been reported to be capable of growth on 9 

benzoate (Maskow and Babel 2001).  However, degradation of both of these compounds 10 

by Variovorax has been reported to take place via ortho-cleavage. 11 

GC/MS of Variovorax Ibu-1 Culture Supernatant.  Ibu-1 cultures were 12 

exposed to 3FC, which inhibits meta-cleavage enzymes (Bartels 1984), and resulted in 13 

the accumulation of ibuprofen catechols (Mars 1997).  Underivatized catechols are not 14 

usually amenable to analysis via gas chromatography. To overcome this problem the 15 

supernatant was derivatized with aqueous acetic anhydride, a procedure that adds acetyl 16 

groups specifically to aromatic hydroxyl-groups (Fujimoto 1997).  Thus, derviatization 17 

not only permitted good analyte separation but, when coupled with mass selective 18 

detection, gave diagnostic mass spectra that allowed for the identification of ibuprofen 19 

metabolites substituted with aromatic hydroxyl groups.  Two mass spectra consistent with 20 

ring-hydroxylated ibuprofen were detected in 3-fluorocatechol-treated Ibu-1 supernatant 21 

that had been derivatized with acetic anhydride (Fig. A1.2).    22 

 23 

 24 
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Fig. A1.2.   Spectra of putative metabolites identified via GC-MS analyses.  Figures (a) and 2 
(b) (Rt 22.7 min) from Ibu-1 culture supernatant and sludge respectively.  Figures (c) and 3 
(d) (Rt 27.4 min) from Ibu-1 culture supernatant and sludge respectively.  These spectra 4 
were only detected in extracts after 3-fluorocatechol poisoning followed by aqueous 5 
acetylation.  “Ac” is an acetyl group, “Me” is a methyl group. 6 

 7 

These spectra were not detected in the absence of either 3-fluorocatechol or 8 

derivatization.  Both spectra contained a parent ion at 394 and were consistent with  9 

methylated triacetylated trihydroxyibuprofen.  Three separate losses of 42 resulted in 10 

peaks at 352, 310, and 268.  A loss of 42 is diagnostic of the fragmentation of an acetyl 11 

ester.  The aqueous acetylation step employed during derivatization has been shown to 12 

acetylate only aromatic hydroxyls (Fujimoto 1997). Two such spectra appeared, one at 13 

22.7 minutes and the other at 27.4 minutes, presumably representing the two possible 14 

isomers of ring hydroxylated trihydroxyibuprofen. 15 

Dihydroxyibuprofen was the intermediate that was expected based upon analogy 16 

to metabolic pathways employed to degrade similar compounds, such as ρ-cumate 17 

(Defrank and Ribbons 1976; Defrank and Ribbons 1977; Eaton 1996; Eaton 1997).  ρ-18 
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Cumate (4-isopropylbenzoate) is similar to ibuprofen in that it too is an aromatic acid 1 

with a branched aliphatic group in the para position.  It is the only such compound whose 2 

degradation pathway has been described.  ρ-Cumate is dioxygenated at the 2,3 position 3 

by Pseudomonas putida F1 carrying the cmt operon.  It is then subsequently 4 

dehydrogenated to yield 2,3-dihydroxy-4-isopropylbenzoate.  This compound is then 5 

cleaved via dioxygenation across the 3,4-bond to yield a diagnostic pH-dependent yellow 6 

meta-cleavage product.  7 

Although not a canonical intermediate of aromatic metabolism, the presence of 8 

trihydroxyibuprofen could be explained two ways.  First, it may be a dead-end metabolite 9 

produced only in the presence of 3-fluorocatechol.  Under normal growth conditions, i.e. 10 

when the ring cleavage inhibitor was not present, these poly-hydroxy metabolites were 11 

not observed. When ring-cleavage is inhibited, the putative ibuprofen hydroxylating 12 

enzyme(s) may fortuitously oxygenate dihydroxyibuprofen, producing 13 

trihydroxyibuprofen .  We have observed similar nonspecific oxygenase activity when the 14 

same techniques were employed to inhibit ring cleavage of phenol metabolites by 15 

Pseudomonas sp. CF600 (data not shown).  Alternatively, trihydroxyibuprofen may be 16 

the true ring-cleavage substrate.  Although there is precedent for the degradation of 17 

trihydroxybenzenes via ring-cleavage (Haigler 1999), established theory in the field of 18 

aromatic metabolism holds that dihydroxylation sufficiently activates the phenyl ring so 19 

as to permit ring-cleavage (Harayama and Timmis 1989).  As oxygenation is an 20 

energetically expensive reaction, it seems unlikely that an organism would waste energy 21 

by performing an unnecessary oxygenation unless this somehow facilitated the further 22 
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degradation of the ring cleavage product.  Additional analysis is needed before the nature 1 

of the actual substrate for ring cleavage can be confirmed. 2 

As the vast majority of ring-cleavage pathways involve catecholic intermediates, 3 

such a compound is most likely to be a substrate for ring-cleavage.  This is supported by 4 

the observation that catecholic metabolites were not detected unless the system was 5 

poisoned with 3FC, a known catechol dioxygenase inhibitior.  Although a yellow 6 

metabolite accumulated in culture supernatant which had the characteristics of a ring-7 

cleavage product, GC-MS analysis of methylated extracts failed to yield spectra 8 

consistent with a ring fission product of an ibuprofen catechol.  This is not surprising 9 

however, as meta-ring cleavage products have been reported to be recalcitrant to isolation 10 

and analysis (Schweigert 2001). 11 

GC/MS of Activated Sludge Supplemented with Ibuprofen.  After an initial 12 

lag phase of approximately 5 days, the ibuprofen concentration began to drop.  Seven 13 

days after the ibuprofen addition, approximately 50% of the original 500 mg/L had been 14 

degraded.  At this point, the liter of sludge was split in half, one half being poisoned with 15 

1000 mg/L 3-fluorocatechol.  Analysis of derivatized products from the sludge 16 

supernatant via GC/MS revealed spectra identical in all major aspects to those putatively 17 

identified as trihydroxyibuprofen from extracts of Ibu-1 supernatant, including retention 18 

time (Fig. A1.2).  The fragmentation patterns clearly demonstrated these to be acetylated 19 

metabolites, indicating that all of the hydroxyl groups were of an aromatic nature.  As 20 

with the pure culture study, the ring-hydroxylated metabolites were detected only in the 21 

3-fluorocatechol treatment, again suggesting a meta-cleavage pathway.   22 
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In addition to the ring hydroxylated intermediates, two mass spectra consistent 1 

with 2-(4-(2-methylhydroxypropyl)phenyl)propionate (15.28 and 16.31 min.) 2 

(hydroxyibuprofen) and one consistent with 2-(4-(2-methylpropionyl)phenyl)propionate 3 

(carboxyibuprofen) (16.52 min.) were detected in both treatments (Table A1.1).  Similar 4 

mass spectra identified as these ibuprofen metabolites have been identified by other 5 

researchers (Buser, Poiger et al. 1999; Winkler, Lawrence et al. 2001; Zwiener, Seeger et 6 

al. 2002).  Two spectra consistent with hydroxyibuprofen were identified in this study, 7 

presumably representing isomers. 8 

Table A1.1.  Ion abundance data from mass spectra obtained for previously identified 9 
ibuprofen metabolites isolated from sewage sludge 10 
Name retention 

time (min.) mass (relative abundance)           
Hydroxyibuprofen 15.24 178(71) 119(100) 118(95) 117(73) 91(72) 59(42)   
Hydroxyibuprofen 16.31 178(63) 161(25) 119(21) 118(30) 117(32) 91(16) 84(100) 59(2) 
Carboxyibuprofen 16.52 264(28) 233(9) 205(100)      
 11 

Although ibuprofen metabolites with side chain modifications such as these have 12 

been previously reported in environmental samples, we also detected unique, ring-13 

hydroxylated ibuprofen metabolites identical to those detected in the supernatant of 14 

Variovorax Ibu-1 pure cultures.  It is possible that these ring-hydroxylated metabolites 15 

were not detected previously because they are an artifact of the high concentrations of 16 

ibuprofen employed in this study.  However, the techniques employed in earlier studies 17 

were not capable of detecting such catechols.  In this report, 3-fluorocatechol was used to 18 

inhibit meta-cleavage, resulting in an accumulation of catecholic metabolites, while 19 

aqueous acetylation allowed for their detection and characterization via GC/MS.  It is 20 
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important to note that the combination of these two techniques was necessary, as neither 1 

technique alone was be able to reveal the presence of the catecholic metabolites. 2 

 To date, no reports have been published detailing bacterial growth on ibuprofen or 3 

suggesting that environmental microbes may metabolize ibuprofen via ring-4 

dioxygenation and subsequent ring-cleavage.  While the concentrations of ibuprofen used 5 

in this study are far in excess of those detected in the environment, this study 6 

demonstrates the biological potential for ibuprofen degradation via direct oxidation of the 7 

ring followed by further metabolism using a putative meta-cleavage pathway.   Such a 8 

degradation pathway is one mechanism that may account for a portion of the biological- 9 

removal of ibuprofen from wastewater treatment plants (Buser, Poiger et al. 1999) and 10 

laboratory reactors (Winkler, Lawrence et al. 2001; Zwiener, Seeger et al. 2002) that has 11 

previously gone uncharacterized. 12 

13 
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APPENDIX 2 1 

 2 

E. COLI EPI00 PFOS3G7 METHODOLOGICAL CONSIDERATIONS 3 

 4 

The metabolic performance of E. coli epi300 pFOS3G7 proved to be very 5 

inconsistent throughout the project.  The ibuprofen and phenylacetate metabolic pathway 6 

encoded by the ipf genes present on the fosmid showed widely different activity rates 7 

from week to week and month to month, often forcing a complete shutdown of particular 8 

routes of inquiry.  Throughout the project, several attempts were made to identify the 9 

causes of the erratic behavior.  The logic, methods, and results of each line of inquiry are 10 

outlined briefly below. 11 

 12 

The effect of pH on fosmid activity 13 

 14 

Even at it’s most optimal, E. coli epi300 pFOS3G7 metabolized ipf and paa at 15 

remarkably slow rates, often taking four days to achieve the metabolism of a few 16 

milimolar of substrate.  Mature stationary-state cultures might begin to show drastic 17 

deviations from optimal physiological pH; considering that uptake of ibuprofen was 18 

shown to be possibly dependent upon passive diffusion followed by coenzyme A ligation 19 

(Chapter 4), a rising pH may negatively impact metabolic rate.  In order to address this 20 

possibility, attempts to stabilize and lower the pH were made. 21 

 22 

 23 
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Methods 1 

 2 

Culture media was inoculated from overnight LB cultures into LB with 25ppm 3 

chloramphenicol, 2mM arabinose, and 100 ppm ibuprofen with the following 4 

modifications.   5 

 6 

1. unbuffered (control) (pH 7) 7 

2. 25mM HEPES, pH unmodified (7) 8 

3. 25mM HEPES, reduced to pH 6 with 4ul / 5ml ¼ concentrated sulfuric acid 9 

 10 

 Ibuprofen concentration was measured at 24 hours via standard HPLC protocols. 11 

 12 

Results 13 

 14 

At 12 hours, the pH was; 15 

1. pH 8 16 

2. pH 7-7.5 17 

3. pH 7-7.5 (indistinguishable from the non-acidified samples) 18 

 19 

18 hours; 20 

1. pH 8.5 (note the increase) 21 

2. pH 7-7.5 22 

3. pH 7-7.5 (slight difference is noticeable) 23 
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Figure A2.1.  Percent ibuprofen remaining after growth of E. coli pFOS3G7 in LB media 2 
with or without 25mM HEPES buffer and with or without additional acidification of the 3 
media to pH6.  Y-axis amplified to demonstrate the slight differences.   4 

 5 

Conclusions 6 

 7 

There is a clear but small effect of pH control on ibuprofen levels.  OD600s were 8 

measured at 24 hours; no differences were found, though it is possible that a 5% 9 

difference (such as the difference in remaining ibuprofen between the cultures) would not 10 

have been detected.  PIPES, because it buffers in the pH 6.5 range, might be more 11 

appropriate.  The small size of the effect of buffering on metabolism makes this approach 12 

non-ideal.  Further acidification of the media and use of a more ideal buffer could be a 13 

useful approach for optimizing metabolic rate. 14 

 15 

Fosmid aeration 16 

 17 

At the onset of the project, a vertical drum shaker was used for aerating fosmid 18 

cultures in snap cap falcon tubes.  At some point, the drum shaker was no longer in the 19 

lab and the cultures were thenceforth incubated in snapcaps at a 45 degree angle with 20 
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vigorous shaking.  A careful reading of the protocol for the fosmid kit revealed that 1 

Epicentre mentions that oxygen levels have a strong effect on fosmid copy number up-2 

regulation by arabinose (p.16, (Epicentre)), though no explanation is given.  In order to 3 

investigate the impact of aeration on metabolism by fosmid-cloned genes, a more 4 

thorough aeration protocol was tested against the traditional protocol. 5 

 6 

Methods 7 

Culture media was LB with 25ppm chloramphenicol, 10mM arabinose, and 500 8 

ppm ibuprofen.  Two different aeration methods were compared; 15ml snapcap vials 9 

versus 50ml culture tubes, both containing 5ml of culture shaken at 45 degree angle at 37 10 

degrees centigrade.  For rapid visualization of catechol product, 1.5mM ferric chloride 11 

was added to the cultures.  Ibuprofen concentration was measured at 24 hours via HPLC. 12 

 13 

Results 14 

At 18 hours there was no visible difference in the cultures.  At 24 hours, the 15 

conical cultures were remarkably dark. 16 

 17 

 18 

Figure A2.2.  Growth of E. coli pFOS3G7 in LB media with addition of 10mM arabinose, 19 
1.5mM ferric chloride, and 500ppm ibuprofen in two different types of vessel; falcon tube 20 
on the left and 40mL conical on the right. 21 
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transferring the snapcap cultures to conicals for visualization purposes clearly showed the 1 

difference in product levels (Figure A2.2). 2 

 3 

 4 

Figure A2.3.  Same cultures as shown in Figure A2.2 but with the falcon tube grown culture 5 
transferred to conicals for the sake of visual comparison. 6 

 7 

Centrifuging a single sample of each for the sake of concentrating the dark iron-8 

catecholic pigment made the visual results more dramatic (Figure A2.4) 9 

 10 

 11 

Figure A2.4.  One of each culture set shown in figures A2.2 and A2.3 centrifuged in order to 12 
concentrate the dark catecholic polymer. 13 

 14 
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Figure A2.5.  Percent ibuprofen remaining in E. coli pFOS3G7 cultures grown in falcon 2 
tubes (1) or 40mL conicial vials (2). 3 

 4 

Conclusions 5 

The snapcap cultures had barely begun to metabolize ibuprofen while the conical 6 

cultures had metabolized somewhere in the range of 100ppm of the ibuprofen initially 7 

present.  Oxygen level clearly had a strong effect on overall metabolic activity, 8 

presumably through fosmid copy-number up-regulation, though dependence on oxygen 9 

of the dioxygenase step could have also been responsible.  It is likely that the higher 10 

levels of activity observed during the initial stages of the project were due to much more 11 

vigorous aeration of the cultures by the vertical drum shaker. 12 

 13 

Addressing possible instability of the fosmid 14 

 15 

While the two assays above addressed optimization of the system and did reveal a 16 

possible reason that the system performed more robustly during the initial stages of the 17 

project when a drum shaker was used, the erratic behavior of the system on a shorter term 18 

basis is still unclear.  Other researchers using fosmid-based systems have reported similar 19 
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erratic behavior (Abbie Wise and Anthony Hay, personal communication) leading to the 1 

suspicion that fosmids are particularly prone to mutagenesis or recombination.  2 

Additionally, sequencing of pFOS3G7 revealed it to be peppered with transposases (two 3 

of which are shown flanking the core ipf genes in figure 3.20, the locations of others are 4 

outlined in Appendix 5), suggesting that the nature of the insert DNA itself might make it 5 

prone to reorganization and possible reduction of activity.  Such a 6 

mutagenic/recombinative loss-of-function might actually be selected for given the 7 

apparently toxic nature of certain elements of the ipf pathway (See Appendix 4).  In order 8 

to address this hypothesis, three individual E. coli epi300 pFOS3G7 clones were cultured 9 

separately and their activity levels compared to one another. 10 

 11 

Methods 12 

 13 

E. coli epi300 pFOS3G7 was streaked from the culture collection.  Three 14 

individual colonies were inoculated into LB, grown overnight, and 100 ppm ibuprofen 15 

with 2mM arabinose.  Ibuprofen remaining at four days was measured via HPLC. 16 
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 17 

Figure A2.6.  Comparison of remaining ibuprofen in E. coli pFOS3G7 cultures descended 18 
from different colonies. 19 
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Results 1 

 2 

Culture 2 degraded significantly more ibuprofen than the other two as determined by 3 

unpaired students t-test (Figure A2.6). 4 

 5 

Conclusions 6 

The results demonstrate the erratic behavior of the pFOS3G7 system.  In this case, 7 

it appears that two of three cultures develop lower activity levels than would be expected 8 

in accordance with the hypothesis.   9 

 10 

Complete system shutdown 11 

 12 

 In November of 2010, E. coli epi300 pFOS3G7 and all derivatives nearly 13 

completely ceased to function in any capacity.  Virtually every aspect of the system was 14 

varied in hopes of identifying the culprit for the across-the-board loss-of-function 15 

including; 16 

• Ultra-pure mili-Q water versus distilled water 17 

• Stocks of every media component including sodium chloride, tryptone, arabinose, 18 

chloramphenicol, yeast extract 19 

• Culture vessel material; glass versus plastic 20 

• Culture temperature was tested and verified to be 37 degrees centigrade 21 

• Assuring that cultures were as freshly out of freezer stocks as possible 22 
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Despite aggressive testing, the cause of the shut-down was not identified, bringing the 1 

project to a temporary halt. 2 

3 
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APPENDIX 3 1 

 2 

IDENTITY AND INITIAL CHARACTERIZATIONS OF OTHER GENES OF 3 

INTEREST IN SPHINGOMONAS IBU-2 FOSMID LIBRARY CLONES 4 

 5 

Abstract 6 

 7 

 Additional sequencing of pFOS3G7 and pFOS4F6, a clone that is capable of 8 

ibuprofen metabolism but does not accumulate catechols, revealed several genes 9 

whose sequence identities suggested possible involvement in the ipf pathway in 10 

some capacity.  Herein, in silico analyses of the the putative gene products are 11 

presented along with initial inquiries into what role they may play in ibuprofen 12 

metabolism.  The gene names should be regarded as tentative since in no case was 13 

the role of the gene or its requirement for metabolism or transport substantiated.  14 

Briefly, elements of an aromatic dioxygenase complex, both the reductase (IpfH) 15 

and the ferredoxin (IpfI) were identified.  Knockout of ipfH slowed substrate 16 

disappearance.  The two genes were cloned into E. coli epi300 pJ25(ipfABDEF) 17 

but failed to complete the pathway.  An aromatic 1,2-dioldehydrogense gene ipfL 18 

was knocked out with no consequence on pFOS3G7.  A putative regulatory 19 

element ipfR was identified and initial HPLC data suggests that it plays an 20 

inhibitory role.  Two other elements of interest, an enoyl-CoA hydratase (ipfY) 21 

and an acyl-CoA racemase (ipfT) were identified via sequence analysis, though 22 

initial data suggests that they do not play an essential role in the ipf pathway.  23 
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Interestingly, ipfT shares remarkable sequence similarity with human alpha-1 

methylacyl-CoA racemase, an enzyme that performs a fortuitous chiral inversion 2 

of ibuprofen.   3 

 4 

Ferredoxin Reductase ipfH 5 

 Please see Chapter 3 for a description of this ORF. 6 

 7 

ipfH ipfLipfICBA ipfH ipfLCBA ipfH ipfLipfICBA ipfH ipfLCBA

 8 

Figure A3.1.  ORFs found on the SeqMan assembly contig containing ferredoxin reductase 9 
ipfH, ferrdoxin ipfI, and diol-dehydrodgenase ipfL.  Black arrows represent sequences with 10 
high similarity to conserved transposases.  Regions A, B, and C have similarities to 4-11 
hydroxy-2-oxovalerate aldolase, 4-oxalocrotonate decarboxylase, and 4-oxalocrotonate 12 
isomerase. 13 

 14 

 15 

Plant-like ferredoxin ipfI 16 

 17 

Near ipfH, a small ORF was located via random sequencing (Figure A3.1).  No 18 

transposon mutant with an insertion in this small 333bp ORF was found.  Conserved 19 

domain analysis of the translated ORF located a 2Fe-2S ferredoxin conserved domain; 20 

alignment with stereotypical members of the group revealed that each of the conserved 21 

iron-coordinating cysteines is present (Figure A3.2). 22 
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 1 

Figure A3.2.  Alignment between ferredoxin reductase IpfH (“query”) and several other 2 
ferredoxin reductases found in the NCBI database showing the four conserved iron-3 
coordinating cysteine residues indicated by “#”. 4 

 5 

Addition of the electron transport genes to sublconed ipfABDEF (pJ25) 6 

 7 

**Important Note**  The remainder of this section on ipfHI was created before the 8 

modification of the methodology that allowed for strong conversion of substrates to 9 

corresponding catechols by pJ25 pGEM:ipfHI.   10 

 11 

Consideration of the ipfH knockout data, the proximity of ipfI, and the sequence 12 

characteristics of both led to the hypothesis that the two gene products are the electron 13 

transport chain of the dioxygenase IpfAB.  The lack of the presence of these two genes 14 

on pJ25 might explain the very poor catechol generation displayed by pJ25-expressing 15 

clones.  To address this hypothesis, ipfH and ipfI were targeted for cloning.  In order to 16 

place both genes on the same plasmid despite their distance from one another (it was not 17 

known at the time that they were so closely located to one another), a PCR strand overlap 18 
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extension (SOE) strategy was employed.  SOE employs PCR primers with additional 5’ 1 

homology overlaps between the two PCR products that allows for artifical joining of the 2 

two PCR products.  An initial round of PCR using a 50C anneal and 1.5 minute extension 3 

with a pFOS3G7 template and the SOE primers (Table A3.1) was successful (Figure 4 

A3.3) 5 

Table A3.1.  Primers designed for use in the creation of novel Ibu-2 fosmid library 6 
constructs.  Italicized nucleotides indicate the manufactured overlap sequence for use in the 7 
strand overlap extension combination of ipfI and ipfH, while the lower-case nucleotides 8 
indicate sequence that is specific for the pKD4-borne kanamycin resistance insertion 9 
cassette used in the creation of gene-replacement mutants via the lambda red system. 10 

primer name primer sequence
ipfFeDox F sew TAC CGC CGA GCA GGA ATA TTA CAG CCG CGA CA
ipfFeDox R sew 2 GAA GCG GGT ACA TTC CTC CAG ACG GTC CTC
ipfFeDoxRed F sew GGA GGA ATG TAC CCG CTT CAC GCA CAC AAT CTA
ipfFeDoxRed R sew TTT CAC CGC AGG CCT ATG CCG C
ipfLlambdaF ACGGCGCGCCTGAGAGGCCGAGATCCAGCGCTCCTT

gtgtaggctggagctgcttc
ipfLlambdaR ACGGAAGAGGGTGGGCGCCTTGGACGCCCCCTCAGA

atgggaattagccatggtcc  11 

 12 
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 1 
Figure A3.3.  The FedoxSOE project.  The sizes of the ipfI and ipfH amplicons are shown 2 
above, while the successful strand overlap extension product is shown on the lower right. 3 

 4 
The products, which were of the predicted size, were gel purified and used as template 5 

for three cycles of primer-less PCR under the same conditions.  IpfFeDox F sew and 6 

ipfFeDoxRed R sew were then added and PCR performed under the same conditions, 7 

yielding a combined product of the predicted size (Figure A3.3).  The SOE product was t-8 

cloned into pGEMt-easy, sequence verified, and transformed into E. coli epi300 pJ25.  9 

The sequence was searched in silico for the presence of any E. coli –recognizable 10 

transcriptional terminators, of which none were present. 11 

While E. coli epi300 pJ25 pGEM:ipfHI did turn a slightly darker color when 12 

induced with IPTG (Figure A3.4), no detectable catechols were generated as determined 13 

by ferric chloride assay and HPLC analysis (method described in Chapter 2); the dark 14 

color was likely due to high expression of the ferredoxin or to interaction of the electron 15 

transport proteins with the ferric chloride present in the diagnostic media.   16 
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Figure A3.4.  E. coli epi300 pJ25, E. coli epi300 pJ25 pGEM:ipfHI, and E. coli JM109 3 
pGEM:ipfHI, all with IPTG induction, grown in LB with 500 ppm ibuprofen and 1.5mM 4 
ferric chloride.  The slightly dark color that appeared in the pJ25 pGEM:HI culture (poorly 5 
visible in this photograph) did not pellet in the same manner as the catecholic polymers 6 
produced by E. coli epi300 pFOS3G7 (Figure 3.18).  pGEM:ipfHI expression in JM109 led 7 
to a dark coloration in the culture media and in deceased cell material (indicated by arrow). 8 

 9 

HPLC analysis for accumulation of 2-hydroxyphenylacetic acid, presumably a 10 

byproduct of the abiotic degradation of the 1,2-diol product of dioxygenase activity, 11 

showed that E. coli pJ25 pGEM:ipfHI accumulated the 2-hydroxy to a higher extent when 12 

cultured with 1mM IPTG (Figure A3.5) and that the phenylacetate substrate concurrently 13 

disappeared at a faster rate.  However, given that the pBBR1mcs plasmid that is the 14 

backbone of pJ25 and the pGEMt-easy plasmid that is the backbone of the pGEM:ipfHI 15 

plasmid both have a lacZ promoter, it is not clear which aspect of the pathway the IPTG 16 

was inducing.  However, this data strongly suggests that the dioxygenase system is 17 

functioning in E. coli pJ25 pGEM:ipfHI, especially given that induction of the cloned 18 

elements speeds the production of this hydroxylated byproduct.  However, this data was 19 
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poorly reproducible; in subsequent assays the pJ25 pGEM:ipfHI construct behaved 1 

differently until the methodological adjustments described in Chapter 3, namely using a 2 

higher concentration of chloramphenicol and delaying addition of substrate until 24 hours 3 

of growth. 4 

 5 
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m
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 6 

Figure A3.5.  2-hydroxyphenylacetete accumulation and phenylacetate disappearance by 7 
two E. coli JM109 pGEM:ipfHI, E. coli epi300 pJ25, and E. coli epi300 pJ25 pGEM:ipfHI.  8 
Effect of lacZ induction on the metabolic behavior of J25F was examined by addition of 9 
1mM IPTG.  All data points are significantly different from one another as determined by 10 
t-test (p<0.05) 11 

 12 

 In later assays performed a year later using the same strains and techniques 13 

described above but with the addition of a vectorless E. coli epi300 negative control 14 

yielded different results.  E. coli epi300 pJ25 pGEM:ipfHI cultures degraded 1.4mM of 15 
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phenylacetate and accumulated 0.7mM (+/- 0.05mM) catechol as detected by HPLC 1 

analysis of two day old cultures (Figure A3.6)  and dark color generation by two weeks 2 

(Figure A3.7) while the other strains did not.    3 

 4 

catechol

phenylacetate

 5 

Figure A3.6.  HPLC of E. coli epi300 pJ25 pGEM:ipfHI grown in LB with 5mM 6 
phenylacetate for two days.  Strains with single or no vector accumulated no detectable 7 
catechol.  This culture went on to turn dark brown as seen in Figure A3.7. 8 
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Figure A3.7.  E. coli pJ25 pGEM:ipfHI after two weeks incubation in LB media with 5mM 2 
phenylacetate compared to E. coli with only one or neither of the plasmids.   3 

 4 

Ultimately, this strong catechol generation was reproduced by using four times as  5 

much chloramphenicol and by spiking stationary phase cultures with substrate instead of 6 

growing cultures in the presence of substrate from inoculation.   In addition to the 7 

phenylacetate and ibuprofen metabolism presented in Chapter 3, E. coli epi300 also 8 

metabolized m-tolylacetate and 2-phenylacetate to 3-methylcatechol and catechol 9 

respectively.  For direct visualization of catechols, ferric choride was added to 150ul of 10 

culture to a final concentration of 1.5mM in 96-well plate format.  HPLC was used to 11 

directly quantify substrate and catechols.  40:60 methanol:40mM acetic acid running 12 

buffer was used for separation of phenylacetate (10.6 minutes), catechol (4.3 minutes), 13 

and 3-methylcatechol (7.8 minutes).  50:50 methanol:40mM acetic acid was used to 14 

separate m-tolylacetate (11.8 minutes) and 2-phenylpropionate (11 minutes).  A detection 15 

wavelength of 220nm was used for the aromatic acids while a detection wavelength of 16 

280nm was used for the catechols.   17 
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The activity of E. coli epi300 harboring both pJ25 and pGEM:ipfHI towards m-1 

tolylacetate and 2-phenylpropionate was consistent with the results presented in Chapter 2 

2 (Figure A3.8).  The dual vector system degraded approximately 0.55 mM of the m-3 

tolylacetate added and accumulated 0.18 mM of 3-methylcatechol (Figure A3.9).  The 4 

dual vector system also degraded 0.62 mM 2-phenylpropionate and accumulate 0.19 mM 5 

catechol (Figure A3.10).   6 
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 7 

Figure A3.8.  150ul of E. coli epi300 harboring the indicated vector exposed to either 2-8 
phenylpropionate (2PPA) or m-tolylacetate (mTAA).  1.5 mM ferric chloride has been 9 
added as a catechol indicator.  A standard curve of catechol with 1.5 mM ferric chloride is 10 
presented for reference.   11 

 12 
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Figure A3.9.  m-tolylacetate and 3-methylcatechol concentration in E coli epi300 cultures 2 
harboring pJ25 and/or pGEM:ipfHI (pHI) following 18 hours of incubation 1 mM 3 
ibuprofen.  4 

 5 

 6 

0

0.2

0.4

0.6

0.8

1

1.2

pJ25 + pHI pJ25  pHI negative

m
M 2ppa

cat

 7 

Figure A3.10. 2-phenypropionate and catechol concentration in E coli epi300 cultures 8 
harboring pJ25 and/or pGEM:ipfHI (pHI) following 18 hours of incubation 1 mM 9 
ibuprofen.  10 

 11 

 12 

 13 



 

     242

Additional Genes of Interest 1 

 2 

The early unreliability of the E. coli pJ25 pGEM:ipfHI system suggested that a 3 

further gene product might be required for efficient function of the ipf pathway.  In order 4 

to address this now defunct hypothesis, available pFOS3G7 and pFOS4F6 sequence 5 

information was scoured for possible genes of interest, of which four, detailed below, 6 

were identified.  The characteristics of these putative genes and attempts to create and/or 7 

characterize knockouts of each are detailed below. 8 

 9 

Diol-dehydrogenase ipfL 10 

 11 

Aromatic dioxygenase pathways often employ a diol-dehydrogenase step 12 

following the initial dioxygenation.  While the putative ipf pathway does not allow for the 13 

involvement of a classical diol-pdehydrogenase, the possibility remains that a modified 14 

protein serves a similar function in Ibu-2.  Indeed, adjacent to ipfH, an ORF was 15 

identified with high similiarity to xylL, a diol-dehydrogenase that acts on the 1,2-diol of 16 

benzoate (Figure A3.11).  The existing data regarding the activity of E. coli pJ25 17 

pGEM:ipfHI suggested that there might be an additional required protein at the later 18 

stages of the pathway. 19 

 20 
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Figure A3.11.  General reaction performed by the diol-dehydrogenase XylL. 2 

 3 

As no existing sequenced transposon mutants had insertions in this small 432bp 4 

ORF, the lambda red system (Chapter 3) was used to create an ipfL knockout in 5 

pFOS3G7.  pKD4 ipfL primers and a primer flaking the ipfL ORF (for verifying 6 

successful insertion) were designed (Table 3.7) and incorporation into pFOS3G7 was 7 

successful (Figure A3.6), the ipfLlambdaF and ipfLR primer set yielding a 2.2 kb product 8 

indicative of successful incorporation of the pKD4 kanamycin cassette.  Screening with 9 

two flanking ipfL gene primers was consistent with gene replacement.  However, 10 

screening the insertion clones on diagnostic plates (LB with 100 ppm p-toluidine, 11 

100ppm ibuprofen, and 1.5mM ferric chloride, Figure A3.12) clearly showed that the 12 

pathway was still intact.  Liquid culture assays with proper control strains clearly 13 

confirmed this result (data not shown). 14 
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 1 

Figure A3.12.  Dark catecholic accumulation by E. coli epi300 pFOS3G7 with ipfL replaced 2 
by the pKD4 insertion cassette (confirmed by PCR in Figure A3.13).  The media consists of 3 
LB with 100 ppm ibuprofen and 1.5mM ferric chloride. 4 

 5 

 6 

Figure A3.13.  PCR screening of several E. coli epi300 pFOS3G7 ipfL pKD4 insertion 7 
cassette mutants using primers that flank the ipfL gene showing successful gene 8 
replacement; ipfL is 432 bp while the insertion cassette is approximately 1.6kb.   9 

 10 

The presence of a xylL analog directly adjacent to a gene strongly suspected to be 11 

part of the ipf pathway in addition to the data leading to the conclusion that an additional 12 

late-upper-pathway gene is required for efficient metabolism proved too good to be true.  13 

Knocking out ipfL did not lead to loss of function to any degree.  However, the possibility 14 

remains that there is another copy of ipfL present on pFOS3G7 in a different genetic 15 

context that the flanking primers might not be able to detect nor the pKD4 ipfL primers 16 

able to knock out (given that they target flanking DNA for recombination).  The still 17 
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leaves open the possibility that such a gene is required for metabolism.  This hypothesis 1 

can be tested by cloning ipfL into E. coli pJ25 pGEM:ipfHI in order to see if the pathway 2 

is completed; given that in E. coli pJ25 pGEM:ipfHI, both pBBR1 and pGEM plasmid 3 

systems are present, the pOFX low copy number expression system may prove useful. 4 

 5 

AAA+ ATPase ipfR  6 

 7 

Approximatly 3.5kb downstream of ipfF a AAA+ ATPase domain was located.  8 

The sequence data in this region was of fairly low quality, prohibiting identification of 9 

the full ORF.  The identified ORF at present is represented by approximately 1kb.  The 10 

identity with the conserved AAA+ ATPase domain via BLAST conserved domain search 11 

was quite confident (E-value = 3x10-31).  The AAA+ ATPase domain is a molecular 12 

motor that couples ATP hydrolysis to mechanical motion.  This domain is found in all 13 

domains of life in a very wide variety of proteins, often those with proteolytic or DNA 14 

regulatory roles (Hanson and Whiteheart 2005).  While the ipfR full ORF was not 15 

identified, the ready availability of a transposon mutant with an insertion in ipfR coupled 16 

with its possible regulatory role made an initial screening of mutant activity fairly simple.   17 

pFOS4F6 is one of the Ibu-2 pCC1 chromosomal library clones capable of 18 

metabolizing ibuprofen and phenyylacetic acid all the way to the corresponding meta-19 

cleavage products.  A transposon mutant A3 had already been created by random 20 

transposon mutagenesis.  E. coli epi300 pFOS4F6TnA3 was subjected to metabolic 21 

analysis alongside E. coli epi300 pFOS4F6, E. coli epi300 pFOS3G7, and negative 22 

control epi300.  Because E. coli epi300 pFOS4F6 does not accumulate catechols, visual 23 
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ferric chloride assays were not useful.  Phenylacetate disappearance and 2-1 

hydroxyphenylacetate were monitored via HPLC and quantified against standard curves 2 

(Figure A3.14).   3 

Surprisingly, the HPLC analysis showed that E. coli epi300 pFOS4F6Tn:ipfR 4 

actually metabolized  more phenylacetate than intact E. coli epi300 pFOS4F6.  Whereas 5 

E. coli pFOS4F6 has been known for years to be less active towards phenylacetic 6 

substrates than E. coli epi300 pFOS3G7, E. coli epi300 pFOS4F6Tn:ipfR actually 7 

reached substrate disappearance rates similar to that shown by E. coli epi300 pFOS3G7.  8 

It is however important to note that this only represents the first steps of the pathway and 9 

that pathway products were not quantified to any degree.   10 

 11 



 

     247

0

1

2

3

4

5

6

4F6 4F6Tn-ipfR 3G7 4F6TnB1

m
M
 p
aa day 3

day 5

 1 

0

0.05

0.1

0.15

0.2

0.25

0.3

4F6 4F6Tn-ipfR 3G7 4F6TnB1

m
M
 2
O
H
p
aa

day 3

day 5

 2 

Figure A3.14.  the ipfR transposon mutant HPLC assay showing increased phenylacetate 3 
disappearance (top) and increased appearance of 2-hydroxyphenylacetate (bottom).  Also 4 
included in the assay was the ipfY pFOS4F6 transposon insertion mutant pFOS4F6B1. 5 

 6 

In order to make a more detailed statement, resting cell assay with 3-7 

flouorcatecholic meta-cleavage inhibition with measurement of catechol accumulation as 8 

described in chapter 2 would be necessary.  Strangely, while phenylacetate disappearance 9 

in E. coli epi300 pFOS4F6Tn:ipfR was similar to that shown by E. coli epi300 pFOS3G7, 10 

accumulation of 2-hydroxyphenylacetate was remarkably higher in the ipfR mutant.  This 11 

may indicate non-ideal expressional control, the result of which might be that the first 12 
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few steps of the pathway have been released from regulatory control by disruption of the 1 

putative regulatory element ipfR resulting in over-production of the diol intermediate at 2 

such a rate that more is lost to abiotic dehydration to yield the 2-hydroxy product (Figure 3 

A3.14).  These results led to the general hypothesis that ipfR serves a regulatory function.  4 

Two further mutually exclusive hypotheses derive from this initial obvious one.   5 

 6 

Hypothesis 1 7 

Hypothesis 1 is that the higher rate of activity in E. coli epi300 pFOS4F6Tn:ipfR  8 

might indicate that E. coli epi300 pFOS3G7 does not have an intact copy of ipfR which 9 

might explain the difference in metabolic rates between the two intact fosmid clones.  10 

Note that this hypothesis does not take into account the differences in 2-hydroxy 11 

byproduct.  However, the hypothesis was fairly simple to address by examining existing 12 

sequence information and by testing primers that target the existing ipfR ATPase domain 13 

gene fragment.  Sequence information showed that one end of the pFOS3G7 fosmid 14 

backbone appears to end approximately 1000bp downstream of the ATPase ipfR domain 15 

making the question as to the presence of an intact gene unresolved (Figure A3.15).  16 

AAA+ ATPase domain-containing proteins are of highly variable and totally 17 

unpredictable sizes given that the C-terminal of these proteins are extremely divergent 18 

and substrate/role-specific. 19 

 20 
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ipfR

pCC1FOS

 1 

Figure A3.15.  SeqMan (DNAStar inc., Madison, WI) screencap of the fosmid library 2 
sequence assembly project showing the proximity of the end of the pFOS3G7 DNA insert to 3 
the vector; sequence “3G7 pCC1R yahong.seq” begins at the end of the vector. 4 

 5 

To further address the question, primers flanking the domain were created (Table A3.2) 6 

and used on E. coli epi300 pFOS3G7 and E. coli epi300 pFOS4F6 (Figure A3.15).  In 7 

accordance with the sequence data, E. coli epi300 pFOS3G7 responded to the ipfR 8 

domain flanking primers.  In order to determine whether pFOS3G7 has an intact ipfR 9 

ORF, more sequence data would be required. 10 

 11 
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Figure A3.16.  PCR of ipfT, ipfR, and ipfY from fosmid pFOS4F6 or pFOS3G7 template. 2 

 3 

Hypothesis 2 4 

The second and exclusive hypothesis is that pFOS3G7 encodes an intact IpfR 5 

regulatory protein that if knocked out, would lead to more rapid substrate utilization and 6 

more rapid byproduct accumulation.  To address this hypothesis, the ipfR ATPase domain 7 

was targeted for deletion using the lambda red system (primers in Table A3.2).  8 

Incorporation of the pKD4 cassette into pFOS3G7 was successful, but PCR results 9 

continued to suggest the presence of both replaced gene and intact gene despite several 10 

round of extra-copy fosmid curing (Figure A3.17).  The presence of intact ipfR ATPase 11 

domain suggests that there is an extra copy of ipfR on pFOS3G7.   12 

 13 
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 1 

Figure A3.17.  PCR of E. coli epi300 pFOS3G7 with ipfR replaced by the pKD4 kanamycin 2 
resistance cassette using primers that flank the region of ipfR targeted for deletion.  Note 3 
that the double bands correspond to both the pKD4 insertion cassette (large band) and 4 
intact ipfR (small band). 5 

 6 

Conclusions 7 

Initial data suggests that ipfR AAA+ ATPase domain is part of an inhibitory 8 

regulation apparatus.  In order to address this properly, more sequence information is 9 

required so as to more confidently identify the ORF.  Next, the gene could be over 10 

expressed in one of the fosmid clones in order to examine whether it has an inhibitory 11 

effect on metabolic activity.   12 

 13 

Acyl-CoA racemase ipfT and enoyl-CoA hydratase  ipfY 14 

 15 

Two more genes with conserved domain identity that suggests an involvement in 16 

aromatic metabolism were located in the pFOS4F6 transposon mutant library.  A single 17 

E. coli pFOS4F6 transposon mutant was identified that had the tranposon insertion in a 18 

region dubbed ipfY with high BlastX similarity to enoyl-CoA hydratases (Figure A3.18).  19 

Upstream of this region was a second region with an acyl-transferase/racemase domain 20 

dubbed ipfT.  The sequence quality in this region was very poor, prohibiting confident 21 
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determination of the ORFs.  ipfY appears to be very near the end of insert DNA on 1 

pFOS4F6 (Figure A3.18).   2 

 3 

ipfY ipfTipfY ipfT

 4 

Figure A3.18.  Map of partial ipfY and ipfT ORFs showing the location of the pFOS4F6 5 
vector, the location of the pFOS4F6Tn:ipfY transposon isertion, and the targets of the ORF-6 
specific and lambda red pKD4 primers. 7 

 8 

ipfY 9 

 10 

The gene with highest blast-X similarity (30% identity and 86% coverage) to IpfY 11 

was 3-hydroxypropionyl-CoA dehydratase (Teufel, Kung et al. 2009), while wide general 12 

similarity was found to many general types of enoyl-CoA hydratases and dehydratases.  13 

This general gene family is involved in several types of pathways including general fatty 14 

acid oxidation and anaerobic aromatic metabolic pathways for cinnamoyl-CoA and 15 

chlorobenzoates (Hamed, Batchelar et al. 2008).  An initial screening of the pFOS4F6 16 

ipfY transposon mutant suggested that general phenylacetate metabolism was unaffected 17 

by inactivation of this gene (Figure A3.14).  Screening of pFOS3G7 with primers specific 18 
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for an internal region of the gene revealed that it is not present on pFOS3G7 (Figure 1 

A3.16), fairly strongly arguing against an essential role in the upper ipf pathway.  Indeed, 2 

the wide applicability of the enoyl-CoA reaction could reflect the involvement of IpfY 3 

farther downstream in the lower pathway of the reaction.   4 

 5 

ipfT 6 

 7 

Upstream of ipfY, the sequence contains a putative ORF with a conserved acyl-8 

CoA transferase/racemase domain.  CoA transferases generally catalyze the exchange of 9 

a CoA group from one acyl-CoA to another carboxylic acid group, a reaction that is not 10 

suspected to be relevant to the ipf pathway.  However, the second general function of this 11 

conserved domain in the racemation of chiral acyl-CoAs.  Most intriguing is its high 12 

similarity to alpha-branched acyl-CoA isomerases found in animals with which it shares 13 

50-65% identity (see human 2-methylacyl-CoA racemase Q9UHK6.2).  The methyl-14 

acyl-CoA racemases are responsible for isomerization of bile acids and pristanoyl-CoA in 15 

particular (figure 3.8)(Setchell, Heubi et al. 2003) which is particularly interesting given 16 

the related putative functions of IpfD and IpfE in the beta oxidatition of alpha-methyl-17 

acyl-CoA compounds.  Perhaps most intriguingly, in humans this protein is responsible 18 

for the conversion of (R)-ibuprofen-CoA to (S)-ibuprofen-CoA (Reichel, Brugger et al. 19 

1997).  Sphingomonas Ibu-2 growing on ibuprofen as sole carbon and energy source 20 

depletes the R enantiomer more quickly than the S (figure 2.1), suggesting that a similar 21 

chiral inversion system may be at work.  Indeed, in the metabolism of bile acids and 22 

pristanoyl-CoA, the beta-oxidative steps are highly enantiomerically-specific, suggesting 23 

http://www.ncbi.nlm.nih.gov/protein/313104070?report=genbank&log$=prottop&blast_rank=3&RID=RWWFX9GY01S
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that such an inversion of ibuprofen-CoA would be necessary when taking into 1 

consideration the analogies between the eukaryotic and Ibu-2 pathways.   2 

There was no characterized pFOS3G7 or pFOS4F6 ipfT transposon mutant 3 

available for screening.  PCR screening of pFOS3G7 with internal primers was negative 4 

(Figure A3.16), suggesting that pFOS3G7 does not have a copy of ipfT (Figure A3.16).  5 

The fact that Sphingomonas Ibu-2 is able to metabolize both isomers of ibuprofen 6 

(Chapter 2) suggests that there is an isomerase involved in the pathway.  The complete 7 

metabolism of ibuprofen by E. coli epi300 pFOS3G7 despite the apparent presence of an 8 

invertase is somewhat puzzling; it may suggest that the true ibuprofen-CoA isomerase is 9 

present elsewhere on the fosmid or that inversion is either taking place abiotically or is 10 

being fortuitously catalyzed by an E. coli protein.  Futher sequence analysis as expression 11 

will be required so as to more fully determine whether or not ipfT does indeed code for 12 

the first known bacterial 2-arylpropionyl-CoA, more specifically ibuprofen-CoA, 13 

isomerase.  This gene product could be of industrial interest given the fact that the 14 

isomers of phenylacetyl-based NSAID drugs display remarkably different properties.   15 

 16 

Conclusions 17 

 18 

 While the hypothetical missing gene was not found, several genes of interest were 19 

sequenced and characterized to some degree.  The failure of the electron transport 20 

proteins ipfI and ipfH to complete the pathway along with pJ25 proved somewhat 21 

suprising and may indicate that pJ25 does not express one or more of the ipfABDEF 22 
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genes correctly.  It may also indicate that ipfIH is not the electron transport chain of the 1 

ipf pathway but rather that the genes have yet to be located on pFOS3G7.   2 

 Initial data seems to indicate the IpfR plays a role in regulation of the ipf 3 

metabolic system on pFOS3G7 and pFOS4F6.  Further sequencing and subcloning of the 4 

gene along with analyzing the different responses to substrate induction on the two 5 

fosmids and on ipfR mutants will further elucidate what role IpfR might play.  Given that 6 

IpfR seems to be a repressor, shown by the fact that when it is disrupted by a transposon 7 

insertion, metabolic activity actually increases, clearly indicates that it is not required for 8 

metabolism and therefore not the elusive missing gene. 9 

 IpfT, which has similarity to an isomerase/transferase, may prove to be an 10 

ibuprofen isomerase.  Further sequencing, subcloning and expression along with ipfF 11 

followed by enantiomeric analysis would reveal whether or not this is the case.  Such an 12 

alpha-branched phenylacetate chiral isomerase would be the first such bacterial protein 13 

and could prove to be of commercial and industrial value. 14 

 15 

Periplasmic binding protein IpfG  16 

 17 

pFOS3G7Tn:ipfG was originally identified in the pFOS3G7 transposon library by 18 

its slower rate of catechol accumulation.  HPLC analysis showed that ibuprofen 19 

disappearance was slower than E. coli epi300 pFOS3G7.  The ipfG transposon mutant 20 

was sequenced using the transposon-specific primers FP1 and RP1 (Table 3.2) and 21 

characterized via blastx analysis (Altschul, Madden et al. 1997).   and ipfG was 22 

hypothesized to code for the periplasmic binding component of an ABC transporter 23 
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system.  Ibuprofen disappearance assay using the the methods for E. coli epi300 1 

pFOS3G7 transposon mutants described in Chapter 3 revealed that E. coli epi300 2 

pFOS3G7Tn:ipfG demonstrates reduced catechol production activity (46% of the activity 3 

of E. coli epi300 pFOS3G7, Figure A3.19).  Uptake assays were performed on 4 

pFOS3G7Tn:ipfG using the methods described in Chapter 4.  While for the most part 5 

uptake by pFOSTn:ipfG was no different than intact pFOS3G7, uptake by E. coli epi300 6 

pFOS3G7Tn:ipfG was actually higher than E. coli epi300 pFOS3G7 at 2.5µM (p<0.05) 7 

(Figure A3.20). 8 
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Figure A3.19.  Disappearance of ibuprofen in E. coli epi300 pFOS3G7Tn:ipfG cultures 11 
compared to intact pFOS3G7 and vectorless epi300.  3G7tn:ipfG showed significantly 12 
reduced ibuprofen disappearance as determined by student’s t-test.   13 

 14 

   15 
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Figure A3.20.  Uptake of radiolabelled phenylacetate by E. coli epi300 harboring pFOS3G7 2 
or pFOS3G7 with transposon in ipfG or ipfF.  Uptake by pFOS3G7Tn:ipfG was higher than 3 
pFOS3G7 at 2.5 uM phenylacetate as indicated by the star (p<0.05).   4 

 5 

The role played by ipfG proved difficult to elucidate.  While its interruption via 6 

transposon mutagenesis reduced the rate of ibuprofen metabolism, the same ipfG mutant 7 

showed no clear difference from the control strain in substrate uptake rate.  However, any 8 

characterization of ipfG would have wide implications. Paul Black and colleagues in their 9 

pioneering work on fatty acid uptake mechanisms encountered a similar gene tsp (Azizan 10 

and Black 1994).  The putative Tsp protein had similarity to periplasmic binding proteins 11 

of ABC transporter systems as well and was also found to adversely impact fatty acid 12 

metabolism through random transposon mutagenesis tests. However, the role that tsp 13 
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plays was likewise difficult to characterize and no work regarding it has been published 1 

since. It would be informative to confirm its projected localization in the periplasmic 2 

space and also to investigate its affinity for the substrate compound, perhaps by purifying 3 

large amounts of the protein and testing to see if radiolabelled substrate binds to the 4 

protein using western blotting and autoradiography.  If localization to the periplasm and 5 

direct interaction of the protein with ibuprofen could be established, then the nature of its 6 

role in uptake could be infered.  Perhaps such proteins are crucial for uptake under certain 7 

environmental or physiological states, such as particular substrate concentrations, stress 8 

levels, or under particular ionic or pH conditions. Given the occurrence of such proteins 9 

in bacteria and in animals, such work could have wide implications from both a purely 10 

scientific and an applied point of view 11 

The predicted protein product of ipfG has high similarity to a variety of 12 

periplasmic binding proteins of ATP-binding cassette (ABC) transport systems.  When 13 

ipfG was knocked out, metabolism of ibuprofen was reduced.  The proximity of a 14 

putative ABC periplasmic binding protein to an aromatic acid CoA ligase is somewhat 15 

unexpected given that ABC transport systems and vectorial acylation have not been 16 

reported to be related to one another to any degree (Busch and Saier 2002).  While ABC 17 

systems always have a membrane-spanning protein that serves to shuttle the chemical of 18 

interest across the membrane and an ATPase that powers the transport (Jones and George 19 

2004; Szakács, Váradi et al. 2008) some, but not all ABC systems have periplasmic 20 

components (Jones and George 2004).  There are very few examples, however, of the 21 

reverse: periplasmic binding proteins rarely occur without a cognate ATPase. The actual 22 

role played by periplasmic binding proteins is the subject of some debate.  In fact, it has 23 
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been demonstrated that ABC systems that have an associated periplasmic binding protein 1 

do not require the periplasmic component for transport to function (Holland and Blight 2 

1999).  It has been suggested that the periplasmic protein merely serves to speed the 3 

diffusion of the target chemical across the periplasmic space to the inner membrane-4 

spanning protein (Holland and Blight 1999).  5 

This particular experiment was performed in order to determine if the product of 6 

ipfG was involved in uptake.  ABC transporters are fully dependent upon the hydrolysis 7 

of ATP to drive transport.  If both ipfF and ipfG were involved in uptake transposon 8 

inactivation of ipfF should have helped to reveal the role this putative ABC transport 9 

system was playing.  The observation that the metabolic poisons, and thus a lack of 10 

available ATP or membrane charge, had no effect on uptake by the ipfF mutant suggests 11 

that the residual uptake was not dependent upon ATP or a chemiosmotic gradient, and 12 

thus was unlikely to be encoded by a standard ABC transporter such as ipfG. 13 

In fosmid E. coli epi300 pFOS3G7 from Ibu-2, no ORFs have been located to 14 

date that correspond to the other component of an ABC system despite the fact that 15 

approximately 6kb of DNA has been sequenced in either direction of ipfG.  While ipfF 16 

encodes ATP-dependent CoA ligase activity, and is therefore likely an ATPase, the ATP 17 

binding cassette of ABC systems is of a very specific tertiary structure that is 18 

characteristic of the group.  IpfF shares no similarity with the ABC motif.  The question 19 

stands then as to how ibuprofen is transported into the cell and what role, if any, does 20 

ipfG play in transport or metabolism of ibuprofen. 21 

The clear inhibition of substrate disappearance (Figure 3.19) suggests a role in the 22 

pathway, though the uptake data showed that IpfG is not involved in transport.  While 23 
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IpfG does share identity with characterized periplasmic binding proteins of ABC 1 

transporter systems, that similarity is low (20-25%).  Additionally, Swiss-model was 2 

unable to build a three dimensional homology model with any level of confidence.  3 

Taken together, the paucity of information regarding IpfG-like proteins leaves wide-open 4 

what role it might play in metabolism.  Given that there over 100 putative genes with 5 

over 40% identity in the NCBI database, none of which has been characterized to any 6 

degree, further investigation of the role of IpfG may prove valuable to the scientific 7 

community. 8 

In the case of bacterial fatty acid metabolism, what happens to the substrate once 9 

it reaches the periplasmic space is poorly understood.  It seems that the high 10 

hydrophobicity would discourage the fatty acid’s movement across the aqueous 11 

periplasmic space, a situation exacerbated by the acidic nature of the periplasmic space 12 

which would serve to protonate fatty acids, making them even more hydrophobic.  A 13 

gene named tsp has been shown to facilitate, but not be necessary for fatty acid transport 14 

in E. coli (Azizan and Black 1994).  The gene product is water soluble and localized to 15 

the periplasmic space, but little else is known about it.  ipfG is somewhat similar to tsp 16 

(21% identity / 34% similarity), with analogous residues distributed across the entire 17 

length of the sequences.  The protein tsp was shown in one case (Azizan and Black 1994) 18 

to speed fatty-acid transport but has not been the subject of any published research since.  19 

The most similar protein in the Swiss-prot database was BraC, the periplasmic binding 20 

component of a branched-chain amino acid ABC transport system in P. putida (Hoshino 21 

and Kose 1990), with which IpfG shares 25% identity and 46% similarity.   22 
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Schuehle et al. (Schuehle, Jahn et al. 2001) described a similar situation to that 1 

presented by ipfFG in Ibu-2:  in Azoarcus evansii, a 2-aminobenzoate CoA ligase is 2 

located adjacent to a putative periplasmic binding protein in the same gene order as that 3 

of ipfFG (42% and 39% similarity respectively).  The role of the periplasmic binder has 4 

not been investigated in this system, but this example suggests that the co-localization of 5 

these two types of genes may not be an accident, but rather suggests that the IpfG-like 6 

protein might play some enigmatic role in the transport system. 7 

In this system IpfG actually seemed to be working against the uptake process at 8 

2.5 µM, leading to the possibility that IpfG might actually play a role in excretion at low 9 

phenyacetate concentrations (<50 uM).  However, these should be regarded as 10 

preliminary results the role they play in the transport process is still unclear.  11 

12 
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APPENDIX 4 1 

 2 

ADDITIONAL EXPERIMENTS AND LINES OF INQUIRY 3 

 4 

Preface 5 

 6 

 Herein are described several experiments and pilot projects related to the Ibu-2 7 

project.  The rationales, methods, and results are presented in abbreviated form.   8 

 9 

 10 

Screening, Metabolic, and Genetic Work done prior to the Fosmid library 11 

 12 

Screening assays 13 

Two colorimetric indicators had been shown to be useful in the detection of ipf 14 

pathway intermediates; catechol polymerization which is possible to enhance by addition 15 

of ferric chloride and p-toluidine and the yellow color consistent with metacleavage 16 

product of catechols.  Several additional chemicals were investigated for utility as 17 

chromogenic reagents indicative of ipf pathway activity or the presence of ipf pathway 18 

metabolites.   19 

Napthalene dioxygenase acts on indole to create blue indigo (Ensley, Ratzkin et 20 

al. 1983 ) while benzoate dioxygenases are able to act on indolecarboxylic acids to 21 

produce pigments (Keener, Watwood et al. 2001).  Ibu-2 was grown on ibuprofen in the 22 

presence of these chemicals (indole, indole-2-carboxylic acid, indole-3-carboxylic acid) 23 
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at two concentrations in the case of the indolecarboxylic acids (150 and 600ppm) with no 1 

detectable color change.  Pseudomonas HK44, a naphthalene degrader, was used as a 2 

positive control for color generation for indole.   3 

Next, indoleacetic acid was screened for activity under the hypothesis that the ipf 4 

pathway might be able to act upon this aromatic acetic acid.  As no such activity has ever 5 

been demonstrated, no positive control was available.  A variety of indoleacetic acid 6 

concentrations were tested (200, 300, 400, 500ppm).  No ibuprofen-dependent color 7 

change was detected in Ibu-2 cultures. 8 

The nitro blue tetrazolium / 2,3,5-triphenyl-2H-tetrazolium chloride (NBT/TTC, 9 

20ppm/25ppm) indicator described by Finette et al. (Finette, Subramanian et al. 1984) for 10 

the detection of toluene dioxygenase electron transport chain activity was also employed.  11 

The NBT/TTC indicator did not discriminate between ibuprofen grown and glucose 12 

grown Ibu-2.  All colonies turned slightly reddish-brown with no blue color indicative of 13 

NBT reduction by a ferredoxin reductase.   14 

 15 

Mineralization assays 16 

 In order to confirm the mineralization of ibuprofen and to gain insight into the 17 

fate of the carboxyl group, 14C-ibuprofen, labeled only on the carboxyl group, was used 18 

in classic mineralization assays.  A 5% inoculation of exponential phase Ibu-2 was added 19 

to 5ml of 500ppm ibuprofen MSM media in a 40ml conical vial that had been spiked with 20 

50,000 dpm of 14C-ibuprofen.  A small vial of 1ml 1M NaOH was placed in each sample.  21 

The NaOH vial serves as a CO2 trap.  The NaOH trap was removed and replaced 22 
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periodically.  Total dpm per time point was measured by scintillation counter (Figure 1 

A4.1). 2 

 3 
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Figure A4.1.  The percent of total radiolabel present in sodium hydroxide trap following 5 
growth of Ibu-2 in 500ppm ibuprofen MSM in the presence of 50,000 dpm 14C-ibuprofen.  6 
This experiment was performed in plastic culture tubes. 7 

 8 
The data demonstrated that Ibu-2 was mineralizing ibuprofen, but only 14% of the 9 

radiolabel ended up in the NaOH trap, leading to the assumption that the remainder had 10 

either been incorporated into biomass or remained in the media in some form, either as 11 

unmetabolized substrate or as a waste product.  However, measurement of the 12 

radioactivity present in the total active culture samples revealed only 5.1% (+/- 2.2%) in 13 

the biomass and 1.9% (+/- 0.2%) in the media, leaving a total of 79% of the radiolabel 14 

unaccounted for.  On the other hand, the negative control media still contained 65% (+/- 15 

12%) of the radiolabel.  In other words, the active culture was missing 44% of the total 16 

radiolabel when compared to the negative control.  Two hypotheses for where the 17 

missing radiolabel might have gone to, CO2 that escaped the reaction chamber or a waste 18 

product that sorbed to the plastic culture vial, were addressed in a following experiment. 19 
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 In order to prevent possible escape of radiolabelled CO2 via a poorly sealed 1 

reaction chamber, the 40ml plastic conical vials were replaced with 40ml glass vials, the 2 

lids of which had a soft plastic seal.  The use of glass vials instead of plastic also 3 

addressed the possibility that some radiolabel was being tied up in a waste product with 4 

affinity for the plastic vial walls.  Furthermore a chloroform extraction of the glass tubes 5 

upon termination of the assay in order to remove possible hydrophobic insoluble or glass-6 

sorbing radiolabel.  The amount accumulating in the NaOH trap in the Ibu-2 samples 7 

(14.2% +/-3.3%) was almost identical to the previous value (Figure A4.2).   8 
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Figure A4.2.  The percent of total radiolabel present in sodium hydroxide trap following 11 
growth of Ibu-2 in 500ppm ibuprofen MSM in the presence of 50,000 dpm 14C-ibuprofen.  12 
This experiment was performed in rubber-sealed glass tubes. 13 

 14 
The culture and media of the Ibu-2 samples contained only 11.4% (+/- 6.8%) of 15 

the total radioactivity added while the negative control media contained 80% (+/- 0.7%).  16 

The choloroform extracts of the culture vials contained no measurable radioactivity, 17 

indicating that all of the residual media radiolabel was water soluble.  Again, most of the 18 
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radiolabel that was added to the Ibu-2 cultures, 57%, was unaccounted for when 1 

compared to the negative control.    2 

Both experimental systems resulted in almost identical trapping of radiolabel 3 

(14.1% vs. 14.2%), though there were differences in the amount of missing radiolabel 4 

versus the negative control; 44% for the plastic vial versus 57% for the glass.  One 5 

explanation might be that the periodic opening of the vials led to release of radiolabel that 6 

had for one reason or another had not partitioned into the NaOH trap.  The NaOH trap 7 

was tested at termination of the assay to confirm that it was still strongly alkaline, which 8 

it was.  The remarkable difference in missing radiolabel between the Ibu-2 samples and 9 

the negative controls indicates that the loss was biologically mediated in some way; 10 

perhaps there was a volatile radiolabelled waste product that did not readily partition into 11 

the NaOH trap.   12 

 It is interesting to note that the negative controls were also missing notable 13 

amounts of radiolabel, 35% for the plastic and 20% for the glass, which seems to indicate 14 

that there was a consistent leakage or measuring error in at least one point in the system.  15 

The loss of radiolabelled ibuprofen from the negative control might be due to 16 

volatilization of ibuprofen and loss via the gas phase and is somewhat consistent with the 17 

hypothesis that the Ibu-2 cultures were releasing a volatile radiolabelled waste product. 18 

 19 

Investigation of megaplasmids in Sphingomonas Ibu-2 20 

Sphingomonas aromaticivorans F199 (Romine, Stillwell et al. 1999) has a 184 21 

kilobase megaplasmid that harbors several aromatic catabolic clusters.  In order to 22 

address the possibility that Ibu-2 harbors the ipf pathway genes on a similar 23 
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megaplasmid, a two tiered approach was employed.  Firstly, Ibu-2 total DNA was 1 

subjected to pulsed field gel electrophoresis (PFGE), which separates chromosomal DNA 2 

from large plasmid DNA.  Three to nine possible megaplasmids of indeterminate size 3 

were observed (Figure A4.3). 4 
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 6 
Figure A4.3.  PFGE of Ibu-2 total DNA (third lane) with two non-megaplasmid containing 7 
E. coli controls in the first two lanes.  Faint bands possibly representing megaplasmids are 8 
outlined. 9 

  10 
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Each of these bands was cut out, subjected to three freeze thaw cycles, and centrifuged 1 

for fifteen minutes at 15,000 G in order to remove them from the agarose matrix.  Each 2 

sample was then subjected to PCR analysis with the dmpB and dmpC primers (Table 3 

A4.2, Figure A4.4). 4 

 5 
 6 

 7 
Figure A4.4.  Gel electrophoresis of PCR screening reactions of the nine putative 8 
megaplasmid gel purifications.  “1” employed the largest band as template, “2” the next 9 
largest and so forth.  “+” is positive control reactions (diluted Ibu-2 PCR products) and “-“ 10 
is non-template controls.  “c” is dmpC primed reactions while “b” is dmpB primed 11 
reactions. 12 

 13 
These results suggested that, assuming that each triad of bands represented a single 14 

megaplasmid in three different secondary structures, the largest of the megaplasmids had 15 

a dmpC-like catechol metacleavage gene. 16 

In order to investigate whether or not the megaplasmids are necessary for growth 17 

of Ibu-2 on ibuprofen, Ibu-2 was subjected to plasmid curing via two methods.  Firstly a 18 

method adapted from Crosa et al. (Crosa and Falkow 1981) in which Ibu-2 was streaked 19 
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on 1/10 LB plates in the presence of a range of acradine orange concentrations (75, 100, 1 

125, 150, 175, 200, and 600 ppm).  Acradine orange inhibits DNA replication and 2 

selectively inhibits the replication of plasmids.  Each resulting treatment was still able to 3 

grow on ibuprofen as sole carbon and energy source.  Second, Ibu-2 was streaked six 4 

successive times on 0.2% glycerol MSM plates on the assumption that after so many 5 

generations in the absence of selective pressure, any specialized catabolic plasmid would 6 

be lost.  Ibu-2 remained able to grow on ibuprofen as sole carbon and energy source after 7 

this treatment. 8 

While it did appear that Ibu-2 carries up to three megaplasmids and that one or 9 

two of them have genes associated with aromatic metabolism, neither plasmid curing 10 

methods led to loss of ability to grow in ibuprofen. 11 

 12 

Sphingomonas Ibu-2 antibiotic resistances and attempts to create knockouts 13 

Ibu-2 was screened for antibiotic resistances by plating on LB solid media with 14 

the presence of standard concentrations of ampicillin, kanamycin, tetracycline, and 15 

rifampicin.  Ibu-2 was able to grow in the presence of ampicillin and rifampicin, but not 16 

tetracycline or kanamycin.   17 

In order to create a strain of Ibu-2 less prone to contamination during long growth 18 

incubations, plasmid pBBR1mcs-3, which carries a tetracycline resistance marker, was 19 

cloned in via triparental mating with E. coli S17 pBBR1mcs-3 and E. coli BH101 20 

pRK2013, a helper plasmid for the transmission of non-transmissable plasmids (Vallaeys, 21 

Albino et al. 1998).  Negative selection against the E. coli strains was achieved by plating 22 
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the mating on minimal media.  Mating success was confirmed by plasmid purification.  1 

Sphingomonas Ibu-2 pBBR1mcs-3 was placed in the culture collection. 2 

 An attempt was made to construct an Ibu-2 transposon library using the plasposon 3 

pTnModOTC (Dennis and Zylstra 1998) was unsuccessful as no tetracycline resistant 4 

tranposon mutants were recovered from transformation of chemically competent Ibu-2.   5 

 Additionally, an Ibu-2 dmpC PCR fragment was cloned into the suicide vector 6 

pLD55.  The resulting vector was maintained in E. coli BW21037 and an attempt to clone 7 

into Ibu-2 via triparental mating with E. coli HB101 pRK2013 was unsuccessful. 8 

 9 

Generating an isobutylcatechol standard 10 

 An attempt to create large quantities of isobutylcatechol, which is not 11 

commercially available, was undertaken by incubating E. coli JM109 (DE3) pDTG141 12 

(Gibson, Resnick et al. 1995) with isobutylbenzene.  JM109 (DE3) pDTG141 has the 13 

capacity to deoxygenate naphthalene and indole.  The strain was incubated with 50ppm 14 

isobutylbenzene in LB media with 100ppm p-toluidine and 1.5mM ferric chloride to 15 

detect any accumulating catechols.  No catechols were detected. 16 

 There are also three point mutations in pDTG141 that alter substrate specificity 17 

(Gibson, Resnick et al. 1995).  These constructs might prove useful for generating 18 

isobutylcatechol, but were not screened for activity. 19 

 20 

Early attempts to gain a foothold in the Ibu-2 ibuprofen catabolic genes 21 

Prior to the creation of the fosmid library as described in Chapter 3, attempts to 22 

identify Sphingomonas Ibu-2 genes involved in the metabolism of ibuprofen revolved 23 
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around the use of degenerate primers for the amplification of general aromatic-type 1 

genes; the dmpC primers amplify a small conserved fragment semimuconic acid (meta 2 

cleavage product) dehydrogenase, while the dmpB primers amplify an internal fragment 3 

of catechol 2,3 dioxygenase meta-cleavage genes.  Both primer sets yielded fragments of 4 

expected size from Ibu-2 (Figure A4.5).  Two dmpB amplicons and a dmpC amplicon 5 

were cloned into pGEMt-easy.  The dmpB amplicon was sequenced and specific primers 6 

named ”Ibu2cat23” F/R were designed.  Sequences of these fragments were consistent 7 

with the putative gene identity.  This project was later abandoned in light of the rich data 8 

provided by the fosmid library; the amplicons were never compared to Ibu-2 fosmid 9 

library sequences.    10 

 11 

 12 
Figure A4.5  Purified PCR products using the dmpB and dmpC primer sets on Ibu-2. 13 

 14 
 15 
 In order to determine whether the dmpB-like gene was upregulated by, and 16 

therefore presumably involved in, ibuprofen metabolism, an RNA dot-blot was 17 

performed.  RNA from LB and ibuprofen grown Ibu-2 cultures was isolated and spotted 18 

onto membranes.  The membrane was probed with P32-labelled Ibu2cat23 amplicon.  The 19 

results were somewhat suggestive of Ibu2cat23 up-regulation but were unclear, with only 20 
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one of three triplicate spots of RNA from ibuprofen-grown Ibu-2 showing hybridization 1 

(Figure A4.6) 2 

 3 

 4 
Figure A4.6.  RNA dot blot comparing induced and uninduced Ibu-2 probed with ibu2cat23 5 
radiolabeled PCR product.   6 

 7 
 The primers were not specific enough so as to yield any useful information via 8 

sequencing directly from Ibu-2 DNA.  An attempt to obtain additional larger fragments 9 

by PCR amplification using one dmp primer and a random hexamer was unsuccessful.  10 

Because direct sequencing approaches were fruitless, digestion/probing methodologies 11 

were employed. 12 

 Firstly Ibu-2 DNA was digested with a concentration of Sau3AI that 13 

methodological development assays had shown would yield an average of 10kb 14 

fragments (Figure A4.7).  The digested DNA was cloned into pBBR1mcs-3 and cloned 15 

into E. coli, resulting in an approximately 5000 clone a chromosomal library.  The library 16 

was transferred to membranes and probed with a P32-labelled Ibu2cat23 amplicon.  The 17 

probing identified six clones (Figure A4.8).  The plasmids from the six dmpC-positive 18 

library clones were isolated, but determination of their sizes revealed only 1-2kb insert 19 
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size.  PCR with both the Ibu2cat23 and dmpC primer sets revealed that each clone had 1 

both genes (Figure A4.9) and sequencing with Ibu2cat23F/dmpCR revealed that the two 2 

genes were adjacent to one another in each case (Figure A4.10).   A sequencing project 3 

was undertaken but put on hold in lieu of fosmid library generation.   4 

 5 

 6 
Figure A4.7.  Dilution restriction enzyme method development.  Fraction of one unit of 7 
SmaI (shown above the lanes) incubated with Ibu-2 DNA for four hours. 8 

 9 
 10 
 11 

 12 
Figure A4.8.  Representative pBBR1mcs-3 Ibu-2 chromosomal library probed with 13 
ibu2cat23 radiolabelled PCR product.  Positive hybridization is at the bottom of the 14 
membrane. 15 

 16 
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 1 
Figure A4.9.  ibu2cat23 and dmpC primed PCR reactions using the six ibu2cat23 positive 2 
pBBR1mcs-3 Ibu-2 DNA chromosomal library clones.  Products match the expected sizes. 3 

 4 
 5 

 6 
Figure A4.10.  PCR products using ibu2cat23F and dmpCR primers on the six ibu2cat23 7 
positive chromosomal library clones.  The amplicon is approximately 1400bp. 8 

 9 
 Second, Sphingomonas Ibu-2 chromosomal DNA was isolated and overdigested 10 

with EcoRI, SmaI, and BamHI alone and in combinations, separated by gel 11 

electrophoresis, and transferred to a membrane (Figure A4.11a).  The membrane was 12 

probed with a P32-labelled Ibu2cat23 amplicon (Figure A4.11b).  A project was 13 

undertaken to clone a 2kb EcoRI / SmaI fragment into a pBBR1mcs vector but put on 14 

hold for the generation of the fosmid library. 15 

 16 
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A B

 1 
Figure A4.11.  B; BamHI, E; EcoRI, S; SmaI.  A:  Overnight overdigestion of Ibu-2 2 
chromosomal DNA using the enzymes indicated above the lanes.  B:  Result of probing with 3 
radiolabelled Ibu2cat23 PCR product.   4 

 5 
 6 
Activity of ibuprofen-induced aerobically grown Ibu-2 under anoxic conditions 7 

 Given that coenzyme A ligase mediated aromatic acid metabolic pathways have 8 

been more commonly associated with anaerobic metabolism, a small experiment to 9 

demonstrate the oxygen-requirement of the capacity for aerobically ibuprofen grown 10 

Sphingomonas Ibu-2 to degrade ibuprofen was designed and executed.   11 

 Sealed 10ml glass bottles were filled with 2ml of concentrated washed resting 12 

ibuprofen-grown Ibu-2.  Nitrogen gas was bubbled through three samples for thirty 13 

minutes, and three were left undisturbed.  200ppm of ibuprofen was added from a 1% 14 

methanol stock solution and the samples were shaken for two hours.  The samples were 15 

killed with 0.1% sodium azide and samples prepared for ibuprofen quantification via 16 

HPLC. 17 
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 During the two hour incubation, the aerobic samples turned yellow in a manner 1 

consistent with metabolism and accumulation of meta-cleavage product.  In the aerobic 2 

samples, 42.4% (+/- 5.8%) of the ibuprofen remained while in the anaerobic samples, 3 

98% (+/- 2%) remained.  These results are consistent with the oxygen requirement of the 4 

ipf catabolon and support the involvement of the putative IpfAB dioxygenase in the 5 

pathway.  If Ibu-2 does possess the ability to metabolize ibuprofen under anaerobic 6 

conditions, which was never tested, it would seem that any such pathway is active only 7 

when induced.  The presence of an anaerobic pathway is somewhat suggested by the 8 

utilization of a coenzyme A ligase (IpfF), which has been hypothesized to be employed 9 

particularly in facultative anaerobic bacteria as a universal dual-purpose reaction 10 

intermediate in terms of general metabolic strategy (Fuchs 2008).   11 

 12 
 13 
Constructs and Cell-Free Assays 14 

 15 

Meta-cleavage product degradation assay  16 

Ibu-2 has been shown to grow on the methylated phenylacetic acids 4-tolylacetic 17 

acid (4TAA), 3-tolylacetic acid (3TAA), and (2-(4-tolyl)propionic acid (24TPA), but not 18 

on the non-ring substituted phenylacetic acid (PAA) and 2-phenylpropionic acid (2PPA) 19 

(Chapter 2).  Additionally, it has been shown that the two non-growth substrates were 20 

metabolized via the same catechol intermediate.  One possible explanation of the failure 21 

of growth would be that the meta cleavage product (mcp) of catechol is not 22 

metabolizable.  The first step in metabolism of mcp is typically via an NAD+ dependent 23 
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dehydrogenation of the terminal aldehyde group; indeed, the product of this reaction was 1 

detected via GC/MS of Ibu-2 culture supernatant (Chapter 2).   2 

In order to investigate whether or not such a dehydrogenase was at work, cell-free 3 

extract was incubated with fresh mcp with and without the addition of NAD+ and the rate 4 

of disappearance of the mcp was measured via kinetic spectophotometric reading.  5 

Firstly, mcp was generated by ibuprofen-grown resting 40-fold concentrated Ibu-2 6 

preparations by adding 5 mM of either catechol, 3-methylcatechol, or 4-methylcatechol 7 

for 30 minutes.  The supernatant was removed and the mcp characterized via UV-vis 8 

spectral analysis (figure A4.12). 9 

 10 
catechol

4-methylcatechol 3-methylcatechol

 11 
Figure A4.12.  UV-vis spectrum (350-400nm) of the supernatants of Ibu-2 resting cell assays 12 
exposed to catechol, 4-methylcatechol, or 3-methylcatechol. 13 

 14 
The mcp preparation was then combined with cell free extract from ibuprofen-grown Ibu-15 

2 with and without the addition of 5mM NAD+.  A negative control without addition of 16 

cell-free extract was also included.  The samples, prepared in triplicate, were immediately 17 

placed in a KCjunior plate reader for kinetic measurement of absorbance at 382nm, a 18 
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wavelength at which all three mcps absorb strongly.  The disappearance of the mcp over 1 

15 minutes was plotted and a slope calculated. 2 

 3 

Table A4.1.  The rate of the disappearance of metacleavage product of the indicated 4 
chemical when exposed to Ibu-2 cell free extract and NAD+. 5 

Rate of dissappearance of mcp, OD382/min. (standard dev.)
meta -cleavage product of: extract extract plus NAD+ NAD+
catechol -4.09 (1.11) -25.55 (0.94) -8.2 (0.17)
4-methylcatechol -10.6 (2.3) -21.50 (6.24) -3.32 (0.29)
3-methylcatechol -19.68 (3.12) -17.98 (6.84) -1.69 (0.15)  6 

 7 
The disappearances of catechol mcp (5-fold increase, p<0.05) and 4-methylcatechol mcp 8 

(2-fold increase, p<0.05) were both strongly enhanced by the addition of NAD+ while the 9 

disappearance of the mcp of 3-methylcatechol was not affected by NAD+ addition (table 10 

A4.1). 11 

 While the results did not confirm the hypothesis that Ibu-2 fails to grow on PAA 12 

and 2PPA due to a dead-end mcp product of catechol, the results were fully consistent 13 

with what is generally known regarding lower pathways and ring substitutions (figure 14 

A4.13). 15 

 16 
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 1 
Figure A4.13.  Widely distributed bacterial strategy for the metabolism of metacleavage 2 
products of catechol (top), 4-methylcatechol (middle), and 3-methylcatechol (bottom) 3 
(Murray, Dugoleby et al. 1972).   4 

 5 
In many lower pathways studied to date (Murray, Dugoleby et al. 1972) employ two 6 

different partial pathways depending on the ring substitution.  Notably, while non-7 

substituted and 4-substituted catechols tend to be dehydrogenated with NAD+ following 8 

ring cleavage, 3-substituted catechols are instead subjected to non-NAD+ dependent 9 

hydrolysis.   10 

 11 

Catechol 2,3 dioxygenase 12 

 As described elsewhere in this section, a catechol 2,3 dioxygenase was identified 13 

during early degenerate primer PCR on Sphingomonas Ibu-2.  During analysis of fosmid 14 

transposon libraries as described in Chapter 3, additional sequencing on non loss of 15 

function mutants described the DNA sequence upstream of ipfA (figure A4.14).  16 

Immediately upstream of ipfA, an ORF with high similarity to catechol 2,3 dioxygenases 17 

was identified and cloned into pGEMt-easy.  The E. coli JM109 pGEM:Ibu2cat23 clone 18 

proved to readily degrade catechol to ring cleavage product (Figure A4.15).  The 19 
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Ibu2cat23 ORF has a strong conserved ribosomal binding site seven bases upstream of 1 

the putative start codon (Figure A4.16). 2 

 Partial evidence of at least one other catechol 2,3 dioxygenase gene was found on 3 

other locations of pFOS3G7 and pFOS4F6.  The sequence information can be found in 4 

the GeneQuest sequence assembly projects on the attached data DVD. 5 

 6 

 7 
Figure A4.14.  Location of the putative catechol 2,3 dioxygenase relative to ipfA and ipfB. 8 

 9 
 10 

 11 
Figure A4.15.  UV-vis spectrum of the supernatant of E. coli JM109 pGEM:Ibu2cat23 with 12 
500ppm catechol.  Maximum optical density = 377nm. 13 

 14 
 15 
 16 
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 1 
Figure A4.16.  Sequence of Ibu-2 ORF (shown in bold type) consistent with catechol 2,3 dioxygenase.  2 
Putative ribosomal binding site (underlined).   3 
 4 
 5 
Phenylacetyl-CoA disappearance when incubated with Ibu-2 cell-free extract 6 

 Partially in the hopes of identifying novel reaction intermediates, ibuprofen grown 7 

Ibu-2 cell free extract was incubated with 3mM phenylacetyl-CoA (PAACoA) with the 8 

addition of 3mM NADH.  For this pilot assay, a no-enzyme treatment was used as a 9 

negative control.  The general cell-free protocols described in Chapter 4 were employed.  10 

PAACoA was monitored via HPLC, which was performed using 84% 30mM phosphate 11 

buffer pH 7.4, 7% acetonitrile, 9% methanol running buffer with detection at 254nm.  12 

After two hours of incubation, 69% (+/- 1.5%) of the PAACoA was absent from the 13 

samples while none had degraded in the no-enzyme control.  No PAA was detected via 14 

HPLC, indicating that the PAACoA disappearance was not simply due to hydrolysis of 15 

TCGAATGTCGATTATATTATCGAGATTATGACGAGACACACGTTGCTGAGCCTTGAT
TCGGTCCATGCTGAAGTGTGGCGAAATCTTCTGTAATGACCAAGTGAAAAATACAAT
GAATGCGAGAACTTCAAAATGAGTATCAAAAGCTTGGGTTACATGGGATTCGCGGTC
AAGGATGTGCCCGCCTGGCGTTCTTTCCTGGCCCAGAAATTGGGCTTGATGGAAGCA
GGCGTCACCGATGACGGCGCCTTGTTTCGCATCGATTCGCGCGCCTGGCGGATTGCC
GTCCAGCAGGGCGAGGCAGACGATTTGGCCTACGCTGGCTACGAGGTGGCCGATGCA
GCGGGTCTGACGCAGATGACAGAAAAACTGCGGCAGGCCGGAATCGAAGTGGTCACG
GGCGATGTCGAACTGGCCAAGCGGCGCGGCGTGATGGGCTTGATTTCGTTTGCCGAT
CCGTTTGGTCTGCCACTGGAAATTTATTATGGCGCCAGCGAGGTGTTCGAAAAACCG
TTCATGCCCGGCGCGGCGGTGTCGGGTTTTCTGACCGGCGAGCAGGGGCTGGGTCAT
TTTGTGCGCTGCGTGCCGGATTCGGACAAGGCGCTGGCGTTTTATACCCAGGTGCTC
GGCTTCCAGTTGTCGGACGTCATCGACATGAAAATGGGACCGGACGTGACGATTCCG
GCGTATTTTCTGCACTGTAACGAACGCCACCACACCCTCGCGATCGCAGCTTTTCCG
CTGCCCAAGCGCATTCACCACTTCATGCTCGAAGTCTCGTCGCTCAATGACGTCGGT
TTTGCGTTTGACCGGGTTGACGCTGACGGCTTGATCACCTCCACGCTGGGGTGCCAC
ACCAATGACCATATGGTGTCGTTCTATGCAGCGACCCCGTCCGGAGTCGAGGTCGAG
TACGGCTGGGGCGCCCGCACCGTTGACCGCTCCTGGGTGGTGGCACGGCACGATAGC
CCGAGCATGTGGGGCCATAAGTCGGTGCGCAACAAAGCATAAACAACAAGCTGACCC
ACACAGGAGTTTTTGAATGAAGCTTTACTACAGCCCTGGCGCCTGCTCCCTGTCCCC
GCACATCGCCTTGCGCGAGGCGGGCCTGAACTTCGAGCTGGTACAAGTCGATCTGAC
AT 
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the PAA-CoA thiol bond.  However, no notable novel peaks were detected in this HPLC 1 

analysis. 2 

 While this line of research suggested that cell-free extract has the capacity to 3 

degrade PAA-CoA to an unknown product, it was not investigated further.  An 4 

investigation of cofactor requirement, inducibility, or the utilization of denatured cell-free 5 

extract might have led to insights regarding whether the PAA-CoA disappearance was 6 

actually being catalyzed by the ipf catabolon.   7 

 8 

Cloning ipfFG  9 

 Briefly, ipfF and ipfG were cloned adjacently by pGEMt-easy ligation to the PCR 10 

amplicon of ipfFF/ipfGR primers.  The size and orientation of the construct were 11 

confirmed by PCR of the construct (successful amplification with M13R/GR primers).  A 12 

successful construct was stored in the culture collection. 13 

 14 

Cloning the ferredoxins 15 

Two ORFs with similarity to ferredoxin encoding genes were found during the 16 

fosmid sequence assembly project.  One, a plant-like ferredoxin encoding ORF, was 17 

described in Appendix 3.  The other was found 3600 bp downstream of ipfF.  Cloning 18 

primers were generated for both (Table A4.2) and both were cloned into pGEMt-easy 19 

(and stored in the culture collection) (Figure A4.17).  While directional PCR screening 20 

revealed that the insert in both constructs was in the reverse orientation in respect to the 21 

lac promoter, the plant-like ferredoxin (ipfI) turned red, suggesting the presence of a 22 

cloned promoter region.  23 
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 1 

 2 
Figure A4.17.  T7F / gene-specificR primed PCR product of pGEMt-easy ferredoxin 3 
constructs. 4 

 5 

Table A4.2.  Sequences of primers described in this appendix. 6 

primer name sequence
dmpBF CGACCTGATCTCCATGACCGA
dmpBR TCAGGTCAGCACGGTCA
dmpC333F CCGCACGTTTCGACGAGTTCC
dmpC890R AGACGATGCCGGCGTTCTTGC
ibu2cat23F CCTGATCTCCATGACCGA
ibu2cat23R ACGGTCAGGAAACGTTCG
ipfFeDox2F AGCAGGAATATTACAGCCGCGACA
ipfFeDox2R AGTCCTCAACCTCCTGGTGAAGAT
ipfFeDox4F GCGAGATCCCGGATGCGAATTT
ipfFeDox4R ACCGGATAGGCACGCGTTATTGAT  7 

 8 

 9 

 In the hope of identifying fosmid transposon library mutants with transposon 10 

insertions within the ferredoxin ORFs, the fosmid transposon librariers were screened via 11 

PCR using combinations of the tranposon-specific FP1 and RP1 primers with one of the 12 

ferredoxin cloning primers.  A single positive was found, pFOS3G7TnD2 (Figure 13 

A4.18), but sequence analysis of the clone revealed that the insertion was not inside of 14 

the ORF. 15 

 16 
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 1 
Figure A4.18.  PCR screening of the fosmid transposon libraries for mutants with a 2 
transposon inside of a ferredoxin-endocing ORF.  The single positive result is shown. 3 

 4 
 5 
Cloning pJ25 into Novosphingomonas aromaticivorans F199 6 

 E. coli epi300 pJ25 showed very poor ibuprofen and phenylacetic acid 7 

metabolism despite having every ipf ORF shown to be necessary for activity in Ibu-2.  8 

pJ25 was cloned into the aromatic acid degrader Novosphingomonas aromaticivorans 9 

F199 in the hopes that it would provide a missing factor of some sort that would allow for 10 

the expected pJ25 activity.  pJ25 was cloned into J199 by chemical transformation and 11 

incubated with or without 500ppm PAA in the presence of 100ppm p-tolylacetic, 1.5mM 12 

ferric chloride, 1mM IPTG, and 10ppm chloramphenicol.  After a week of incubation, 13 

growth of F199 pJ25 was very poor.  It would also prove to grow very poorly in the 14 

absence of test substrates.  This strain would prove difficult to resurrect from the culture 15 

collection.  This line of inquiry was dropped. 16 

 17 

ipfF toxicity assay 18 

 Observations of impaired growth in ipf clones led to the general hypothesis that 19 

ipfF has a growth inhibitory effect.  Specifically, it was hypothesized that the putative 20 

ligase IpfF leads to the accumulation of reactive coenzyme A thioesters which can react 21 
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non-specifically with vulnerable intracellular targets.  A simple toxicity assay was 1 

designed in order to test this hypothesis.  E. coli JM109 with pGEMt-easy with and 2 

without the ipfF insert was grown and then exposed to a variety of ibuprofen or 2-(4-3 

tolyl)propionic acid concentrations.  The ability of the strains to grow in the presence of 4 

the test substrates was quantified by dilution plating.  Specifically; 5 

 6 

The strains were grown overnight on LBamp.  Eight dilutions of the culture were created, 7 

the first at 1/1000x, which was sequentially diluted 1/10x.  Three 10ul of each dilution 8 

was spotted onto seven different plates.  The plates were LB with 150ppm ampicillin 9 

with 1mM IPTG with; 10 

-nothing 11 

-5, 50, or 500 ppm ibuprofen  12 

-5, 50, or 500 ppm 2-(4-tolyl)acetic acid  13 

All compounds were added to the LB prior to pouring the plates.  The fifth quadrants 14 

were counted because they had sufficient colony numbers for statistical testing while 15 

offering sufficient colony distinction so as to allow clear counting. 16 

 17 

The presence of ipfF in the proper orientation was screened for via PCR using 18 

ipfF774F / T7 primers (figure A4.19). 19 

 20 
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Figure A4.19.  PCR amplification of JM109 with the indicated plasmid using the 2 
T7F/Ipf774F primers.  3 
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 6 
Figure A4.20.  Millions of colonies per microliter of overnight JM109 harboring the 7 
indicated plasmid incoculated onto LB with the indicated 2-(4-tolyl)propionic acid 8 
concentration.  Significant inhibition of growth as determined by t-test is indicated by a 9 
hashed bar. 10 

 11 
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 1 
Figure A4.21.  Millions of colonies per microliter of overnight JM109 harboring the 2 
indicated plasmid incoculated onto LB with the indicated ibuprofen concentration.  3 
Significant inhibition of growth as determined by t-test is indicated by a hashed bar. 4 

 5 
The results clearly show a reduction in viability of the ipfF-expressing strain 6 

when exposed to any 2-(4-tolyl)propionic acid concentration (A4.20) or 50ppm ipf 7 

(A4.21).  High variability in the pGEM:ipfF control (LBamp) spotting likely masked 8 

significant differences in the 5 and 500 ipf plates.  There was no apparent dose-9 

dependency. 10 

These results seemed to suggest that about half of the ipfF-expressing cells were 11 

unable to grow when exposed to the supposed toxin.  It seems more likely that either 12 

growth is slowed by the stressor or that most cells are unable to grow without a mutation.  13 

Neither of these reasonable hypotheses were supported by these results.  One explanation 14 

that is in line with the results might be that the observed data is simply due to what stage 15 

of growth each individual cell was at first exposed to the toxin.  For example, a young 16 

cell might be unable to survive the initial exposure while a mature cell could.   17 

Regardless, this data was inconsistent with the hypothesis that ipfF is generally 18 

toxic whether or not substrate is present.  However, this assay did not address growth 19 

rate, which could still be severely impacted by ipfF expression. 20 
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Environmental Work 1 

 2 

Spiking sewage sludge with ibuprofen and 3-fluorocatechol 3 

The capacity for 1L activated sewage sludge to metabolize ibuprofen to 4 

isobutylcatechol was explored by spiking in 500ppm ibuprofen, incubating for six days, 5 

then splitting the sample into two; with and without presence of 0.1% 3-fluorocatechol 6 

(3FC).  The supernatant analyzed via GC/MS.  50 ppm 3FC is sufficient to inhibit meta-7 

cleavage enzymes in pure cultures.  An initial assay was performed with 50 ppm 3FC.  8 

However, an HPLC analysis of the supernatant failed to detect any 3FC, leading to the 9 

hypthesis that 3FC was being sorbed to the extensive solid suspended phase of the 10 

sewage sludge or was being otherwise chemically modified.  In order to find a 11 

concentration of 3FC that would stay in solution for the duration of the assay, increasing 12 

amounts were added until approximately 50ppm was detectable in the supernatant via 13 

HPLC.  Via this approach, it was found that 0.1% was required.  At the termination of the 14 

30 minute assay, culture supernatant was recovered by centrifugation, filtered, and 15 

subjected to aqueous acetylation and methylation derivitiation.   16 

While several novel peaks were found in the 3FC treated sample, none of them 17 

corresponded to any previously hypothesized ibuprofen metabolites, neither 18 

isobutylcatechol nor 2,3-dihydroxyibuprofen, nor were they recognizable by comparison 19 

to the NIST database.  However, many of the novel peaks had the two-loss-of-42-mass-20 

units signature of diphenolic hydroxyl groups.  All had masses above that which would 21 

be expected for an ibuprofen metabolite.  Some representative catecholic ion mass 22 

fragment patterns included 350/308/266 (21.4 and 21.75 min.), 380/338/296 (21.7 min.), 23 
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366/326/282 (which occurred in four separate GC peaks; 21.8, 21.9, 22.3, and 22.4 min.), 1 

and 382/340/298 (20.5 min.).   Both samples contained a peak with a fragmentation 2 

pattern consistent with the human ibuprofen metabolite carboxyhydrotropic acid 3 

(222/191/163/132/104).     4 

 5 

Spiking bacterial fractionated sludge with ibuprofen 6 

Taken altogether, the sludge 3FC assay results suggested that the Ibu-2 style 7 

metabolic pathway was not overwhelmingly employed by bacteria in the sewage sludge 8 

sample but that rather some unidentified ring-hyrdoxylation leading to meta-cleavage was 9 

occurring.  However, if the apparently high capacity for the sludge to sorb or react with 10 

3-fluorcatechol also applies to isobutylcatechol (Kow = 2.997, KOWWIN), then any trace 11 

amounts of isobutylcatechol produced would not be expected to be detected.  In order to 12 

address this hypothesis, a project was designed in which the bacterial fraction would be 13 

removed from the sludge in order to decrease the threshold of detection for catechols.  A 14 

protocol employing acid-washed polyvinylpyrolidone and differential centrifugation was 15 

applied to sludge and Cayuga lake water.  However, the putative bacterial fractions 16 

showed no ibuprofen metabolism and streaks onto LB solid media suggested that very 17 

little biomass was recovered from the fractionation protocol, leading to the adjusted 18 

experimental design described below 19 

 20 

Isolation of additional ibuprofen-growing organisms 21 

 Furthermore, twelve additional isolates were streaked from an enrichment culture 22 

and subjected to 16S DNA amplification using the 1055F/1492R primer set and 23 



 

     292

sequencing with 1055F.  BLAST analysis of the colonies revealed that many of the 1 

isolates were also Sphingomonads (Table A4.3). 2 

 3 

Table A4.3.  Nearest characterized NCBI nucleotide sequence to the 1055F/1492R amplicon 4 
of each of the twelve isolates as determined by BLAST analysis. 5 

species %identity range of identity NCBI accession
Sphingomonas  sp. 83 403 X94099
Delftia acidovorans 77 304 ��������
Sphingomonas  sp. KMG425 90 406 X94099
no similarity, degraded sequence n/a n/a n/a
Sphingomonas  sp. KMG425 92 56 ����	�
	
Sphingomonas  sp. KMG425 88 403 X94099
Pandoraea  sp. G3307 86 403 ���	����
no similarity, degraded sequence n/a n/a n/a
no similarity, degraded sequence n/a n/a n/a
Burkholderia  sp. MN101 85 402 �
���	��
Alphaproteobacterium  S-A(3)-(A) 87 41 ����	�
	
no similarity, degraded sequence n/a n/a n/a  6 
 7 
 8 
 9 

Incubation of environmental bacterial fractions with ibuprofen and m-tolylacetic acid 10 

 Partly because the biomass recovery from bacterial fractionation of environmental 11 

samples had proven too low for rapid metabolite generation, bacterial fractions were 12 

incubated with ibuprofen and 3-tolylacetic acid (3TAA) for much longer periods of time 13 

and were monitored for accumulation of ring cleavage metabolites. 14 

 Three 1L samples were taken from both the Ithaca municipal sewage treatment 15 

plant and from Cayuga lake (at the Stewart Park pontoon bridge) and subjected to 16 

bacterial fractionation.  The fractions, suspended in MSM, were spiked with 500ppm of 17 

either R/S-ibuprofen, S-ibuprofen, or 3TAA and incubated for six days total.  18 

Disappearance of substrate was monitored via HPLC.  At six days, the sludge sample had 19 

degraded 100% of the S-ibuprofen and 3TAA while only degrading 21% of the R/S-20 



 

     293

ibuprofen.  After spiking again with 500ppm of substrate and incubating overnight, each 1 

sample supernatant contained a slight acid-labile yellow color consistent with meta-2 

cleavage product.  The UV-vis spectrum was characterized against an MSM blank, but 3 

the color was too weak to determine a definitive λmax (Figure A4.22). 4 

 5 

S-ibuprofen R/S-ibuprofen

m-tolylacetic acid

S-ibuprofen R/S-ibuprofen

m-tolylacetic acid

 6 
Figure A4.22.  UVvis spectra of the supernatants of sludge bacterial fractions exposed to 7 
500ppm of the indicated aromatic acid for six days. 8 

 9 
 10 
 The lake bacterial fraction did not degrade ibuprofen, though a slight amount of 11 

3TAA was degraded.  The supernatant of the 3TAA-exposed sample accumulated an acid 12 

labile yellow color which was concentrated by back extraction (acidification, ethyl 13 

acetate extraction, and re-extraction with a smaller amount of neutral pH water).  The 14 

λmax of the concentrated extract was 388nm, while the λmax  of the meta-cleavage product 15 

of 3-methylcatechol, the metabolite generated by Ibu-2 when it grows on mtaa, is 380nm, 16 
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suggesting that the predominant mcp was not consistent with Ibu-2 type metabolism.  The 1 

supernatant absorption spectrum showed a fairly wide hump ranging across the 2 

wavelengths commonly associated with many other meta-cleavage products though, so 3 

the presence of the mcp of 3-methylcatechol cannot be ruled out (Figure A4.23).   4 

 5 
Figure A4.23.  UVvis spectra of the supernatants of Cayuga lake bacterial fractions exposed 6 
to 500ppm of m-tolylacetic acid for six days.  Raw supernatant is shown on the left, while 7 
back extracted concentrated supernatant is shown on the right. 8 

 9 
 The identities of the meta-cleavage products or catechol substrates was not further 10 

investigated, though this experiment demonstrated that environmental samples have the 11 

capacity to degrade ibuprofen and 3TAA via metacleavage pathways over a fairly short 12 

period of acclimation when compared to traditional enrichments, which frequently go 13 

through three cycles of acclimation and incubation with the compound of interest.  14 

15 
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 1 

APPENDIX 5 2 

 3 

IBU-2 DNA SEQUENCES AND ADDITIONAL PUTATIVE PROTEIN 4 

CHARACTERIZATION 5 

 6 

 7 

This appendix contains large DNA sequences that were assembled from 8 

individual sequencing reaction results using primarily fosmids 3G7 and 4F6 as template.  9 

Three contigs that contain the putative genes described in this dissertation are included.  10 

The contigs were assembled using SeqMan (DNA Star, Madison, WI); the alignments for 11 

each contig were studied by eye for discrepancies and repaired manually.  A brief list of 12 

putative ORFs and BLAST gene homologies precedes each of the three contigs listed 13 

here.  Additional sequences and small contigs are contained in an attached data DVD. 14 

 15 
Assembled Sphingomonas Ibu-2 DNA sequences 16 
 17 
 18 
Contig 1, 11741 bp 19 
 20 
11>526 Transposase 21 
840>1718 Catechol 2,3 dioxygenase 22 
2074>3378 ipfA 23 
3485>4021 ipfB 24 
4030>5229 ipfD 25 
5242>5640 ipfE 26 
5665>7246 ipfF 27 
7342>8481 ipfG 28 
9337>8543 Transposase 29 
9800>10809 Catechol 2,3 dioxygenase, incomplete 30 
10818>11150 Ferredoxin 31 
11740>11209 AAA+ ATPase 32 
 33 
         1 AATTCGGTGA ATGCTGCACC AAAGCTTGGC GCTTTTGTCG GGTATTGAGC CGTGGCAGCT 34 
        61 TTTTTCCCAA GTGTTTCAGG CTTCGCAAGG GCCTGGCCCA GGAACCGCTT CGTCTTGGCG 35 
       121 CTGGGGGTCG GCACAGGTAG AAATCGATCG TGTCGCCCCG CTTGTCGACT GCCCGGTACA 36 
       181 GGTAGGTCCA CTTGCCCCGC ACCTTGACGT AGGTTTCATC CAGGCGCCAG CTCGGATCAA 37 
       241 AGCCACGCCG CCAGAACCAG CGCAGCCGCT TCTCCATCTC CGGGGCGTAG CACTGGACCC 38 
       301 AGCGATAGAT CGTCGTATGG TCGACCGAAA TGCCGCGTTC CGCCAGCATT TCCTCAAGGT 39 
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       361 CGCGATAGCT GATCGGATAG CGACAATACC AGCGCACCGC CCACAGGATC ACATCACCCT 1 
       421 GGAAATGGCG CCACTTGAAA TCCGTCATCG TTCCGTCCGT CCAATCTCCG CCAAGCATGC 2 
       481 TCAAGCTTCA CGATTTTTGC AACAGAGCCC GGCCTGGGAT TCATGAATCT CAGCACGCGG 3 
       541 TGCGGTGGGG TAGTGCGTGC CATCGGATGG ACCATACTCA TGATGCGTTC TCCTCAGTAC 4 
       601 CAGAGGCCAA AGGCCCGCCA ACAGGGGCCC GAAACAACGG CCAGCTGCGA CGGGGTACAT 5 
       661 AATCGCACGG AACTCGACAC CTAGGGTTTT TCCCTATCGT AAAAATGTCG AATGTCGATT 6 
       721 ATATTATCGA GATTATGACG AGACACACGT TGCTGAGCCT TGATTCGGTC CATGCTGAAG 7 
       781 TGTGGCGAAA TCTTCTGTAA TGACCAAGTG AAAAATACAA TGAATGCGAG AACTTCAAAA 8 
       841 TGAGTATCAA AAGCTTGGGT TACATGGGAT TCGCGGTCAA GGATGTGCCC GCCTGGCGTT 9 
       901 CTTTCCTGGC CCAGAAATTG GGCTTGATGG AAGCAGGCGT CACCGATGAC GGCGCCTTGT 10 
       961 TTCGCATCGA TTCGCGCGCC TGGCGGATTG CCGTCCAGCA GGGCGAGGCA GACGATTTGG 11 
      1021 CCTACGCTGG CTACGAGGTG GCCGATGCAG CGGGTCTGAC GCAGATGACA GAAAAACTGC 12 
      1081 GGCAGGCCGG AATCGAAGTG GTCACGGGCG ATGTCGAACT GGCCAAGCGG CGCGGCGTGA 13 
      1141 TGGGCTTGAT TTCGTTTGCC GATCCGTTTG GTCTGCCACT GGAAATTTAT TATGGCGCCA 14 
      1201 GCGAGGTGTT CGAAAAACCG TTCATGCCCG GCGCGGCGGT GTCGGGTTTT CTGACCGGCG 15 
      1261 AGCAGGGGCT GGGTCATTTT GTGCGCTGCG TGCCGGATTC GGACAAGGCG CTGGCGTTTT 16 
      1321 ATACCCAGGT GCTCGGCTTC CAGTTGTCGG ACGTCATCGA CATGAAAATG GGACCGGACG 17 
      1381 TGACGATTCC GGCGTATTTT CTGCACTGTA ACGAACGCCA CCACACCCTC GCGATCGCAG 18 
      1441 CTTTTCCGCT GCCCAAGCGC ATTCACCACT TCATGCTCGA AGTCTCGTCG CTCAATGACG 19 
      1501 TCGGTTTTGC GTTTGACCGG GTTGACGCTG ACGGCTTGAT CACCTCCACG CTGGGGTGCC 20 
      1561 ACACCAATGA CCATATGGTG TCGTTCTATG CAGCGACCCC GTCCGGAGTC GAGGTCGAGT 21 
      1621 ACGGCTGGGG CGCCCGCACC GTTGACCGCT CCTGGGTGGT GGCACGGCAC GATAGCCCGA 22 
      1681 GCATGTGGGG CCATAAGTCG GTGCGCAACA AAGCATAAAC AACAAGCTGA CCCACACAGG 23 
      1741 AGTTTTTGAA TGAAGCTTTA CTACAGCCCT GGCGCCTGCT CCCTGTCCCC GCACATCGCC 24 
      1801 TTGCGCGAGG CGGGCCTGAA CTTCGAGCTG GTACAAGTCG ATCTGACATG ATTGAAGGTC 25 
      1861 GCACCGAAGA GCAAAAACGC GCGGTGATCG AAAAGGTCAC GCAGGCGCTG GTTGACGCTG 26 
      1921 TCGGCGCGCC CAAGGAAAAC GTCAGAGTCT GGATCCAGGA CGTGCCCAAG GAGAACTGGG 27 
      1981 GCATTGCCGG GGTGAGCGCC AAGGATCTCG GACGCTAGCT GGCGCGCGGC CCGGGAAGGA 28 
      2041 AATACTTTCA GCGCCAGTTT TTACACTATT TTTATGGAGA ATCAAAATGG CAAGTACACA 29 
      2101 ACGATCACCA TCACACGCAA GGCTCCTGAC GTTGATGTCG GTGCCTTGAT AGAGCGAGAC 30 
      2161 CGTATTCACG GCAGCTTGTA CGCGAACGAG TCGATATTCG AGCTCGAAAT GAAGAAAATA 31 
      2221 TTCTACGACG GCTGGGTTTT CGTTGGTCAC GACTCCGAAG TGCCAACGGC CGGCGAATAC 32 
      2281 GTGCGCCGCA CGCTGGGCCG AGAAGAGGTC TTGATGGTGC GCCAGCGCGA TAGCTCCATC 33 
      2341 GCCGTCATCG CCAACCGTTG CGCGCATCGC GGCAACATGA TGTGCATCGC CAACCATGGC 34 
      2401 AAGGAAAAAT ACTTCACCTG CACCTACCAC GGATGGGTCT ATGATTTGGC CGGAAACCTG 35 
      2461 AAGGACGTTC CCTATCCCGG CGGGTTTGAC AAGGACAAGT CGGAGCTGAA GCTGCAGCCC 36 
      2521 TTGCGCACTG AAGTCTATCG TGGCTTCGTG TTCGCCACCT TCAATGCTTC GGCGCCACCC 37 
      2581 TTGATGGAAC AACTGGGGCG AGGAAAAATC CTGATCGACC GCGCCTGCGA CATGTCGCCC 38 
      2641 ACCGGTCGCC TTCAGCTCAC GGCGGGCTGG ACCAAGCAGC GTTTCGGTGC CAACTGGAAG 39 
      2701 ATGCTGCCCG AGAACGACAC GGACGGCTAC CACGTCAACG ACGTGCATGC TTCCTTTGCC 40 
      2761 CAAGTGATCG ATTCGCACTA TGACAGCGCC GCGATTGCTG CAGAAGACAG CCTGCGCTCC 41 
      2821 CAAGCCAAGG ATTGGGGTAA CGGGCATACA GAATTGTATC TCTCCCCGAC CTACACCGAG 42 
      2881 TATCTCAAGT GGTTCAACAC CACGCCGAAT CGTTTTCCGG AGTACATCGC GCAGATGAAG 43 
      2941 GCCGCCTACG GCGAGGAAAA GGGCGACAAC ATTCTGCGAG ATGGCCCGCC CCACGCCACG 44 
      3001 ATCTTCCCTA ACCTGTTCCT CGGCGAGATG AACATCATCA TTTTTCTGCC AATCAACGCC 45 
      3061 CATGAGTGCG TGCAATGGCA CACCCCGATG CTGCTTGAAG GCGCTCCTGA CGAAGTCAAC 46 
      3121 CAGCGCATTA TCCGCAACTC CGAAGCGGCG ATGGGCCCCT CGGCCTTCCT GCTTGCCGAC 47 
      3181 GACAGCGTGA TTTCGGAGCG CCAGCAAATC GCCTTGCGCG ACCGTGCCGA CTGGCTGGAC 48 
      3241 GTGTCGCGCG GTCTGAACCG AGAGCATGTC GATGAGATGG GCGTGGTGGT GGGGCACGTG 49 
      3301 ACCGACGAGT GTACCAACCG CGGCTTTTGG CAGCACTACA AAAAGGTGAT GACAGCCCCT 50 
      3361 TCGCCGTCCC CTGTTTGAGC GTATTGATCA CCACCTCATC CGCCCCCCTT CGGGGGCGGC 51 
      3421 GGATTCACTG AAATTTCGTG TTTAAAAAAG CGTCCTGCGA GCAGGACGCG CAAGGAGATA 52 
      3481 CATCATGACA AGCATCACAG CCGCTGTCGG CACCAAGCAA AAGACTGACG TGATCGGGCT 53 
      3541 GGAAGAGCAC CGCGAAGTCT GCGACTTTTT GTACCGAGAG GCGCGCCTGG CTGACGAATC 54 
      3601 GCGTTACGCC GAATGGGAGG CGTTGGTTGA GGACGACATG ACCTATTGGG TTCCGCGCGG 55 
      3661 CGAGGGTGAT TACGACATGA ACAAACATGT GTCGATTACC GCGGACAACC GTTCCCGCTT 56 
      3721 GCGCGTCCGC ATCGCGCAGT TGATGACAGG CAAGCGCCAT GCCCAACTGC CGGTGTCGTC 57 
      3781 GATGCGGCGG ATCGTCAGCA ACATTGAGGT AGAGCATCAT GCGCAGGGCG GCTACCGCGT 58 
      3841 ACTGTCGAAC TTTGTGCTTT ACGAATTGCG GCGCTCATCG ACAGGTCAGA TAGAAGTTTG 59 
      3901 GCCGGGGCGG GTGGAGCACC ATCTGCGCCG CCGAGCGGAT GGCTCGCTGG GCATGTTCTT 60 
      3961 CAAGAAAGTG GTGCTGATCC ATGGGGACGA GGCTGTTCCC AGTCTGGCAT TCATCATCTG 61 
      4021 ACGCGCACCA TGGTCACGCG AGTGAAGAAA AAGACCAGGG CCAGAGCCGC GATTGCCGGG 62 
      4081 CTGGGTTTCA GTGCGATGTC ACGCCAGCCC GTCGGCACGA TCCGCGAGTT GGCGGCCACT 63 
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      4141 GCGGTGGCCG CCGCTGCCGC TGATGCGGGT CTGCGCCTGC AAGACATCGA TGGCTTGTTG 1 
      4201 CTCAACAAAA GCCCGGCAGC AGAGCCTGAA GAGTTGCCCT TGCGTCTGCA AAACGACCTT 2 
      4261 GGGCTGCGCG ACCTGGGGCT GCTGGCTGCG ATGGATTCCG AGGGCTCGAC AGCGGTGCAG 3 
      4321 ATGGTGCAGT ATGCAGCGAT GGCGGTGCGT GAAGGACTGG TCAAGTCGGT GGCCTGTGTG 4 
      4381 TTTGCCGACA CCCCGCTCAA AGGATCGGGG GCAGGTGGGG GTGATGCCTT TGCTCTGGCG 5 
      4441 ATGCCGCTGA CCGGTGTCGA GGGTTGGGAG GCCCAGCAAG GCTTCCTGGG GGCCACCGCC 6 
      4501 GCCTATGCGT TGGCCGCGCG CCGTCACATG GCGCTCTATG GCAGCACGGC CGAGCAGCTC 7 
      4561 GGCGCCTATG CGCTTGCTTG CCGGCAATGG GCGGCGCTGA ACCCGCAGGC CTTCCTGCGC 8 
      4621 AAGCCGATGA CGATGGACGA CTACCTCGCA TCGCCTTTCG TCGTGGAGCC GTTTCGCGTG 9 
      4681 TTCGACTGCT GCTTCCCGGT CAACGGCGCT GTCGCGCTCA TCGTCACCTC CGCCGACCGT 10 
      4741 GCTGTTGATG GGCCTCAGCC GCCCGTTTTC ATCCACGGCA TGGGCCAGGG GCACCGCGGC 11 
      4801 CGCAGTGGCC TGAGCGGCGA CGATCCAGAG GTCTTCACGG GTGCCATCCA GGCCGGCCAG 12 
      4861 ACCGCTTACC GTAGTGCCGG GGTGAATGCC AGTGATGTGA CTCAGTGCCA GTTTTACGAC 13 
      4921 GCTTTTTCTT ACGCCGGCAT CCTGGGTCTG GAGGCATATG GGTTGTGTCC CCGGGGTGAG 14 
      4981 GGCGGGGCCT TCGTCGCGCA GGGCCACACC GCGCCCGGCG GCAAGTTGCC GGTCAATACC 15 
      5041 GGTGGTGGGC ACCTGTCGGG CTTTTACCTG CAGGGCATGA CGCCGCTGTC GGAGGCGGTG 16 
      5101 ATCCAGGCAC GCGGTGCCGG CGGCGCGCGG CAGGTCGTGC GCAACGACTT GATTCTGGTG 17 
      5161 ACCGGCAATG GTGGCTGCCT TGACTACCAC ACCTGCGTAC TGGTCAGCCC ACACCGCACC 18 
      5221 CTCGCCTGAC TGGAGCCATT GATGGATAGC ACCTTTTTTC ACCGCTACGA CGAGGCATTT 19 
      5281 CTCGCATTCA TCGCTGCTGG CGAATTGCGC ATTCCCGTGC ATACCGAAAC CGGCCGGGCG 20 
      5341 CTGGGTCTGC ATCAGCGTGC CTGGTGTGTC GCTGGAGATC ACGGCGTGCA ATGGAGGCCC 21 
      5401 GCGTCTGGCC GCGGGGCTGT TCTCTCTTTT ACCGTGACGC GTCGGCCCTA CACGCCCGAA 22 
      5461 TTTCCCGTGC CTCTGGTGCA TGGATTGATC GAGCTGGCCG AGGGGCCGCG ACTGATATGC 23 
      5521 CGGCTTGACG GCGTCACGCC CGAGGCGGTC GCCGTCGGTC AGGCGGTCCA GGCGCATTTC 24 
      5581 GACCGACAAG GTCTGGTGTT CCGACCGGCC CTTGACGACG GCAATAAGGC CGACAAGTGA 25 
      5641 AACTTAAAAC CAAGGAGACA AGTTATGTTG GCAAGAGACC TGGTTAAGCG CTGTGCGCGT 26 
      5701 AACTACCCGA CCAAGACCGC CTACCTGTGC GGCGAACGCT CGCGTAGCTG GCGCGAGATG 27 
      5761 GATCAACGCT CCGACCGGTT CGGCGTGGCC TTGCAACAAC TCGGCCACCG TCCGGGCGAG 28 
      5821 GCGGTGGCCA TCCTGACGCA AGAAAGCATC GAGGTGTATG AGCACTTCTT TGCCTGCATG 29 
      5881 AAGATCGCGG CGCCGCGGGT CGGGCTCAAT ACAGGTAGTT GGCCCGAGAT GCTGCACGTG 30 
      5941 CTGAAGGACA GCGAGGTCAA GTTCCTGCTG TTGGGATACG CGCTGCCGGC ATCTCTCGCC 31 
      6001 GAGCGGCTGG GCGAGCTCAA GGCACTGGGC ATCACGCTGA TTGGCTATGG TGCAGGCCAT 32 
      6061 GGTCTGGAGC GCGACTACGA AAGCTTGCTG GCGACAGCCG AGGGTGAGCC GCACTGGCCA 33 
      6121 GCGTTGGCGC CCGACGACAT CCTTTTTGTC AGCTACACCT CCGGCACGAC CGGTGTACCC 34 
      6181 AAGGGCGTAA TGCTCACGCA GGAGGGCGGT GTCAACTGCA TCCTCCACTC GCTGATTTCT 35 
      6241 TTTGGTTTTG GACCTGACGA TGTCTGGTAC ATGCCGGCGG CATCGGCCTG GGTGGTCGTG 36 
      6301 ATACTGAACG CATTCGGGCT CGGCAACGGG ATGACGACCG TGATTCCGGA CGGCGGATAC 37 
      6361 CAATTACAGG CTTACCTGCG CGACATCGAG CGTTTTCGCG TTACGGTCGG GATGCTCGTC 38 
      6421 CCGACCATGC TGCAGCGCGC GATTGTTGAA ATCCAAACCA ATCCAGTTTA CGACCTGTCC 39 
      6481 TCTCTGCGCA TGGTGGTGTA CGGCTCGTCG CCCGCCACGC CCAAATTGAT CCGTGATGCG 40 
      6541 AGGGCGACCT TCAAGGGGAT CAAGCTGCTG CAGGCCTACG CGATGACAGA AGCCACCGGC 41 
      6601 GGCTGGATCA GCTACCTGAC CGATGCCGAC CACGAGCATG CGTTGCGCGA GGAGATCGAG 42 
      6661 CTGCTCAAGT CGGTCGGCCG CATCGGCATT CACTACGACT GTTCGATTCG CGACGAGTCG 43 
      6721 GGCCAGCCAG TGCCGATCGG TCAATCCGGC GAGATCTGGC TGCGTGGCAA TACCATGATG 44 
      6781 AAGGGTTACC GCAACCTGCC CGAGGCTACG GCGGAAGCGA TGCCGGACGG CTGGCTGCGC 45 
      6841 ACCAACGACA TCGGGCGGCT CGACGAGCGC GGCTATCTGT ATCTGCTGGA TCGGCAGAAG 46 
      6901 TTCCTGATCA TTACCGGCGC GGTCAATGTG TTTCCAACCA CGGTCGAGGC GATTCTGGTC 47 
      6961 GAGCACCCGG CGGTGGAGGA GGTGGCCGTG GTCGGCGTGC CGCACCCGGA ATGGGGCGAG 48 
      7021 GCGGTAGTCG CTGTGGTCGT CCGAAAACCT TCGCACCGCG ATGTGACGGT GCAGGCGCTT 49 
      7081 ATCGATTTTT GTCACGGCAA GCTCAGTCGC CCCGAAACGC CCAAGCATGT GGTGTTTGTC 50 
      7141 GATGAACTGC CCAAGACATC CAACGCCAAG CTGAAGAAAG GCGAGTTGAA GAAATGGCTG 51 
      7201 TCTGGCGGTG CAGTGCCCCT TCCCTGGCAA CTCGAAGTTG CTTGACCTTG TAGTGCCCCG 52 
      7261 TCAAGCACCT CTAAAAATTC CCCCTGCTTA AAACTTGTAA CCCTAGGAGA CAAAAATGTT 53 
      7321 GAAACTACGC AACCCCATGA AATGTTTGAT GGCTACCGCC GTCGTGTGTG TGTCCGTCTT 54 
      7381 GTTGCCGGCG GCAGCTCAAA CCAAGCCGCC GTTGAAAATC GGTGCCTATC TGTCCGTCAC 55 
      7441 TGGCCCTGCT TCTTATCTGG GCGCGGTGCC ATGAAAACCG TCGAGATGTA CGTCGAAGCC 56 
      7501 ATCAACGCCG CTGGCGGCAT CGATGGCCGC AAAGTCGAGT TCCAGGGCTA CGACGACGAA 57 
      7561 TCGGATGCAT CGCGCGCCAA TACGCTGGTC AAGCGTCTGA TCGAGAACGA CAAGGTTCAC 58 
      7621 GTCATCATTG GCGGCTCTAC GACAGGCGCG ACGATGTCAG CCGTCCCGCT GGTGGAACGG 59 
      7681 GCCGGTATCG CCATGCTGTC GCTGGCCGGT GGCAGTGTGA TCACCGACCC TGTCAAGAAG 60 
      7741 TTCGTTTTCA GACTGGCCCA CAACGATGCG ATGGTAGTCA GTCGTCTGTA CGACCACATG 61 
      7801 CTGGGTCGCG GTATCAAGAG CATCGGCATC ATTGCCGGTA GCGATGCGTT CGGTCGATCC 62 
      7861 TGTCTCTCAT TCGCGCAGAA ATTGGCACCG GGAAAAGGCG TCAAGATTCT GCGCGATGAG 63 



 

     299

      7921 TCCTACAACG CCAAGGACAC GGACATGACC GTACAGCTGA CCAAACTGCG ACAGGAACCG 1 
      7981 GGTTTGCAGG CGATCTTCAA TTGCGGCTTC GGCGAGCCGG CGGCGATTGC CACCAAGAAC 2 
      8041 TACAAGCAAC TCGGCATCAC CGTGCCGCAC TACGGAACCC ATGCGCTGGC GTCGGACGCT 3 
      8101 TTCGTCAAAT TGGCGGCCGG CGCGGCGGAG GACATGATCA TGGCCAACGG CCCCATCCTT 4 
      8161 GTGTGGGATC AATTGCCGGC CAGCGACCCC CAGCAACCGG TGGTGCAGTC CTATGTGAAG 5 
      8221 GCCTACCGCG CCAAATTCAA CGAAGCCCCT TCCTTCATTG CGGGTATTGC ACATGACTCG 6 
      8281 TTCTTCGCCA TCCGGGAGGC GGTGCGGCGC AGTGGCAGTA TCGAGCCCGC CAAAATTCGC 7 
      8341 GATGCCATCG AAAAAGGCAA CGCCTTTGTG GGTGTGACAG GGCATTTCCG GATGATGAAC 8 
      8401 GAGACCGACC ACATTGGCTT GACCCCCGAC TCCTTGCGGA TCGTACAGGT CAAGAATGGT 9 
      8461 CGATGGAAAC TCGTTGAATA AGTGTAATGG CTCTGTTGCA AAGATTGGCG GCAGTCAGAG 10 
      8521 GTAGGCTGTC GCTCTGCGCC GATCAGGCGG CTGCTGCGAA ATGGTGGTTG AGCATGCCCA 11 
      8581 TGGCCTCCGT CAGCGCCGAG GGCCCAATGC CAAAAGCTCT CTCCACAAGG CGCACCTCGC 12 
      8641 CCCTGATGCC GGGCTGCAGG CACCAGGGGC GAGCCTGTCC TTTGCGCAGG GCTCGCATGA 13 
      8701 CTTCGAATCC CTTGATCGTG GCATAGGCCG TGGGGATCGA TTTGAAACCG CGCACCGGCT 14 
      8761 TGATCAGTAT CTTGAGCTTT CCGTGATCGG CCTCGATCAC GTTATTGAGA TACTTCACCT 15 
      8821 GCCGGTGGGC CGTCTCCCGG TCCAGCTTTC CTTCGCGCTT CAATTCGGTG ATCGCTGCAC 16 
      8881 CATAGCTCGG CGCTTTGTCG GTATTGAGCG TGGCAGGCTT TTCCCAGTGC TTCAGGCCTC 17 
      8941 GCAGGGCCTT GCCCAGGAAC CGCTTCGCTG CCTTGGCGCT GCGGGTCGGC GACAGGTAGA 18 
      9001 AATCGATCGT GTCGCCCCGC TTGTCGACTG CCCGGTACAG GTAGGTCCAC TTGCCCCGCA 19 
      9061 CCTTGACGTA GGTTTCATCC AGGCGCCAGC TCGGATCAAA GCCACGCCGC CAGAACCAGC 20 
      9121 GCAGCCGCTT CTCCATCTCC GGGGCGTAGC ACTGGACCCA GCGATAGATC GTCGTATGGT 21 
      9181 CGACCGAAAT GCCGCGTTCC GCCAGCATTT CCTCAAGGTC GCGATAGCTG ATCGGATAGC 22 
      9241 GACAATACCA GCGCACCGCC CACAGGATCA CATCACCCTG GAAATGGCGC CACTTGAAAT 23 
      9301 CCGTCATCGT TCCGTCCGTC CAATCTCCGC CAAGCATGCT CAAGCTTCAC GATTTTTGCA 24 
      9361 ACAGAGCCAT AATTGGTACG AACGCCGTTC ACCGAGACGG TCTTGCCGAT CTCGGGGATC 25 
      9421 GTAGCTTGTT TTTCCATTAC TGCGTCCGAC ATGGAGATGA CAGGAATTGA CCTACAAGGG 26 
      9481 CGCGCCACCA GGAGGTCGTC TCACGGAATT CGCCGGAAAG GACCGGCTGT GCGCTCTTGT 27 
      9541 TTTAGTTGCA CATAGAGGAA CTCCTTACAA GGCGAATCTC GCCGTTCAGG CCCTCGAACA 28 
      9601 CGTCGATAAT CAGCGCTTGC GTGCTTCGCA AGCGCCGAGC CTGAAGCCGC GTTTCGACAT 29 
      9661 TTTTCCCGAT CTGGCTGATC TACGCTGTCG TTCAACCACT CCAAAAGCGG TTCGGGCCGG 30 
      9721 GGCGTTATCA GGCGAATCCC GTGCAAACCG TTGTCCTGAT GCGGTTGCGG AGGTGGTCGA 31 
      9781 GTTGGACTAA GGCGCGGGGG GCGGGACCGG GCTGGGGTGC CGGGCTTGAA GTAGAGACAA 32 
      9841 GAGAGAGGAT GAGCGCGATG TCGCAAGTGA CCGAGCTGGG TTATATCGGT CTGTCCATAT 33 
      9901 CGACGTTGAG GCGTGGAAGG ATTATGCGGC GTCGATCGTC GGCATGGAGA TCGTCGACGA 34 
      9961 GGGTGAGGGC GACCGCATTT ATCTGCGGAT GGACAAGTGG CATCACCGCC TCACGCTGCA 35 
     10021 CATCGATGGC GGCGACGACC TGGCCTATAT CGGCTGGCGG TTGCGGGTCC GTCCGAGTTC 36 
     10081 AACGAGCTGG TCGAGAAGCT GCGGCTCAAC AACCTCGACA TTCGCGTGGC GTCGTAGGAG 37 
     10141 GAATGCGCCG AGCGGCGTGT TCTGGGCCTG GCCAAGACGG TCGATCCGGG CGGCAACCCG 38 
     10201 ACCGAGATCT TCTATGGTCC GCTGGTCGAC AACTGGCGTG CGTTCCACCC GGGGCGGCCG 39 
     10261 ATGTTCGGCA AGTTCATGAC CGCCAAGGAA GGCATCGGCC ACTGAATCTT GCGCCAGGAC 40 
     10321 GACATTCCTG CCGCGGTGCG CTTCTACGAG ATGCTCGGCC TCACCGGCTC GGTCGAGTAC 41 
     10381 AAGCTTCCGC TTCCCGGCGG CATGGTGGCG CAGCCTTATT TCATGCACGT CAACGGGCGC 42 
     10441 CAACATTCGG TGGCGTTCGG CGCTTGGGCC GATGAAGAAG CGGATCAAGA TGCTCGAATA 43 
     10501 TACCGATCTC GACGATCTGG GGGTGGCGCA CGACATCATC CGCCAGCGCA AGATCGACGT 44 
     10561 TGCGCTGCAG CTGGGCAAGC ATTCGACCGA CGAGGCTTTG ACCTTCTACT GCCAACCTCG 45 
     10621 GCGCTGGAGC TGGGCTGGGT GCCAAGAAGG CGGACAACCA GCAGGAATAT TACAGCCGCG 46 
     10681 ACATTTTCGG CCACGGCAAC GAGGCCGCCG GCTACGGGAT GGACATCGAG CTCTAACCGA 47 
     10741 GCGTTTGAAG TCTTGGGCGA TGGACGCCGG GGTCTTGATG ATCCCGGCGT CCCAGCGACG 48 
     10801 ATTGCGAGAA GGATGATATG AGCGAGCTGA TTCGCCTGTG CCGAGTGGAT GAGGTGAAGG 49 
     10861 AGGGCGAGCC GGTGGCGGCG CATGTCGCCG GGCTGCCGCC GTTTGCGGTC TATGATGTCG 50 
     10921 GGGGCACTTA TTATGTGACC GACAACATCT GCACGCACGG CAATGCGATG CTGACCGACG 51 
     10981 GCTATCAGGA CGGCGGCACG ATCGAATGCC CGTTCCATGG CGGCGCGTTC GACATTGCGA 52 
     11041 GCGGGGCGGC GACGGTGTTC CCGTGCCAGA TCCCGCTCAA GACCTATAGT GTCGAGGTCG 53 
     11101 ACGACGGCTG GATCGCGATC CGGCTGGCAT CGCCCGAAGC GGGCGCCTGA AATGGGAGCT 54 
     11161 GAGATGGGGG CACGGACGGG GTTCGAGGAA GCTGGGGCGC GCGATCTTCA CCAGGAGGTT 55 
     11221 GAGGACTGGT GGCGCGCCAT GCCGAGCTGA TCACGAGGAC CGTCTGGAGG AATGGCCCGA 56 
     11281 GCTGTTCACC CAGGAGTGCG TCTACAAGAT CATCGCGCGC GAGAATGTCG ACCGCGGCCT 57 
     11341 GCCGATCGCG GCGATCTTCT GCGACAGCCG CAAGATGCTG GTGTGAACCG ACAATTTAAG 58 
     11401 CTGCAATCTG CTTTGAACGC GGAATGCTGC CAACCGACAG ATTATGCTGC AGCGGACGAG 59 
     11461 ACTTCACACG CACCGTGATT GCCAGCCCGG GCGCAATTCT CATGATGGTT TTGAAGTCCC 60 
     11521 GGCCACCAGC TGCTCCAGCG CCTGCACCAG AGGCATTGCC GTGATGCCGT GCGGCTTCGG 61 
     11581 GTAGGCCATT TCTCCGGGGT AAATCAGCCA GCGCTTCTCG ATCTCGAGAT CGTCACAGGC 62 
     11641 AAGGTGAAAC CCGCGCTCAA CGCTGGGCGC CGTCGACCGC TTCACTTCGA TGGCCACTTC 63 



 

     300

     11701 GGGAACGCCG CCGGACACGA GGATGAGGTC TATCTCCGCA C 1 
 2 
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Contig2, 8229 bp 4 
 5 
450>1274 4-hydroxy-2-oxovalerate aldolase 6 
1231>2028 4-oxalocrotonate decarboxylase 7 
2032>2244 4-oxalocrotonate isomerase 8 
2226>2558 Plant-like ferredoxin (ipfI) 9 
3636>2593 Transposase 10 
3798>5052 Ferredoxin reductase (ipfH) 11 
5533>5102 xylL-like dehydrogenase (ipfL) 12 
5561>6502 Transposase 13 
7044>8229 Transposase 14 
 15 
         1 TTCGGATCGA ACAACCCGGT CAAGATCCCC GGTTATGGNG AGTTCGCGGG GGCTCAAGAC 16 
        61 GAGCGTCTTC CTNGAGGTCG AAGGAGCGGG CGACTATCTC CCCAAATATG CGGGCAATCT 17 
       121 NGACATCATG ACCGCGGCCG CCAAGGCCGC CGGCGAGATG CTGGCGGCCC GCATGCTCAA 18 
       181 TCGGAAGGCT GCAGCATGAC GCTCTATCCC ACCCAGACCA AGCTCTACAT CCAGGACGTG 19 
       241 ACCTTGCGTG ACGGCATGCA CGCGATCCTG CACAATTATG GCACCGAAAG TGTCCGCACG 20 
       301 ATCGCCAAGG CGCTCGACGA TGCCGGTGTC GACGCGATCG AAGTGTCGCA TGGCGACGGG 21 
       361 CTCAACGGCA GCTCGTTCAA CTATGGCTTC GGCGCGCACT TAAATTGCAC TGAAATCTAG 22 
       421 AAATATTTTA TCTGATTAAT AAGATGATCC CCGGGTACCG AGCTCGAATT CATCGATGAT 23 
       481 GGTTGAGATG TGTATAAGAG ACAGCTTATG CGCTCGGCGT GCGCTCGGTG CGCGTCGCGA 24 
       541 CGCACTGCAC CGAAGCCGAC GTCGGCAAGC AGCATATCGG CATCGCGCGC GATCTCGGCA 25 
       601 TGGACGTGTC GGGCTTCCTG ATGATGAGCC ACATGCTCGA GCCCGAGGCG CTCGCCCAGC 26 
       661 AGGCGTTGCT GATGGAAAGC TATGGCGCGC ATTGCGTCTA TGTGACCGAC AGCGGCGGTG 27 
       721 CGCTCGACAT GGATGGCGTC CGCGCCCGCC TGCAGGCCTA TGACCGGGTG CTCAAGCCCG 28 
       781 AGACGCAGCG CGGCATGCAC GCCCACCACA ATCTCTCGCT CGGCGTCGCC AACTCGATCG 29 
       841 TTGCAGCGCA GGAAGGTGCG ATCCGCATCG ACGCCAGCCT CGCTGGCATG GGCGCGGGCG 30 
       901 CCGGCAATGC GCCGCTCGAG GTGTTCATCG CCGCGATCGA CCGCAAGGGC TGGAAGCACG 31 
       961 GCTGCGATGT GATGGCGCTG ATGGACGCCG CCGAGGATCT GGTCCGGCCG CTTCAGGATC 32 
      1021 GCCCAGTTCC GCGTCGACCG CGAGACCCTG AGCCTGGGTT ATGCGGGCGW MTAYTCGWCG 33 
      1081 WTCMTGCRCC ACGCCGAAAA GGCCGCCGAA CAATACGGAC TCGACACACG CGAAATCCTG 34 
      1141 GTCGAACTTG GCCGGCGCCG GATGGTCGGC GGACAGGAAG ACATGATCGT CGACGTCGCT 35 
      1201 CTCGATATCC TGAGCGCGCG CAAGGGGTGA GACCGAGCCC AAGGGGGAAA TGGCCGCGTG 36 
      1261 ACTTCGCTTG CTGAATATGC CGAGATTCTC GACCGTGCCG CGCACGAAGC GCATGCCACG 37 
      1321 CCTCAGATCA CCCACAGCAA TGACAAGCTG ACCGTCGCCG ACGCTTATGC GATCCAAAAG 38 
      1381 CTGTCGGTCG AGCGCCGCCT GGCGCGCGGC GAGAAGCGGA TCGGCGTCAA GATGGGCCTC 39 
      1441 ACCAGCCGCG CCAAGATGCA GCAGGTCGGG GTCGACGAGG TCGCCTGGGG GCGGCTCACC 40 
      1501 GACGCGATGC TGCTCGAGGA GGGTGCGGCG CTGTCGCTGT CGCGCTTCGT CCATCCGCGG 41 
      1561 ATCGAGCCGG AGATCGCCTT TCTGATGAAG GCGCCGCTCG CGGGCAAGGT CACGGCGGCG 42 
      1621 CAGGCGCTCG CCTGCGTCGA GGCCGTCGCC CCAGCGATGG AAGTGATCGA CAGCCGCTTC 43 
      1681 GAGAATTTCA AGTTCGCGTT GGTCGACGTG GTCGCCGACA ACACCTCGTC TTCGGGCCTG 44 
      1741 GTGGTCGGCG GCTGGGGCGA TCCGATGCAG GATCTCTCGA ACCTCGGCGT GATCCTGGAA 45 
      1801 ATCAACGGCG AGGTCGTNGA GGTCGGCTCG ACTGCCGCGA TCCTCGGCCA TCCGTTGCGC 46 
      1861 TCGCTGGTCG CCGCCGCGCG GTTGATCGGC GAGGCGGGCG AGACGATCAA CGCCGGCGAC 47 
      1921 ATCGTCATGG CCGGCGGCAT CACGGCGGCG CCGACCCTCA AGGCCGGCCA GACCATCCGC 48 
      1981 AACACCGTCC AGAACCTGGG ATCGGTCAGC ATCACGGTGG AAGCATAAAT GCCGATCATG 49 
      2041 GAAGTCACTT TGGTCGAGGG CCGCACGACC GAGAACAAAA AGGCGTTCAT CCTCGCGCTG 50 
      2101 ACCGATGCCG CGGAGCAGTC GCTCGGCGTG CCTCGCAGTC ATCCGCGTGR TCCTGCGCGA 51 
      2161 GATCCCGGAT GCGAATTTCG CGGYGGCGGG CGTGWCYTTC GCCGCGCGCA AAACCAATAC 52 
      2221 TTTGAAAGCG GCAAGCTGAC CACGATGATC AAGCATCAAG TCCAGATCGT CGATGGCAGC 53 
      2281 CGCTTCGAAT GCCCCAAGGA GGAACGGGTC CTGATCGCGA TGGAGCGCTT GGGGCTGAAT 54 
      2341 GACATTTTCG TCGGCTGCCG CGGCGGCGGG TGCGGCGTGT GCAAGGTGAA GGTGACCAGC 55 
      2401 GGAAATTATC GCACCGGTAA AATGAGCAGG CTACAAGTGA GCGAGGCGGA AGAGGCGGGG 56 
      2461 GGTTATGCGC TCGCCTGCAA GCTGTTCCCG CTCGACAATC TCGTCATCGA ATTGCCCAAC 57 
      2521 TAAAAACTTT TTGTCAGAAG ACGGAAAATG CAGCCTAAGC AATCTCGACG ACCGCAAGAT 58 
      2581 CGGCATGTTC GATCAATAAC GCGTGCCTAT CCGGTTAACG CAGACACCCA CTACATGTGG 59 
      2641 GGTGCGCCCA GCCACCGGAA TATAGCTCGG CGTAGGTCGA GCTTTCACCT CGCCCGCAAT 60 
      2701 TCCGAGGAGC GAGCGGAAGG CGTTGAACGG GTAGAACCGT CTGTTGAAGC GGAACGTGAA 61 
      2761 CTCGTTGAGG TAGGCCTGCA AATGCTTTGC GCTCACGCCG TGGTGGATGC CGTTGAGCCA 62 
      2821 AGTCTTCAGG TTGCTGAAGA CGAGGTGGAT GATCGGCATG AACTCCTCGG CCACCTCGGG 63 
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      2881 GTCGCCACAT TCGGCGATTG CGTGGTGGTC ATAGCCGCGT GTCCGCAGGT TGCCATAGCC 1 
      2941 GCTCCAATCG TCGGTGACGA TCAGCGACCC CGGCATGACG GCACTCCCTA CGAAGCCGCA 2 
      3001 CAGCGAATCG GCGCTGCGGT CGGCGGCGAT AGACAGCCGC ACCCGACCGG CAAAGCGGCC 3 
      3061 ATCCTTACGC TTGTCCTGGG CTGTACCCGG CTCCCGGTGG CGGACTTCGA CGGCGGCAGC 4 
      3121 CACCAGCGTC TTATGATGAA CACCCCGGCC TTCGCCGCGT GTCTTTCCAC CGACATAGGT 5 
      3181 TTTCGTCCAC CTCGACATGA CCGTCCGTCT TGCCGCCGAT CCGGTCCTGC TCGGGCCGTA 6 
      3241 CCATGCCCGC GCGGAGCTTG TGCAGGATTC CGAAGGCGGT TTCGTACCGT GTCAGCCCAA 7 
      3301 GCTGCTGGAA CTGAACCGCC GACATGCCTG CGTCTGGCTG GCGACCAGAT AGGCTGCCCA 8 
      3361 GAACCATGTG CTCAAGGGCG TGTGGCTGCG TTCCATGACC GTGCCGACGG TCAATCCCGT 9 
      3421 CTGGCGGCGG CAAGCGCGAC AGGTCAGGAC GCCGGGCCGC GTAGCGATGC GGAAAGGCTC 10 
      3481 ACCCACAATG CCACAATGCG GGCAGGCGAA CCCGTCACCC CAGCGAATCC TTTCCAAGTA 11 
      3541 GGCGGCGCAG GCCCCATCGT CGGGAAAAAG CCGCTGAAAC TCGGGGAGCG ATTGCGGGAA 12 
      3601 GGGCAGATCG GTGCGGCCGA GAACGTCCAT AACCCACTAC CCGCTTCACG CACACAATCT 13 
      3661 ATCCCTAGTG GGTGTATGCG TCAACCGGAT AGGCACGCAA TAACGATCGT CACGAAAAGC 14 
      3721 AGAGGAAAGT TAGGCCAATC CCGGTTCAAT CAAACCGGGA TTGAGTCTAA GTTCGGTTCG 15 
      3781 AAGGGTACGG AGGCTAATTT ATGATCGCTT CGGTTGTGAT TGTCGGCGCC AACCTTGCAG 16 
      3841 GGGGACGCGC SGCCGAAGCG CTCCGGCTCA ACGGCTATGA AGGACGGATC GTCCTGATCG 17 
      3901 GGGAGGAGCG GTGGCTGCCC TATGAGCGGC CGCCGCTCTC CAAGGAATGC CTGTGGGGAC 18 
      3961 AGGGACCAGC TTCCCGAGAA TTTCTTCCTC CACGACCAGC AATGGTATGA AGACAATAAG 19 
      4021 ATAGAGCTGG AGCTCGGCGT GCGCGCCGAA RCACTGGAGC TTTCCGGCCG AGGGGTTCGG 20 
      4081 CTGGCCTCCG GCAAGGAAAT CCCGGCCGAT CGCATCCTGC TCGCGACCGG CGGCAAGGCG 21 
      4141 CGCTTGTTGC CGCTCGATGG TGCGACCGCC GCCAATGTCC ATCATTTGCG GACCAAGGAT 22 
      4201 GACGCCGACC GGCTCGCGGC AGATCTCAAG CCGGGTGCGC GTATCGTCGT CATCGGCATG 23 
      4261 GGCGTGATCG GCGCTGAGGT CGCCGCGAGC GCGCGCAAGA GCGGCTGTGA GGTCACCGCG 24 
      4321 ATCGASVCGG CGCCGGTGCC GATGATCCGC ACGCTCGGTG CGCATTTTGG CGCCTGGCTC 25 
      4381 GGCCGCGAGC ACGACATKCG GGGGGTGAAG GCGCGTTACG GCATCGGCGT GACCAGGCTG 26 
      4441 TATCTTGACG GCGGCCTGGT CCGCACCGTC GAGCTCGACG ATGGCACGCG CATCGATTGC 27 
      4501 GACGCGGTGG TGGTCGGGAT CGGCATCGTG CCCTCGACCG AGCTTGCCGC CAACGCCGGG 28 
      4561 CTAGCGATCG GCAACGGCAT CGTCGTCGAT CGCCAGGGGC GCACCAGCCA TGAGGCGGTG 29 
      4621 TTCGCGGCGG GCGACGTCNC CGACCAGCCC AATTTCTTCG GCGGCCGGGT GCGGCTCGAA 30 
      4681 ACCTATCAGA ATGCCGCCGA TCAGGGCATG GCCGCGGCGC AGGCGATGAT CGGCCGCGAG 31 
      4741 GTCGATTATC TGAAGCCCTG CTGGTTCTGG TCCGACCAAT ATGACATCAA CATCCAGGTC 32 
      4801 TCCGGCCGGA TCGACGACAG CCTGCCGGTG GTGATGCGCG GCGAGCTCGA CAGCAGCCAG 33 
      4861 TTCACCGCTT TCTTCCTCGA CGGCAACGTC GTCGCCGGCG TGCTGACCGC AAATCGCGCG 34 
      4921 GTCGACATGG GCKTCGGTSA AGAGGATGGT CGAGCGTCGG CTCGAGGTCG ACCCGGGTCA 35 
      4981 GCTCGGCGAC GCCTCGATTC CGCTCCGCGA GTTCTTGAAG CCCAAGGCGC GGGCGGCATA 36 
      5041 GGCCTGCGGT GAAACCCTCT CCCGTACGGA AGAGGGTGGG CGCCTTGGAC GCCCCCTCAG 37 
      5101 ATCAGCCTAT CCCGCCGCCT GCCACGTACA GCGTCTGGCC GGTGATGTAG GACGCCTCGG 38 
      5161 GCGAGGCGAA AAAGCAGATC GCGGCGGCCA ATTCTTCCGG CGCCGCGAAG CGCTTCATCA 39 
      5221 AGGTGTCGCG CAACGTCTGC TCGCCGACTT CGCCGAAACC CTTGATGTCG GCCTCGGTCG 40 
      5281 GCGGCTTGGG ATTGCGCGGC GTGACCCGCT CGACATTGAC TCCGCCNGGG AGCGACGCAA 41 
      5341 TTGACCCGGA TCGGCCGGTC GTCGARGTCG AACGACAGCG CCTTGGGTAA GCGCCGACAC 42 
      5401 TCCGCCTTTG GCCGCGGCAT AGGGGACCCG GTTGATGCCG CGCGTTGCGA CCGGGCCGAT 43 
      5461 GTTTACGATC GCGCCGCTGT TCGCTTCGAG CATCAGCGGC AGCACGGCAT GGCAGCACCA 44 
      5521 CATTGTCGGC CATAAGGAGC GCTGGATCTC GGCCTCTCAG GCGCGCCGTA TGAAGGATCT 45 
      5581 GGAGAAGGAG AATCTGCGGC TTGGCCGGGC GATATCCAAC CTGACGCTGG ATAAGCTCAT 46 
      5641 TCTCCAGGAG GCCGCCCGGG GAAACTTCTG AGCCCCGCGC GGCGACGGCG CTGTATCGAC 47 
      5701 CAGCTGTGGC GAGAGCTACC GGTGTCCGAA CGACGGATTT GCCAGGTGCT CGGACAGCAT 48 
      5761 CGGTCGACCC ATCGCAAGGT AGCGCGCGGG GCGGACGACA AGCAGGCGCT GACCGAGGAC 49 
      5821 ATCATCGCTT TGGCCAAGCA ATATGGTCGC TATGGCTATC GACGTGTCAC CGCCCTGCTG 50 
      5881 CGCGACGCGG GGTGGACAGT GAACCGCAAG CGGGTCGAGC GGATCTGGCG ACGCGAGGGG 51 
      5941 CTCAAGGTGC CGCAGCGGCA GCCGAAGCGC GGGCGGCTGT GGCTCAACGA TGGCTCCTGT 52 
      6001 ATCAGGCTCC GGCCGGAATA TCCGGGCCAT GTGTGGGCCT ATGACTTCGT TCAGGGCCGC 53 
      6061 ACTCACGACG GGCGCAAGTT CCGGATCCTG ACCATTATCG ATGGGGCCAG CCGGGAATGC 54 
      6121 CTGGCGCTCA TCGTCGCCAG GAAGCTACGT CACGAGGACG TGCTGGCCGC GTTGGCCGAG 55 
      6181 TTGTTCGTCA TGCGCGGGCC TCCGGCACAC ATCAGGTCCG CTAATGGTCC TGAATTTATC 56 
      6241 GCTACGGCCG TCCAGAAGTG GCTCGGCAAG ATCGGCGTGA AGACGCTCTA CATCGCGCCG 57 
      6301 GGATCACCTT GGGAGAATGG CTACAATGAG AGCTTCAACG GGTCGCTGCG CGACGAGCTG 58 
      6361 CTCAACGGCG AGATCTTCTA TCCTCCGAGC GCTCCCAGCT GATATAACCT TCATGCGAGC 59 
      6421 CGGGAATCAG CGCCAACCAC TCATCCCGGG CCTTGCGACG ACTCCTCGTC CGCAGGGCGG 60 
      6481 CGCCATCATA TCCAGCTACA ACGTGGGTTT TACCATAGGC ATACAGGATC GCCTTGCGCT 61 
      6541 CAAGATGCTG GGGACCGATC TTCTCACAGA TCATCGCTCT TCTCCTCCCG TGCCGCGCAG 62 
      6601 GGGGCGCCGG TGGCGTGGTC GAGCAGTAGA CGCACGATCA GGGGCATCAA CTTCAGCCCG 63 
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      6661 CGAAGGCCGT TCTTCGCCCC TACGTCGGCG AACAGCTTGT CGAGTTCCCG CGCGATGTAG 1 
      6721 GGCACGTGCG CGAAACGCGC ACCGCCCTTG GCGGTGTCGA CGGTGCGGTC CTGGCCAGCC 2 
      6781 CATTCGTAGA GGTCTTGGAA GAGATGCTTA TGCAGGGCAC GGTAGCCGTC GGCCGTTGCC 3 
      6841 GGAAAGGTCA GGCGCGCGGC TTCCGCGCCG CGCGCCTGAG TAAGTCGCCG CTCGGCCTCT 4 
      6901 GTGAGCGTCT TATCATCGGT GATCCCAAGC CGGTTCCGAA GCGTGTCGGT GCCGGGATAG 5 
      6961 GTATAAGGCC CAGTCGGCCC CAAGCTGCGA TTTTGGCCAA GTCGGAGAAC GTTTTGGGAA 6 
      7021 CGTGGCATTC GGTATTGACG ATGGAAATCA TAGAAGAGGA CAGTTCGCTC CATCATAGGG 7 
      7081 AGTGGGTTGA TGGATCGGAG TATTCCGGGC GGGGATTTGA TCGGACGATG GAGCCTGAGC 8 
      7141 TTTGCCGATA TTGATTTTGT AAATTCGAAG CCGGCCCTGA CGCGCCTTGG CCTCGCCGCG 9 
      7201 CAGCTGAAAT TCTTCGCTTC CCTGGGGTTT TTCGCGATCG ATCCCGGCTC AATCCCTACC 10 
      7261 GATGGCCTCT CGTATCTGGC CGAGCAACTC GGTGTCGAGG CTGGCGAGAT AGCCGGTTAT 11 
      7321 GACTTTTCCA GTCGGACAGC ACGACGGCAT TGTGCGGAGA TCCTGATCCA TCTTGGATAT 12 
      7381 CACCGCATGA AGCGGGTGGA TCGCGCGCAA TTGACGGAAT GGATTGCTGG CGAGCTGTGC 13 
      7441 CCGGGCGGCC AGTCGATCAA TGCCATGCTT GAGCATGTTT TCCTGTGGTG CCGGGACCGG 14 
      7501 CGTATTTATG GGCCGTCGCG CAAGGAGCTT GAACGTGTCG TTCGCTCACA ACGGCAAGAT 15 
      7561 TATCTGGACA CCTGGCTGAT CGGAGCCAGT GATCGGCTTT CGTCAGATGC GGTGGCGTTA 16 
      7621 TTGGAAGCCT CGCTTGCCGA TCCGGACAGC TCGACCGGAT TCAACAGGAT GAAGGGTGAC 17 
      7681 GCCGGACAGG CAACGCTCGA CAACATTCTC GACGTGACCG AGAAACTCGC CTTTATCCAG 18 
      7741 AGACTTGATC TTCCCCATGA TCTCCTGACG GCTACGGGCA AGCCATGGGT CGATCAGATT 19 
      7801 GTTCGCCGCG TTGCCGGTGA AAAGGCCTCG GAGATGCGCC GGCATGCGCC GGCGCGACAG 20 
      7861 CTCGGCCTTT ATGCGATTTA TCTAATGTCG CGGGAGGCGC AACTCACTGA CGCGATGATC 21 
      7921 GACCTGCTGA TCGAAACCGT TCACAAGATC GGAACGCGCT CGAAACGCAA GGTGGTGGGC 22 
      7981 GATATCGCGA AAGACATCGA GCGGGTCTAT GGAAAGGAGC GCCTGCTGGT CGAGATCGCC 23 
      8041 AGCGCCTCGA TCAATGAACC ATCGGGGCGC ATCTGCGATG TCATTTTCCC GATCGCCGGT 24 
      8101 AAGGCCAAGC TGGCGGCGAT CGTCAAGGAG AGCCATGCGA AGGGCGCTCT GGACCKGCGC 25 
      8161 ATCTACAAGG TGATGTGTCA ACGGCGGAGC AAAAGTCGGC CATTCGGCGG CGTAAAACCA 26 
      8221 GGCCATCGT 27 
 28 
 29 
Contig3, 1954 bp 30 
 31 
1047>247 Cinnamoyl CoA-hydratase 32 
1954>1104 Acyl-CoA transferase / racemase 33 
 34 
         1 GGGCAGTGAG CGNAACGCAA TTAATGTGAG TTAGNTCACT CATTAGGCAC CCCAGGCTTT 35 
        61 ACACTTTATG CTTCNGGNTN GTATGTTGTG TGGAATTGTG AGCGGATAAS AATTCACCGG 36 
       121 AAAGCTATGA CCATGATTAC GCCAAGCTAT TTAGGTGAGA CTATAGAATA CTCAAGCTTG 37 
       181 CATGCCTGCA GGTCGACTCT AGAGGATCCC ACGATATTCA TTCAATATTC CTATTTCCTA 38 
       241 TTGTCGTATA GTTTTCTAGC GCCGGTTTGA ATTTTCGATT AGAGAACCCC TGAAGTGCGA 39 
       301 CGTCAAGCCA TTTCTGACGC GATGTATACG AAAGTTCAAA GAATTTTGCT GATTCCCATT 40 
       361 CAACTGCTTC GTCGAAATCC ATTTCGACGG ACCGCTCGAA TACACGCTTG ATCGCGACAG 41 
       421 CCGCGTGCCT GTCTTTTGCT GCCAACTCGG TGCTCAGCCT GTCAATCTCG CCGCTCAGAT 42 
       481 CTGCAACCGG AACCACATGA TTGACCAATC CGATCTCCGC CGCCTTGTGA CCGTCGAACA 43 
       541 CCTGCCCCGT CAGGAGGTAA TAGAGCGCCA CTTTGCGTGG CAAGTGCCGG GCGACCATCC 44 
       601 AGGTCAGACC TGCACCGGGG ATGACGGCGA AGTTGATTTC CGAAAGGCTG AAACGCGCGT 45 
       661 TCGAGGCAGC GACCGACAAA TCGCAGAGCC CCGCGACCAA AATGCCTCCG CCCACGCACC 46 
       721 AGCCCTGAAC CGCCGAGATC GTGATGCCGT TAAAGTGGCG AAGACGCTTC ATCCACGACA 47 
       781 GCGCCAGATC CATCGTTCGC ATGAACATGT CGGAGTCCCC GAAATTCCCA AGCAGGAACT 48 
       841 CCTCAAGATC CATGCCTGCG CAGAAGTTGT CACCTCTCCC GACAATAACG ATAAGCCGTA 49 
       901 CATCGCCCCG GCGCTCCACC TCGTCCAGCG CGGAGTGCAT GTCGGCATGW ACTTGCGGAG 50 
       961 ACATCGCGTT GCGCTTTTCG GGGCGATTGA ACKCGATCGT TGCTCGCGCT CMATCGAAAC 51 
      1021 ACAGGTCGAC GGTCGGAAAA GTTACGGCGT TCATGTCGTC TCTCCCGTTG CGGCCCGGCC 52 
      1081 GACCCCGGTC TCTTCGCGTG CCCGCGCTTC ATCCGGTTCA CCGAAATAGC GATGATTATG 53 
      1141 CTCACCCAGA GCGGGTGAAG ATGCCGTGGA GTCGGGCGTG TATCCGCTGA TCTGTATCGG 54 
      1201 GAGTTCGAAT ATCACGTCTG ACGACGCTAT CCCGGCACAG CCCGCTTCCG CCTTTCCGTT 55 
      1261 CGCCATGGCT TCGGCTACGC TAAGCACGGG AGCGAAACAA CAGTCGGCCT TCACCAGCAG 56 
      1321 GTTGCACCAG TGATCAAGTG GGTGCGACCC AAAGATTCCT GCAAGCTCGG ACTTCAGCCA 57 
      1381 GGCTTGGCGA GTCTCGTCGA ACTGGAAGGG CTGCAAGTCG GGCCTCTGCA GCGCCGCACA 58 
      1441 CAGCCTCGCC CAGAACTTGG GTTCACCGGC CCCGACGGTC AGATGGCGAT AGTCAGATGT 59 
      1501 CTGATATATC TGGTAGCAGG CAAAGCTCCC GTCGAGAAGC GAAGGCCCGC CGGCCGACAT 60 
      1561 CGTTAGCGGC CCGATGTTCA GCGGCTTGCA GCATTCGGTC ATGGACACGC CGTAGAACCG 61 
      1621 TCCCCGGCCC GTCCGTTGCC GCTCGACGAT GCCGGTCAGC ACCGCGATCA CGGCGTGAAG 62 
      1681 AGATCCACCC ATGACGTCCG CGATCTGGAA ACGCGGCAAA ACCGGCCCTC CGGTATCATC 63 
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      1741 ACGCAACTGA TCCAGAAGCC CCGCGGTATG CAAGGTAATT CAGATCGTGG CCCGCGAGAT 1 
      1801 CGCTGAAGGG AACCAGACTG ACCATAACCG GTTAATCGAG ACATAGACGA NCGCGGGCTT 2 
      1861 GATANCCNAA AAGANTCGCG TAATCNATTC CAANGCTTCG CTGCTAACGC CCGGCCTAAA 3 
      1921 GCTTTTCCAN NAAAAAAATC CGCTTCGCGC AACA 4 
 5 
 6 
 7 
Phylogenetic analyses of putative gene products of ipfA and ipfB 8 
 9 
 The figures in this section represent additional results of phylogetic analyses 10 

performed on IpfA and IpfB as described in Chapter 3. 11 

 12 
 13 

 14 

Figure A5.1.  Conserved domain architecture of the predicted protein encoded by ipfA 15 
obtained via CDD analysis. 16 
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Figure A5.2.  Phylogenetic tree of the predicted amino acid sequence of ipfA and 2 
characterized dioxygase large subunits found in the Swiss-prot database and listed in Table 3 
3.4. 4 
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Figure A5.3.  Phylogenetic tree of the predict amino acid sequence of ipfB and characterized 2 
dioxygase small subunits found in the Swiss-prot database and listed in Table 3.5. 3 


