
GROUP-VALUED IMPLOSION AND
CONJUGATION SPACES

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Alimjon Eshmatov

August 2009



c© 2009 Alimjon Eshmatov

ALL RIGHTS RESERVED



GROUP-VALUED IMPLOSION AND CONJUGATION SPACES

Alimjon Eshmatov, Ph.D.

Cornell University 2009

This thesis consists of two independent parts.

In the first part we discuss group-valued moment maps. Using group-valued

implosion, introduced by Hurtubise, Jeffrey and Sjamaar, we construct a new

class of examples of quasi-Hamiltonian spaces. Associated to each compact Lie

group G there is a universal imploded space D(G)impl. For G = Sp(n) we show

that there is a stratum of D(G)impl which has a smooth closure diffeomorphic to

HPn - a quaternionic projective space. We show that HPn and S 2n exhaust all

examples arising from this construction.

The second part is concerned with “conjugation spaces”. In particular we

study conjugation spaces with a compatible Lie group action. For Lie groups of

type A and C, we show that there is a degree halving ring isomorphism from

equivariant cohomology of the space to equivariant cohomology of its fixed

point set under an involution.
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CHAPTER 1

A NEW CLASS OF EXAMPLES OF GROUP-VALUED MOMENT MAPS

1.1 Introduction

Hamiltonian geometry is the geometry of symplectic manifolds equipped with

a moment map, a certain collection of quantities conserved by symmetries.

Strictly speaking, it is a smooth map from a symplectic manifold M to the dual

of the Lie algebra of a group G acting on M , whose components are Hamilto-

nian functions for the infinitesimal action on M of elements of the Lie algebra.

In recent years moment maps have become an important tool in geometry and

topology of symplectic manifolds, to name few: symplectic reductions, convex-

ity theorems, symplectic cutting etc (see also [MS]).

For the last two decades, there have been several attempts to extend the

notion of the moment map to a more general framework. Based on Drinfeld’s

Poisson-Lie group [D], Lu and Weinstein study actions of such groups where the

moment map takes values in the dual Poisson-Lie group [LW]. Later Alekseev

showed that in most interesting cases they were equivalent to usual Hamilto-

nian actions [A].

The notion of a S 1-valued moment map for a circle action has been consid-

ered in [M1] as a natural generalization of Hamiltonian S 1-manifolds. The no-

tion of group-valued moment map for an arbitrary compact Lie group was in-

troduced by Alekseev, Malkin and Meinrenken [AMM]. In contrast to its classi-

cal counterpart, the moment map takes values in a Lie group instead of the dual

of the Lie algebra. Smooth manifolds equipped with group-valued moment
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maps are called quasi-Hamiltonian manifolds. Quasi-Hamiltonian manifolds

and their moment maps share many features of the Hamiltonian ones, such as

reduction, cross-section and implosion. In fact there is a one-to-one correspon-

dence between compact quasi-Hamiltonian G-spaces and infinite-dimensional

Hamiltonian LG-spaces with a proper moment map, where LG is the loop group

of G.

The motivation of [AMM] for developing a theory of group-valued moment

maps comes from one particularly important result. They show that the mod-

uli space M(Σ) of flat connections on a closed Riemann surface Σ of genus k is

a quasi-Hamiltonian quotient of G2k, the product of 2k-copies of G, which pos-

sesses a natural quasi-Hamiltonian G-structure. Hence it is a symplectic man-

ifold, a result earlier obtained by M. Atiyah and R. Bott [AB]. They go further

generalizing it to the case M(Σ,C), the moduli space of flat connection on a Rie-

mann surface with boundaries, with fixed conjugacy classes of holonomies as-

sociated to the boundary components. One should remark that an analogous

description has been obtained by W. Goldman [G] but unlike [AMM] Goldman

constructs the symplectic structure using an infinite-dimensional description of

[AB].

Due to its somewhat complicated definition it is hard to check whether a

given G-manifold possesses a quasi-Hamiltonian structure. The main exam-

ples in the original paper [AMM] included conjugacy classes of G and D(G) the

product of two copies of a Lie group. On the other hand using the exponenti-

ation operation one can build up a quasi-Hamiltonian manifold from a Hamil-

tonian one. The first non-trivial example appeared in [AMW] and [HJ], where

authors constructed a quasi-Hamiltonian structure on S 4. In both constructions
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it was not clear whether one could find a quasi-Hamiltonian structure on S 2n

- the 2n-dimensional sphere. Later it became apparent that these were in fact

special cases of more general construction of imploded spaces [HJS]. Like most

constructions of quasi-Hamiltonian manifolds, it was first defined for Hamilto-

nian spaces. Recall a symplectic implosion is an “abelianization” operation which

transforms a Hamiltonian G-manifold into a Hamiltonian T -space preserving

some properties of the manifold, but at the expense of producing singularities

[GJS]. The singularities are however not completely arbitrary. In particular, the

imploded spaces stratify naturally into symplectic manifolds.

By imitating symplectic implosion [GJS], J. Hurtubise, L. Jeffrey, and R. Sja-

maar introduced the notion of group-valued implosion [HJS]. Let D(G)impl be an

imploded space of D(G). It was observed in [HJS] that there are certain strata

in D(G)impl where it is singular but whose closure is smooth. This observation

led them to a new class of examples of quasi-Hamiltonian manifolds. In partic-

ular, when G is A-type, G = SU(n), there is a one dimensional face of the alcove

whose corresponding stratum has a smooth closure diffeomorphic to S 2n. As

a result, they showed that S 2n is a quasi-Hamiltonian U(n) - space. In particu-

lar for n = 2 as expected this coincides with a quasi-Hamiltonian structure on

S 4 defined in [HJS, AMW]. Motivated by this example, we study the implo-

sion for Lie groups of an arbitrary type. In particular we have shown that for

type C, i.e. G = Sp(n), a unitary quaternionic group, there is a certain stratum

of D(G)impl which has a smooth closure diffeomorphic to HPn. Unlike in [HJS]

for S 2n, which they obtained by gluing two copies of Cn, a covering given by

strata in our case is not affine. This makes computations more difficult, without

referring to Hamiltonian spaces. On the other hand, it also gives a new class

of examples of multiplicity-free quasi-Hamiltonian spaces with a non-effective
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G × T action. It is interesting to observe that both of these classes of examples

have neither a symplectic nor complex structure. We also study D(G)impl for

other type of Lie groups. In particular, we have shown that the above examples

exhaust all possible examples which can be obtained using this construction.

1.2 Quasi-Hamiltonian manifolds

In this section we briefly review some of the basic definitions and results on

quasi-Hamiltonian manifolds. First we recall the definition of usual Hamilto-

nian spaces. Let G be a compact, connected Lie group with Lie algebra g. Given

a G-manifold M, there is an induced infinitesimal Lie algebra action

ξM(x) =
d
dt
|t=0 exp(−tξ).x for ξ ∈ g, x ∈ M. (1.2.1)

A Hamiltonian G-manifold is a symplectic G-manifold (M, ω) with an equivariant

map, called moment map, Φ : M → g∗ satisfying the relation

ι(ξM)ω = d〈Φ, ξ〉. (1.2.2)

for all ξ ∈ g. Let θL, θR ∈ Ω1(G, g) be the Maurer-Cartan forms defined by

θL,g(L(g)∗ξ) = ξ and θR,g(R(g)∗ξ) = ξ for ξ ∈ g, where L(g) denotes the left mul-

tiplication and R(g) the right multiplication by g. Let (· , · ) be some choice of

invariant inner product on g. Then there is a closed bi-invariant three-form on

G given by

χ =
1
12

(θL, [θL, θL]) =
1
12

(θR, [θR, θR]) .

Definition 1. [AMM] A quasi-Hamiltonian G-manifold is a triple (M,Φ, ω) where

M is G-manifold equipped with a G-invariant two-form ω and a G-equivariant map
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Φ : M → G, called the group-valued moment map, such that the following properties

hold:

(i) dω = −Φ∗χ

(ii) Kerωx = {ξM |ξ ∈ Ker(AdΦ(x) + 1)} for all x ∈ M

(iii) ι(ξM)ω = 1
2Φ
∗(θL + θR, ξ)

The basic examples of quasi-Hamiltonian manifolds are conjugacy classes of

the Lie group G, and its “double” D(G). One can think of them as analogs of

coadjoint orbits and cotangent bundle respectively.

Conjugacy classes

Let C be a conjugacy class in G. Define a G-invariant 2-form ω on C such that for

each g ∈ C, the value of this form on fundamental vector fields vξ, vη is given by

ω(vξ, vη) =
1
2

(ξ, (Adg − Ad
−1
g )η).

Let ι : C → G be an inclusion map . One can show

Proposition 1. [AMM, Proposition 3.1] (C, ι, ω) is a quasi-Hamiltonian G-manifold.

The double D(G)

As a space D(G) is defined by

D(G) := G ×G. (1.2.3)
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A G ×G action on D(G) is given by

(g1, g2).(u, v) = (g1ug−1
2 , Adg2v). (1.2.4)

Define a moment map Φ : D(G) −→ G ×G by Φ = Φ1 × Φ2 where

Φ1(u, v) = Aduv−1, Φ2(u, v) = v, (1.2.5)

and the two-form

ω = −
1
2

(Advu∗θL, u∗θL) −
1
2

(u∗θL, v∗(θL + θR). (1.2.6)

The following statement is proved in [AMM, Proposition 3.2].

Proposition 2. (D(G),Φ, ω) is a quasi-Hamiltonian G ×G-manifold.

Remark 1. The original definition of quasi-Hamiltonian spaces in [AMM] which we

stated above is given only for compact Lie group actions. Recently, using so called

Dirac structures A. Alekseev, H. Bursztyn and E. Meinrenken in [ABM] have proposed

a new definition of quasi-Hamiltonian G-spaces which is applicable for a wide class of

non-compact Lie group actions.

1.3 Relation between Hamiltonian and quasi-Hamiltonian

manifolds

In this section we will describe a construction of a quasi-Hamiltonian manifold

from a Hamiltonian one. Let (M, ω0,Φ0) be a Hamiltonian G-manifold. Using an

invariant inner product, we identify g with g∗. Then we can regard Φ0 as a map

into g, and composing it with the exponential map we obtain Φ = exp ◦Φ0. Let

exps λ := exp(sλ) for λ ∈ g and s ∈ R. Consider the 2-form on g defined by

$ =
1
2

∫ 1

0
(exp∗s θR,

∂

∂s
exp∗s θR)ds
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which is a G-invariant primitive of the 3-form exp∗ χ. The exponentiation oper-

ation changes the 2-form and the moment map on M into ω = ω0 + Φ
∗
0$ and

Φ = exp ◦Φ0. One can show that if the exponential map is regular on the image

Φ0(M) then (M,Φ, ω) with the same G-action is a quasi-Hamiltonian space.

The inverse of the exponentiation operation is called linearization. Let

(M, ω,Φ) be a quasi-Hamiltonian G-manifold. Suppose there exists an Ad-

invariant open U in g such that exp : U → G is a diffeomorphism onto an open

subset containing Φ(M) (with inverse denoted by log : exp U → U). The lin-

earization of M is the Hamiltonian G-manifold (M,Φ0, ω0) where Φ0 = log ◦Φ

and ω0 = ω − Φ
∗
0$ (See [AMM, §3.3]).

There is another remarkable relation between Hamiltonian and quasi-

Hamiltonian spaces. It is shown in [AMM, §8] that there exists a one-to-

one correspondence between quasi-Hamiltonian G-spaces and Hamiltonian LG-

spaces with proper moment map. So, one has always a choice either to work

with infinite-dimensional but more conventional object such as LG-Hamiltonian

spaces or to use finite-dimensional but somewhat peculiar objects as quasi-

Hamiltonian G-spaces.

1.4 Properties of quasi-Hamiltonian manifolds

In this section we will consider some natural operations on quasi-Hamiltonian

manifolds. In view of the previous section it is not surprising that many con-

structions for Hamiltonian manifolds have analogous for quasi-Hamiltonian

ones.
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1.4.1 Fusion

Recall that Hamiltonian G-spaces have a nice functorial property: namely if K is

a Lie subgroup, then by restricting the action we obtain a Hamiltonian K-space

with a moment map given by composing the moment of G with the projection

i∗ : g∗ → k∗ induced from the inclusion i : k → g. A certain kind of functoriality

for group-valued moment maps holds for restriction to a diagonal subgroup.

Let (M, ω,Φ) be a quasi-Hamiltonian G ×G ×H-manifold, with moment map

Φ = Φ1 × Φ2 × Φ3 : M → G × G × H. Let G × H act on M via the embedding

(g, h) 7→ (g, g, h). Then M with 2-form

ω̃ = ω + (Φ∗1θL,Φ
∗
2θR)

and the moment map

(Φ1 · Φ2 × Φ3) : M → G × H

is a quasi-Hamiltonian G × H-manifold [AMM, Theorem 6.1]. This restriction

process from G × G × H to G × H is called the internal fusion. An important

special case is the Cartesian product M = M1 × M2 of two quasi-Hamiltonian

G×Hi-spaces (Mi, ωi,Φi) which is a quasi-Hamiltonian G×G×H1×H2-space in a

natural way. We define their fusion product M1~M2 to be the quasi-Hamiltonian

G × H1 × H2-space obtained by fusing two copies of G.

1.4.2 Quasi-symplectic reduction

In this subsection we discuss reduction, another important operation, which

behaves well for quasi-Hamiltonian spaces.
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Let (M, ω,Φ) be a quasi-Hamiltonian G-manifold such that G is a product

G1 ×G2. Let Φ = (Φ1,Φ2) be the corresponding components of the moment map

Φ. We want to reduce the space with respect to the first factor. Let g ∈ G1 be

regular value so that Φ−1
1 (g) is a smooth manifold. Then the centralizer (G1)g

acts locally freely on the submanifold Φ−1(g) and we define the quasi-symplectic

quotient at g to be a topological space

M//gG1 = Φ
−1
1 (g)/(G1)g. (1.4.1)

Under above assumptions, we have

Theorem 1. [AMM, Theorem 5.1] The restriction of ω to Φ−1
1 (g) descends to M//gG1

and makes it a quasi-Hamiltonian G2-space where the map M//gG1 → G2 induced by

Φ2 is a moment map for the induced G2-action on M//gG1.

Remark 2. In case when G2 is abelian, M//gG1 is a symplectic orbifold.

Let G2 be an abelian Lie group. In the singular case, the quotient space strat-

ifies into symplectic manifolds according to orbit type. Let g be an arbitrary

element of G1. For each subgroup H define a (G1)g-invariant submanifold M(H)

consisting of all points such that the stabilizer (G1)g∩ (G1)x is conjugate to H. Put

Z = Φ−1
1 (g) and Z(H) = Z ∩ M(H). Let Zi be the collection of connected components

of Z(H), where H ranges over all conjugacy classes of (G1)g. Then we have the

following decomposition:

M//gG1 =
∐
i∈I

Zi/(G1)g. (1.4.2)

Theorem 2. [HJS, Theorem 2.9] The decomposition (1.4.2) is a locally normally trivial

stratification of M//gG1 into symplectic submanifolds. Moreover, the stratification is

G2-invariant and the continuous map Φ̄2 : M//gG1 → G2 induced by Φ2 restricts to a

moment map for the G2 action on each stratum.
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1.5 Imploded cross-section.

1.5.1 Symplectic implosion

We start by reviewing this notion in the Hamiltonian case. Symplectic implosion

is an “abelianization functor”, which transforms a Hamiltonian G-manifold into

a Hamiltonian T -space preserving some of properties of the manifold, but at

the expense of producing singularities [GJS]. However, like singular symplectic

quotients it stratifies naturally into symplectic manifolds in such a way that the

T action preserves the stratification.

Fix a maximal torus T of G and an open chamber C in t∗, the dual of t =

Lie(T ). The closed chamber C is a polyhedral cone, which is a disjoint union of

relatively open faces (or walls). We define a partial order on the faces by putting

σ ≤ τ if σ ⊆ τ .

Let (M, ω0,Φ0) be a connected Hamiltonian G-manifold. The principal face

σprin is the smallest face σ of C such that the Kirwan polytope Φ0(M) ∩ C is con-

tained in the closure of σ. In many cases σprin is just the whole of C. The cross-

section of M is Φ−1
0 (σprin). This is a T -invariant connected symplectic submani-

fold of M. The torus action on the cross-section is a Hamiltonian with moment

map equal to the restriction of the G-moment map, and the G-invariant subset

Φ−1
0 (σprin) is open and dense in M. The imploded cross-section can be thought of

as “completion” of the cross-section to a stratified space with symplectic strata.

It is obtained by taking the preimage of the closed chamber, Φ−1
0 (C), which strat-

ifies into smooth manifolds in a natural way, and by quotienting out the null-

foliation of the form ω0 on each stratum. Namely, we define two points m1
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and m2 in Φ−1
0 (C) to be equivalent if there exists g in the commutator group

[GΦ0(m1),GΦ0(m1)] such that m2 = g.m1. (Here Gξ denotes the centralizer of ξ ∈ g∗

under the coadjoint action). Then the imploded cross-section is the quotient

space

Mimpl = Φ
−1
0 (C)/ ∼

equipped with the quotient topology. Set-theoretically it is a disjoint union

Mimpl =
∐
σ≤C

Φ−1
0 (expσ)/[Gσ,Gσ], (1.5.1)

over the faces of C. Here Kσ is the centralizer of the face σ. The pieces in the

decomposition (1.5.1) are usually not manifolds. However, the decomposition

can be refined into a stratification of Mimpl with symplectic strata. The imploded

moment map is the continuous map (Φ0)impl : Mimpl → t∗ induced by Φ0. The

restriction of (Φ0)impl to each stratum is a moment map for the T -action.

Example. Let G = SU(2) with a maximal torus T = S 1. Recall that T ∗G is a

Hamiltonian G×G-space equipped with canonical symplectic form. Let (T ∗G)impl

be an implosion with respect to the right action. Then (T ∗G)impl is smooth Hamil-

tonian G × T and symplectomorphic to C2. The left action of G on (T ∗G)impl is

given by the standard representation of SU(2) on C2, whereas the right T -action

is given by t.z = t−1z (see [GJS]).

1.5.2 Quasi-symplectic implosion

Along the same lines, in [HJS] the implosion was defined for quasi-Hamiltonian

spaces. Let (M, ω,Φ) be a quasi-Hamiltonian G-space. In [AMM], it is shown

that like in the Hamiltonian case one can prove a convexity theorem. But one
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has to consider the image of moment map in an alcove instead of a Weyl cham-

ber. Here the assumption of simply connectedness of the group is crucial, since

otherwise a description of the space of conjugacy classes is quite complicated.

Therefore in the rest of chapter we will assume that G is simply connected.

Let C∨ be a dual of Weyl chamber C in t. Let A be the unique (open) alcove

contained in C∨ such that 0 ∈ Ā. Using the exponential map one can identify Ā

with space of conjugacy classes T/W � G/Ad G, where W is the corresponding

Weyl group. Let denote by Gg the centralizer of g in G. For points m1,m2 ∈

Φ−1(exp Ā) define m1 ∼ m2 if m2 = gm1 for some g ∈ [GΦ(m1),GΦ(m1)]. One can

check that ∼ is indeed an equivalence relation.

Definition 2. The imploded cross-section of M is the quotient space Mimpl =

Φ−1(exp Ā)/ ∼, equipped with the quotient topology. The imploded moment map Φimpl

is the continuous map Mimpl → T induced by Φ.

The space Mimpl has many nice properties that smooth manifolds posses. It

is Hausdorff, locally compact and second countable. The action of T preserves

Φ−1(exp Ā) and descends to a continuous action on Mimpl.

We have a decomposition of Mimpl into orbit spaces

Mimpl =
∐
σ≤A

Φ−1(expσ)/[Gσ,Gσ], (1.5.2)

where σ ranges over the faces of the alcoveA and Gσ is the centralizer of expσ.

Let us denote the piece Φ−1(expσ)/[Gσ,Gσ] by Xσ. It is proved in [HJS] that each

Xσ stratifies into symplectic manifolds. Let {Xi|i ∈ I} be the collection of all strata

of all pieces Xσ. Then the imploded cross-section Mimpl is the disjoint union

Mimpl =
∐
i∈I

Xi (1.5.3)

such that each piece Xi is a symplectic manifold.
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Theorem 3. [HJS, Theorem 3.17] The decomposition (1.5.3) of the imploded cross-

section is a locally finite partition into locally closed subspaces, each of which is a sym-

plectic manifold. There is a unique open stratum, which is dense in Mimpl and symplec-

tomorphic to the principal cross section of M. The action of the maximal torus T on

Mimpl preserves the decomposition and the imploded moment map Φimpl : Mimpl → T

restricts to a moment map for the T -action on each stratum.

Therefore we call Mimpl a stratified quasi-Hamiltonian T -space.

1.5.3 Implosion of the double.

In the example of quasi-Hamiltonian manifolds we have seen that D(G) := G×G

possesses a natural quasi-Hamiltonian G × G-structure. By imploding with

respect to, say, the right G-action and the moment map Φ2 yields a G × T -

space D(G)impl. Strictly speaking we form the quotient topological space of

Φ−1
2 (expA) = G × expA by the equivalence relation (u, v) (ug−1, v) for g ∈ [Gv,Gv].

Similarly as in (1.5.3) the resulting space is a union of subspaces,

D(G)impl =
∐
σ≤A

G/[Gσ,Gσ] × expσ (1.5.4)

The moment map Φ2 is transverse to all faces of the alcove, therefore each piece

Xσ = G/[Gσ,Gσ] × expσ in this partition is a smooth manifold. One can show

that Xσ is a quasi-Hamiltonian G×T -manifold by writing it as a quasi-symplectic

quotient up to a covering [HJS, Lemma 4.5].

Let M be an arbitrary quasi-Hamiltonian G-space. By the fusion operation,

which we discussed in section 1.4.1, one obtains a quasi-Hamiltonian G × G-

manifold M ~ D(G). Now define embedding j : M → M ~ D(G) by j(m) =
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(m, 1,Φ(m)). Then one of the main results of [HJS] states:

Theorem 4 (universality of imploded double). Let M be a quasi-Hamiltonian G-

manifold. The map j induces a homeomorphism

jimpl : Mimpl
�
−→ (M ~ D(G)impl)//G

which maps strata to strata and whose restriction to each stratum is an isomorphism of

quasi-Hamiltonian T -manifolds.

This result implies that any imploded cross-section Mimpl can be constructed

as a symplectic quotient of the product M × D(G)impl by the diagonal action of G

Hence, the study of imploded spaces reduces to the implosion of the double of

the corresponding Lie group.

1.5.4 Smoothness criterion and quasi-Hamiltonian structure on

S 2n

The implosion of the double is a singular space, however the singularities on

certain strata are removable. In order to show that one has to use the explicit

correspondence between D(G) and T ∗G.

Identify g with g∗ using a bi-invariant inner product on g. Trivializing T ∗G in

a left-invariant manner, define G×G-equivariant mapH = id×exp : T ∗G → D(G).

Let (T ∗G, ω0,Ψ0) be a Hamiltonian G × G manifold, where ω0 is the canoni-

cal symplectic form on the cotangent bundle and a moment map Ψ0(g, λ) =

(−Adgλ, λ). Let O be the set of all ξ ∈ t with (2πi)−1α(ξ) < 1 for all positive roots α

and U = (AdG)O.
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Lemma 1. [HJS, Proposition 4.15] The triple (T ∗G,H∗ω,H∗Ψ) is the exponentiation

of (T ∗G, ω0,Ψ0). In particular, G × U is a quasi-Hamiltonian G ×G-manifold.

Now using a local diffeomorphism given byH and of [GJS, Proposition 6.15]

we have

Theorem 5 (Smoothness criterion). [HJS, Theorem 4.20] Let σ be a face of A sat-

isfying [Gσ,Gσ] � SU(2)k (resp. [gσ, gσ] � su(2)k) for some k ≥ 0 and possessing

a vertex ξ such that exp ξ is central. Then D(G)impl is a smooth quasi-Hamiltonian

G × T -manifold(resp. orbifold) in a neighborhood of the stratum corresponding to σ.

A partial converse of this result is also true. Suppose that σ contains a ver-

tex ξ such that exp ξ is central and D(G)impl is smooth in a neighborhood of the

corresponding stratum. Then [Gσ,Gσ] � SU(2)k.

One can naturally wonder what can we say about strata where it is not

smooth. In [HJS] authors have made a very interesting observation, which

is in some sense one of the main motivations for defining imploded spaces.

Namely, they have shown that there are certain strata where D(G)impl is singular,

but whose closure is a smooth quasi-Hamiltonian manifold.

Let G be SU(n). Consider the edge σ01 of an alcove with centralizer G01 =

S(U(1)×U(n− 1)). By Theorem 5 we know that for n > 3 the corresponding stra-

tum X01 in X consists of genuine singularities. Nevertheless the following result

asserts that it is a smooth quasi-Hamiltonian manifold and in fact diffeomorphic

to S 2n.

Theorem 6. [HJS, Theorem 4.26] The closure of the stratum X01 of X = DSU(n)impl is a

smooth quasi-Hamiltonian U(n)-manifold diffeomorphic to S 2n. Furthermore antipodal

15



map of S 2n corresponds to an involution of X01 obtained by lifting symmetry of the alcove

A that reverses the edge σ01.

The proof of this result relies on two main facts. First of all, a symmetry of

the alcove of SU(n). Namely, the center Z(SU(n)) acts transitively on the vertices

which makes possible to shift any vertex of the alcove to the origin. The second

one is that the closure of the big open stratum around each vertex is an affine

space, which readily gives an affine cover. In special case n = 2, it was first

constructed in [HJ] and in [AMW]

One can ask whether there are cases where one can make similar construc-

tion to obtain new examples of quasi-Hamiltonian spaces. The answer is yes

and we will carry out this construction for type C Lie groups. As a result we

will show that HPn has a quasi-Hamiltonian structure. We will discuss the gen-

eral case afterwards.

1.6 Imploded cross-section of Sp(n)

In the previous section we have constructed of a quasi-Hamiltonian structure

on a sphere using an imploded cross-section. In this section we show using a

different approach that a quaternionic projective space has a quasi-Hamiltonian

structure.
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Preliminaries

Let H be the set of quaternionic numbers. Then H∗, the set of nonzero quater-

nions, acts on Hn+1 \ {0} by multiplication on the right. The quotient space of this

action is known as a quaternionic projective space, denoted by HPn.

Let G = Sp(n), the group of unitary n × n matrices over the quaternions, with

maximal torus T = {diag(e2πix1 , ..., e2πixn)}. As an invariant inner product on sp(n)

we take

(ξ, η) = −(4π2)−1Re(tr(ξ · η)) for ξ, η ∈ sp(n). (1.6.1)

If we identify t with Rn via the map x 7→ 2πi diag(x1, ..., xn), then the simple roots

have the form

(2πi)−1αk(x) = xk − xk+1 for k = 1, ..., n − 1 and (2πi)−1αn(x) = 2xn

with maximal root (2πi)−1α̃(x) = 2x1. The corresponding alcove A is the n-

simplex 0 < xn < ... < x1 < 1/2. By slightly abusing our notation, we de-

note by σ01 the edge of the simplex with vertices σ0, σ1 which exponentiate to

torus elements of the form diag(t1, 1, ..., 1) with vertices I = diag(1, 1, ..., 1) and

diag(−1, 1, ..., 1) correspondingly. Their centralizers are G01 = U(1) × Sp(n − 1),

G0 = Sp(n) and G1 = Sp(1) × Sp(n − 1) respectively. One can immediately

see that exp(σ1) is not central, which implies that there is no Weyl group ele-

ment shifting it to the origin. Define a map H : G × A →
∐
σ≤AG/[Gσ,Gσ] by

H(g, x) = g[Gexp x,Gexp x]. By (1.5.4) the stratum corresponding to a general face

is given by Xσ = G/[Gσ,Gσ] × expσ and therefore we have

X0 = H(I, 0) × {I} � {pt}, (1.6.2)

X01 = Sp(n)/Sp(n − 1) × {diag(e2πix1 , 1, ..., 1)|x1 ∈ (0,
1
2

)} � S 4n−1 × (0, 1), (1.6.3)
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X1 = Sp(n)/(Sp(n − 1) × Sp(1)) × diag(−1, 1, ..., 1) � HPn−1. (1.6.4)

Consider the closure of the stratum corresponding to σ01, which is X̄01 =

X0
⊔

X01
⊔

X1. Notice that we have bijections X0
⊔

X01 � Hn and X1 � HPn−1, and

one would expect that X̄01 and HPn are homeomorphic. However, the covering

obtained from the strata, U0 = X0
⊔

X01 and U1 = X01
⊔

X1 is not an affine cover,

since U1 is a H-line bundle over HPn−1. Hence, we have to construct directly a

homeomorphism from X̄01 to HPn.

Homeomorphism between X̄01 and HPn

Define a map

G : X01 → HPn , (H(g, x), exp x) 7→
[ √

(1 − 2x1),
√

2x1g.v
]
, (1.6.5)

where v = (1, 0, ..., 0) ∈ Hn. One can easily check that it is well-defined, i.e.

does not depend on the equivalence class of g in Sp(n)/Sp(n − 1). Moreover,

G is a continuous, injective map on X01(or 0 < x1 <
1
2 ) and can be extended

continuously to a bijective map on X̂01. Indeed, on X0 (or x1 = 0) we have

G(H(g, x), x) = [1, 0, ..., 0] and on X1 (or x1 =
1
2 ) we have G(H(g, x), x) = [0, g.v].

It is known (see [HJS]) that an imploded space is Hausdorff, locally compact

and second countable. Thus, we have proved

Theorem 7. The map G : X̄01 → HPn is a homeomorphism.

This statement allows us to define a smooth structure on X̄01 by pulling back the

smooth structure on HPn via G. Now we would like to give a description of the

inverse of G. For this we use the following decomposition Y0
⊔

Y01
⊔

Y1 of HPn,
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where

Y0 = {[1, 0, ..., 0]},

Y01 = {Z ∈ HPn|Z1 , 0 and
n+1∑
l=2

|Zl|
2 , 0},

Y1 = {Z ∈ HPn|Z1 = 0}.

We define a map F : HPn → X̄01 stratawise as follows. First, we map

Y0 7→ X0.

Second, the restriction of F to Y01

X01

Y01
-

F |Y01
-

S 4n−1 × expσ01

?
(1.6.6)

is given through the homeomorphisms Y01 → S 4n−1 × expσ01 and X01 → S 4n−1 ×

expσ01, defined respectively by

[Z1,Z2, ...,Zn+1] 7→
(

Z2Z̄1

|Z1|

√∑n+1
l=2 |Zl|

2
, ...,

Zn+1Z̄1

|Z1|

√∑n+1
l=2 |Zl|

2

)
× diag(eλπi, 1, ..., 1)

and (
H(g, x), exp x

)
7→ (g.v, exp x),

where

λ =

∑n+1
l=2 |Zl|

2∑n+1
l=1 |Zl|

2
. (1.6.7)

Therefore F |Y01 is of the form

[Z1,Z2, ...,Zn+1] 7→
(
H(g, x), exp x

)
where g is a matrix ( fp,q(Z))n

p,q=1 whose first column is

fp,1(Z) =
{

Zp+1Z̄1

|Z1 |
√∑n+1

l=2 |Zl |2
for p = 1, ..., n (1.6.8)
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and x = (λ/2, 0, ...0). Third, for the stratum Y1 we have a commutative diagram

X1

Y1
-

F |Y1

-

HPn−1 × diag(−1, 1, ..., 1)
?

(1.6.9)

where FY1 is determined by homeomorphisms Y1 → HPn−1×diag(−1, 1, ..., 1) and

X1 → HPn−1 × diag(−1, 1, ..., 1) given by

[0,Z2, ...,Zn+1] 7→ ([Z2, ...,Zn+1], diag(−1, 1, ..., 1))

and (
H(g, x), exp x

)
7→ (g.v, exp x)

respectively. Therefore F |Y1 is of the form

[0,Z2, ...,Zn+1] 7→ H(g, x) × diag(−1, 1, ..., 1) in X1,

where g is a matrix fp,q(Z) whose first column is

fp,1(Z) = Zp+1√∑n+1
l=2 |Zl |2

for p = 1, ..., n

and x = (1/2, 0, ..., 0). So we have

Lemma 2. The map F is the inverse of G and hence smooth.

Now if we define an action of Sp(n) × T on HPn by

(g, t)[Z1, ...,Zn+1] = [Z1t1, g.(Z2, ...,Zn+1)] , (1.6.10)

where t = diag(t1, ..., tn) then one can easily prove

Lemma 3. The map G, and hence F , is Sp(n) × T -equivariant.
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Quasi-Hamiltonian structure on HPn

First, let us recall the quasi-Hamiltonian structure on a stratum Xσ. Since the

moment map Φ2 defined as in (1.2.5) is transversal to all faces of the alcove,

using quasi-symplectic reduction one can show

Lemma 4. [HJS, Lemma 4.5] For every σ ≤ A, the subspace Xσ = G/[Gσ,Gσ]× expσ

of D(G)impl is a quasi-Hamiltonian G×T -manifold. The moment map Xσ → G×T is the

restriction to Xσ of the continuous map Φimpl → G × T induced by Φ : D(G)→ G ×G.

Next we compute the corresponding 2-form ωσ on Xσ. Let (g, exp x) be

an arbitrary point on Xσ. A tangent vector at (g, exp x) is of the form

((L(g)∗ξ, (L(exp x))∗η) where ξ ∈ g and η ∈ ζ + z(gσ) for some ζ ∈ z(gσ)⊥ = [gσ, gσ]

[HJS, Lemma A.3]. Then a simple calculation yields

(ωσ)(g,exp x)((L(g)∗ξ1, L(exp x)∗η1), (L(g)∗ξ2, L(exp x)∗η2)) (1.6.11)

= −
1
2

((Adexp x − Adexp(−x))ξ1, ξ2) − (ξ1, η2) + (ξ2, η1).

One can check that it does not depend on the equivalence class of ξi in g/[gσ, gσ].

Consider the 2-form ω01 on an open stratum X01. In what follows we compute

the pull back of this 2-form via F and show that it extends smoothly to all of

HPn. Since ω01 is Sp(n) × T -invariant, it suffices to consider vectors of the form

z0 = [s, 1, 0, ..., 0], where

s =
|Z1|√∑n+1
l=2 |Zl|

2
.

The tangent space at z0 is

Tz0HPn = {(w1, ...,wn+1) ∈ Hn+1|sw1 + w2 = 0}, (1.6.12)

where wl = wl1 + wl2i + wl3 j + wl4k. Let us first find the corresponding tangent

vectors at F (z0), or more precisely corresponding pull-backs ξi, ηi to elements of
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a Lie algebra as in (1.6.11). Let v and w be tangent vectors of form (1.6.12). Note,

since

F (z0) = (H(I, (λ/2, 0, ..., 0)), diag(exp(λπi), 1, ..., 1)) =: (H(g, x), x), (1.6.13)

the first component of the image is already an element of the Lie algebra, while

the second one has to be translated by an appropriate element of the Lie group

(that is exp x). Denote by (Av
p,q)n

p,q=1 and (Bv
p,q)n

p,q=1 ((Aw
p,q)n

p,q=1 and (Bw
p,q)n

p,q=1) the

matrix representation of ξ1 and η1 (correspondingly ξ2 and η2). Then substituting

these to the first term of (1.6.11) and using (1.6.13) expression for F (z0) we have

((Adexp x − Adexp(−x))ξ1, ξ2) = (4π2)−1Re
([

exp(λπi)Av
11 exp(−λπi) −

exp(−λπi)Av
11 exp(λπi)

]
Āw

11 −
[
exp(λπi) − exp(−λπi)

] n∑
p=2

Av
1pAw

p1 + (1.6.14)

n∑
p=2

Av
1p
[
exp(−λπi) − exp(λπi)

]
Āw

p1

)
,

where the inner product is given by (1.6.1) and

Av
11 = −(s + s−1)(v12i + v13 j + v14k) , (1.6.15)

and by the skew-symmetry

Av
p1 = −Av

1p = v(p+1)1 + v(p+1)2i + v(p+1)3 j + v(p+1)4k . (1.6.16)

There are similar relations to (1.6.15) and (1.6.16) if we replace v by w. Thus we

can rewrite (1.6.14) in the following form

((Adexp x − Adexp(−x))ξ1, ξ2) =
sin(2πλ)

2π2 (s + s−1)(v13w14 − w13v14) − (1.6.17)

sin(πλ)
π2

n+1∑
p=3

(vp1wp2 − wp1vp2 − vp3wp4 + wp3vp4).

Hence, the corresponding two-form will be

sin(2πλ)
2π2 (s + s−1)dx13dx14 −

sin(πλ)
π2

n+1∑
p=3

(dxp1dxp2 − dxp3dxp4), (1.6.18)
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where x’s are just real coordinates for Z’s, such that Zl = xl1 + xl2i+ xl3 j+ xl4k. For

the remaining part of (1.6.11) we have:

−(ξ1, η2) + (ξ2, η1) = (4π2)−1Re(−Av
11B̄w

11 + Aw
11B̄v

11), (1.6.19)

where

Bv
11 = −

2πis
s2 + 1

v11, (1.6.20)

and the corresponding two-form is

1
2π

dx11dx12. (1.6.21)

Combining (1.6.18) with (1.6.21) yields

F ∗ω01 =
1

2πdx11dx12 −
sin(2πλ)

2π2 (s + s−1)dx13dx14 + (1.6.22)

sin(πλ)
π2

∑n+1
p=3(dxp1dxp2 − dxp3dxp4).

It is a smooth two-form defined on open dense subset Y01 of HPn. Moreover we

can show

Lemma 5. The two-form F ∗ω01 extends smoothly to all of HPn.

Proof. It suffices to check two critical cases Z1 = 0, a line at infinity, and

[1, 0, ..., 0], a point at infinity. As |Z1| approaches to 0, λ tends to 1 and there-

fore the third expression on the right hand side of (1.6.22) vanishes. Now since

λ = 1 − s2, we have s→ 0 and hence

sin(2πλ)
2π2 (s + s−1) −→ −

1
π
.

So in the neighborhood of Z1 = 0 the two-form F ∗ω01 can be written as

1
2π

dx11dx12 +
1
π

dx13dx14.
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In a similar fashion one can show that in the neighborhood of [1, 0, ..., 0] it is

given by:
1

2π
dx11dx12 −

1
π

dx13dx14.

This finishes the proof of this lemma. �

Notice that the obtained 2-form is given in dehomogenized coordinates by[
|Z1|√∑n+1
l=2 |Zl|

2
,

Z2Z̄1

|Z1|

√∑n+1
l=2 |Zl|

2
, .....,

Zn+1Z̄1

|Z1|

√∑n+1
l=2 |Zl|

2

]
. (1.6.23)

For Q = q1 + q2i + q3 j + q4k we define Imi(Q) = q2, then we have

Imi(dZ̄pdZp) = 2(dxp1dxp2 − dxp3dxp4). (1.6.24)

Now using (1.6.23) and (1.6.24) in homogeneous coordinates the first two terms

vanishes, our 2-form will take the form

sin(λπ)
π2

(
|Z1|

2
n+1∑
l=2

|Zl|
2
)−1[ n+1∑

p=3

|Zp|
2Imi(dZ1dZ̄1) −

Imi(Z1dZ̄pdZpZ̄1) +
( n+1∑

p=3

|Zp|
2Imi((Z1dZ̄1)) − Imi(Z1Z̄pdZpZ̄1)

)
× (1.6.25)

(
Z1dZ̄1 + dZ1Z̄1

|Z1|
2 +

∑n+1
l=2 (ZldZ̄l + dZlZ̄l)∑n+1

l=2 |Zl|
2

)]
.

The last thing we need to show that there is a well-defined smooth moment

map. Define a map Φ : HPn → Sp(n) × T stratawise, so that the following

diagram commutes
Xσ

Yσ
Φ -

G|Xσ

�
Sp(n) × T ,

Φσ
-

(1.6.26)

for each face σ in the closure. Then on each stratum it has the form

[Z1, ...,Zn+1] 7→ (AB−1A−1, B) (1.6.27)
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where B = (Bpq)n
p,q=1

B = diag(exp(λπi), 1, ..., 1) (1.6.28)

and A = (Apq)n
p,q=1 is any representative of H(g, x). One can easily check that

it does not depend on the representative of H(g, x). Evidently, Φ is uniquely

determined and Sp(n)× T -equivariant. We have to show that it is smooth. From

the construction one can see that Bpq are smooth. As for the first component of

Φ, on Y01 we have

AB−1A−1 = Idn +C,

where C = (Cpq)n
p,q=1:

Cpq = Ap1B̄11Āq1 − Ap1Āq1,

or to be more precisely

Cpq =

(
|Z1|

2
n+1∑
l=2

|Zl|
2
)−1

Zp+1

[
Z̄1 exp(πiλ)Z1 − |Z1|

2
]
Z̄q+1. (1.6.29)

We can easily see that it is smooth for Z1 , 0 and
∑n+1

l=2 |Zl|
2 , 0. Hence it is

smooth on Y01. Using almost the same argument as in Lemma 5 we can show it

is smooth in these two cases as well. Now summarizing these facts we have

Theorem 8. The closure of the stratum X01 of X = DSp(n)impl is a smooth quasi-

Hamiltonian Sp(n) × T -manifold diffeomorphic to n-dimensional quaternionic projec-

tive space with the 2-form and the moment map determined by (1.6.25) and (1.6.27)

respectively.

Remark. Notice that the homomorphism p : Sp(n) × T → Sp(n) × U(1) de-

fined by p(g, t) = (g, t1) is surjective; its kernel is the kernel of the action on

HPn which one can immediately see from (1.6.10). Therefore HPn is in fact a

quasi-Hamiltonian Sp(n) × U(1)-manifold where the second component of mo-

ment map is Φ2(Z) = exp(λπi). By reduction theorem [AMM, Theorem 5.1], the
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reduction of HPn with respect to the circle action U(1) is a quasi-Hamiltonian

Sp(n)-manifold. Reduction at λ = 0 and λ = 1 give quotients consisting of a

single point and HPn−1 respectively, while the reduction at an intermediate level

0 < λ < 1 gives a projective space CP2n−1. In fact using [HJS, Addendum 3.18]

one can show that this quasi-Hamiltonian structure is the same as the one ob-

tained by considering HPn−1 and CP2n−1 as conjugacy classes of Sp(n).

1.7 Smoothness Criterion for other type of Lie groups

The main result of this section is to show that the example we have discussed in

the last section, HPn and the “spinning” sphere of [HJS] are in some sense only

examples which can be constructed using universal imploded spaces.

In [E] and [HJS], the closure of a certain stratum for imploded spaces of type

A and C Lie groups has been studied . It is natural to ask whether there are other

examples of quasi-Hamiltonian spaces appearing in this context. Surprisingly,

the answer to this question is negative. To be precise, let K be any connected

and simply-connected compact Lie group. We show using results of Popov and

Vinberg and computation of dimensions of strata that a stratum of DKimpl has a

smooth closure only in the above mentioned examples. That is, S 2n and HPn are

the only examples where the stratum has a smooth closure. The idea is based

on the close relationship between the quasi-Hamiltonian space D(K) and the

Hamiltonian space T ∗K. Namely, using Lemma 1 one can show thatH : T ∗K →

D(K) descends to imploded cross section, that is, there is the equivariant local

homeomorphism

h : (T ∗K)impl → D(K)impl
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induced by H . Hence instead of showing smoothness criteria for D(K)impl, one

can do that for T ∗K.

Let K be a semisimple and simply connected compact Lie group. It is known

that (see [GJS, Proposition 6.8]) there is an isomorphism of K-Hamiltonian

spaces:

f : (T ∗K)impl → GN

where G = KC and N is a maximal unipotent subgroup of G (Following Kraft [K]

for any affine G-variety X we denote by XN the affine variety with the coordinate

ring C[X]N). Under this isomorphism the strata of (T ∗K)impl coincide with the

orbits of G:

f ((K × Σσ)//[Kσ,Kσ]) = G/[Pσ, Pσ]

where σ is a face of Weyl chamber and Pσ the corresponding parabolic sub-

group. We will denote this orbit by Oσ = G/[Pσ, Pσ]. Note in [GJS] they obtained

it as the orbit of vector vσ which is the sum of all fundamental weights contained

in the face σ. This implies that each stratum is a quasi-affine subvariety and its

closure in the classical topology is the same as its Zariski closure [K, Appendix

1.7.2]. Hence the stratum Xσ = (K × Σσ)//[Kσ,Kσ] has a smooth closure if and

only if its algebraic closure Zσ = G/[Pσ, Pσ] is a smooth algebraic variety. These

varieties also appeared in [PV] in the context of so called S -varieties. Let first

recall their definition.

Definition 3. An irreducible affine variety X with a regular action of the group G on it

is called an S -variety of the group G if one of the orbits of this action is open in X and if

the isotropy subgroup of any point of this orbit contains a maximal unipotent subgroup

of G.

The main example of S -varieties discussed in [PV] is a closure of an orbit
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of a vector which is a sum of highest weight vectors. In particular Zσ by their

definition are S -varieties [GJS, Lemma 6.2]. They gave explicit description of

coordinate ring of Zσ [PV, Theorem 6]

Theorem 9. C[Zσ] = S Λσ where S Λσ is a semigroup algebra with the corresponding

semigroup Λσ ⊆ C generated by fundamental weights contained in face σ.

They also compute the coordinate ring of Oσ:

Theorem 10. C[Oσ] = S ZΛσ∩C where ZΛσ ∩ C a semigroup obtained by the intersec-

tion group ZΛσ generated by σ with closure of the Weyl chamber C.

The other interesting result regarding properties of these varieties, which is

not relevant to what follows [PV, Theorem 13]

Theorem 11. Every S -variety is rational.

By the results of Popov and Vinberg [PV, §3], Zσ consists of finitely many

G-orbits which are labeled by the faces of the cone Q+Λσ. In particular, it always

contains a fixed point, strata corresponding to {0} face. Using the criteria given

in [P, Proposition 10] it is sufficient to check smoothness at the “most singular”

stratum {0}.

Proposition 3. Let Z be a S -variety of a connected reductive group G which contains

a fixed point o, and let Λ be the subsemigroup with zero of the semigroup of leading

weights of G which corresponds to the variety Z (see [PV]). Let ToZ denote the tangent

space to Z at o. Then the set of weights Λo = Λ\{0} is also a semigroup (with respect to

addition); this semigroup is finitely generated and has a unique minimal system (i.e. one

which cannot be diminished) of generators ω1, . . . , ωm. This system can be determined
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from the relation

ToZ =
m⊕

i=1

V∗r (1.7.1)

where Vr is the contragradient representation corresponding to ωr. In particular,

dim(ToZ) =
m∑

i=1

dim(Vi)

In particular, for Zσ we have

dim(T0(Zσ)) =
m∑

i=1

dim(Vi)

where Vi is an irreducible representation, one for each minimal generator

{ω1, ..., ωm} of the face σ. In our case these are just fundamental representations

contained in the closure of the face σ. So a necessary condition for smoothness

is:

dim(G/[Pσ, Pσ]) =
m∑

i=1

dim(Vi) (1.7.2)

In what follows, we will compute these dimensions for each type of Lie groups.

Type Al

First we compute these dimensions for strata corresponding to 1-dimensional

faces σ. There are exactly l number of 1-dimensional faces, one for each funda-

mental weight $r(1 ≤ r ≤ l) with the dimension of the fundamental representa-

tion [B]:

dim(Vr) =

 l + 1

r


whereas the dimension of the corresponding open stratum:

dim(G/[Pσ, Pσ]) = r(l − r + 1) + 1
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These are equal if and only if r = 1 or r = l. In these cases we have G/[Pσ, Pσ] �

Cl+1.

Now we examine smoothness of closure of stratum corresponding to higher

dimensional faces of the Weyl chamber. First note following simple but a very

useful dimension formula for an arbitrary semisimple Lie group

dim(G/N) =
1
2

(dim(G) + rank(G)). (1.7.3)

which is for type A equals to l(l+3)
2 . On the other hand we have upper bound:

dim(G/[Pσ, Pσ]) ≤ dim(G/N)

Using criteria (1.7.2), by direct examination one can see that there are very few

cases. For 2-dimensional faces containing $i and $ j

dim(Vi) + dim(V j) =

 l + 1

i

 +
 l + 1

j


and the only case this value is below that upper bound i = 1, j = l, in which case

it is 2(l + 1). The dimension of the corresponding open stratum:

dim(G/[Pσ, Pσ]) = 2l + 1 < 2(l + 1),

hence it is not smooth. In all other cases dim(Vi)+dim(V j) is at least (l+1)(l+2)
2 > l(l+3)

2 .

This also implies that there are no smooth closures for higher dimensional faces.
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Type Bl.

Like in type A we first examine 1-dimensional faces. In this case dimensions of

fundamental representations are:

$r for 1 ≤ r ≤ l − 1 dim(Vr) =

 2l + 1

r


$l dim(Vl) = 2l.

Dimensions of corresponding open strata:

dim(G/[Pr, Pr]) = r
(
2l −

3r
2
+

1
2

)
+ 1

and

dim(G/N) = l(l + 1)

For 2 ≤ r ≤ l − 1 we have dim(Vr) > dim(G/N) and dim(V1) > dim(G/[P1, P1]). In

case r = l

dim(G/[Pl, Pl]) =
l(l + 1)

2
+ 1

Hence equality holds if and only if r = l = 2, in which case B2 � C2 and G[P2,P2] �

C4. Again by direct examination one can easily check that dim(Vi) + dim(V j) >

l(l + 1) = dim(G/N) which implies that there are no smooth closures for higher

dimensional strata.

Type Cl.

Dimensions of fundamental representations

$r for 1 ≤ r ≤ l dim(Vr) =

 2l

r

 −
 2l

r − 2


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The equality holds only in case r = 1, for which corresponding closure G[P1,P1] �

C2l. Note that dim(Vr) < dim(Vr+1). On the other hand l ≥ 3 we have dimV2 =

l(2l − 1) − 1 > l(l + 1) = dim(G/N). This implies that there are no smooth closures

for higher dimensional strata.

Type Dl.

In this case dimensions of fundamental representations are :

$r for 1 ≤ r ≤ l − 2 dim(Vr) =

 2l

r


$r for l − 1 ≤ r ≤ l dim(Vr) = 2l−1.

Dimensions of corresponding open strata:

dim(G/[Pr, Pr]) = r
(
2l −

3r
2
−

1
2

)
+ 1 for 1 ≤ r ≤ l − 2

Equality happens only in case:

2l−1 =
l(l − 1)

2
⇒ l = 2 or l = 3

For l = 2, we have S pin(4) � S U(2) × S U(2). For l = 3, we have S pin(6) � S U(4).

These cases have already been considered in Type A.

For l ≥ 4, we have dim(G/N) = l2 ≤ l(2l + 1) ≤ dim(Vi) + dim(V j), therefore we

can deduce there are no smooth closures for higher dimensional faces.

Type E6.

First one can note that dim(E6) = 78. There are six fundamental weights with

dimensions of fundamental representation given as
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Fundamental weights Dimensions of Representations

$1 dim(V1) = 27

$2 dim(V2) = 78

$3 dim(V3) = 351

$4 dim(V4) = 2925

$5 dim(V5) = 351

$6 dim(V6) = 27

The only possible smooth closures for one dimensional faces can happen for

$1 and $6. For which we have:

dim(G/[P1, P1]) = 17 < 27 = dim(V1)

dim(G/[P6, P6]) = 17 < 27 = dim(V6)

.

Therefore we conclude that there are no smooth closures for strata correspond-

ing to one dimensional faces. Likewise, since dim(G/N) = 42 < 54 ≤ dim(Vi) +

dim(V j) we conclude that in fact there are no smooth closures for any higher

dimensional faces.

Type E7.

The dimension of group is dim(E7) = 133. There are seven fundamental weights

with dimensions of fundamental representation given as
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Fundamental weights Dimensions of Representations

$1 dim(V1) = 133

$2 dim(V2) = 912

$3 dim(V3) = 8645

$4 dim(V4) = 365750

$5 dim(V5) = 27664

$6 dim(V6) = 1539

$7 dim(V7) = 56

There is only one possible one dimensional face for which we have:

dim(G/[P7, P7]) = 28 < 56 = dim(V7).

Also one can see from dimensions of fundamental representations that there can

not be any smooth closure for higher dimensional faces.

Type E8.

The dimension of group is dim(E8) = 248. There are eight fundamental weights

with dimensions of fundamental representation given as
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Fundamental weights Dimensions of Representations

$1 dim(V1) = 3875

$2 dim(V2) = 147250

$3 dim(V3) = 6696000

$4 dim(V4) = 6899079264

$5 dim(V5) = 146325270

$6 dim(V6) = 2450240

$7 dim(V7) = 30380

$8 dim(V8) = 248

From the table one can easily imply that there are no smooth closures for any

strata.

Type F4.

The dimension of group is dim(F4) = 52. There are four fundamental weights

with dimensions of fundamental representation given as

Fundamental weights Dimensions of Representations

$1 dim(V1) = 52

$2 dim(V2) = 1274

$3 dim(V3) = 273

$4 dim(V4) = 26

Notice that for 1 ≤ r ≤ 3, we have dim(F4) ≤ dim(Vr). For the face containing
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last fundamental weight we have:

dim(G/[P4, P4]) = 16 < 26 = dim(V4).

From the table it is obvious that there are no smooth closures for other strata as

well.

Type G2.

First one can note that dim(G2) = 14. There are two fundamental weights with

dimensions of fundamental representation given as

Fundamental weights Dimensions of Representations

$1 dim(V1) = 7

$2 dim(V2) = 14

Dimensions of corresponding strata have dimensions:

dim(G/[P1, P1]) = 6 < 7 = dim(V1)

dim(G/[P2, P2]) = 6 < 14 = dim(V2)

.

It is clear from the table and dimension of group that there are no smooth closure

for any strata.

Conclusion

Now summarizing all our computations we have
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Theorem 1. Let K be a compact, connected, simply connected Lie group. The stratum

Xσ in D(K)impl has a smooth closure if and only if K is type A or C with stratum Xσ

defined as in Theorem 6 or 8.

This result implies that S 2n and HPn are the only class examples which can

be constructed using imploded spaces.

According to [AMM] to every quasi-Hamiltonian manifold corresponds nat-

urally a loop group manifold with a proper moment map. It is at present un-

clear what the loop group analogues of the spinning 2n-sphere or the quater-

nionic projective space are. In particular we do not know whether these loop

group manifolds possess Kahler structure. If that is case whether there is quasi-

Hamiltonian analogue of it. These and related problems we would like to pur-

sue in our future projects.
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CHAPTER 2

EQUIVARIANT COHOMOLOGY OF CONJUGATION SPACES

2.1 Introduction

Consider a topological space X with an action of a compact connected Lie group

G. It is a well-known that the rational equivariant cohomology H∗G(X,Q) is iso-

morphic to the subalgebra of Weyl group invariants of H∗T (X,Q), where T is a

maximal torus of G. To be precise

Theorem 12. [B1] Let G be a compact connected Lie group, T be a maximal torus of G,

W = N(T )/T be the Weyl group of G and X be a G-space. Then

H∗G(X,Q) � H∗T (X,Q)W ,

H∗T (X,Q) � H∗G(X,Q) ⊗H∗(BG ,Q) H∗(BT ,Q).

If we specialize X = {pt} , as corollary we obtain a classical result of Borel

Corollary 1. [B1] The cohomology of a complex flag variety G/T can be described as

H∗(G/T ) � H∗T (pt,Q)/H∗T (pt,Q)W
+ .

where H∗T (pt,Q)W
+ is an ideal generated by Weyl group invariants in positive degrees.

In his later paper [B2], he obtained a similar description of the cohomology

ring of real flags in Rn. Namely, for K = SO(n) with diagonal subgroup T2 �

(Z2)n−1, he showed that

H∗(K/T2) � H∗T2
(pt,F2)/H∗T2

(pt,F2)W
+ .
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where W the restricted Weyl group. Also if one takes G = SU(n) with a maximal

torus T , we have a degree halving isomorphism from the cohomology ring of

G/T to the cohomology ring of K/T2. On the other hand Bott and Samelson [BS]

noted that if G is a also simply connected with the Chevalley involution then we

have:

dimH2i(G/T,F2) = dimHi(K/T2,F2)

where K and T2 are fixed point subgroups, under the involution, of G and T

respectively.

Much earlier, A. Borel and A. Haefliger had studied the degree-halving iso-

morphism between the cohomology rings of complex and real projective spaces

and Grassmannians from a different point of view (and without using equivari-

ant cohomology) [BH].

Hausmann, Holm and Puppe have put these observation in the framework

of equivariant cohomology, and come up with the concept of conjugation spaces,

where the ring homomorphisms arise naturally from the existence of what they

call cohomology frames [HHP]. Later, Hamel using ideas in [BH] gave a purely

geometrical description of cohomological frames which explains topologically

the origin of the degree halving isomorphisms [Ha].

In the thesis we mainly interested in topology of conjugation space with a

group action. The important invariant of a space with a group action is an equiv-

ariant cohomology. This is a cohomology theory, pioneered by Borel, effectively

reflects both behavior of the space and the action. In [HHP] it has been shown

if X is a conjugation space with a compatible T action then we have a degree

halving isomorphism on the equivariant cohomology level

κ : H2∗
T (X)→ H∗T2

(Xσ)

39



where Xσ is a fixed point set under involution. Here we study conjugation

spaces with an arbitrary compact Lie group actions G. Let K be a fixed point

subgroup of G under an involution. In particular, under some restriction on a

group G we have an isomorphism between the G-equivariant cohomology of

the space and the K-equivariant cohomology of its fixed point set. As a corol-

lary we show that the K-equivariant cohomology of its fixed set is isomorphic

to an certain subalgebra of its T2-equivariant cohomology. One can think of last

stated result similar to recent results obtained by T. Holm and R. Sjamaar [HS].

In fact we use some of their results in this paper.

For the remainder of this chapter, all cohomology groups will be understood

to have coefficients in F2 and we will drop the coefficient group from the nota-

tion.

2.2 Equivariant Cohomology

In this section we will closely follow V. Guillemin and S. Sternberg [GS] and

lecture notes by W. Fulton [F]. Let G be a compact Lie group acting continuously

on a topological space X. If G acts on X freely, then the quotient space X/G is

usually as nice a topological space as X is. In particular, if X is a manifold then

so is X/G. The definition of the equivariant cohomology group is motivated by

principle that if G acts freely then the equivariant cohomology of X should be

just the cohomology of X/G:

H∗G(X) = H∗(X/G)

If the action is not free, the space X/G might be pathological and the right sub-

stitute for H∗(X/G) is H∗G(X). Let EG be a contractible space with free G action
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and denote by XG = EG ×G X the Borel homotopy quotient.

Definition 4. The equivariant cohomology of X is H∗G(X) = H∗(XG) singular cohomol-

ogy of XG.

One can show that such space EG exists and that H∗G(X) is independent of the

choice of EG. For the special case of a point, we have

H∗G(pt) = H∗(BG)

where BG = EG/G.

Let F be either R or C.

Example 1. Let G = F∗ (or S 1 and Z2 respectively) and take EG = F∞\0. Then

BG = FP∞ and H∗(BG) = F2[u]. Here u = c1(L) (w1(L)) is the first Chern (Stieffel-

Whitney) class of the tautological complex (real) line bundle L on FP∞.

Similarly for G = SU(n) (or SO(n)) we can take EG = Fn(F) - the space

of n-frames in Fn. Then BG = Gr(n,F∞) is the Grassmanian of n-planes and

H∗(BG) = F2[u1, u2, . . . , un] where ui is the i-th Chern (Stiefel-Whitney) class of

the tautological vector bundle of rank n (see [B1, B2]).

Much of what we do involve fiber bundles

XG → BG

with the fiber X. One can think of equivariant geometry as “spread-out geom-

etry”. These bundles are spread-out versions of X, in the same spirit as the

passages from vector space to vector bundle.

One of the main problems in the equivariant cohomology states:
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Problem. Let X be a given G-space and K be a closed subgroup of G. Then

the restriction of G action to K makes X into K-space. What is the relationship

between H∗G(X) and H∗K(X)?

We may take EK = EG with the restricted K-action. Then, we have the fol-

lowing commutative diagram

X - X

G/K - XK

?
- XG

?

G/K
?

- BK

?
- BG.

?

For such a geometric setting, there is a Eilenberg-Moore spectral sequence

{En, dn} such that

En ⇒ H∗(XK) = H∗K(X),

Ep,q
2 = Tor

p,q
H∗(BG)(H

∗(BK),H∗(XG)).

In particular for K = {id} the spectral sequence reduces to

Ep,q
2 = Tor

p,q
H∗(BG)(H

∗(pt),H∗(XG)), En ⇒ H∗(X).

2.3 Conjugation Spaces

We will closely follow construction given in [Sj]. Let X be a topological space

with a continuous involution σ. This gives rise to a continuous action of the

cyclic group Γ = {1, σ} of order 2. We will denote by Xσ the fixed point set under

involution. Recall from Example 1 the space EΓ = S∞ with classifying space
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BΓ = RP∞. Since Γ action on Xσ is trivial, its homotopy quotient is Xσ
Γ
= BΓ × Xσ.

We have a commutative diagram

XΓ � iΓ BΓ × Xσ

X

j

∪

6

�
i

⊃ Xσ

jσ

∪

6

where i is the inclusion of the real locus, iΓ is its equivariant counterpart, and j

and jσ are the inclusions of the fibre. The associated diagram in cohomology is

HΓ(X)
i∗
Γ- H∗Γ(X

σ)

H∗(X)

j∗

?

i∗
- H∗(Xσ)

j∗σ

?

and using Kunneth theorem we have H∗
Γ
(Xσ) � H∗(Xσ) ⊗ F2[u] � H∗(Xσ)[u]. Sup-

pose that Hodd(X) = 0. A cohomological frame is a pair (s, κ), where

s : H∗(X)→ H∗Γ(X)

is an additive section of j∗ and

κ : H2∗(X)→ H∗(Xσ)

is an additive isomorphism which divides the degrees in half. In addition, these

are required to satisfy the conjugation equation:

i∗Γs(a) = κ(a)ud + ωd+1ud−1 + . . . + ω2d−1u + ω2d

for each a ∈ H2d(X) and d ∈ N, where ωi ∈ Hi(Xσ). If a cohomological frame

exists, we call the involution σ a conjugation and the manifold X a conjugation

space.

Conjugation spaces have a number of remarkable properties
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• such a pair (κ, s) is unique ;

• the real locus Xσ is nonempty and if X is connected, then so is Xσ;

• the additive homomorphisms κ and s are ring homomorphisms;

• the coefficients ωi ∈ Hi(Xσ) in the conjugation equation are uniquely de-

termined by κ(a), namely ωi = S qi−d(κ(a)), the (i − d)-th Steenrod square of

κ(a) (see [FP])

The following example illustrates general feature of conjugation spaces.

Example 2. Let CPn be a complex projective space equipped with an involution given

by conjugation. Then the real locus is just real projective space RPn. Their cohomol-

ogy rings are H∗(CPn) = F2[a]/(an) and H∗(RPn) = F2[b]/(bn) with deg(a) = 2 and

deg(b) = 1 respectively. Then one can show that there is a cohomological frame (κ, s) is

given by

κ : H∗(CPn)→ H∗(RPn), a 7→ b

and

i∗Γs(ak) = (b2 + bu)k. (2.3.1)

In fact equation (2.3.1) was one of the motivations for [FP]. Namely, if rewrite b2+bu =

S q1(b) + S q0(b)u one can show

(b2 + bu)k =

k∑
i=0

S qi(bk)uk−i.

The main example in [HHP] of a conjugation space is a so-called spherical

conjugation complex, which include many known examples as special cases.

Definition 5.
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1. A conjugation cell (of dimension 2k) is a space with involution which is equivari-

antly homeomorphic to the closed unit disk in Ck , equipped with the involution

corresponding to complex conjugation.

2. A spherical conjugation complex is a space (with involution) obtained from the

empty set by countably many successive adjunction of collections of conjugation

cells.

It has been shown that a spherical conjugation complex is a conjugation

space [HHP, Proposition 5.2].

Example 3. Let G be a compact connected Lie group. A Chevalley involution of G is

an involution satisfying σ(g) = g−1 for g in some maximal torus T of G and σ(α) = −α

for all roots α of G. It is known that Chevalley involutions exist for all G and are

unique up to conjugation (see [Sa]). In particular, for G = SU(n), it is given by the

complex conjugation: σ(g) = g. It has been proved that with respect to the Chevalley

involution, every coadjoint orbit X is conjugation space [HHP]. For instance, all the

well-known examples of complex projective spaces, complex Grassmannians with the

involution given by complex conjugation are conjugation spaces (hence the fixed point

sets are real projecive spaces and real Grassmannians).

2.4 Compatible group actions

Let X be a space together with an involution σ . Let G be a compact connected

Lie group with involution τ. Suppose that a group G acts continuously on X. We

say that σ is compatible with the group action if σ(g.x) = τ(g).σ(x) for any g ∈ G.

In case G is a torus with an involution τ(g) = g−1, it was carefully been studied

in the original paper [HHP]. In particular they have shown

45



Theorem 2. [HHP, Corollary 7.6] Let X be a conjugation space with a compatible

T -action. Then XT is a conjugation space. In particular, there is a ring isomorphism

κ : H2∗
T (X)→ H∗T2

(Xσ).

2.4.1 Statement of result

Motivated by this result we will consider a problem in slightly more general

setting. Namely, we will be interested with simply connected G actions where

an involution is the Chevalley involution. Denote by K the fixed point group

under this involution. It is known that K is connected (i.e. see [BS]). The main

result of this chapter

Theorem 3. Let X be a conjugation space with a compatible G-action. Let G be of type

A or C. Then XG is also a conjugation space and we have a degree-halving isomorphism:

κ : H2∗
G (X)→ H∗K(Xσ).

We will see that the restriction on type of groups is necessary. First we will

recall some notions.

2.4.2 Equivariant fiber bundles over spherical conjugation

complexes

In this section we only require G to be compact. Let (B, γ) be a space with invo-

lution.
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Definition 6. (G, τ)-principal bundle is a G-principal bundle p : E → B equipped with

an involution σ̃ such that the right action of G is compatible, i.e. γ̃(x.g) = γ̃(x).τ(g)

Let (X, σ) be a space with involution together with a compatible G-action.

The space E ×G X has an induced involution (which also be called γ ) and the

associated bundle E ×G X → B, with fiber X, is a γ -equivariant locally triv-

ial bundle. The following result is especially useful for computing equivariant

cohomology [HHP, Proposition 5.3]

Theorem 4. Let X be a conjugation space and B be a spherical conjugation complex.

Then E ×G X is a conjugation space.

2.4.3 Milnor construction

For a given Lie group G we will present a construction of the universal G-bundle

due to J. Milnor. The affine n-simplex ∆n is the compact subset of Rn+1 consisting

of t = (t0, . . . , tn) ∈ Rn+1 satisfying
∑n

i=0 ti = 1 and ti ≥ 0. We form the product

∆n × Gn+1 where elements are written as double n + 1 tuples (t0 : g0, . . . , tn : gn)

with t ∈ ∆n and gi ∈ G. Let EG(n) be the quotient of ∆n × Gn+1 defined by the

following equivalence relation:

(t′0 : g′0, . . . , t
′
n : g′n) = (t′′0 : g′′0 , . . . , t

′′
n : g′′n )

provided t′i = t′′i for each i, and g′i = g′′i for all i with t′i = t′′i > 0. If t′i = t′′i = 0

different g′i and g′′i define the same equivalence class.

We have an action EG(n) × G → EG(n) given by the formula (t0 : g0, . . . , tn :

gn)g = (t0 : g0g, . . . , tn : gng). One can easily see it is free. The natural inclusion

of the products ∆n ×Gn+1 ⊂ ∆n+1 ×Gn+2 induces an inclusion on quotients spaces
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EG(n) ⊂ EG(n + 1), where (t0 : g0, . . . , tn : gn) sent to (t0 : g0, . . . , tn : gn, 0 : e) for

e ∈ G, the identity element of G. The inclusion is G-equivariant.

The Milnor universal principal G-bundle is EG = lim
←−

EG(n) equipped with in-

verse limit topology, that is a subset M ⊂ EG is closed if and only if M ⊂ EG(n)

is closed in EG(n) for each n. The Milnor classifying space is the quotient

EG/G = BG. For short we will denote elements of EG by (ti : gi) (see [Hu]).

Under the right diagonal action of G on EG, each (ti : gi) is equivalent to a

unique element (ti : g̃i) for which g̃ j = e, where j is the minimal integer for

which t j = 0. Therefore, each class in BG has a unique such representative which

we call the minimal.

2.4.4 Fixed point set of XG

Let X and G be as above. Consider XG the Borel homotopy quotient of X. Note

that any involution τ on G induces the involution on EG, namely τ(ti : gi) =

(ti : τ(gi)), which is G-compatible. One can check that EG equipped with such

involution is a (τ,G)-principal bundle. There is a natural involution on EG × X

which we denote by σ. Similarly one can check that it is (τ,G)-principal bun-

dle. The following proposition gives a description of fixed point set under this

involution.

Proposition 4. Let K be a fixed point subgroup of G under an involution τ then

(XG)σ = (Xσ)K .

Proof. Basically we follow the proof given in [HHP]. In the same way as for BG,

each class in XG has a unique minimal representative (w, x) ∈ EG × X for which w is
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minimal. Note that the inclusion i : Xσ → X induces an inclusion iK : (Xσ)K → XK

while the group inclusion K ⊂ G induces a projection iX : XK → XG. On the other

hand, using the Milnor construction we have

EK × Xσ ↪→ EG × X

which is equivariant with respect to diagonal actions of K action on the LHS

and G action on the RHS. Hence there is an induced injective map (Xσ)K → XG.

One can easily check that the image is invariant under σ and therefore there is

an injective map (Xσ)K → (XG)σ which we will denote by β. Hence, we have a

commutative diagram

(Xσ)K ⊂
iK - XK

iX -- XG

(XG)σ
∪

6

β
-

To see that β is surjective, consider (w, x) minimal representative in XG. Then

σ(w, x) is also minimal. On the other hand if σ(w, x) = (w, x) then σ(x) = x and

τ(gi) = gi that is gi ∈ K. Hence (w, x) is in the image of β which implies that β is

surjective. �

In view of this proposition and Theorem 4 we only need to prove that BG

is a spherical conjugation complex. Now we restrict ourselves to the Chevalley

involution.

Proposition 5. Let G be a compact, simply connected, simple Lie group of type A or C.

Then BG is a spherical conjugation complex.

Proof. Let G be of type A, namely SU(n). Let Fn(Cn+m) be the space of orthonor-

mal families of n vectors in Cn+m. The group SU(n) acts freely on Fn(Cn+m) with
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the quotient space Gr(n,Cn+m), the Grassmanian of n planes. Fn(Cn+m) is (m − 1)-

connected. Therefore one can take as EG(m) = Fn(Cn+m+1) and for the base

BG(m) = Gr(n,Cn+m+1). We define a structure of spherical conjugation complex

as follows. Denote by Xm the Schubert cell decomposition of Gr(n,Cn+m). It is

known that it is a spherical conjugation complex and Xm+1 is obtained from Xm

by adjunction of a finite collection of conjugation cells. Hence, BG =
⋃∞

i=−1 Xm is a

spherical conjugation complex equipped with involution given by conjugation.

Note in this case the fixed point set is just (BSU(n))σ = Gr(n,R∞) = BSO(n)

Similarly for type C, i.e. G = Sp(n) we can take for EG(m) = Fn(Hn+m), the

space of orthogonal frames and BG(m) = Gr(n,Hn+m) the Grassmanian of n planes

in Hn+m. Note that the Chevalley involution for complex simple Lie algebra of

type C is just the complex conjugation for Sp2n(C), a complex symplectic group.

On the other hand

Sp(n) = U(n) ∩ Sp2n(C)

Therefore the fixed point set for Sp(n) under the Chevalley involution is

U(n) = O(2n) ∩ Sp2n(R) = U(n) ∩ Sp2n(R)

Hence the fixed point set for the classifying space is Gr(n,C∞). By the similar

argument as for type we conclude that BSp(n) is spherical conjugation complex.

�

2.4.5 Other type of Lie groups

Unfortunately, BG is not a conjugation space for any other type of Lie groups,

possibly except for type G2. The main problem is that except for type A,C and

G2, the F2-cohomologies of the corresponding classifying spaces always contain
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nontrivial odd degree cocycles. For type B and D the corresponding simply

connected groups are Spin(n). For n ≤ 6 we have

Spin(3) � SU(2) Spin(4) � SU(2) × SU(2)

Spin(5) � Sp(2) Spin(6) � SU(4)

which might be included for type A case. For n > 9, it is known that H∗(BSpin(n))

is not even a polynomial ring. For n ≤ 10 it was computed by Borel [B3]. In

particular,

H∗(BSpin(10)) = F2[y4, y6, y7, y8, y10, y32]/(y7y10)

Now consider a sequence

w2, S q1w2, . . . , S q2h−2
S q2h−3

. . . S q1w2 (2.4.1)

where wi’s are universal Stieffel-Whitney classes and h certain parameter de-

pending on n. The following remarkable result due to D. Quillen gives an ex-

plicit description of the cohomology ring of the classifying space of spin groups

[Q].

Theorem 5. Let J be the ideal in H∗(BSO(n)) generated by the regular sequence (2.4.1).

Then the canonical homomorphism

H∗(BSO(n)) ⊗ F2[w2h]→ H∗(BSpin(n)) (2.4.2)

is an isomorphism.

In particular, if we rewrite the sequence more explicitly, the ideal has form

J = 〈w2,w3,w5,w9,w7w10, . . .〉
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which implies that for n ≥ 7, the cohomology ring H∗(BSpin(n)) always contains a

nontrivial 7-cocycle. Hence, it is not a conjugation space. For exceptional groups

computations of cohomologies of classifying spaces were carried out mostly by

Japanese school A. Kono, M. Mimura, H. Toda, etc. For type E:

H∗(BE6) = F2[y4, y6, y7, y10, y18, y32, y34, y48]/(ideal)

H∗(BE7) = F2[x4, x6, x7, x10, x11, x18, x19, x34, x35, x66, x67, y64, y96, y112]/(ideal)

It is somewhat surprising that the cohomology ring of BE8 is still not determined.

For some further results and related conjectures on H∗(BE8) one can see a recent

paper by M. Mimura, T. Nishimoto [MN]. One should also remark that these

computations heavily based on computations on spin groups. However by Re-

mark 3 we can conclude that H∗(BE8) also contains odd dimensional cohomology

classes. On the other hand for type F and G it was computed long before by A.

Borel [B1, Theorem 19.1],

H∗(BF4) = F2[y4, y6, y7, y16, y24]

H∗(BG2) = F2[y4, y6, y10].

based on the fact that the generators of H∗(G2) and H∗(F4) are universally trans-

gressive.

Definition 7. Let

F ⊂
i - E

p
- B

be a fibration with fibre F. We say that F is totally non-homologous to zero in E with

respect to ring R if the homomorphism i∗ : H∗(E.R)→ H∗(F,R) is onto.

Remark 3. In the inclusions G2 ↪→ F4 ↪→ E6 ↪→ E7 ↪→ E8, every subgroup is

totally non-homologous to zero in any bigger group containing it. By well-known result

of Borel [B1], H ↪→ G is totally non-homologous to zero if and only if σ∗(H,G) :

H∗(BG)→ H∗(BH) is an epimorphism.
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2.5 Abelianization in Equivariant Cohomology

In this section motivated by the result of [HS] we would like to find in some

sense a simpler description of equivariant cohomology rings of conjugation

spaces.

As we have mentioned in the introduction when we consider topological

space X with G action, there is a remarkable relationship between cohomology

rings of H∗G(X,Q) and H∗T (X,Q), where T is a maximal torus. Namely, H∗G(X,Q)

is isomorphic to the subalgebra of Weyl group invariants of the equivariant co-

homology ring H∗T (X,Q). But in general this relationship breaks down for other

coefficient rings. To explain this relationship lets recall a general construction.

Let U be a closed, not necessarily connected subgroup of G. The canonical

map

pX : XU � XG (2.5.1)

is a locally trivial fibre bundle with fibre G/U. We have the induced map p∗X :

H∗G(X,k) → H∗U(X,k) with coefficients in commutative ring k. In case U is a

maximal torus T , the image of p∗X is W-invariant (where W is the corresponding

Weyl group) and

p∗X : H∗G(X,k)→ H∗T (X,k)W .

It is known that for general k it is neither injective nor surjective. Generaliz-

ing observations made in [AC] and [BE], R. Sjamaar and T. Holm have shown

that under rather mild conditions on k one can give similar description of the

cohomology ring H∗G(X,k).

53



2.5.1 Demazure Algebra

Let R be a root system of (G,T ). For each α ∈ R define an operator δα on the

polynomial ring S k = H∗T (pt,k)

δα =
1 − sα
α

where sα is a reflection with respect to a hyperplane defined by the root α. There

are number of interesting identities on these operators

sαδα = δα = −δαsα, δ−α = −δα, wδαw−1 = δw(α)

for any w ∈ W. Note that δα is an operator of degree (−2). LetDk be the algebra of

endomorphisms generated by δα for α ∈ R and S k (which acts by multiplication).

The generators are S W
k -linear, so Dk is a subalgebra of EndS W

k
(S k). In particular,

Dk contains the Weyl group and hence the group algebra S k[W]. It was shown

that H∗T (X) is a module overDk in a natural way [HS, Theorem 1.10].

Define the augmentation left ideal ofDk to be the annihilator of constant poly-

nomial 1 ∈ S k,

I(Dk) = {∆ ∈ Dk|∆(1) = 0}.

Let M be a left Dk module. We denote by MI(Dk) the set of all elements in M

annihilated by I(Dk). Note MI(Dk) is not a module over Dk, but it is a module

over the ring S W
k . It is easy to see that,

p∗X(H∗G(X,k)) ⊆ H∗T (X,k)I(Dk) ⊆ H∗T (X,k)W .

Note that there are examples when both of these inclusions are strict. In [HS],

they gave sufficient conditions when the first inclusion is an isomorphism. To

state the result first let us recall a notion of torsion. By well-known result of
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Borel [B1], the characteristic homomorphism i∗ : S k → H∗(G/T,k) is surjective

over k = Q and therefore has a finite cokernel over Z. The torsion index t(G) of G

is the order of the cokernel of i∗ : S N → H2N(G/T,Z), where 2N is the degree of

top cohomology class of G/T . One can show that torsion index always divides

the order of Weyl group. The main result in [HS, Theorem 2.5, 2.6] states

Theorem 6. Assume that t(G) is unit in k. Then

1. Dk = EndS W
k

(S k).

2. The map is p∗Xan isomorphism from H∗G(X,k) onto H∗T (X,k)I(Dk).

2.5.2 Back to Conjugation Spaces

Now using the results of the previous subsection we can give another descrip-

tion of equivariant cohomologies of conjugation spaces. Namely, we will relate

the cohomology rings of Theorem 2 to that of Theorem 3. Our main result,

Theorem 7. Let (X, σ) be a conjugation space with compatible G-action, where G is

either of type A or C. Then

H∗K(Xσ) � H∗T2
(Xσ)I(DσF2

)
.

Proof. First note that the torsion index t(G) for type A and C is 1, therefore it is

unit in any ring k. Hence by Theorem 6 over F2 we have

H∗G(X) � H∗T (X)I(DF2 ).
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On the other hand by Theorem 2 and Theorem 3 we have degree halving iso-

morphisms

κ : H2∗
G (X) → H∗K(Xσ)

κ : H∗T (X) → H∗T2
(Xσ).

Now for each δα ∈ DF2 there is a unique operator δσα of degree (-1) on H∗T2
(Xσ)

such that the following diagram commutes

H∗T (X)
δα - H∗T (X)

H∗T2
(Xσ)

κ

? δσα - H∗T2
(Xσ).

κ

?

We have δσα = κ−1 ◦ δα ◦ κ. Let DσF2
be the algebra generated by δσα and the sym-

metric algebra H∗T2
(pt). Hence we have an isomorphism

κ : H∗T (X)I(DF2 ) → H∗T2
(Xσ)D

σ
F2 .

Summarizing all these facts there is a commutative diagram

H2∗
G (X)

p∗X - H2∗
T (X)I(DF2 )

H∗K(Xσ)

κ

? p∗Xσ - H∗T2
(Xσ)I(DσF2

)

κ

?

where p∗Xσ = κ ◦ p∗X ◦ κ
−1. Since all the maps in diagram are isomorphisms so is

p∗Xσ which proves theorem. �
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