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Abstract

Kleene algebra with tests (KAT) is an equational sys-
tem for program verification that combines Kleene al-
gebra (KA), or the algebra of regular expressions, with
Boolean algebra. It can model basic programming and
verification constructs such as conditional tests, while
loops, and Hoare triples, thus providing a relatively
simple equational approach to program equivalence and
partial correctness. In this paper we show how KAT
can be used to give a rigorous equational treatment of
control constructs involving nonlocal transfer of con-
trol such as unconditional jumps, loop statements with
multi-level breaks, and exception handlers. We develop
a compositional semantics and a complete equational
axiomatization. The approach has some novel techni-
cal features, including a treatment of multi-level break
statements that is reminiscent of de Bruijn indices in
the variable-free lambda calculus. We illustrate the use
of the system by giving a purely calculational proof that
every deterministic flowchart is equivalent to a loop
program with multi-level breaks.

1 Introduction

Kleene algebra with tests (KAT) is an equational sys-
tem for program verification that combines Kleene al-
gebra (KA), or the algebra of regular expressions, with
Boolean algebra. It can model basic programming
and verification constructs such as conditional tests,
while loops, and Hoare triples, thus providing a rela-
tively simple equational approach to program equiv-
alence and partial correctness. It has been applied
successfully in numerous low-level verification tasks
involving communication protocols, source-to-source
program transformations, concurrency control, com-

piler optimization, and dataflow analysis [1, 3, 6, 7,
15, 16, 18, 21, 23]. The formalism allows a clean sepa-
ration between first-order reasoning to establish basic
premises, which may take properties of the domain of
computation into account, and program manipulation,
which is chiefly propositional.

There is an extensive model theory with various classes
of language, relational, trace, and matrix models. All
these classes share the same equational theory, and
KAT is deductively complete for this theory. The re-
lational models are of particular interest in program-
ming language semantics. KAT subsumes propositional
Hoare logic (PHL) and is deductively complete for all
relationally valid Hoare-style rules, whereas PHL is not
[19]. The equational theory is PSPACE -complete, the
same as KA and PHL [8].

There is a coalgebraic theory of KAT based on a
generalization of classical automata theory to include
Booleans [20, 22]. The generalized automata are known
as automata with tests or automata on guarded strings.
An ordinary automaton with ε-transitions is an au-
tomaton with tests over the two-element Boolean al-
gebra 2. This theory provides a more rigorous alge-
braic foundation for classical program schematology
that allows simpler and more rigorous equivalence and
inequivalence proofs [1, 25]. Informal combinatorial
arguments and surgery on graph models are replaced
with purely calculational equational proofs that are
more amenable to automation.

Although KAT is particularly well suited for reason-
ing about while programs (programs constructed from
atomic actions and tests with sequential composition,
conditionals, and while loops), there is a misconception
that it is less well suited for dealing with more gen-
eral control constructs involving nonlocal transfer of
control such as goto statements, loop statements with
multi-level breaks, and exception handlers. These con-
structs are typically handled with higher-order meth-
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ods involving continuation passing.

In this paper, we attempt to dispel this misconception.
We present a compositional semantics for goto, loop,
and multi-level break statements and a complete equa-
tional axiomatization. The approach has some novel
technical features, including an interesting treatment of
the break n statement that is reminiscent of de Bruijn
indices in the variable-free lambda calculus [10]. We il-
lustrate the use of the system by giving a purely calcu-
lational proof of the classical folklore result that every
deterministic flowchart is equivalent to a loop program
with multi-level breaks.

2 Definitions

2.1 Kleene Algebra

Kleene algebra (KA) is the algebra of regular expres-
sions [9, 13]. The axiomatization here is from [17].
A Kleene algebra is a structure (K, +, ·, ∗, 0, 1) such
that K is an idempotent semiring under +, ·, 0, and 1
and satisfies the axioms

1 + pp∗ ≤ p∗ q + pr ≤ r ⇒ p∗q ≤ r

1 + p∗p ≤ p∗ q + rp ≤ r ⇒ qp∗ ≤ r

for ∗. There is a natural partial order p ≤ q
def⇐⇒ p+q =

q.

Standard models include the family of regular sets over
a finite alphabet, the family of binary relations on a set,
and the family of n × n matrices over another Kleene
algebra. Other more unusual interpretations include
the min,+ algebra, also known as the tropical semiring,
used in shortest path algorithms, and models consisting
of convex polyhedra used in computational geometry
[11].

The completeness result of [17] says that the algebra
of regular sets of strings over a finite alphabet Σ is the
free Kleene algebra on generators Σ. The axioms are
also complete for the equational theory of relational
models.

2.2 Kleene Algebra with Tests

A Kleene algebra with tests (KAT) [18] consists of a
Kleene algebra K with an embedded Boolean algebra
B such that the semiring structure on B is a subalgebra
of the semiring structure on K. Elements of B are

called tests. The Boolean negation operator is defined
only on tests.

Like KA, KAT has language and relational models and
is deductively complete over these interpretations [24].
The chief language-theoretic models are the regular
sets of guarded strings over alphabets Σ and T of prim-
itive action and test symbols, respectively (see Section
2.3). This is the free KAT on generators Σ, T . The set
of guarded strings represented by a KAT expression e
is denoted GS(e).

KAT can code elementary programming constructs
and Hoare partial correctness assertions and subsumes
propositional Hoare logic (PHL). It is deductively com-
plete over relational models, whereas PHL is not. More-
over, KAT is no more difficult to decide, as PHL, KA,
and KAT are all PSPACE -complete.

For KAT expressions e, e′, we write e ≤ e′ or e = e′

if the relation holds in the free KAT on generators
Σ, T ; that is, if it is a consequence of the axioms of
KAT.

See [17, 18, 19] for a more detailed introduction.

2.3 Guarded Strings

Guarded strings were introduced in [12]. Let Σ be a
finite set of action symbols and T a finite set of test
symbols disjoint from Σ. The symbols T generate a
free Boolean algebra B; elements of B are called tests.
An atom is a minimal nonzero element of B. The set
of atoms is denoted At. The elements of At can be re-
garded either as conjunctions of literals of T (elements
of T or their negations) or as truth assignments to T .
We write p, q, p0, . . . for elements of Σ and α, β, α0, . . .
for elements of At. A guarded string is a finite alter-
nating sequence of atoms and actions, beginning and
ending with an atom; that is, an element of (At·Σ)∗·At.
We will also refer to infinite guarded strings, which are
members of (At · Σ)ω, but will always qualify with the
adjective “infinite” when doing so.

2.4 Automata with Tests

Automata with tests, also known as automata on
guarded strings, were introduced in [20]. They are the
automata-theoretic counterpart to Kleene algebra with
tests (KAT). In the formalism of [20], they have two
types of transitions, action transitions and test transi-
tions, and operate over guarded strings. An ordinary
automaton with ε-transitions is just an automaton with
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tests over the two-element Boolean algebra 2. Many
of the constructions of ordinary finite-state automata,
such as determinization and state minimization, gen-
eralize readily to automata with tests. In particular,
there is a version of Kleene’s theorem showing that
these automata are equivalent in expressive power to
expressions in the language of KAT.

Deterministic flowcharts correspond to a limited class
of automata called strictly deterministic [25]. Intu-
itively, a strictly deterministic automaton operates by
starting in its start state and scanning a sequence of
atoms, which we can view as provided by an external
agent. For each atom in succession, the automaton re-
sponds deterministically either by emitting an action
symbol and moving to a new state, or by simply halt-
ing, according to its transition function.

Formally, a strictly deterministic automaton over Σ
and T is a tuple

M = (Q, δ, start),

where Q is a finite set of states, start ∈ Q is the start
state, and δ is a transition function

δ : Q → At → (Σ×Q) + {halt},

where + denotes disjoint (marked) union. The element
halt is not a state, but a universal constant used by an
automaton to signal halting.

Given a state s and an infinite sequence of atoms
σ, there is a unique finite or infinite guarded string
gs(s)(σ) obtained by running the automaton starting
in state s. Formally, the map

gs : Q → Atω → (At · Σ)∗ · At + (At · Σ)ω

is defined coinductively as follows:

gs(s)(α σ) def=

{
α · p · gs(t)(σ), if δ(s)(α) = (p, t),
α, if δ(s)(α) = halt.

This determines gs(s)(σ) uniquely for all s ∈ Q and
σ ∈ Aω.

The set of (finite) guarded strings represented by the
automaton M is

GS(M) def= {gs(start)(σ) | σ ∈ Atω} ∩ (At · Σ)∗ · At.

Two automata are considered equivalent if they repre-
sent the same set of finite guarded strings.

2.5 Programming Constructs

Deterministic while programs are formed induc-
tively from sequential composition (p ; q), condi-
tional test (if b then p else q), and while loops
(while b do p), where b is a test and p, q are
programs. We also include instructions skip (do
nothing) and fail (looping or abnormal termina-
tion), although these constructs are redundant, be-
ing semantically equivalent to while false do p and
while true do skip, respectively. We do not include
a halt instruction; a program terminates normally by
falling off the end.

Every while program can be converted to an equiva-
lent strictly deterministic automaton. One first con-
verts the programs to a KAT term using the standard
translation

p ; q = pq skip = 1

if b then p else q = bp + bq fail = 0

while b do p = (bp)∗b,

then applies Kleene’s theorem for KAT to yield an au-
tomaton with tests, which can then be converted to the
form of Section 2.4. This construction is given in [25].
An example is shown in Fig. 1. In the strictly determin-
istic automaton shown in that figure, an edge from s
to t labeled αp denotes the transition δ(s)(α) = (p, t).
The converse is false: there is a strictly determinis-

while b do {
while c do q;
p;

}

0

2

halt

1

3

b

b

c

c

p

q
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halt
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bcq
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bc

bc
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bcq

Figure 1: A while program and its corresponding deter-
ministic flowchart and strictly deterministic automaton

tic automaton equivalent to no while program [2, 14]
(see also [25], in which a three-state counterexample is
given).
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In addition to the usual while program constructs, we
consider the following constructs:

loop p goto `

break n, n ≥ 1 ` : p

Intuitively, the loop construct causes repeated execu-
tion of its body p. If p terminates normally, then con-
trol is transferred back to the beginning of p. This
construct can be used in conjunction with the nonlo-
cal breaks break n, n ≥ 1. Intuitively, a break n
instruction transfers control to the location immedi-
ately following the nth loop within whose scope the
instruction occurs, counting from the innermost. The
statement break is short for break 1. We also con-
sider the unconditional jump goto `, which transfers
control to a labeled program ` : p if it exists, or fails if
not.

The numbers n in the instructions break n are called
de Bruijn indices in recognition of their similarity to
the construct of the same name in the variable-free
lambda calculus [10]. The index 0 denotes the continu-
ation that corresponds to “falling off the end of the pro-
gram” and is also considered a de Bruijn index. The de
Bruijn indices along with the statement labels ` (which
are assumed to be disjoint from the de Bruijn indices)
are collectively called continuation labels.

3 Semantics

Programs p are interpreted by a translation to KAT
expressions. This is a two-step process. In the first
step, we identify a family of expressions Rα(p), one for
each continuation label α. Intuitively, R0(p) is a KAT
expression representing all valid halting computations
that do not encounter a break or goto instruction. The
expression Rn(p) for n ≥ 1 represents the set of com-
putations leading to a break n (or more accurately, to
any statement that has the same effect as a break n oc-
curring at the outermost level). The expression R`(p)
represents the set of computations leading to goto `.
The definitions are compositional but interdependent,
thus must be defined by mutual induction.

In the second step, we define expressions R`α(p) for
each statement label ` and continuation label α. This
represents the set of computations in p leading to the
continuation α starting at the label `. These pieces are
then composed using a matrix construction to give a
single expression denoting the set of valid computations
of the program.

For convenience, define

s(α) =

{
`, if α = `,

n + 1, if α = n.

For a test or primitive action p, let

Rα(p) def=

{
p, if α = 0,
0, otherwise.

For the nonlocal atomic constructs,

Rα(break n) def=

{
1, if α = n,

0, otherwise,

Rα(goto `) def=

{
1, if α = `,

0, otherwise.

For nonatomic programs,

Rα(p + q) def= Rα(p) + Rα(q)

Rα(pq) def=

{
R0(p) ·R0(q), if α = 0,

Rα(p) + R0(p) ·Rα(q), otherwise,

Rα(p∗) def= R0(p)∗ ·Rα(p) + Rα(1)

=

{
R0(p)∗, if α = 0,

R0(p)∗ ·Rα(p), otherwise,

Rα(loop p) def= Rs(α)(p∗) = R0(p)∗ ·Rs(α)(p).

Define p ≡ q if Rα(p) = Rα(q) for all continuation la-
bels α. Since the meaning of programs will depend only
on the Rα, two ≡-equivalent programs can be substi-
tuted for each other.

Theorem 3.1 The relation ≡ is a congruence with re-
spect to the KAT operators and satisfies all the axioms
of KAT except p · 0 = 0.

Proof. All cases are straightforward except perhaps the
axiom q+rp ≤ r ⇒ qp∗ ≤ r, which we argue explicitly.
Assuming

Rα(q + rp) ⊆ Rα(r) (1)

for all α, we wish to show that

Rα(qp∗) ⊆ Rα(r) (2)

for all α. This is true for α = 0 because the interpre-
tation R0 is a homomorphism. For α 6= 0,

Rα(qp∗) = Rα(q) + R0(q)R0(p)∗Rα(p)
= Rα(q) + R0(qp∗)Rα(p)
⊆ Rα(q) + R0(r)Rα(p) (3)
⊆ Rα(q) + Rα(r) + R0(r)Rα(p)
= Rα(q + rp)
⊆ Rα(r), (4)
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the inclusion (3) from (2) for α = 0 and the inclusion
(4) from (1).

The axiom p · 0 = 0 is not satisfied, because R1(0) = 0
but R1(break · 0) = 1. 2

Example 3.2 Let us show that

while b do p ≡ loop if b then p else break

provided Rn(p) = 0 for all n ≥ 1. Note that this is false
without the proviso: for p = break, the left-hand side
is equivalent to if b then break and the right-hand
side is equivalent to skip. Thus break cannot be used
to break out of a while loop.

The left-hand side reduces to (bp)∗b, and it is not hard
to show that

Rα((bp)∗b) =

{
R0(bp)∗R0(b), if α = 0,

R0(bp)∗R0(b)Rα(p), if α 6= 0.

For the right-hand side,

Rα(loop if b then p else break)
= Rs(α)((if b then p else break)∗)
= Rs(α)((bp + b break)∗)
= R0(bp + b break)∗Rs(α)(bp + b break)

= R0(bp)∗R0(b)Rs(α)(p)

+ R0(bp)∗R0(b)Rs(α)(break)

=


R0(bp)∗R0(b)R1(p)

+ R0(bp)∗R0(b)R1(break), if α = 0,
R0(bp)∗R0(b)Rs(α)(p), if α 6= 0,

=

{
R0(bp)∗R0(b), if α = 0,

R0(bp)∗R0(b)Rα(p), if α 6= 0,

since R1(p) = 0 and Rs(α)(p) = Rα(p) for α 6= 0 under
the assumption. 2

For the second part of the construction, let α be a
continuation label and ` a statement label. Define the
expressions R`α(p) inductively as follows. Intuitively,
R`α(p) represents the computations of p starting at the
label ` and leading to the continuation α.

R`α(` : p) def= Rα(p) + R`α(p)

R`α(`′ : p) def= R`α(p), `′ 6= `

R`α(p + q) def= R`α(p) + R`α(q)

R`α(pq) def= R`α(p) + R`0(p) ·Rα(q) + R`α(q)

R`α(p∗) def= R`α(p) + R`0(p) ·R0(p)∗ ·Rα(p)

R`α(p) def= 0, p a test, primitive action,
goto `′, or break n.

For loop, we define

R`α(loop p)
def= R`,s(α)(p∗)
= R`,s(α)(p) + R`0(p) ·R0(p)∗ ·Rs(α)(p)
= R`,s(α)(p) + R`0(p) ·Rα(loop p).

The statement labels ` need not have a unique occur-
rence in the program. If ` should have more than one
occurrence, the interpretation is the natural nondeter-
ministic one.

The KAT expressions Rαβ(p) can be assembled into a
square matrix R(p) indexed by the continuation labels
appearing in p; thus R(p)αβ = Rαβ(p). In addition,
we include an extra row and column with index s such
that R(p)sα = Rα(p). Matrix entries not otherwise
specified (e.g., R(p)1,0 or R(p)`s) are 0. One can form
R(p)∗ by the usual construction of the asterate of a
square matrix over a KAT. The entry R(p)∗s0 is a KAT
expression denoting the set of all halting computations
of the program. This is the least fixpoint of a system
of linear inequalities involving the Rαβ(p).

4 Basic Identities

In this section we develop some basic consequences of
the definitions of Section 3. These will be used in the
results of Sections 5 and 6.

First we prove some identities involving de Bruijn in-
dices. Let Im be inductively defined functions on pro-
grams that behave as homomorphisms with respect to
the KAT operators and are defined on the other con-
structs as follows:

Im(goto `) = goto `

Im(break n) =

{
break n, if n < m,

break n + 1, if n ≥ m

Im(loop p) = loop (Im+1(p)).

Note that the Im are identity homomorphisms on pure
KAT expressions.

The function I1 is the one we are interested in, and the
other Im are defined for auxiliary purposes. Intuitively,
I1 says to increment all the free de Bruijn indices by 1.
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For example,

I1(loop (loop (loop (break 3))))
= loop (loop (loop (I4(break 3))))
= loop (loop (loop (break 3)))

I1(loop (loop (break 3)))
= loop (loop (I3(break 3)))
= loop (loop (break 4)).

In the first expression, the break 3 is bound, so it is
not incremented, but in the second, it is free, so it is
incremented. In general, an occurrence of a de Bruijn
index n is bound if it occurs in the scope of at least n
nested loop statements, otherwise it is free.

Lemma 4.1 For all m ≥ 1 and n ≥ 0,

Rn(Im(p)) =


Rn(p), if n < m,

0, if n = m,

Rn−1(p), if n > m,

R`(Im(p)) = R`(p).

Proof. We prove this by induction on the structure of
p. For the case n = 0, we only need to show

R0(Im(p)) = R0(p). (5)

For p a test, atomic action, or goto `, Im(p) = p,
therefore (5) holds. For break k,

R0(Im(break k)) =

{
R0(break k), if k < m,

R0(break k + 1), if k ≥ m

= 0
= R0(break k).

For expressions formed from the operators +, ·, and
∗, (5) follows from the induction hypothesis on smaller
expressions and the fact that both Im and R0 are ho-
momorphisms with respect to these operators. Finally,
for loop p,

R0(Im(loop p)) = R0(loop Im+1(p))
= R1(Im+1(p)∗)
= R1(Im+1(p∗))
= R1(p∗)
= R0(loop p).

Now assume n ≥ 1. As before, Rn(Im(p)) = Rn(p) for

p a test, atomic action, or goto `. For break k,

Rn(Im(break k))

=

{
Rn(break k), if k < m,

Rn(break k + 1), if k ≥ m

=

{
1, if n = k < m or n = k + 1 ≥ m + 1,

0, otherwise

=


Rn(break k), if n < m,

0, if n = m,

Rn−1(break k), if n > m.

The case for the operator + follows from the linearity
of Im and Rn. For ·, ∗, and loop,

Rn(Im(pq))
= Rn(Im(p) · Im(q))
= Rn(Im(p)) + R0(Im(p)) ·Rn(Im(q))

=


Rn(p) + R0(p) ·Rn(q), if n < m,

0 + R0(p) · 0, if n = m,

Rn−1(p) + R0(p) ·Rn−1(q), if n > m

=


Rn(pq), if n < m,

0, if n = m,

Rn−1(pq), if n > m,

Rn(Im(p∗)) = Rn(Im(p)∗)
= R0(Im(p))∗ ·Rn(Im(p))

=


R0(p)∗ ·Rn(p), if n < m,

R0(p)∗ · 0, if n = m,

R0(p)∗ ·Rn−1(p), if n > m

=


Rn(p∗), if n < m,

0, if n = m,

Rn−1(p∗), if n > m,

Rn(Im(loop p)) = Rn(loop Im+1(p))
= Rn+1(Im+1(p)∗)
= Rn+1(Im+1(p∗))

=


Rn+1(p∗), if n < m,

0, if n = m,

Rn(p∗), if n > m

=


Rn(loop p), if n < m,

0, if n = m,

Rn−1(loop p) if n > m.

It remains to show that R`(Im(p)) = R`(p). This
holds for tests, atomic actions, and goto instructions
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as above. For break k,

R`(Im(break k)) =

{
R`(break k), if k < m,

R`(break k + 1), if k ≥ m

= 0
= R`(break k).

The case for the operator + follows from the linearity
of Im and R`. For ·, ∗, and loop,

R`(Im(pq)) = R`(Im(p) · Im(q))
= R`(Im(p)) + R0(Im(p)) ·R`(Im(q))
= R`(p) + R0(p) ·R`(q)
= R`(pq),

R`(Im(p∗)) = R`(Im(p)∗)
= R0(Im(p))∗ ·R`(Im(p))
= R0(p)∗ ·R`(p)
= R`(p∗),

R`(Im(loop p)) = R`(loop Im+1(p))
= R`(Im+1(p)∗)
= R`(Im+1(p∗))
= R`(p∗)
= R`(loop p).

2

Corollary 4.2 For all m ≥ 1 and n ≥ 0,

Rβ(loop p) = Rs(β)(loop (I1(p))).

Proof. By the lemma,

Rs2(β)(I1(p)) = Rs(β)(p) R0(I1(p)) = R0(p),

thus

Rβ(loop p) = Rs(β)(p∗)
= R0(p)∗ ·Rs(β)(p)

= R0(I1(p))∗ ·Rs2(β)(I1(p))

= Rs2(β)(I1(p)∗)
= Rs(β)(loop (I1(p))).

2

Define Jm = Im ◦ Im−1 ◦ Im−2 ◦ · · · ◦ I1.

Lemma 4.3 For all m ≥ 1 and n ≥ 0,

Rn(Jm(p) · break m) =

{
Rn−m(p), if n ≥ m,
0, if n < m

R`(Jm(p) · break m) = R`(p).

In particular,

Rs(α)(I1(p) · break) = Rα(p).

Proof. From Lemma 4.1 it follows inductively that for
all m ≥ 1 and n ≥ 0,

Rn(Jm(p)) =


R0(p), if n = 0,

0, if 0 < n ≤ m,

Rn−m(p), if n > m,

R`(Jm(p)) = R`(p).

For n = 0,

R0(Jm(p) · break m) = R0(Jm(p)) ·R0(break m)
= R0(p) · 0
= 0.

For n > 0,

Rn(Jm(p) · break m)
= Rn(Jm(p)) + R0(Jm(p)) ·Rn(break m)
= Rn(Jm(p)) + R0(p) ·Rn(break m)

=


0 + R0(p) · 0, if 1 ≤ n < m,

0 + R0(p) · 1, if n = m,

Rn−m(p) + R0(p) · 0, if n > m

=

{
0, if 1 ≤ n < m,

Rn−m(p), if n ≥ m.

For `,

R`(Jm(p) · break m)
= R`(Jm(p)) + R0(Jm(p)) ·R`(break m)
= R`(p) + R0(p) · 0
= R`(p).

2

Lemma 4.4 loop (I1(p) · break) ≡ p.

Proof. For any α,

Rα(loop (I1(p) · break))
= Rs(α)((I1(p) · break)∗)
= Rs(α)(1 + I1(p) · break)
= Rs(α)(1) + Rs(α)(I1(p) · break)
= Rα(p).

2

Lemma 4.5 For any q,

Rn(loop (J2(p) · break 2) · q)

=

{
0, if n = 0,

Rn−1(p), if n > 0
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R`(loop (J2(p) · break 2) · q) = R`(p).

In particular,

Rs(α)(loop (J2(p) · break 2) · q) = Rα(p).

Proof.

R0(loop (J2(p) · break 2) · q)
= R0(loop (J2(p) · break 2)) ·R0(q)
= R0(J2(p) · break 2)∗ ·R1(J2(p) · break 2) ·R0(q)
= 0∗ · 0 ·R0(q)
= 0,

and for any α,

Rs(α)(loop (J2(p) · break 2) · q)
= Rs(α)(loop (J2(p) · break 2))

+ R0(loop (J2(p) · break 2)) ·Rn(q)
= Rs(s(α))((J2(p) · break 2)∗)

+ R1((J2(p) · break 2)∗) ·Rn(q)
= Rs(s(α))(1 + J2(p) · break 2)

+ R1(1 + J2(p) · break 2) ·Rn(q)
= Rs(s(α))(J2(p) · break 2) + 0 ·Rn(q)
= Rs(s(α))(J2(p) · break 2)
= Rα(p).

2

Lemma 4.6 For any q,

loop (loop (J2(p) · break 2) · q) ≡ p.

Proof.

Rα(loop (loop (J2(p) · break 2) · q))
= R0(loop (J2(p) · break 2) · q)∗

· Rs(α)(loop (J2(p) · break 2) · q)
= 0∗ ·Rα(p)
= Rα(p).

2

Let K`,m, m ≥ 1, be a family of substitution operators
that act as the identity on all tests and atomic actions
except goto `, and act as a KAT homomorphism on
all operators except loop. For the remaining two con-
structs,

K`,m(goto `) = break m

K`,m(loop p) = loop (K`,m+1(p))

That is, K`,m substitutes break m + k for each occur-
rence of goto ` of loop-depth k.

Lemma 4.7

loop (loop (K`,1(J2(p)) · break 2) · goto `) ≡ p.

Proof. By Lemma 4.6, it suffices to show

loop (loop (K`,1(J2(p)) · break 2) · goto `)
≡ loop (loop (J2(p) · break 2)).

Consequently, it suffices to show

loop (K`,1(J2(p)) · break 2) · goto `

≡ loop (J2(p) · break 2).

We need to show

Rα(loop (K`,1(J2(p)) · break 2) · goto `)
= Rα(loop (J2(p) · break 2)).

We have already shown in Lemma 4.5 that

R0(loop (J2(p) · break 2)) = 0
Rs(α)(loop (J2(p) · break 2)) = Rα(p).

For n = 0,

R0(loop (K`,1(J2(p)) · break 2) · goto `)
= R0(loop (K`,1(J2(p)) · break 2)) ·R0(goto `)
= R0(loop (K`,1(J2(p)) · break 2)) · 0
= 0.

For α 6= `,

Rs(α)(loop (K`,1(J2(p)) · break 2) · goto `)
= Rs(α)(loop (K`,1(J2(p)) · break 2))

+ R0(loop (K`,1(J2(p)) · break 2)) ·Rs(α)(goto `)
= Rs(s(α))(K`,1(J2(p)) · break 2)

+ R1(K`,1(J2(p)) · break 2) · 0
= Rs(s(α))(K`,1(J2(p) · break 2))
= Rs(s(α))(J2(p) · break 2)
= Rα(p).

Finally, for `,

R`(loop (K`,1(J2(p)) · break 2) · goto `)
= R`(loop (K`,1(J2(p)) · break 2))

+ R0(loop (K`,1(J2(p)) · break 2)) ·R`(goto `)
= R`(K`,1(J2(p)) · break 2)

+ R1(K`,1(J2(p)) · break 2) · 1
= R`(K`,1(J2(p) · break 2))

+ R1(K`,1(J2(p) · break 2))
= 0 + R1(J2(p) · break 2) + R`(J2(p) · break 2)
= R`(J2(p) · break 2)
= R`(p).

2
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4.1 Lifting Labels

In general, programs might have labels embedded
deeply in them. In this section we perform some trans-
formations to move labels to the outermost level. We
show that for each label ` and program p, there is a
program p` such that for all β, R`β(p) = Rβ(p`). In-
tuitively, jumping into the middle of p at label ` is the
same as running p` from the beginning. Moreover, if p
is deterministic, then so is p`.

Let p be a program and ` a label. Define

p`
def= 0, for p a test, atomic program,

break n, or goto `′,

(p + q)`
def= p` + q`,

(pq)`
def= p`q + q`,

(p∗)`
def= p`p

∗,

(`′ : p)`
def=

{
p + p`, if ` = `′,
p`, if ` 6= `′,

(loop p)`
def= loop (p` · loop (I1(p))).

Theorem 4.8 For all `, β, and p,

R`β(p) = Rβ(p`).

Proof. The arguments for tests, atomic programs,
break n, goto `′, p+ q, and `′ : p are straightforward.

For pq and p∗,

R`β(pq)

=

{
R`β(p) + R`0(p) ·Rβ(q) + R`β(q), if β 6= 0,
R`0(p) ·R0(q) + R`0(q), if β = 0

=

{
Rβ(p`) + R0(p`) ·Rβ(q) + Rβ(q`), if β 6= 0,

R0(p`) ·R0(q) + R0(q`), if β = 0

=

{
Rβ(p`q) + Rβ(q`), if β 6= 0,
R0(p`q) + R0(q`), if β = 0

= Rβ(p`q + q`)
= Rβ((pq)`),

R`β(p∗)

=

{
R`β(p) + R`0(p) ·R0(p)∗ ·Rβ(p), if β 6= 0,

R`0(p) ·R0(p)∗, if β = 0

=

{
Rβ(p`) + R0(p`) ·Rβ(p∗), if β 6= 0,

R0(p`) ·R0(p∗), if β = 0

= Rβ(p`p
∗)

= Rβ((p∗)`).

Finally, for loop p, first observe that if R0(q) = 0,
then

Rβ(q∗) = Rβ(1) + R0(q)∗ ·Rβ(q)
= Rβ(1) + Rβ(q)

=

{
1, if β = 0,

Rβ(q), if β 6= 0.

We will apply this with q = p` ·loop (I1(p)), observing
that

R0(loop (I1(p))) = R1(I1(p)∗)
= R0(I1(p))∗ ·R1(I1(p)) = 0,

hence

R0(p` · loop (I1(p)))
= R0(p`) ·R0(loop (I1(p))) = 0.

R`β(loop p)
= R`,s(β)(p∗)
= R`,s(β)(p) + R`0(p) ·R0(p)∗ ·Rs(β)(p)

= Rs(β)(p`) + R0(p`) ·Rs(β)(p∗)
= Rs(β)(p`) + R0(p`) ·Rβ(loop p)
= Rs(β)(p`) + R0(p`) ·Rs(β)(loop (I1(p)))
= Rs(β)(p` · loop (I1(p)))

= Rs(β)((p` · loop (I1(p)))∗)
= Rβ(loop (p` · loop (I1(p)))).

2

Lemma 4.9 If p contains no occurrence of ` as a label,
that is, if p contains no subprogram of the form ` : q,
then p` ≡ 0.

Proof. This can be shown by induction on the struc-
ture of the program. All cases are quite obvious except
perhaps for the case loop p. For this case, it suffices
to show that if p` ≡ 0, then (loop p)` ≡ 0.

(loop p)` = loop (p` · loop (I1(p)))
≡ loop (0 · loop (I1(p)))
≡ loop 0,

and for any β,

Rβ(loop 0) = Rs(β)(0∗) = Rs(β)(1) = 0.

2

Note that p` contains no occurrence of ` as a label,
since in no case in the inductive definition of p` does `
occur on the right-hand side; thus (p`)` ≡ 0.
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Lemma 4.10 If p is deterministic, then so is p`.

Proof. This is true for p a test, atomic program,
break n, or goto `′, since p` = 0, since 0 is deter-
ministic. The argument for loop p is also clear by the
form of the right-hand side and the induction hypoth-
esis.

For the case while b do p, using the encoding (bp)∗b
and unwinding the definitions, one can show that

(while b do p)` = p` · while b do p.

This is deterministic by the induction hypothesis.

For the case if b then p else q, using the encoding
bp + bq and unwinding the definitions, one can show
that

(if b then p else q)` = p` + q`.

By determinacy, at most one of p or q contains ` as
a label. By Lemma 4.9, at least one of p` or q` is
equivalent to 0, so the entire program is equivalent to
the other. Since p and q are deterministic, both p` and
q` are deterministic by the induction hypothesis.

For the case pq, we have (pq)` = p`q + q`. By the same
argument as the previous case, the entire program is
equivalent to either p`q or q`, both of which are deter-
ministic by the induction hypothesis.

Finally, for ` : p, we have

(` : p)` = p + p` ≡ p,

since by determinacy, p` contains no occurrence of ` as
a label, therefore p` ≡ 0. 2

4.2 Modules

For convenience, we extend the language with the fol-
lowing construct. If p1, . . . , pn are programs, then so
is (p1, . . . , pn). The first program p1 in the sequence is
the main program and the p1, . . . , pn are called mod-
ules. For all α and `, define

Rα(p1, . . . , pn) def= Rα(p1),

R`α(p1, . . . , pn) def= R`α(p1) + · · ·+ R`α(pn).

Thus the entry point of (p1, . . . , pn) is the entry point
of p1, but other modules may be accessible by uncon-
ditional jumps goto `. If the program is determinis-
tic, so that ` occurs in at most one module pi, then
R`α(p1, . . . , pn) = R`α(pi). A program of the form
(p1, . . . , pn) is called modular.

Lemma 4.11

(p1, . . . , pn)
≡ loop (I1(p1); break; · · · ; I1(pn); break).

This allows the construct (p1, . . . , pn) to be eliminated
if desired. We omit the proof, since this fact is not
needed in the remaining sections.

5 Loops Programs are Sufficient

In this section we use our calculus to give a formal
equational proof that every propositional deterministic
flowchart is equivalent to a loop program with multi-
level breaks but without unconditional jumps. This
is a folklore result that has been known since at least
the early 1970s [14, 26], but to our knowledge has never
been treated with this level of rigor. A somewhat differ-
ent conversion was given in [25] in the same formalism,
but without proof.

We must actually start not with a flowchart or au-
tomaton, but with an equivalent program expression,
since our calculus works only with expressions, not
with automata. However, there is a straightforward
construction to convert a given strictly deterministic
automaton as described in Section 2.4 to a modular
program with unconditional jumps, which we sketch
without proof.

Given a strictly deterministic automaton M , construct
a modular program with one module for each state.
The module corresponding to state ` has label `. The
module corresponding to the start state occurs first in
the modular program. For each state `, let α1, . . . , αm

be all atoms such that δ(`)(αi) = (pi, `i) and let
αm+1, . . . , αn be all atoms such that δ(`)(αi) = halt.
The module corresponding to ` is

`: if α1 then (p1 ; goto `1)
else if α2 then (p2 ; goto `2)
else if α3 then (p3 ; goto `3)
...
else if αm then (pm ; goto `m)
else skip

One can show without much difficulty that

R`β =


αipi, if β = `i, 1 ≤ i ≤ m,

αm+1 + · · ·+ αn, if β = 0,

0, if β > 0.

It follows inductively that

GS(R∗̀0) = {gs(`)(σ) | σ ∈ Atω} ∩ (At · Σ)∗ · At,
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thus

GS(R∗s0) = {gs(start)(σ) | σ ∈ Atω} ∩ (At · Σ)∗ · At

= GS(M).

Although our calculus cannot be used for this part of
the construction, a formal semantic proof can be given
along the lines sketched above.

Now assume we are given a deterministic program
containing any of the programming constructs defined
in Section 2.5, including while loops, unconditional
jumps, loop instructions, or multilevel breaks.

Lemma 5.1 Consider two deterministic modular pro-
grams with `th modules

` : loop (q ; goto `) ` : loop q,

respectively, where R`(q) = 0. The two programs
are otherwise identical. Let F and G be the matri-
ces corresponding to these two programs, respectively,
as described in Section 3. Let α, β be two continua-
tion labels, β 6= `. Then F∗αβ = G∗αβ. In particular,
F∗s0 = G∗s0, therefore the two programs are equivalent.

Proof. Decompose the matrices F and G as

F =
[

F`` F ′

C D

]
G =

[
G`` G′

C D

]
where D is the square matrix obtained by deleting the
`th row and column of F or G (C and D are the same
in each case, by assumption). If α 6= `, then

F∗αβ = (D + CF ∗̀̀F ′)∗αβ

G∗αβ = (D + CG∗̀̀G′)∗αβ ,

and

F ∗̀β = (F ∗̀̀F ′(D + CF ∗̀̀F ′)∗)`β

G∗̀β = (G∗̀̀G′(D + CG∗̀̀G′)∗)`β .

In either case, it suffices to show

F ∗̀̀F ′ = G∗̀̀G′,

or in other words,

F ∗̀̀F`β = G∗̀̀G`β (6)

for all β 6= `. But

F`` = R`(loop (q ; goto `)) = R0(q)
F`β = Rβ(loop (q ; goto `)) = Rs(β)(q)
G`` = R`(loop q) = 0
G`β = Rβ(loop q) = R0(q)∗Rs(β)(q),

so both sides of (6) are R0(q)∗Rs(β)(q). 2

Lemma 5.2 Consider a deterministic modular pro-
gram with distinct modules

loop (q ; goto `) ` : loop (r ; break), (7)

where R`(q) = R`(r) = 0. Consider another program
that is identical to the first, except with the left-hand
module of (7) replaced by

loop (q ; r ; break). (8)

Let F and G be the matrices corresponding to these two
programs, respectively. Let α, β be two continuation
labels, β 6= `. Then F∗αβ = G∗αβ. In particular, F∗s0 =
G∗s0, therefore the two programs are equivalent.

Proof. By a matrix decomposition argument similar to
the one in the proof of Lemma 5.1, it suffices to show
that

Fαβ + Fα`F`β = Gαβ . (9)

By Theorem 4.8, we can assume without loss of gener-
ality that α is the label of the left-hand module of (7)
in F and the module (8) of G, which is either s or an
explicit label. Then

Fαβ = Rβ(loop (q ; goto `)) = Rs(β)(q)
Fα` = R`(loop (q ; goto `)) = R0(q)
F`β = Rβ(loop (r ; break))

= Rs(β)(r) + R0(r)Rs(β)(break)
Gαβ = Rβ(loop (q ; r ; break))

= Rs(β)(q) + R0(q)Rs(β)(r)
+ R0(q)R0(r)Rs(β)(break),

from which (9) follows. 2

Theorem 5.3 Every program is equivalent to a loop
program with multilevel breaks but without uncondi-
tional jumps.

Proof. Starting from an arbitrary program p with un-
conditional jumps, first use Theorem 4.8 to rewrite the
program as a modular program (p1, . . . , pn), where p1

is p (without the initial label if it exists) and p2, . . . , pn

are all programs of the form ` : p` obtained from the
lifting construction of Section 4.1 for all labels ` occur-
ring in the program. By Theorem 4.8, (p1, . . . , pn) and
p have the same matrix.

Now consider the last module in the list, and say it has
label `. By Lemma 4.7, it can be written as

` : loop (s ; goto `),
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where R`(s) = 0. By Lemma 5.1, this can be replaced
by ` : loop s. Using Lemma 4.4, this module can be
rewritten as

` : loop (r ; break),

where R`(r) = 0. Now for every other module besides
this one, use Lemma 4.7 to rewrite it in the form

loop (q ; goto `),

where R`(q) = 0, then Lemma 5.2 to rewrite it in the
form

loop (q ; r ; break).

At this point there are no longer any occurrences of
goto ` in the program, so the column of the matrix
corresponding to ` is 0. The row and column corre-
sponding to ` can thus be deleted without changing the
semantics of the program; the resulting matrix is that
of the modular program with the last module deleted.

Continuing in this fashion, we can delete all modules
except the first. We are left with a loop program with
multilevel breaks and no unconditional jumps. 2

6 Completeness

The following theorem is a straightforward consequence
of the completeness of KAT, but still bears mention-
ing:

Theorem 6.1 The calculus presented in this paper is
sufficient to prove all valid identities between loop pro-
grams with multilevel breaks.

Proof. The inductive definitions of the loop and
break n constructs allow any program p to be reduced
to a matrix R(p) of KAT expressions. The meaning of
p is defined to be the same as a particular entry of
the asterate of that matrix, namely R(p)∗s0. Since KAT
is complete for the equational theory of the guarded
string model, it can prove the equivalence of two such
translations if indeed the two programs represent the
same set of guarded strings. 2

7 Conclusion and Open Problems

We have shown how to handle programming constructs
involving nonlocal flow of control such as goto and
multilevel break instructions in a simple propositional
equational system. This fits well with the vision that

simple equational reasoning suffices to handle a large
class of basic program analysis tasks.

Some interesting open problems present themselves.
Can one formulate a simple coalgebraic treatment of
nonlocal flow of control involving a definition of the
Brzozowski derivative [4] for the nonlocal control flow
constructs? If so, it may be possible to given even
simpler constructions and proofs. To what extent is it
possible to extend the method to reason in the presence
of commutativity conditions and other basic premises?
And finally, it is clear that in principle, equivalence
proofs be extracted automatically by reduction to KAT
[5, 27], but can this process be streamlined by treating
the nonlocal control flow constructs directly?
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