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 Protein aggregation, leading to the formation of amyloid fibrils, is associated 

with many human diseases, including Parkinson’s disease, Alzheimer’s disease and 

type II diabetes. 2,2,2-trifluoroethanol (TFE) is frequently used to induce amyloid 

conversion in biophysical studies, but the mechanisms underlying TFE-induced 

fibrillization are not yet well understood. We have measured secondary structural 

changes of the Parkinson’s disease-associated protein α-synuclein (αS), and have 

discovered that TFE-induced aggregation is correlated with population of a partially 

structured state of the monomer protein. By investigating the pH- and temperature-

dependences of the conformational transitions, we find evidence that loss of protein-

solvent interactions drives both the structural changes and the fibril production. 

Furthermore, we used enhanced green fluorescent protein (EGFP) as a model system 

to examine the effects of sequence and tertiary structure in TFE-induced aggregation, 

and found that the behavior of acid-denatured EGFP is qualitatively similar to αS, 

while tertiary structure impedes aggregation. We conclude that initiation of protein 

aggregation in solutions containing TFE involves overcoming multiple protective 

factors, rather than stabilization of specific structural elements. 

 We identify three distinct structural states that contribute to the circular 

dichroism spectra of αS variants and acid-denatured EGFP. For both types of proteins, 

a partially α-helical conformation is populated at moderate TFE concentrations where 

aggregation is enhanced. The TFE-induced αS fibrils are β-sheet-rich, flexible, helical 



 

structures, while the EGFP aggregates are flexible, uniform-width fibrils. 

 At low (<10-15% v/v) TFE, the αS variants and acid-denatured EGFP undergo 

loss of polyproline-II structure, which is suggestive of reduced protein-water 

interactions. At higher TFE, preferential solvation leads to TFE coating of the 

proteins, stabilizing α-helical structures. The temperature response of αS reveals 

distinct behavior for proteins in water-like vs. TFE-like local environments. Moreover, 

the intermediate-TFE conformations appear to be invariant with respect to temperature 

and pH, which indicates that the proteins experience reduced solvent interactions at 

moderate [TFE]. 

 Our results suggest that TFE reduces solvation barriers in aggregation 

reactions. However, aggregation pathway selection may depend on details of protein 

structure, and the protein sequence affects the TFE concentrations required for 

dehydration-driven fibrillization. 
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CHAPTER 1 

OVERVIEW 

 

1.1. Why use TFE to study protein aggregation? 

 Protein aggregation is implicated in over forty human diseases, including 

Alzheimer’s disease, Parkinson’s disease, type II diabetes, Huntington’s disease, and 

amyotrophic lateral sclerosis (Chiti and Dobson, 2006). The proteins involved in these 

disorders include both globular proteins and natively disordered proteins and peptides. 

Additional proteins that are not associated with human diseases can be induced to 

aggregate in vitro, leading to the hypothesis that amyloid aggregation is a general 

property of polypeptides (Chiti, et al., 1999), although evolution has favored 

protective sequence elements (Monsellier and Chiti, 2007). 

 Biophysical investigations of protein aggregation aim to identify the 

fundamental interactions influencing these processes; this research may help identify 

potential drug treatments and preventative measures for human diseases. Chemical 

additives are often used in biophysical studies to reduce experimental variability, 

induce protein conformational changes, or simulate cellular conditions.  

 The fluorinated alcohol 2,2,2-trifluoroethanol (TFE) is one of the most 

common cosolvents used to induce amyloid conversion and accelerate protein 

aggregation (Otzen, 2010). TFE can increase experimental reproducibility and 

decrease lag times, resulting in controlled conditions conducive to comparisons of 

specific factors, such as protein sequences, that may affect aggregation reactions 

(Chiti, et al., 2000; Otzen, 2010). Moreover, TFE is able to induce conformational 

transitions in proteins, leading to the identification of potential intermediates in 

aggregation reactions (Anderson, et al., 2010; Fezoui and Teplow, 2002; Pallarès, et 

al., 2004; Williamson, et al., 2009). TFE can also populate unconventional aggregation 
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pathways. For example, TFE was used in studies that discovered that some globular 

proteins can associate in the absence of significant unfolding and later convert into β-

sheet-rich, fibrillar structures (Plakoutsi, et al., 2004; Soldi, et al., 2005). The 

identification of new aggregation pathways is of particular interest to researchers in 

view of evidence that oligomeric or protofibrillar species, rather than mature amyloid 

fibrils, may be the toxic species in some diseases (Bucciantini, et al., 2002; Glabe, 

2006). The clustering of TFE molecules in aqueous solution, in combination with the 

ability of TFE to populate structures that are similar to membrane-bound 

conformations of certain proteins, has also led some researchers to suggest that TFE 

may act as a membrane mimetic (Bychkova, et al., 1996).  

 However, the relationship between protein aggregation in solutions containing 

TFE and reactions that may occur in vivo is unclear. TFE stabilizes non-native protein 

structures and often promotes the formation of atypical aggregates. Additionally, the 

lack of a well-understood mechanism for TFE-induced aggregation complicates 

interpretation of experimental results. For example, in Chapter 2, we show that 

population of a specific secondary structural state, which appears partially α-helical, is 

correlated with α−synuclein (αS) aggregation, but it is not clear whether this 

conformation is truly aggregation-prone, or whether the observed structural changes 

are coupled to some solvent property that is the actual causative factor. 

 The effects of TFE on protein structure have been studied for decades, but the 

physical interactions underlying TFE-induced aggregation enhancement are not well-

understood (Otzen, 2010). TFE can denature globular proteins, typically leading to the 

formation of non-native α-helical structure. Disordered proteins and peptides 

generally undergo a gradual coil-to-helix transition as TFE is added to a solution, 

reaching their maximally helical state by ~30-40% TFE. For both globular and 

disordered proteins, aggregation is usually maximized at an intermediate TFE 



 

3 

concentration (usually 10-40% v/v). Disruption of tertiary structure often, but not 

always, precedes aggregation for globular proteins. 

 In Chapters 2-4, we present our studies of the effect of TFE on the structures 

and aggregation properties of αS variants and enhanced green fluorescent protein 

(EGFP). Our results, in combination with a review of the literature related to 

fluoroalcohol effects on proteins and peptides (Section 1.4), suggest that desolvation is 

a likely explanation for the enhanced aggregation we observe at intermediate TFE 

concentrations. Low TFE conditions lead to dehydration, as evidenced by loss of 

polyproline type II (PPII) structure for disordered and denatured proteins and the rapid 

formation of aggregates under these conditions. Preferential solvation of proteins by 

TFE occurs above a threshold TFE concentration that depends on protein sequence. 

This partitioning of TFE into the protein solvation shell stabilizes α-helical structure 

and decreases aggregate production. Therefore, aggregation enhancement occurs at 

moderate TFE concentrations where water-protein interactions are disrupted and TFE-

protein interactions are minimal. 

 We propose that TFE weakens or removes factors that protect against 

aggregation, rather than stabilizing aggregation-prone states. Intact tertiary structure, 

electrostatic repulsion, and protein-solvent interactions are crucial protective 

interactions. Protein-water interactions are an especially important stabilizing factor 

for disordered and denatured proteins; it is likely that natively disordered and weakly 

folded proteins have evolved sequence elements that increase their water accessibility 

in order to avoid toxic aggregation (Rauscher, et al., 2006; Uversky, et al., 2000). Our 

results have relevance for design and interpretation of experiments related to protein 

aggregation reactions. In particular, understanding natural protective factors may be 

useful in designing strategies aimed at prevention and treatment of amyloid diseases 

(Monsellier and Chiti, 2007). 
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1.2. Summary of our experimental results 

 We examine the effects of TFE on five variants of the Parkinson’s disease-

associated protein αS, as well as native and acid-denatured EGFP. By measuring 

circular dichroism (CD) spectra of sub-micromolar concentrations of proteins in 

various solution conditions, we characterize secondary structural transitions in the 

monomer proteins. We correlate these with aggregation by examining higher protein 

concentrations. Comparisons of proteins and solution conditions enable identification 

of general properties of TFE-induced aggregation reactions. 

 In Chapter 2, we report that short, flexible, β-sheet-rich fibrillar species result 

from incubation of the Parkinson’s-disease associated protein αS in the presence of 

intermediate (10-20% v/v) concentrations of 2,2,2-trifluoroethanol (TFE). We 

demonstrate that enhanced fibril production is correlated with the formation of a 

monomeric, partly helical intermediate αS conformation. The intermediate exists in 

equilibrium with the natively disordered state at low TFE and with a highly α-helical 

conformation at high TFE. TFE-induced conformational changes in the monomer 

protein are similar for wild-type αS and three Parkinson’s disease-associated mutants, 

as well as for the 1-102 C-terminal truncation mutant αS102. However, 

oligomerization rates differ substantially among the mutants. We initially concluded 

that the observed “intermediate” conformation is an intermediate in the fibrillization of 

αS, but we revisit this hypothesis in subsequent chapters. 

 Measurements of αS variant structure as a function of temperature, pH, and 

TFE concentration are presented in Chapter 3. By investigating the temperature 

dependence of the αS102 spectra at various TFE concentrations, we identify a clear 

crossover between “water-like” behavior at low TFE, which involves reduction of 

PPII structure with heating, and “TFE-like,” helix melting behavior at high TFE. The 
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crossover point occurs at ~15% TFE, where the population of the TFE-induced 

intermediate is maximal. The similarities between the structural changes induced by 

heating and those observed for low concentrations of TFE suggest that TFE may cause 

loss of hydrogen bonds between water and the protein. The high-TFE behavior is 

suggestive of preferential solvation of αS by TFE; secondary structural changes level 

off above ~40% TFE, indicating that the protein environment is essentially TFE-like 

above this concentration. Solution pH affects the conformation of the protein in the 

TFE-rich environment, with reduced pH conditions resulting in an increase in α-

helical structure. We also find that structural changes induced by pH at low TFE 

require the C terminal portion of αS, while temperature- and TFE-induced changes 

involve the N terminus. Therefore, αS can sample multiple partially structured states. 

 TFE- and heat-induced aggregation is associated with both loss of PPII 

structure and reduced α-helical structure. Because PPII structure is likely a signature 

of protein-water hydrogen bonding, while α-helical conformations reflect preferential 

solvation of proteins by TFE, we conclude that aggregation occurs where protective 

solvent interactions are minimized. However, we note that the aggregate morphology 

depends on temperature and the presence of the C terminal portion of αS, and so 

additional interactions are involved in aggregation pathway selection. 

 In the study described in Chapter 4, we use EGFP as a model protein to 

investigate the effects of tertiary structure and protein sequence on TFE-induced 

aggregation. We find that acid-denatured EGFP behaves very similarly to αS in the 

presence of 0-60% TFE. Loss of PPII structure occurs at low TFE, followed by helix 

induction at high TFE. The inferred CD spectrum of the EGFP intermediate 

conformation is similar to the intermediate structure for αS. However, the crossover 

from water-like to TFE-like behavior occurs at ~8% TFE for acid-denatured EGFP, in 

contrast to ~15% TFE for αS. This difference may be due to the presence of more 
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bulky hydrophobic residues in the EGFP sequence, which might favor solvent-

shielded conformations or restrict water accessibility to the protein backbone. Little to 

no aggregation occurs within 24 hours for acid-denatured EGFP in 0-60% TFE. 

However, the addition of 75 mM NaCl to the solutions leads to significant aggregation 

at ~8-30% TFE, indicating that electrostatic repulsion limits aggregation of the acid-

denatured protein. For native-state EGFP at pH 7.5, aggregation occurs at intermediate 

[TFE] following denaturation, but is reduced at high TFE where non-native α-helical 

secondary structure is favored. Denaturation is fastest at 30-60% TFE, suggesting that 

preferential solvation of proteins by TFE is involved in tertiary structure disruption. 

TFE-denatured EGFP behaves much like acid-denatured protein and likely samples a 

similar intermediate conformation, although the apparent helicity at high TFE is 

reduced at pH 7.5 compared to pH 2.4. Taken together, our results show that protein-

solvent interactions, electrostatic repulsion, and intact tertiary structure protect against 

EGFP aggregation. In addition, solution conditions affect the aggregation pathway. 

The aggregates formed from EGFP at intermediate TFE appear to be flexible, sticky 

thin fibrils, while long incubations in the absence of TFE result in the formation of 

rigid, fibrillar aggregates for acid-denatured EGFP.  

 In sum, we demonstrate that all the αS variants and acid-denatured EGFP 

populate three secondary structural states in the presence of 0-60% (and higher) TFE, 

with a clear crossover between low-TFE and high-TFE behavior. The spectral changes 

in the two regimes are distinct, with a loss of PPII structure occurring at low TFE, 

followed by helix induction at high TFE. Aggregation is correlated with reduction of 

both PPII and α-helical structure, while tertiary structure has a protective role. 

Aggregate morphologies vary with solution conditions and protein sequence. Our 

results suggest that TFE removes solvation and structural barriers to protein 

aggregation, but additional factors affect aggregation pathway selection.  
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 In the next section, we briefly review some physical properties of TFE-water 

mixtures. Then, in Section 1.4, we present a literature review of mechanisms that have 

been proposed to explain TFE-induced protein structural changes and aggregation 

behavior. We discuss our experimental results in the context of these models and 

conclude that protein dehydration and preferential solvation are the most likely 

explanations for our observations. 

 

1.3. Some properties of TFE and TFE-water mixtures 

 TFE effects on protein structure are related to the properties of the TFE 

molecule (Figure 1.1). TFE is a good proton donor, but a poor acceptor, compared to 

water (Rajan and Balaram, 1996). The CF3 group has a hydrophobic character and the 

fluorine atoms are not thought to participate in hydrogen bonds (Rajan and Balaram, 

1996). The large size of TFE (~ 9 times larger than water), combined with its ability to 

participate in two hydrogen bonds rather than four, means that the hydrogen bonding 

capacity per unit volume of a TFE-water mixture decreases with increasing [TFE] 

(Van Buuren and Berendsen, 1993).  

 TFE is miscible with water in all proportions, but the excess molar Gibbs 

function, which measures the free energy of a mixture relative to an ideal solution of 

the same composition, is positive for TFE-water mixtures (Figure 1.1B). TFE-water 

mixtures also experience a volume contraction upon mixing (Figure 1.1C), which is 

probably due to water molecules forming solvation shells around the hydrophobic CF3 

groups (Rochester and Symonds, 1974). Note that the magnitude of the volume 

contraction is less than 1.5% of the total solution volume at its peak. 

 Additional properties of TFE-water mixtures are shown in Figure 1.1D-F. 

Some proposed models for TFE-protein interactions arise from these bulk properties,  
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Figure 1.1. Some properties of TFE and TFE-water mixtures. The mixture 
properties are shown for 25 °C and the units of TFE concentration have 
been converted to % v/v in all cases. (A) Skeletal formula for the TFE 
molecule, CF3CH2OH. (B) The excess molar Gibbs function, Gm

E, and the 
excess molar enthalpy, Hm

E, for TFE-water mixtures, taken from (Cooney 
and Morcom, 1988). (C) Excess molar volumes, Vm

E, for TFE-water 
mixtures, from (Sassi and Atik, 2003). (D-F) The relative permittivity, εs, 
surface tension, σ, and viscosity, η, for TFE-water mixtures, taken from 
(Gente and La Mesa, 2000). 
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in particular the solvent’s relative permittivity, while others relate to the excess molar 

quantities. 

 

1.4. Review of models of TFE effects on protein structure and aggregation 

 A large number of proteins and peptides undergo fluoroalcohol-induced 

structural transitions and aggregation (Otzen, 2010). TFE is often used to stabilize α-

helices, although it may also promote other types of structures (Rajan and Balaram, 

1996). In the following section, we discuss some of the most common explanations for 

TFE-induced protein structural changes and aggregation. We consider our data in the 

context of each proposed model, and argue that protein dehydration in dilute TFE 

solutions, followed by preferential solvation at higher TFE concentrations, is the most 

likely explanation for our observations. We also believe that direct protein-TFE 

interactions may be involved in determining the conformation of a protein at high 

TFE. Therefore, our model combines several types of proposed TFE-protein 

interactions. TFE concentration, protein sequence, and other solution conditions 

determine which effect is dominant. 

 It is important to remark that the various models of fluoroalcohol-induced 

aggregation are interrelated. For example, protein conformational changes are likely to 

occur in parallel with changes in solvent properties or fluoroalcohol clustering, and it 

might be very difficult to separate correlation from causation in these processes (see 

also Chapters 3-4). Different mechanisms may also be involved in the fluoroalcohol-

induced fibrillization of various proteins. Experiments and simulations that directly 

address the hydration status of proteins may help to distinguish causation vs. 

correlation in these processes (Rauscher, et al., 2006; Zhang and Yan, 2008). 

 Below, we identify and briefly summarize seven commonly cited models of 

TFE effects on protein structure. We contend that our experimental observations are 
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most consistent with two of the proposed mechanisms, and we explain our rationale 

for rejecting the other models. Because much of our evidence is indirect or 

circumstantial, we do not claim to have proven that our interpretation is correct. 

However, we believe that our model is a plausible explanation for our results, given 

the available information. 

 

1.4a. Protein dehydration as a result of TFE-water mixture behavior 

 Many investigations, spanning decades, have proposed that alcohols and 

fluoroalcohols cause dehydration of the protein backbone (Cammers-Goodwin, et al., 

1996; Conio, et al., 1970; Kentsis and Sosnick, 1998; Storrs, et al., 1992). Alcohol-

induced protein dehydration has generally been studied in the context of protein 

folding, but recently has also been proposed as a potential mechanism underlying 

alcohol-induced protein aggregation (Zhang and Yan, 2008). Dehydration models 

involve changes in the solvation layer near the protein.  

 TFE-water interactions or bulk solution properties, rather than TFE-protein 

interactions, are generally implicated in dehydration. Kentsis and Sosnick proposed 

that TFE causes ordering of water molecules, which reduces their ability to form 

hydrogen bonds with proteins (Kentsis and Sosnick, 1998). This water structuring, or 

“kosmotropic”, effect could destabilize unfolded or disordered protein conformations 

and enhance protein aggregation (Moelbert, et al., 2004). However, the sharp decrease 

in the surface tension for TFE-water mixtures at low TFE concentrations (Figure 1.1E) 

is inconsistent with a typical kosmotropic interaction (Chitra and Smith, 2002), 

although the protein-liquid interface may differ from the air-liquid interface. 

Alternatively, the reduced relative permittivity (dielectric constant) of TFE-water 

mixtures (Figure 1.1D) may favor the formation of solvent-shielded structures (Vila, et 

al., 2000). Or, TFE may simply compete with protein for water molecules. TFE-water 
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mixtures experience a volume contraction (Figure 1.1C), which is consistent with 

formation of a water cage around the CF3 groups in the alcohol (Rochester and 

Symonds, 1974), and this TFE hydration could reduce water availability for protein 

solvation. The addition of a small amount of TFE to water will also increase the 

chemical potential of water as a result of the favorable entropy of mixing, increasing 

the cost of protein hydration. Moreover, the large size and partial hydrophobic 

character of TFE could displace water molecules from the protein surface or cause 

structural changes in the solvation shell. 

 In Chapter 3, we show that heat-induced changes in the CD spectrum of αS are 

qualitatively similar to those caused by adding small (<15%) amounts of TFE to the 

solution. The temperature-induced changes likely reflect reduced PPII secondary 

structure present in the ensemble of conformations for the disordered protein at 

elevated temperatures (Drake, et al., 1988; Tiffany and Krimm, 1972). Water-

backbone hydrogen bonds, which are favorable at lower temperatures, are thought to 

unmask (Drozdov, et al., 2004) or promote (Poon, et al., 2000) PPII structure, while 

heating reduces these interactions. Therefore, our observation of reduction in PPII 

structure in the presence of small amounts of TFE is suggestive of backbone 

dehydration. 

 Low concentrations of TFE induce a similar structural change For EGFP 

(Chapter 4), although less TFE is needed to destabilize PPII structure for EGFP 

compared to αS. Notably, EGFP, which is globular in its native state, likely contains 

sequence elements that favor backbone dehydration and hydrophobic collapse. 

 We also demonstrate an increase in aggregation of αS variants (Chapters 2-3) 

and EGFP (Chapter 4) in solutions where PPII structure is diminished. Restriction of 

water availability via reverse micelles has been found to increase protein aggregation 

(Mukherjee, et al., 2009). In addition, dehydration coupled to aggregation has been 
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observed for proteins in ethanol-water mixtures (Zhang and Yan, 2008). Furthermore, 

the core of amyloid fibrils is dry, and therefore removal of solvent is likely a necessary 

step in the aggregation reaction (Balbirnie, et al., 2001). Indeed, sequences favoring 

peptide backbone hydration and PPII structure have been found to decrease amyloid 

formation (Rauscher, et al., 2006). Therefore, enhanced aggregation is consistent with 

dehydration. 

 Dehydration is thought to be a key step in protein folding, with removal of 

bound waters limiting folding rates (Hillson, et al., 1999; Liu and Chan, 2005; 

MacCallum, et al., 2007). Similar kinetic barriers may be involved in aggregation 

reactions. Or, TFE-induced destabilization of PPII structure might increase the 

average free energy of the monomer ensemble, leading to population of oligomeric or 

aggregated states. Loss of solvent-protein hydrogen bonds could also favor the 

formation of amyloid fibrils or other aggregates that contain intramolecular hydrogen 

bonds. 

 Zhang and Yan argued that the aggregation-promoting effects of TFE should 

be analogous to those for ethanol (Zhang and Yan, 2008), and our observations for 

dilute solutions of TFE are in agreement with their prediction. However, at higher TFE 

concentrations, aggregation is reduced, and therefore another type of interaction must 

occur. In addition, we find that electrostatic repulsion limits aggregation at low pH for 

both αS102 and EGFP, and the type of fibril produced depends on protein sequence, 

TFE concentration and temperature. Therefore, desolvation likely facilitates 

aggregation, but many other interactions contribute to the process. 

 

1.4b. TFE as a hydrating agent 

 Grudzielanek, et al. propose that kosmotropic interactions enhance protein 

hydration, leading to destabilization of native insulin tertiary structure at moderate 
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TFE (Grudzielanek, et al., 2005). They hypothesize that low concentrations of TFE 

increase water structure, stabilizing hydrated, unfolded states. This unfolding leads to 

exposure of hydrophobic residues and aggregation. 

 Our data for EGFP at pH 7.5 also reveal TFE-induced tertiary structure 

disruption prior to aggregation (Chapter 4). However, we find that the denatured 

protein does not adopt PPII structure, but instead appears to sample non-native α-

helical structures and a partially structured “intermediate” conformation. Significantly, 

PPII structure appears to be protective for acid-denatured EGFP. Moreover, our αS 

results (Chapter 2), as well as previous research on natively disordered peptides, 

indicate that PPII structure is correlated with solubility, while aggregation-prone 

conformations appear partially structured (Fezoui and Teplow, 2002; Williamson, et 

al., 2009). Therefore, although exposure of hydrophobic residues in the denatured state 

likely contributes to the aggregation process, the structure of the aggregation-prone 

state does not appear to be PPII-like. As we discussed in Section 1.4a, we believe that 

the aggregation-prone conformations are dehydrated, while the low-TFE, PPII-like 

state is stabilized by water-protein interactions. 

 In addition, dehydration is a more obvious promoter of aggregation than 

hydration. Removal of solvent molecules may present a kinetic barrier to aggregation, 

or loss of solvent interactions could increase the expected free energy of the monomer 

protein relative to the transition state and/or aggregated states (see also Section 1.4a). 

Hydration that leads to exposure of hydrophobic residues could be a plausible 

explanation for aggregation of globular proteins, but it does not explain the behavior 

of denatured or disordered proteins, which experience TFE-induced increases in 

aggregation propensity in the absence of tertiary structure. Our EGFP results show that 

subsequent to TFE-induced denaturation, EGFP behaves much like an intrinsically 

disordered protein and experiences solvation-related changes in aggregation 
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propensity. In addition, TFE can only denature EGFP when present in high 

concentrations, where PPII structure in the denatured state is minimal. 

 Notably, Grudzielanek, et al. do not measure the structure of the aggregation-

prone states of insulin, and it may be that this conformation is indeed hydrated or 

PPII-like. It is possible that the properties of insulin are different from EGFP and αS, 

and that aggregation of these proteins proceeds via different mechanisms. Experiments 

to asses the conformation and hydration state of additional TFE-denatured globular 

proteins may help to clarify this issue. 

 

1.4c. Preferential solvation of proteins by TFE 

 TFE has been hypothesized to affect protein structure as a result of preferential 

solvation (Fioroni, et al., 2002; Kundu and Kishore, 2004; Munishkina, et al., 2003; 

Roccatano, et al., 2002; Walgers, et al., 1998). Preferential solvation models involve 

TFE molecules partitioning into the solvation shell of a protein in order to reduce the 

free energy of the system. There is a significant amount of experimental (Chatterjee 

and Gerig, 2007; Diaz, et al., 2002; Kumar, et al., 2003; Othon, et al., 2009) and 

theoretical (Fioroni, et al., 2002; Roccatano, et al., 2002) evidence for coating of 

proteins by TFE, at least in >~30% TFE solutions. 

 TFE coating of proteins is often interpreted in terms of “chaotropic” effects 

(Grudzielanek, et al., 2005; Walgers, et al., 1998). The chaotropic mechanism 

implicates a breaking of water-water hydrogen bonds when TFE is introduced to a 

solution, leading to an unfavorable change in bulk water structure that drives TFE 

molecules into the protein solvation shell. Preferential solvation of proteins by TFE 

could also be related to the positive excess Gibbs function (Figure 1.1B), along with 

other thermodynamic properties of TFE-water mixtures (Marcus, 2001). Enthalpic 

TFE-protein interactions, if they occur, would contribute to preferential solvation 
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(Marcus, 1988). Hydrophobic interactions could also be a factor in protein solvation 

by TFE (Yamaguchi, et al., 2006; Yanagi, et al., 2011). Favorable changes in solvent 

free energy may occur when TFE displaces water from the protein solvation shell 

(Eggers, 2011). The large size of TFE compared to water might increase TFE-protein 

interactions because replacement of water molecules by a smaller number of TFE 

molecules would lead to a greater solvent entropy gain. 

 We find that the secondary structures of αS variants and acid-denatured EGFP 

vary between 0 ~30-40% TFE, above which the changes level off (Chapters 2-4). In 

Chapter 3, we show that the CD spectra of αS102 are very similar in the ~40% to 

>99% TFE range, indicating that the protein environment is essentially TFE-like under 

these conditions. Interestingly, many studies have demonstrated a similar ~30-40% 

TFE saturation in the helix induction curves for various proteins and peptides 

(Jasanoff and Fersht, 1994; Luo and Baldwin, 1997; Nelson and Kallenbach, 1986). 

Diaz et al. also observed complete coating of bombesin by TFE in ~30% TFE (Diaz, et 

al., 2002). These observations are consistent with preferential solvation resulting in 

TFE partitioning into the protein solvation shell above ~30% TFE, leading to the 

protein experiencing a local environment that is similar to bulk TFE. 

 Preferential TFE solvation may remove water interactions that destabilize 

helical structure relative to the coil state (Othon, et al., 2009; Walgers, et al., 1998). β-

hairpin and other types of secondary structures may also be stabilized via a similar 

mechanism (Roccatano, et al., 2002). We find that EGFP and αS adopt highly α-

helical structures above ~30-40% TFE. However, protein sequence and solution 

conditions (especially temperature and pH) affect the fraction of residues adopting 

helical conformations (Chapters 3-4), and so additional interactions must influence the 

protein conformation in the TFE-rich environment (see also Section 1.4f). 
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 In addition, our results show that only the N terminus of αS experiences 

structural changes above ~15% TFE (Chapter 2). Because the CD signal from helical 

regions is much stronger than that from PPII-like or coil structures, it is possible that 

we fail to detect subtle structural changes in the C terminus at high TFE. However, it 

is also possible that preferential solvation affects only certain regions of the protein. 

Starzyk, et al. showed that complete dehydration affected only helical residues, while 

statistical coil sequences remained solvated in 40% TFE (Starzyk, et al., 2005). It is 

possible that TFE selectively displaces the highest-energy water molecules, which 

may be those surrounding sequences with a high helical propensity, in the protein 

solvation shell (Eggers, 2011; Walgers, et al., 1998). It is also possible that helical 

structure facilitates direct TFE-protein interactions (Section 1.4f), leading to 

preferential solvation of helical regions at relatively low TFE concentration. At 

sufficiently high TFE, coil regions must be completely dehydrated; such regions likely 

will remain in “statistical coil” or PPII states even in neat TFE (Kakinoki, et al., 2005; 

Rabanal, et al., 1993). It is not clear whether coil regions experience a gradual loss of 

water interactions, or whether they might undergo preferential solvation at higher TFE 

concentrations. Measurements of proline-rich peptides in neat TFE could be 

informative. 

 Preferential solvation may increase protein solubility because increased surface 

area for TFE accumulation is available for monomeric protein compared to aggregates 

(Moelbert, et al., 2004). Additionally, increased average solvent free energy, resulting 

from unfavorable TFE-water interactions, might decrease the energy difference 

between the protein solvation shell and bulk solvent. Such a change in solvent energy 

would reduce the free energy gain for freeing solvent molecules from protein surfaces 

that are buried during oligomerization, and therefore decrease the favorability of 

aggregated states (Eggers, 2011). TFE-protein interactions may also stabilize 
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monomer protein in a TFE-rich environment. In any case, the reduction in aggregation 

that is typically observed for proteins in high TFE solutions is consistent with 

preferential solvation. For example, Chiti, et al. find that aggregation diminishes above 

~35% TFE for eight mutants of acylphosphatase, despite widely varying native state 

stabilities (Chiti, et al., 2000). Moreover, Grudzielanek, et al. (Grudzielanek, et al., 

2005) suggest that preferential solvation occurs at >~30% TFE for insulin, where the 

aggregation propensity of that protein decreases. We similarly observe that αS and 

EGFP aggregation decreases above ~40% TFE, and agree that preferential solvation is 

likely contributing to this aggregation reduction. 

 However, it is not clear whether preferential solvation contributes to 

conformational changes and aggregation below ~10-15% TFE. We observe a 

crossover from more water-like (PPII) to more TFE-like (α-helical) CD spectra at 

~15% for αS variants (Chapter 2) and at ~8% TFE for acid-denatured EGFP (Chapter 

4). This crossover behavior is readily apparent as a shift in the position of isodichroic 

points for CD spectra and is also clear in transition diagram representations of the 

data. In addition, the variable-temperature behavior of the CD spectra shows a distinct 

crossover at a similar TFE concentration (Chapter 3).  

 In Section 1.4a, we argue that the behavior of our low-TFE CD spectra is 

suggestive of dehydration of αS and acid-denatured EGFP. It is possible that 

preferential solvation could contribute to dehydration, possibly as a result of 

displacement of water molecules by larger TFE molecules, leading to changes in the 

structure of the solvation shell or loss of protein-water hydrogen bonds. Alternatively, 

preferential solvation may be a minor effect below ~10-15% TFE, and other solvent 

properties may be primarily responsible for dehydration and aggregation enhancement 

at low TFE. 
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 Preferential solvation is consistent with the saturation in helix induction and 

the decrease in protein aggregation that we and others observe above ~40% TFE. 

However, because no partitioning benefit is expected in 100% TFE solutions, 

preferential solvation cannot account for aggregation reduction at very high TFE. In 

addition, the stabilization of α-helices, as opposed to other types of structure, may be 

related to the properties of TFE or involve specific TFE-protein interactions. 

Therefore, we propose that preferential solvation leads to TFE coating of proteins, but 

additional factors affect the protein structure in the TFE-rich environment (see also 

Section 1.4f). 

 

1.4d. Interactions between proteins and TFE clusters  

 The observation that fluoroalcohols associate in aqueous solution has led to the 

proposal that protein-TFE cluster interactions may cause or contribute to protein 

structural changes and aggregation (Hong, et al., 1999; Reiersen and Rees, 2000; 

Yamaguchi, et al., 2006) This hypothesis is supported by the fact that conformational 

changes and peak aggregation of certain proteins occur at ~30% TFE, where cluster 

formation is maximal (Hong, et al., 1999). The propensities of various alcohols to 

form clusters when mixed with water are also positively correlated with the abilities of 

these alcohols to induce α-helical structure in proteins (Hong, et al., 1999). 

 The amount of clusters present in TFE-water mixtures drops sharply between 

~40-80% TFE (Gast, et al., 1999; Hong, et al., 1999). In contrast, protein 

conformational changes are usually rapid below ~30-40% TFE but level off at higher 

TFE concentrations (Gast, et al., 1999; Jasanoff and Fersht, 1994; Luo and Baldwin, 

1997; Nelson and Kallenbach, 1986). We find that the secondary structure of αS 

(Chapter 2) and EGFP (Chapter 4) are essentially the same in ~40-60% TFE solutions. 

Therefore, it seems unlikely that protein structure is tightly coupled to clustering. 
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 Gast et al. argue that, because no clustering occurs below ~20% TFE, while 

many proteins experience significant structural changes at lower TFE, cluster 

formation is a accompanying phenomenon, rather than the cause of structural 

transitions (Gast, et al., 2001). Similarly, we demonstrate that structural changes occur 

for αS variants and acid-denatured EGFP even at very low (2-5%) TFE. Furthermore, 

both EGFP and αS experience significant amounts of aggregation at ~10-15% TFE, 

which is below the ~20% TFE onset of clustering. Many other peptides and proteins 

show similar behavior (Chiti, et al., 2000; Fezoui and Teplow, 2002; Srisailam, et al., 

2003; Zerovnik, et al., 2007). Therefore, cluster formation does not appear to be 

required for TFE-induced protein aggregation. 

 Increased water-water and cosolvent-cosolvent interactions (e.g. partitioning of 

TFE into the solvation shell of TFE molecules) may occur when the excess Gibbs 

function (Figure 1.1B), for a cosolvent-water mixture is positive (Marcus, 2001). 

Importantly, preferential solvation of additional solutes, for example proteins, can also 

occur when the excess Gibbs energy for a mixed solvent is positive (Marcus, 1988). 

Therefore, the formation of clusters may reflect solution conditions in which 

hydrophobic interactions among TFE molecules, and between TFE and proteins, are 

likely (Yamaguchi, et al., 2006). We believe that clustering and preferential protein 

solvation by TFE are probably manifestations of the same underlying thermodynamic 

effects, and that it is preferential solvation that directly impacts protein structure (see 

also Section 1.4c). 

 

1.4e. TFE as a hydrogen bond enhancer 

 Luo and Baldwin observed that the hydrogen bond strength of a model 

compound (salicylic acid) in TFE is positively correlated with the propensity of 

alanine-rich peptides to form helical structure, and concluded that strengthening of 
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hydrogen bonds in the helix backbone may account for the dramatic structural changes 

induced by TFE (Luo and Baldwin, 1997). This effect can be partially explained by 

the reduction in the relative permittivity of TFE-water mixtures (Figure 1.1D) at high 

[TFE] (Hong, et al., 1999; Munishkina, et al., 2003).  

 However, as Gast et al. noted, if preferential solvation occurs for both proteins 

and salicylic acid, hydrogen bond strengthening could be an indirect effect of moving 

organic molecules into a relatively nonpolar local environment (Gast, et al., 1999). 

Preferential solvation may result in both the protein and the model compound 

experiencing a TFE-rich local environment (Section 1.4c), while hydrogen bond 

strengthening or other effects regulate the structure of the TFE-solvated protein. 

Notably, for many peptides, both hydrogen bond strengthening effects and helix 

induction plateau above ~40% TFE (Luo and Baldwin, 1997). 

 Hong, et al. showed that hydrogen bond strengthening for salicylic acid is 

greater in mixtures of simple alcohols and water compared to TFE, despite the fact 

that TFE is a better stabilizer of α-helices (Hong, et al., 1999). In addition, they 

observed that the salicylic acid hydrogen bonds were weaker in mixtures of 

1,1,1,3,3,3-Hexafluoro-2-propanol (HFIP) with water, compared to TFE-water 

mixtures, for concentration ranges associated with helix formation (above ~10% 

alcohol), even though HFIP is a stronger helix inducer than TFE. Therefore, it seems 

that the marked effects of fluorinated alcohols on protein structure cannot be due to 

hydrogen bond strengthening alone. 

 Hydrogen isotope partitioning experiments also demonstrated that addition of 

5% TFE to aqueous solution resulted in weakening of intramolecular hydrogen 

bonding for a coiled-coil peptide (Kentsis and Sosnick, 1998). Although helix 

formation is generally low at 5% TFE, this concentration range is associated with 

enhanced aggregation of some disordered or weakly structured proteins (Chiti, et al., 
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2000; Munishkina, et al., 2003). In addition, this trend is inconsistent with increased 

β-structured aggregate production in ~10%-20% TFE for αS variants (Chapter 2); 

weakened intramolecular hydrogen bonds might be expected to destabilize such 

aggregates. 

 Considering these observations, we conclude that hydrogen bond 

strengthening, if it occurs, is likely an accompanying effect. Favorable intramolecular 

hydrogen bonds may increase protein helicity subsequent to preferential solvation (see 

also Section 1.4c and Section 1.4f). 

 

1.4f. Hydrogen bonds between TFE and proteins 

 In Section 1.4c, we argued that preferential TFE solvation of proteins may 

contribute to reduced aggregation in solutions containing ~30-60% TFE. However, 

some proteins and peptides are highly soluble in neat TFE (Chin, et al., 1994; 

Malavolta, et al., 2006), although no partitioning benefit should occur in 100% TFE 

solutions, where all solvent molecules are equivalent. Therefore, additional TFE-

protein interactions must be present to account for the stability of monomer proteins at 

very high TFE. Dispersive interactions and polar interactions are likely to occur, but 

protein-TFE hydrogen bonds may also form. TFE-protein interactions probably also 

affect the conformation of a protein in a TFE-rich environment. 

 Rajan and Balaram hypothesized that a TFE molecule might donate a hydrogen 

bond to a peptide carbonyl group; this bond could potentially form without disrupting 

a hydrogen bond between backbone amide hydrogen and carbonyl groups (Rajan and 

Balaram, 1996). They proposed that such bifurcated hydrogen bonds could stabilize 

secondary structural elements such as α-helices, and that direct interactions could 

therefore drive helix formation in TFE-water mixtures. However, a study of model 

compounds found that hydrogen bonds between TFE and the model substances were 
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not sufficient to account for helix induction, although some TFE-solute hydrogen 

bonding did occur at high (>~60%) TFE concentrations (Walgers, et al., 1998). Yang 

et al. also found evidence of direct interactions between proteins and alcohols 

(including TFE), but found that the strength of these interactions was not correlated 

with the ability of a given alcohol to induce protein structural transitions (Yang, et al., 

1993). Additional studies of peptides and proteins in >40% TFE have found evidence 

of long-lived TFE-protein complexes of indeterminate nature (Chatterjee and Gerig, 

2007), as well as hydrogen bonding between peptide backbone carbonyl groups and 

TFE (Iovino, et al., 2001; Rothemund, et al., 1996). Taken together, these studies 

indicate that TFE-protein hydrogen bonding may occur in a TFE-rich environment, 

but such hydrogen bonding likely does not initiate structural changes. 

 We observe that the protein conformation at high concentrations of TFE 

depends on protein sequence. For αS, we find that the helix induction involves the N 

terminus of the protein only (Chapter 2). The C terminal portion of αS contains >10% 

proline residues. Polyproline and proline-rich peptides typically adopt PPII structure in 

neat TFE (Kakinoki, et al., 2005; Rabanal, et al., 1993). A similar lack of helix 

formation at high TFE has been observed for proline-rich regions of the protein 

amelogenin (Ndao, et al., 2011). Hydrogen bonding between peptide amide hydrogens 

and carbonyl groups is precluded by the proline ring, and so intramolecular hydrogen 

bond strengthening (Section 1.4e) would not be expected to induce helix formation for 

proline-rich sequences. However, hydrogen bonds between TFE and carbonyl groups 

of polyproline peptides could contribute to increased population of relatively extended 

PPII conformations compared more compact structures (Strassmair, et al., 1969). 

Alternatively, a reduction in “solvophobic” and “solvophilic” behavior in TFE could 

also favor the extended conformation (Kinoshita, et al., 2000). 
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 Heating leads to reduced helical structure for αS102 in ~20-99% TFE (Chapter 

3). Increased temperatures could decrease helicity by favoring protein structures with 

greater conformational entropy. However, another explanation for this melting 

behavior might be loss of helix-stabilizing enthalpic solvent-protein interactions, 

potentially including TFE-protein hydrogen bonds. In addition, the relatively low 

fraction of residues in the helical conformation for EGFP at high TFE (Chapter 4), 

compared to αS variants (Chapter 3), could reflect differences in the interactions of 

these proteins with TFE. 

 Therefore, TFE-protein hydrogen bonding may account for some sequence- 

and temperature-dependent variations in protein structure in high-TFE solutions. As 

we discussed in Section 1.3, TFE forms significantly fewer hydrogen bonds per unit 

volume than water. In addition, TFE is a strong proton donor, but poor acceptor, 

compared to water, and this imbalance may limit protein-solvent hydrogen bonding. 

However, if a protein molecule is brought into close proximity with TFE by 

preferential solvation (Section 1.4c) or some other interaction, and both TFE and 

proteins have the capability to participate in hydrogen bonds, it seems likely that at 

least some such bonds would form. These bonds may the conformation of the protein 

in a TFE-rich environment and may also contribute to protein solubility in neat TFE. 

 

1.4g. TFE as a structural switcher  

 Aggregation of many proteins in TFE is correlated with the formation of 

specific structural states, leading to the hypothesis that TFE acts as a “structural 

switcher”, with moderate TFE concentrations stabilizing aggregation-prone protein 

conformations (Abedini and Raleigh, 2009a; Fezoui and Teplow, 2002; Pallarès, et al., 

2004; Zerovnik, et al., 2007). Here, one or more of the mechanisms described above 
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(Sections 1.4a-1.4f) presumably causes the structural changes, but solvent-related 

effects are thought to be secondary to protein structure in the initiation of aggregation. 

 Many reports suggest that aggregation-prone intermediates are partially helical 

(Anderson, et al., 2010; Fezoui and Teplow, 2002; Liu, et al., 2004; Sen, et al., 2010; 

Williamson, et al., 2009; Zerovnik, et al., 2007). As a result, researchers have 

proposed that helix-helix interactions align neighboring disordered segments, 

facilitating aggregation (Abedini and Raleigh, 2009a; Williamson, et al., 2009). 

However, Calamai, et al. found that multiple conformational states can lead to similar 

aggregates, indicating that helical structure is not a prerequisite to aggregation 

(Calamai, et al., 2005) Also, short (5-6mer) peptides, which should not be capable of 

forming significant helical structure, show enhanced fibril formation in ~7-10% TFE 

(Chaudhary, et al., 2009). Investigation of additional proteins have revealed other 

types of aggregation-prone intermediates, particularly extended β-sheet conformations 

(Lim, et al., 2010; Pallarès, et al., 2004; Srisailam, et al., 2003), leading some 

researchers to suggest that TFE promotes the exposure of “sticky” unpaired β-sheet 

edges, leading to enhanced aggregation (Pallarès, et al., 2004; Srisailam, et al., 2003). 

Furthermore, TFE-induced aggregation can even occur in the absence of significant 

tertiary structure disruption (Plakoutsi, et al., 2004; Soldi, et al., 2005). 

 The diversity of aggregation-prone intermediates casts doubt on the hypothesis 

that particular structural elements directly cause aggregation. Of course, it is possible 

that multiple intermediates enhance aggregation and that various mechanisms 

contribute to this effect. However, a simpler explanation is that some solvent-

dependent effect leads to reduced protein solubility, with structural transitions being 

coincidental. 

 Our αS data indicates that heat-induced aggregation near 15% TFE is 

correlated with loss of PPII structure (Chapter 3). We also observe loss of PPII signal 
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and aggregation for acid-denatured EGFP in ~8% TFE (Chapter 4). Other disordered 

proteins and peptides also show reduced PPII-like CD signals, along with aggregation 

enhancement, at low-to-moderate TFE (Fezoui and Teplow, 2002; Liu, et al., 2004; 

Yamaguchi, et al., 2006). In general, some helical structure is detected for these 

proteins prior to aggregation. However, we hypothesize that it is the loss of PPII 

structure, rather than the gain of α-helices or other types of secondary structure, that is 

important for TFE-enhanced aggregation.  

 As we discuss in Section 1.4a above, PPII structure is favored by hydrogen 

bond formation between water and the protein backbone, and so reduction of the PPII 

peak in the CD spectrum may indicate loss of these interactions. Weakening of water-

protein interactions is likely to reduce solvation barriers to aggregation and to 

destabilize the monomer protein. Therefore, we believe that the protective nature of 

PPII structure is due to its solvent exposure. 

 Some “structural switcher” models propose that aggregation reduction at high 

TFE is due to the stability or other properties of the highly helical state (Fezoui and 

Teplow, 2002). It is quite plausible that helix stability could act as a barrier to 

aggregation. However, Chaudhary, et al., found that 5-6mer peptides, which should 

not be able to form α-helices, are soluble in neat TFE but form aggregates in solutions 

containing ~7-10% TFE (Chaudhary, et al., 2009). In addition, EGFP aggregation is 

reduced above similar TFE concentrations at pH 2.4 and 7.5, despite the fact that the 

pH 2.4, high-TFE conformation is approximately 50% more helical than the pH 7.5, 

high-TFE state (Chapter 4). For EGFP, it is possible that constraining a specific 

aggregation-promoting sequence is crucial, while the remainder of the helical structure 

is unimportant. However, it is more difficult to explain how helix stabilization could 

cause reduction in aggregation for very short peptides. 
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 In Section 1.4c, we noted that preferential solvation could decrease 

aggregation in solutions containing moderate-to-high TFE. It is also possible that 

TFE-protein interactions (e.g. Section 1.4f) stabilize the monomer protein in neat TFE 

and/or the TFE-rich environment resulting from preferential solvation. Therefore, 

helix formation may be one of many factors that affect protein solubility at high TFE. 

 For globular proteins, loss of tertiary structure (a structural switch) often 

precedes aggregation at moderate TFE. In general, the stability of globular proteins is 

negatively correlated with the onset of TFE-induced denaturation (Chiti, et al., 2000; 

Gast, et al., 1999). In Chapter 4, we showed that little aggregation occurred when 

EGFP tertiary structure was intact, while aggregation increased sharply at 15% TFE 

subsequent to TFE-induced denaturation of EGFP. However, tertiary structure 

disruption was not sufficient to cause aggregation; aggregation of TFE-denatured 

EGFP was low above ~30% TFE. Indeed, once a globular protein is denatured, it 

behaves like a natively disordered protein in TFE, sampling various conformational 

states and experiencing reduced aggregation at high TFE (Chiti, et al., 2000). As we 

discussed in Section 1.4c, additional interactions, particularly preferential solvation, 

likely stabilize the high TFE conformation. Therefore, the “structural switcher” model 

does appear to have some validity for globular proteins, but it is the loss of a 

protective factor (tertiary structure), as opposed to the formation of a specific 

aggregation-prone conformer, that enables aggregation. 

 It is possible that aggregate morphology may be affected by the structure of 

intermediate states. In many cases, TFE promotes the formation of amyloid or other 

ordered, β-sheet-rich fibrillar species (Anderson, et al., 2010; Fezoui and Teplow, 

2002; Srisailam, et al., 2003; Yamaguchi, et al., 2006). However, amorphous and 

granular species are also frequently observed (Bucciantini, et al., 2002; Chiti, et al., 

1999; Zerovnik, et al., 2007). Very interesting chunky aggregates in which the tertiary 
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structure and function of the native protein is conserved can also be formed (Plakoutsi, 

et al., 2004; Soldi, et al., 2005). Therefore, TFE seems to act as a general-purpose 

aggregation enhancer, but additional factors influence the selection of a particular 

aggregation pathway. 

 Burial or constraint of certain residues could affect aggregation pathway 

selection. In particular, it appears very likely that native state stability does impact the 

aggregation pathway of globular proteins, leading to native-like aggregates in some 

cases (Plakoutsi, et al., 2004; Soldi, et al., 2005). However, there are many other 

mechanisms that may contribute to the diversity of TFE-induced aggregates, including 

details of protein sequence, electrostatic interactions, and stabilization of particular 

oligomeric conformations. In addition, protein aggregation may be subject to kinetic 

control (Hwang, et al., 2004; Pellarin, et al., 2010), and TFE may affect the relative 

rates of formation of various species. 

 We find that aggregation proceeds from very similar partially structured 

intermediate for αS variants and EGFP (Chapter 4). However, the resulting aggregate 

morphologies are different for the two proteins. For αS at 25-37 °C, β-sheet-rich, 

ordered, helical fibrils grow in solutions containing ~10-15% TFE (Chapter 2). For 

EGFP in >~7.5% TFE, flexible, smooth fibrils are observed (Chapter 4). Moreover, 

the C terminal tail of αS affects the aggregation pathway at 70 °C in the presence and 

absence of TFE (Chapter 3). Therefore, it appears that protein sequence elements and 

solution conditions can dramatically affect the aggregation pathway, even when a 

similar intermediate conformation is observed prior to the onset of aggregation. 

 A final issue to consider is the thermodynamic means by which stabilization of 

the intermediate state might increase oligomerization rates and enhance aggregate 

production. In Figure 1.2, we consider a dilute protein solution in the absence (black 

solid lines) or presence (red dashed lines) of a small amount of TFE. We assume that  
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Figure 1.2. Free energy diagrams for an oligomerization reaction showing 
three possible TFE-induced modifications. The solid black lines show the 
hypothetical state of the system in the absence of TFE, while the putative 
TFE effects are illustrated by the dashed red lines. The U state corresponds 
to the monomer conformation that predominates in 0% TFE, the I state is 
the “intermediate” monomer structure favored in moderate [TFE], and the 
O state is a small oligomer. For the 0% TFE case, the activation energy, 
ΔG‡, is equal to the difference between the transition (T) state energy and 
the U state energy (see the black measurement lines at the right of the 
diagrams). The activation energies ΔG‡ for the proposed TFE-induced 
changes are shown via the red measurement lines. (A) Decreasing the free 
energy of the I state leads to an increase in the barrier height; ΔG‡ is now 
equal to the difference in free energy between the T state and the stabilized 
I state. (B) Decreasing the free energies of both the T and I states 
decreases ΔG‡. (C) Destabilizing the U state also decreases ΔG‡. 
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the solution is dilute enough that we can consider only the formation of the earliest 

oligomer species (“O”). An example where this approximation is likely valid is the 2 

μM αS samples we discuss in Chapter 2 (Figure 2.9); our data showed that αS 

variants populate the PPII-like “U” state at 0% TFE, while the addition of 15% TFE 

causes the monomer proteins to populate the intermediate “I” state and then convert to 

an oligomeric conformation. We also assume there is a kinetic barrier which prevents 

aggregation at 0% TFE, and we call the associated transition state “T”. In transition 

state theory, quasai-equilibrium conditions are assumed to hold for reactants, and the 

reaction rate is proportional to the fraction of monomer protein having a thermal 

energy at or above the level of the transition state (Upadhyay, 2006). Thus, the 

reaction rate depends on the activation energy, ΔG‡, which is equal to the difference 

between the free energy of the transition state and the lowest reactant state energy.  

 Figure 1.2A shows that simply decreasing the free energy of the intermediate 

state leads to an increase in ΔG‡, and therefore causes a reduction in the aggregation 

rate (Creighton, et al., 1996). Moreover, if the energy of the O state remains constant, 

stabilizing the I state will reduce the total amount of oligomer produced after the 

system equilibrates because the free energy of monomeric protein is decreased. An 

increase in the reaction rate can result from stabilization of both the intermediate and 

the transition states (Figure 1.2B). This scenario might occur if, for example, the I and 

T states both contain specific structural elements that are favored in moderate [TFE]. 

However, the amount of oligomer produced will also be decreased, provided that the 

free energy of the O state remains unchanged. Only destabilizing the U state (Figure 

1.2C) will both reduce the reaction rate and increase oligomerization, in the absence of 

a change in the O state energy. 

 An exception to the scenarios shown in Figure 1.2 might occur if the quasai-

equilibrium assumption does not hold for the monomeric conformations. However, in 
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Chapter 2, we show that αS variant conformational changes occur faster than we can 

mix and load our samples onto the CD spectrometer (~1 minute), while 

oligomerization takes tens of minutes to hours for the 2 μM αS variant solutions 

(Chapter 2 and Figure 2.9). Structural rearrangements for acid-denatured EGFP are 

also rapid (Chapter 4). Therefore, at this time, we have no reason to expect that 

monomer rearrangements are rate-limiting for the aggregation of these proteins. 

Certainly, TFE may increase oligomer stability, in addition to decreasing kinetic 

barriers to aggregation, and the presence of multiple intermediates or diverse fibrillar 

species will complicate the diagram. However, the significance of stabilization of the I 

state, as opposed to changes in the free energies of the U, T, or O states, remains 

unexplained by our data. 

 In Section 1.4 a, we argued that the addition of small amounts of TFE to 

protein solutions may reduce water availability for protein solvation, destabilizing 

PPII structure. This scenario involves an increase in the free energy of the hydrated U 

state, and is equivalent to Figure 1.2C. Therefore, it seems likely that destabilization of 

the U state, rather than I state stabilization, leads to the increase in aggregation rates 

and fibril production that we observe for our proteins in TFE. 

 In sum, we believe that the secondary structural details of αS and EGFP are 

likely secondary to solvent interactions in TFE-induced aggregation reactions. For 

denatured or disordered proteins in low TFE solutions, loss of PPII structure is 

correlated with aggregation, while increased α-helical structure and reduced 

aggregation occur at high TFE. For globular proteins, tertiary structure stability 

determines the onset of aggregation for many proteins, and also is crucial in 

determining the aggregation pathway. However, once a globular protein is denatured, 

it behaves similarly to an unstructured protein, and TFE-protein interactions resist 

aggregation at high TFE. Therefore, it appears that removal of protective factors, such 
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as tertiary structure and protein-solvent interactions, are involved in initiating 

aggregation in solutions containing TFE, although secondary structural details may 

modify the aggregation pathway for some proteins. 

 

1.5. Summary of our desolvation model for TFE-induced protein aggregation 

 We believe that dehydration (Section 1.4a) causes loss of PPII structure and 

increased aggregation at low TFE, while preferential solvation (Section 1.4c) leads to 

denaturation, α-helix induction and monomer stabilization at higher TFE. Direct TFE-

protein interactions, which might include dispersion interactions, polar interactions, or 

hydrogen bonding (Section 1.4f), may affect the conformation of the protein in the 

TFE-rich environment. Aggregation is correlated with formation of a desolvated state 

in which both water-protein and TFE-protein interactions are minimized. Electrostatic 

repulsion and intact tertiary structure are also barriers to TFE-induced aggregation. 

 Although our data is consistent with dehydration and preferential TFE 

solvation of αS and EGFP, the precise molecular mechanisms underlying these 

phenomena are unclear. TFE has been proposed to act as a kosmotrope at low 

concentrations, leading to a reduction in solubility (Grudzielanek, et al., 2005; Kentsis 

and Sosnick, 1998). However, the strong decrease in surface tension for TFE-water 

mixtures compared to water (Figure 1.1E) is inconsistent with a typical kosmotropic 

interaction (Chitra and Smith, 2002). In addition, the molecular mechanisms 

underlying proposed kosmotropic and chaotropic interactions, which involve changes 

in bulk water structure, have been challenged (Eggers, 2011; Mancinelli, et al., 2007; 

Zhang, et al., 2005). Therefore, it is not clear whether it is strictly correct to interpret 

TFE effects in terms of changes in water structure. It is possible that bulk solvent 

properties, such as the reduced relative permittivity of TFE-water mixtures, lead to 

loss of protein-water interactions (see Section 1.4a). Or, thermodynamic properties of 
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TFE-water mixtures, along with possible direct TFE-protein interactions, could drive 

the cause dehydration and TFE coating of proteins (Eggers, 2011; Marcus, 1988). 

 Structural changes and aggregation in fluorinated alcohols are generally more 

marked than in simple alcohols. However, simple alcohols also can induce α-helical 

structure and enhance protein aggregation (Hirota, et al., 1997; Zhang and Yan, 2008). 

The extent of clustering of alcohol molecules in aqueous solution correlates with their 

ability to induce helical structure, and is greater for TFE and HFIP than for simple 

alcohols (Hong, et al., 1999). In Section 1.4d, we argue that clustering is likely a 

symptom of solution conditions that are conducive to preferential solvation. Therefore, 

relatively high concentrations of simple alcohols such as ethanol and methanol may be 

required for the protein to experience a fully alcohol-like local environment. It is not 

clear whether the ability of an alcohol to dehydrate a protein will be related to its 

propensity for preferential solvation. Munishkina, et al, found that αS oligomerization 

was correlated with the relative permittivity of simple alcohols (Munishkina, et al., 

2003), and therefore dehydration may be due to changes in bulk solvent properties that 

occur prior to the onset of preferential solvation. Investigation of the impact of various 

alcohols on protein structure and aggregation may provide information about whether 

preferential solvation, solvent structure, or some other property, is responsible for 

dehydration. 

 Desolvation does not account for all of the features of our data. For both αS 

and EGFP, we find that low pH conditions increase helicity at high TFE. The 

interactions that determine the conformation of a protein in a TFE-rich environment 

are not well understood, and so it is difficult to propose a mechanism to account for 

these pH-dependent structural differences. In addition, the observed aggregate 

morphologies depend on protein sequence and solution conditions; the conformation 

of the protein may therefore impact aggregation pathway selection. We identify 
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electrostatic repulsion as an additional protective factor that reduces protein 

aggregation. 

 

1.6. Relevance of our results to the study of amyloid diseases  

 Proteins have evolved various protective mechanisms to prevent abnormal 

aggregation. Hydration of disordered sequences may be among these defensive 

strategies. Our results suggest that TFE can be used to vary the strength of solvation 

barriers in protein aggregation reactions, enabling study of other factors influencing 

protein aggregation.  

 We find that loss of PPII structure in favor of partially structured states is 

correlated with aggregation at low TFE. These observations contradict the hypothesis 

that PPII structure is a killer conformation (Blanch, et al., 2000). The solvent 

accessibility of the PPII conformation is likely responsible for its aggregation-

reducing qualities. We predict that more water-inaccessible, and therefore 

aggregation-prone, protein sequences will experience a sharper reduction in PPII 

structure in the presence of low concentrations of TFE. Measurements of these 

structural changes could potentially identify mutations that might increase or decrease 

the fibrillization of a disordered protein or peptide. Notably, in Chapter 2, we show 

that the Parkinson’s disease-associated αS mutants A30P, E46K, and A53T, do not 

appear to differ in their structural responses to TFE, which indicates that other 

properties likely account for the variations in the mutants’ aggregation rates. 

Moreover, our pH-dependent data show that TFE-induced dehydration is not strongly 

affected by protein charge, at least for αS variants (Chapter 3), and so it may be 

possible to use TFE to isolate and compare the contributions of electrostatic repulsion 

and hydration in aggregation reactions. 
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 The solvation status of disordered proteins may also affect their interactions 

with chaperones. Heat shock proteins and other molecular chaperones, which bind to 

nascent chains and misfolded proteins to prevent their abnormal aggregation, often do 

not interact with natively disordered proteins (Hegyi and Tompa, 2008). For example, 

multiple studies have found that monomeric αS does not bind to Hsp70 chaperones, 

although these chaperones can inhibit αS aggregation by binding to small αS 

oligomers (Ahmad, 2010; Dedmon, et al., 2005; Hinault, et al., 2010). The hydration 

status (or low hydrophobicity) of natively disordered proteins likely contributes to 

their reduced chaperone binding (Hegyi and Tompa, 2008). However, it is possible 

that dehydration could trigger Hsp70 or other chaperone binding to disordered 

proteins, and so moderate TFE conditions may populate a species similar to a 

chaperone-associated conformation. Moreover, hydration may play a role in the 

abnormal oligomerization and aggregation of αS that has been found to be induced by 

Hsp90-type chaperones (Falsone, et al., 2009). Unlike Hsp70, Hsp90 binds to 

monomeric αS, and it is possible that nonspecific or accidental chaperone binding 

might actually induce dehydration and aggregation of the normal monomer. Of course, 

these ideas are speculative and much more evidence is needed to definitively link 

hydration status and TFE-induced conformations with chaperone activity. 

 In conclusion, we propose that TFE enhances aggregation by removing 

protective interactions, rather than by stabilizing specific aggregation-prone structural 

elements. Understanding natural defensive mechanisms may help identify potential 

interventions in amyloid diseases, and therefore TFE may be a useful tool for studying 

the role of solvation barriers in toxic aggregation processes. 
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CHAPTER 2 

IDENTIFICATION OF A HELICAL INTERMEDIATE IN 

TRIFLUOROETHANOL-INDUCED ALPHA-SYNUCLEIN AGGREGATION* 

 

2.1. Introduction 

 Parkinson’s disease (PD) is one of a number of synucleopathies in which 

aggregation of the protein α-synuclein (αS) is linked to pathogenesis (Spillantini, 

1999). αS is intrinsically disordered, but in the presence of lipid or detergent vesicles 

or micelles, adopts a highly helical structure in which its N-terminal region is 

membrane-bound and the C-terminal tail remains predominantly free and unstructured 

(Davidson, et al., 1998; Eliezer, et al., 2001). Although most PD cases are sporadic or 

idiopathic, three point mutations of αS– A53T, A30P and E46K– are associated with 

familial and early-onset PD (Kruger, et al., 1998; Polymeropoulos, et al., 1997; 

Zarranz, et al., 2004). 

 In addition to its free and membrane-bound states, αS adopts partially 

structured intermediate conformations under low-pH or high-temperature conditions 

(Uversky, et al., 2001). A folding intermediate has also been detected at low [TFE] 

(Munishkina, et al., 2003). Conditions favoring the formation of these intermediates 

also promote amyloid fibril growth, possibly implicating intermediate conformers as 

key species in the aggregation pathways.  

 Here, we examine TFE-induced monomer conformational changes, 

oligomerization, and fibrillization in detail for wild-type (WT) αS, C-terminally 

truncated WT αS (αS102), and the PD-associated αS mutants A30P, A53T, and 

                                                 
* Adapted with permission from: Anderson, V.L., Ramlall, T.F., Rospigliosi, C.C., 
Webb, W.W., and Eliezer, D. (2010). Identification of a helical intermediate in 
trifluoroethanol-induced alpha-synuclein aggregation. Proc. Natl. Acad. Sci. U. S. A. 
107, 18850-18855. 
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E46K, expanding upon previous studies by Munishkina, et al. (Munishkina, et al., 

2003) and Li, et al (Li, et al., 2002). This research also complements previous 

fluorescence correlation spectroscopy studies of αS membrane interactions (Rhoades, 

et al., 2006) and protein equilibrium structural dynamics (Chen, et al., 2007).  

 Helical intermediates have been reported to promote fibril formation of a 

number of amyloidogenic proteins (Abedini and Raleigh, 2009a; Abedini and Raleigh, 

2009b; Booth, et al., 1997; Fezoui and Teplow, 2002; Williamson, et al., 2009; 

Yamaguchi, et al., 2006; Zerovnik, et al., 2007). We show that αS is likely to 

aggregate via such an intermediate in the presence of TFE, suggesting that membrane-

induced αS aggregation may also involve the formation of a helical intermediate. 

Furthermore, TFE-induced fibrils are β-sheet rich and resemble previously reported 

aggregates formed by C-terminally truncated αS (Crowther, et al., 1998), as well as 

structures induced by detergent and lipid interactions (Broersen, et al., 2006; Giehm, 

et al., 2010), which may be linked to PD initiation and progression (Beyer, 2007; Li, et 

al., 2005; Michell, et al., 2007; Wakamatsu, et al., 2008). 

 

2.2. Results 

 Ultrastructure of TFE-induced αS aggregates: Figure 2.1A-D shows 

transmission electron microscope (TEM) micrographs of various aggregates formed 

from WT αS after two weeks in a shaking incubator at 37 °C. Typical long, rigid 

amyloid fibrils form at 0% TFE (all percentages v/v). At 5% TFE, a combination of 

typical amyloid fibrils and shorter, flexible fibrillar structures are observed. When 

[TFE] is increased to 10-15%, classic amyloid fibrils disappear and only the flexible, 

short “TFE fibrils” are observed.  
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Figure 2.1. WT αS aggregate characteristics as a function of [TFE]. (A-D) 
TEM micrographs of structures grown from 50 μM WT αS, after two-
week incubation at 37 °C with shaking in the presence of (A) 0%, (B) 5%, 
(C) 10%, and (D) 15% TFE. The scale bars are 200 nm. (E) For the 
samples in A-D, the percentage of total protein incorporated into large 
aggregates (white bars, left axis) and the thioflavin-T enhancement (gray 
bars, right axis). The error bars reflect the standard deviations for three 
samples and the uncertainty in volume due to evaporation. 
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 Aggregate production for the samples in Figure 2.1A-D was quantified by 

centrifugation, UV absorbance and thioflavin-T fluorescence enhancement (Figure 

2.1E). The amount of aggregate produced rises sharply at ≥10% TFE where TFE 

fibrils predominate. 

 Additional images of TFE-induced WT αS aggregates grown in a variety of 

solution conditions show that TFE fibrils can be grown at 25 °C even in the absence of 

shaking when [TFE] ≥ ~10% (Figure 2.2A). We have not observed classic amyloid 

fibril formation in the absence of shaking after incubations of up to 3 weeks in 0-20% 

TFE. Ultrastructurally, TFE fibrils appear to be helical, with a strand width of ~11 nm 

(Figure 2.3A). The overall fibril diameters are ~11-20 nm and appear to vary due to 

stretching or compression of the helical winding, while the minimum thickness of the 

strands is ~5-6 nm. Amyloid fibrils in our 0% TFE sample range in diameter from ~9-

23 nm (the mean width is ~12 nm) and are thus similar in width to TFE fibrils, but are 

much longer and straighter. Structures that resemble closed, distorted rings can 

sometimes be found via TEM (Figure 2.1C, Figure 2.3B-C). Rings were most 

common in samples that were incubated at 37 °C with shaking, although we also 

observed them in some room-temperature samples (Figure 2.3C). It is not clear 

whether ring-like structures are actually closed loops or whether their appearance is 

accidental due to fibril flexibility and artifacts of drying onto the TEM grids. The 

extent of aggregation and thioflavin-T fluorescence emission enhancement varies as a 

function of [TFE] for αS samples incubated at room temperature under quiescent 

conditions (Figure 2.2B), with TFE fibril production occurring above ~10% TFE, and 

associated with some thioflavin-T binding. Similar TFE fibril production behavior at 

25 °C is observed for the A30P, A53T, and E46K PD-associated αS mutants (Figure 

2.2B). Qualitatively, the amount of aggregate produced is highest for the E46K 

mutant, while the extent of A30P aggregation is reduced. In addition, the C terminal  
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Figure 2.2. Aggregation of WT and PD-associated mutant αS at 25 °C in 
the absence of shaking (50 μM protein, two week incubation). (A) TEM 
micrographs (scale bar = 200 nm) of aggregates grown at 10-15% TFE for 
WT, A30P, A53T, and E46K αS. (B) Percentage of monomer protein 
incorporated into aggregates (white bars, left axis) and Thioflavin-T 
enhancement factor (gray bars, right axis) for WT, A30P, A53T, and E46K 
αS. The error bars represent the standard deviations for three identical 
samples. 
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Figure 2.3. TEM images of TFE-induced aggregates grown from 50 μM 
of αS variants. Scale bars are 200 nm (note A-D and E-F have the same 
magnifications). (A) Straight TFE fibril, indicating fibril dimensions, 
grown from wild-type αS in the presence of 10% TFE, incubated with 
shaking at 37 °C for 2 weeks. (B) Ring-like and flexible structures found 
in the same sample as A. (C) Ring-like and fibrillar structures grown from 
wild-type αS in 15% TFE, incubated at room temperature in the absence 
of shaking for 2 weeks. (D) Straight and kinked TFE fibrils found in the 
same sample as images A-B. (E) Flexible TFE fibrils grown from αS102 
in 10% TFE, after incubation for 2 weeks at room temperature in the 
absence of shaking. (F) Similar to E, but fibrils were grown in the presence 
of 15% TFE. 
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truncation mutant αS102 forms fibrillar aggregates when incubated in ~10-15% TFE 

(Figure 2.3E-F), indicating that the N terminal portion of the protein is sufficient for 

TFE-induced fibril formation. 

 TFE-induced secondary structural changes in monomeric αS: The far-UV 

circular dichroism (CD) spectrum of dilute (0.5 μM) WT αS in 0% TFE (Figure 2.4A) 

is relatively flat except for a deep minimum around 198 nm, consistent with a highly 

disordered protein. As [TFE] increases, the signal at 218-222 nm decreases, reflecting 

increased amounts of secondary structure. At 60% TFE, the spectrum has minima at 

208 and 222 nm, indicating that αS adopts a highly α-helical conformation under 

these conditions. Surprisingly, sets of spectra for 0-14% and 17-60% TFE share 

isodichroic points (Figure 2.4A insets), consistent with coexistence of two distinct 

secondary structural conformations in each range of TFE concentrations. We have 

verified that the curves in Figure 2.4A are representative of monomeric protein by 

examining time- and concentration-dependent variations in the spectra (see Appendix 

A). 

 By plotting the mean residue ellipticities at 198 nm vs. 222 nm ([θ]222 vs. 

[θ]198), we can construct a transition diagram (Kuznetsova, et al., 2004) from the CD 

spectra in Figure 2.4A, enabling identification of structural transitions for the 

monomer protein (Figure 2.4B). Points derived from spectra corresponding to shifts in 

an equilibrium between two conformations appear as straight lines in this diagram; the 

spectra that share isodichroic points in Figure 2.4A form straight lines in our transition 

diagram. Our observation of two different, adjacent linear segments indicates that αS 

is sampling at least three secondary structure conformations: an unfolded 

conformation (U), which is approximated by the 0% TFE point, a well-folded, α-

helical species (F), which is most similar to the 60% TFE point, and an intermediate 

secondary structural conformation (I) that is populated at moderate [TFE]. Along the  
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Figure 2.4. Secondary structural changes induced by TFE for WT αS at 
25 °C. (A) Far-UV CD spectra for 0.5 μM WT αS in 0-60% TFE. The 
TFE concentrations for spectra with increasing negative ellipticity at 222 
nm are 0, 2, 5, 8, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20, 22, 24, 26, 30, 40, 
45, 50, and 60%. The insets show selected curves from the main plot, 
which correspond to TFE ranges where the spectra share an isodichroic 
point. (Inset axes units are the same as the main plot). (B) Transition 
diagram constructed from the ellipticity values at 222 nm and 198 nm 
using the data in A. For clarity, some points are labeled with their [TFE]. 
The dashed lines show linear fits to sets of points whose CD spectra share 
isodichroic points.  
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low-TFE line (bottom right of the plot), the U and I conformations coexist, while the I 

and F states are populated along the high-TFE line (top left).  

 Similar structural transitions are observed for αS102, as well as the A30P, 

A53T, and E46K αS mutants, with CD spectra showing a progression from a 

disordered conformation to α-helical secondary structure with increasing [TFE], and 

low- and high-TFE curves sharing isodichroic points (Figure 2.5A-D). The qualitative 

behavior of the αS102 mutant is very similar to WT, although the overall magnitude 

of the mean residue ellipticity for αS102 is increased at moderate to high TFE (Figure 

2.5A,E, Figure 2.6A-B), indicating that a larger fraction of residues adopt secondary 

structure in the truncation mutant. Moreover, when transition diagrams are constructed 

for the three PD-associated mutants, their coexistence lines are nearly identical to 

those of WT αS (Figure 2.5F-H, Figure 2.6E). Therefore, the TFE-induced folding 

landscapes of the αS variants contain comparable structural transitions. Surprisingly, 

plots of [θ]222 and [θ]198 as a function of [TFE] for all the αS variants (Figure 2.6A-D) 

appear superficially to be sigmoidal, which is likely due to the fact that the 

intermediate spectrum [θ]222 and [θ]198 values lie in between the values for the U and F 

states. Thus, the transition diagrams reveal information about intermediate states that 

is hidden in these plots. 

 Table 2.1 shows the TFE concentrations and isodichroic points that correspond 

to U ↔ I and I ↔ F coexistence for all five αS variants. Note that, for a set of CD 

curves that share an isodichroic point, the ellipticity of all conformations that 

contribute to the spectra is the same at the isodichroic. Therefore, the I state ellipticity 

is equal to the values measured at these points. Additionally, the point at which the 

two straight lines in the transition diagrams intercept should correspond to the CD 

values for the pure I state; these values are also shown in Table 2.1. 
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Figure 2.5. Secondary structural changes induced by TFE for αS mutants. 
(A-D) Far-UV CD spectra for 0.5 μM αS variant proteins in 0-60% TFE. 
The insets show spectra from the main plot that share an isodichroic point. 
The inset axes have the same units as the main plot axes. (A) αS102 
spectra. The TFE concentrations for spectra with increasing negative 
ellipticity at 222 nm are 1, 2, 0, 5, 7, 8, 10, 9, 11, 12, 13, 14, 15, 16, 17, 18, 
19, 20, 22, 24, 26, 30, 35, 40, 50, and 60% TFE. (B) A30P αS spectra. The 
TFE concentrations for spectra with increasing negative ellipticity at 222 
nm are 0, 2, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 26, 30, 40, 
50, and 60% TFE. (C) A53T αS spectra. The TFE concentrations for 
spectra with increasing negative ellipticity at 222 nm are 0, 2, 5, 7, 10, 11, 
12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 25, 30, 35, 40, 50, and 60% TFE.(D) 
E46K αS spectra. The TFE concentrations for spectra with increasing 
negative ellipticity at 222 nm are 0, 2, 5, 7, 9, 8, 10, 11, 12, 13, 14, 15, 16, 
17, 18, 20, 22, 24, 30, 35, 40, 50, and 60% TFE. (E-H): Transition 
diagrams constructed from the mean residue ellipticity values at 222 nm 
and 198 nm using the data in A-C for (E) αS102 (F) A30P, (G) A53T, and 
(H) E46K αS. The ranges of TFE concentrations are as described for A-D 
above, and for clarity some points are labeled with their [TFE]. The 
dashed lines show linear fits to sets of points whose CD spectra share 
isodichroic points. 
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Figure 2.6. Comparisons of CD data for αS variants. (A) The mean 
residue ellipticity measured at 222 nm as a function of TFE concentration 
for WT αS vs. αS102 (B) Similar to A, except the ellipticity is measured 
at 198 nm.(C) The mean residue ellipticity measured at 222 nm as a 
function of TFE concentration for all WT αS compared to the disease-
associated mutants. (D) Similar to C, except the ellipticity is measured at 
198 nm.(E) The transition diagram data points from Figure 2.4B and 
Figure 2.5F-H are combined. The two lines show fits to the wild-type data 
for 0-14% and 17-60%, respectively. 
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Table 2.1. CD spectral data related to the intermediate state for the αS 
variants. The TFE ranges for which CD spectra share isodichroic points, 
the wavelength at which the curves coincide (λiso) in nm, and the ellipticity 
value at the isodichroic ([θ]iso) in units of 103 deg cm2 dmol-1 are given for 
the two-state coexistence regions. The location of the intercept of the 
linear fits to the low- and high-TFE data points on the CD transition 
diagrams is also shown in units of 103 deg cm2 dmol-1. Uncertainties are 
estimated from experimental error. 

 

 

 

U ↔ I Coexistence  I ↔ F Coexistence Transition Diagram 
Intercept 

 
TFE 
range λiso

 [θ]iso
 

TFE 
range λiso

 [θ]iso
 [θ]198 [θ]222 

WT 0 - 14% 
207 
± 1 

-10.8 
± 1.2 17 - 60% 

203 ± 
1 

-12.0 
± 3.9 

0.7 ± 
4.3 

-7.7 ± 
1.5 

αS102 0-13% 
205 
± 2 

-12.6 
± 1.9 17 - 60% 

203 ± 
1 

-11.1 
± 4.5 

1.4 ± 
6.3 

-9.0 ± 
3.2 

A30P 0 - 12% 
208 
± 1 

-9.3 ± 
1.4 17 - 60% 

203 ± 
1 

-12.9 
± 3.5 

-4.6 ± 
5.7 

-6.4 ± 
2.0 

A53T 0 - 13% 
206 
± 1 

-12.4 
± 1.3 18 - 60% 

203 ± 
1 

-12.5 
± 4.1 

0.9 ± 
6.0 

-9.1 ± 
2.5 

E46K 0 - 11% 
208 
± 1  

-9.4 ± 
1.3 17 - 60% 

202 ± 
1 

-7.4 ± 
4.8 

1.0 ± 
3.9 

-7.2 ± 
1.1 



 

48 

 Reconstructed I state spectrum: Table 2.1 shows ellipticity values for the pure 

I state at four points. However, a spectrum that covers a larger wavelength range is 

desirable to obtain information about the secondary structure of this conformer; 

therefore we reconstruct the I state curve for 195-260 nm using two methods. We use 

Principal Component Analysis (PCA) to reduce the dimensionality of our data sets, 

and then find the I state via fits (in the new coordinate system) to points whose spectra 

share isodichroics (see Appendix A). In addition, we use the information from Table 

2.1, along with Maximum Likelihood Estimation (MLE), to find fractions of the U and 

F states as a function of [TFE], and then subtract these contributions from our 

measured spectra to reconstruct the I state spectrum (Appendix A). Results for both 

methods for WT αS are shown in Figure 2.7A. The spectra obtained from both 

methods are similar to one another and are also consistent with the values in Table 2.1. 

The PCA results for all the αS mutants are shown in Figure 2.7B; the MLE estimates 

are similar to the PCA results (Appendix A). 

 The reconstructed I state spectra for all the αS variants are similar to one 

another in that they all exhibit a minimum around 222 nm that is suggestive of α-

helical secondary structure (Figure 2.7B). However, the accompanying minimum 

expected for pure α-helical structure at 208 nm is shifted to slightly shorter 

wavelengths. In addition, the magnitude of the signal at 222 nm is less than would be 

expected for fully helical structure for all five variants, indicating that the intermediate 

state is partially unstructured in all cases.  

 Using [θ]222, we estimate the fractional helicity (Luo and Baldwin, 1997) for 

the I and F states (Table 2.2). The percent helicity of both states is higher for αS102 

compared to WT, but the number of residues in a helical conformation is similar, 

indicating that the N terminus of full-length αS is likely to be the region adopting 

structure in the presence of TFE. For all the variants, ~24 residues are predicted to be  
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Figure 2.7. Reconstructions of the I state spectra for αS variants. (A) 
Predicted spectra for WT αS. The solid line shows the spectrum calculated 
via PCA. The dashed lines show results of MLE analysis, which were 
calculated using spectra that shared the low-TFE isodichroic points. The 
dotted line shows the MLE results calculated from spectra that shared the 
high-TFE isodichroic. The points (circles) show the I state reference points 
from Table 2.1 (B) Comparison of the results of the PCA calculations for 
all five αS variants. 
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Table 2.2. Estimates of the percentage of α-helical structure (Luo and 
Baldwin, 1997) for αS in the pure I and F states, based on the magnitude 
of the ellipticity at 222 nm. Note that the estimate is only defined for 0-
50% TFE, but our CD spectra are nearly identical at 50%-60% TFE, and 
so we are able to use the 50% TFE parameters from (Luo and Baldwin, 
1997) for the F state estimates. In addition, the 15% TFE parameters are 
used for the I state estimates. Error bars for the I state are due to 
uncertainties in our PCA estimate (see Appendix A) and errors for the F 
state are based on an experimental error. 

 

 

 

 

 

 

 

 

I state  F state  

 
Percent 
helicity 

# helical 
residues 

Percent 
helicity 

# helical 
residues 

WT 17 ± 2 24 ± 2 61 ± 4 86 ± 5 
αS102 20 ± 6 21 ± 6 83 ± 5 85 ± 5 
A30P 11 ± 3 16 ± 4 59 ± 3 83 ± 5 
A53T 18 ± 2 26 ± 3 68 ± 4 95 ± 5 
E46K 17 ± 2 24 ± 3 62 ± 4 86 ± 5 
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in a helical conformation for the I state and ~86 residues are helical in the F state. 

Notably, helicity is slightly lower for the A30P I state. Deconvolution analysis of the 

CD spectra indicated that TFE does not lead to a significant increase in β-sheet content 

between the U and I states (see Appendix A). 

 Conformer populations for monomeric αS: The experimental CD data at all 

TFE concentrations are well fit by linear combinations of the reconstructed I state 

spectra, and the 0% and 60% TFE spectra (Figure 2.8A, see also Appendix A). The 

corresponding populations (Figure 2.8B), which are very similar for all five αS 

variants, show that the U state becomes depleted in favor of the I state as TFE is 

increased to ~ 15%, while at higher TFE, the F state population increases. The I state 

appears to be an intermediate in the TFE-induced conversion of U to F and in addition 

is significantly populated between ~10 to ~20% TFE, where TFE fibril formation is 

maximal. 

 Secondary structure of TFE-induced αS oligomers and fibrils: At protein 

concentrations of 2 μM in solutions that contain intermediate (~12-20%) amounts of 

TFE, the CD spectra change over time as oligomerization occurs, enabling an analysis 

of both secondary structure changes and kinetics (Figure 2.9A). The initial CD curves 

have double minima near 205 and 220 nm, and are consistent with partially 

unstructured protein. As time passes, a single minimum appears near 216 nm, 

signifying the formation of β-sheet-rich structure. Because the appearance of β-

structure is both concentration- and time-dependent, we believe it reflects the 

formation of oligomeric species. Interestingly, the curves share isodichroic points at 

~210 nm, suggesting that the systems are undergoing all-or-nothing transitions 

between two states. However, because oligomers with similar secondary structure 

could result in nearly identical far-UV CD curves, we may not be able to resolve 

conversions between oligomeric states, such as the association of smaller oligomers  
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Figure 2.8. Protein spectra and conformer population calculations based 
on linear combinations of the pure U, I, and F states. (A) Fit results (black 
lines) for WT αS CD spectra (open circles, data as in Figure 2.4A), where 
the fitted curves were calculated from linear combinations of the 0%, 60% 
and the estimated I state spectra (see Appendix A). The TFE 
concentrations for spectra with increasing negative ellipticity at 222 nm 
are 5%, 13%, 15%, 17%, 20%, 30%, and 50% TFE. (B) Fractions of 
monomer protein in the three states U, I and F as a function of [TFE], 
obtained from fits of CD spectra to linear combinations of the pure states 
(see Appendix A). Black symbols: fU. White symbols: fI. Gray symbols: fF. 
Data is shown for WT (circles), αS102 (down triangles), A30P (squares), 
A53T (diamonds) and E46K (up triangles) αS. 
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Figure 2.9. Oligomer formation kinetics in 15% TFE for αS variants. (A) 
Far-UV CD spectra taken at various time points for 2 μM WT, A30P, 
A53T, and E46K αS in 15% TFE at 25 °C. The initial time point for each 
plot has the least negative [θ] at 216 nm. (B) Kinetics of the 
oligomerization reaction for WT, A30P, A53T, and E46K αS. Filled 
circles: [θ]216 for the curves in A-D plotted vs. time. Open triangles: [θ]216 
vs. time for 5 μM protein in 15% TFE. Lines: Results of fits to a single 
exponential model (see Appendix A). The error bars reflect the uncertainty 
in time due to mixing and experimental dead time, as well as signal 
fluctuations. 
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into larger species. We do not observe fibrils via TEM for samples incubated for ≤ 6 

hours at 25 °C, even for αS concentrations as high as 50 μM; therefore we believe that 

the CD spectra changes for Figure 2.9 correspond to the formation of non-fibrillar 

oligomeric species. 

 Measurements at a higher protein concentration of 5 μM show that the 

appearance of the ellipticity minimum at 216 nm is nearly complete within the 1-3 

minute mixing time for WT and the PD-associated mutants (excepting A30P), further 

confirming the concentration dependence of the initial oligomerization reaction 

(Figure 2.9B). Fits of the data to a single exponential model result in apparent rate 

constants kapp (Table 2.3, also see Appendix A). Visual inspection of the data in Figure 

2.9A-B, in combination with the fit results (Table 2.3), reveals that the E46K mutant 

reaches steady-state fastest, while A30P is slowest. Therefore, oligomerization rates 

appear to follow a similar series (A30P < WT ≤≈ A53T < E46K) as the extent of 

aggregation data (Figure 2.2B), which indicated that the A30P mutant forms fibrils 

least readily and aggregation production is highest for E46K. 

 CD spectra for 50 μM WT αS solutions that were incubated for two weeks at 

room temperature (Figure 2.10A) demonstrate that mature TFE fibrils are also rich in 

β-strand structure. The presence of such fibrils in these solutions was confirmed by 

TEM (Figure 2.10B-C). Although the fraction of TFE fibrils was not measured for 

these samples, the data in Figure 2.2B, obtained for solutions incubated under identical 

conditions, indicates that a significant fraction of protein is incorporated into large 

aggregates. The ellipticity at 216 nm for samples containing TFE fibrils is within 

experimental error of the values measured for the rapidly formed oligomers, indicating 

that early- and late- aggregates contain similar secondary structure. The spectra are 

also similar to those obtained for typical amyloid fibrils (Ahmad, et al., 2006; El-

Agnaf, et al., 1998; Serpell, et al., 2000). 
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Table 2.3. Rate constants for the oligomerization reactions shown in 
Figure 2.9B. Data is shown for 2 μM samples, unless otherwise indicated. 
See Appendix A for details of the fitting procedure. 

 
 
 
 
 
 
 
 
 
 
 
 

 103 x kapp (1/sec) 
WT 2.6 ± 0.3 
A30P  0.53 ± 0.10 
A30P (5 μM) 3.5 ± 0.4 
A53T 3.1 ± 0.3 
E46K 6.7 ± 1.2 
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Figure 2.10. Solutions containing TFE fibrils possess β-sheet structure. 
(A) CD spectra of fibril-containing samples. 50 μM αS was incubated at 
room temperature for 14 days in solutions containing 10% (solid line) and 
15% (dashed line) TFE prior to measurement. (B) TEM micrographs of 
the 10% TFE sample from A (scale bar = 200 nm). (C) Same as B, but for 
the 15% TFE sample. 
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2.3. Discussion 

 We have investigated TFE-induced conformational changes, oligomerization, 

and fibril production for WT human αS, C-terminally truncated αS, and three PD-

associated αS variants. Our results demonstrate that the TFE-induced folding 

landscapes for the mutants are nearly identical to WT, but the kinetics of the 

oligomerization process vary among the disease-associated mutants. An intermediate 

conformational state, which has a far-UV CD spectrum that is consistent with the 

presence of significant α-helical structure, is highly populated at TFE concentrations 

where TFE fibril production is maximized. By examining the αS102 mutant, we verify 

that TFE-induced conformational changes involve the N terminal portion of the 

protein.  

 TFE induces short, flexible fibrils: CD data (Figure 2.10A) indicate that TFE-

induced fibrils are β-sheet-rich, suggesting that they may represent a type of amyloid 

aggregate. TFE fibrils also exhibit a degree of thioflavin-T binding (Figure 2.1E). 

Nonetheless, our current data do not suffice to unequivocally establish whether these 

fibrils are a form of amyloid; only X-ray or electron diffraction experiments will be 

able to determine whether these species contain “cross-β” structure.  

 When imaged via TEM, TFE-induced fibrils have a flexible helical 

ultrastructure (Figure 2.1, Figure 2.2, Figure 2.3). As far as we know, these structures 

have not been extensively studied by TEM, although we found some images of 

possibly similar aggregates in the literature (Broersen, et al., 2006; Crowther, et al., 

1998; Giehm, et al., 2010). Crowther, et al. (Crowther, et al., 1998) show micrographs 

of both typical amyloid fibrils and irregular fibrillar structures, which appear similar to 

TFE-induced species, for 1-120 C-terminally truncated αS and also report “small 

irregular wavey assemblies” formed from 1-130 truncation. In addition, Broersen, et 

al. (Broersen, et al., 2006) report images of aggregates induced by incubation of αS in 
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the presence of the polyunsaturated acids arachidonic acid and docosahexaenoic acid 

which are qualitatively similar to TFE fibrils. Also, a study was published which 

described detergent-induced formation of species that may be similar to our TFE 

fibrils (Giehm, et al., 2010). Although more research must be done to evaluate whether 

species produced by truncation mutations and/or lipid and detergent interactions are 

indeed related to TFE fibrils, the potential similarities with previously observed 

structures are particularly important in light of the hypothesis that intermediate or 

alternative oligomeric or fibrillar species are responsible for PD toxicity (Conway, et 

al., 2000), recent findings that C-terminal truncation of αS can led to neuron loss and 

increased susceptibility to stress in transgenic mouse models (Michell, et al., 2007; 

Wakamatsu, et al., 2008), and multiple lines of evidence that potentially link lipid 

interactions and metabolism with PD etiology (Beyer, 2007). 

 The “ring-like” structures we observed via TEM (Figure 2.1C and Figure 

2.32B-C) may also be similar to annular structures imaged using atomic force 

microscopy (AFM) (Conway, et al., 2000; Pountney, et al., 2004). However, 

difficulties in comparing widths measured via TEM to heights measured via AFM 

prevent us from definitively verifying that these structures are comparable. 

 TFE induces a partially helical, monomeric intermediate: In contrast to 

previous studies by Li, et al (Li, et al., 2002) and Munishkina, et al. (Munishkina, et 

al., 2003), we investigated TFE-induced structural transitions in monomeric αS by 

examining relatively dilute solutions (0.5 μM compared to ~14 μM in Li et al. and ~35 

μM in Munishkina, et al.). The higher concentrations used in these previous studies 

led to the conclusion that TFE stabilized an intermediate containing primarily β-sheet 

structure. Here, we demonstrate instead that the monomer protein samples three 

distinct conformations: an unfolded state, a partially structured intermediate, and a 

well-folded α-helical conformer (Figure 2.4, Figure 2.5, Figure 2.7). Increased 
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population of the partially α-helical intermediate state is correlated with formation of 

the β-sheet-rich, short flexible fibrils (Figure 2.8B). It is possible that changes in 

solution conditions may favor both structure formation and aggregation via separate 

mechanisms. However, because TFE fibril growth is strongly correlated with 

increasing population of the intermediate state for all WT αS variants, the simplest 

explanation implied by our data is that the intermediate conformer is on-pathway to 

TFE fibril formation, although such an assertion is very difficult to prove (Abedini and 

Raleigh, 2009b). 

 The TFE-induced structural intermediate we observe can be compared to 

previously reported αS folding intermediates. Qualitatively, our low-TFE CD spectra 

are similar to data reported for WT αS at high temperature and low pH (Uversky, et 

al., 2001). However, recent NMR studies show that decreased pH in fact leads to an 

increase in helical structure in the C-terminal tail of αS (McClendon, et al., 2009), 

while our data for the αS102 truncation mutant show that TFE-induced structural 

changes involve the N terminal portion of αS. Thus, the TFE and low pH 

intermediates differ in regards to the location of secondary structure. A more detailed 

comparison with the high temperature state awaits further characterizations. 

 Interestingly, far-UV CD spectra of detergent micelle bound and membrane-

bound αS show a high degree of α-helical structure and appear similar to our F state 

curves (Bussell and Eliezer, 2003; Chandra, et al., 2003). The number of residues 

predicted to be in a helical conformation based on our CD data here (~85) is in good 

agreement with the number of residues that are known to be helical in the micelle- and 

membrane-bound structures (Bussell and Eliezer, 2003; Chandra, et al., 2003; 

Georgieva, et al., 2008; Ulmer, et al., 2005). In addition, our results for the C terminal 

truncation mutant show that TFE-induced structural changes involve the N terminal 

portion of the αS, which is consistent with data for membrane- and micelle- bound 
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conformations. If the TFE-induced F state does correspond to the highly helical 

membrane-bound state, then the partially helical I state, which we show is on the 

folding pathway to the F state, may also have a corresponding membrane-associated 

intermediate that could potentially be involved in membrane-induced aggregation in 

vivo. Indeed, evidence exists for such an intermediate; both ESR studies and recent 

NMR studies have reported observations of partially helical membrane-bound states of 

αS (Bodner, et al., 2009; Drescher, et al., 2008). Furthermore, the N terminus of αS 

contains a region with an elevated intrinsic helical propensity, which was proposed to 

nucleate helix formation upon membrane-binding by the protein (Bussell and Eliezer, 

2003; Eliezer, et al., 2001). The length of this region was estimated to be around 32 

residues (Eliezer, et al., 2001), which is fairly similar to our estimate of the number of 

helical residues (~24) in the TFE-induced I state, suggesting that the I state may be 

comprised of helical structure in this region. The slight drop in helical content of the 

intermediate for the A30P mutant (Table 2.2), which falls within this region, provides 

further support for this idea, although direct correspondence between membrane-

associated conformations and the TFE-induced I state cannot be established based on 

our current data.  

 Although it was previously known that membranes or detergents can facilitate 

the aggregation of αS (Ferreon and Deniz, 2007; Necula, et al., 2003), and the protein 

is highly helical when bound to membranes or detergents as a monomer (Bussell and 

Eliezer, 2003; Chandra, et al., 2003; Eliezer, et al., 2001; Ferreon and Deniz, 2007; 

Georgieva, et al., 2008; Ulmer, et al., 2005), it has never previously been shown, to the 

best of our knowledge, that any helical αS conformations are directly involved in 

inducing the aggregation of this protein. Ahmad et al. (Ahmad, et al., 2006) found that 

sub-micellar detergent concentrations induced a partially helical ensemble of αS that 

was correlated with fibril elongation. However, a discrete helical intermediate was not 
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identified and their conditions could not support fibril formation in the absence of 

seeding. Past studies of TFE effects on αS structure, conducted at higher [αS], 

identified β-sheet-rich intermediates, likely corresponding to the rapidly formed 

oligomers that we observe, which obscured details of the helical I state conformation 

(Li, et al., 2002; Munishkina, et al., 2003). 

 The association of α-helical intermediates with amyloid fibril formation has 

been documented for a number of different amyloidogenic proteins or peptides, 

including the Aβ peptide and IAPP (Abedini and Raleigh, 2009a; Abedini and 

Raleigh, 2009b; Booth, et al., 1997; Fezoui and Teplow, 2002; Williamson, et al., 

2009; Yamaguchi, et al., 2006; Zerovnik, et al., 2007). Our demonstration that TFE 

induces a significantly helical intermediate conformation of αS, which is strongly 

associated with fibril formation, adds αS to the list of proteins that aggregate via 

helical intermediates, at least under some conditions. The mechanism by which β-

sheet-rich aggregates form from α-helical intermediates is currently unclear. One 

possibility involves helix-helix interactions leading to alignment of unstructured 

regions adjacent to helical segments, enabling oligomerization followed by β-sheet 

formation and propagation (Abedini and Raleigh, 2009b).  

 PD mutations alter TFE-induced aggregation kinetics, but not monomeric 

structural transitions: We find that the TFE-induced folding landscapes for the A30P, 

A53T, and E46K mutants are nearly identical to WT αS, which is in accordance with 

previous research that showed that the pH- and temperature- induced secondary 

structural conformations are similar for A30P, A53T and WT αS (Li, et al., 2001). All 

three mutants have also been observed to undergo similar structural transitions to WT 

αS in the presence of detergents or lipids (Bussell and Eliezer, 2004; Fredenburg, et 

al., 2007; Ulmer and Bax, 2005), although the A30P mutation may lead to a slight 

local reduction in helical structure. Thus, secondary structural transitions appear to be 
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largely similar among αS mutants. In contrast, oligomerization and fibrillization 

behavior vary significantly between PD-linked mutants, with amyloid fibril formation 

rates observed in the order A30P<WT<A53T/E46K (Conway, et al., 2000; 

Fredenburg, et al., 2007). Likewise, we find that TFE-induced oligomerization rates 

vary significantly among the αS variants despite their nearly identical monomer 

secondary structure landscapes. Interestingly, the rates of TFE-induced fibril 

formation (A30P<WT<A53T<E46K) follow the same order as that observed for 

amyloid formation in the absence of TFE, suggesting that similar properties may be 

controlling aggregation kinetics in both cases. 

 Whatever the effects of the PD mutations may be, they do not appear to 

significantly alter the TFE-induced conversion of the disordered free state to the TFE-

induced intermediate. Thus, their effects may become important subsequent to this 

step, either during the initial formation of oligomeric species from the monomeric 

intermediate or during subsequent interconversions amongst oligomers and fibrillar 

species. An additional potential effect of disease-linked mutations may be to favor 

some aggregation pathways over others, rather than to accelerate a specific step during 

a single pathway. The existence of multiple types of fibrillar aggregates is clearly 

demonstrated both here and in previous studies (Crowther, et al., 1998; El-Agnaf, et 

al., 1998; Giehm, et al., 2010; Serpell, et al., 2000; Vilar, et al., 2008) but their 

relationship to each other, the degree of overlap in their formation pathways, and the 

influence of mutations on which type of aggregate is formed remain unclear at present 

and will require further investigation. In particular, it is unclear whether the TFE-

induced αS intermediate is on-pathway to the formation of classical amyloid fibrils, in 

addition to TFE fibrils. 
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2.4. Conclusion 

 We have shown that intermediate concentrations of the fluorinated alcohol 

TFE led to rapid aggregation of the PD-linked protein αS into short fibrillar β-sheet 

aggregates. TFE-induced fibril formation is most efficient under conditions that cause 

residues in the N terminal portion of monomeric αS to populate a partially helical 

intermediate state, which is therefore likely to be on the pathway to TFE fibril 

formation. To our knowledge, this report is the best evidence to date for an αS 

aggregation pathway that involves a helical intermediate, and adds to indications that 

helical intermediates may be generally important in amyloid aggregation pathways. 

We propose that the TFE-induced αS intermediate may resemble membrane-

associated conformations; therefore the TFE-induced aggregation pathway may be 

related to pathways of membrane-induced aggregation, which could be significant in 

vivo, where αS is known to bind to synaptic vesicles and possibly other membrane 

surfaces (Beyer, 2007). We demonstrate that the formation of the TFE-induced 

intermediate is not significantly affected by any of the three PD-linked αS mutations, 

but that all three mutations do influence the overall rate of TFE fibril formation, 

indicating that the mutations exert their effects subsequent to the formation of the 

intermediate state. TFE-induced fibrils are ultrastructurally similar to species detected 

for αS 1-120 and 1-130 truncation mutants (Crowther, et al., 1998), and may be 

related to aggregates produced by interactions between αS and lipids and detergents 

(Broersen, et al., 2006; Giehm, et al., 2010), potentially indicating that TFE fibrils 

may be relevant for understanding PD progression. 

 

2.5. Materials and Methods 

 All solutions were buffered with 10 mM pH 7.5 sodium phosphate. 

Recombinant WT and mutant αS were produced and purified as previously described 
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(Bussell and Eliezer, 2001). Lyophilized αS variants were solubilized by dissolving at 

1-2 mg/mL in buffer, followed by filtration through a 100 kDa (Microcon YM-100) 

centrifugal spin filter (Millipore). 

 Fibrils were grown by incubating 50 μM of αS variants for 14 days in 

solutions containing 0-15% TFE. Sodium azide (0.02% w/v) was added to the 

solutions as a preservative. After incubation, samples were fractionated via 

centrifugation at 16,000xg for 1h. UV absorbance at 275 nm of a ~10 fold dilution of 

the supernatant fraction was used to quantify the amount of soluble protein (which 

may include small oligomers) present in the samples after aggregation. The aggregated 

fraction was diluted to into a buffered, 20 μM thioflavin-T solution. Fluorescence 

emission spectra were measured using an excitation wavelength of 460 nm. Signals 

were compared by integrating the emission spectra from 475-485 nm, subtracting the 

baseline (20 μM thioflavin-T in buffer) emission from the sample value, and 

normalizing to the baseline, resulting in the “enhancement factor” by which the 

sample peak intensity exceeds the baseline value.  

 Far-UV CD data were obtained using a 1 nm bandwidth. Buffer-only baseline 

samples were measured and subtracted from all spectra and a noise-reducing option in 

the instrument software was used to smooth the data. Scan speeds of 1-2 seconds per 

nanometer were used (see Appendix A). 

 EM images were obtained with negative-staining TEM. A 5-10 μL droplet of a 

sample solution was placed onto a freshly glow-discharged, carbon-coated formvar, 

copper grid. After two min, the sample solution was wicked off with filter paper, the 

grid rinsed with deionized water, and a 5 μL droplet of 2% (w/v) phosphotungstic acid 

stain (pH 7) placed on the grid. After one min, the staining solution was wicked away 

and the grid air dried.  
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CHAPTER 3 

SECONDARY STRUCTURE CHANGES INDUCED BY PH, TEMPERATURE, 

AND TRIFLUOROETHANOL SUGGEST THAT DESOLVATION PROMOTES 

ALPHA-SYNUCLEIN AGGREGATION* 

 

3.1. Introduction 

 Parkinson’s disease is characterized by dense Lewy body inclusions, which are 

primarily comprised of amyloid fibrils formed from the protein α-synuclein (αS). 

However, recent evidence suggests that amyloid fibrils may be protective, while 

smaller oligomers or alternate aggregate structures are responsible for dopaminergic 

cell death (Brown, 2010; Conway, et al., 2000). Solution conditions, including pH, 

temperature, or the presence of detergents, lipids, or alcohols, affect both the 

conformation of monomeric αS and the amount and type of aggregates that are 

produced; these various aggregate species may have disparate in vivo toxicities 

(Anderson, et al., 2010; Crowther, et al., 1998; El-Agnaf, et al., 1998; Giehm, et al., 

2010; Serpell, et al., 2000; Vilar, et al., 2008). Observations of secondary structural 

changes for αS in aggregation-promoting solution conditions led to the hypothesis that 

“folding intermediates”, or specific partially structured αS monomer conformations, 

initiate aggregation reactions (Uversky, et al., 2001). 

 We recently showed that the N terminus of αS adopts a partially helical 

conformation in the presence of moderate amounts of the fluorinated alcohol 2,2,2-

trifluorethanol (TFE), and that population of this intermediate state is correlated with 

the formation of annular and fibrillar aggregates (Anderson, et al., 2010). Partially 

helical conformations are also detected when αS is incubated in the presence of 

                                                 
* This material will be submitted to J. Am. Chem. Soc. by V. L. Anderson, W. W. 
Webb, and D. Eliezer 
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detergents (Ahmad, et al., 2006), and flexible aggregates that may be similar to TFE-

induced species can be grown such solutions (Giehm, et al., 2010). However, partially 

structured αS conformations observed in low-pH and high-temperature conditions 

have been hypothesized to contain β-sheet, rather than helical regions (Uversky, et al., 

2001), although recent nuclear magnetic resonance (NMR) studies have indicated that 

reduced pH conditions lead to local collapse in the C-terminal domain of αS (Cho, et 

al., 2009; McClendon, et al., 2009; Wu, et al., 2009). Therefore, αS may adopt 

multiple conformations, which could potentially involve structure formation in 

disparate regions of the protein. Furthermore, the causal relationship between a 

particular “intermediate” state and an aggregation pathway is not fully established – 

solution conditions that promote aggregation may produce coincidental changes in 

protein structure, or a conformational state may be a true intermediate in a 

fibrillization pathway. 

 Here, we use circular dichroism (CD) spectroscopy to investigate the combined 

effects of various solution conditions on αS variant secondary structure. Our results 

suggest that loss of protective interactions, rather than the stabilization of specific 

conformational states, likely causes aggregation enhancement in TFE. In particular, 

we propose that low concentrations of TFE cause protein dehydration, while 

preferential solvation of protein molecules by TFE stabilizes α-helical structure at 

high [TFE]. Thus, the intermediate (~15% TFE) conformation is a desolvated state in 

which both protein-TFE and protein-water interactions are minimized. 

 Our evidence for desolvation includes the qualitative similarities between αS 

conformational changes induced by heating and by low [TFE], which are consistent 

with loss of polyproline-II (PPII) secondary structure as a result of decreased water-

protein hydrogen bonding (Kelly, et al., 2001; Shi, et al., 2006). In addition, the CD 

spectra from αS102 solutions containing ~15% TFE, where the TFE-induced 
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intermediate is highly populated (Anderson, et al., 2010), appear to be invariant with 

respect to temperature. This suggests that the TFE-induced intermediate conformation 

is similar to the high-temperature state, in which enthalpic protein-solvent interactions 

are likely to be weakened (Kauzmann and Eyring, 1941; Kelly, et al., 2001). 

Moreover, we observe a distinct crossover at ~15% TFE, below which the CD spectra 

feature a negative peak near 200 nm that diminishes with increased temperature, and 

above which the spectra reflect α-helical structure that is disrupted by heating. 

Therefore, the local environment near αS molecules seems to be “water-like” at low 

TFE and “TFE-like” at high TFE, and protein-solvent interactions may be reduced at 

intermediate TFE concentrations. The aggregation enhancement near 15% TFE is also 

consistent with removal of desolvation barriers to fibrillization. 

 In addition, by comparing wild-type (WT) human αS and its 1-102 truncation 

mutant (αS102), we show that previously identified conformational intermediates 

actually reflect at least two distinct types of structure. Secondary structural changes 

observed at low pH require the C terminus of αS, while temperature- and TFE-

dependent changes in αS secondary structure involve the N terminal portion of the 

protein. 

 Although TFE- and temperature-induced secondary structure changes are 

similar for full-length αS and αS102, the morphology of fibrils produced at elevated 

temperatures is affected by the presence of the C terminus. Reduced pH conditions 

also increase the helicity of the protein at high TFE. Therefore, a combination of 

electrostatic effects, solvent properties, and protein sequence contribute to the 

conformational rearrangements and aggregation behavior of αS. 

 Hydration is a protective factor that helps to stabilize disordered proteins 

(Uversky, et al., 2000). Sequence elements that enhance protein-backbone hydrogen 

bonding may have been selected by evolution in order to prevent abnormal 
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aggregation (Rauscher, et al., 2006). We find that the addition of small amounts 

(<~15%) of TFE to aqueous solution reduces hydration barriers to aggregation, but 

electrostatic repulsion limits association of the desolvated state. Therefore, αS 

aggregation in TFE likely involves overcoming multiple protective interactions, rather 

than the formation of specific aggregation-promoting structural elements. 

 

3.2. Results 

 Effect of pH on WT αS and αS102 secondary structure: We measured CD 

spectra at various pH for WT αS and αS102 at 25 °C (Figure 3.1A-B). WT αS 

experiences a modest but definite drop in its mean residue ellipticity at 222 nm ([θ]222) 

at low pH, while changes in the αS102 spectra are below the noise in the 

measurement. Therefore, the C terminus of αS is necessary for the pH-induced 

secondary structural transition. 

 A fit of the curves in Figure 3.1C to a sigmoidal function results in transition 

midpoints of pH 5.7 ± 0.1 for WT αS and 5.6 ± 0.3 for αS102, although the fit is poor 

for the truncation mutant. The WT αS transition appears sharper and occurs at slightly 

higher pH than the titration curves reported by of Uversky, et al. (Uversky, et al., 

2001), which may be a result of differences in ionic strength or other solution 

conditions. We observe that the magnitude of the pH-induced change in the WT αS 

CD spectrum is modest (~0.7 x 103 deg cm2dmol-1 at 222 nm), which similar to the 

shift observed by Uversky, et al., but contrasts with the much larger changes in signal 

induced by TFE or heating (Anderson, et al., 2010; Munishkina, et al., 2003; Uversky, 

et al., 2001). 

 Temperature dependence of the WT αS and αS102 CD spectra: Figure 3.2 

shows variable-temperature (T) CD curves for WT αS and αS102 at pH 7.5 and pH  
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Figure 3.1. pH-induced changes in the secondary structure of αS variants. 
(A) CD spectra for WT αS between pH 2.5 and pH 8.6. (B) Spectra for 
αS102 for pH 2.7 to 8.3. (C) The ellipticity at 222 nm vs. pH for the 
spectra from A and B. The solid lines show sigmoidal fits to the data. The 
error bars show the standard deviation of three measurements of the same 
sample. 
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Figure 3.2. Variable-temperature CD measurements of 0.5 μM WT αS 
and αS102 at (A-B) pH 2.4 and (D-E) pH 7.5. Spectra were measured at 2, 
10, 15, 20, 25, 30, 35, 40, 45, 50, 60, and 70 °C. The arrows show the 
general direction of increasing temperature. (C) and (F) show a 
comparison of the ellipticity at 222 nm for WT αS vs. αS102 at fixed pH, 
while (G) and (H) compare the values at pH 7.5 vs. pH 2.4 for each αS 
variant. The error bars reflect signal fluctuations and temperature-
dependent drifts in the buffer baselines (see Appendix B).  
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2.4. We verified that temperature-dependent changes in αS structure were reversible 

by measuring the spectra at T=2 °C before and after heating (Figure B.1A-D), and we 

assume that the proteins remain monomeric in these dilute (0.5 μM) solutions when no 

significant hysteresis is observed (see Appendix B). At pH 7.5, the temperature-

induced changes in the CD signal were similar for WT αS and αS102, and therefore 

pH-induced structural changes in αS differ from temperature-induced changes both in 

the magnitude of the ellipticity shift and in the region of the protein involved. 

 Both αS102 and WT αS undergo similar temperature-induced structural 

changes at pH 2.4. At both pH values, the spectra for both variants share isodichroics 

near 207 nm. However, for WT αS, [θ]222 appears to be slightly larger negative at pH 

2.4 than at pH 7.5 over the entire temperature range. At 25 °C, the difference in [θ]222 

between pH 7.5 and pH 2.4 is 0.63 ± 0.45 x 103 deg cm2dmol-1, which is consistent 

with the pH-dependent spectral shift from Figure 3.1C, although the measurement 

uncertainty is large in the variable-temperature samples due to baseline drift during 

prolonged incubations (see also Appendix B). For αS102, the ellipticity appears 

similar at pH 7.5 and pH 2.4 over the entire temperature range, within the resolution of 

our measurements.  

 Temperature dependence of the CD spectra of αS and αS102 at 60% TFE: We 

also examined the variable-temperature spectra for αS102 and WT αS incubated in 

the presence of 60% TFE at pH 2.4 and pH 7.5 (Figure 3.3). Again, we verified that 

the temperature-dependent changes in αS variant structures were reversible (Figure 

B.1E-H). The samples appear highly α-helical under these conditions, and 

isodichroics point for the variable-temperature curves are observed at ~204 nm. The 

magnitude of the CD signal is larger for αS102 than for WT αS, which is consistent 

with TFE-induced helical structure involving the N-terminal portion of the protein 

(Anderson, et al., 2010). 
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Figure 3.3. Variable-temperature CD measurements of 0.5 μM WT αS 
and αS102 in the presence of 60% TFE at (A-B) pH 2.4 and (D-E) pH 7.5. 
Spectra were measured at 2, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, and 70 
°C. The arrows show the general direction of increasing temperature. (C) 
and (F) show a comparison of the ellipticity at 222 nm for WT αS vs. 
αS102 at fixed pH, while (G) and (H) compare the values at pH 7.5 vs. pH 
2.4 for each αS variant. The error bars reflect signal fluctuations and 
temperature-dependent drifts in the buffer baselines (see Appendix B). 
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 Interestingly, [θ]222 is slightly larger negative at pH 2.4 than at pH 7.5 for both 

αS102 and WT αS at 60% TFE. The ellipticity difference for WT αS at 25 °C is 1.41 

± 0.93 x 103 deg cm2dmol-1, while for αS102, it is 3.43 ± 1.24 x 103 deg cm2dmol-1. 

 Temperature, TFE and pH dependence of the CD spectra of A30P αS: We 

repeated the variable-temperature CD measurements for the A30P variant at pH 7.5 

and pH 2.4 and 0% and 60% TFE (Figure B.3). The curves were identical to WT αS, 

within the uncertainty of our measurements.  

 Helicity estimates for αS variants: Using the method of Luo and Baldwin (Luo 

and Baldwin, 1997), we estimate the ensemble-averaged number of residues per 

protein molecule adopting a helical conformation at 60% TFE (Table 3.1). Notably, 

the number of helical residues is similar for αS102 and full-length αS, as is expected 

if helix formation involves the N terminal portion of the protein only. Moreover, ~10 

additional residues are predicted to adopt a helical conformation at low pH compared 

to neutral pH for all the mutants. 

 Effects of temperature on the oligomerization state of αS102 for 0-60% TFE: 

We previously found that αS variants are aggregation-prone at intermediate [TFE] 

(Anderson, et al., 2010), and oligomerization may be accelerated at high temperatures. 

Therefore, we use the NRMSD parameter (Appendix A) to quantify changes in the CD 

spectra that occur during heating. Figure 3.4 shows NRMSD values for CD spectra 

that were measured before and after 0.5 μM αS102 samples were heated to a 

maximum temperature Th for 20 minutes. We observe large spectral changes at pH 7.5 

for ~10-30% TFE, but low and high [TFE], as well as lower temperatures and 

decreased solution pH, reduce the observed hysteresis. Therefore, we use Figure 3.4 as 

a starting point for finding conditions where αS102 probably remains monomeric, but 

we must quantify hysteresis for each sample individually because details of incubation 

time and heating and cooling rates impact oligomerization. 
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Table 3.1. The number of residues in the αS variants that adopt a helical 
conformation in the presence of 60% TFE, as estimated by the method of 
Luo and Baldwin using their 25 °C, 50% TFE parameters (Luo and 
Baldwin, 1997). The difference, Δ, between the pH 2.4 and pH 7.5 
estimates is also calculated. 
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Figure 3.4. Spectral changes for 0.5 μM αS102 that occurred during a 
heating-cooling cycle (2 °C→ Th →2 °C). The CD curves were measured 
at 2 °C before and after a 20 minute incubation at Th, and the differences 
between the initial and final spectra are quantified using the NRMSD 
parameter. See Figure B.2 for the raw spectra used to calculate the 
NRMSD values. 
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 Effects of temperature on the secondary structure of monomeric αS102 in the 

presence of TFE at pH 7.5: Figure 3.5 shows variable-temperature CD spectra for 0.5 

μM αS102 samples in the presences of various [TFE] at pH 7.5. We quantify the 

amount of hysteresis during the measurements and verify that the NRMSD is < 0.15 

for these samples, restricting our measurements to TFE and temperature ranges where 

the samples likely remain monomeric (Figure B.1M-R). 

 Spectra for the 5% and 7% TFE samples appear qualitatively similar to the 0% 

case, featuring a negative peak near 200 nm that is reduced by heating. In contrast, the 

27-50% TFE spectra resemble the 60% TFE sample, showing α-helical structure that 

is more prominent at low temperatures. In addition, each set of curves shares an 

isodichroic point (Table 3.2A), and these isodichroics can be divided into two 

categories; at 0-7% TFE, the points are located near 207 nm and -9 x 103 deg cm2 

dmol-1, while for 27-60% TFE, they occur near 204 nm and -20 x 103 deg cm2 dmol-1. 

 In Figure 3.6A, we plot the data from Figure 3.2E, Figure 3.3E, and Figure 3.5, 

along with the 25 °C, variable-TFE lines obtained previously (Anderson, et al., 2010), 

on a transition diagram (Kuznetsova, et al., 2004). As temperature increases, the 

conformations shift toward the point of intersection of the two lines, which we 

previously associated with the TFE-induced intermediate conformation. Transition 

diagrams constructed using the WT and A30P αS data show similar behavior (Figure 

B.4). Furthermore, [θ]222 vs. T plots (Figure 3.6B) for αS102 are approximately linear, 

and the 40-60% TFE curves appear to converge at low temperature. 

 CD spectra of αS102 in ≥ 60% TFE: We previously observed that TFE-

dependent changes in the CD signal of αS appear to saturate at ~40-50% TFE 

(Anderson, et al., 2010).We verify that higher [TFE] does not lead to significant 

changes in the secondary structure of αS102 by investigating the CD spectra at 60- 

>99% TFE (Figure 3.7). In order to avoid solubility issues with buffer salts, we  
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Figure 3.5. Variable-temperature CD spectra of ~monomeric, 0.5 μM 
αS102 samples at intermediate [TFE] and pH 7.5. The arrows show the 
general direction of increasing temperature (see also Figure 3.6B). The 
spectra were obtained for (A) 5% TFE, 2– 60 °C, (B) 7% TFE, 2 – 40 °C, 
(C) 27% TFE, 2 – 25 °C, (D) 30% TFE, 2 – 60 °C, (E) 40% TFE, 2– 70 
°C, and (F) 50% TFE, 2– 70 °C. 
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Table 3.2. Variable-temperature isodichroic wavelengths (λiso in nm) and 
the CD signal at the isodichroics ([θ]iso in units of 103 deg cm2 dmol-1) for 
αS102 (A) in pH 7.5 buffer (Figure 3.2E, Figure 3.3E, Figure 3.5), (B) in 
water (Figure 3.7A-C), and (C) in pH 2.4 solutions (Figure 3.2B, Figure 
3.3B, Figure 3.8A-M). The uncertainties in [θ]iso are due to experimental 
error, and the uncertainties in the wavelength measurements result from 
the CD spectrometer bandwidth and experimental error. Isodichroics for 
WT and A30P αS spectra can be found in Table B.1. 
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Figure 3.6. Transition diagram and [θ]222 vs. T plot for the variable-
temperature, pH 7.5 αS102 CD data. (A) The transition diagram 
constructed from the data in Figure 3.2E, Figure 3.3E, and Figure 3.5 
(colored symbols, [TFE] as in the legend). The arrows show the general 
direction of increasing temperature. The lower right (upper left) solid line 
shows a linear fit of the 0%-13% (17% - 60%) TFE data from (Anderson, 
et al., 2010). (B) The ellipticity at 222 nm vs. temperature for the spectra 
in Figure 3.2E, Figure 3.3E, and Figure 3.5. The [TFE] for each symbol is 
as described in the legend in A. 
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investigate ternary water-protein-TFE solutions. These high-TFE CD spectra are 

qualitatively similar to the 27-60% curves from Figure 3.5C-G, and the 60% TFE data 

in water is nearly identical to the pH 7.5 measurements (Figure 3.7D). Furthermore, 

the locations of the isodichroic points for these samples are similar to the 40-60% 

TFE, pH 7.5 points (Table 3.2B). 

 Effects of TFE and temperature on the secondary structure of αS102 at pH 

2.4: The amount of hysteresis in αS102 secondary structure during heating and 

cooling cycles is significantly reduced at pH 2.4 compared to pH 7.5 (Figure 3.4), 

which likely reflects reduced oligomerization due to increased electrostatic repulsion 

between monomers. Therefore, we examine pH 2.4 solutions in order to obtain 

variable-temperature CD data at intermediate [TFE] (Figure 3.8A-M). We again 

restrict our measurements to temperature ranges for which the NRMSD of the spectra 

before vs. after heating is <= 0.15 (Figure B.1S-EE). The curves in Figure 3.8A-M are 

qualitatively similar to those measured at pH 7.5 (Figure 3.5). However, [θ]222 is 

significantly larger negative at pH 2.4 than at pH 7.5 for the 30% TFE sample, 

although the signals are similar at both pH values for the 5% and 7% TFE samples 

(Figure 3.8N). 

 The transition diagram constructed from the spectra from Figure 3.2B, Figure 

3.3B, and Figure 3.8A-M is similar to the constant-temperature lines from (Anderson, 

et al., 2010), although the points are slightly offset, particularly at low [TFE] (Figure 

3.9A). The differences are mostly due to reduced [θ]200 for pH 2.4 samples compared 

to pH 7.5 samples. It is unclear whether this difference is due to increased signal from 

the pH 7.5 baseline buffer at low wavelengths or whether it reflects a slight pH-

dependent shift in the disordered conformation. The pH 2.4 transition diagram points 

also appear to be slightly more collinear than those for the pH 7.5 samples (Figure 

3.6A). However, the existence of two distinct isodichroics at different wavelengths  
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Figure 3.7. CD measurements in TFE-water-protein ternary systems. (A) 
Far-UV CD spectra for 0.5 μM αS102 in 60% TFE taken from -10 °C 
(largest negative signal at 222 nm) to 70 °C (smallest negative signal at 
222 nm). The arrow shows the general direction of increasing temperature. 
(B) Same as A, except data was measured for 80% TFE from -20 °C to 70 
°C. (C) Same as A, except data was measured for >99 % TFE from -15 °C 
to 70 °C. (D) The ellipticity at 222 nm vs. temperature for the samples in 
A-C (white symbols), along with the 60% TFE, pH 7.5 data from Figure 
3.3E (black circles). 
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Figure 3.8. (A-M) Variable-temperature CD spectra for ~monomeric, 0.5 
μM αS102 samples at intermediate [TFE] and pH 2.4. The arrows show 
the general direction of increasing temperature when trends are apparent 
(see also Figure 3.9B). The spectra were obtained for (A) 5% TFE, 2 – 70 
°C, (B) 7% TFE, 2 – 50 °C, (C) 10% TFE, 2 – 25 °C, (D) 12% TFE, 2 – 
25 °C, (E) 14% TFE, 2 – 25 °C, (F) 15% TFE, 2 – 25 °C, (G) 16% TFE, 2 
– 25 °C, (H) 17% TFE, 2 – 40 °C, (I) 18% TFE, 2 – 40 °C, (J) 20% TFE, 2 
– 50 °C, (K) 22% TFE, 2 – 60 °C, (L) 25% TFE, 2 – 70 °C, and (M) 30% 
TFE, 2 – 70 °C. (N) Comparison of the ellipticity at 222 nm for these 
samples (black circles) with data obtained at pH 7.5 (white triangles, see 
also Figure 3.6B). 
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(Table 3.2C), along with the qualitative differences in the behavior of the high- and 

low-TFE samples, confirms that the protein is sampling at least three conformations. 

 Figure 3.9B shows [θ]222 vs. T curves for the pH 2.4 spectra. The temperature-

dependent behavior at low (< 10%) and high (> 20 %) TFE is similar to the pH 7.5 

samples (Figure 3.6B). However, near 10-15% TFE, the signals changes very little 

with temperature, and at 17-20% TFE, the curves are non-monotonic.  

 When plotted as a function of [TFE], the [θ]222 curves appear sigmoidal (Figure 

3.9C). However, the data for all temperatures appear to overlap or approach similar 

values in the ~12-16% TFE range. In addition, a comparison of the plots for pH 2.4 

samples with the pH 7.5 data (Figure 3.9D) reveals that the curves are similar at low 

TFE, but diverge above ~20% TFE. However, when the data is rescaled so that the 

maximum and minimum values coincide (Figure 3.9D inset), the curves are similar at 

both pH values. 

 CD spectra of αS102 samples undergoing oligomerization: We now relax the 

requirement that CD spectral changes induced by heating should be irreversible and 

examine pH 7.5, intermediate [TFE] samples from 2 °C to 70 °C (Figure 3.10). Near 

20% TFE, the high-temperature curves possess the single minima near 216 nm that is 

characteristic of β-sheet secondary structure. The insets in Figure 3.10 show that 

significant hysteresis (NRMSD > 0.15) occurs for these samples, and the final 2 °C 

spectra for the 17 and 20% samples also have a shape that is characteristic of partial β-

sheet formation. These observations are consistent with heating leading to the 

production of β-sheet-rich oligomers or aggregates. 

 The transition diagram for these samples (Figure 3.11A) differs significantly 

from the constant-temperature, variable-TFE data. The region of the diagram that is 

associated with the oligomeric conformation appears to occur somewhere to the upper  
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Figure 3.9. Transition diagram and [θ]222 plots of the variable-
temperature, pH 2.4 CD data for αS102. (A) The transition diagram 
constructed from the pH 2.4 data in Figure 3.2B, Figure 3.3B, and Figure 
3.8A-M (colored symbols, [TFE] as in the legend). The arrows show the 
general direction of increasing temperature. The lower right (upper left) 
solid line shows a linear fit of the 0%-13% (17% - 60%) TFE data from 
(Anderson, et al., 2010). (B) The ellipticity at 222 nm vs. temperature for 
these samples. The [TFE] for each symbol is as described in the legend in 
A. (C) The ellipticity at 222 nm vs. [TFE] for these samples. The 
temperature (in °C) is noted in the legend. (D) A comparison of the 25 °C 
ellipticity as a function of TFE concentration for the pH 2.4 data (black 
circles), the pH 7.5 data from (Anderson, et al., 2010) (white triangles), 
and the pH 7.5 data from Figure 3.2E, Figure 3.3E, and Figure 3.5 (gray 
squares). The inset shows the main plot curves normalized by subtracting 
the lowest-magnitude point and dividing by the absolute value of the 
ellipticity of the 60% TFE sample. The inset x-axis units are the same as 
the main plot. 
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Figure 3.10. Variable-temperature CD spectra of 0.5 μM αS102 at pH 7.5 
and 10-25% TFE. Spectra are measured for 2 °C to 70 °C and the arrows 
show the general direction of increasing temperature (see also Figure 
3.11B). The insets show the spectra, and their NRMSDs, taken at 2 °C 
before (solid line) and after (dashed line) the heating cycle. The inset axis 
units are the same as those for the main plot. The spectra are obtained for 
(A) 10% TFE, (B) 14% TFE, (C) 17% TFE, (D) 20% TFE, and (E) 25% 
TFE. 
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Figure 3.11. Transition diagram and [θ]222 vs. T plot of the variable-
temperature CD data for pH 7.5, αS102 samples in 10-25% TFE. (A) The 
transition diagram constructed from the data in Figure 3.10A-E (colored 
symbols, [TFE] as in the legend). The lower right (upper left) solid line 
shows a linear fit of the 0%-13% (17%-60%) TFE data from (Anderson, et 
al., 2010). The arrows show the general direction of increasing 
temperature. (B) The ellipticity at 222 nm vs. temperature for the spectra 
in Figure 3.10A-G. The [TFE] for each symbol is as described in the 
legend in A. 
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right of the lines representing monomer transitions. Plots of [θ]222 as a function of 

temperature (Figure 3.11B) show the data converging onto an intermediate value at 

high temperatures. 

 Ultrastructure of αS and αS102 aggregates produced by elevated 

temperatures: Figure 3.12 shows images of WT αS and αS102 fibrils grown in pH 7.5 

buffer containing 0% and 15% TFE after three days incubation at 70 °C under 

quiescent conditions. In the absence of TFE, rigid, linear fibrils are observed for both 

WT αS and αS102 (Figure 3.12), although αS102 samples tend to contain more and 

thicker fibrils, which often clump together. For WT αS in 15% TFE, large quantities 

of “TFE fibrils” similar to those observed previously (Anderson, et al., 2010) are 

produced and no classic amyloid is observed. However, αS102 samples in 15% TFE 

tend to contain linear fibrils, while a few flexible, helical TFE fibrils are observed as a 

minor fraction. Therefore, the presence of the C terminus affects fibril morphology, 

even in identical solution conditions. 

 

3.3. Discussion 

 We have examined the effects of pH, temperature, and TFE on αS variant 

secondary structure in order to determine the relationships among conformational 

rearrangements induced by various aggregation-promoting conditions. We find that 

pH-dependent effects require the C terminal portion of αS, while TFE- and 

temperature-induced changes involve the N terminus. Aggregation is correlated with a 

crossover between TFE-like and water-like behavior with respect to temperature. We 

propose that desolvation is likely to play a role in the formation of both the TFE-

induced and the high-temperature intermediate states. 
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Figure 3.12. TEM images of aggregates grown from 50 μM WT αS (left 
column) and αS102 (right column) incubated at 70 °C for 3 days in pH 7.5 
buffer with 0% (top row) or 15% (bottom row) TFE. The scale bar is 200 
nm, and all images are shown at the same magnification. 
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 The pH-induced secondary structural transition is distinct from the TFE-

induced conformational rearrangements: By comparing WT αS to the C-terminal 

truncation mutant αS102, we show that the final 38 residues of the protein are 

required for the pH-induced secondary structural transition (Figure 3.1). Thus, our CD 

data corroborates multiple NMR studies that have shown that only the C terminus of 

WT αS undergoes structural changes at low pH (Cho, et al., 2009; McClendon, et al., 

2009; Wu, et al., 2009). In contrast, we previously found that the TFE-induced 

conformational changes involve the N terminal portion of the protein and can be 

observed for both αS102 and WT αS (Anderson, et al., 2010). 

 Temperature-induced conformational changes involve the N terminal portion 

of αS and are consistent with loss of PPII structure: Uversky et al. first observed 

temperature-induced changes in the CD signal of WT αS (Uversky, et al., 2001). We 

reproduce these results and also examine A30P αS and αS102. All the variants 

undergo nearly identical secondary structural transitions between 2 °C and 70 °C in 

the absence of TFE (Figure 3.2, Figure B.3A-B). The αS102 data shows that the 

structure of the N terminal portion of αS changes with temperature, but the similarity 

in the magnitude of the mean residue ellipticity change for αS102 and WT αS 

indicates that the C terminus of αS is probably also affected by heating (Figure 3.2C). 

 Temperature-induced changes in the CD spectra of disordered peptides were 

initially observed decades ago (Tiffany and Krimm, 1972). A decrease in the 

ellipticity near 222 nm and concurrent weakening of the ~200 nm negative peak are 

typical for multiple proteins and peptides at elevated temperatures. These changes are 

generally thought to reflect loss of PPII structure from the ensemble of disordered 

conformations (Bochicchio and Tamburro, 2002). Given the extensive literature on the 

effects of temperature on the structure of intrinsically disordered proteins and 

peptides, we feel that it is safe to assume that heating-induced structural changes in αS 
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reflect a similar phenomenon. Loss of solvent interactions at high temperatures may 

shift the equilibrium distribution of disordered conformations toward a truly “random-

coil” ensemble (Kjaergaard, et al., 2010). Alternatively, breaking protein-solvent 

hydrogen bonds may increase intramolecular hydrogen bonding, leading to the 

formation of secondary structure such as α-helices, β-sheets, or β-turns (Ma and 

Wang, 2003; Nettels, et al., 2009; Shi, et al., 2002; Yang, et al., 2003). 

 The TFE-induced intermediate may be similar to the high-temperature state: 

The CD spectral changes induced by addition of small amounts of TFE (Anderson, et 

al., 2010) are qualitatively similar to those observed during heating (Figure 3.2). In 

addition, both transitions involve the N terminal portion of the protein. With CD data 

alone, it is impossible to be certain that the protein is sampling the same structures in 

different solution conditions. However, the behavior of our spectra provides some 

indirect evidence that the TFE-induced and high-temperature intermediate 

conformations are related. 

 Inspection of our variable-temperature CD curves reveals two distinct types of 

spectra. Below ~15% TFE, the curves show the large negative peak near 200 nm that 

is characteristic of PPII structure and the spectra share isodichroic points at 207-208 

nm. Above ~15% TFE, the spectra are distinctly α-helical and isodichroic points are 

located near 204 nm. The crossover behavior is also apparent in plots of [θ]222 as a 

function of temperature (Figure 3.6B and Figure 3.9B); below ~15% TFE, these 

curves have negative slopes, while above ~22% TFE, the slopes are positive (the 

complexities in the ~17-20% data at pH 2.4 are discussed in a later section). The fact 

that crossover behavior occurs in conditions in which the TFE-induced intermediate is 

expected to be highly populated (Anderson, et al., 2010) and oligomer production 

increases (Figure 3.4) indicates that there is likely to be some relationship between the 

high-temperature and intermediate-TFE conformations. Notably, the CD spectra of 
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αS102 near 15% TFE do not change significantly with temperature, at least in the 2-

25 °C range (Figure 3.8E-G, Figure 3.9B).  

 Furthermore, plots of [θ]222 as a function of [TFE] for pH 2.4 samples (Figure 

3.9C) show that the curves approach similar values near ~15-16% TFE for all 

temperatures measured, which suggests that the TFE-induced intermediate structure 

may be invariant with respect to temperature. The [θ]222 vs. T curves (Figure 3.6B and 

Figure 3.9B) also appear to approach intermediate-TFE values at high temperatures, 

which is consistent with heating leading to increased population of a conformation 

similar to the TFE-induced intermediate. 

 The transition diagram representations of our CD data also reveal significant 

overlap between temperature- and TFE-induced transitions. At pH 7.5, points derived 

from CD spectra for various [TFE] and temperatures collapse onto the two straight 

lines that characterize the constant-temperature, TFE-induced structural transitions we 

identified previously (Figure 3.6A). Increasing the temperature causes a shift toward 

the region of the diagram that corresponds to the TFE-induced intermediate 

conformation. Transition diagrams for samples at lower pH are qualitatively similar 

(Figure 3.9A). 

 For constant-temperature (25 °C), variable-TFE samples, we previously 

detected three factors via PCA, which were readily identifiable as reflecting the 

disordered state, the intermediate conformation, and a highly α-helical state 

(Anderson, et al., 2010). However, the combined temperature- and TFE-dependent 

PCA results are more difficult to interpret. The total number of significant factors is 

estimated to be at least four for our pH 2.4 data, and at least three for our pH 7.5 data 

(Appendix B and Figure B.6A-B). Some of the variations appear to be due to 

differences in the relative magnitudes of the CD signal at 208 vs. 222 nm for the 

highly helical conformation (Appendix B and Figure B.5), which may be expected for 
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helical proteins and peptides (Wallimann, et al., 2003). Therefore, although PCA 

reveals additional components that are associated with temperature-induced spectral 

changes, it is unclear whether these changes are artifacts, reflect temperature-

dependent changes in the signals from the three previously-identified conformations, 

or represent distinct states. 

 Dehydration may cause loss of PPII structure and enhanced aggregation for 

αS in 0-15% TFE. The potential similarities between the heat- and TFE-induced αS 

structural changes suggest that a common mechanism may involved in both 

transitions. As we discussed above, characteristic heat-induced loss of PPII structure 

in the disordered states of peptides and proteins is thought to result from disruption of 

hydrogen bonds between backbone amide groups and water (Adzhubei and Sternberg, 

1993; Kelly, et al., 2001; Rucker, et al., 2003). Alcohols may also dehydrate the 

peptide backbone (Conio, et al., 1970; Kentsis and Sosnick, 1998).  

 Recent studies have implicated dehydration in protein aggregation processes. 

Zhang and Yan demonstrated aggregation coupled to dehydration for proteins in the 

presence of ethanol, and they suggested that similar effects should occur in TFE 

(Zhang and Yan, 2008). In addition, aggregation enhancement was observed when 

reveres micelles were used to limit water availability (Mukherjee, et al., 2009). 

Furthermore, structural studies of amyloid fibrils suggest that the fibril cores are 

dehydrated, implying that removal of water from the protein backbone is a necessary 

step in the aggregation reaction (Balbirnie, et al., 2001). Dehydration is thought reduce 

kinetic barriers in protein folding (Hillson, et al., 1999; Liu and Chan, 2005; 

MacCallum, et al., 2007), and similar effects could impact aggregation reactions. 

 Therefore, the similarities between temperature- and TFE-induced changes in 

the αS spectra, as well as the aggregation enhancement observed in low TFE 

solutions, are consistent with dehydration leading to protein aggregation. The PPII 
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peak in the CD spectra may be a signature of protein-water interactions, and 

weakening of this peak may reflect loss of these interactions.  

 Kentsis and Sosnick proposed that kosmotropic effects lead to protein 

dehydration in the presence of low concentrations of TFE (Kentsis and Sosnick, 

1998). In this model, TFE causes an increase in solvent structure, leading to 

destabilization of unfolded or disordered protein conformations. However, the addition 

of TFE to aqueous solutions causes a reduction in surface tension, which is 

inconsistent with typical kosmotropic “salting out” behavior (Chitra and Smith, 2002), 

although the protein-water interface may differ from the air-water interface. 

Dehydration could result from other bulk solution properties. One molecule of TFE is 

about nine times the size of a water molecule, but TFE can participate in only two 

hydrogen bonds (Van Buuren and Berendsen, 1993). Therefore, TFE-water mixtures 

have a reduced hydrogen bonding capacity compared to pure water, which might favor 

solvent-shielded conformations in which backbone exposure is reduced. Water-TFE 

interactions may also reduce water availability for protein solvation. Or, incorporation 

of a minor fraction of TFE into the protein solvation layer could cause structural 

changes in the solvation shell. 

 Although the precise nature of the molecular interactions underlying TFE-

induced dehydration is uncertain, our experimental evidence is consistent with loss of 

water-protein interactions in dilute TFE solutions. However, at high TFE, aggregation 

decreases and highly α-helical structures are observed. Additional interactions must be 

present to account for these effects.  

 Preferential solvation may explain decreased αS aggregation at high TFE: 

The CD spectra of our 40-60% TFE, pH 7.5 αS102 samples (Figure 3.3E, Figure 3.5) 

are very similar to those for 80-99% TFE (Figure 3.7). Also, plots of [θ]222 vs. [TFE] 

show saturation behavior at high TFE (Figure 3.9B-C). Therefore the protein 
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environment appears TFE-rich above ~40% TFE. Preferential solvation at this 

relatively low TFE concentration (40% v/v is less than 15 mole % TFE) is consistent 

with the report that complete TFE coating of the protein bombesin occurs in solutions 

containing 30% TFE (Diaz, et al., 2002).  

 Previous studies have suggested that preferential solvation leads to TFE-

induced protein structural changes (Fioroni, et al., 2002; Kundu and Kishore, 2004; 

Munishkina, et al., 2004; Roccatano, et al., 2002; Walgers, et al., 1998). TFE may 

partition into the protein solvation layer as a result of the free energy costs of TFE-

water mixing relative to ideal solutions (Marcus, 1988; Marcus, 2001). Moreover, TFE 

might selectively replace the highest energy water molecules in the protein solvation 

layer (Eggers, 2011), potentially resulting in local coating of helical regions (Starzyk, 

et al., 2005; Walgers, et al., 1998). Alternatively, chaotropic effects resulting from 

disruption of water structure leading to TFE repulsion from bulk solvent could lead to 

preferential solvation of proteins by TFE (Grudzielanek, et al., 2005). Once a protein 

is in a TFE-rich environment, the decreased relative permittivity (dielectric constant) 

may favor the formation of intramolecular hydrogen bonds, leading to helix induction. 

TFE-protein interactions may also affect the conformation of the TFE-coated protein 

(Rajan and Balaram, 1996). 

 Partitioning of TFE molecules into the protein solvation shell may decrease 

aggregation because more surface area is available when all protein molecules are 

monomeric (Moelbert, et al., 2004). Direct TFE-protein interactions might also help 

stabilize monomeric protein in a TFE-like environment. In addition, the solvent 

entropy contribution to oligomerization reactions, whereby feeing solvent molecules 

upon binding helps to promote association, may also be decreased as a result of the 

relatively large size of the TFE molecule and the decreased free energy difference 
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between the solvation layer and the bulk solvent for TFE-water mixtures (Eggers, 

2011).  

 The observation that fluoroalcohols, but not simple alcohols, form clusters 

when mixed with water has led researchers to hypothesize that protein-cluster 

interactions may be responsible for protein structural transitions and aggregation in 

fluoroalcohol solutions (Hong, et al., 1999; Reiersen and Rees, 2000). However, 

clustering and preferential solvation could be independent manifestations of the same 

solution properties. Gast, et al. demonstrated that the onset of cluster formation is 

~20% TFE, while protein structural changes often occur below this threshold (Gast, et 

al., 2001). Similarly, we observe αS structural changes and maximal aggregation 

below 20% TFE. Also, clustering decreases at high TFE, but αS structures remain 

constant above ~40% TFE. Therefore, αS structure does not seem to be tightly 

coupled to cluster formation. Interestingly, conditions that are conducive to 

preferential solvation also may also lead to clustering of solvent molecules. 

Thermodynamic models predict that both preferential solvation and clustering (i.e. 

preferential solvation of TFE by TFE) may occur when the excess Gibbs function of 

water-cosolvent mixtures is positive and when protein-cosolvent interactions are 

favorable (Marcus, 1988; Marcus, 2001). In addition, cluster formation could reflect 

the hydrophobicity of the cosolvent, and hydrophobic forces could drive both TFE-

TFE and TFE-protein interactions (Yamaguchi, et al., 2006). Therefore, we believe 

that it is likely that preferential αS solvation and cluster formation are coincidental 

effects resulting from the properties of TFE and TFE-water mixtures. 

 Loss of protective interactions, rather than the formation of aggregation-prone 

structural elements, may cause increased αS aggregation in solutions containing 

~15% TFE: We previously demonstrated that aggregation is correlated with increased 

population of a partially-structured αS intermediate state (Anderson, et al., 2010). 
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However, it is not clear whether this protein conformation actually promotes 

aggregation, or whether solvent properties or other interactions cause both structural 

changes and fibrillization. 

 The structure of a flexible, disordered protein may be tightly coupled to solvent 

properties. Therefore, structural changes and solvation variations are likely to occur in 

tandem, and it may be very difficult to separate causation from correlation in the 

aggregation process. However, the literature provides some guidance. We note that 

increased aggregation in intermediate [TFE] occurs for many proteins and peptides 

(Otzen, 2010). Helical structures are often detected prior to aggregation (Anderson, et 

al., 2010; Fezoui and Teplow, 2002; Liu, et al., 2004; Sen, et al., 2010; Williamson, et 

al., 2009; Zerovnik, et al., 2007). However, β-sheet-rich intermediates have also been 

observed (Lim, et al., 2010; Pallarès, et al., 2004; Srisailam, et al., 2003). Calamai, et 

al. also found that multiple partially structured intermediate conformations are 

correlated with aggregation of human muscle acylphosphatase (Calamai, et al., 2005). 

In addition, 5-6mer peptides, which should not be able to form α-helical structure, 

experience enhanced aggregation in ~7-10% TFE (Chaudhary, et al., 2009). TFE can 

even induce the formation of aggregates from globular proteins in the absence of 

significant tertiary structure disruption (Plakoutsi, et al., 2004; Soldi, et al., 2005).  

 It is possible that multiple structural intermediates promote aggregation via 

different mechanisms. For helical intermediates, helix-helix interactions are thought to 

align neighboring disordered regions, enabling their association (Abedini and Raleigh, 

2009b; Williamson, et al., 2009), while β-structured intermediates may aggregate in 

order to bury “sticky” unpaired β-sheet edges (Pallarès, et al., 2004; Srisailam, et al., 

2003). However, a simpler explanation for the diversity of fibrillogenic intermediates 

is that removal of protective interactions, rather than stabilization of specific structural 

states, leads to aggregation enhancement. 
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 As we discussed above, dehydration can cause CD spectral changes similar to 

those induced by low concentrations of TFE, while α-helical structure likely reflects 

the protein experiencing a TFE-rich local environment. Both water-protein 

interactions and preferential TFE solvation are likely to stabilize monomer protein. 

Therefore, loss of protein-solvent interactions, rather than details of protein structure, 

may responsible for aggregation enhancement near ~15% TFE. The apparent 

protective natures of PPII and/or α-helical structures could reflect their solvent 

accessibilities. 

 Water-protein interactions lead to solvation barriers in protein folding (Hillson, 

et al., 1999; Liu and Chan, 2005; MacCallum, et al., 2007). Hydration of disordered 

and denatured states could also inhibit aggregation. In fact, dehydration has been 

found to increase aggregation for proteins in the presence of simple alcohols and 

reverse micelles (Mukherjee, et al., 2009; Zhang and Yan, 2008). Protein sequences 

that favor hydration also tend to show reduced amyloid aggregation (Balbirnie, et al., 

2001). Hydration may be particularly important for natively disordered and weakly 

folded proteins, and evolution may have favored solvent-accessible sequence elements 

for such proteins (Uversky, et al., 2000).  

 Desolvation is a straightforward explanation that can account for several 

features of our data. However, we cannot definitively establish that dehydration occurs 

for our samples. Higher-resolution experiments and examination of additional αS 

mutants will be necessary to determine whether structural changes, dehydration, or 

some other interaction initiates aggregation. It also remains unclear whether 

desolvation in TFE might be related to dehydration in biological environments. The 

formation of structural intermediates may be less important than solvent interactions 

for alcohol-water mixtures, but structural intermediates may still be involved in 

aggregation in aqueous solutions and in vivo. It is possible that fluoroalcohol-induced 
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conformations have biological relevance, even if they do not directly drive 

aggregation in the solutions examined. Moreover, desolvation alone cannot account 

for all of our observations. In the following sections we discuss some unexplained 

aspects of our data. 

 Solution conditions affect the conformation of αS in the TFE-rich environment: 

The TFE concentration (~15%) at which the CD spectra of αS102 cross over from 

water-like to TFE-like behavior is similar at pH 2.4 and pH 7.5 (Figure 3.9D). In 

addition, the TFE concentration at which the structural changes level off is similar at 

both pH values. Therefore, protein charge does not seem to significantly affect the 

transfer of the protein into the TFE-rich environment. However, the protein structure 

at high TFE varies with pH (Figure 3.3H, Figure 3.8N). We observe similar pH-

dependent spectral changes for WT and A30P αS in the presence of 60% TFE (Figure 

3.3G and Figure B.3G-H). For all the αS variants, the ensemble-averaged helicity of 

the low pH samples at 60% TFE is increased by an amount equivalent to ~10 residues 

per protein molecule (Table 3.1).  

 Some studies have proposed that short- or medium-range electrostatic 

interactions impact helix formation in fluoroalcohol solutions. For example, Fan and 

Mayo show that a lysine residue interacts with a glutamate residue located 11 amino 

acids away on a model peptide, leading to decreased flexibility and a reduction in 

helical structure near neutral pH and 40% TFE (Fan and Mayo, 1995). Similarly, 

contacts between oppositely charged groups separated by 7 residues may limit helix 

formation for the Aβ40 peptide in the presence of 70% 1,1,1,3,3,3-Hexafluoro-2-

propanol (HFIP) (Valerio, et al., 2008). Short- and long- range contacts have been 

detected for αS (Bertoncini, et al., 2005; Rospigliosi, et al., 2009), and some of these 

may be responsible for observed pH-dependences. Helix stop signals and amino acid 

helix propensities also might be altered by pH in solutions containing TFE (Lawrence 



 

100 

and Johnson, 2002; Rohl, et al., 1996). Higher-resolution information will be 

necessary to identify the precise interactions responsible for the pH-dependence of the 

high TFE structures of the αS variants. 

 αS fibril morphology is not determined solely by N terminal secondary 

structure: Intermediate-TFE and high-temperature conditions appear to induce similar 

changes in the CD spectra of αS variants. We previously found that solutions 

containing ~15% TFE promote the formation of flexible “TFE fibrils” (Anderson, et 

al., 2010), but we demonstrate here that at 0% TFE and 70 °C, classical amyloid 

structures are formed (Figure 3.12). Notably, at 25 °C, classic amyloid was formed in 

solutions containing 5% TFE (Anderson, et al., 2010), so a relatively low population 

of the intermediate state may promote amyloid fibrillization. However, other 

temperature-related effects, such as strengthened hydrophobic forces, may play a role 

in aggregation pathway selection, or aggregation may be under kinetic control. In 

addition, we observe differences in fibril morphology for WT αS and αS102 in 15% 

TFE (Figure 3.12), despite the fact that their N termini undergo similar TFE-induced 

(Anderson, et al., 2010) and temperature-dependent (Figure 3.2 and Figure 3.3) 

conformational rearrangements. Thus, the precise roles of TFE and temperature in 

determining fibril morphology remain unclear. Studies that examine additional 

truncation mutants and the pH and ionic strength dependences of aggregate 

morphology could potentially be informative.  

 Some of the αS102 helix induction curves are non-monotonic: At ~17-20% 

TFE and pH 2.4, the [θ]222 vs. temperature plots are convex (Figure 3.9B). These 

curves appear similar to low-HFIP curves for model peptides that were reported 

previously (Andersen, et al., 1996). However, Andersen, et al. showed clear spectral 

evidence that their peptides sampled three distinct conformations during heating, while 

our 20% TFE spectra (Figure 3.8J) share a distinct isodichroic point near 204 nm, 
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which is consistent with only two conformations being present over the entire 

temperature range. The situation is likely to be similar at 17-18% TFE; although the 

CD curves for these samples (Figure 3.8I,J) are nearly invariant over the temperature 

range we examine, points derived from these spectra lie on the high-TFE lines in the 

transition diagram (Figure 3.9A), and so the non-monotonic behavior observed for 

these samples probably does not involve significant sampling of the hydrated, PPII 

conformation. Therefore, the mechanism of cold denaturation for αS102 in ~20% TFE 

is likely to be different from that reported by Andersen, et al. for model peptides in 

~8% HFIP. It is possible that heat-induced changes in the properties of fluoralcohol-

water mixtures, changes in fluoralcohol-protein interactions, or α-helix melting 

contribute to the observed behavior. 

 

3.4. Conclusion 

 We have measured pH, TFE, and temperature-dependent changes of the 

secondary structure of WT αS, A30P αS, and αS102. We demonstrate a distinct ~15% 

TFE crossover between water-like and TFE-like behavior in the CD spectra. We 

hypothesize that, as TFE is titrated into an aqueous solution containing αS, water-

protein interactions are weakened, leading to population of a dehydrated intermediate 

state. As additional TFE is added, preferential TFE solvation of protein molecules 

leads to the formation of α-helical structure. 

 Aggregation is enhanced at moderate TFE and high temperatures, where the 

CD spectra show minimal amounts of both PPII and α-helical structure. Because PPII 

structure is likely a signature of protein-water hydrogen bonding, while α-helical 

conformations reflect preferential solvation of proteins by TFE, we propose that 

aggregation occurs where protective solvent interactions are minimized. However, we 

note that the final fibril morphology depends on solution conditions and on the 
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presence of the C terminal portion of αS, and so additional interactions are involved in 

aggregation pathway selection. 

 We also demonstrate that αS can populate at least two distinct structural 

intermediates. The pH-induced intermediate involves structural changes in the C 

terminus of αS and is distinct from TFE- and temperature-induced conformations. By 

examining combined effects of TFE and temperature on αS102, we find inconclusive 

but suggestive evidence that the secondary structure of the protein is similar at 

intermediate TFE and at elevated temperatures. Therefore, caution must be employed 

in investigating aggregation-prone structures, as αS flexibility enables the formation 

of multiple distinct conformations. 

 Moreover, we hypothesize that aggregation enhancement in TFE may result 

from removal of protective factors, rather than from stabilizing specific aggregation-

prone states. Therefore, studying defensive mechanisms may be more useful than 

examining aggregation-prone conformations in increasing understanding amyloid 

diseases. Disordered proteins have likely evolved sequence elements that facilitate 

backbone hydration in order to protect against amyloid aggregation (Rauscher, et al., 

2006). It may be possible to use TFE to vary the strength of protein-solvent 

interactions, enabling study of the effects of hydration on protein aggregation 

processes. 

 

3.5. Materials and Methods 

 Reagents and solutions: Acros Organics brand 99.8% pure 2,2,2-

Trifluoroethanol (TFE) was purchased from Fisher Scientific. All chemicals were 

reagent grade and all solutions were prepared using MilliQ (≥ 18.2 MΩ cm) or HPLC 

grade water. 
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 Protein expression and purification: Recombinant WT and mutant αS were 

produced and purified as previously described (Bussell and Eliezer, 2001). 

Lyophilized αS variant protein was solubilized by dissolving at 1-2 mg/mL in pH 7.5 

buffer for the variable-temperature experiments and 2 mM NaOH for the acid 

titrations. Insoluble material was removed by filtering each stock solution through a 

100 kDa (Microcon YM-100, Millipore) centrifugal spin filter.  

 Circular dichroism (CD) spectroscopy: An Aviv 400 Circular Dichroism 

Spectrometer (Aviv Biomedical, Inc.) was used to obtain far-UV CD data. All samples 

were measured using a 1 cm path length, a strain free quartz cuvette, and a bandwidth 

of 1 nm. A noise-reducing option in the instrument software was used to smooth the 

data. Three scans with a speed of 1 sec / nm were averaged to obtain each curve. 

 pH-dependent spectra were obtained using a Microlab syringe pump 

(Hamilton) to titrate 0.1 N sulfuric acid (Mallinckrodt Baker) into a solution 

containing 1 μM protein in 10 mM dibasic sodium phosphate (Sigma). The curves 

were corrected for changes in concentration due to dilution. A buffer-only baseline 

was subtracted from the CD spectra, and errors in the measurement were calculated 

from the standard deviations of three measurements (see Appendix B for more details 

of the baselining procedures). 

 For variable-temperature experiments at pH 7.5, the solutions contained 10 

mM sodium phosphate buffer (Sigma), while the pH 2.4 samples contained 10 mM 

phosphoric acid (Mallinckrodt Baker). The pH values we report refer to the pH of 

solutions in the absence of TFE; TFE-induced pH shifts for buffer and water 

ionization constants are expected to be minimal at low to neutral pH and so we ignore 

these effects (Espinosa, et al., 2002; Zagorski and Barrow, 1992). Each sample was 

prepared by mixing the protein, water, and buffer salts or acid, chilling these solutions 

to ~4 °C, and then adding room-temperature TFE to the aqueous protein solutions on 
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ice. Then, these samples were placed in the CD spectrophotometer and cooled to 2 °C. 

CD spectra were obtained starting 2 °C and heating to the maximum temperature. 

After the heating cycle, the solutions were cooled and a final measurement was 

performed at 2 °C to quantify hysteresis. The baselining procedure averaged over 

temperature-related drifts but accounted for some solvent expansion and contraction 

due to temperature changes (see also Appendix B). Errors in the measurements were 

estimated from the standard deviations of three measurements and from uncertainties 

due to temperature drifts in the baseline signals. 

 The procedure for measuring the high-TFE, (approximately) ternary water-

TFE-protein samples (Figure 3.10) was similar to that for the pH 7.5 and 2.4 samples, 

except that hysteresis was not quantified and the minimum temperatures measured 

were lower than 0 °C. Our highest TFE sample was prepared by diluting 4.2 μL of the 

stock solution of protein in aqueous buffer into 3 mL of the 99.8% pure TFE so that 

the final TFE concentration was ~99.6%. Note that these solutions contained residual 

(~10 μM) concentrations of buffer salts. 

 Transmission electron microscopy (TEM) imaging: 50 μM αS variant solutions 

in 10 mM pH 7.5 sodium phosphate buffer were incubated at 70 °C for three days in 

quiescent conditions prior to examination. 0.02% sodium azide (Sigma) was added to 

these solutions as a preservative. TEM images of fibrils were obtained as described 

previously (Anderson, et al., 2010). 
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CHAPTER 4 

ENHANCED GREEN FLUORESCENT PROTEIN CONFORMATIONAL 

CHANGES AND AGGREGATION INDUCED BY TRIFLUOROETHANOL: A 

GENERAL ROLE FOR DESOLVATION-DRIVEN FIBRIL FORMATION?* 

 

4.1 Introduction 

 Proteins experience various structural rearrangements in the presence of 

fluorinated alcohols, including loss of tertiary structure, stabilization of non-native 

secondary structure, and aggregation (Otzen, 2010). Helix induction at moderate to 

high concentrations of 2,2,2-trifluoroethanol (TFE) is thought to result from 

preferential solvation or chaotropic effects, which lead to TFE enrichment near protein 

molecules (Diaz, et al., 2002; Fioroni, et al., 2002; Walgers, et al., 1998). However, 

preferential solvation should stabilize monomeric protein, while lower concentrations 

of TFE promote aggregation. Many researchers have hypothesized that TFE increases 

aggregation by stabilizing fibrillogenic structural intermediates. Alternatively, 

interactions between proteins and clusters comprised of TFE molecules have been 

hypothesized to promote protein aggregation (Yamaguchi, et al., 2006). Observations 

of desolvation-initiated aggregation for proteins in the presence of simple alcohols 

also suggest that dehydration might enhance fibrillization in solutions containing TFE 

(Zhang and Yan, 2008). 

 We previously (Chapters 2-3) examined TFE-induced secondary structural 

transitions for the Parkinson’s disease-associated protein α−synuclein (αS). We 

identified three distinct αS conformational states, the relative populations of which 

varied with TFE concentration (Anderson, et al., 2010). In the absence of TFE, αS is 

natively disordered, featuring a far-UV CD spectrum similar to that of a polyproline-II 

                                                 
* This material will be submitted to Biopolymers by V. L. Anderson and W. W. Webb 
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(PPII) helix. The addition of low (<~15% v/v) concentrations of TFE causes the 

protein to populate an “intermediate” state. The similarities between TFE- and 

temperature-induced structural changes, and the apparent protective nature of PPII 

structure, led us to hypothesize that the αS intermediate conformation is a desolvated 

state in which protein-water interactions are weakened (Chapter 3). Moreover, 

enhanced aggregation is correlated with population of the intermediate conformation, 

as might be expected if this state is indeed desolvated (Balbirnie, et al., 2001; 

Mukherjee, et al., 2009; Zhang and Yan, 2008). We also found that higher (>~15%) 

concentrations of TFE led to preferential TFE solvation of αS variants, resulting in a 

TFE-rich local environment that decreased αS aggregation and induced the formation 

of α-helical structure.  

 If our explanation for the TFE-induced conformational changes and 

aggregation behavior of αS is correct, a natural question to ask is whether desolvation 

might play a role in the fibrillization of other proteins. Indeed, enhanced aggregation 

in the presence of moderate amounts of TFE has been observed for numerous proteins 

and peptides (Otzen, 2010). The TFE concentration at which aggregation is maximal 

(typically 10-30%) varies among proteins, suggesting that sequence plays some role in 

the process (Zerovnik, et al., 2007). However, in most cases, little or no fibrillization 

occurs for very low and very high [TFE], a result that is qualitatively similar to our 

observations for αS. Needless to say, different proteins may undergo fluoroalcohol-

induced fibrillization via different mechanisms. However, the protective nature of low 

and high TFE conditions is suggestive. 

 Here, we investigate TFE-induced structural rearrangements and aggregation 

using enhanced green fluorescent protein (EGFP) as a model system. Near 

physiological pH, EGFP possesses “β-can” tertiary structure, while low and high pH 

conditions denature the protein, leading to readily-detectable loss of green 
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fluorescence (Bokman and Ward, 1981; Ward and Bokman, 1982). Thus, EGFP is a 

nearly ideal system for examining the roles of tertiary vs. secondary structure in TFE-

induced conformational rearrangements. In addition, comparing αS and EGFP may 

help us to separate the contributions of protein sequences and solvent properties in 

these aggregation processes. 

 We find that acid-denatured EGFP populates three secondary structural states 

in 0-60% TFE. These conformations are analogous to those observed for αS 

(Anderson, et al., 2010). However, the protein sequence appears to affect the relative 

populations of the states at a given [TFE]. Solution conditions that favor an 

intermediate conformation are roughly correlated with increased aggregate production, 

although electrostatic repulsion limits association in low pH, low ionic strength 

solutions. 

 Near neutral pH, EGFP tertiary structure prevents aggregation below ~15% 

TFE, but higher TFE concentrations lead to denaturation in favor of partially and 

highly helical conformations. Aggregation of TFE-denatured EGFP is correlated with 

reduction of α-helical structure in favor of a partly structured state that is likely similar 

to the pH 2.4 intermediate conformation. 

 Our results indicate that desolvation may play a general role in TFE-induced 

protein aggregation. Intact tertiary structure and electrostatic repulsion also appear to 

inhibit EGFP aggregation. Therefore, loss of protective interactions, rather than the 

formation of specific aggregation-promoting structural elements, is likely to be 

responsible for enhanced aggregation at moderate TFE concentrations. Moreover, the 

TFE concentration at which fibrillization is maximized appears to depend on 

sequence-related factors. The natively disordered αS protein is more resistant to 

desolvation-driven structural changes and aggregation than acid-denatured EGFP, 

which is in accordance with evidence that evolution might have selected well-solvated 
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sequences for natively disordered proteins (Rauscher, et al., 2006; Uversky, et al., 

2000). 

 

4.2 Results 

 Tertiary structure of EGFP in the presence of TFE: Figure 4.1 shows the 

fluorescence signal from EGFP as a function [TFE] for pH 2.4 and 7.5 solutions. As 

expected, low pH solutions are dark; EGFP tertiary structure is disrupted below pH ~3 

(Patterson, et al., 1997). At pH 7.5, TFE decreases EGFP fluorescence in a 

concentration- and time-dependent manner. We interpret fluorescence decreases as 

reflecting disruption of native EGFP tertiary structure, which leads to solvent 

quenching and of the removal of barriers to non-radiative relaxation pathways 

(Craggs, 2009). Although loss of fluorescence can occasionally occur for natively 

folded green fluorescent protein (Hsu, et al., 2009), our circular dichroism studies 

(below) verify that TFE- and acid-induced dark states involve a dramatic structure 

change. 

 Secondary structure of EGFP at various [TFE]: Figure 4.2A shows CD 

spectra of 0.3 μM EGFP in the presence of 0-60% TFE at pH 2.4. These curves do not 

change significantly during the ~20 minute (per sample) experimental duration 

(Appendix C and Figure C.1). The 0% TFE spectrum features the negative peak near 

200 nm that is characteristic of a PPII-like or statistical coil state. As [TFE] increases, 

the ellipticity near 222 nm becomes larger negative and the 200 nm peak becomes less 

prominent. At high TFE, the spectra show the double minima at 208 and 222 that are 

expected for α-helical structure. Isodichroic points are immediately apparent for two 

subsets of the spectra (Figure 4.2A insets). The wavelength positions of these points 

are ~209 nm for the 0-8% TFE samples and ~203 nm for the 11-60% TFE samples 

(Table 4.1). 
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Figure 4.1. EGFP fluorescence at pH 7.5 (squares) and pH 2.4 (circles) as 
a function of TFE concentration. The emission signal from 0.3 μM protein 
was measured 2.0 ± 0.5 minutes (solid symbols) or 24 ± 2 hours (open 
symbols) after the samples were heated to 37 °C. The error bars show the 
standard deviations of measurements of three identical samples. 
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Figure 4.2. Secondary structural transitions for EGFP induced by TFE. 
(A-B) Far-UV CD spectra for 0.3 μM EGFP in 0-60% TFE, which were 
obtained ~10 minutes after the samples were mixed and heated to 37 °C. 
The insets show selected spectra from the main plot, and the inset axes’ 
units are the same as those for the main plots. (A) Data for EGFP at pH 
2.4. The TFE concentrations for spectra with increasing negative ellipticity 
at 222 nm are 0, 2, 3, 4, 5, 7, 8, 10, 11, 12, 14, 15, 16, 17, 20, 22, 25, 30, 
35, 40, 45, 60, and 50 % TFE. The figure insets show spectra that share 
isodichroic points. (B) Data for EGFP at pH 7.5. The TFE concentrations 
for spectra with increasing negative ellipticity at 222 nm are 0, 5, 10, 15, 
17, 30, 32, 35, 40, 45, 50, and 60 % TFE. The left inset shows low-TFE 
spectra that are nearly invariant. The right inset shows high-TFE spectra 
that share an isodichroic point. (C) The mean residue ellipticity measured 
at 222 nm as a function of TFE concentration for the spectra in A-B. (D) 
The CD spectra of EGFP in 60% TFE at various pH. The solution 
conditions for spectra with increasing negative ellipticity at 222 nm are 10 
mM sodium phosphate (pH 7.5), 2 mM NaOH (pH 11.3), 10 mM borax 
(pH 9.3), 10 mM citrate-phosphate buffer (pH 4.6), 10 mM citrate-
phosphate buffer (pH 3.5), 10 mM phosphoric acid (pH 2.4), and 0.25 N 
sulfuric acid (pH 0.6). The inset shows the ellipticity at 222 nm as a 
function of pH, and the units for [θ]222 are the same as those for the main 
plot. 
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Table 4.1. Isodichroic points observed in the EGFP CD spectra (Figure 
4.2A-B insets). The TFE ranges for which CD spectra share isodichroics, 
the wavelength at which the curves coincide (λiso) in nm, and the ellipticity 
value at the isodichroic ([θ]iso) in units of 103 deg cm2 dmol-1, are reported. 
Uncertainties in wavelengths reflect the CD spectrometer bandwidth and 
experimental error, while errors in the ellipticity reflect experimental 
variations and the uncertainty in the wavelength measurement. 

 

 
 
* The existence of the pH 7.5, low TFE isodichroic point is 
uncertain. 
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 CD spectra for similar samples at pH 7.5 are shown in Figure 4.2B. We report 

only spectra that do not vary significantly during our measurements; samples 

containing ~20-30% TFE undergo unfolding in the experimental time frame and so are 

omitted (see also Appendix C and Figure C.1). The 0-17% TFE spectra (Figure 4.2B, 

left inset), are consistent with the expected signal from β-can structure (Visser, et al., 

2002). There may be an isodichroic near 200 nm for the 0-17% TFE data, but we 

cannot be certain of this because these spectra are very similar to each other. In 

contrast, above 30% TFE, the spectra appear α-helical, and an isodichroic point is 

immediately apparent (Figure 4.2B right inset). The position of this point appears 

similar to that observed for the pH 2.4, 11%-60 TFE samples (Table 4.1). 

 Plots of the ellipticity at 222 nm ([θ]222) vs. [TFE] for both pH values show 

roughly sigmoidal behavior (Figure 4.2C), but at high TFE, the signal for pH 7.5 

samples is weak compared to pH 2.4 samples. The estimated number of helical 

residues, based on [θ]222, is ~50% higher in the acidic solution (Table 4.2). 

Examination of additional solution conditions reveals that the helicity is stable at high 

pH, but drops rapidly below pH ~3.5 (Figure 4.2D). 

 A “transition diagram” (Kuznetsova, et al., 2004) plot of the pH 2.4 CD data 

shows two linear segments that correspond to sets of spectra that share isodichroic 

points (Figure 4.3). The existence of two isodichroics and two linear segments 

indicates that EGFP is likely sampling at least three secondary structure 

conformations, which include a low-TFE, PPII-like state (“U”), a high TFE, helical 

state (“F”) and an intermediate conformation (“I”). The point corresponding to the 

10% TFE sample is located slightly above the point of intercept of the two lines. 

 Points derived from the 0-17% TFE, pH 7.5 spectra are clustered in a region of 

the transition diagram that corresponds to the native β-can fold (“N”). These points 

may lie along a straight line, although the low variability among these spectra makes  
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Table 4.2. Estimates of the number of EGFP residues adopting helical 
structure in the presence of 60% TFE, calculated using the method of Luo 
and Baldwin with their 50% TFE parameters (Luo and Baldwin, 1997). 
The difference, Δ, between the estimates at pH 2.4 and pH 7.5 is also 
shown. The errors reflect experimental uncertainties. 
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Figure 4.3. Transition diagram (Kuznetsova, et al., 2004) constructed 
from the EGFP CD spectra in Figure 4.2A-B. For clarity, some points are 
labeled with their [TFE] and the labels are color coded to show pH. The 
solid lines show fits to the pH 2.4 points whose spectra share isodichroic 
points (Figure 4.2A insets). 
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this uncertain. We previously found that EGFP remains fluorescent immediately after 

heating at pH 7.5 and below ~20% TFE (Figure 4.1), and so it seems likely that any 

conformational changes that occur at low TFE affect loop regions, rather than the core 

β-can. In contrast, the loss of fluorescence observed for >30% TFE, pH 7.5 samples is 

associated with the formation of significant amounts of non-native helical structure 

(Figure 4.2B), and points derived from the 30-60% TFE spectra lie along the middle 

portion of the I ↔ F transition line. 

 We analyze our CD data using principal component analysis (PCA) to obtain 

more information about the conformations being sampled (Figure 4.4). A Scree plot 

(Cattell, 1966) constructed from the pH 2.4 curves reveals two significant factors, i.e. 

three distinct conformational states (Figure 4.4A). Projection of the CD data onto the 

first two PCA basis vectors (Figure 4.4B) results in a full-spectral transition diagram, 

which is analogous to Figure 4.3 (Anderson, et al., 2010). Additional PCA results, 

including discussion of the basis vectors and analysis of the pH 7.5 data from Figure 

4.2B, can be found in Appendix C. Notably, our pH 7.5 PCA results were also 

consistent with the protein sampling 3 conformational states, within the resolution of 

our data. 

 The point of intersection of the two straight line fits shown in Figure 4.4B 

provides an estimate of the CD spectrum of the intermediate state (Anderson, et al., 

2010). This inferred I state spectrum (Figure 4.4C) has double minima which are 

suggestive of α-helical structure, but the low overall signal magnitude and the shift of 

the lower-wavelength peak from the expected 208 nm to ~204 nm indicates that the 

protein is partially disordered. Deconvolutions of the U and I state spectra via several 

algorithms are consistent with an increase in helicity for the I state compared to the pH 

2.4, 0%TFE conformation (Appendix C and Table C.1). However, the deconvolution 

results are somewhat unreliable, especially for the disordered and partially structured  
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Figure 4.4. Analysis of the EGFP CD data in Figure 4.2A using PCA. (A) 
Scree plot (Cattell, 1966) showing the eigenvalue magnitudes for the 
transformation. (B) Projection of the CD spectra onto the first two 
principal component axes (Yi denotes the ith principal component). The 
solid lines show linear fits to points whose curves share isodichroics 
(Figure 4.2A insets). For clarity, some points are labeled with their [TFE]. 
(C) Reconstruction of the I state spectrum for EGFP, compared to the 
αS102 results from (Anderson, et al., 2010). 
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cases. Intriguingly, the reconstructed EGFP intermediate state curve is very similar to 

the I state spectrum for αS102 (Figure 4.4C), which also may be partly helical 

(Anderson, et al., 2010). 

 By fitting our CD data to a linear combination of the inferred intermediate state 

spectrum and the low and high TFE curves, we can obtain an estimate of the 

population of the protein in each state as a function of [TFE] (Figure 4.5A symbols). 

Note that these plots tend to underestimate the I state population (Anderson, et al., 

2010). The data is noisy at high TFE, which likely reflects the similarities between the 

U and I spectral shapes. When we fit to only two conformations (U and I for 0-8% 

TFE, and I and F for 10-60% TFE), the data appears smoother (Figure 4.5A lines). 

The intermediate conformation appears to be maximally populated near 8% TFE. Both 

the 3-state and the 2-state fits are very good (NRMSD < 0.05) for the 0-5% and the 

11-60% TFE data, but are somewhat poor (NRMSD ~ 0.1 to 0.25) for the 8-10% TFE 

samples (Figure 4.5B). The observation that points derived from the ~8-10% TFE 

spectra appear above the intersection of the U↔I and I↔F lines in Figure 4.3 and 

Figure 4.4B, along with the fact that these spectra do not fit well to a linear 

combination of the U, I, and F states, indicates that there may be additional subtle 

structural changes occurring for EGFP. These rearrangements may reflect the presence 

of multiple “intermediate” conformations. Alternatively, these anomalies may be a 

result of a small degree of protein oligomerization in these samples, experimental 

noise or fitting errors. 

 Moderate TFE concentrations promote EGFP aggregation, but tertiary 

structure and electrostatic repulsion are barriers to fibrillization: In Figure 4.6A, we 

show light scattering data for EGFP incubated for 24 hours at 37 °C in various 

solution conditions. The scattering intensities reflect relative amounts of aggregate 

production. At pH 2.4, with no added salt, aggregation is minimal over the entire  
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Figure 4.5. Results of fits of the pH 2.4 CD spectra (Figure 4.2A) to linear 
combinations of the 0% TFE (“U”), 60% TFE (“F”), and inferred I state 
spectra. (A) Fractions of EGFP in the three states U (cyan), I (red) and F 
(dark blue) as a function of [TFE], resulting from the fits, assuming the 
presence of three (symbols) or two (lines) states. For the two-state fits, the 
fraction of the F state is assumed to be zero for the 0-8% TFE samples, 
while the fraction of the U state is assumed to be zero for the 10-60% TFE 
data. (B) The NRMSD deviations between the experimental spectra and 
the fits used to obtain A. (C) A comparison of the experimental spectra 
(symbols) to the fit results (lines) for some samples. The TFE 
concentrations of the selected samples are shown in the legend. 
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Figure 4.6. EGFP aggregation vs. [TFE]. (A) Visible (600 nm) light 
scattering signal from 50 μM EGFP at pH 2.4, pH 7.5, and pH 2.4 with 75 
mM NaCl. The samples were incubated for 24 hours at 37 °C in the 
presence of 0, 7.5, 15, 22.5, 30, 35, and 60% TFE. (B-G) TEM images of 
EGFP aggregates gown at 37 °C in various solution conditions. The scale 
bar is 200 nm wide and all images are shown at the same magnification. 
(B) Flexible thin fibril aggregates observed after 24 hours incubation in 
quiescent conditions for 50 μM EGFP at pH 2.4, with 15% TFE and 75 
mM NaCl. (C) Flexible thin fibrils observed after 24 hours incubation in 
quiescent conditions for 50 μM EGFP at pH 7.5 with 15% TFE. (D) 
Similar to B, except the solution contained 7.5% TFE. (E) Similar to C, 
except the solution contained 45% TFE. (F-G) Rigid, amyloid-like 
aggregates found after incubating 50 μM EGFP for 7 weeks with shaking 
at pH 2.4 in the absence of TFE or added salt.  
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0-60% TFE range. However, the addition of 75 mM NaCl to the pH 2.4 solution leads 

to aggregation enhancement for samples containing 7.5-30% TFE.  

 Aggregation at pH 2.4 and 75 mM NaCl appears to be roughly correlated with 

increased population of the I state (Figure 4.5A, Figure 4.6A). The maximal scattering 

signal may be slightly shifted rightward to ~15% TFE, compared to the ~8% TFE 

maximum we predict for the I state population, although the differences are within the 

measurement uncertainties. 

 For pH 7.5 samples, aggregation is low for 0-7.5% TFE samples, increases 

sharply at 15% TFE, and then decreases at higher TFE. In Figure 4.1, we showed that 

tertiary structure disruption occurred above 15% TFE for samples in these solution 

conditions. Therefore, EGFP aggregation at low-to-moderate TFE appears to be 

associated with tertiary structure disruption. However, very high TFE conditions 

stabilize monomeric protein. 

 The morphology of EGFP aggregates depends on solution conditions: Figure 

Figure 4.6B-E shows Transmission Electron Microscope (TEM) images of EGFP 

aggregates from identical solutions as those examined in Figure 4.6A. Solutions 

containing TFE typically showed thin fibrillar aggregates, which often clumped 

together. Rigid, amyloid-like fibrils were sometimes observed after extended 

incubations (Figure 4.6F-G), although fibril growth in these solutions was somewhat 

sporadic and often required very long (> 1 month) incubations. Additional images of 

EGFP aggregates grown in various solution conditions can be found in Figure C.4. 

Amyloid-like fibril growth most frequently occurred in pH 2.4 samples without added 

salt or TFE, but a combination of thin flexible fibrils and rigid, amyloid-like fibrils 

could be observed in some samples containing TFE at pH 7.5 (Figure C.4K-L). 
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4.3 Discussion 

 We find that TFE-induced EGFP aggregation requires tertiary structure 

disruption and is also correlated with secondary structural changes of the denatured 

protein. For acid-denatured EGFP, we detect three secondary structural conformations 

via CD. Increased aggregation roughly coincides with population of a partially 

structured intermediate state. For pH 7.5 samples, aggregate production is peaked at 

TFE concentrations where the native tertiary structure is disrupted but the helicity 

remains relatively low. Our observations for acid-denatured EGFP are qualitatively 

similar to studies of the natively disordered protein αS (Chapters 2-3), although the 

TFE concentrations at which structural changes and aggregation occur are different for 

the two proteins. We hypothesize that desolvation may initiate the conformational 

changes and aggregation at moderate TFE that are observed for numerous proteins and 

peptides. However, details of protein sequence and solution conditions will also affect 

aggregation reactions. We discuss our EGFP data in the context of our previous αS 

experiments and the extensive literature on fluoroalcohol-induced protein and peptide 

aggregation. 

 Population of an intermediate secondary structural state is correlated with 

aggregation for acid-denatured EGFP: The far-UV CD spectrum of EGFP at pH 2.4 

shows the negative, PPII-like peak near 200 nm that is typical for disordered proteins 

(Figure 4.2A). The existence of two distinct isodichroics in the pH 2.4 CD spectra for 

EGFP, along with the transition diagram representation of our data (Figure 4.3) and 

our PCA results (Figure 4.4), indicates that the protein samples at least three 

conformational states (on a residue-by-residue basis) in the presence of 0-60% TFE. 

Increasing [TFE] from 0% to ~ 8% results in loss of PPII-like signal in favor of the 

formation of an intermediate conformation. Above ~11% TFE, we observe two-state 
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coexistence between the intermediate and a highly α-helical state. The population of 

the intermediate is maximal near 8% TFE (Figure 4.5A). 

 We previously observed similar conformational changes for αS, including the 

formation of a partially structured intermediate at moderate TFE (Anderson, et al., 

2010). However, the population of the intermediate state was peaked near 15% TFE 

for αS, as opposed to ~8% TFE for EGFP. Although we initially measured αS 

structural transitions at 25 °C and pH 7.5 (Anderson, et al., 2010), our variable-

temperature data indicated that the TFE concentration at which the αS intermediate 

conformation is maximally populated is independent of temperature and is similar at 

low and neutral pH (Chapter 3). Therefore, effects other than electrostatic repulsion or 

temperature are probably responsible for the differences in relative populations of the 

three conformations between the two proteins.  

 The fraction of EGFP in the PPII-like U state falls off rapidly at low TFE 

(Figure 4.5A), compared to the previous observation for multiple αS variants 

(Anderson, et al., 2010). This difference is also apparent in the low-TFE behavior of 

the CD signal near 200 nm (Figure 4.7). For simplicity, we compare [θ]200 for EGFP 

with the signal for the human αS C terminal truncation mutant αS102 (Chapters 2-3). 

The ~200 nm EGFP peak diminishes rapidly with TFE addition, while the αS102 

signal is more stable at low TFE, even when the pH and temperature of the solution is 

varied.  

 At pH 2.4, both αS102 and EGFP are unfolded and they have a similar net 

charge per residue (approximately +0.14e for αS102 and +0.15e for EGFP) (Putnam, 

2006). In addition, they contain a comparable fraction of nonpolar amino acids (41% 

for αS102 and 37% for EGFP). However, αS102 contains a relatively large proportion 

of alanine residues, while EGFP has more phenylalanine, tyrosine, leucine and 

isoleucine residues. As we discussed in Chapter 3, the PPII conformation is thought to  
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Figure 4.7. A comparison of the 200 nm negative peak signal for EGFP 
with the αS102 data from (Anderson, et al., 2010) and Chapter 3. 
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be stabilized by water-protein hydrogen bonding, in particular water-backbone 

hydrogen bonds (Adzhubei and Sternberg, 1993; Rucker, et al., 2003). The addition of 

low concentrations of TFE may reduce protein-solvent interactions leading to 

structural changes and aggregation. It may be that bulky nonpolar residues in EGFP 

restrict water access to the protein backbone, or the high surface areas of these 

residues might favor adoption of a more solvent-shielded conformation at low TFE. 

The sequence context of nonpolar residues could also affect a protein’s propensity to 

adopt PPII structure. 

 Aggregation of acid-denatured EGFP is minimal in low ionic strength 

solutions (Figure 4.6A). However, the addition of 75 mM NaCl enables significant 

aggregation in solutions containing ~7.5-30% TFE. It is likely that electrostatic 

repulsion limits aggregation for the pH 2.4 samples. The magnitude of the net charge 

on the EGFP is predicted to be +36e pH 2.4, compared to -7.7e at pH 7.5 (Putnam, 

2006). Charge-charge repulsion might act as a kinetic barrier to aggregation, and could 

also destabilize oligomeric conformations. Salt can partially screen these repulsive 

forces.  

 We predict that the I state population is maximal near 8% TFE (Figure 4.5A). 

However, peak aggregation in pH 2.4, 75 mM NaCl solutions may be shifted slightly 

rightward to ~15% TFE (Figure 4.6A), although the differences in scattering signals 

are within the measurement uncertainties. Changes in the viscosity and dielectric 

constant of the TFE-water mixtures (see Chapter 1) may affect oligomerization rates 

for proteins in aggregation-prone states. It is also possible that the kinetic barrier to 

aggregation arising from water-protein interactions is larger than the barrier due to 

interactions that occur in a TFE-rich environment. 

 Native EGFP tertiary structure is protective against aggregation: At pH 7.5 

and 37 °C, EGFP native structure remains intact for ~1 day below 15% TFE (Figure 
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4.1). We find that aggregate production is relatively low for 0-7.5% TFE samples 

during this time period (Figure 4.6A), but fibril production increases sharply for ~15-

30% TFE samples. Therefore, tertiary structure appears to protect against EGFP 

aggregation. 

 Tertiary structure disruption is required for TFE- induced aggregation of many 

proteins (Chiti, et al., 1999; Grudzielanek, et al., 2005). In general, the TFE 

concentrations needed for denaturation depend on solution conditions and the stability 

of the native fold. Chiti et al. observed that mutations that destabilize the native state 

of acylphosphatase reduce the TFE concentration required to induce aggregation 

(Chiti, et al., 2000). Similar effects have been observed for α-Chymotrypsin, which 

aggregates at relatively low TFE concentrations when the native fold of the protein is 

destabilized by low pH, high salt, or elevated temperature conditions (Rezaei-Ghaleh, 

et al., 2007). For EGFP, we find that denaturation requires higher TFE concentrations 

for samples at room temperature compared to 37 °C (Figure C.3A), and therefore we 

predict that lower temperatures should shift the EGFP aggregation peak toward higher 

[TFE]. 

 Denaturation rates in TFE appear to be strongly dose-dependant. Loss of EGFP 

fluorescence occurs within seconds above 35% TFE, while tertiary structure is stable 

for >20 minutes below 17% TFE (Figure 4.1, Figure 4.2). Unfolding of 15-20% TFE 

samples occurs over a period of several hours to one day (Figure 4.1 and Figure 

C.3B). We also observed by eye that pH 7.5 EGFP samples containing 5% TFE 

appeared bright green for > 9 weeks, while 10% TFE samples became clear after 2 

week incubations at 37 °C. 

 At high TFE, preferential solvation likely leads to a complete coating of the 

protein by TFE (see Chapter 3). The fact that tertiary structure disruption is rapid 

above 30% TFE where the F state population is nearly maximized (Figure 4.5A), 
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suggests that preferential solvation increases the unfolding rate. The native state may 

be destabilized in the TFE-rich environment, or kinetic barriers to unfolding may be 

decreased. 

 Studies of protein unfolding at high (>~30%) TFE concentrations have 

suggested that native state destabilization drives denaturation. Mutations and solution 

conditions that lessen the native state stability facilitate unfolding (Chiti, et al., 2000; 

Rezaei-Ghaleh, et al., 2007). Moreover, Kumar, et al. found evidence of TFE 

molecules penetrating into the core of β-lactoglobulin, possibly leading to loosening 

of the protein’s tertiary structure (Kumar, et al., 2003). In addition, a TFE-solvated 

protein is not likely to be stabilized by hydrophobic forces because water is excluded 

from the surface of the protein, and this may tend to destabilize the native state 

compared to transition states or folding intermediates. The reduced surface tension for 

TFE compared to water may also reduce the free energy gain for formation of a 

compact native state (Del Vecchio, et al., 2003). 

 However, denaturation alone is not sufficient for EGFP aggregation. Both pH 

7.5 and pH 2.4 samples show reduced aggregation at high TFE (Figure 4.6A). As we 

discussed in chapter 3, preferential solvation of protein molecules by TFE might 

stabilize monomeric protein because of increased surface areas available for TFE 

accumulation (Moelbert, et al., 2004). Or, changes in solvent free energy may reduce 

the solvent entropy gain for release of solvent molecules from the protein solvation 

layer during oligomerization (Eggers, 2011). TFE-protein interactions may also inhibit 

aggregation in the TFE-rich environment.  

 The helicity of the high TFE state is pH-dependent: We previously found that, 

in the presence of >~30% TFE, the helicity of αS variants is slightly increased in 

acidic conditions (Chapter 3). EGFP shows similar but more dramatic behavior, 

experiencing a sharp increase in the magnitude of its CD spectrum below pH ~3.5 
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(Figure 4.2D), which is consistent with a ~50% increase in helical content (Table 4.2). 

The ellipticity shift coincides roughly with the pKa of acidic residues, although 

presence of the fluoroalcohol may slightly modify buffer and protein ionization 

constants (Espinosa, et al., 2002; Zagorski and Barrow, 1992). As discussed in 

Chapter 3, pH-dependent changes in helicity may be due to short- or long-range 

electrostatic interactions that reduce flexibility and favor compact structures (Fan and 

Mayo, 1995; Valerio, et al., 2008). Helix stop signals might also be altered by pH in 

solutions containing TFE (Lawrence and Johnson, 2002; Rohl, et al., 1996). 

 It is unlikely that an α-helix can propagate through the EGFP chromophore, 

which involves a covalent bond between Thr65 and Gly67 backbone groups (Reid and 

Flynn, 1997). At pH 2.4, ~160 residues are helical (Table 4.2), and therefore structure 

formation cannot involve only the portion of the protein N terminal to the 

chromophore. It is possible that the C terminal 172 residues are involved in helix 

formation. However, a second helix could form in the N terminus, or multiple short 

segments could form in various parts of the protein. The EGFP protein is not natively 

helical and so it seems unlikely that a single contiguous helix would be stable even at 

high TFE. It is possible that the pH-dependent differences in helicity involve changes 

in the number or length of various helical segments. Higher-resolution information 

will be necessary to identify the precise interactions responsible for the pH-

dependence of the high TFE structures. 

 The reduction in aggregation at high TFE appears fairly similar for both pH 7.5 

and pH 2.4 solutions, although the helicity of the high-TFE, pH 2.4 state is much 

greater than that for pH 7.5 solutions (Table 4.2). Preferential solvation and TFE-

protein interactions could reduce aggregation in the absence of secondary structure 

formation. Alternatively, it is possible that the most aggregation-prone regions of the 

protein are buried in both pH conditions. Additional information regarding the 
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locations of helical structure for EGFP could be helpful in determining the factors 

responsible for the solubility in high TFE solutions. 

 TFE induces the formation of flexible fibrils: The TFE-induced aggregation 

behavior for acid-denatured EGFP is qualitatively similar to that for αS (Anderson, et 

al., 2010). In the absence of TFE, EGFP can form classic amyloid-like fibrils after 

long incubation periods (Figure 4.6E-F), while moderate [TFE] leads to the immediate 

formation of flexible, thin fibrillar aggregates (Figure 4.6B,D). At pH 7.5, ~15-30% 

TFE also causes the rapid formation of thin, fibrillar aggregates (Figure 4.6C,F). 

However, the ultrastructures of TFE-induced aggregates is different for EGFP and αS. 

EGFP fibrils are thinner (~9 nm compared to ~ 18 nm), and their ultrastructures 

appear less helical than αS fibrils’. They also seem to be shorter and to clump together 

more often.  

 TEM and atomic force microscopy images of TFE-induced aggregates from 

additional proteins reveal a variety of species, including rigid amyloid, flexible fibrils, 

annular structures and amorphous aggregates (Anderson, et al., 2010; Chaudhary, et 

al., 2009; Fezoui and Teplow, 2002; Grudzielanek, et al., 2005; Pallarès, et al., 2004). 

Therefore, aggregate morphology appears to be strongly sequence-dependent. 

 EGFP is frequently used as a label in biological experiments. The EGFP 

aggregation pathways we report here require extreme solution conditions and are not 

likely to interfere with most studies. However, the ability of EGFP to form fibrils 

could complicate interpretation of some experiments that use fluorescent protein tags 

to study amyloid aggregation reactions, especially in potentially denaturing conditions 

(see also Appendix D). 

 Desolvation may be a general mechanism underlying TFE-induced protein 

aggregation: In Chapter 3, we proposed that desolvation may drive both the 

conformational changes and the aggregation behavior of αS in TFE. We hypothesized 
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that water-protein interactions stabilize PPII structure at low TFE, while α-helix 

induction at high TFE involves transfer of the protein into a TFE-rich environment as 

a result of preferential solvation. At intermediate [TFE], we suggested that both TFE-

protein and water-protein interactions are minimized, leading to desolvation-driven 

fibril formation. Our basis for this hypothesis included our measurements of the 

secondary structure of αS in >99% TFE, which revealed that the protein environment 

is basically “TFE-like” above ~30% TFE, where aggregation is reduced, as well as our 

observation that αS conformational changes induced by low TFE are very similar to 

heat-induced transitions, which are thought to reflect loss of protein-water hydrogen 

bonds, leading to PPII destabilization (Adzhubei and Sternberg, 1993; Kelly, et al., 

2001; Rucker, et al., 2003). Moreover, we drew on multiple literature sources which 

suggest that TFE coats or binds to proteins at higher concentrations (Diaz, et al., 2002; 

Fioroni, et al., 2002; Walgers, et al., 1998). Solvation barriers are also known to affect 

aggregation reactions, and therefore desolvation is a plausible explanation for TFE-

induced fibrillization (Balbirnie, et al., 2001; Mukherjee, et al., 2009; Rauscher, et al., 

2006; Zhang and Yan, 2008). 

 Our data for acid-denatured EGFP is consistent with our αS results. In 

particular, we detect a crossover between PPII-like structure at low TFE and helical 

states at high TFE. The low TFE behavior, featuring loss of PPII structure, is 

consistent with dehydration leading to loss of water-protein interactions. Acid-

denatured EGFP appears to be dehydrated more readily than αS, which may be due to 

decreased water accessibility to the protein backbone as a result of EGFP’s higher 

proportion of bulky, nonpolar amino acids. The high number of phenylalanine and 

leucine residues may also decrease the number of water contacts per unit surface area 

for EGFP, facilitating dehydration. 
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 Molecular dynamics simulations have found that proteins that adopt PPII 

conformations are more strongly hydrated and less likely to form amyloid aggregates 

(Rauscher, et al., 2006). It is unclear whether destabilization of PPII structures 

involves steric barriers that decrease water accessibility to the protein backbone, or 

whether large nonpolar residues favor collapsed states. In any case, the position of the 

aggregation peak for unfolded proteins is likely to correlate with backbone hydration. 

Sequences favoring more extended, water-accessible conformations should experience 

maximal aggregation at higher TFE concentrations. 

 Preferential solvation of EGFP and αS likely occurs at >~30% TFE, but the 

conformation of a protein in the TFE-rich environment depends on pH and 

temperature (Figure 4.2, see also Chapter 3). Stabilization of helical structure at high 

TFE may involve direct TFE-protein interactions, which could also resist aggregation. 

Chatterjee and Gerig observed long-lived TFE-peptide interactions, which were 

consistent with either TFE-peptide hydrogen bonding or hydrophobic contacts 

(Chatterjee and Gerig, 2007). They also found that increasing temperature reduces the 

lifetime of peptide-fluoroalcohol complexes (Chatterjee and Gerig, 2006; Chatterjee 

and Gerig, 2007), and we similarly observed that TFE-induced helical structure is 

disrupted by heating for αS (Chapter 3). However, the precise structure of the protein 

in the TFE-rich environment appears to have little to no effect on aggregation 

reduction at high TFE.  

 We find that EGFP tertiary structure impedes aggregation, but once tertiary 

structure is disrupted, pH 7.5 EGFP behaves qualitatively like acid-denatured protein 

and αS. In particular, aggregate production is correlated with reduced α-helicity, 

which indicates that aggregation-prone, pH 7.5 conformations are not fully coated by 

TFE molecules. Therefore, multiple protective interactions, including intact tertiary 

structure and solvation barriers, must be overcome to initiate aggregation. 
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 Our previous αS results (Chapters 2-3) and our EGFP data indicate that 

desolvation is a plausible mechanism for TFE-induced aggregation of these proteins. 

However, we do not directly measure protein-solvent interactions. Because changes in 

solvent structure and protein conformation are likely to occur in parallel, it may be 

difficult to separate correlation from causation in the aggregation reaction (see also 

Chapters 1 and 3). Investigation of simple alcohols, which may cause dehydration but 

not preferentially solvate the protein to the same extent as fluoroalcohols, could be 

instructive. Experiments and simulations that directly address the hydration status of 

proteins might also help isolate the primary factors driving aggregation in the presence 

of TFE (Rauscher, et al., 2006; Zhang and Yan, 2008). Finally, we note that the 

aggregation pathway in solutions containing TFE may be different than the pathway in 

physiological conditions. It is not clear whether TFE-induced dehydration may be 

similar to in vivo processes. Structural intermediates may also play a more significant 

role in aqueous solutions than in the presence of alcohols. 

 

4.4 Conclusion 

 We have observed a correlation between TFE-induced secondary structural 

transitions and aggregation for EGFP, and we hypothesize that changes in protein-

solvent interactions underlie both phenomena. The structural changes for acid-

denatured EGFP are qualitatively similar to those for αS, and are consistent with 

dehydration leading to loss of PPII structure at low TFE. High concentrations of TFE 

induce the formation of α-helical structure as a result of preferential solvation. We 

propose that removal of these solvation barriers to aggregation initiates the formation 

of fibrillar aggregates. 

 Protein-solvent interactions impede aggregation, whether the local 

environment near the protein molecule is water-like or TFE-rich. In addition, 
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electrostatic repulsion and intact tertiary structure reduce fibrillization. We propose 

that fluoroalcohol-induced protein aggregation involves removal of multiple protective 

factors, rather than the formation of particular aggregation-prone conformations. 

 

4.5 Materials and Methods 

 Reagents and solutions: All chemicals were reagent grade and were as 

described in Chapter 3. Our pH measurements refer to aqueous samples; we did not 

correct our measurements to account for TFE effects on ionization constants of 

protein, water, or buffer components. These changes are likely to be small at low pH 

but can be significant at higher pH (Espinosa, et al., 2002; Zagorski and Barrow, 

1992). Samples labeled pH 2.4 contained 10 mM phosphoric acid, while samples 

labeled pH 7.5 contained 10 mM sodium phosphate buffer, which was pH 7.5 at room 

temperature in the absence of TFE. Additional solutions conditions are specified in the 

text. 

 EGFP expression and purification: Enhanced GFP derived from wild-type A. 

Victoria GFP (GFPmut1) with substitutions F64L and S65T (Cormack, et al., 1996) 

was synthesized by Cynthia Kinsland and the Cornell University Life Sciences Core 

Laboratories Center Protein Production Facility. Briefly, the plasmid 

pEGFPcasp6.XF1, a T7lac driven expression plasmid encoding an N-terminal 

hexahistidine tag and a Caspase 6 cleavage site on EGFP, was transformed into 

BL21Star(DE3) (Invitrogen), a plasmid containing the rare tRNA accessory plasmid 

from Rosetta2 (Novagen). Cells were grown in 1 L of ZY505 under dual ampicillin 

and chloramphenicol selection at 37°C. Once the OD600 had reached 0.6, 

overexpression was induced with 1 mM IPTG and growth was continued for another 3 

hours before the cells were harvested by centrifugation. Cells were resuspended in an 

IMAC binding buffer (20 mM Tris, pH 8.0, 30 mM imidazole, 500 mM NaCl) and 
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lysed by passage through an Avestin C3 homogenizer at 20-25 kpsi. Cell debris was 

removed by centrifugation and the cleared lysate was loaded onto a 5 mL HisTrap HP 

column (GE Healthcare). The column was extensively washed with IMAC binding 

buffer and IMAC wash buffer (as binding buffer except the concentration of imidazole 

was raised to 100 mM) before being eluted (as binding buffer except the concentration 

of imidazole was 500 mM). Fractions were analyzed by SDS-PAGE and the fractions 

containing the protein of interest were combined and concentrated. The protein was 

further purified by gel filtration on a Superdex 200 column, using 20 mM Tris, 150 

mM NaCl, pH 7.5. The protein eluted as essentially one sharp peak with a slight 

leading shoulder. SDS-PAGE analysis showed that the leading shoulder contained a 

variety of contaminants, so this area was excluded when pooling fractions. All 

combined fractions were dialyzed against PBS with 5% glycerol, followed by buffer 

exchange into water or 1 mM pH 7.5 NaPhos buffer using Amicon YM-10 spin filters 

(Millipore). Protein stock solution concentrations were obtained via absorbance 

spectroscopy following the procedures described in Appendix D. 

 Fluorescence emission and light scattering measurements: Fluorescence 

scattering experiments were performed using a QuantaMaster fluorescence 

spectrofluorometer (Photon Technology International). Correction for lamp 

fluctuations was automated by the vendor-supplied software. The sample temperature 

was maintained during fluorescence measurements using a NesLab Endocal RTE-110 

chiller/circulator (Thermo Scientific). 

 Fluorescence emission measurements were obtained using 0.3 μM EGFP 

samples. The fluorophores were excited at 460 nm and emissions were collected from 

480 to 580 nm. The emission spectra were integrated and normalized to the integrated 

signal from 0.3 μM pH 7.5 EGFP solutions in PBS (10 mM NaPhos, 154 mM NaCl) 
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at 25 °C. In each case, three identical samples were measured and their standard 

deviations calculated in order to determine the measurement variability. 

 For scattering measurements, 600 nm light was used in order to avoid EGFP 

absorption. The scattering angle was 90° and the same quartz cuvette was used to 

obtain all the data. Prior to measurement, 50 μM EGFP samples, along with baseline 

solutions containing identical ingredients excepting the protein, were maintained 

under quiescent conditions for 24 ± 2 hours in a 37 °C incubator. For each 

measurement we report, data was taken for three identical samples and three baseline 

solutions. The sample signals were normalized to the baseline signals and the 

uncertainties in the measurements were based on the standard deviations of the sample 

and baseline signals.  

 Circular dichroism (CD) spectroscopy: Far-UV CD measurements were 

performed using an Aviv 400 Circular Dichroism Spectrometer (Aviv Biomedical). 

Data was collected at 1 nm intervals with a scan speed of one second per nanometer, 

using a 1 nm bandwidth. Spectra for 0.3 μM EGFP were obtained in 1 cm quartz 

cuvettes. Buffer-only baseline samples were measured and subtracted from the protein 

spectra and noise was reduced using a smoothing routine in the instrument software.  

 CD samples were mixed at room temperature. Immediately prior to the 

measurement, TFE was added and the samples were placed into the instrument sample 

holder at 37.0 ± 0.1 °C. Temperature equilibration took approximately one minute. 

Two sets of three spectra each were obtained and averaged to verify that the CD 

signals were stable during the measurement interval (see Appendix C). Principal 

component and other analysis of the CD data was performed as described in Appendix 

A and (Anderson, et al., 2010). 

 Transmission electron microscopy (TEM) imaging of EGFP aggregates: 

Samples requiring quiescent conditions were maintained at 37 °C using an incubator, 
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while agitated samples were incubated using a benchtop orbital shaker operating at 

200 RPM and 37°C. Sodium azide (0.02 % w/v) was added to solutions incubated for 

longer than one day. Images were obtained as described previously (Anderson, et al., 

2010). In order to prevent grid damage, samples containing >15% TFE or high 

concentrations of aggregates were diluted with water or buffer prior to placement on 

the TEM grids.  
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APPENDIX A 

VERIFICATION AND ANALYSIS OF CIRCULAR DICHROISM DATA FOR 

SUB-MICROMOLAR CONCENTRATIONS OF ALPHA-SYNUCLEIN 

 

Verification that the 0.5 μM CD spectra are representative of monomeric α-

synuclein (αS) 

 We investigate time- and concentration- dependent differences in CD signals 

to verify that the curves we report in Figure 2.4A and Figure 2.5A-D are appropriate 

estimates of the αS monomer spectra. We use the normalized root mean square 

deviation (NRMSD) parameter (Brahms and Brahms, 1980; Mao, et al., 1982; 

Whitmore and Wallace, 2008) to quantify differences in CD data. The NRMSD of 

sample 1 vs. sample 2 is given by: 
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where λ is wavelength, [θ]S1(λ) and [θ]S2(λ) are the experimental CD spectra for 

samples 1 and 2, and N is the number of data points in the spectrum. The NRMSD 

parameter is generally used to measure goodness of fit in CD data deconvolution, 

rather than to compare experimental curves. NRMSD values below 0.1 are generally 

thought to indicate good agreement for fitting purposes (Whitmore and Wallace, 

2008). However, we observe NRMSD values of 0.01 – 0.03 for repeated 

measurements of identical, stable samples under our standard experimental conditions. 

Furthermore, uncertainties in protein concentration and baseline offsets contribute 

additional errors. Therefore, when the NRMSD is used to compare experimental data 

sets, values slightly higher than 0.1 may occur for similar samples.  
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 Because the distribution of monomer vs. oligomer protein in solution is 

concentration-dependent, we first investigate oligomerization by comparing the CD 

spectra we measure at 0.5 μM to spectra for 5 μM αS. Below ~ 10% and above ~24% 

TFE, the shapes of the CD spectra are similar at both protein concentrations, and the 

NRMSD deviations between these samples are relatively low (< 0.15) (Figure A.1A). 

Since oligomerization is expected to result in secondary structure changes, we 

conclude that no oligomerization is detected by this method at low or high TFE. 

However, for ~12-23% TFE, we observe concentration-dependent differences in the 

CD spectra, indicating that oligomerization is likely occurring at the higher 

concentration, and necessitating further evaluation at the lower concentration. 

 In order to assess whether our data at 0.5 μM protein concentration represent a 

good approximation of the monomer curve over the full TFE range, we also consider 

time-dependent changes in the CD spectra. First, we note that the αS mutants we study 

show a wide range of of oligomerization rates (Table 2.3 and Figure 2.9B), but 

experience similar structural transitions at 0.5 μM. Also, we showed that at 15% TFE, 

oligomerization takes place on a time scale of minutes to hours for 2 μM αS variant 

samples (Table 2.3 and Figure 2.9B), and we expect the oligomerization rate to be 

slower at lower concentrations. To verify this, we measure time-dependent changes in 

our CD signal for our 0.5 μM samples, comparing spectra measured 5 minutes vs. 15 

minutes after sample preparation (Figure A.1B). The NRMSD values are all fairly 

low, although they tend to show a peak at ~12-22% TFE. For WT, A30P, A53T, and 

E46K αS, the maximum deviations occur at 15-16% TFE, while the low-TFE values 

are large for αS102, which is probably due to the reduced CD signal magnitude from 

the disordered conformer of this smaller protein compared to full-length αS. In 

addition, the NRMSD values near 15% TFE are largest for E46K αS and smaller for 

A30P αS and αS102. However, because we observe nearly identical structural 
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Figure A.1. Comparisons of αS variant CD data using the NRMSD 
parameter. (A) NRMSD values for 0.5 μM vs. 5 μM WT αS, as a function 
of TFE concentration. The curves were taken ~5 minutes after the samples 
were mixed. (B) NRMSD vs. [TFE] for spectra measured 5 minutes vs. 15 
minutes after TFE is added to the solutions for the five αS variants. 

 



 

139 

transformations for all the αS variants (Figure 2.4, Figure 2.5, Figure 2.6), including 

the slowly-associating A30P mutant, it is unlikely that oligomerization contributes 

significantly to our signal at 0.5 μM.  

 

Reconstruction of the intermediate state CD spectrum 

 Principal Component Analysis (PCA) is frequently used to reduce redundancy 

and extract the minimal basis for a given data set. For CD data, this method is often 

used to estimate the information content in measured spectra and to compare 

deconvolution methods (Lees, et al., 2006; Miles, et al., 2005; Pribic, 1994). Here, we 

use PCA to verify that our minimal basis set consists of three spectra; therefore we are 

observing only three distinct secondary structural conformations for our protein. In 

addition, we use PCA to reconstruct the spectrum of the intermediate state over all 

wavelengths. 

 The I state ellipticity at 198 and 222 nm can be found by noting the crossover 

points in the transition diagram in Figure 2.4B (Figure 2.5E-H for the mutants). 

However, we can use PCA to determine the I state ellipticity at all measured 

wavelengths. We express each CD spectrum as a point in N-dimensional space, where 

each dimension corresponds to one wavelength. We measure our spectra from 195-

260 nm at 1 nm intervals; therefore N=66. For PCA, we transform this N-dimensional 

space onto a set of principal components, in which the basis consists of orthogonal 

vectors for which the variations in the data have been minimized. The first principal 

axis is the best straight line fit (in the 66-dimensional space) to the data, the second 

principal axis is the best linear fit to the data in a direction orthogonal to the first 

component, the third principal axis is the best linear fit in a direction orthogonal to the 

first two, etc. Therefore, we have transformed our vector into a new orthonormal basis 

in which each component contains a descending amount of information. 



 

140 

 We perform the transformation for the sets of CD curves in Figure 2.4A. We 

visualize the 66-dimensional vector in 3D by projecting it onto the first 3 principal 

component axes (Figure A.2A). All our data appears to lie on a plane, and the three 

axes we have chosen show the maximal variations about this plane for any 3D 

projection.  

 We verify that the dimensionality of our data can be reduced from 66 to 2 by 

plotting the eigenvalues of our transformation on a scree plot (Figure A.2B). The first 

two eigenvalues appear prior to the “elbow” in the plot; therefore the first and second 

principal components are sufficient to describe our data (Cattell, 1966). Note that the 

PCA method involves subtracting the mean spectrum for our data. Thus, a 2D 

projection expresses all our CD data as a linear combination of the mean spectrum and 

the two principal component basis spectra. Therefore, the fact that our data lies on a 

plane indicates that we detect only three conformational states in our solutions. 

 We project our data onto the plane of the first two principal components and 

show the result in Figure A.2C. This plot is entirely analogous to Figure 2.4B, except 

that a point on this diagram provides corresponds to a complete spectrum. Now, by 

finding the location of the crossover point for the straight line fits to the data that share 

isodichroics, projecting this crossover point onto the basis vectors for the two principal 

components, and adding the mean spectrum, we are able to determine the I state 

spectrum over the full range of 195-260 nm (Figure 2.7A). We repeat this analysis for 

the αS102, A30P, A53T, and E46K αS variants using the data in Figure 2.5A-D. 

 We corroborate the I state spectra we determine via PCA by reconstructing 

them using a different, independent method. First, we note that, for the U ↔ I 

coexistence regime (e.g. 2-14% TFE for wild-type αS), a measured CD spectrum [θ] 

is a linear combination of the spectrum of the pure U state, [θ]U(λ), and the spectrum 

of the pure I state, [θ]I(λ):
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Figure A.2. Analysis of the αS variant CD data using PCA. (A) Projection 
of the curves for the WT αS data from Figure 2.4A onto the first three 
principal component axes. The data is shown as blue dots, and the graph is 
rotated to show the data at three different angles. Yi denotes the ith 
principal component axis, and the Y3 = 0 plane is shown in green. The Y3 
range is reduced to better show variation of the data around the plane. (B) 
Scree plot (Cattell, 1966) showing the eigenvalue magnitudes for the 
transformation for all αS variants. (C) Projection of the WT αS data from 
A onto the plane of the first two principal components. The dashed lines 
show linear fits to points whose curves share isodichroics. (D-G) 
Comparisons of PCA prediction with MLE and transition diagram 
intercept data for the αS mutants (D) αS102, (E) A30P, (F) A53T, and (G) 
E46K. The solid lines show the spectra calculated via PCA. The dashed 
lines show results of MLE analysis, which were calculated using spectra 
that shared the low-TFE isodichroic points. The dotted line shows the 
MLE results calculated from spectra that shared the high-TFE isodichroic. 
The points (circles) show the I state reference points from Table 2.1 
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where fU is the fraction of the protein in the U state and fI is the fraction of the protein 

in the I state. Note that fU and fI are functions of TFE concentrations, while [θ]U and 

[θ]I are functions of wavelength only. Because the total amount of protein is 

conserved, we also have: 

  1=+ IU ff        (A3) 

Combining Equations A2 and A3, we can find fU: 
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 In order to solve Equation A4, we need CD data for the U and I states for at 

least one wavelength. The isodichroic points observed at low- and high-TFE and the 

intercept of the two lines on the transition diagrams (Table 2.1) provide estimates of 

the I state ellipticity at four wavelengths. However, Equation A4 is undefined at the 

low-TFE isodichroic point, where [θ]U = [θ]I; therefore we use the three remaining 

reference wavelengths. In addition, we use the mean residue ellipticity values for our 

0% TFE sample for [θ]U. For each αS variant, we solve Equation A4 at each of our 

reference wavelengths, and then use Maximum Likelihood Estimation (MLE) analysis 

to obtain the best estimate of fU (therefore, fI = 1 - fU).  

 Having found fU for low-TFE data, we can calculate the full I state spectrum 

over the entire wavelength range by rearranging Equations A2 and A3 to solve for 

[θ]I(λ): 
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Essentially, we are subtracting the U state (0% TFE) spectrum from a curve that 

contains some fraction of the I state and renormalizing. We perform this calculation 

for each spectrum in the U ↔ I two-state coexistence regime and use maximum 

likelihood to average the results. We then follow an analogous procedure for the I ↔ 
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F coexistence regime data (17-50% TFE for wild-type αS), using the 60% TFE data as 

an estimate of the F state spectrum at the reference wavelengths. Our inferred I state 

spectra, and comparisons to the spectra obtained via PCA and to the reference 

wavelength data points from Table 2.1 are shown in Figure 2.7A and Figure A.2D-G. 

The I state curves calculated using the low- and high-TFE data are similar to each 

other, and are also consistent with the values from Table 2.1 and the results of the 

PCA calculation.  

 

Calculations of the populations of the U, I and F states 

 We estimate state populations and check our reconstructed I state curve by 

fitting all CD data to linear combinations of the U, I and F state spectra. We start with 

the system of equations that describe the mean residue ellipticity of any sample that 

contains three distinct conformations: 
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Again, the 0% and 60% TFE curves are used to represent [θ]U(λ) and [θ]F(λ), while 

[θ]I(λ) is taken to be the I state spectrum inferred from PCA (Figure 2.7B). Thus, 

Equations A6 have two free parameters; we fit for fU and fI. Figure 2.8A shows our 

calculated vs. experimental curves for WT αS, demonstrating that these spectra are 

nearly identical. The results are very similar for the mutant αS (Figure A.3A-D). For 

WT αS and the disease-associated mutants, the NRMSD for the experimental vs. 

calculated curves is less than 0.06 over the entire range of [TFE] (Figure A.3E). The 

NRMSD is increased at low [TFE] for αS102, which probably reflects the relatively 

low CD signal magnitude, and therefore increased experimental uncertainty, for this 

smaller protein in its disordered conformation. For all the variants, the predicted 

curves reproduce key qualitative features of the experimental data, including the low- 
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Figure A.3. Goodness of fit for αS variant CD spectra fit to a linear 
combination of three states (see also Figure 2.8A). (A-D) Comparison of 
experimental spectra (open circles, data as in Figure 2.5A-D) and curves 
calculated from linear combinations of the 0%, 60% and the estimated I 
state spectra using Equations A6 (black lines) for (A) αS102, (B) A30P, 
(C) A53T, and (D) E46K αS. The TFE concentrations for spectra with 
increasing negative ellipticity at 222 nm are 5%, 13%, 15%, 17%, 20%, 
30%, and 50% TFE. (E) NRMSD values for the experimental data vs. 
calculated spectra over the full range of [TFE] for the αS variants. 
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and high-TFE isodichroic points. Thus, our experimental CD data can be reconstructed 

from linear combinations of the 0% TFE, 60% TFE, and estimated I states, which 

verifies that the spectra from Figure 2.7 are plausible estimates of the intermediate CD 

curves, and also that we are observing no more than three secondary structural 

conformations. In addition, the fit parameters fU and fI (and fF = 1 - fU - fI) provide 

estimates of the conformational state populations as a function of [TFE] (Figure 2.8B). 

 

Oligomerization kinetics data fitting 

 We fit the data in Figure 2.9B to a single exponential model: 

  ( ) )exp(][ 216 tkbat app−⋅+=θ      (A7) 

where t is time, and a, b, and kapp are coefficients that are found via the fits. Because 

the changes in signal are small for fast-associating mutants and high protein 

concentrations, fit results to the data tend to be uncertain. We overcome this limitation 

by assuming that the t=0 signals for the 2 μM and 5 μM protein samples should be the 

same as the 0.5 μM protein data obtained in the same buffer conditions (Figure 2.4A 

and Figure 2.5A-D), with an uncertainty of 1 x 103 deg cm2 dmol-1 due to signal 

fluctuations, baselining errors and uncertainty in protein concentration. The rate 

constant kapp resulting from of fits of the data in Figure 2.9B, along with these t=0 data 

points, are shown in Table 2.3. 

 Although the single exponential model should not be sufficient to describe an 

oligomerization reaction, it fits our data quite well. We attempted fits to other 

functions, including a double exponential model, the exact solution for two-state 

dimerization reaction (Milla and Sauer, 1994), and various hyperbolic functions, but 

comparisons using the adjusted R2 value or the Akaike Information Criterion showed 

that none of these models was superior to the single exponential function for our data. 

Therefore, we conclude that the relatively long dead time, poor time resolution, and 
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noise in our data prevent us from discriminating among possible kinetic models. 

Hence, we can estimate the overall “speed” of the reaction, as measured by kapp, but 

we have insufficient information to determine what type of oligomers form under 

these conditions. 

 

Software for MLE, PCA, and kinetics data analysis 

 MLE, PCA, and kinetics data analysis were done using MATLAB 7.1. PCA 

analysis was performed via the MATLAB princomp() function, while fminsearch() 

was used to fit our measured CD spectra to Equations A6. The MATLAB function 

fit() was used for fits to Equations A7. 

 

CD Data Deconvolution  

 We performed deconvolution of the αS variant U, I, and F state CD spectra 

(Figure 2.4, Figure 2.5, Figure 2.7) using k2d2 (Andrade, et al., 1993; Perez-Iratxeta 

and Andrade-Navarro, 2008). In all cases, the estimated maximum total error (Perez-

Iratxeta and Andrade-Navarro, 2008) reported by the software was ≤ 0.4.  

 For all five αS variants studied, k2d2 predicted that the U (0% TFE) state is 

9.45 % α-helical and 30.04% β-strand. In aqueous solution, αS and its variants are 

known to be disordered (Bussell and Eliezer, 2001; Eliezer, et al., 2001; Fredenburg, 

et al., 2007), and so these predictions are likely to be inaccurate. However, we are able 

to use the U state k2d2 results as a baseline; we compare results for the PCA-estimated 

I state and the F (60% TFE) state spectra to the 0% TFE prediction in order to obtain 

information about changes in secondary structure.  

 k2d2 predicts that the WT αS I state is 20.89% α-helical and 25.48% β-strand, 

which is a significant increase in predicted α-helical content, and a slight decrease in 

predicted β-strand content, compared to the U state. The F (60% TFE) state is 
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predicted to be 69.46% α-helical and 1.85% β-strand, which is consistent with a 

highly helical conformation at high [TFE]. 

 For αS102, the I state is predicted to be 25.60% α-helical and 19.93% β-

strand, and the F state is predicted to be 78.05% α−helical and 1.62% β-strand. Hence, 

the truncation mutant experiences an increase in predicted α-helical structure for the I 

and F states compared to the U state, and these changes are greater in magnitude than 

those predicted for WT αS, as might be expected if structure formation involves the N 

terminal portion of the full-length protein.  

 Structure predictions for the A53T and E46K mutants are similar to WT αS. 

For A53T, the I state prediction is 25.51% α-helix and 20.71% β-strand, while the F 

state prediction is 69.61% α-helix and 1.77% β-strand. For E46K, the I state result is 

19.92% α-helix and 27.52% β-strand, while the F state prediction is 69.46% α-helix 

and 1.85% β-strand. Therefore, the I states for these mutants show a significant 

increase in predicted α-helical structure and a modest decrease in predicted β-sheet 

structure, compared to the U state.  

 For the A30P mutant, the I state is predicted to be 7.74% α-helical and 34.08% 

β-strand, while the F state prediction is 69.46% α-helix and 1.85% β-strand. Hence, 

the A30P I state is predicted to be less helical and contain more β-sheet structure than 

the other αS variants studied. However, differences in β-strand and α-helical content 

between the U and I states for A30P are modest and probably are within the error of 

the method. We conclude that the A30P mutant I state likely contains less secondary 

structure than the other variants’ I states, as might be expected due to the helix-

breaking nature of the proline residue and the data in Figure 2.7B and Table 2.2.  
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APPENDIX B 

ANALYSIS AND SUPPORTING INFORMTION RELATED TO TEMPERATURE- 

AND PH- DEPENDENT CIRCULAR DICHROISM MEASUREMENTS OF 

ALPHA-SYNUCLEIN 

 

Baseline subtraction and concentration corrections for variable-pH and variable-

temperature CD spectra 

 Prior to the variable-pH measurements shown in Figure 3.1, we performed the 

sulfuric acid titration into buffer and measured these baseline spectra as a function of 

pH. These curves did not change significantly during the titration; the pH-dependent 

baseline variations were < 5% of the protein signal at 222 nm, and <1% of the signal 

at 200 nm. Therefore, we averaged the buffer spectra over the full pH range in order to 

obtain a single baseline for each protein. In addition, we corrected our data for 

changes in concentration that occurred during the titration (the initial protein 

concentration was 1.0 μM and the final concentration was 0.88 μM). Errors in the 

measurements were calculated from the standard deviations of three spectra. 

 Measurements of temperature-dependent CD spectra (Figure 3.2, Figure 3.3, 

Figure 3.5, Figure 3.7, Figure 3.8, Figure 3.10, and Figure B.3) required incubation 

times ranging from ~40 minutes to 3 hours, depending on the temperature interval 

being examined. Heating and prolonged incubations led variability in the baseline 

spectra. In general, the y-position of the baseline drifted over time, and the shape of 

the baseline spectrum changed slightly with temperature. The details of the heating 

rates and incubation time affected the baseline measurements, and it was difficult to 

directly subtract the baseline for a given temperature. Therefore, we used a simpler 

approach to estimate the baseline signal and its uncertainty. First, we subtracted a 

constant from all our CD data in order to correct for drifts, so that the ellipticity was 
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zero when averaged from 255-260 nm. Then, we averaged baselines taken at various 

temperatures and subtracted the averaged, rescaled curve from our protein data. The 

deviations of the baselines measured at various temperatures was calculated and 

included in our estimates of the experimental errors of our measurements.  

 Our CD data is reported in units of mean residue ellipticity, accurate 

determinations of which depend on knowledge of the protein concentration. Therefore, 

because the protein concentration depends on the sample volume, we corrected our 

variable-temperature CD data to account for thermal expansion and contraction. 

Between 2 °C and 70 °C, the volume of water changes by ~2% (Weast, 1988), while 

TFE expands by ~10% (Malhotra and Woolf, 1991). We calculate the expected 

volume of a TFE-water mixture using density vs. temperature data for the pure 

substances, assuming that the total volume is simply the volume of the water 

component at a given temperature plus the volume of the TFE component at the same 

temperature. 

 TFE-water mixtures experience volume contraction upon mixing, and so the 

assumption that the mixture volume is the sum of the component volumes is incorrect. 

The excess molar volume is peaked near 60% TFE (see Figure 1.1C), where a ~2%- 

reduction in volume may be observed at 25 °C (Minamihonoki, et al., 2007; Palepu 

and Clarke, 1989; Rochester and Symonds, 1974; Sassi and Atik, 2003). However, 

measurements of this volume contraction in the literature tend to contradict one 

another and do not cover a wide temperature range. Therefore, we are unable to apply 

this correction over the entire TFE and temperature range studied, and so we ignore 

this effect. As a result, we may overestimate the magnitude of the spectra of our ~50-

60% TFE samples. 
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Verification of reversibility for heating and cooling cycles 

 We previously found that NRMSD values of ~0.02 are typical for multiple 

measurements of identical, stable samples (Anderson, et al., 2010). In addition, as 

discussed above, we observe temperature-dependent changes in baseline signals, 

which contribute variability to our data. Temperature drift can lead to NRMSD values 

of ~0.05-0.15, especially at 0-15% TFE where the CD signals are relatively weak. 

Therefore, we use a NRMSD value of 0.15 as a cutoff below which we consider our 

samples to remain monomeric or mostly monomeric during heating. We calculate 

NRMSD values over the entire wavelength range for which data is available, i.e. 195-

260 nm for pH 7.5 samples and 190-260 nm for pH 2.4 samples, except for the data 

shown in Figure 3.4, which were obtained for the 195-260 nm range at both pH 

values. Note that oligomerization is not the only potential source of irreversibility – 

changes in the properties of TFE-water mixtures or other effects may also contribute 

to hysteresis in the signal. However, we assume that absence of hysteresis is likely to 

indicate that the amount of oligomerization is low, regardless of other potential 

sources of irreversibility. 

 We obtained our variable-temperature CD spectra starting from the lowest 

temperature and heating. For the data we report in Figure 3.2, Figure 3.3, Figure 3.5, 

Figure 3.8, Figure 3.10, and Figure B.3, we measured an initial spectrum at 2 °C, 

heated the samples to the next desired temperature and measured a spectrum, repeated 

until the maximum temperature was obtained, and then returned the samples to 2 °C 

and measured a final spectrum. The initial and final 2 °C spectra for the “mostly 

monomeric” samples are shown in Figure B.1. For Figure 3.10, the initial and final 

measured spectra are shown in the inset graphs. The NRMSD between the initial and 

final 2 °C spectra was examined; note that baseline subtractions and volume 

corrections (see above) were applied prior to the NRMSD calculations. 
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Figure B.1. CD spectra measured at 2 °C before (solid black lines) and 
after (dashed red lines) the heating cycle for the data sets in Figures 3.2, 
3.3, 3.5, 3.8, and 3.10, as well as Figure B.3A-D. The y-axes show mean 
residue ellipticity in units of 103 deg cm2 dmol-1, while the x axes plot 
wavelength in nm. The NRMSD for the initial vs. final samples is 
indicated on the graphs. The samples were heated to a maximum 
temperature, Th, of 70 °C, unless otherwise indicated. Data is shown for 
the samples from (A) Figure 3.2A (WT αS, 0% TFE, pH 2.4), (B) Figure 
3.2B (αS102, 0% TFE, pH 2.4), (C) Figure 3.2D (WT αS, 0% TFE, pH 
7.5), (D) Figure 3.2E (αS102, 0% TFE, pH 7.5), (E) Figure 3.3A (WT αS, 
60% TFE, pH 2.4), (F) Figure 3.3B (αS102, 60% TFE, pH 2.4), (G) 
Figure 3.3D (WT αS, 60% TFE, pH 7.5), (H) Figure 3.3E (αS102, 60% 
TFE, pH 7.5), (I) Figure B.3A (A30P αS, 0% TFE, pH 2.4), (J) Figure 
B.3B (A30P αS, 0% TFE, pH 7.5), (K) Figure B.3C (A30P αS, 60% TFE, 
pH 2.4), (L) Figure B.3D (A30P αS, 60% TFE, pH 7.5), (M) Figure 3.5A 
(αS102, 5% TFE, pH 7.5, Th=60 °C), (N) Figure 3.5B (αS102, 7% TFE, 
pH 7.5, Th=40 °C), (O) Figure 3.5C (αS102, 27% TFE, pH 7.5, Th=25 °C), 
(P) Figure 3.5D (αS102, 30% TFE, pH 7.5, Th=60 °C), (Q) Figure 3.5E 
(αS102, 40% TFE, pH 7.5), (R) Figure 3.5F (αS102, 50% TFE, pH 7.5), 
(S) Figure 3.8A (αS102, 5% TFE, pH 2.4), (T) Figure 3.8B (αS102, 7% 
TFE, pH 2.4, Th=50 °C), (U) Figure 3.8C (αS102, 10% TFE, pH 2.4, 
Th=25 °C), (V) Figure 3.8D (αS102, 12% TFE, pH 2.4, Th=25 °C), (W) 
Figure 3.8E (αS102, 14% TFE, pH 2.4, Th=25 °C), (X) Figure 3.8F 
(αS102, 15% TFE, pH 2.4, Th=25 °C), (Y) Figure 3.8G (αS102, 16% TFE, 
pH 2.4, Th=25 °C), (Z) Figure 3.8H (αS102, 17% TFE, pH 2.4, Th=40 °C), 
(AA) Figure 3.8I (αS102, 18% TFE, pH 2.4, Th=40 °C), (BB) Figure 3.8J 
(αS102, 20% TFE, pH 2.4, Th=50 °C), (CC) Figure 3.8K (αS102, 22% 
TFE, pH 2.4, Th=60 °C), (DD) Figure 3.8L (αS102, 25% TFE, pH 2.4), 
and (EE) Figure 3.8M (αS102, 30% TFE, pH 2.4). 
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 We also quantified oligomerization for simple heating cycles (Figure 3.4) in 

order to obtain information about the solution conditions where oligomerization might 

occur. The CD spectra used to generate Figure 3.4 are plotted in Figure B.2. For these 

samples, we did not perform a baseline subtraction and simply compared the raw 

ellipticity signals before and after the heating cycle. 

 We did not quantify hysteresis for these samples shown in Figure 3.7A-C 

because cooling below 0 °C was slow. However, we found that >≈30% TFE samples 

do not oligomerize significantly, at least for 0.5 μM αS variants (Figure 3.4), and we 

also observe a single isodichroic during heating for all the samples in Figure 3.7A-C. 

Therefore we assume that ≥ 60% TFE αS102 samples likely remained monomeric 

during the measurements. 

 

Temperature, TFE and pH dependence of the CD spectra of A30P αS 

 We performed temperature-dependent measurements for A30P αS at pH 7.5 

and pH 2.4 and 0% and 60% TFE (Figure B.3A-D). As discussed above, we verified 

that heating-induced spectral changes for these samples were minimal (NRMSD < 

0.15); the initial and final 2 °C spectra are shown in Figure B.1I-L. The A30P αS 

spectra and [θ]222 vs. T curves (Figure B.3E-H) were identical to WT αS, within the 

uncertainty of our measurements. 

 Figure B.4 shows that the variable-temperature transition diagrams constructed 

for the A30P and WT αS data collapse onto the variable-TFE, 25 °C lines from 

(Anderson, et al., 2010). 
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Figure B.2. The CD spectra used to calculate the NRMSD values in 
Figure 3.4. The initial (solid black lines) and final (dashed red red lines) 
spectra, both obtained at 2 °C, are shown. The y-axis values are the raw 
CD ellipticity in mdeg. The TFE concentrations at which data was 
obtained are indicated in the plots. Data is shown for each of the four 
curves in Figure 3.4, which correspond to (A) pH 7.5 and Th= 70 °C, (B) 
pH 7.5 and Th= 40 °C, (C) pH 7.5 and Th= 20 °C, and (D) pH 2.4 and Th= 
70 °C. 
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Figure B.3. (A-D) Variable-temperature CD spectra for A30P αS. The 
spectra were measured at 2, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, and 70 
°C, and the arrows show the general direction of increasing temperature. 
The solution conditions examined were (A) pH 2.4, 0% TFE, (B) pH 7.5, 
0% TFE, (C) pH 2.4, 60% TFE, and (D) pH 7.5, 60% TFE. (E-H) 
Comparisons of the A30P data to WT αS (see Figure 3.2 and Figure 3.3).  
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Figure B.4. Comparisons of variable-temperature, 0% and 60% TFE data 
with the 25 °C, variable-TFE transition diagrams for WT and A30P αS. 
The black symbols show the pH 2.4 data and the white symbols show the 
pH 7.5 data, with circles and triangles corresponding to 0% and 60% TFE, 
respectively. The arrows show the general direction of increasing 
temperature. The solid lines show fits to the low- and high-TFE data from 
(Anderson, et al., 2010). (A) Data for WT αS (derived from Figure 3.2A,D 
and Figure 3.3A,D), with the lower right (upper left) solid line showing a 
fit of the 25 °C, 0%-14% (17% - 60%) TFE, WT αS data from (Anderson, 
et al., 2010). (B) Data for A30P αS (derived from Figure B.3A-D), with 
the lower right (upper left) solid line showing a fit of the 25 °C, 0%-12% 
(17% - 60%) TFE, A30P αS data from (Anderson, et al., 2010). 
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Isodichroic points for WT and A30P αS CD spectra 

 Table B.1 shows isodichroics for WT αS and A30P αS spectra from Figure 

3.2, Figure 3.3, and Figure B.3A-D. These points are compared to the αS102 data and 

the variable-TFE data points from (Anderson, et al., 2010). 

 We found two distinct isodichroic points for CD spectra of αS variants at pH 

7.5 and 25 °C in the presence of 0-60% TFE (Anderson, et al., 2010). We similarly 

observe two types of isodichroics in the variable-temperature data (Table 3.2, Table 

B.1). The variable-temperature, 0% TFE isodichroic measurements agree with the 

previous 25 °C, low-TFE points, within the experimental uncertainties in the 

measurements (Table B.1A), but those for the 5-7% TFE αS102 samples have slightly 

shifted ellipticities at pH 7.5 (Table 3.2A). In addition, although the > 20% TFE 

isodichroic positions are within experimental uncertainties of the 25 °C, high TFE 

isodichroics, there is a tendency toward larger negative values for the variable-

temperature samples as [TFE] increases. 

 

Variations in spectral shapes for high-TFE αS102 samples 

 When all the pH 2.4, αS102 CD spectra from Figure 3.2B Figure 3.3 B, and 

Figure 3.8A-M are combined (Figure B.5A), we see that spectra with same ellipticity 

at 222 nm do not always overlap at all wavelengths (e.g., the green and orange curves 

in Figure B.5A). In particular, the relative depths of the 222 and 208 nm peaks vary 

slightly with TFE concentration regardless of temperature. The combined pH 7.5 

curves (Figure B.5B) reveal similar behavior. 

 Transition diagram plots of the CD signals at 208 nm vs. 222 nm show that 

there is a possible trend toward slightly larger negative [θ]208 for a given [θ]222 when 

the TFE concentration is increased, although the observed differences are well within 

the experimental uncertainties (Figure B.5C-D). Volume contraction for TFE-water  
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Table B.1. Isodichroics for variable-temperature, 0% and 60% TFE CD 
spectra of 0.5 μM WT and A30P αS. The units for the wavelength position 
of the isodichroics (λiso) are nm and the units for the mean residue 
ellipticity at the isodichroics ([θ]iso) are 103 deg cm2 dmol-1. The 
uncertainties in [θ]iso are due to experimental error, and the uncertainties in 
the wavelength measurements result from to the CD spectrometer 
bandwidth and experimental error. (A) Isodichroic point locations for 0% 
TFE samples at pH 2.4 and pH 7.5. (B) Isodichroic point locations for 
60% TFE samples at pH 2.4 and pH 7.5. 

 

 
 

* Constant-temperature (25 °C) isodichroic points from Table 2.1 and 
(Anderson, et al., 2010). For A (B), the isodichroics for the low-TFE, U ↔ 
I (high-TFE, I ↔ F) coexistence are shown. 

 



 

160 

 
 
 
 

 

 
 

Figure B.5. Changes in CD spectral shapes at high TFE. (A-B) Combined 
data sets for the variable-temperature αS102 data at (A) pH 2.4 and (B) pH 
7.5. Two curves are highlighted in green and orange to highlight 
systematic differences in the signals at 208 nm compared to 222 nm. The 
60% TFE, 70 °C spectra are shown in green, while for pH 2.4 (7.5), the 
22% TFE, 25 °C (30% TFE, 45 °C) curve is shown in orange. An arrow 
indicates the location of the low-TFE, variable-temperature isodichroic 
points. (C-D) Transition diagrams constructed for high TFE data, showing 
the ellipticity at 208 vs. 222nm. The error bars reflect experimental 
uncertainties, and the arrows show the general direction of increasing 
temperature. 
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mixtures (see above) could contribute to the observed discrepancies by tending to 

displace the ~40%-60% TFE data toward the lower left corner of the plots. 

Furthermore, CD spectral shape variations of this sort are often observed for alanine-

rich and other peptides and are thought to be due to changes in the CD signal from an 

α-helix (Wallimann, et al., 2003). Therefore, it is not clear whether these differences 

in the CD spectra reflect actual differences in secondary structure or whether they are 

artifacts. 

 

Principal Component Analysis (PCA) of the CD spectra at various temperatures and 

TFE concentrations 

 PCA can be used to estimate the number of independent factors in a data set 

(Appendix A). We apply this analysis to two data sets: (1) the set consisting of all the 

pH 2.4, αS102 spectra from Figure 3.2B, Figure 3.3B, and Figure 3.8A-M, and (2) the 

set of all the pH 7.5, αS102 curves in Figure 3.2E, Figure 3.3E, and Figure 3.5. These 

two data sets are shown in Figure B.5A-B. For the pH 2.4 data set, we analyze the 

complete wavelength range from 190-260 nm, while for the pH 7.5 data set, we use 

only the 200-260 nm range because of issues with buffer absorbance at low 

wavelengths, which were particularly problematic at high temperatures and 0-7% 

TFE.  

 Scree plots (Cattell, 1966), resulting from PCA applied to these two data sets, 

reveal that both sets contain more than two factors, implying we are sampling more 

than three distinct secondary structure conformations when we vary both [TFE] and 

temperature (Figure B.6A-B). For the pH 2.4 samples, the number of factors above the 

Scree baseline is at least four, while for pH 7.5, at least three factors are significant. 

The basis vectors corresponding to the most significant factors are plotted in Figure 

B.6C-D. 
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Figure B.6. PCA results for the αS102 data shown in Figure B.5A-B. (A-
B) Scree plots (Cattell, 1966) for the (A) pH 2.4 and (B) pH 7.5 data. (C-
D) The significant PCA basis vectors for the (C) pH 2.4 and (D) pH 7.5 
data sets. 
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 Over 99.7% of the variance in the data sets is due to the first principal 

component, which is associated with the overall coil-to-helix transition (Table B.2). 

Plots of the PCA scores as a function of temperature (Figure B.7A-B) demonstrate that 

the first principal components for each data set reflect the overall helicity of the 

samples; these plots are similar to Figure 3.6B and Figure 3.9B, with the sign of the y-

axes reversed. These curves also clearly show the non-monotonic behavior of the pH 

2.4 samples at ~17-20% TFE. 

 Plots of the next few principal component scores (Figure B.7C-G) are much 

noisier. Component #3 for the pH 2.4 data set appears to be analogous to component 

#2 for the pH 7.5 data set, while component #4 for the pH 2.4 data may correspond to 

component #3 at pH 7.5. It is tempting to associate pH 2.4 component #4 and pH 7.5 

component #3 with a “high temperature” intermediate state because these components 

are populated at elevated temperatures for all [TFE]. However, component #3 (for pH 

2.4) is nearly the inverse of component #4, and for the low-TFE samples, the 

contribution from component #3 will tend to cancel out the contribution from 

component #4. (Similar behavior is observed for components #2 and #3 for the pH 7.5 

case). Therefore, the combined effects of components #3 and #4 for the pH 2.4 data 

(#2 and #3 for the pH 7.5 data) appear to involve changes in the magnitudes of the 222 

nm peak compared to the 208 nm peak for high [TFE] samples. These TFE-dependent 

differences in the magnitudes of the 222 nm signal vs. the 208 nm for the highly 

helical state were discussed above (see also Figure B.5). 

 At constant temperature, we previously found that two significant factors (i.e. 

three states) contributed to the 0-60% TFE data (Anderson, et al., 2010). The variable-

temperature case appears to be more complex and may involve four to five 

conformations. The overall helix-coil transition dominates the signal, and 

contributions from other components involve subtle changes in the shapes of the CD  
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Table B.2. The variance in the pH 2.4 and pH 7.5 αS102 data sets (Figure 
B.5A-B) that is accounted for by each of the first five principal 
components (Figure B.6C-D). 
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Figure B.7. The PCA scores, Yi, vs. temperature for the significant factors 
for the data sets from Figure B.5A-B, where i is the principal component 
index. The [TFE] for each curve is shown in the legends. Scores are 
plotted for (A) pH 2.4, i=1, (B) pH 7.5, i=1, (C) pH 2.4, i=2, (D) pH 7.5, 
i=2, (E) pH 2.4, i=3, (F) pH 7.5, i=3, and (G) pH 2.4, i = 4. 
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spectra. Some of these changes may be a result of temperature-dependent variations in 

the spectra of ideal α-helices and other types of secondary structure (Wallimann, et al., 

2003). Therefore, we conclude that PCA reveals temperature-related contributions to 

the data, which are distinguishable from TFE-induced structure, but it is unclear 

whether these factors correspond to a definite temperature-related “intermediate” 

conformation or whether they are artifacts of some sort. And, if the CD spectra of the 

disordered, polyproline-II-like conformation, the highly α-helical state, or the TFE-

induced intermediate are temperature-dependent, it is not immediately obvious 

whether it makes sense to call such spectral changes an additional “state” or just 

consider them to be variations within a state.  
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APPENDIX C 

SUPPORTING INFORMATION RELATED TO EGFP STRUCTURE AND 

AGGREGATION EXPERIMENTS  

 

Stability of 0.3 μM EGFP samples during CD measurements 

 We use the NRMSD parameter (Appendix A) to quantify changes in the CD 

spectra during the experimental time frames. For the samples shown in Figure 4.2A-B, 

we verified that the spectra did not change significantly for 5 min. vs. 10 min. after 

TFE addition and heating (Figure C.1). Note that we omitted samples for pH 7.5 and 

~20-30% TFE from Figure 4.2 and Figure C.1 because the CD spectra for these 

samples change rapidly with time as a result of EGFP tertiary structure disruption. 

 

Additional principal component analysis results for EGFP CD spectra 

 We performed principal component analysis (PCA) on the two sets of CD 

spectra shown in Figure 4.2A-B (see also Chapter 4 and Figure 4.4). The first three 

PCA basis vectors obtained for these spectra are shown in Figure C.2A-B. For both 

pH values, the first and second basis vectors show smooth variations over wavelength 

scales that make sense for CD data, while the third basis vector appears noisy. The 

Scree plot (Cattell, 1966) corresponding to the pH 7.5 plot is shown in Figure C.2C. 

The pH 7.5 plot is somewhat ambiguous and could reflect either two or three 

significant factors. In contrast, the pH 2.4 Scree plot (Figure 4.4A) is consistent with 

the presence of two significant factors. 

 Plots of PCA scores as a function of TFE for each of the first three principal 

components are shown in Figure C.2D-I. At both pH values, the first component 

corresponds to the overall helical transition. For the pH 2.4 data, the second 

component appears to mostly reflect variations at low (<~10% TFE), and may  
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Figure C.1. NRMSD vs. [TFE] for spectra measured 5 minutes vs. 10 
minutes after TFE addition and the initiation of heating for 0.3 μM EGFP 
samples (see also Figure 4.2A-B). 
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Figure C.2. Additional PCA results for EGFP CD spectra. (A-B) The first 
three PCA basis vectors for (A) the pH 2.4 CD spectra from Figure 4.2A, 
and (B) the pH 7.5 spectra from Figure 4.2B. (C) Scree plot (Cattell, 1966) 
showing the eigenvalue magnitudes for the PCA transformation of the pH 
7.5 data (the pH 2.4 plot is shown in Figure 4.4A). (D-F) The PCA scores 
Yi, reflecting the projection of the pH 2.4 spectra from Figure 4.2A onto 
the ith PCA basis vector, for the first three PCA components. (G-I) Similar 
to D-F, but for the pH 7.5 spectra from Figure 4.2B. 



 

170 

correspond to population of the 0% TFE polyproline-II-like conformation. At pH 7.5, 

the second component seems to reflect intermediate-TFE variations in the shape of the 

spectra. For both pH values, the third component shows no definite trend with respect 

to TFE concentration. 

 Given the noisiness of the third principal component basis vectors and the lack 

of meaningful trends in the principal component score vs. TFE plots for this 

component, it seems likely that only the first two components in each case are 

meaningful, at least within the resolution of our CD data. However, experimental 

noise, low sensitivity of CD spectra to slight structural changes, or other factors could 

obscure additional transitions. 

 

Temperature dependence of TFE-induced EGFP tertiary structure disruption 

 Figure C.3A shows the fluorescence emission from freshly-prepared EGFP 

solutions at room temperature (~22 °C), compared to the 37 °C data. It appears that 

increased amounts of TFE are required for tertiary structure disruption at lower 

temperatures. Notably, the 37 °C emission curves are time-dependent (Figure 4.1, 

Figure C.3B), and so the discrepancies are probably at least partially due to differences 

in unfolding rates at room temperature vs. 37 °C. 

 When EGFP is incubated for more than 2 days at 37 °C (in pH 7.5 PBS 

buffer), samples containing 5% TFE remain fluorescent and are nearly identical to 0% 

TFE solutions, while ≥ 10% TFE samples become dark (Figure C.3B). It is unclear 

whether there is a threshold below which TFE-induced tertiary structure disruption 

does not occur, or whether 5% TFE samples simply unfold very slowly. 
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Figure C.3. TFE-induced disruption of EGFP tertiary structure is 
dependent on temperature and time. (A) The fluorescence emission from 
0.3 μM EGFP in pH 7.5 NaPhos 2 ± 0.5 minutes after TFE was added to 
the samples and the samples were either incubated at room temperature 
(~22 °C) or placed into a 37 °C incubator. The 37 °C data is identical to 
that shown in Figure 4.1. (B) EGFP fluorescence emission at 507 nm vs. 
time after the protein was heated to 37 °C, for 25 μM protein in pH 7.5 
PBS buffer (10 mM NaPhos with 154 mM NaCl). The TFE concentration 
for each sample is noted on the plot. 
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Deconvolution of EGFP CD data 

 We obtained estimates of secondary structural content for some of our CD 

spectra using the k2d (Andrade, et al., 1993), CDSSTR (Compton and Johnson, 1986; 

Sreerama and Woody, 2000), and CONTINLL (Provencher and Glockner, 1981; Van 

Stokkum, et al., 1990) algorithms, as they were implemented in the DichroWeb 

software package (Whitmore and Wallace, 2011; Whitmore and Wallace, 2004; 

Whitmore and Wallace, 2008). We compared these results to the CDSSTR and 

CONTINLL predictions provided by the CDPro software package (Sreerama, 2004; 

Sreerama and Woody, 2000). For the DichroWeb CDSSTR and CONTINLL analyses, 

the SP175 reference data set (Whitmore and Wallace, 2008) was used, while the 

SDP48 basis set (Sreerama, et al., 2000) was employed in the CDPro runs.  

 Both software packages required CD data for 190-240 nm. Our pH 2.4 data 

(Figure 4.2A) satisfied this requirement, and we examined the 0% TFE, pH 2.4 

spectrum (“U” state), the inferred “I” state (Figure 4.4C), and the 60% TFE (“F” state) 

curves. Our 0.3 μM, pH 7.5 data (Figure 4.2B) was only reliable to 195 nm, and so we 

measured the pH 7.5, 0% TFE (“N” state) and 60% TFE (“F2” state) spectra for 3 μM 

EGFP in order to obtain data to 190 nm. The 3 μM curves matched the 0.3 μM data 

very well in the 260-195 nm range (NRMSD < 0.1). 

 Our deconvolution results are shown in Table C.1. k2d provides an estimate of 

only α-helical (α), β-sheet (β), and disordered (U) content, while the other algorithms 

resolve regular (R subscript) and distorted (D subscript) β-sheets and α-helices, and 

also provide estimates of turn (T) content. We also report the NRMSD value for the 

measured vs. predicted spectra for all the fitting methods.  

 The U and N state estimates in Table C.1 provide some information about the 

reliability of the deconvolutions. All the algorithms predict that the U state contains 

significant amounts of secondary structure, although EGFP is likely completely  
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Table C.1 Deconvolution results for EGFP CD spectra. See the text for 
definitions of symbols. 
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denatured at pH 2.4 in the absence of TFE. CDPro appears to provide a slightly better 

estimate for the U state structure, as might be expected given that the SDP48 basis set 

includes denatured proteins, although even these predictions probably overestimate the 

secondary structural content. In addition, our measured N state spectrum is highly 

consistent with the expected CD curve for a “β-can” fluorescent protein (Visser, et al., 

2002), but deconvolutions of this spectrum underestimate its β-sheet content and 

overestimate disordered and helical structure. Interestingly, the CDPro SDP48 basis 

set contains the green fluorescent protein, while the DichroWeb SP175 basis set does 

not, but the CDPro structure predictions appear to be only slightly better than the 

DichroWeb fits, and the NRMSD value for CDPro’s CDSSTR prediction is actually 

increased relative to the DichroWeb CDSSTR result. When we used reference sets 

containing green fluorescent protein with the DichroWeb program, we obtained 

predictions that were very similar to the CDPro results, including the increase in 

NRMSD for the CDSSTR algorithm. Therefore, the NRMSD parameter is of limited 

value in comparing fit results, which is consistent with previous reports that agreement 

between the calculated and actual CD spectra is a poor measure of the reliability of 

structure estimations (Greenfield, 1996). Given these observations, we use the 

information in Table C.1 to identify trends in the predictions, but we cannot 

definitively resolve the secondary structural content of the protein, and we cannot 

determine which estimate is most accurate. 

 All the deconvolution algorithms predicted an increase in α-helical structure 

for the I state compared to the U state, while the amount of β-sheet and turn content 

was reported to decrease or to increase very slightly. The CDPro estimates predict 

relatively large amounts of helical content for the I state, and we believe these 

predictions are probably more reliable than the DichroWeb results, based on the U 
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state estimates from both software packages. The 60% TFE states (F and F2) were 

estimated to be highly helical, as expected from inspection of these curves.  

 In sum, our EGFP spectra deconvolution results are consistent with an increase 

in helicity for the I state compared to the U state, but the absolute predictions of 

structural content are unreliable. Higher resolution techniques are necessary to 

definitively identify structural features of partially structured conformations. 
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Figure C.4. TEM images of EGFP aggregates grown in various solution 
conditions. The scale bar is 200 nm and all images are shown at the same 
magnification. The pH 7.5 samples contained 10 mM NaPhos buffer, the 
pH 2.4 samples contained 10 mM phosphoric acid, and the pH 9.3 sample 
containeded 10 mM borax. Unless otherwise specified, 50 μM EGFP 
samples were incubated at 37 °C in quiescent conditions. (A) Flexible thin 
fibril aggregates grown at pH 2.4 with 75 mM NaCl and 15%TFE after 24 
hrs incubation (see also Figure 4.6B). (B-C) Thin fibrils grown at pH 7.5 
with 30% TFE after 24 hrs. (D) Similar to B, but the sample contained 
60% TFE. (E-F) Rigid fibrils grown in pH 2.4 solutions containing no 
TFE, after 3 weeks incubation with shaking. (G) Flexible fibrils grown 
from a sample similar to E, but with 154 mM NaCl. (H-J) Similar to E, but 
after 7 weeks incubation (see also Figure 4.6F-G). (K) Rigid and flexible 
fibrillar aggregates grown from 150 μM EGFP at pH 7.5 with 15% TFE, 
after 3 weeks incubation with shaking. (L-M) Rigid and flexible fibrillar 
aggregates found after 2 weeks incubation with shaking, in pH 7.5 
solutions with 15% TFE that had been seeded by adding a small fraction 
(~6%) of neutralized solution from the sample shown in H. (N-O) Thin 
fibrils grown at pH 7.5 with 15% TFE, after three weeks incubation with 
shaking. (P) Similar to N, but for pH 9.3. 
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APPENDIX D 

CHARACTERIZATION OF FLUORESCENT TAGS FOR USE IN AMYLOID 

PROTEIN AGGREGATION STUDIES 

 

Motivation and Summary 

 Fluorescent tags are commonly used to monitor proteins and peptides in 

microscopy and spectroscopy experiments. In the context of amyloid aggregation, it is 

necessary to investigate potential perturbations of the aggregation pathway due to the 

presence of the label. In this Appendix, I present fluorescence and transmission 

electron microscope (TEM) characterization of fluorescently-labeled amyloid β 1-40 

(Aβ40) peptide and α-synuclein (αS) protein. For Aβ40, three extrinsic fluorophores 

(AMCA, TAMRA, and Hilyte Fluor 488) were examined, while αS was labeled with 

both a small organic dye (Alexa Fluor 488) and enhanced green fluorescent protein 

(EGFP). Fibrils were grown in diverse solution conditions in order to determine 

whether the presence of the fluorophore precludes adoption of a significant subset of 

the wide array of possible amyloid fibril ultrastructures for these proteins/peptides 

(Anderson, et al., 2010; El-Agnaf, et al., 1998; Giasson, et al., 1999; Giehm, et al., 

2010; Kodali and Wetzel, 2007; Pedersen and Otzen, 2008; Wetzel, et al., 2007). 

 My TEM images show that several extrinsic fluorescent labels do not preclude 

the formation of amyloid deposits of varying morphologies for Aβ40 and αS. These 

results are in accordance with previous studies of Amyloid β 1-42, which showed that 

extrinsic fluorophore labeling does not prevent the formation of classic amyloid 

aggregates (Chafekar, et al., 2008; Jungbauer, et al., 2009; Saavedra, et al., 2007; 

Webster, et al., 2001). Furthermore, I measured the two-photon action cross section of 

the Hilyte Fluor 488-labeled Aβ40 peptide and verified that this construct is suitable 

for two-photon microscopy and spectroscopy applications. 
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 In contrast, fluorescent protein labeling of αS appears to favor the formation of 

two types of rigid aggregates when protein solutions are incubated near physiological 

pH. Notably, a previous paper demonstrated that a yellow fluorescent protein (YFP) 

label did not prevent the formation of at least one type of αS amyloid fibril (Van Ham, 

et al., 2010). However, it is unclear whether the EGFP tertiary structure remains intact 

in the αS-EGFP fibrils. In addition, my preliminary experiments suggest that filtering 

solutions to remove oligomers and insoluble material may prevent aggregation of αS-

EGFP, and therefore fibrillization may be nucleation-dependent. Additional 

investigations will be required to fully understand the fibril structures and aggregation 

pathways for the αS-EGFP construct. 

 Moreover, the tertiary structure of EGFP can be disrupted by incubation in 

acidic or basic solutions (Bokman and Ward, 1981) or via the addition of the 

fluorinated alcohol TFE (2,2,2-trifluoroethanol) (see Chapter 4). I find that disruption 

of the EGFP tag modifies the aggregation properties of the αS-EGFP construct, as 

might be expected. When αS-EGFP is incubated in acidic (pH 2.4), low ionic-strength 

solutions, long, rigid fibrils are formed. The addition of 154 mM NaCl to these acidic 

solutions results in the formation of both flexible and rigid fibrils. Flexible fibrils are 

also formed in solutions containing ~10-15% (all TFE percentages v/v) TFE. 

Therefore, although the EGFP tag does not prevent aggregation of the αS-EGFP 

construct, the fibrillization pathway is affected by the conformation of the fluorescent 

protein label. Also, some αS-EGFP fibrils formed under denaturing conditions are 

similar to those observed for EGFP alone (Chapter 4), implying that properties of the 

fluorescent protein tag may dominate the aggregation reaction at low pH and/or 

moderate-to-high TFE. Thus, caution must be used when employing fluorescent 

protein tags to study αS aggregation reactions in potentially denaturing conditions.  
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Materials and Methods 

 Solutions and Reagents: Acros Organics brand 99.8% pure TFE was purchased 

from Fisher Scientific. MilliQ or HPLC grade water was used to prepare all solutions. 

Trizma brand pre-set pH 7.7 crystals (Sigma) were used to prepare Tris buffers that 

were pH ~7.4 at 37 °C. Temperature-dependent changes in the pH of other buffer 

solutions were ignored. Sodium azide (Sigma) at ~0.02% w/v was added to all 

solutions incubated at ≥ 20 °C for over 24 hours. A benchtop orbital shaker operating 

at 200 RPM was used to agitate some samples during incubation. 

 Aβ40 Preparation / Solubilization: The three tags for the Aβ40 peptide that are 

discussed in this appendix are Hilyte Fluor 488, TAMRA (5-

carboxytetramethylrhodamine), and AMCA (7-Amino-4-methylcoumarin-3-acetic 

acid). N-terminally fluorophore-labeled, synthetic Aβ40 peptides were purchased from 

Anaspec. The subsequent preparation roughly followed the protocol from (Bitan and 

Teplow, 2005). Briefly, the lyophilized peptides were dissolved at ~1 mg/mL in 2 mM 

NaOH, and then these solutions were flash-frozen in liquid nitrogen and re-

lyophilized. Final solubilization was accomplished by dissolving the powder into 10 

mM, pH 10 carbonate buffer and filtering through YM-30 or YM-50 Microcon filters 

(Millipore). An exception to this procedure is shown in Figure D.1A; for this sample, 

0.1 mg of Hilyte Fluor 488-labeled Aβ40 was dissolved directly into water. 

 Alexa Fluor 488 labeled αS Preparation / Solubilization: Alexa Fluor 488 was 

purchased from Invitrogen, and labeling was generously performed by Trudy Ramlall 

and Prof. David Eliezer of Weill Cornell Medical College, using previously described 

procedures (Rhoades, et al., 2006). However, serine-to-cysteine mutations and 

labeling at position 9 were performed on A30P and A53T, in addition to WT αS. 

Furthermore, C-terminal labeling of WT and A30P αS was also investigated via a 

glutamate-to-cysteine mutation at position 130. Free dye was removed from the 
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samples by dialysis vs. 10 mM pH 7.5 sodium phosphate (NaPhos) buffer using Slide-

A-Lyzer 10,000 MW cutoff dialysis cassettes (Thermo-Fisher Scientific). 

 αS-EGFP Expression: Vectors for mammalian expression of the αS-EGFP 

construct were a kind gift from Professor Bradley Hyman of Massachusetts General 

Hospital Medical School at Harvard University; information about this construct can 

be found in (McLean, et al., 2001). Transformation into a bacterial vector and 

subsequent protein expression was performed by Dr. Cynthia Kinsland and the Cornell 

University Life Sciences Core Laboratories Center Protein Production Facility. 

 Plasmid DNA was purified with the Qiagen Miniprep kit. E. coli strain MachI 

(Invitrogen) was used as a recipient for transformations during plasmid construction 

and for plasmid propagation and storage. PCR was performed with Phusion DNA 

polymerase (New England Biolabs) per the manufacturer’s instructions. DNA 

oligonucleotides were ordered from IDT DNA. Site-directed mutagenesis was 

performed by a standard PCR protocol using PfuTurbo DNA polymerase per the 

manufacturer’s instructions (Agilent) and DpnI (New England Biolabs) to digest the 

methylated parental DNA prior to transformation. 

 Site-directed mutagenesis was performed on the provided plasmid to introduce 

a 6xHisTag at the C-terminus of the αS-EGFP fusion protein. The primers used for 

mutagenesis were: 5’-GGC ATG GAC GAG CTG TAC AAG CAC CAT CAC CAC 

CAT CAC-3’ and 5’-CTA GAG TCG CGG CCG CTT TAG TGA TGG TGG TGA 

TGG TGC TT-3’. After transformation, colonies were screened for the presence of the 

HisTag by PCR using the following primer pair: 5’-GGG ATC CAT CGC CAC CAT 

GG-3’ and 5’-CGC GGC CGC TTT AGT GAT GG-3’. A plasmid which screened 

correctly was verified by sequencing. The final construct was based on the cloning 

vector EGFP-N3, with αS fused to the N-terminus of EGFP and a 6xHisTag fused to 

the C-terminus of EGFP. 



 

182 

 The fusion construct described above was moved into a vector for E. coli 

expression by using the following primer pair: 5’-GGG TAG CAT ATG GAT GTA 

TTC ATG AAA GGA CTT TC-3’ and 5’-CCC TAC TCG AGT TAG TGA TGG 

TGG TGA TGG TGC-3’. Following amplification, the PCR product was digested 

with NdeI and XhoI and ligated into a similarly digested pTHT vector, resulting in an 

additional 6xHisTag added to the N-terminus of the total fusion construct. pTHT is a 

homemade vector which is equivalent to pET-28 (Novagen) with a TEV protease 

recognition site in place of the thrombin recognition site.  

 Plasmids were transformed into BL21Star (DE3) cells (Stratagene) harboring 

the pRARE2 plasmid (Novagen) and selected on kanamycin/chloramphenicol media at 

all stages. Protein expression in shake flasks was performed as described in the pET-

system manual, with induction by IPTG (1mM) at reduced temperature (15 °C) and 

overnight incubation post-induction. Cells were harvested by centrifugation, lysed by 

sonication and HisTagged protein was purified on 5 mL HisTrap HP columns (GE) 

using an AKTA FPLC. Buffers used for purification were A) Binding: 20 mM Tris, 

pH 8.0, 500 mM NaCl, 30 mM Imidazole. B) Elution: 20 mM Tris, pH 8.0, 500 mM 

NaCl, 500 mM imidazole. The column was washed with A until the A280 had 

returned to baseline and was then washed with 10% B in A and 15% B in A. For both 

washes, the wash was continued until the baseline had stabilized (several column 

volumes). The protein was then eluted in 100% B. 

 αS-EGFP Dialysis and Buffer Exchange: To prepare the samples shown in 

Figure D.4, which were buffered with Tris containing 100 mM NaCl or PBS (10 mM 

pH 7.5 NaPhos with 154 mM NaCl), the eluted protein was dialyzed into the buffer 

using 10,000 MWCO Slide-A-Lyzer casettes (Pierce).When dialyzed into PBS, the 

protein partially precipitated, and visible white material was removed from these 

solutions by centrifugation for 30 minutes at 13,000 x g. The pellet was collected and 
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used to “seed” some samples (e.g. Figure D.4G-I). Some aliquots of the dialyzed 

protein solutions were spin filtered using YM-100 Microcon filters (Millipore) in 

order to obtain mostly monomeric stock solutions. When necessary, filtered solutions 

were concentrated using Amicon YM-10 filters (Millipore). 

 For the samples shown in Figure D.6, filtering was performed using a 0.22 μm 

syringe filter (Millex-GV, Millipore), followed by filtering with YM-100 Microcon 

filters (Millipore). Buffer exchange into water was performed using Amicon YM-10 

filters (Millipore), and the αS-EGFP stocks were diluted into buffer or acid prior to 

incubation. 

 Spectroscopy: Fluorescence emission and absorbance spectra were collected 

following the procedures described in Chapter 4. All fluorescence emission signals 

were normalized to the emission from EGFP in PBS at room temperature. 

 Determination of Protein Concentrations: UV or visible light absorbance 

measurements via a double-beam a Cary-300 spectrophotometer (Varian) were used to 

quantify the amount of protein in the stock solutions. Table D.1 shows the peak 

wavelengths and extinction coefficients for the fluorophores examined in this 

Appendix. The protein concentration was assumed to be the same as the fluorophore 

concentration in all cases. 

 Transmission Electron Microscopy Imaging: The general procedure for the 

TEM sample preparation and imaging is described in (Anderson, et al., 2010). Slight 

variations of these techniques were employed to obtain some of the images, including 

the occasional use of homemade butvar grids (both carbon-coated and uncoated butvar 

grids were employed), and the rare use of 1% (w/v) uranyl acetate, rather than 2% 

(w/v) phosphotungstic acid, stain. These differences in methodology did not 

significantly affect the imaging results. 
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Table D.1. Wavelengths (λ) of the absorbance peaks and the molar 
extinction coefficients (ε) at the peaks for the fluorescent tags examined in 
this Appendix. The EGFP value is from Lybarger, et al. (Lybarger, et al., 
1998). For the extrinsic small molecule tags, the extinction coefficients 
were provided by the manufactures of the tags and/or the labeled peptides 
(Anaspec for Hilyte Fluor 488, AMCA, and TAMRA, and Molecular 
Probes for Alexa Fluor 488). 

 
 

Fluorophore λ (nm) ε (M-1 cm-1) 
EGFP 488 55,000 

Alexa Fluor 488 492 72,000 
Hilyte Fluor 488 502 85,000 

AMCA 350 19,000 
TAMRA 554 65,000 
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 Two-Photon Action Cross Section Measurements: A pulsed titanium sapphire 

Mai Tai laser (Spectra Physics) was used to excite the fluorophores over the 

wavelength range of 760-1000 nm. The excitation and emission light were focused 

through a 63x, 1.2 NA water immersion C-Apochromat objective lens (Zeiss) into 

~100 nM peptide samples, which were mounted on an inverted microscope (IX71, 

Olympus). The intensity of the excitation beam was measured using a photodiode, 

while the intensity of the emitted fluorescence was detected using a gallium arsenide 

phosphide photomultiplier tube (Hamamatsu). Linear fitting to the emitted light vs. 

incident intensity squared curves were performed at each measured wavelength and 

the resultant slopes were normalized to the values for a pH 11 fluorescein standard 

(Xu, et al., 1996) in order to determine the two photon action cross section for the 

unknown fluorophores.  

 

 Extrinsic Dye-Labeled Aβ40 Aggregates 

 After incubation in aggregation-promoting conditions, fluorescent clumps are 

often apparent by eye in the bottom of solutions containing Aβ40 constructs that are 

tagged with TAMRA or Hilyte Fluor 488 at the N terminus of the peptide. The 

supernatants of these solutions are fluorescent prior to aggregation, and become clear 

or nearly clear after incubation. The fluorophore AMCA emits in the UV, but similar 

aggregation behavior for Aβ40 labeled with this dye were observed when the peptide 

solutions were placed in a spectrophotometer. Therefore, Aβ40 aggregates grown in 

these solutions are fluorescent, and I used TEM to examine their ultrastructures. 

 Figure D.1 shows TEM images of aggregates grown from labeled Aβ40. 

Various fibril types are apparent, including thin flexible “protofibrils,” standard 

amyloid fibrils 9-12 nm in diameter, and wider, multi-stranded fibrils. Thus, labeling 

with these fluorophores does not prevent the formation of many types of amyloid  
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Figure D.1. TEM images of protofibrils and fibrils grown from Aβ40 
labeled with three extrinsic fluorescent dyes. Each column shows 
aggregates for one fluorophore, and the images are arranged to show a 
rough progression from flexible protofibril-like species (top rows) to 
thicker rigid aggregates (bottom rows). The scale bar is 200 nm wide and 
all images are shown at the same magnification. Unless otherwise noted, 
the samples were incubated at room temperature under quiescent 
conditions. (A) Protofibrils in a sample containing ~200 μM Hilyte Fluor 
488-Aβ40 in water, after 7 days’ incubation. (B) Rigid fibrils and flexible 
protofibrils grown in a solution containing 16 μm Hilyte Fluor 488-Aβ40 
in 50 mM pH 7 NaPhos buffer with 40 mM NaCl, after incubation for 1 
month. (C) Fibrils grown from a solution containing 15 μM Aβ40 in 100 
mM, pH 7 NaPhos buffer after 8 weeks. (D) Twisted fibrils grown from 
10μM Aβ40 after 1 month incubation in 50 mM pH 6 NaPhos buffer. (E) 
Rigid fibrils with various widths and helicities present in a solution 
containing Hilyte Fluor 488-Aβ40 in 50 mM, pH 7 NaPhos buffer with 5% 
TFE, after ~2.5 months’ incubation. (F)-(G) A combination of flexible 
protofibrils and rigid amyloid fibrils grown from 25 μM TAMRA-Aβ40 
incubated for 14 days at 37 °C with 200 RPM shaking in 50 mM pH 7 
NaPhos buffer with 10% TFE. (H) Twisted fibrils present in solutions 
containing 50 μM TAMRA-Aβ40 in 100 mM pH 7 NaPhos buffer after 8 
weeks’ incubation. (I) Twisted fibrils present in solutions containing 53 
μM TAMRA-Aβ40 in 50 mM pH 7 NaPhos buffer with 5 % TFE after ~3 
months incubation. (J) Wide fibrils grown from 50 μM TAMRA-Aβ40 in 
50 mM pH 6 NaPhos after 5 months’ incubation. (K) Flexible protofibrils 
grown from 25 μM AMCA-Aβ40 incubated for 14 days at 37 °C with 200 
RPM shaking in 50 mM pH 7 NaPhos buffer containing 10% TFE. (L) 
Straight fibrils grown in identical solutions as K, except the samples were 
incubated overnight at 37 °C with 200 RPM shaking, followed by 37 days 
at room temperature under quiescent conditions. (M) Twisted fibrils 
present in solutions containing 10 μM AMCA-Aβ40 in 50 mM, pH 6 
NaPhos buffer, after incubation for 1 month. (N) Twisted fibrils grown 
from 20 μM AMCA-Aβ40 in 50 mM, pH 7 NaPhos buffer with 100 mM 
NaCl, after 1 month. (O) Same as N, but without NaCl. 
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aggregates. In general, samples with higher concentrations of peptide and lower ionic 

strengths are more likely to form protofibrils, while wider fibrils are prevalent at high 

ionic strengths. However, details of the solution preparations cause variations in fibril 

types and morphologies are not wholly reproducible. 

 Potential applications of these labeled peptides include two-photon imaging 

and two-photon fluorescence correlation spectroscopy. The two-photon action cross 

sections of AMCA and TAMRA are sufficient for these applications (Makarov, et al., 

2008; Neu, et al., 2002; Wang, et al., 2010), but the cross section for Hilyte Fluor 488, 

which is an analogue of Alexa Fluor 488, had not been previously determined, as far 

as I know. Therefore, I measured the two photon action cross section for Hilyte Fluor 

488-Aβ40, and compared this curve to the free Alexa Fluor 488 dye cross section 

(Figure D.2). Although the absorption peaks are shifted for the two fluorophores, 

Hilyte Fluor 488 is a good two-photon probe at ~660-820 nm and ~940-1000 nm. In 

sum, these observations indicate that AMCA, TAMRA and Hilyte Fluor 488 are 

reasonable tags for use in Aβ40 aggregation studies that involve single- and two-

photon fluorescence techniques. 

 

Alexa-488-αS Aggregates 

 Aggregates grown from αS variant proteins labeled with Alexa Fluor 488 are 

also visible by eye, especially when TFE is present in the solutions. When these 

fluorescent aggregates are imaged using TEM, both classic amyloid and “TFE fibrils” 

(see Chapter 2) are detected (Figure D.3). 

 In addition, Figure D.3 reveals that the Alexa Fluor 488 labeled αS variants 

form aggregates with diverse ultrastructures, including TFE fibrils, rigid strands with 

no apparent twist, and fibrils that appear to consist of pairs of strands wrapped around 

each other. Therefore, the Alexa Fluor 488 label does not prevent the formation of  



 

189 

 

 

 

 

 

 
 
 
 

 
 
Figure D.2. Two-photon action cross section (φfσ2p) of Hilyte Fluor 488-
labeled Aβ40, compared to the curve for Alexa Fluor 488 free dye. The 
units for the cross section are Goeppert-Mayer (GM), where 1 GM = 10−50 
cm4 s photon−1. 
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Figure D.3. TEM images of aggregates grown in various solution 
conditions from αS variants labeled with Alexa Fluor 488. The scale bar is 
200 nm wide and all images are shown at the same magnification. All 
samples were incubated in the presence of 10 mM Naphos, pH 7.5, but 
some samples contained additional TFE and/or NaCl, as noted. (A) Thin, 
rigid fibrils grown from 43 μM WT/E130C-Al488 αS in the presence of 
154 mM NaCl after incubation for 8 days at 37 °C with shaking. (B) Thin, 
rigid fibrils grown from 43 μM WT/S9C-Al488 αS in the presence of 154 
mM NaCl and 5% TFE after incubation for 8 days at 37 °C with shaking. 
(C) Thin, rigid fibrils grown from 50 μM A30P/E130C-Al488 in the 
presence of 154 mM NaCl after incubation for 2 weeks at 37 °C with 
shaking. (D) Similar to C, except fibrils were grown from A53T/S9C-
Al488 αS. (E) Similar to C, except 5% TFE was added to the solution. (F) 
Fibrils of varying helicities grown from A53T/S9C-Al488 αS incubated in 
the presence of 154 mM NaCl and 5% TFE. (G-I) TFE fibrils, twisted, 
rigid fibrils and straight, rigid fibrils grown from 50 μM A30P/ E130C-
Al488 αS with 5% TFE, after incubation for 10 days at 37 °C with 
shaking. (J) TFE fibrils and rigid fibrils grown from 43 μM WT/E130C-
Al488 αS in the presence of 154 mM NaCl and 5% TFE after incubation 
for 8 days at 37 °C with shaking. (K) TFE fibrils grown from 43 μM 
WT/S9C-Al488 αS in the presence of 154 mM NaCl and 15% TFE after 
incubation for 36 days at 25 °C under quiescent conditions. (L) TFE fibrils 
grown from 50 μM WT/E130C-Al488 αS in the presence of 154 mM 
NaCl and 10% TFE after 2 weeks’ incubation at 25 °C under quiescent 
conditions. (M) TFE fibrils grown from 50 μM WT/E130C-Al488 αS with 
5% TFE after incubation for 1 week at 25 °C under quiescent conditions. 
(N) TFE fibrils grown from 50 μM A30P/S9C-Al488 αS with 10% TFE 
after 10 days’ incubation at 37 °C with shaking. (O) TFE fibrils grown 
from 50 μM A30P/E130C-Al488 αS after 10 days’ incubation at 37 °C 
with shaking. 
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multiple types of αS aggregates. However, these images do not enable direct 

comparisons of the aggregation properties because of variability in solution conditions 

and incubation times, as well as the possible presence of pre-aggregated material or 

oligomeric species in the stock solutions. Therefore, more detailed studies are 

necessary to determine whether labeling or label location has any subtle effects on 

aggregation pathway selection. 

 

EGFP-αS Aggregates 

 When solutions containing 75 μM and 150 μM αS-EGFP in PBS were 

prepared using unfiltered αS-EGFP stock solutions, fibrils were apparent and plentiful 

(Figure D.4A-C). However, fibrils were not found for filtered (100 kDa cutoff) stock 

solutions when all other solution conditions, including incubation time and protein 

concentration as measured by UV absorbance at 488 nm, were held constant. Similar 

results were obtained for αS-EGFP in Tris buffer with 100 mM NaCl. When the Tris 

stock solution was filtered, fibrils were not observed via TEM for a 34 μM sample 

incubated for 30 days at 37 °C. However, the addition of a small amount (~4 μM out 

of 34 μM total) of dialyzed, unfiltered protein to the sample resulted in the formation 

of αS-EGFP fibrils (Figure D.4D-E). 

 Additional images of αS-EGFP fibrils gown from seeded or unfiltered 

solutions at pH ~7.5 in various buffer conditions are shown in Figure D.4E-I. 

Interestingly, these fibrils appear to have a thin, straight core (~5-7 nm in diameter) 

around which winds a somewhat indistinct or blurry helix. The total fibril diameter is 

~22 nm, and the helical period is variable, ranging from ~140 nm to over 300 nm. In 

some samples (Figure D.4B,C,E), shorter, untwisted, multi-stranded rigid fibrils were 

also observed. 
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Figure D.4. TEM images of aggregates found in solutions that were 
prepared using unfiltered or seeded αS-EGFP stocks. The scale bar is 200 
nm wide and all images are shown at the same magnification. (A-B) 
Aggregates grown from 75 μM unfiltered αS-EGFP in pH 7.5 PBS 
incubated for 3 weeks with shaking at 37 °C. (C) Same as A, but the 
solution contained 150 μM αS-EGFP. (D-E) Fibrils grown in a solution 
containing 30 μM filtered αS-EGFP, plus ~4 μM unfiltered αS-EGFP 
“seed”, in pH 7.4 Tris buffer with 100 mM NaCl, incubated at 37 °C with 
shaking for one month. (F) Fibrils grown from 20 μM unfiltered αS-EGFP 
in pH 7.4 Tris buffer with 100 mM NaCl, after one month incubation at 37 
°C with shaking. (G-I) Fibrils grown from 150 μM filtered αS-EGFP plus 
~ 8 μM unfiltered αS-EGFP “seed”, in pH 7.5 PBS buffer, after incubation 
for one month at 37 °C with shaking. 

 



 

194 

 Although TEM imaging is not a quantitative technique, these preliminary 

results suggest that “seeding” samples with unfiltered or pre-aggregated material may 

promote fibril formation. However, additional experiments must be done to verify this 

result. 

 When αS-EGFP solutions containing fibrils are examined by eye, they appear 

uniformly fluorescent, unlike the extrinsic fluorophore-labeled samples in which 

fluorescent aggregated material is clearly visible at the bottom of the tubes. This may 

be a result of αS-EGFP fibrils remaining suspended in solution, or the fibril fraction 

may be a minor component of the sample. Alternatively, the EGFP tag may be 

quenched or altered in the αS-EGFP fibrils. Interestingly, van Ham, et al. observed a 

reduction in fluroescence for fibrils formed from YFP-labeled αS, which they attribute 

to energy migration Förster resonant energy transfer (also known as homoFRET), 

rather than disruption of the YFP tertiary structure (Van Ham, et al., 2010). It is 

currently unclear whether the αS-EGFP fibrils preserve the EGFP tertiary structure or 

involve unfolding of the EGFP tag prior to fibrillization. 

 Fluorescent protein tertiary structure can be disrupted by extremes of pH 

(Bokman and Ward, 1981) and by the addition of moderate-to-high concentrations of 

TFE (Chapter 4). Loss of native tertiary structure results in loss of green fluorescence 

and a shift in the absorbance peak (Bokman and Ward, 1981; Ward and Bokman, 

1982). In Figure D.5A, I show that the spectral features of acid-denatured αS-EGFP 

are similar to those of EGFP alone. In addition, the presence of >≈10% TFE results in 

loss of fluorescence for the αS-EGFP construct (Figure D.5B), as was previously 

observed for EGFP (Chapter 4). Note that, although loss of green fluorescence reflects 

disruption of EGFP tertiary structure, the acid-denatured state of αS-EGFP is likely to 

be significantly different from the TFE-denatured state. In particular, acidic conditions  
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Figure D.5. Spectral properties of the αS-EGFP construct. (A) 
Absorbance spectra of αS-EGFP (dashed lines) and EGFP (solid lines). 
Spectra are shown for 5 μM protein in 10 mM phosphoric acid (pH 2.4, 
thin lines) and 10 mM, pH 7.5 NaPhos buffer (thick lines). (B) The 
normalized fluorescence emission from αS-EGFP (squares) and EGFP 
(circles) as a function of TFE concentration (in % v/v for samples mixed at 
room temperature). The signal from 0.3 μM protein is measured after a 2.0 
± 0.5 minute incubation at room temperature (~22 °C, solid symbols) or 
37°C (open symbols). The error bars show the standard deviations of 
measurements of three identical samples. 
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populate a “statistical coil” or disordered conformation, while ≥ 15% TFE likely 

promotes the formation of non-native α-helical secondary structure (Chapter 4). 

 Figure D.6 shows TEM images of aggregates grown from αS-EGFP in 

conditions in which the EGFP tag is likely to be denatured. In low ionic strength, pH 

2.4 solutions, rigid, amyloid-like fibrils ~12 nm in diameter were observed (Figure 

D.6A-B). However, the inclusion of 154 mM NaCl in these solutions resulted in the 

formation of thin, flexible fibrils (Figure D.6C). Notably, these aggregates are similar 

to those observed for EGFP alone at pH 2.4 (Chapter 4 and Appendix C). 

 αS-EGFP solutions appear clear or cloudy-white after incubation for > 24 

hours in the presence of 15% TFE. TEM examination of these samples reveals a 

combination of amorphous aggregates, thin, flexible, fibrillar aggregates, and rigid 

fibrils that resemble classical amyloid (Figure D.6D). Prolonged, room-temperature 

incubation of αS-EGFP in the presence of 10-15% TFE resulted in the formation of 

short, flexible aggregates (Figure D.6E-G). When a combination of acidic conditions 

and TFE were employed, both short, disordered, fibrillar aggregates and rigid fibrils 

were observed (Figure D.6H-I). The diameters of the flexible species grown in the 

presence of TFE appear to vary, and these structures bear some resemblance both to 

“TFE fibrils” (Chapter 2) and to the flexible aggregates observed for EGFP alone 

(Chapter 4). 

 In sum, TEM images of αS-EGFP solutions reveal that this construct forms 

rigid fibrils that resemble classic amyloid at neutral pH, and preliminary results 

indicate that the aggregation pathway may be nucleation-dependent. In addition, 

conditions in which the EGFP label is disrupted result in the formation of amyloid-like 

fibrils and shorter, flexible fibrillar species. The relationship between the aggregates 

observed for the αS-EGFP construct and fibrils formed from αS and EGFP separately  
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Figure D.6. TEM images of αS-EGFP aggregates grown in conditions in 
which the EGFP tag is likely to be disrupted or denatured. The scale bar is 
200 nm wide and all images are shown at the same magnification. (A-B) 
Aggregates grown from 50 μM αS-EGFP at pH 2.4, incubated for 3 weeks 
with shaking at 37 °C. (C) Same as A, but the solution also contained 150 
mM NaCl. (D) A rigid, amyloid-like fibril and thinner, flexible fibrils 
observed in a solution containing 50 μM αS-EGFP in pH 7.5 NaPhos with 
15% TFE, after incubation for 3 weeks with shaking at 37 °C. (E) Flexible, 
irregular fibrils grown from 50 μM αS-EGFP in pH 7.5 NaPhos with 10% 
TFE, after incubation for 3 weeks at room temperature under quiescent 
conditions. (F) Same as E, but the solution contained 75 μM αS-EGFP. 
(G) Same as E, but the solution contained 15% TFE. (H) Aggregates 
grown from 50 μM αS-EGFP at pH 2.4 with 15% TFE, incubated for 3 
weeks with shaking at 37 °C. (I) Same as G, but the solution also 
contained 150 mM NaCl.  
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remains unclear. Further experiments must be performed to determine whether the 

EGFP tertiary structure remains intact in any of the αS-EGFP fibrils. 
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