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Introduction

Education in New York State is as multifaceted as the communities its school 

districts represent. Over 700 districts paint a backdrop of diverse students, teachers, 

neighborhoods, and communities. In 2014, the average concentration of students receiving 

free or reduced price lunch among school districts was 44%. If viewed as a proxy variable 

for poverty, this implies nearly half of New York State’s public school students came from 

families living in or near poverty. Keeping the variability of these three metrics (high 

school degrees, poverty, performance) and other New York school district characteristics 

in mind is also crucial to understanding the landscape of education in New York. In 2015, 

the average proportion of minority students in each school district was 20%, though some 

districts contained far fewer and far greater concentrations of minority students. In terms 

of variation in population size across NY State communities, some districts enroll over 

10000 students, while others enroll fewer than 300. The average number of students 

defined as college and career ready was just 42%. This metric, referred to as the 

Aspirational Performance Measure (APM) by New York State, is a combination of a school 

cohort’s graduation rate, math test scores, and English test scores. As a proxy for school 

performance, some might view this average as disheartening. Furthermore, given the 

variability and diversity of the educational landscape, it is difficult to consider which 

factors might contribute to performance more than others. Previous qualitative and 

empirical literature has explicated the multifaceted links between families, communities, 

and children with regards to schooling performance. For years, quantitative analyses of 

education performance have been performed through traditional means: OLS regression. 

Statistical studies seeking to unmask the correlates of school performance and subsequent



consequences are nothing new. Where this research attempts to bring a layer of added value 

to the school performance literature, including community effects, is through spatial 

statistics. Though some studies have begun to analyze the neighborhood effect’s impact on 

education, including the impact of neighbors-of-neighbors—the extralocal effect—they 

have yet to combine this theory with certain spatial methodologies. With limited resources 

spread across a broad spectrum of policy needs, we must change the preordained 

assumptions with which we evaluate our models.

Background

Sociological theory has long posited the idea that educational attainment of parents 

translates fairly consistently to relative socioeconomic status and that unequal education 

outcomes can ‘follow’ individuals from parent to child (Duncan & Murnane, 2011; Carter 

& Weiner, 2013). Thus, it i s not without reason to posit that levels of educational attainment 

for a child can be directly impacted by the circumstances surrounding the parent; the 

amalgamation of natural and social circumstances as described by John Stuart Mill 

(Skorupski, 1989). Several decades of sociological and psychological research support the 

position that children benefit from parents / guardians actively participating in their 

educational pursuits by way of higher educational achievement (Muller & Kerbow, 1993; 

Simon, 2000; Dombusch & Darling, 1992; Fehrmann et al, 1987). Research also shows 

that level of parental involvement can vary from household to household but that this 

variance can somewhat be reduced by increasing the school’s interaction with families 

beyond that of just the student (Muller & Kerbow, 1993, Galindo & Sheldon, 2012). Flora 

& Flora (2013) also posit that ‘life-altering assets’ such as schools can be enhanced or 

degraded through the use of collective agency, putting forward that schools often act as



stabilizing forces within communities. It is also well accepted that parents with higher 

levels of education are more likely to be involved with their children’s academic pursuits 

than those parents with less education and that certain limitations on parents in lower- 

income families can put students at risk of having less of said involvement (Stevenson & 

Baker, 1986). Variance in levels of involvement between parents in higher- and lower- 

income is well-recognized, so much so that in 1996 the National Network of Partnership 

Schools was founded in order to assist primary school educators in developing community 

partnership programs. These programs are designed to enhance leadership development, 

create action plans, and form partnership teams comprised of students, community 

members, teachers, administrators and parents (Carlson and Cowen, 2015). Additionally, 

multi-language documentation, community involvement activities, and family-to-school 

communication strategies attempt to strengthen the ties between home and school, 

underscoring the importance of schools as integral facets of communities. Partnership 

programs such as NNPS have been proven to increase parental involvement (Simon 2000) 

but there is not enough evidence to make a substantial claim on partnership programs’ 

impact on student performance. Though years of literature supports the benefits children 

gain from having family involvement in their schooling, there is still a necessity for 

research surrounding home-school partnerships, especially those which are 

methodologically robust and address effects of parental education (Lawrence, 2016; 

Patrikakou, 2016)

The effect of the school-community relationship, or ‘natural and social 

amalgamation,’ is often challenged by the fact that school resources are not evenly 

distributed across locales, most famously brought to national attention by the Brown v



Board of Education case in 1954, Serrano v. Priest in 1971, and San Antonio v. Rodrigues 

in 1973. Following the Civil Rights Act, the somewhat successful initial move toward 

desegregation (Swann v. Chariotte-Mecklenberg, 1971) and the growing number of 

students from immigrant families going to school, the pressure on educational systems in 

America to provide adequate and fair resources for all students, including English 

Language Learners, was considerably stronger (Coleman, 1966; Fraser 2001). In his 

landmark 1966 report and later writing Coleman (1975) argues exploring family 

background enhances our explanation of the variation in achievement than school resources 

alone, which was in direct opposition the largest education reform act to date, the 

Elementary and Secondary Education Act (1965). What Coleman’s report was remiss in 

addressing in greater detail was whether these ‘family differences’ were a product of 

neighborhood quality, family income, parent education, or other factors. More recent 

research suggests that the fiscal economies of communities, as a whole, play a significant 

part in educational opportunity for children as both the families and the schools are deeply 

embedded within communities (Wang and Reynolds, 1996, Giersch et al 2016).

This leads us to the supposition that geography matters: where a family lives and, 

subsequently, where a child attends school can have a profound and varied impact on her 

educational attainment. And, this impact is above and beyond the characteristics of 

individual families and local neighborhoods. Basic awareness of a community’s makeup is 

the first step in understanding how education (opportunity and outcome) might be 

impacted, including how selective some families can or will be when choosing to live in a 

community. Selection is a result of numerous factors, one of the most important most often 

being income or socioeconomic status (Douglas, 1964; Ellen & Turner, 1997; Lee &



Burkam, 2002; Bast & Walberg, 2004). Research indicates that neighborhood context, 

including poverty rates, educational attainment, and family composition can contribute to 

increasing socioeconomic segregation, have direct effects on childhood intellectual 

development, and can be a determinant factor in where families choose to live (Bischoff & 

Reardon, 2013). Bischoff & Reardon illustrate the example of two children in 

socioeconomically disparate neighborhoods, and this relates directly to our discussions on 

social / cultural capital. The poor child from a poor neighborhood may see few individuals 

with high educational attainment and, thus, doesn’t assign high value to school. The 

opposite effect is seen in wealthy neighborhoods, where wealthy children are surrounded 

by those with higher degrees of educational attainment and therefore assign a higher level 

of cultural capital to schooling (Bischoff & Reardon, 2013; Coleman, 1975). This variation 

between areas within a community or school district is not a newly researched concept. 

Gulson & Symes (2007) aggregate research on education, policy, and geography. One 

article, in specific, relates spatial theories, access, equity, and the educational differences 

between rural and urban districts across the United States. In a recent publication, Hogrebe 

and Tate (2016) speak to the importance of communities’ understanding the geographical 

makeup of their own locale, as well as surrounding areas, in order to make informed policy 

decisions on neighborhood planning and educational resources.

The thought that neighborhood socioeconomic conditions can have a direct impact 

on children’s behavior was the central point made by Jencks and Mayer (1990) in which 

they posit exposure to more disadvantaged neighbors impairs children’s social 

development. Though research surrounding neighborhood effects on education is still 

evolving, the traditional institutional model supports the thought that schools which are



more disadvantaged socioeconomic status would tend to have fewer resources, leading to 

a teacher training deficit, see less support from parents, and suffer from lower overall 

educational expectations (Lee and Burkam, 2002). Situated cognition theory, specifically 

the idea of community of practice, assumes that sociocultural practices emerge when 

people strive toward common goals alongside other individuals with similar aims 

(Heidegger, 1968). More importantly, this notion that groups of people striving toward 

common goals often undergo processes of social learning can be analogous to many of the 

sociological functions of schooling. Collective socialization and epidemic theories, 

however, also introduce the possibility that effects beyond the insular neighborhood can 

impact childhood outcomes. Crowder and South (2002) posit the notion of an “extralocal” 

neighborhood effect -  the “ ...areas surrounding an individual’s neighborhood of 

residence.” This conceptualization of a neighbors-of-neighbors effect gets at the heart of 

the spatial statistical assumption: it is not in the most appropriate standing for social science 

researchers to assume a model will predict outcomes uniformly across a geography -  which 

is exactly what we do when we run global analyses such as traditional OLS regressions 

(Pasculli et al, 2014). Ordinary Least Squares regression assume a uniform goodness-of- 

fit for the entirety of the dataset. In straightforward terms: If someone were to run an OLS 

model and predicted a relationship between minority concentration and school 

performance across State X ., the intrinsic assumption is that the predictability (or strength 

of relationship) of the model does not vary anywhere across the area of study. By running 

spatial regressions, I allow the model to vary in its predictive power across the area of 

study, thus revealing underlying structures of the dataset which would be otherwise 

obscured through global methods; I explain this in more detail in the methods section.



I also feel it important to note that the theorizing of the relationship between 

community resources, performance, and space is not complete. This study hopes to inform 

policymakers, administrators, and community members by providing a richer 

understanding of wealth, race, and educational performance in New York State through 

spatial relationships.

Data

Sources

Initial data for this analysis were collected through the Cornell University Program 

on Applied Demographics (PAD), the Community and Rural Development Institute 

(CaRDI), and the New York State Education Data Hub. Additional data for this study were 

also drawn from the United States Census Bureau, the American Community Survey 

(ACS), Open Data NY via the New York State Office of Information Technology Services, 

and the New York State Education Department. In order to represent geographic features 

such as state shape, county boundaries, district boundaries, and other point data relative to 

geospatial analyses, such files were downloaded through the US Census Bureau Tiger 

Line/Shape Files Program, the Cornell University Geospatial Information Repository 

through Mann Library, and the New York State GIS Clearinghouse.

Variable Definitions

The definitions of the dependent and explanatory variables, as well as spatial 

constructs, will be provided in this section.

For the purposes of this study, the dependent variable is identified as the indicator 

of district-level student performance labeled “PctAPM.” I use this metric instead of 

graduation rate, for example, because the latter only ascertains how many students actually



completed high school within four years. The aspirational performance measure (APM), 

however, is a metric designated by New York State to be a proxy for both performance and 

college & career readiness. The figure is ascertained through calculating the percentage of 

students who “ ... earned a score of 75 or greater on their English Regents examination...”, 

“ ...an 80 or better on a mathematics Regents exam”, and earned a high school diploma 

(NYS Board of Regents, 2012). This supersedes the value of a graduation rate because it 

ties the measure directly to measurable performance. Similarly, individual math or reading 

test scores alone were not used because of the advantage of APM being a combined metric.

The independent or explanatory variables of interest in this study include a variety 

of sociological, family-level, individual-level, community-level, demographic, and 

financial constructs which might impact student performance. In order to focus the purpose 

of this study, however, I will only focus on those surrounding wealth / income, race, 

population, and finances. To observe the relative aggregate level of families’ wealth / 

income within a community or district, I utilize the Free- and Reduced-Price Lunch (FRPL) 

metric, calculated as the percentage of those students within a district utilizing the program: 

“PctFRPL.” The FRPL program is a federally-sponsored initiative that provides free or 

inexpensive lunches to children from low-income families, providing the schools with cash 

subsidies to pay for the meals of those children who qualify (Shahin, United States 

Department of Agriculture, 2017). It is also named under the National School Lunch or 

Community School Lunch Program. This metric has long been used as a reliable proxy 

variable for poverty or similar resource deprivation. To observe the relationship of race to 

performance, I utilize a calculated variable of the percent of students within a district who 

are non-white: “PctMinority.” To determine whether the population of students has any



impact on performance, I utilize the explanatory variable “Enrollment” which is the 

number of currently enrolled students in the district. In keeping with the assertion that 

neighborhood and community effects can have an impact on student performance, I use a 

variable called “PctBach” to represent the aggregate level of education within the school 

district. This figure, generated from data U.S. Bureau of Labor Statistics American 

Community Survey, is the number of adults 25 years old or older within the boundaries of 

a school district who have earned a bachelor’s, master’s, professional, or doctoral degree. 

This number was then divided by the total population of adults 25 years old or older within 

the district to get a percentage value. Finally, I consider a financial explanatory variable 

and its potential impact on performance. “CWR,” or the Combined Wealth Ratio, is “ .. .a 

measure of relative wealth, indexing each school district against the statewide average on 

a combination of... property wealth per pupil and income wealth per pupil. A school 

district’s wealth is measured by comparing its property value per pupil with the state 

average property value per pupil, and the district’s adjusted gross income per pupil with 

the state average adjusted gross income per pupil. The ratios derived from these 

comparisons are multiplied by 0.5 and added together to form the combined wealth ratio” 

(New York State School Boards Association, 2013). The CWR will be used to determine 

if the overall level of wealth within a district has any explanatory power on the district- 

level aggregate of student performance.

Given the conceptualization of this study as mentioned above, I introduce a set of 

spatial variables that allow a test of the degree that location matters, specifically how the 

testing for underlying spatial correlations within data is often overlooked when using 

global a global inference methodology. Spatial variables are not explanatory as much as



they are necessary for the proper running of spatial regression. Such non-explanatory 

variables independent of the a-spatial OLS regression are: “GeoID” which serves as a 

unique identifier per school district, “INTPTLAT” and “INTPTLON” which are the 

geospatially interpreted latitude and longitude measurements of each district, “ALAND” 

and “AWATER” which are numerical representations of the amount of land and water, 

respectively, in each of the districts, in square meters.

Explanatory Variable Definition Table

Explanatory V ariable Name Description

PctFRPL Percent of students receiving free- and reduced- 
price lunch; proxy for poverty / low-income

PctMinority Percent of students who are non-white
Enrollment Number of students enrolled within a district
Combined Wealth Ratio Measure of individual district wealth relative to 

all New York State districts
Percent Bachelor’s Degree Percentage of adults age 25 years and older, per 

district, who have earned a bachelor’s or higher
ALAND (spatial) Measurement of the amount of land area within 

a polygon (district) in square meters
AWATER (spatial) Measurement of the amount of water area 

within a polygon (district) in square meters

Preparation

In order to prepare the data for visualization and analysis, it was cleaned, 

manipulated and labeled through Microsoft Excel and STATA. Once data was ready for 

import into ArcGIS, shapefiles provided by the NYS databases were properly visualized 

through clipping (NYS to BOCES Districts and NYS to NYS School Districts). After the 

shapefile preparation was complete, the various datasets were loaded into GIS and 

combined using the join tool, based on the unique identifier of GeoID (code commonly



used across NYS school-based data files). Individual metrics not reported by the data 

source providers were quantified using the field calculator / editor tool in ArcGIS, the 

various variable editing tools in STATA or the variable calculation tools in GeoDa. These 

were crucial in eventually being able to create the maps shown here as the fields of 

expenditures per pupil, revenue per pupil, as well as the various percentage calculations 

(APM, FRPL, Minority) were not in any of the datasets originally. Through the use of the 

symbology tools in ArcGIS, the distinctions within variables were visualized through 

graduated colors and graduated symbols. The quantile classification was used for graduated 

symbology because the variables in question are normally distributed. There were data 

points that were intentionally omitted from the analysis as they skewed the results: Union- 

Free school districts, and those districts with five students or less in one cohort were 

dropped because they do not report the level of data required for the study. Furthermore, 

several districts were dropped due to their disproportionately high level of financial outlays 

(Fire Island / NYC Schools / Bridgeport / Kiryas Joel). Limitations to data gathering 

i ncluded the aforementioned non-reporting di stri cts, and that the most recent data i s for the 

2014-2015 school year for which some school districts do not have the most up-to-date 

values. Statistical analyses such as OLS regression, and the GW Rtool were performed in 

ArcGIS. Spatial lag models, and some univariate graphics were run and output through the 

use of GeoDa, another spatial statistics software.

Methods

Spatial Statistics

Traditional research methodologies analyzing student performance typically utilize 

large-scale, sampled data sets meant to introduce deductions based on universal



extrapolations. The most common of such methods is the ordinary least squares (OLS) 

regression. When researchers study data dealing with geographic features or datasets 

conceptually tied to geography, such as ozone, temperature, water usage, or contamination 

data, for example, the impetus for analyzing such information spatially is quite clear. What 

some researchers consider a-spatial— such as employment, demographic, and education— 

data is often analyzed without considering the possibility of a spatial component. These 

data, however, are inextricably bound to local geographic features: educating students 

requires school buildings, students live in homes with their families, and those homes are 

located within towns. When these factors are considered within the context of regression 

analyses, excluding the possibility of spatial relationships can result in a higher chance of 

explanatory variables returning as statistically significant when in fact they are not, also 

known as a Type 1 error (Lennon, 2000). If spatial autocorrelation is present and a 

regression is run without accounting for spatial relationships, there is a high chance of an 

overstated association between dependent and independent variables. The positive purpose 

of using spatial regression is the testing for, and subsequent reduction of, such 

overestimation. For example, many traditional OLS regressions return standard diagnostics 

which may include the Jarque-Bera test, which asserts the level of normality for the 

residuals. Though this is a somewhat ubiquitous diagnostic, it may not always be reported 

in a write-up. A diagnostic exclusive to spatial regression, however, is the Moran’s I test. 

This tools asserts the level of spatial autocorrelation of the residuals. Any researcher using 

traditional regression techniques would be quite unlikely to use the Moran’s I test, thereby 

overlooking the potential of autocorrelation and may overestimate some relationships. A



more detailed explanation of spatial autocorrelation will serve to illuminate its usefulness 

in this study and beyond.

Spatial Autocorrelation

As spatial regression is not often used in areas of social science research dealing 

with education, an explanation of some spatial constructs is necessary. Waldo Tobler, an 

accomplished geographer and cartographer, and one of the pioneers of quantitative 

methodologies in geography, stated: “Everything is related to everything else, but near 

things are more related to each other” (Tobler, 1970; Goodchild, 2004). In essence, Where 

OLS regression returns the degree to which variables are related between or amongst each 

other, correlation, spatial regression shows the correlation within variables across 

georeferenced space (Tomlinson, 2005). Formally defined, spatial autocorrelation

measures 

“ ...the 

relationship
Dispersed

Figure I - Spatial Autocorrelation
Clustered

between some

variable observed in each of the n localities and a measure of geographical proximity 

defined for all n (n-1) pairs chosen from //” (Hubert et al, 1981). When dealing with spatial 

regression, the null hypothesis is known as the spatial independence hypothesis. This 

hypothesis is assumed to be a situation in which the observable relationships are a result of 

a completely random process (see Figure 1). The researcher works toward disproving this 

(null) hypothesis by attempting to show the process is a result of nonrandom, or systematic, 

processes -  be they resultant in dispersion or clustering. When there are no observable 

spatial relationships between events, the data is considered to be spatially independent.



When evidence points to data (people, facilities, events, etc.) being clustered together, the 

data are considered to be positively spatially autocorrelated and, in the reverse, when data 

is dispersed, the data are considered to be negatively spatially autocorrelated. The Moran’s 

I statistic, a feature of spatial regression operations, measures the level of spatial 

autocorrelation and returns a value as to whether the dataset is clustered, dispersed, or 

randomly distributed. As with many statistical techniques, attempting to determine 

causality is paramount. What is important to know about spatial statistics methodologies, 

though, is that the identification and quantification of spatial autocorrelation does not point 

to a causal relationship. It does alert the researcher to spatial processes which may be at 

work within the data.

Spatial Nonstationaritv

By analyzing datasets with spatial regression, researchers can also test for 

indicators of nonstationarity. This is crucial to a more robust understanding of varied data, 

especially in instances where geographic location can play a role in what services / 

capabilities are offered, as is true in the case of education. When there is variability in the 

strength of the relationships between the dependent and independent variables, this is 

considered spatial nonstationarity (Brundson et al, 1996). When a regression is assumed to 

be stationary, this means that the effect of the model is the same across geographic 

locations. I.e. the factors, determined in a particular model, which effect performance in 

one school district uniformly effect school districts in the same manner across New York 

State. When stated conceptually, this seems to be somewhat of an obvious blanket 

statement, and we are aware that various district dichotomies (urban / rural, upstate / 

downstate, wealthy / under resourced) can effect resource levels, capabilities, and, in turn,



performance (Darling-Hammond, 2013). This ‘blanket method’ is how a traditional OLS 

regression would treat such data if a model were run on all districts at a state-level of 

analysis. When we observe the results of a spatial regression and they indicate spatial 

nonstationarity, this means the effect of that particular model has varying impact across 

geographies— districts, for example—the same stimulus provokes a different response in 

different parts of the study area (Tomlinson, 2005). Most importantly: if  a dataset is 

analyzed by OLS regression and the researcher does not test for spatial nonstationarity, but 

nonstationarity is present, the OLS model will not reflect the true underlying structure of 

the data, thus returning a less than accurate explanation of the relationships between the 

variables in question. In cases where spatial nonstationarity is determined, methods can be 

employed to account for the fact that the model may have varying effects in different spatial 

regions. This assists in further specifying the model, hopefully reaching a level of 

prediction which exceeds that of the a-spatial OLS regression, as well as the generalized 

spatial model. Lersch and Hart (2014) most notably displayed the extreme case of OLS 

underestimation through their use of Geographic Weighted Regression (outlined in the next 

section). In their study, Lersch and Hart attempted to predict levels of crime based on 

individuals’ exposure to certain chemical toxins, in this case lead and lead-based 

compounds. When they ran an OLS regression on their dataset, which again does not take 

into account any spatial variance, the adjusted R2 value returned as 0.08: roughly 8% of 

the variability in the data could be explain through their model. When they tested for spatial 

nonstationarity and subsequently ran a spatial statistics model using GWR, the average 

adjusted R2 across census tracts was 0.44: the spatially-referenced model was close to five 

times as precise in its explanatory power.



Geographically Weighted Regression

The use of Geographic Weighted Regression (GWR) is a method by which 

researchers can narrow the field of study in an effort to increase the model’s explanatory 

power. GWR serves as a localized methodology wherein the relationships are allowed to 

vary across the study area and is primarily used to detect and determine broad scale regional 

variation (Wheeler, 2014). By defining the local area, or neighborhood, researchers can use 

GWR to test where a particular model functions well, or where it may be less capable in 

its predictive power. Operating based on concepts outlined the literature, I intend to use 

spatial regression, including GWR, to more robustly define which districts, classified by 

resource deprivation, may be more impacted by models predicting student performance 

than others.

Study Design

In order to analyze the effect of the explanatory variables on student performance 

the study will proceed through four stages of analysis. First, univariate descriptive statistics 

will be observed to present a basic understanding of the dependent, explanatory, and 

geospatial variables. Second, multivariate statistics will be presented to observe 

relationships between and among all variables within the dataset. Third, a traditional a- 

spatial OLS regression model will be run and interpreted to ascertain various effects on 

student performance, and the level of predictability of the model. The residuals of the OLS 

model will be analyzed for spatial autocorrelation, through the use of the Moran’s I 

statistic. Fourth, given that spatial autocorrelation is observed, weights will be calculated 

for the school districts and their neighborhoods, and spatial regressions will be performed. 

This will allow the researcher to observe potential shifts in coefficient values, statistical



significance, and the mitigation or correction of spatial autocorrelation within the model. 

Fifth, the implementation of a geographically weighted regression model will be tested to 

ascertain whether such the clustering or dispersion of data can be explained more 

completely by the model in certain areas than others.

Results

Univariate

By analyzing the univariate results of the dependent variable and each explanatory 

variable, we can better understand the landscape of education in New York State as well 

as ensuring normality for statistical procedures.

Variable Min Max Mean S.D. % Data

(Dependent)
PctAPM

0.0369 0.8910 0.4472 0.1728 100

(Explanatory)
PctFRPL

0.0 0.9310 0.3664 0.1985 100

Enrollment 62 30042 2427.93 2393.86 100
PctMinority 0.0032 0.9945 0.1662 0.2050 100
CWR 0.189 23.406 1.0539 1.3570 100
PctBach 0.0689 0.8714 0.2945 0.1509 100
ALAND 1.9351e+6 1.6565e+9 1.8552e+8 1.8591e+8 100
AWATER 0 3.5903+8 1.0874e+7 2.5704e+7 100

Review of the univariate table above provided insight into whether the variables had the 

appropriate, or expected, upper and lower bounds, as well as signaled the presence of 

potential outliers. Since I had previously cleaned the data prior to imputing it into the 

various shapefiles and tables, there were no unexpected results here and all of the 

explanatory variables are at 100% of the data available after exclusions. Observation of the 

primary dependent variable, PctAPM, shows a relatively normal distribution. This, a



primary assumption of 

normality for traditional 

a-spatial statistics, 

meant that no 

transformation of the 

variable was needed. As 

is seen in many 

performance measures, 

the ‘bell curve’ is 

prominent in the PctAPM variable as well. As expected, the mean is close to the halfway 

point, at approximately 44%. Notably, there are no districts where 0 students are considered 

college & career ready (a 0% APM) and there are no districts where all of the students are 

considered college & career ready (a 100% APM). Observing the explanatory variables, I 

begin with PctFRPL, the proxy variable for poverty. This variable, too, was fairly normally 

distributed, though with a larger leftward skew than PctAPM. This is to say that, on 

average, there are more 

school districts in New 

York that have a higher 

proportion of students 

living in poverty than 

those districts which 

have the majority of 

students in higher



socioeconomic classes. Given what we know about the rural/urban dichotomies in New 

York State and that the information from New York City is excluded from this study, this

distribution is to be 

expected. Next, the 

explanatory variable of 

enrollment is visualized 

for univariate analysis. 

This variable is highly 

skewed, indicating the

62.0 3393.1 6724.2 1 0055.3 1 33S6.4 16717.6 20046.7 23379.8 26710.9 30042.I
Enrollment

„ majority of school

districts in the study are below the 10,000 student level. Though it may be argued that the 

variable should be transformed in order to most effectively run an OLS regression, the 

resultant coefficient would be difficult to interpret and may not lend itself to further spatial 

analyses. I decided to leave this variable untransformed for the purpose of this study. The 

next explanatory variable is the Combined Wealth Ratio (CWR). Similar to the enrollment 

variable, the distribution 

is highly skewed. Also 

in keeping with the 

thoughts concerning 

enrollment, this variable ,e 

was left untransformed.

Since this is a composite 

measure determined by

o  _ to 
cn

u. pd _

0.2 2.S 5.3 7.9 10.5 13.1 15.7 18.2 20.8 23.4
cw r



the State of New York

transform the variable.

Furthermore, the unit

for CWR is already

in

methodol ogy (1 i sted

inappropriate to log

above), it would be

their own

0.2 0.2 0.3 0.4 0.5 0.6
PctBach

difficult enough to

interpret, so logging it would only add to the difficulty of interpretability. The transformed 

variable can be seen in the appendix to this study, for reference. Finally, the explanatory 

variable PctBach is visualized. This, though not normally distributed, was not made much 

more normal through log transformation. I decided it, too, would be more appropriate left 

in its untransformed state. The univariate analyses for ALAND and AWATER, necessary 

variables for spatial analyses, can be seen in the appendix to this study, for reference. After 

univariate analyses were performed, an exploration of bivariate relationships allowed for a 

deeper understanding of the New York State education landscape.

Bivariate Analyses (Scatterplots)

Through the use of scatterplots, both through STATA and the geospatial statistical 

software GeoDA, bivariate analyses are performed between the dependent variable and 

each of the explanatory variables. Note: for the sake of visual consistency, I present the 

scatterplots from GeoDA here, as the histograms were also produced using GeoDA. The 

scatterplots created in STATA are presented in the appendix, for reference. I then produced



a correlation table between

all variables. The first 

bivariate relationship I 

examined was that between 

PctAPM and PctFRPL, or 

the relationship between 

proxy variables for

performance and poverty. 

The first figure in this 

section depicts the

relationship between these two variables. From the plot, we can observe a clear negative 

relationship between performance and increasing levels of impoverished students; as the 

percentage of students within a district receiving free or reduced price lunch increases, the 

performance of that district decreases. Observing the relationship between performance 

and enrollment, we see 

very little evidence of a 

positive or negative 

correlation. This is to say 

that the size of the school 

district, or number of 

individual students

attending, does not seem to 

have an effect on the level



of performance of the 

district. It is clear,

however, that there are 

some profound outliers in 

the enrollment variable. 

When we control for these 

outliers and remove them 

from the bivariate

relationship, shown on the 

left, we can see that there 

appears to be a positive relationship (blue line) between enrollment and performance; the 

red line displays the estimated relationship between performance and the enrollment of the 

largest schools (not statistically significant). Next, I analyze the relationship between 

performance and concentration of minority students. The scatterplot appears to show a 

negative correlation, 

though it is not particularly 

strong. This indicates that 

as the proportion of 

minority students within a 

district increases, there is 

an associated drop in the 

aggregate performance of 

the district. Observing the



relationship between 

performance and the 

derived Combined Wealth 

Ratio measure, we appear 

to see a positive 

relationship. Though 

difficult to decipher due to 

the unique calculation of 

this metric, it would appear 

to tell us that as the relative 

wealth of a district increases, so too does the average performance. Given the distribution 

of the data, however, this would be an inappropriate inference to make. Lastly, we observe 

the relationship between performance and the level of education within the district, 

represented by the PctBach variable. This seems to be a clear trend, indicating that the more 

adults in the community 

with a bacheolor’s degree 

or above, the higher the 

avreage performance of 

the students in that district.
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Mapping Analysis

Before delving into the multivariate results, it is important to take a moment to 

assign a visual to this ‘education landscape’ I have been mentioning throughout the analysis 

thus far. The map on the previous page depicts the average performance (PctAPM) of 

school districts in New York visualized through choropleth breaks. Even in this basic 

univariate map I can observe grouping of high performance districts around urban areas, 

including notable regions such as Buffalo, Rochester, Syracuse, Albany, as well as 

Westchester and some districts on Long Island. The map on the following page shows a 

similar visualization, but plotting the average percentage FRPL (proxy for poverty) across 

New York. In this case, the darker choropleths represent higher levels of impoverished 

students. Interestingly, though I don’t see the same kind of obvious grouping that we see 

in the APM map, there seems to be a preponderance of high poverty districts surrounding 

the city center areas seen in the previous map. It can be clearly seen, however, that the 

urban areas do tend to have a much lower level of average FRPL, noted by the tendency of 

the aforementioned regions to be lighter in coloration (note the mainly light depiction of 

Long Island).

Hot Spot Analysis

In order to determine where local clusters of districts with high or low performance, 

considering the PctAPM dependent variable, exist I utilize a spatial technique known as 

hot spot analysis through ArcGIS which also returns the confidence of these spots. Though 

somewhat counter-intuitive, the blue and red colorations do not simply indicate areas of 

high and low performance. In order to be labeled as a ‘hot’ or ‘cold’ spot, and be 

statistically significant, the district would need to be:



Cold Spot - 99% Confidence 

Cold Spot - 95% Confidence 

Cold Spot - 90% Confidence

Hot Spot - 90% Confidence 

Hot Spot - 95% Confidence 
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Above or below the average of the distribution and in a neighborhood of counties with 

correspondingly high or low performance. The choropleths are meant to signify a hot- 

neutral-cold conceptualization which indicates that with increasing red coloration that 

depicts districts increasingly above the statewide average for PctAPM. Conversely, with 

increasing blue coloration the districts increasingly below the statewide average for 

PctAPM are shown. What does this mean? This underscores the importance of ascertaining 

underlying spatial dependence. If researchers were to run an OLS regression with a set of 

explanatory variables on New York state and state the predictive outcomes, they would do 

so without accounting for spatial dependency, running the risk of incorrectly assuming 

there is no spatial variability. I would be remiss if I didn’t note that I am not attempting to 

‘dethrone’ OLS regression. It is important to remember, however, that when there is spatial 

variance within the data OLS can either mask localized effects, or underestimate extralocal 

effects within a sample data set if  such variance is not accounted for.

Multivariate Analyses (Correlation Table)

PctAPM PctFRPL enroll~t pctmin~t CWR PctBach

PctAPM 1

PctFRPL -0.7759 1

enrollment 0.0174 -0.0079 1

PctMinority -0.2318 0.2437 0.5227 1

CWR 0.2271 -0.2952 -0.0463 0.0755 1

PctBach 0.6772 -0.6849 0.2161 0.1846 0.4226 1

In the first of the multivariate analyses, the correlation table above, I observe the 

relationships explicated in the scatterplots in the previous section, as well as the



relationships between explanatory variables. Notably, I see a strong negative relationship 

between PctFRPL and PctBach, which is expected: as the number of adults in a school 

district with a bachelor’s degree or higher increase, the relative level of disadvantaged 

students (free or reduced price lunch) decreases. This further supports the family / 

neighborhood effect previously posited in the paper. I also observe two other expected 

relationships: that between Enrollment and PctMinority— as enrollment increases, so does 

the number of individuals in the school including minorities— , as well as the interaction 

between CWR and PctBach— as the relative wealth of a community increases, there is 

increased likelihood that more adults will have at least a bachelor’s degree.

OLS Regression Model

After completing univariate and bivariate analyses, I constructed an empirical 

model to determine the predictors of performance in New York which will first be run 

through a standard OLS regression. Before I discuss the final model’s results, the below 

model iteration table depicts the previous forms of the model which tested for increasing 

explanatory power, significance, and potential specification errors.

Dependent Variable: PctAPM with Independents):
Significant 
Exp. Var Adjusted R2

Model 1 Enrollment 0 -0.10%
Model 2 Enrollment + PctFRPL 1 60.09%
Model 3 Enrollment + PctFRPL + PctMinority 2 60.38%
Model 4 Enrollment + PctFRPL + PctMinority + CWR 2 60.33%
Model 5 Enrollment + PctFRPL + PctMinority + CWR + PctBach 4 67.20%
Model X PctFRPL + PctMinority + CWR + PctBach 4 66.12%

(Red indicates a nonsignificant independent variable)



As the table shows, the most predictive model is Model 5, which results in a -67%  adjusted 

R2 value. Enrollment returns as statistically insignificant in each model, though when 

removed from analysis in Model X, it results in a decrease of explanatory power. Noting 

this, 1 decided to leave Enrollment in as an explanatory variable in the primary model, even 

though it returns insignificant in the OLS. Using the OLS function in ArcGIS, I ran Model 

5 and returned the following results:

Summary of OLS Results - Model Variables

Variable Coefficient [a ] 5td Error t-S tatistic Probability [b ] Robust 5E Robust t Robust Pr [b] VIF [c]

Intercept 0.479324 0.021296 22.507967 0.0 0 0 000* 0.029190 16.420889 0.000000* —

ENROLLMENT 0.000002 0.000002 0.990375 0.322368 0.000001 1.276276 0.202346 1.461976

PCTFRPL -O.390391 0.032224 -12.114894 0.0 0 0 000* 0.043752 -8.922773 0.000000* 2.590571

PCTMINORIT -0.178222 0.026336 -6.767107 0.0 0 0 000* 0.025253 -7.057336 0.000000* 1.845771

CWR -0.009054 0.003285 -2.755813 0.006028* 0.003713 -2.438484 0.015018* 1.258222

PCTBACH 0.495941 0.043504 11.400001 0.000000* 0.056631 8.458708 0.000000* 2.727925

OLS Diagnostics

Input Features: NewThesis Dependent Variable: PCTAPM

Number of Observations: 621 Akaike's Information Criterion (A lC c)Id]: -1102.326510

Multiple R-Squared [d ]: 0.674624 Adjusted R-5quared fd]: 0.671978

Joint F-Statistic (el: 255.023709 Prob(^F), [5,615) degrees of freedom : 0.000000*

Joint Wald Statistic [e l: 1751.304144 Probt^chi-squared), (5) degrees of freedom: 0.000000*

Koenker (BP) S tatistic [f]: 26.757240 Prob(>chhsquared), (5) degrees of freedom: 0.000064*

Jarque-Bera Statistic fg l: 30.797340 Prob(>chhsquared), (2) degrees of freedom: 0.000000*

The model, as shown in the table, predicts performance across New York fairly well at 

67.20%. The coefficients of the statistically significant explanatory variables return with 

the expected sign: PctFRPL and PctAPM are both negatively associated with PctAPM, and 

PctBach is positively associated with PctAPM. Though a weak relationship and not as 

significant as other variables, CWR returns as having a slight negative association with 

PctAPM, which is opposite to what our bivariate analysis suggested. All of the VIF scores 

on the explanatory variables are below 10, indicating that we have little to no



the model. These are all 

good signs and, without 

thinking of spatial variance, 

one might assume this 

model to be an excellent fit 

for use in a social science

- 4  - 3  - 2  - 1  0 1 2 3 4 5
std. ReSiduBis experiment, or to enact

policy changes relating to school performance. Further supporting this model’s 

applicability is yet another ‘check mark’ that statisticians look for after running an OLS

, ,  . . R e s id u a l  v s .  P r e d i c t e d  P lo t
regression: normally and randomly

distributed residuals. As shown from 

the two visualizations on this page -  3

my OLS model has both of those 

positive attributes. Where we begin |  

to see indications of incomplete 

conceptualization of the model is _2 

through the remaining statistics

|  1 
U1
41 f£

*  °  *  o ®

-  n 0~L

provided in the ArcGIS OLS output. -0-2 ° ° 0.4 0.s o.e 1.0
P re d ic te d

Both the Koenker and Jarque-Bera statistics return as statistically significant; this indicates 

that there is some kind of spatial variance present and it must be determined what kind of 

variance this is. By running a Moran’s I statistic on the residuals of the OLS model, I can 

determine whether the residuals are spatially autocorrelated, indicating the presence of



some form of nonstationarity. Below is the Moran’s I report for the residuals of the OLS 

model. Here is where we begin to see what traditional OLS can’t account for: spatial 

autocorrelation. In observing the residual analysis, it appears that there is significant (p-

value) 

autocorrelation 

and that the data 

is clustered. The 

Koenker 

statistic’s 

significance also 

indicates that 

there is some 

form of

nonstationarity 

in the data, 

implying the use 

of the

Geographically 

Weighted 

Regression:

allowing the model to vary in its predictive power over space (in this case, districts). The 

determination of spatial autocorrelation in the residuals of the OLS model, combined with 

other statistics in the output, indicate that I should attempt using a GWR to better

Global Moran's I Summary

Moran's Index: 0.086789

Expected Index: -0.001613

Variance: 0.000177

z-score: 6.637600

p-value: 0.000000



understand the variance within the dataset. As mentioned in the methods section, the 

importance of GWR is inextricably linked to the potential variance in a model’s 

predictability; public policy decisions such as the allocation of limited resources can be 

directed with more efficient effect than without the use of such a method.

Geographically Weighted Regression Model

Tabular output diagnostics provided by ArcGIS for the GWR are limited. There is 

no long report with various graphical representations, only a brief table summarizing the 

predictability results. Where the GWR does allow for enhanced visualization, however, is

the resultant plottable choropleth maps capable of being output by ArcGIS, which will be 

shown in a following section. After running the GWR and ‘allowing’ the model to vary 

across geographic space, I observed a nearly 4% improvement in the predictive power of 

the model. This may not seem like a vast improvement but for a social science dataset this

is indeed noteworthy. The Aikake’s Information Criterion (AICc) metric improved,

indicating that this model is 

indeed a better fit than the 

traditional OLS. Similar to the 

OLS model, we need to also 

evaluate the residuals of the 

GWR model in order to 

determine whether or not we 

have accounted for the spatial 

autocorrelation present in the
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previous model. 

Shown here is the 

Moran’s I report from 

the residuals of the 

GWR model. This 

output confirms that I 

have accounted for 

the spatial

autocorrelation by 

showing spatially- 

random residuals. As 

noted in the output: 

“ ...the pattern does 

not appear to be 

significantly different 

than random.” What

we have yet to completely account for, however, is some of the nonstationarity within the 

original OLS model, indicated by the significant Koenker statistic. This can be achieved 

by running either a spatial lag or spatial error model, as determined by output from a 

spatially weighted OLS regression run in the GeoDA program. By running this slightly 

nuance form of OLS, the output returns an estimation as to which enhanced spatial 

regression is most appropriate for use in reducing nonstationarity / autocorrelation. These 

diagnostics will be shown in the next section.

Spatial Autocorrelation Report

Dispersed

Given the z-score of -0,316963346837, the pattern does not appear to be significantly different 
than random.

Global Moran's I Summary

Moran's Index: -0.006395

Expected Index: -0.001613

Variance: 0.00022E

z-score: -0.316963

p- value: 0.751271



Additional Spatial Regression Models

As the Koenker statistic has indicated additional nonstationarity within the original 

OLS model, I use the GeoDA program to run a spatially-weighted OLS model which 

returns an additional section of regression diagnostics. This section indicates whether or 

not a spatial lag or spatial error regression will further enhance the predictability of my

model, and which is more likely to be significant. The below image shows the spatial

dependence 

output from 

GeoDA, 

including the

DIAGNOSTICS FOR SPATIAL DEPENDENCE 
FOR WEIGHT MATEIK 7 NYSFinalThesiaWeights 

(row-standardized weights)
TEST MI/DF VALUE PROB
Motet's I (error) 0.0920 3.7735 0.00016
Lagrange Multiplier (lag) 1 10.6063 0.00113
Robust LM (lag) 1 1.3054 0.23323
Lagrange Multiplier (error) 1 12.0342 0.00034
Robust LM (error) 1 3.S333 0.06013
Lagrange Multiplier (SAHMA) 2 14.1396 0.00035

highest significance (Lagrange Multiplier) value being attributed to the spatial error model

at 0.00034. When a spatial error model is run, the results are promising.

SUMMARY OF OUTPUT: SPATIAL ERROR MODEL - MAXIMUM LIKELIHOOD ESTIMATION
Data set NYSFinalThesis
Spatial Height NYSFinalThesisWeights
Dependent Variable pctapm Number of Observations: 621
Mean dependent var 0.447163 Number of Variables : 6
S.D. dependent var 0.172646 Degrees of Freedom : 615
Lag coeff. (Lambda) 0.194627

R-squared 0.6829S1 R-squared (BUSE) : -

Sq. Correlation - Log likelihood : 563.923472
Sigma-square 0.00945016 Akaike info criterion : -1115.85
S.E of regression 0.0972119 Schwarz criterion : -1089.26

Variable Coefficient Std.Error z-value Probability

CONSTANT 0.468187 0.0217192 21.5564 0.00000
enrollment 1.49SSSe-006 1.64263e-006 0.910462 0.36258

pctfrpl -0.371763 0.0326424 -11.389 0.00000
pctminorit -0.18329 0.027661 -6.62631 0.00000

cwr -0.00937888 0.00334923 -2.80031 0.00511
pctbach 0.5146 0.0446438 11.5268 0.00000
LAMBDA 0.194627 0.0578897 3.36203 0.00077



All of the originally significant explanatory variables not only remain significant, but gain 

significance through the error model. Notably, as compared with the OLS results, several 

of the explanatory variables’ coefficients have changed. PctBach has gone from an 

predicted positive relationship of 0.49 to 0.51, PctFRPL has moved from a predicted

negative relationship of -0.39 

to -0.37, and PctMinority has 

moved from a predicted 

negative relationship of -0.17 

to -0.18. Finally, by observing 

the spatial autocorrelation 

report (from GeoDA) of the 

OLS model’s residuals at 

0.092 (note: this is just a 

simpler representation of the larger report shown earlier) and now the residuals of the 

spatial error model at -0.008,1 

have nearly completely 

accounted for all spatial 

autocorrelation within the 

dataset (no correlation is a 

score of 0). Implications of 

these results will be addressed 

in the discussion section.

Moran’s  I: 0.0919517



Discussion and Conclusions

What can we take away from this iterative process of testing for, identifying, and 

accounting for underlying spatial variance within the data? After running the first OLS 

regression, though it returned a fair R2, I was alerted to the possible presence of spatial 

autocorrelation through the OLS diagnostics and the Moran’s I report of the residuals. The 

GWR model was the run, allowing the predictive capability of the model to vary across the 

study area. This improved my model’s predictive power overall, and returned spatially 

random residuals, but some diagnostics continued to alert me to the presence of 

nonstationarity and autocorrelation -  indicating that there may yet be a better fitting model 

given the underlying clustering of the data. Finally, through the GeoDA application’s OLS 

testing, I determined a spatial error regression model to be the most appropriate for the 

dataset. Though the spatial error model’s predictive power was only a slight (~>1% in R 2 

value) improvement, the resulting coefficient changes revealed a story about what may 

have been happening in my original OLS model. In the spatial error model, the PctBach 

and PctMinority explanatory variables both increased in their respective relationships to 

the dependent variable -  i.e. PctBach became more strongly positively associated and 

PctMinority became more strongly negatively associated with PctAPM. This is a clear 

indication that the original OLS regression, not accounting for any spatial variance, 

underpredicted these two variables’ effect on performance across the study area. 

Conversely, PctFRPL’s negative relationship to PctAPM weakened according to the spatial 

error model. This indicates that the OLS regression overpredicted the impact of minority 

concentration on performance across the study area. When allowed to vary with space, 

these three explanatory variables’ coefficient effects are more appropriately stated. As



mentioned at the beginning of this study, the conceptualization of the interrelationships 

between the explanatory variables and the dependent variable of performance is not 

complete. Models predicting performance will continue to be refined, as will the 

understanding of more robust spatial methodologies with which to test those predictions. 

For now, however, there is still an actionable purpose behind the results garnered in this 

analysis. The final several pages show choropleth maps of the Geographically Weighted 

Regression model’s predictive power for the primary explanatory variables in the study; 

this shows where across New York State the GWR does a better, or worse, job of predicting 

that particular explanatory variable’s impact on performance. The final map shows the 

local R2 values for the GWR model; where the regression model, taken with all five 

explanatory variables, holds the most predictive power. Non-significant explanatory 

variable coefficient maps can be found in the appendix, for reference.

In designing future studies, it will be important to gather more detailed community- 

level data from school districts, as well as run many more iterations of spatial regression 

models in order to determine precise areas in which models may have the best predictive 

capability. This, in turn, will be able to most efficiently and directly inform local actors, 

governments, foundations, and communities themselves where to direct their limited 

resources. As resources continue to become more dispersed, technological advances impact 

both the classroom and the home, and neighborhoods continue to become more diverse, it 

is crucial to ascertain the most appropriate and powerful methodologies to better the 

educational experience for all students.

“If  we teach today as we taught yesterday, we rob our children of tomorrow.” -  Dewey
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